WO2021140751A1 - Structure - Google Patents

Structure Download PDF

Info

Publication number
WO2021140751A1
WO2021140751A1 PCT/JP2020/042952 JP2020042952W WO2021140751A1 WO 2021140751 A1 WO2021140751 A1 WO 2021140751A1 JP 2020042952 W JP2020042952 W JP 2020042952W WO 2021140751 A1 WO2021140751 A1 WO 2021140751A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
layer
sample
base material
adhesive layer
Prior art date
Application number
PCT/JP2020/042952
Other languages
French (fr)
Japanese (ja)
Inventor
大未 齊藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080092136.3A priority Critical patent/CN114929473A/en
Publication of WO2021140751A1 publication Critical patent/WO2021140751A1/en
Priority to US17/859,448 priority patent/US20220340797A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • This disclosure relates to structures.
  • Patent Document 1 a structure in which a primer is applied between an aluminum base material and an adhesive layer composed of an adhesive resin is also known.
  • An object of the present disclosure is to provide a structure capable of exhibiting high adhesive strength even when it is in contact with a solvent for a long time or when a thermal shock is applied.
  • One aspect of the present disclosure includes an aluminum base material and an adhesive layer made of an adhesive resin adhered to the surface of the aluminum base material.
  • the adhesive layer includes a hard layer in contact with the adhesive interface with the aluminum base material and a main body layer in contact with the hard layer.
  • the hard layer is harder than the main body layer, It is in the structure.
  • FIG. 1 is a diagram schematically showing a structure according to the first embodiment.
  • 2A and 2B are explanatory views of an estimation mechanism for improving the adhesive strength
  • FIG. 2A is a diagram schematically showing a state of the adhesive resin in the structure according to the first embodiment
  • FIG. 2B is a diagram schematically showing a state of the adhesive resin according to the comparative embodiment. It is a figure which showed typically the state of the adhesive resin in a structure.
  • FIG. 3 is a diagram schematically showing the relationship between the distance from the adhesive interface in the cross section of the adhesive layer and the adsorption force or elastic modulus.
  • FIG. 4 is a diagram schematically showing the structure according to the second embodiment.
  • FIG. 5 is a diagram showing an adsorption force image of a cross section of the adhesive layer of Sample 1 obtained by surface observation with a scanning probe microscope in Experimental Example 1.
  • FIG. 6 is a diagram showing an adsorption force image of a cross section of the adhesive layer of Sample 1C obtained by surface observation with a scanning probe microscope in Experimental Example 1.
  • FIG. 7 is a diagram showing an elastic modulus image of the cross section of the adhesive layer of Sample 1 obtained by surface observation with a scanning probe microscope in Experimental Example 1.
  • FIG. 8 is a diagram showing an elastic modulus image of the cross section of the adhesive layer of Sample 1C obtained by surface observation with a scanning probe microscope in Experimental Example 1.
  • FIG. 5 is a diagram showing an adsorption force image of a cross section of the adhesive layer of Sample 1 obtained by surface observation with a scanning probe microscope in Experimental Example 1.
  • FIG. 6 is a diagram showing an adsorption force image of a cross section of the adhesive
  • FIG. 9 is a diagram showing the relationship between the distance from the adhesive interface and the adsorption force in the cross section of the adhesive layer of Sample 1 and Sample 1C obtained in Experimental Example 2.
  • FIG. 10 is a diagram showing the relationship between the distance from the adhesive interface and the adsorption force in the cross section of the adhesive layer of Sample 2 and Sample 2C obtained in Experimental Example 2.
  • FIG. 11 is a diagram showing the relationship between the distance from the adhesive interface and the elastic modulus in the cross section of the adhesive layer of Sample 1 and Sample 1C obtained in Experimental Example 2.
  • FIG. 12 is a diagram showing the relationship between the distance from the adhesive interface and the elastic modulus in the cross section of the adhesive layer of Sample 2 and Sample 2C obtained in Experimental Example 2.
  • FIG. 13 is a diagram showing the tensile shear strength of the structures of Sample 1 and Sample 1C obtained in Experimental Example 3 under each condition.
  • the structure of the present embodiment has an aluminum base material and an adhesive layer made of an adhesive resin adhered to the surface of the aluminum base material.
  • the adhesive layer includes a hard layer in contact with the adhesive interface with the aluminum base material and a main body layer in contact with the hard layer.
  • the hard layer is harder than the body layer.
  • the structure of the present embodiment can be broken mainly in the main body layer even when it is in contact with a solvent for a long time or when a thermal shock is applied. That is, in the structure of the present embodiment, the base metal fracture of the main body layer is mainly destroyed, not the interfacial fracture. This is because even if the adhesive layer is made of the same adhesive resin, the resin physical properties of the adhesive resin have not changed in the main body layer, while the hard layer is harder than the main body layer. It is considered that this is because the resin physical properties of the adhesive resin immobilized on the adhesive interface have changed and the strength near the adhesive interface has increased. Therefore, according to the structure of the present embodiment, high adhesive strength can be exhibited even when the structure is in contact with a solvent for a long time or when a thermal shock is applied. This will be explained in detail below.
  • the structure 1 of the present embodiment has an aluminum base material 111 and an adhesive layer 12.
  • the aluminum referred to in the aluminum base material 111 includes not only pure aluminum but also an aluminum alloy.
  • Specific examples of the aluminum base material 111 include base materials in various shapes of members made of aluminum or an aluminum alloy.
  • Examples of aluminum alloys include 1000 series Al alloys, 2000 series Al alloys, 3000 series Al alloys, 4000 series Al alloys, 5000 series Al alloys, 6000 series Al alloys, 7000 series Al alloys, and aluminum die cast alloys such as ADC12. Can be mentioned.
  • the adhesive surface to which the adhesive layer 12 is adhered can be modified.
  • the adhesive surface can be removed in whole or in part from the oxide film layer (not shown).
  • a modified layer (not shown) made of silicate glass or the like can be provided on the surface of the adhesive surface from which all or part of the oxide film layer has been removed. According to this configuration, it becomes easy to form a covalent bond between the modified layer and the adhesive resin, and it becomes easy to exhibit high adhesive strength in combination with the effect of improving the strength near the adhesive interface 131.
  • the silicate glass include aluminosilicate glass, which is a silicate glass in which an Al element is dissolved in a solid solution.
  • the adhesive layer 12 is composed of an adhesive resin adhered to the surface of the aluminum base material 111. Specifically, the adhesive layer 12 may be partially formed on the surface of the aluminum base material 111, or may be formed on the entire surface of the aluminum base material 111.
  • the adhesive resin examples include epoxy resin, polyurethane resin, melanin resin, urea resin, silicone resin, polyester resin and the like. Of these, epoxy resin and silicone resin are preferable as the adhesive resin. Since the epoxy resin and the silicone resin can form a covalent bond by a chemical reaction with an OH group that may exist on the surface of the aluminum base material 111, it is easy to improve the strength near the adhesive interface 131. For example, as described above, when the aluminum base material 111 has a modified layer composed of silicate glass on the surface, the epoxy resin is covalently bonded by a chemical reaction between the OH group and the epoxy group on the surface of the modified layer. Can occur. Further, the silicone resin can form a covalent bond with the OH group on the surface of the modified layer by a dehydration condensation reaction.
  • the adhesive resin may contain one or more of various additives applied to general resin-based adhesives, if necessary.
  • the adhesive layer 12 includes a hard layer 121 and a main body layer 123.
  • the hard layer 121 is in contact with the adhesive interface 131 with the aluminum base material 111.
  • the main body layer 123 is in contact with the hard layer 121. Since both the hard layer 121 and the main body layer 123 are a part of the adhesive layer 12, they are basically integrally formed of the same type of adhesive resin constituting the adhesive layer 12. However, the state of the polymer constituting the adhesive resin is different between the hard layer 121 and the main body layer 123. Therefore, the hardness of the hard layer 121 and the main body layer 123 are different. Specifically, the hard layer 121 is harder than the main body layer 123.
  • the adhesive layer 12'does not include the hard layer 121 and the main body layer 123, and the entire adhesive layer 12'is uniformly hard. It is said to be.
  • the crosslink density of the adhesive resin constituting the adhesive layer 12' is substantially the same in the thickness direction of the adhesive layer 12', and the strength near the adhesive interface 131 is not improved. Therefore, the conventional structure 1'is likely to be peeled off at the adhesive interface 131.
  • the adhesive layer 12 includes a hard layer 121 and a main body layer 123, and the hard layer 121 is harder than the main body layer 123.
  • the cross-linking density of the adhesive resin constituting the hard layer 121 is larger than the cross-linking density of the adhesive resin constituting the main body layer 123, and the strength in the vicinity of the adhesive interface 131 is improved by improving the cross-linking density.
  • FIG. 2 the intersections of the lattices shown in the adhesive layers 12 and 12'mean the cross-linking points.
  • the structure 1 can exhibit high adhesive strength even when it is in contact with a solvent for a long time or when a thermal shock is applied.
  • the hard layer 121 can be configured to be bonded to the surface of the aluminum base material 111 by a covalent bond. According to this configuration, the solvent is less likely to penetrate into the adhesive interface 131 as compared with the configuration in which the surface of the aluminum base material 111 is bonded by an anchor effect or a hydrogen bond. Therefore, according to this configuration, the strength of the adhesive interface 131 is less likely to deteriorate, the effect of improving the strength of the adhesive interface 131 can be ensured, and the long-term adhesive reliability of the adhesive interface 131 is also improved.
  • the hydrogen bond is broken by an attack by a solvent that has penetrated the adhesive interface 131, and the cut portion becomes a new reaction point and a chain reaction occurs. Therefore, the bond by hydrogen bond is more likely to deteriorate the adhesive interface 131 with respect to a solvent such as an organic solvent than the bond by covalent bond.
  • the hardness of the adhesive layer 12 is related to the cross-linking density of the adhesive resin as described above, the relationship between the distance from the adhesive interface 131 to the inside of the adhesive layer 12 and the cross-linking density is directly related. If the cross-linking density of the hard layer 121 is larger than the cross-linking density of the main body layer 123, it can be said that the hard layer 121 is harder than the main body layer 123. However, it is difficult to measure the crosslink density distribution of the adhesive resin in the adhesive layer 12.
  • the present inventor selects the adhesive force or elastic modulus of the adhesive resin as the resin physical properties, and the adsorption force of the hard layer 121 is larger than the adsorption force of the main body layer 123, or / and. It has been found that when the elastic modulus of the hard layer 121 is larger than the elastic modulus of the main body layer 123, the hard layer 121 can be said to be harder than the main body layer 123, and the above-mentioned effects can be obtained.
  • the adsorption force of the hard layer 121 measured by using a scanning probe microscope with respect to the cross section of the adhesive layer 12 perpendicular to the adhesive interface 131 is the main body.
  • the configuration can be larger than the adsorption force of the layer 123.
  • the structure 1 has a configuration in which the elastic modulus of the hard layer 121 measured by using a scanning probe microscope is larger than the elastic modulus of the main body layer 123 with respect to the cross section of the adhesive layer 12 perpendicular to the adhesive interface 131. be able to. According to these configurations, the above-mentioned action and effect can be ensured.
  • the adsorption force and elastic modulus can be measured as follows.
  • a measurement sample having a cross section of the adhesive layer 12 perpendicular to the adhesive interface 131 is collected from the structure 1 to be measured.
  • As the scanning probe microscope a scanning probe microscope "SPM9500” manufactured by Shimadzu Corporation can be used. If the model is discontinued and cannot be obtained, a successor model can be used.
  • a Si 3 N 4 AFM cantilever (Hitachi High-Tech Science "SN-AF01" (spring constant 0.08 N / m)) is used as the probe.
  • the measurement mode of the scanning probe microscope is the contact mode, and the operation mode is the force curve mode.
  • the frequency at the time of measurement is 1 Hz, and the contact voltage is 0.5 V.
  • each position of the adhesive layer 12 is gradually separated from the adhesive interface 131 appearing in the cross section of the adhesive layer 12 in the measurement sample along the thickness direction of the adhesive layer 12.
  • Measure the force curve in That is, the distance from the adhesive interface 131 in the adhesive layer 12 to the inside of the adhesive layer 12 is gradually changed, and the force curve at each position of the cross section of the adhesive layer 12 is measured.
  • the elastic modulus and the attractive force at each position of the adhesive layer 12 cross section are obtained from the force curve at each position of the adhesive layer 12 cross section.
  • the deflection of the cantilever decreases, but the suction force generated between the surface of the measurement sample and the cantilever causes the deflection on the attractive force side, contrary to the above. After that, the cantilever completely separates from the surface of the measurement sample.
  • the elastic modulus can be obtained from the amount of deflection of the force curve portion corresponding to the portion where the cantilever is deflected to the repulsive force side.
  • the suction force can be obtained from the amount of deflection of the force curve portion corresponding to the portion that separates from the measurement sample after the cantilever bends to the attractive force side.
  • the hard layer 121 in the adhesive layer 12 has a region in which the adhesive force or elastic modulus of the adhesive resin immobilized on the adhesive interface 131 changes as compared with the adhesive force or elastic modulus of the adhesive resin in the main body layer 123. Can be grasped as.
  • the suction force of the hard layer 121 can be reduced as the distance from the adhesive interface 131 increases. According to this configuration, it is possible to ensure the strength improvement of the adhesive interface 131, so that the above-mentioned action and effect can be ensured. Further, by changing the state of the adhesive resin little by little, the number of parts where stress is concentrated is reduced, and there is an advantage that the force is less likely to be applied near the adhesive interface 131.
  • the adsorption force of the hard layer 121 may gradually decrease as the distance from the adhesive interface 131 increases, or may decrease stepwise (stepwise) as the distance from the adhesive interface 131 increases.
  • the elastic modulus of the hard layer 121 when the elastic modulus of the hard layer 121 is larger than the elastic modulus of the main body layer 123, the elastic modulus of the hard layer 121 is set to decrease as the distance from the bonding interface 131 increases. Can be done. According to this configuration, it is possible to ensure the strength improvement of the adhesive interface 131, so that the above-mentioned action and effect can be ensured. In addition, since the displacement due to stress changes stepwise, there is an advantage that it becomes easy to prevent sudden stress concentration due to the displacement difference.
  • the elastic modulus of the hard layer 121 may gradually decrease as the distance from the adhesive interface 131 increases, or may decrease stepwise (stepwise) as the distance from the adhesive interface 131 increases.
  • the thickness of the hard layer 121 can be 0.5 ⁇ m or more. According to this configuration, the adsorption force and elastic modulus are higher in the vicinity of the adhesive interface 131, and the density of the adhesive resin is higher, so that the adhesive resin in the vicinity of the adhesive interface 131 is prevented from being weakened by the permeated solvent or permeated gas. There are advantages such as easy operation.
  • the thickness of the hard layer 121 can be preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, still more preferably 5 ⁇ m or more, from the viewpoint of facilitating solvent permeation and gas permeation of the adhesive resin.
  • the thickness of the hard layer 121 may increase the density of the adhesive resin, reduce the flexibility of the adhesive resin, and may be weak against thermal shock or the like. From the viewpoint of facilitating prevention, the thickness can be preferably 2 mm or less.
  • the thickness of the hard layer 121 is shown in the relationship diagram between the distance from the adhesive interface 131 in the cross section of the adhesive layer 12 and the adsorption force, and the relationship diagram between the distance from the adhesive interface 131 in the cross section of the adhesive layer 12 and the elastic coefficient. Therefore, it can be obtained as the distance from the adhesive interface 131 to the interface between the hard layer 121 and the main body layer 123.
  • the adhesive layer 12 in the structure 1 of the present embodiment can be used, for example, as a resin coat on the surface of the aluminum base material 111, a sealing material formed on the surface of the aluminum base material 111, or the like.
  • the structure 1 of the present embodiment has an aluminum base material 111 and an adhesive layer 12 similar to the structure 1 of the first embodiment.
  • the structure 1 of the present embodiment further has an aluminum base material 112.
  • the structure 1 of the present embodiment is arranged between the aluminum base material 111, the aluminum base material 112, and the aluminum base materials 111 and 112, and the surface of the aluminum base material 111 and the aluminum base material 112. It has an adhesive layer 12 made of an adhesive resin adhered to the surface of the above. That is, the structure 1 of the present embodiment is a bonded structure in which the aluminum base material 111 and the aluminum base material 112 are joined via the adhesive layer 12.
  • the adhesive layer 12 has a hard layer 121 in contact with the adhesive interface 131 with the aluminum base material 111 and a hard layer 122 in contact with the adhesive interface 132 with the aluminum base material 112. And a main body layer 123 in contact with the hard layer 121 and the hard layer 122.
  • the hard layer 121 is harder than the main body layer 123
  • the hard layer 122 is harder than the main body layer 123.
  • the aluminum base material 112, the adhesive interface 132, and the hard layer 122 can be similarly configured with reference to the description of the aluminum base material 111, the adhesive interface 131, and the hard layer 121 described in the first embodiment.
  • the aluminum base material 112 may be made of the same aluminum alloy or the like as the aluminum base material 111, or may be made of a different aluminum alloy or the like.
  • the above-mentioned aluminum base material 111 is the first aluminum base material
  • the aluminum base material 112 is the second aluminum base material
  • the hard layer 121 is the first hard layer
  • the hard layer 122 is the second hard layer
  • the interface 131 can be said to be the first adhesive interface
  • the adhesive interface 132 can be said to be the second adhesive interface.
  • a bonded structure capable of exhibiting high adhesive strength can be obtained even when it is in contact with a solvent for a long time or when a thermal shock is applied.
  • the thicknesses of the hard layers 121 and 122 can be 1 ⁇ m or more. According to this configuration, there are advantages such as an improvement in elastic modulus, an increase in strength of the adhesive interfaces 131 and 132, and difficulty in cutting at the adhesive interfaces 131 and 132 and their vicinity.
  • the thickness of the hard layers 121 and 122 can be preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 5 ⁇ m or more, from the viewpoint of improving the strength of the adhesive interfaces 131 and 132. Further, in this case, the thickness of the hard layers 121 and 122 can be preferably 2 mm or less from the viewpoint of preventing the elastic modulus from becoming too high and making it difficult for the internal stress to escape.
  • the structure 1 of the present embodiment can be used for joining an aluminum member and an aluminum member. More specifically, the structure 1 of the present embodiment includes joining of aluminum pipes and piping members (for example, joint members, fixing members, etc.), joining of pipes, and joining of heat exchanger members. It can be applied in various ways to join heat exchangers and parts around the heat exchangers, such as joining heat exchangers and pipes. Other configurations and effects are the same as in the first embodiment.
  • the two aluminum base materials prepared as described above were arranged so as to overlap over a range of 10 mm in length with a gap formed between the base material surfaces at each end.
  • the gap interval was set to 200 ⁇ m.
  • an adhesive resin material was applied to the end of the gap.
  • an epoxy resin material composed of 2,2-bis (4-hydroxyphenyl) propandiglycidyl ether (BPADGE) as a main agent and dicyandiamide (DYCI) as a curing agent was used.
  • BPADGE 2,2-bis (4-hydroxyphenyl) propandiglycidyl ether
  • DYCI dicyandiamide
  • the obtained laminate was heated and held at 135 ° C. for 10 minutes, then the heating temperature was further raised and held at 155 ° C. for 20 minutes to cure the adhesive resin material, and then naturally cooled.
  • the structure of the sample 1 having the aluminum base material and the adhesive layer composed of the epoxy resin adhered to the surface of the aluminum base material (specifically, the aluminum base material / adhesive layer / aluminum base material in this order).
  • a structure having a laminated structure laminated in 1) was obtained.
  • the adhesive resin of the hard layer is covalently bonded to the surface of the modified aluminum base material.
  • sample 1C A structure of sample 1C having an adhesive layer to be formed (specifically, a structure having a laminated structure in which an aluminum base material / an adhesive layer / an aluminum base material is laminated in this order) was obtained.
  • a structure of Sample 2 having an adhesive layer composed of the above-mentioned silicone resin adhered to the surface of the sample 2 was obtained.
  • the adhesive resin of the hard layer was a modified aluminum base material. It is bonded to the surface by a covalent bond.
  • the aluminum base material and the silicone resin adhered to the surface of the aluminum base material were obtained in the same manner except that the aluminum base material was not immersed in the sodium silicate aqueous solution.
  • a structure of sample 2C having an adhesive layer to be formed was obtained.
  • the adhesive layer of the structure of sample 1C had a substantially constant adsorption force over the entire adhesive layer. From this, it can be seen that in the structure of Sample 1C, the crosslink density of the epoxy resin constituting the adhesive layer does not change in the thickness direction, and the entire adhesive layer has a uniform hardness. That is, it can be seen that the adhesive layer of the structure of sample 1C does not include the hard layer and the main body layer.
  • the adsorption force of a certain region from the adhesive interface between the aluminum base material and the adhesive layer to the adhesive layer side is within the constant region. It was larger than the adsorption force of the adhesive layer on the other side.
  • the crosslink density of the epoxy resin constituting the adhesive layer changes in the thickness direction, and the crosslink density of a certain region from the adhesive interface to the adhesive layer side is within the above constant region. It can be said that it is higher than the crosslink density of the adhesive layer on the other side. That is, it can be seen that the adhesive layer of the structure of the sample 1 includes an internal main body layer and a hard layer harder than the main body layer.
  • the structures of Sample 2 and Sample 2C the same results as those of Sample 1 and Sample 1C were obtained.
  • the elastic modulus of the adhesive layer of the structure of Sample 1C was substantially constant over the entire adhesive layer. From this, it can be seen that in the structure of Sample 1C, the crosslink density of the epoxy resin constituting the adhesive layer does not change in the thickness direction, and the entire adhesive layer has a uniform hardness. That is, it can be seen that the adhesive layer of the structure of sample 1C does not include the hard layer and the main body layer.
  • the elastic modulus of a certain region from the adhesive interface between the aluminum base material and the adhesive layer to the adhesive layer side is within the constant region. It was larger than the elastic modulus of the adhesive layer on the other side.
  • the crosslink density of the epoxy resin constituting the adhesive layer changes in the thickness direction, and the crosslink density of a certain region from the adhesive interface to the adhesive layer side is within the above constant region. It can be said that it is higher than the crosslink density of the adhesive layer on the other side. That is, it can be seen that the adhesive layer of the structure of the sample 1 includes an internal main body layer and a hard layer harder than the main body layer.
  • the structures of Sample 2 and Sample 2C the same results as those of Sample 1 and Sample 1C were obtained.
  • FIG. 10 shows the relationship between the distance from the adhesive interface and the adsorption force in the cross section of the adhesive layer of Sample 2 and Sample 2C.
  • FIG. 11 shows the relationship between the distance from the adhesive interface and the elastic modulus in the cross section of the adhesive layer of Sample 1 and Sample 1C.
  • FIG. 12 shows the relationship between the distance from the adhesive interface and the elastic modulus in the cross section of the adhesive layer of Sample 2 and Sample 2C.
  • FIGS. 9 and 10 and 12 it can be seen that the structures of Sample 1C and Sample 2C have constant adsorption force and elastic modulus regardless of the distance from the adhesive interface. From this, it can be seen that in the structures of Sample 1C and Sample 2C, the crosslink density of the adhesive resin constituting the adhesive layer does not change in the thickness direction, and the entire adhesive layer has a uniform hardness. On the other hand, as shown in FIGS. 9 and 10, FIG. 11 and FIG. 12, the adhesive layer of the structures of Sample 1 and Sample 2 is constant from the adhesive interface between the aluminum base material and the adhesive layer to the adhesive layer side.
  • the adsorption force and elastic modulus up to a distance were larger than the adsorption force and elastic modulus of the adhesive layer at a distance exceeding the above-mentioned constant distance.
  • the cross-linking density of the adhesive resin constituting the adhesive layer changes in the thickness direction, and the cross-linking density of a certain distance from the adhesive interface to the adhesive layer side is the above-mentioned constant distance. It can be said that it is larger than the crosslink density of the inner adhesive layer. That is, it can be seen that the adhesive layer of the sample 1 and sample 2 structures includes an internal main body layer and a hard layer harder than the main body layer. Further, the hard layers in the structures of Sample 1 and Sample 2 both became smaller as the distance from the adhesive interface increased.
  • the structure of sample 1 had a higher initial tensile shear strength than the structure of sample 1C. This is because the structure of Sample 1C does not have a hard layer as the adhesive layer, and the adhesive resin is adhered to the surface of the aluminum base material by an anchor effect, hydrogen bonds, or the like. On the other hand, in the structure of Sample 1, in addition to the strength near the adhesive interface being improved by the hard layer, the effect that the adhesive resin of the hard layer is covalently bonded to the surface of the aluminum base material is also combined. It is probable that the initial tensile shear strength increased.
  • the structure of sample 1 has less decrease in tensile shear strength and higher tensile strength than the structure of sample 1C in both cases after immersion in THF and after loading with a thermodynamic cycle. Shear strength could be maintained.
  • the fracture form of the sample 1 was mainly the fracture of the base material of the main body layer, but the structure of the sample 1C was mainly the interface peeling. Further, with respect to the structures of Sample 2 and Sample 2C, the same results as those of the structures of Sample 1 and Sample 1C were obtained.

Abstract

A structure (1) has an aluminum substrate (111), and an adhesive layer (12) comprising an adhesive resin adhering to the surface of the aluminum substrate (111). The adhesive layer (12) comprises: a hard layer (121) contacting the adhesion interface (131) with the aluminum substrate (111); and a body layer (123) contacting the hard layer (121). The hard layer (121) is harder than the body layer (123).

Description

構造体Structure 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年1月8日に出願された日本出願番号2020-001210号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2020-001210 filed on January 8, 2020, and the contents of the description are incorporated herein by reference.
 本開示は、構造体に関する。 This disclosure relates to structures.
 従来、アルミニウム基材と、アルミニウム基材の表面に接着したエポキシ樹脂等の接着樹脂より構成される接着層と、を有する構造体が広く知られている。 Conventionally, a structure having an aluminum base material and an adhesive layer composed of an adhesive resin such as an epoxy resin adhered to the surface of the aluminum base material is widely known.
 また、特許文献1に記載されるように、アルミニウム基材と接着樹脂より構成される接着層との間にプライマーを塗布してなる構造体も知られている。 Further, as described in Patent Document 1, a structure in which a primer is applied between an aluminum base material and an adhesive layer composed of an adhesive resin is also known.
特開2000-239644号公報Japanese Unexamined Patent Publication No. 2000-239644
 従来広く知られた構造体は、アルミニウム基材と接着層との接着界面付近が弱い。そのため、溶媒と長時間接触したり、熱衝撃が加わったりした際に、アルミニウム基材と接着層との接着界面にて剥離が生じる。 Conventionally widely known structures have a weak vicinity of the adhesive interface between the aluminum base material and the adhesive layer. Therefore, when the aluminum base material is in contact with the solvent for a long time or when a thermal shock is applied, peeling occurs at the adhesive interface between the aluminum base material and the adhesive layer.
 本開示は、溶媒と長時間接触したり、熱衝撃が加わったりした場合でも、高い接着強度を発揮することが可能な構造体を提供することを目的とする。 An object of the present disclosure is to provide a structure capable of exhibiting high adhesive strength even when it is in contact with a solvent for a long time or when a thermal shock is applied.
 本開示の一態様は、アルミニウム基材と、上記アルミニウム基材の表面に接着した接着樹脂より構成される接着層と、を有しており、
 上記接着層は、上記アルミニウム基材との接着界面に接する硬質層と、上記硬質層に接する本体層と、を備えており、
 上記硬質層は、上記本体層よりも硬い、
 構造体にある。
One aspect of the present disclosure includes an aluminum base material and an adhesive layer made of an adhesive resin adhered to the surface of the aluminum base material.
The adhesive layer includes a hard layer in contact with the adhesive interface with the aluminum base material and a main body layer in contact with the hard layer.
The hard layer is harder than the main body layer,
It is in the structure.
 上記構造体によれば、溶媒と長時間接触したり、熱衝撃が加わったりした場合でも、高い接着強度を発揮することができる。 According to the above structure, high adhesive strength can be exhibited even when it is in contact with a solvent for a long time or when a thermal shock is applied.
 なお、請求の範囲に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本開示の技術的範囲を限定するものではない。 Note that the reference numerals in parentheses described in the claims indicate the correspondence with the specific means described in the embodiments described later, and do not limit the technical scope of the present disclosure.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1に係る構造体を模式的に示した図であり、 図2は、接着強度向上の推定メカニズムの説明図であり、(a)は実施形態1に係る構造体における接着樹脂の状態を模式的に示した図であり、(b)は比較形態に係る構造体における接着樹脂の状態を模式的に示した図であり、 図3は、接着層の断面における接着界面からの距離と、吸着力または弾性率との関係を模式的に示した図であり、 図4は、実施形態2に係る構造体を模式的に示した図であり、 図5は、実験例1において、走査型プローブ顕微鏡による表面観察にて得られた試料1の接着層断面の吸着力像を示した図であり、 図6は、実験例1において、走査型プローブ顕微鏡による表面観察にて得られた試料1Cの接着層断面の吸着力像を示した図であり、 図7は、実験例1において、走査型プローブ顕微鏡による表面観察にて得られた試料1の接着層断面の弾性率像を示した図であり、 図8は、実験例1において、走査型プローブ顕微鏡による表面観察にて得られた試料1Cの接着層断面の弾性率像を示した図であり、 図9は、実験例2において得られた、試料1および試料1Cの接着層の断面における接着界面からの距離と吸着力との関係を示した図であり、 図10は、実験例2において得られた、試料2および試料2Cの接着層の断面における接着界面からの距離と吸着力との関係を示した図であり、 図11は、実験例2において得られた、試料1および試料1Cの接着層の断面における接着界面からの距離と弾性率との関係を示した図であり、 図12は、実験例2において得られた、試料2および試料2Cの接着層の断面における接着界面からの距離と弾性率との関係を示した図であり、 図13は、実験例3において得られた、試料1および試料1Cの構造体についての各条件における引張りせん断強度を示した図である。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a diagram schematically showing a structure according to the first embodiment. 2A and 2B are explanatory views of an estimation mechanism for improving the adhesive strength, FIG. 2A is a diagram schematically showing a state of the adhesive resin in the structure according to the first embodiment, and FIG. 2B is a diagram schematically showing a state of the adhesive resin according to the comparative embodiment. It is a figure which showed typically the state of the adhesive resin in a structure. FIG. 3 is a diagram schematically showing the relationship between the distance from the adhesive interface in the cross section of the adhesive layer and the adsorption force or elastic modulus. FIG. 4 is a diagram schematically showing the structure according to the second embodiment. FIG. 5 is a diagram showing an adsorption force image of a cross section of the adhesive layer of Sample 1 obtained by surface observation with a scanning probe microscope in Experimental Example 1. FIG. 6 is a diagram showing an adsorption force image of a cross section of the adhesive layer of Sample 1C obtained by surface observation with a scanning probe microscope in Experimental Example 1. FIG. 7 is a diagram showing an elastic modulus image of the cross section of the adhesive layer of Sample 1 obtained by surface observation with a scanning probe microscope in Experimental Example 1. FIG. 8 is a diagram showing an elastic modulus image of the cross section of the adhesive layer of Sample 1C obtained by surface observation with a scanning probe microscope in Experimental Example 1. FIG. 9 is a diagram showing the relationship between the distance from the adhesive interface and the adsorption force in the cross section of the adhesive layer of Sample 1 and Sample 1C obtained in Experimental Example 2. FIG. 10 is a diagram showing the relationship between the distance from the adhesive interface and the adsorption force in the cross section of the adhesive layer of Sample 2 and Sample 2C obtained in Experimental Example 2. FIG. 11 is a diagram showing the relationship between the distance from the adhesive interface and the elastic modulus in the cross section of the adhesive layer of Sample 1 and Sample 1C obtained in Experimental Example 2. FIG. 12 is a diagram showing the relationship between the distance from the adhesive interface and the elastic modulus in the cross section of the adhesive layer of Sample 2 and Sample 2C obtained in Experimental Example 2. FIG. 13 is a diagram showing the tensile shear strength of the structures of Sample 1 and Sample 1C obtained in Experimental Example 3 under each condition.
 本実施形態の構造体は、アルミニウム基材と、アルミニウム基材の表面に接着した接着樹脂より構成される接着層と、を有している。接着層は、アルミニウム基材との接着界面に接する硬質層と、硬質層に接する本体層と、を備えている。硬質層は、本体層よりも硬い。 The structure of the present embodiment has an aluminum base material and an adhesive layer made of an adhesive resin adhered to the surface of the aluminum base material. The adhesive layer includes a hard layer in contact with the adhesive interface with the aluminum base material and a main body layer in contact with the hard layer. The hard layer is harder than the body layer.
 本実施形態の構造体は、溶媒と長時間接触したり、熱衝撃が加わったりした場合でも、主に本体層にて破壊を生じさせることができる。つまり、本実施形態の構造体では、界面破壊ではなく、本体層の母材破壊が主となる。これは、同じ接着樹脂より構成される接着層であっても、本体層は、接着樹脂の樹脂物性が変化しておらず、その一方で、硬質層は、本体層に比べて硬質となるように接着界面に固定化された接着樹脂の樹脂物性が変化しており、接着界面付近の強度が増加するためであると考えられる。
 よって、本実施形態の構造体によれば、溶媒と長時間接触したり、熱衝撃が加わったりした場合でも、高い接着強度を発揮することができる。以下、これを詳説する。
The structure of the present embodiment can be broken mainly in the main body layer even when it is in contact with a solvent for a long time or when a thermal shock is applied. That is, in the structure of the present embodiment, the base metal fracture of the main body layer is mainly destroyed, not the interfacial fracture. This is because even if the adhesive layer is made of the same adhesive resin, the resin physical properties of the adhesive resin have not changed in the main body layer, while the hard layer is harder than the main body layer. It is considered that this is because the resin physical properties of the adhesive resin immobilized on the adhesive interface have changed and the strength near the adhesive interface has increased.
Therefore, according to the structure of the present embodiment, high adhesive strength can be exhibited even when the structure is in contact with a solvent for a long time or when a thermal shock is applied. This will be explained in detail below.
(実施形態1)
 実施形態1の構造体について、図1、図2を用いて説明する。図1に例示されるように、本実施形態の構造体1は、アルミニウム基材111と、接着層12と、を有している。
(Embodiment 1)
The structure of the first embodiment will be described with reference to FIGS. 1 and 2. As illustrated in FIG. 1, the structure 1 of the present embodiment has an aluminum base material 111 and an adhesive layer 12.
 アルミニウム基材111にいうアルミニウムは、純アルミニウムだけでなく、アルミニウム合金をも含む。アルミニウム基材111としては、具体的には、アルミニウムまたはアルミニウム合金より構成される各種形状の部材における基材などを挙げることができる。アルミニウム合金としては、例えば、1000系Al合金、2000系Al合金、3000系Al合金、4000系Al合金、5000系Al合金、6000系Al合金、7000系Al合金、ADC12等のアルミダイカスト合金などを挙げることができる。 The aluminum referred to in the aluminum base material 111 includes not only pure aluminum but also an aluminum alloy. Specific examples of the aluminum base material 111 include base materials in various shapes of members made of aluminum or an aluminum alloy. Examples of aluminum alloys include 1000 series Al alloys, 2000 series Al alloys, 3000 series Al alloys, 4000 series Al alloys, 5000 series Al alloys, 6000 series Al alloys, 7000 series Al alloys, and aluminum die cast alloys such as ADC12. Can be mentioned.
 アルミニウム基材111の表面のうち、少なくとも接着層12が接着される接着面は、改質されることができる。具体的には、接着面は、酸化皮膜層(不図示)の全部または一部が除去されることができる。また、酸化皮膜層の全部または一部が除去された接着面の表面には、ケイ酸塩ガラス等より構成される改質層(不図示)を有することができる。この構成によれば、改質層と接着樹脂との間に共有結合を形成しやすくなり、接着界面131付近の強度向上効果と相まって高い接着強度を発揮させやすくなる。ケイ酸塩ガラスとしては、例えば、Al元素が固溶したケイ酸塩ガラスであるアルミノケイ酸塩ガラスなどを例示することができる。 Of the surface of the aluminum base material 111, at least the adhesive surface to which the adhesive layer 12 is adhered can be modified. Specifically, the adhesive surface can be removed in whole or in part from the oxide film layer (not shown). Further, a modified layer (not shown) made of silicate glass or the like can be provided on the surface of the adhesive surface from which all or part of the oxide film layer has been removed. According to this configuration, it becomes easy to form a covalent bond between the modified layer and the adhesive resin, and it becomes easy to exhibit high adhesive strength in combination with the effect of improving the strength near the adhesive interface 131. Examples of the silicate glass include aluminosilicate glass, which is a silicate glass in which an Al element is dissolved in a solid solution.
 接着層12は、アルミニウム基材111の表面に接着した接着樹脂より構成される。接着層12は、具体的には、アルミニウム基材111の表面に部分的に形成されていてもよいし、アルミニウム基材111の表面の全てに形成されていてもよい。 The adhesive layer 12 is composed of an adhesive resin adhered to the surface of the aluminum base material 111. Specifically, the adhesive layer 12 may be partially formed on the surface of the aluminum base material 111, or may be formed on the entire surface of the aluminum base material 111.
 接着樹脂としては、例えば、エポキシ樹脂、ポリウレタン樹脂、メラニン樹脂、ユリア樹脂、シリコーン樹脂、ポリエステル樹脂などを挙げることができる。これらのうち、接着樹脂としては、エポキシ樹脂、シリコーン樹脂が好ましい。エポキシ樹脂、シリコーン樹脂は、アルミニウム基材111の表面に存在しうるOH基との化学反応により共有結合を生じることができるので、接着界面131付近の強度を向上させやすい。例えば、上述したように、アルミニウム基材111が表面にケイ酸塩ガラスより構成される改質層を有する場合、エポキシ樹脂は、改質層表面のOH基とエポキシ基との化学反応により共有結合を生じることができる。また、シリコーン樹脂は、改質層表面のOH基と脱水縮合反応により共有結合を生じることができる。なお、接着樹脂は、必要に応じて、一般的な樹脂系接着剤に適用される各種の添加物を1種または2種以上含むことができる。 Examples of the adhesive resin include epoxy resin, polyurethane resin, melanin resin, urea resin, silicone resin, polyester resin and the like. Of these, epoxy resin and silicone resin are preferable as the adhesive resin. Since the epoxy resin and the silicone resin can form a covalent bond by a chemical reaction with an OH group that may exist on the surface of the aluminum base material 111, it is easy to improve the strength near the adhesive interface 131. For example, as described above, when the aluminum base material 111 has a modified layer composed of silicate glass on the surface, the epoxy resin is covalently bonded by a chemical reaction between the OH group and the epoxy group on the surface of the modified layer. Can occur. Further, the silicone resin can form a covalent bond with the OH group on the surface of the modified layer by a dehydration condensation reaction. The adhesive resin may contain one or more of various additives applied to general resin-based adhesives, if necessary.
 接着層12は、硬質層121と、本体層123と、を備えている。硬質層121は、アルミニウム基材111との接着界面131に接する。本体層123は、硬質層121に接する。硬質層121および本体層123は、ともに接着層12の一部であるから、基本的に接着層12を構成する同じ種類の接着樹脂より一体的に構成されている。但し、硬質層121と本体層123とで接着樹脂を構成する高分子の状態が異なっている。そのため、硬質層121と本体層123とは硬さが異なっている。具体的には、硬質層121は、本体層123よりも硬い。 The adhesive layer 12 includes a hard layer 121 and a main body layer 123. The hard layer 121 is in contact with the adhesive interface 131 with the aluminum base material 111. The main body layer 123 is in contact with the hard layer 121. Since both the hard layer 121 and the main body layer 123 are a part of the adhesive layer 12, they are basically integrally formed of the same type of adhesive resin constituting the adhesive layer 12. However, the state of the polymer constituting the adhesive resin is different between the hard layer 121 and the main body layer 123. Therefore, the hardness of the hard layer 121 and the main body layer 123 are different. Specifically, the hard layer 121 is harder than the main body layer 123.
 かかる構成を有する構造体が高い接着強度を発揮することができる推定メカニズムについて説明する。図2(b)に例示されるように、比較形態の構造体1’は、接着層12’が硬質層121と本体層123とを備えておらず、接着層12’全体が一様な硬さとされている。このような構成においては、接着層12’を構成する接着樹脂の架橋密度が、接着層12’の厚み方向でほぼ同じであり、接着界面131付近の強度は向上しない。そのため、従来の構造体1’は、接着界面131にて剥離が生じやすい。これに対し、本実施形態の構造体1は、接着層12が硬質層121と本体層123とを備えており、硬質層121は本体層123よりも硬い。このような構成においては、硬質層121を構成する接着樹脂の架橋密度が、本体層123を構成する接着樹脂の架橋密度よりも大きく、架橋密度の向上によって接着界面131付近の強度が向上する。なお、図2において、接着層12、12’に示される格子の交点が架橋点を意味する。これにより、構造体1では、相対的に強度の低い本体層123にて先に破壊が生じ(母材破壊)、接着界面131での界面破壊が生じ難くなる。そのため、構造体1は、溶媒と長時間接触したり、熱衝撃が加わったりした場合でも、高い接着強度を発揮することができる。 The estimation mechanism that allows a structure having such a structure to exhibit high adhesive strength will be described. As illustrated in FIG. 2B, in the structure 1'in the comparative form, the adhesive layer 12'does not include the hard layer 121 and the main body layer 123, and the entire adhesive layer 12'is uniformly hard. It is said to be. In such a configuration, the crosslink density of the adhesive resin constituting the adhesive layer 12'is substantially the same in the thickness direction of the adhesive layer 12', and the strength near the adhesive interface 131 is not improved. Therefore, the conventional structure 1'is likely to be peeled off at the adhesive interface 131. On the other hand, in the structure 1 of the present embodiment, the adhesive layer 12 includes a hard layer 121 and a main body layer 123, and the hard layer 121 is harder than the main body layer 123. In such a configuration, the cross-linking density of the adhesive resin constituting the hard layer 121 is larger than the cross-linking density of the adhesive resin constituting the main body layer 123, and the strength in the vicinity of the adhesive interface 131 is improved by improving the cross-linking density. In FIG. 2, the intersections of the lattices shown in the adhesive layers 12 and 12'mean the cross-linking points. As a result, in the structure 1, the main body layer 123 having a relatively low strength is first destroyed (base metal fracture), and the interface fracture at the adhesive interface 131 is less likely to occur. Therefore, the structure 1 can exhibit high adhesive strength even when it is in contact with a solvent for a long time or when a thermal shock is applied.
 硬質層121は、アルミニウム基材111の表面に共有結合によって結合している構成とすることができる。この構成によれば、アルミニウム基材111の表面にアンカー効果や水素結合によって結合している構成に比べ、接着界面131に溶媒が侵入し難くなる。そのため、この構成によれば、接着界面131の強度劣化が生じ難くなり、接着界面131の強度向上効果を確実なものとすることができ、また、接着界面131の長期接着信頼性も向上する。なお、水素結合は接着界面131に侵入した溶媒によるアタックによって切断され、その切断部が新たな反応点となり連鎖反応が生じる。そのため、水素結合による結合は、共有結合による結合に比べ、有機溶媒等の溶媒に対して接着界面131が劣化しやすい。 The hard layer 121 can be configured to be bonded to the surface of the aluminum base material 111 by a covalent bond. According to this configuration, the solvent is less likely to penetrate into the adhesive interface 131 as compared with the configuration in which the surface of the aluminum base material 111 is bonded by an anchor effect or a hydrogen bond. Therefore, according to this configuration, the strength of the adhesive interface 131 is less likely to deteriorate, the effect of improving the strength of the adhesive interface 131 can be ensured, and the long-term adhesive reliability of the adhesive interface 131 is also improved. The hydrogen bond is broken by an attack by a solvent that has penetrated the adhesive interface 131, and the cut portion becomes a new reaction point and a chain reaction occurs. Therefore, the bond by hydrogen bond is more likely to deteriorate the adhesive interface 131 with respect to a solvent such as an organic solvent than the bond by covalent bond.
 ここで、接着層12の硬さは、上述したように接着樹脂の架橋密度と関係があるから、直接的には、接着界面131から接着層12の内方への距離と架橋密度との関係を測定し、硬質層121の架橋密度が本体層123の架橋密度よりも大きければ、硬質層121が本体層123よりも硬いといえる。しかしながら、接着層12における接着樹脂の架橋密度分布を測定することは困難である。そこで、本発明者は、試行錯誤を重ねた結果、樹脂物性として接着樹脂の吸着力または弾性率を選択し、硬質層121の吸着力が本体層123の吸着力よりも大きい、または/および、硬質層121の弾性率が本体層123の弾性率よりも大きい場合に、硬質層121が本体層123よりも硬いということができ、上述した作用効果を奏することができることを見出した。 Here, since the hardness of the adhesive layer 12 is related to the cross-linking density of the adhesive resin as described above, the relationship between the distance from the adhesive interface 131 to the inside of the adhesive layer 12 and the cross-linking density is directly related. If the cross-linking density of the hard layer 121 is larger than the cross-linking density of the main body layer 123, it can be said that the hard layer 121 is harder than the main body layer 123. However, it is difficult to measure the crosslink density distribution of the adhesive resin in the adhesive layer 12. Therefore, as a result of repeated trial and error, the present inventor selects the adhesive force or elastic modulus of the adhesive resin as the resin physical properties, and the adsorption force of the hard layer 121 is larger than the adsorption force of the main body layer 123, or / and. It has been found that when the elastic modulus of the hard layer 121 is larger than the elastic modulus of the main body layer 123, the hard layer 121 can be said to be harder than the main body layer 123, and the above-mentioned effects can be obtained.
 具体的には、図3に例示されるように、構造体1は、接着界面131に垂直な接着層12の断面につき、走査型プローブ顕微鏡を用いて測定される硬質層121の吸着力が本体層123の吸着力よりも大きい構成とされることができる。また、構造体1は、接着界面131に垂直な接着層12の断面につき、走査型プローブ顕微鏡を用いて測定される硬質層121の弾性率が本体層123の弾性率よりも大きい構成とされることができる。これらの構成によれば、上述した作用効果を確実なものとすることができる。 Specifically, as illustrated in FIG. 3, in the structure 1, the adsorption force of the hard layer 121 measured by using a scanning probe microscope with respect to the cross section of the adhesive layer 12 perpendicular to the adhesive interface 131 is the main body. The configuration can be larger than the adsorption force of the layer 123. Further, the structure 1 has a configuration in which the elastic modulus of the hard layer 121 measured by using a scanning probe microscope is larger than the elastic modulus of the main body layer 123 with respect to the cross section of the adhesive layer 12 perpendicular to the adhesive interface 131. be able to. According to these configurations, the above-mentioned action and effect can be ensured.
 吸着力、弾性率の測定は、次のようにして実施することができる。測定対象の構造体1から接着界面131に垂直な接着層12の断面を有する測定試料を採取する。走査型プローブ顕微鏡としては、島津製作所社製 走査型プローブ顕微鏡「SPM9500」を用いることができる。なお、当該機種が廃番となり入手できない場合にはその後継機種を用いることができる。プローブには、Si製AFM用カンチレバー(日立ハイテクサイエンス社製 「SN-AF01」(バネ定数0.08N/m))を用いる。走査型プローブ顕微鏡の測定モードは、コンタクトモードとし、動作モードは、フォースカーブモードとする。測定時の周波数は1Hz、コンタクト電圧は0.5Vとする。上記走査型プローブ顕微鏡を用い、測定試料における接着層12の断面に現われている接着界面131から接着層12の厚み方向に沿って接着界面131からの距離を少しずつ離しながら接着層12の各位置におけるフォースカーブを測定する。つまり、接着層12における接着界面131から接着層12の内方への距離を徐々に変化させ、接着層12断面の各位置におけるフォースカーブを測定する。次いで、接着層12断面の各位置におけるフォースカーブから、接着層12断面の各位置における弾性率、吸着力を求める。なお、走査型プローブ顕微鏡による測定によれば、測定試料の表面にカンチレバーを接近させ、測定試料にカンチレバーが接触すると、カンチレバーに斥力側のたわみが発生する。そして、カンチレバーが測定試料から離れ始めると、カンチレバーのたわみが減少するが、測定試料の表面とカンチレバーとの間に生じる吸着力によって上記とは逆に引力側のたわみが発生する。その後、測定試料の表面からカンチレバーが完全に離脱する。弾性率は、カンチレバーが斥力側にたわんだ部分に相当するフォースカーブ部分のたわみ量から求めることができる。吸着力は、カンチレバーが引力側にたわんだ後、測定試料から離脱する部分に相当するフォースカーブ部分のたわみ量から求めることができる。これにより、図3に例示されるような、接着層12の断面における接着界面131からの距離と吸着力との関係図、接着層12の断面における接着界面131からの距離と弾性率との関係図が得られる。上記関係図において、接着界面131からの距離によって吸着力または弾性率の変化がほとんど見られない領域が本体層123に相当し、本体層123よりも吸着力または弾性率が大きく、接着界面131からの距離によって吸着力または弾性率の変化が見られる領域が硬質層121に相当する。このように、接着層12における硬質層121は、接着界面131に固定化された接着樹脂の吸着力または弾性率が、本体層123における接着樹脂の吸着力または弾性率と比べ変化している領域として把握することができる。 The adsorption force and elastic modulus can be measured as follows. A measurement sample having a cross section of the adhesive layer 12 perpendicular to the adhesive interface 131 is collected from the structure 1 to be measured. As the scanning probe microscope, a scanning probe microscope "SPM9500" manufactured by Shimadzu Corporation can be used. If the model is discontinued and cannot be obtained, a successor model can be used. A Si 3 N 4 AFM cantilever (Hitachi High-Tech Science "SN-AF01" (spring constant 0.08 N / m)) is used as the probe. The measurement mode of the scanning probe microscope is the contact mode, and the operation mode is the force curve mode. The frequency at the time of measurement is 1 Hz, and the contact voltage is 0.5 V. Using the scanning probe microscope, each position of the adhesive layer 12 is gradually separated from the adhesive interface 131 appearing in the cross section of the adhesive layer 12 in the measurement sample along the thickness direction of the adhesive layer 12. Measure the force curve in. That is, the distance from the adhesive interface 131 in the adhesive layer 12 to the inside of the adhesive layer 12 is gradually changed, and the force curve at each position of the cross section of the adhesive layer 12 is measured. Next, the elastic modulus and the attractive force at each position of the adhesive layer 12 cross section are obtained from the force curve at each position of the adhesive layer 12 cross section. According to the measurement by the scanning probe microscope, when the cantilever is brought close to the surface of the measurement sample and the cantilever comes into contact with the measurement sample, the cantilever is deflected on the repulsive force side. Then, when the cantilever begins to separate from the measurement sample, the deflection of the cantilever decreases, but the suction force generated between the surface of the measurement sample and the cantilever causes the deflection on the attractive force side, contrary to the above. After that, the cantilever completely separates from the surface of the measurement sample. The elastic modulus can be obtained from the amount of deflection of the force curve portion corresponding to the portion where the cantilever is deflected to the repulsive force side. The suction force can be obtained from the amount of deflection of the force curve portion corresponding to the portion that separates from the measurement sample after the cantilever bends to the attractive force side. As a result, as illustrated in FIG. 3, the relationship between the distance from the adhesive interface 131 in the cross section of the adhesive layer 12 and the adsorption force, and the relationship between the distance from the adhesive interface 131 in the cross section of the adhesive layer 12 and the elastic modulus. The figure is obtained. In the above relationship diagram, the region where the adsorption force or elastic modulus hardly changes depending on the distance from the adhesive interface 131 corresponds to the main body layer 123, and the adsorption force or elastic modulus is larger than that of the main body layer 123, from the adhesive interface 131. The region where the adsorption force or the elastic modulus changes depending on the distance corresponds to the hard layer 121. As described above, the hard layer 121 in the adhesive layer 12 has a region in which the adhesive force or elastic modulus of the adhesive resin immobilized on the adhesive interface 131 changes as compared with the adhesive force or elastic modulus of the adhesive resin in the main body layer 123. Can be grasped as.
 構造体1において、硬質層121の吸着力が本体層123の吸着力よりも大きい構成とされる場合、硬質層121の吸着力は、接着界面131から離れるにつれて小さくなる構成とすることができる。この構成によれば、接着界面131の強度向上を確実なものとすることができるため、上述した作用効果を確実なものとすることができる。また、少しずつ接着樹脂の状態を変化させることにより応力集中する部位が少なくなり、より接着界面131付近に力がかかり難くなるなどの利点もある。硬質層121の吸着力は、接着界面131から離れるにつれて漸次小さくなってもよいし、接着界面131から離れるにつれて段階的に(階段状に)小さくなってもよい。 When the structure 1 has a structure in which the suction force of the hard layer 121 is larger than the suction force of the main body layer 123, the suction force of the hard layer 121 can be reduced as the distance from the adhesive interface 131 increases. According to this configuration, it is possible to ensure the strength improvement of the adhesive interface 131, so that the above-mentioned action and effect can be ensured. Further, by changing the state of the adhesive resin little by little, the number of parts where stress is concentrated is reduced, and there is an advantage that the force is less likely to be applied near the adhesive interface 131. The adsorption force of the hard layer 121 may gradually decrease as the distance from the adhesive interface 131 increases, or may decrease stepwise (stepwise) as the distance from the adhesive interface 131 increases.
 同様に、構造体1において、硬質層121の弾性率が本体層123の弾性率よりも大きい構成とされる場合、硬質層121の弾性率は、接着界面131から離れるにつれて小さくなる構成とすることができる。この構成によれば、接着界面131の強度向上を確実なものとすることができるため、上述した作用効果を確実なものとすることができる。また、応力による変位が段階的に変化するため変位差による急激な応力集中を防ぎやすくなるなどの利点もある。硬質層121の弾性率は、接着界面131から離れるにつれて漸次小さくなってもよいし、接着界面131から離れるにつれて段階的に(階段状に)小さくなってもよい。 Similarly, in the structure 1, when the elastic modulus of the hard layer 121 is larger than the elastic modulus of the main body layer 123, the elastic modulus of the hard layer 121 is set to decrease as the distance from the bonding interface 131 increases. Can be done. According to this configuration, it is possible to ensure the strength improvement of the adhesive interface 131, so that the above-mentioned action and effect can be ensured. In addition, since the displacement due to stress changes stepwise, there is an advantage that it becomes easy to prevent sudden stress concentration due to the displacement difference. The elastic modulus of the hard layer 121 may gradually decrease as the distance from the adhesive interface 131 increases, or may decrease stepwise (stepwise) as the distance from the adhesive interface 131 increases.
 構造体1において、硬質層121の厚みは、0.5μm以上とすることができる。この構成によれば、接着界面131付近の方が吸着力・弾性率が高く、接着樹脂の密度が高くなることから、接着界面131付近の接着樹脂が透過溶媒や透過ガスによって弱くなることを防止しやすくなるなどの利点がある。硬質層121の厚みは、接着樹脂の溶媒透過やガス透過を防ぎやすくする等の観点から、好ましくは、1μm以上、より好ましくは、2μm以上、さらに好ましくは、5μm以上とすることができる。また、この場合、硬質層121の厚みは、接着樹脂全体が硬質化すると、接着樹脂の密度が高くなり、接着樹脂の柔軟性が低下し、熱衝撃等に対して弱くなるおそれがあり、これを防止しやすくなるなどの観点から、好ましくは、2mm以下とすることができる。なお、硬質層121の厚みは、上述した接着層12の断面における接着界面131からの距離と吸着力との関係図、接着層12の断面における接着界面131からの距離と弾性率との関係図から、接着界面131から硬質層121と本体層123との界面までの距離として求めることができる。 In the structure 1, the thickness of the hard layer 121 can be 0.5 μm or more. According to this configuration, the adsorption force and elastic modulus are higher in the vicinity of the adhesive interface 131, and the density of the adhesive resin is higher, so that the adhesive resin in the vicinity of the adhesive interface 131 is prevented from being weakened by the permeated solvent or permeated gas. There are advantages such as easy operation. The thickness of the hard layer 121 can be preferably 1 μm or more, more preferably 2 μm or more, still more preferably 5 μm or more, from the viewpoint of facilitating solvent permeation and gas permeation of the adhesive resin. Further, in this case, when the entire adhesive resin is hardened, the thickness of the hard layer 121 may increase the density of the adhesive resin, reduce the flexibility of the adhesive resin, and may be weak against thermal shock or the like. From the viewpoint of facilitating prevention, the thickness can be preferably 2 mm or less. The thickness of the hard layer 121 is shown in the relationship diagram between the distance from the adhesive interface 131 in the cross section of the adhesive layer 12 and the adsorption force, and the relationship diagram between the distance from the adhesive interface 131 in the cross section of the adhesive layer 12 and the elastic coefficient. Therefore, it can be obtained as the distance from the adhesive interface 131 to the interface between the hard layer 121 and the main body layer 123.
 本実施形態の構造体1における接着層12は、例えば、アルミニウム基材111表面の樹脂コート、アルミニウム基材111表面に形成した封止材などとして用いることができる。 The adhesive layer 12 in the structure 1 of the present embodiment can be used, for example, as a resin coat on the surface of the aluminum base material 111, a sealing material formed on the surface of the aluminum base material 111, or the like.
(実施形態2)
 実施形態2の構造体1について、図4を用いて説明する。なお、実施形態2以降において用いられる符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
(Embodiment 2)
The structure 1 of the second embodiment will be described with reference to FIG. In addition, among the codes used in the second and subsequent embodiments, the same codes as those used in the above-described embodiments represent the same components and the like as those in the above-mentioned embodiments, unless otherwise specified.
 図4に例示されるように、本実施形態の構造体1は、実施形態1の構造体1と同様に、アルミニウム基材111と、接着層12と、を有している。本実施形態の構造体1は、さらに、アルミニウム基材112を有している。具体的には、本実施形態の構造体1は、アルミニウム基材111と、アルミニウム基材112と、これらアルミニウム基材111、112の間に配置され、アルミニウム基材111の表面およびアルミニウム基材112の表面に接着した接着樹脂より構成される接着層12と、を有している。つまり、本実施形態の構造体1は、接着層12を介してアルミニウム基材111とアルミニウム基材112とが接合された接合構造体である。 As illustrated in FIG. 4, the structure 1 of the present embodiment has an aluminum base material 111 and an adhesive layer 12 similar to the structure 1 of the first embodiment. The structure 1 of the present embodiment further has an aluminum base material 112. Specifically, the structure 1 of the present embodiment is arranged between the aluminum base material 111, the aluminum base material 112, and the aluminum base materials 111 and 112, and the surface of the aluminum base material 111 and the aluminum base material 112. It has an adhesive layer 12 made of an adhesive resin adhered to the surface of the above. That is, the structure 1 of the present embodiment is a bonded structure in which the aluminum base material 111 and the aluminum base material 112 are joined via the adhesive layer 12.
 図4に例示されるように、より具体的には、接着層12は、アルミニウム基材111との接着界面131に接する硬質層121と、アルミニウム基材112との接着界面132に接する硬質層122と、硬質層121および硬質層122に接する本体層123と、を備えている。そして、硬質層121は、本体層123よりも硬く、硬質層122は、本体層123よりも硬い。アルミニウム基材112、接着界面132、硬質層122については、実施形態1で説明したアルミニウム基材111、接着界面131、硬質層121の記載を参照し、同様に構成することができる。なお、アルミニウム基材112は、アルミニウム基材111と同じアルミニウム合金等より構成されていてもよいし、異なるアルミニウム合金等より構成されていてもよい。 As illustrated in FIG. 4, more specifically, the adhesive layer 12 has a hard layer 121 in contact with the adhesive interface 131 with the aluminum base material 111 and a hard layer 122 in contact with the adhesive interface 132 with the aluminum base material 112. And a main body layer 123 in contact with the hard layer 121 and the hard layer 122. The hard layer 121 is harder than the main body layer 123, and the hard layer 122 is harder than the main body layer 123. The aluminum base material 112, the adhesive interface 132, and the hard layer 122 can be similarly configured with reference to the description of the aluminum base material 111, the adhesive interface 131, and the hard layer 121 described in the first embodiment. The aluminum base material 112 may be made of the same aluminum alloy or the like as the aluminum base material 111, or may be made of a different aluminum alloy or the like.
 なお、本実施形態において、上述したアルミニウム基材111は第1アルミニウム基材、アルミニウム基材112は第2アルミニウム基材、硬質層121は第1硬質層、硬質層122は第2硬質層、接着界面131は第1接着界面、接着界面132は第2接着界面ということもできる。 In the present embodiment, the above-mentioned aluminum base material 111 is the first aluminum base material, the aluminum base material 112 is the second aluminum base material, the hard layer 121 is the first hard layer, the hard layer 122 is the second hard layer, and adhesion. The interface 131 can be said to be the first adhesive interface, and the adhesive interface 132 can be said to be the second adhesive interface.
 本実施形態の構造体1によれば、溶媒と長時間接触したり、熱衝撃が加わったりした場合でも、高い接着強度を発揮することができる接合構造体が得られる。 According to the structure 1 of the present embodiment, a bonded structure capable of exhibiting high adhesive strength can be obtained even when it is in contact with a solvent for a long time or when a thermal shock is applied.
 構造体1において、硬質層121、122の厚みは、1μm以上とすることができる。この構成によれば、弾性率が向上し、接着界面131、132の強度が高くなり、接着界面131、132およびその付近にて切断され難くなるなどの利点がある。硬質層121、122の厚みは、接着界面131、132の強度向上等の観点から、好ましくは、2μm以上、より好ましくは3μm以上、さらに好ましくは、5μm以上とすることができる。また、この場合、硬質層121、122の厚みは、弾性率が高くなり過ぎ内部応力を逃がし難くなるのを防止しやすい等の観点から、好ましくは、2mm以下とすることができる。 In the structure 1, the thicknesses of the hard layers 121 and 122 can be 1 μm or more. According to this configuration, there are advantages such as an improvement in elastic modulus, an increase in strength of the adhesive interfaces 131 and 132, and difficulty in cutting at the adhesive interfaces 131 and 132 and their vicinity. The thickness of the hard layers 121 and 122 can be preferably 2 μm or more, more preferably 3 μm or more, still more preferably 5 μm or more, from the viewpoint of improving the strength of the adhesive interfaces 131 and 132. Further, in this case, the thickness of the hard layers 121 and 122 can be preferably 2 mm or less from the viewpoint of preventing the elastic modulus from becoming too high and making it difficult for the internal stress to escape.
 本実施形態の構造体1は、アルミニウム部材とアルミニウム部材との接合に用いることができる。本実施形態の構造体1は、より具体的には、アルミニウム製の配管と配管部材(例えば、継手部材、固定部材等)との接合、配管同士の接合や、熱交換器の部材同士の接合、熱交換器と配管との接合等の熱交換器と熱交換器周辺の部品との接合などに種々適用することができる。その他の構成および作用効果は、実施形態1と同様である。 The structure 1 of the present embodiment can be used for joining an aluminum member and an aluminum member. More specifically, the structure 1 of the present embodiment includes joining of aluminum pipes and piping members (for example, joint members, fixing members, etc.), joining of pipes, and joining of heat exchanger members. It can be applied in various ways to join heat exchangers and parts around the heat exchangers, such as joining heat exchangers and pipes. Other configurations and effects are the same as in the first embodiment.
(実験例)
<実験例1>
-試料1、試料1Cの作製-
 長さl=40mm、幅w=10mm、厚さt=1mmの形状を有する酸化皮膜層付きのアルミニウム基材をアルカリ洗浄した後、これをpH12.4、液温50℃、ケイ酸ナトリウム濃度0.4mol/Lのケイ酸ナトリウム水溶液中に1分間浸漬し、その後、純水で洗浄した。これにより、アルミニウム基材の表面を改質した。アルミニウム基材表面の改質層は、Alよりなる酸化皮膜層より生成した、Al元素を固溶したケイ酸塩ガラスよりなる薄膜層である。
(Experimental example)
<Experimental example 1>
-Preparation of sample 1 and sample 1C-
After alkaline cleaning of an aluminum base material with an oxide film layer having a shape of length l = 40 mm, width w = 10 mm, and thickness t = 1 mm, this is pH 12.4, liquid temperature 50 ° C., sodium silicate concentration 0. It was immersed in a .4 mol / L sodium silicate aqueous solution for 1 minute, and then washed with pure water. As a result, the surface of the aluminum base material was modified. The modified layer on the surface of the aluminum base material is a thin film layer made of silicate glass in which Al element is solid-solved, which is formed from an oxide film layer made of Al 2 O 3.
 次に、上記のように準備した2枚のアルミニウム基材を、各端部の基材面同士の間に隙間が形成された状態で長さ10mmの範囲にわたって重複するように配置した。なお、隙間の間隔は、200μmとした。次いで、上記隙間の端部に接着樹脂材料を塗布した。接着樹脂材料には、主剤としての2,2-ビス(4-ヒドロキシフェニル)プロパンジグリシジルエーテル(BPADGE)と、硬化剤としてのジシアンジアミド(DYCI)とにより構成されたエポキシ樹脂材料を用いた。次いで、80℃に加熱することにより、接着樹脂材料を低粘度化して流動移動させ、上記隙間に充填した。これにより、アルミニウム基材/接着樹脂材料/アルミニウム基材の順で積層された積層構造を有する積層体を得た。 Next, the two aluminum base materials prepared as described above were arranged so as to overlap over a range of 10 mm in length with a gap formed between the base material surfaces at each end. The gap interval was set to 200 μm. Next, an adhesive resin material was applied to the end of the gap. As the adhesive resin material, an epoxy resin material composed of 2,2-bis (4-hydroxyphenyl) propandiglycidyl ether (BPADGE) as a main agent and dicyandiamide (DYCI) as a curing agent was used. Then, by heating to 80 ° C., the adhesive resin material was reduced in viscosity and fluidly moved to fill the gap. As a result, a laminate having a laminated structure in which the aluminum base material / adhesive resin material / aluminum base material was laminated in this order was obtained.
 次に、得られた積層体を加熱し、135℃で10分間保持した後、さらに加熱温度を上げ、155℃で20分間保持して接着樹脂材料を硬化させた後、自然冷却した。これにより、アルミニウム基材と、アルミニウム基材の表面に接着したエポキシ樹脂より構成される接着層とを有する試料1の構造体(具体的には、アルミニウム基材/接着層/アルミニウム基材の順で積層された積層構造を有する構造体)を得た。なお、試料1の構造体では、硬質層の接着樹脂が、改質されたアルミニウム基材の表面に共有結合によって結合している。 Next, the obtained laminate was heated and held at 135 ° C. for 10 minutes, then the heating temperature was further raised and held at 155 ° C. for 20 minutes to cure the adhesive resin material, and then naturally cooled. As a result, the structure of the sample 1 having the aluminum base material and the adhesive layer composed of the epoxy resin adhered to the surface of the aluminum base material (specifically, the aluminum base material / adhesive layer / aluminum base material in this order). A structure having a laminated structure laminated in 1) was obtained. In the structure of Sample 1, the adhesive resin of the hard layer is covalently bonded to the surface of the modified aluminum base material.
 次に、上記試料1の構造体の作製において、ケイ酸ナトリウム水溶液にアルミニウム基材を浸漬しなかった点以外は同様にして、アルミニウム基材と、アルミニウム基材の表面に接着したエポキシ樹脂より構成される接着層とを有する試料1Cの構造体(具体的には、アルミニウム基材/接着層/アルミニウム基材の順で積層された積層構造を有する構造体)を得た。 Next, in the preparation of the structure of the sample 1, the aluminum base material and the epoxy resin adhered to the surface of the aluminum base material were formed in the same manner except that the aluminum base material was not immersed in the sodium silicate aqueous solution. A structure of sample 1C having an adhesive layer to be formed (specifically, a structure having a laminated structure in which an aluminum base material / an adhesive layer / an aluminum base material is laminated in this order) was obtained.
-試料2、試料2Cの作製-
 上記試料1の構造体の作製において、接着樹脂材料として、エポキシ変性されたシリコーン樹脂材料(ダウ・東レ社製、「DOWSIL SE1714)を用いた点、2枚のアルミニウム基材の各端部の基材面に、長さ10mmの範囲にわたって重複するように上記シリコーン樹脂材料を塗布し、各端部の基材面間の間隔が200μmとなるように貼り合わせて積層体を形成した点、得られた積層体を加熱し、140℃で5分間保持した後、さらに加熱温度を上げ、170℃で5分間保持した後、自然冷却させた点以外は同様にして、アルミニウム基材と、アルミニウム基材の表面に接着した上記シリコーン樹脂より構成される接着層とを有する試料2の構造体を得た。なお、試料2の構造体では、硬質層の接着樹脂が、改質されたアルミニウム基材の表面に共有結合によって結合している。
-Preparation of sample 2 and sample 2C-
In the production of the structure of Sample 1, an epoxy-modified silicone resin material ("DOWNSIL SE1714" manufactured by Dow Toray Co., Ltd.) was used as the adhesive resin material, and the bases of each end of the two aluminum base materials. A point obtained by applying the above-mentioned silicone resin material on the material surface so as to overlap over a length of 10 mm and laminating the material so that the distance between the base material surfaces at each end is 200 μm to form a laminate. The laminated body was heated and held at 140 ° C. for 5 minutes, then further raised in heating temperature, held at 170 ° C. for 5 minutes, and then naturally cooled in the same manner as the aluminum base material and the aluminum base material. A structure of Sample 2 having an adhesive layer composed of the above-mentioned silicone resin adhered to the surface of the sample 2 was obtained. In the structure of Sample 2, the adhesive resin of the hard layer was a modified aluminum base material. It is bonded to the surface by a covalent bond.
 次に、上記試料2の構造体の作製において、ケイ酸ナトリウム水溶液にアルミニウム基材を浸漬しなかった点以外は同様にして、アルミニウム基材と、アルミニウム基材の表面に接着した上記シリコーン樹脂より構成される接着層とを有する試料2Cの構造体を得た。 Next, in the preparation of the structure of the sample 2, the aluminum base material and the silicone resin adhered to the surface of the aluminum base material were obtained in the same manner except that the aluminum base material was not immersed in the sodium silicate aqueous solution. A structure of sample 2C having an adhesive layer to be formed was obtained.
-走査型プローブ顕微鏡による吸着力像測定-
 試料1および試料1Cの構造体から接着界面に垂直な接着層の断面を有する測定試料を採取した。なお、測定試料は、各構造体をワイヤーソーにて切断後、FIBにて断面を作製した。以下同様である。次いで、各接着層の断面について、走査型プローブ顕微鏡による表面観察を行い、各接着層の吸着力像を測定した。なお、当該吸着力像は、上述した測定条件による測定を断面全体に対して実施することで、各部位1点ごとの吸着力を求めマッピングすることにより得た。試料1の接着層断面の吸着力像を図5に示す。試料1Cの接着層断面の吸着力像を図6に示す。
-Measurement of adsorption force image by scanning probe microscope-
A measurement sample having a cross section of an adhesive layer perpendicular to the adhesive interface was taken from the structures of Sample 1 and Sample 1C. For the measurement sample, each structure was cut with a wire saw, and then a cross section was prepared with FIB. The same applies hereinafter. Next, the cross section of each adhesive layer was surface-observed with a scanning probe microscope, and the adsorption force image of each adhesive layer was measured. The adsorption force image was obtained by performing the measurement under the above-mentioned measurement conditions on the entire cross section to obtain and map the adsorption force for each point of each part. An image of the adsorption force of the cross section of the adhesive layer of Sample 1 is shown in FIG. An image of the adsorption force of the cross section of the adhesive layer of Sample 1C is shown in FIG.
 図6に示されるように、試料1Cの構造体の接着層は、接着層の全体にわたって吸着力がほぼ一定であった。このことから、試料1Cの構造体では、接着層を構成するエポキシ樹脂の架橋密度が厚み方向で変化がなく、接着層全体が一様な硬さになっていることがわかる。つまり、試料1Cの構造体の接着層は、硬質層と本体層とを備えていないことがわかる。これに対し、図5に示されるように、試料1の構造体の接着層は、アルミニウム基材と接着層との接着界面から接着層側に一定領域の吸着力が、上記一定領域よりも内方の接着層の吸着力よりも大きくなっていた。このことから、試料1の構造体では、接着層を構成するエポキシ樹脂の架橋密度が厚み方向で変化しており、接着界面から接着層側に一定領域の架橋密度が、上記一定領域よりも内方の接着層の架橋密度よりも大きくなっているといえる。つまり、試料1の構造体の接着層は、内部の本体層と、本体層よりも硬い硬質層とを備えていることがわかる。なお、試料2および試料2Cの構造体についても、試料1および試料1Cの構造体と同様の結果が得られた。 As shown in FIG. 6, the adhesive layer of the structure of sample 1C had a substantially constant adsorption force over the entire adhesive layer. From this, it can be seen that in the structure of Sample 1C, the crosslink density of the epoxy resin constituting the adhesive layer does not change in the thickness direction, and the entire adhesive layer has a uniform hardness. That is, it can be seen that the adhesive layer of the structure of sample 1C does not include the hard layer and the main body layer. On the other hand, as shown in FIG. 5, in the adhesive layer of the structure of sample 1, the adsorption force of a certain region from the adhesive interface between the aluminum base material and the adhesive layer to the adhesive layer side is within the constant region. It was larger than the adsorption force of the adhesive layer on the other side. From this, in the structure of Sample 1, the crosslink density of the epoxy resin constituting the adhesive layer changes in the thickness direction, and the crosslink density of a certain region from the adhesive interface to the adhesive layer side is within the above constant region. It can be said that it is higher than the crosslink density of the adhesive layer on the other side. That is, it can be seen that the adhesive layer of the structure of the sample 1 includes an internal main body layer and a hard layer harder than the main body layer. As for the structures of Sample 2 and Sample 2C, the same results as those of Sample 1 and Sample 1C were obtained.
-走査型プローブ顕微鏡による弾性率像測定-
 試料1および試料1Cの構造体から接着界面に垂直な接着層の断面を有する測定試料を採取した。次いで、各接着層の断面について、走査型プローブ顕微鏡による表面観察を行い、各接着層の弾性率像を測定した。なお、当該弾性率像は、上述した測定条件による測定を断面全体に対して実施することで、各部位1点ごとの弾性率を求めマッピングすることにより得た。試料1の接着層断面の弾性率像を図7に示す。試料1Cの接着層断面の弾性率像を図8に示す。
-Measurement of elastic modulus image with scanning probe microscope-
A measurement sample having a cross section of an adhesive layer perpendicular to the adhesive interface was taken from the structures of Sample 1 and Sample 1C. Next, the cross section of each adhesive layer was surface-observed with a scanning probe microscope, and the elastic modulus image of each adhesive layer was measured. The elastic modulus image was obtained by performing the measurement under the above-mentioned measurement conditions on the entire cross section to obtain the elastic modulus for each point of each part and mapping. An elastic modulus image of the cross section of the adhesive layer of Sample 1 is shown in FIG. An elastic modulus image of the cross section of the adhesive layer of Sample 1C is shown in FIG.
 図8に示されるように、試料1Cの構造体の接着層は、接着層の全体にわたって弾性率がほぼ一定であった。このことから、試料1Cの構造体では、接着層を構成するエポキシ樹脂の架橋密度が厚み方向で変化がなく、接着層全体が一様な硬さになっていることがわかる。つまり、試料1Cの構造体の接着層は、硬質層と本体層とを備えていないことがわかる。これに対し、図7に示されるように、試料1の構造体の接着層は、アルミニウム基材と接着層との接着界面から接着層側に一定領域の弾性率が、上記一定領域よりも内方の接着層の弾性率よりも大きくなっていた。このことから、試料1の構造体では、接着層を構成するエポキシ樹脂の架橋密度が厚み方向で変化しており、接着界面から接着層側に一定領域の架橋密度が、上記一定領域よりも内方の接着層の架橋密度よりも大きくなっているといえる。つまり、試料1の構造体の接着層は、内部の本体層と、本体層よりも硬い硬質層とを備えていることがわかる。なお、試料2および試料2Cの構造体についても、試料1および試料1Cの構造体と同様の結果が得られた。 As shown in FIG. 8, the elastic modulus of the adhesive layer of the structure of Sample 1C was substantially constant over the entire adhesive layer. From this, it can be seen that in the structure of Sample 1C, the crosslink density of the epoxy resin constituting the adhesive layer does not change in the thickness direction, and the entire adhesive layer has a uniform hardness. That is, it can be seen that the adhesive layer of the structure of sample 1C does not include the hard layer and the main body layer. On the other hand, as shown in FIG. 7, in the adhesive layer of the structure of the sample 1, the elastic modulus of a certain region from the adhesive interface between the aluminum base material and the adhesive layer to the adhesive layer side is within the constant region. It was larger than the elastic modulus of the adhesive layer on the other side. From this, in the structure of Sample 1, the crosslink density of the epoxy resin constituting the adhesive layer changes in the thickness direction, and the crosslink density of a certain region from the adhesive interface to the adhesive layer side is within the above constant region. It can be said that it is higher than the crosslink density of the adhesive layer on the other side. That is, it can be seen that the adhesive layer of the structure of the sample 1 includes an internal main body layer and a hard layer harder than the main body layer. As for the structures of Sample 2 and Sample 2C, the same results as those of Sample 1 and Sample 1C were obtained.
<実験例2>
-接着層の断面における接着界面からの距離と吸着力または弾性率との関係-
 試料1および試料1Cの構造体から接着界面に垂直な接着層の断面を有する測定試料を採取した。次いで、各接着層の断面について、上述した測定条件にて走査型プローブ顕微鏡による表面観察を行い、接着層の断面における接着界面からの距離と吸着力との関係、接着層の断面における接着界面からの距離と弾性率との関係を測定した。試料1および試料1Cの接着層の断面における接着界面からの距離と吸着力との関係を図9に示す。試料2および試料2Cの接着層の断面における接着界面からの距離と吸着力との関係を図10に示す。試料1および試料1Cの接着層の断面における接着界面からの距離と弾性率との関係を図11に示す。試料2および試料2Cの接着層の断面における接着界面からの距離と弾性率との関係を図12に示す。
<Experimental example 2>
-Relationship between the distance from the adhesive interface and the adsorption force or elastic modulus in the cross section of the adhesive layer-
A measurement sample having a cross section of an adhesive layer perpendicular to the adhesive interface was taken from the structures of Sample 1 and Sample 1C. Next, the cross section of each adhesive layer is surface-observed with a scanning probe microscope under the above-mentioned measurement conditions, and the relationship between the distance from the adhesive interface in the cross section of the adhesive layer and the adsorption force, and the adhesive interface in the cross section of the adhesive layer. The relationship between the distance and the elasticity was measured. FIG. 9 shows the relationship between the distance from the adhesive interface and the adsorption force in the cross section of the adhesive layer of Sample 1 and Sample 1C. FIG. 10 shows the relationship between the distance from the adhesive interface and the adsorption force in the cross section of the adhesive layer of Sample 2 and Sample 2C. FIG. 11 shows the relationship between the distance from the adhesive interface and the elastic modulus in the cross section of the adhesive layer of Sample 1 and Sample 1C. FIG. 12 shows the relationship between the distance from the adhesive interface and the elastic modulus in the cross section of the adhesive layer of Sample 2 and Sample 2C.
 図9および図10、図11および図12に示されるように、試料1Cおよび試料2Cの構造体は、接着界面からの距離によらず吸着力、弾性率が一定であることがわかる。このことから、試料1Cおよび試料2Cの構造体では、接着層を構成する接着樹脂の架橋密度が厚み方向で変化がなく、接着層全体が一様な硬さになっていることがわかる。これらに対し、図9および図10、図11および図12に示されるように、試料1および試料2の構造体の接着層は、アルミニウム基材と接着層との接着界面から接着層側に一定距離までの吸着力、弾性率が、上記一定距離を超える距離における接着層の吸着力、弾性率よりも大きくなっていた。このことから、試料1および試料2の構造体では、接着層を構成する接着樹脂の架橋密度が厚み方向で変化しており、接着界面から接着層側に一定距離の架橋密度が、上記一定距離よりも内方の接着層の架橋密度よりも大きくなっているといえる。つまり、試料1および試料2構造体の接着層は、内部の本体層と、本体層よりも硬い硬質層とを備えていることがわかる。また、試料1および試料2の構造体における硬質層は、いずれも、接着界面から離れるにつれて小さくなっていた。 As shown in FIGS. 9 and 10, FIGS. 11 and 12, it can be seen that the structures of Sample 1C and Sample 2C have constant adsorption force and elastic modulus regardless of the distance from the adhesive interface. From this, it can be seen that in the structures of Sample 1C and Sample 2C, the crosslink density of the adhesive resin constituting the adhesive layer does not change in the thickness direction, and the entire adhesive layer has a uniform hardness. On the other hand, as shown in FIGS. 9 and 10, FIG. 11 and FIG. 12, the adhesive layer of the structures of Sample 1 and Sample 2 is constant from the adhesive interface between the aluminum base material and the adhesive layer to the adhesive layer side. The adsorption force and elastic modulus up to a distance were larger than the adsorption force and elastic modulus of the adhesive layer at a distance exceeding the above-mentioned constant distance. From this, in the structures of Sample 1 and Sample 2, the cross-linking density of the adhesive resin constituting the adhesive layer changes in the thickness direction, and the cross-linking density of a certain distance from the adhesive interface to the adhesive layer side is the above-mentioned constant distance. It can be said that it is larger than the crosslink density of the inner adhesive layer. That is, it can be seen that the adhesive layer of the sample 1 and sample 2 structures includes an internal main body layer and a hard layer harder than the main body layer. Further, the hard layers in the structures of Sample 1 and Sample 2 both became smaller as the distance from the adhesive interface increased.
<実験例3>
 初期状態の試料1および試料1Cの構造体、テトラヒドロフラン(THF)に18時間浸漬した試料1および試料1Cの構造体、50℃まで加熱後、-196℃まで冷却するという熱サイクルを10回繰り返した試料1および試料1Cの構造体について、それぞれ、引張りせん断強度を測定した。測定には、万能試験装置(島津製作所製、「オートグラフ」)を用いた。測定条件は、引張速度5mm/分、掴み幅10mm、測定数=6とした。その結果を、図13に示す。
<Experimental example 3>
The structure of sample 1 and sample 1C in the initial state, the structure of sample 1 and sample 1C immersed in tetrahydrofuran (THF) for 18 hours, the heat cycle of heating to 50 ° C. and then cooling to -196 ° C. was repeated 10 times. The tensile shear strength of each of the structures of Sample 1 and Sample 1C was measured. A universal test device (manufactured by Shimadzu Corporation, "Autograph") was used for the measurement. The measurement conditions were a tensile speed of 5 mm / min, a grip width of 10 mm, and the number of measurements = 6. The result is shown in FIG.
 図13に示されるように、試料1の構造体は、試料1Cの構造体に比べ、初期の引張りせん断強度が高かった。これは、試料1Cの構造体は、接着層が硬質層を有しておらず、また、接着樹脂がアルミニウム基材の表面にアンカー効果や水素結合等によって接着していたためである。これに対して、試料1の構造体は、硬質層によって接着界面付近の強度が向上したことに加え、硬質層の接着樹脂がアルミニウム基材の表面に共有結合によって結合している効果も相まって、初期の引張りせん断強度が高くなったものと考えられる。 As shown in FIG. 13, the structure of sample 1 had a higher initial tensile shear strength than the structure of sample 1C. This is because the structure of Sample 1C does not have a hard layer as the adhesive layer, and the adhesive resin is adhered to the surface of the aluminum base material by an anchor effect, hydrogen bonds, or the like. On the other hand, in the structure of Sample 1, in addition to the strength near the adhesive interface being improved by the hard layer, the effect that the adhesive resin of the hard layer is covalently bonded to the surface of the aluminum base material is also combined. It is probable that the initial tensile shear strength increased.
 また、図13に示されるように、試料1の構造体は、試料1Cの構造体に比べ、THF浸漬後、熱サイクル負荷後のいずれの場合についても、引張りせん断強度の低下が少なく、高い引張りせん断強度を維持することができた。なお、試料1の破壊形態は、本体層の母材破壊が主であったが、試料1Cの構造体は、界面剥離が主であった。また、試料2および試料2Cの構造体についても、試料1および試料1Cの構造体と同様の結果が得られた。 Further, as shown in FIG. 13, the structure of sample 1 has less decrease in tensile shear strength and higher tensile strength than the structure of sample 1C in both cases after immersion in THF and after loading with a thermodynamic cycle. Shear strength could be maintained. The fracture form of the sample 1 was mainly the fracture of the base material of the main body layer, but the structure of the sample 1C was mainly the interface peeling. Further, with respect to the structures of Sample 2 and Sample 2C, the same results as those of the structures of Sample 1 and Sample 1C were obtained.
 本開示は、上記各実施形態、各実験例に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能である。また、各実施形態、各実験例に示される各構成は、それぞれ任意に組み合わせることができる。すなわち、本開示は、実施形態に準拠して記述されたが、本開示は、当該実施形態や構造等に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 The present disclosure is not limited to each of the above embodiments and experimental examples, and various changes can be made without departing from the gist thereof. In addition, each configuration shown in each embodiment and each experimental example can be arbitrarily combined. That is, although the present disclosure has been described in accordance with the embodiments, it is understood that the present disclosure is not limited to the embodiments, structures, and the like. The present disclosure also includes various modifications and modifications within an equal range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.

Claims (8)

  1.  アルミニウム基材(111,112)と、上記アルミニウム基材の表面に接着した接着樹脂より構成される接着層(12)と、を有しており、
     上記接着層は、上記アルミニウム基材との接着界面(131,132)に接する硬質層(121,122)と、上記硬質層に接する本体層(123)と、を備えており、
     上記硬質層は、上記本体層よりも硬い、
     構造体(1)。
    It has an aluminum base material (111, 112) and an adhesive layer (12) made of an adhesive resin adhered to the surface of the aluminum base material.
    The adhesive layer includes a hard layer (121, 122) in contact with the adhesive interface (131, 132) with the aluminum base material, and a main body layer (123) in contact with the hard layer.
    The hard layer is harder than the main body layer,
    Structure (1).
  2.  上記接着界面に垂直な上記接着層の断面につき、走査型プローブ顕微鏡を用いて測定される上記硬質層の吸着力は、上記本体層の吸着力よりも大きい、
     請求項1に記載の構造体。
    With respect to the cross section of the adhesive layer perpendicular to the adhesive interface, the adsorption force of the hard layer measured using a scanning probe microscope is larger than the adsorption force of the main body layer.
    The structure according to claim 1.
  3.  上記硬質層の吸着力は、上記接着界面から離れるにつれて小さくなる、
     請求項2に記載の構造体。
    The adsorption force of the hard layer decreases as the distance from the adhesive interface increases.
    The structure according to claim 2.
  4.  上記接着界面に垂直な上記接着層の断面につき、走査型プローブ顕微鏡を用いて測定される上記硬質層の弾性率は、上記本体層の弾性率よりも大きい、
     請求項1から請求項3のいずれか1項に記載の構造体。
    With respect to the cross section of the adhesive layer perpendicular to the adhesive interface, the elastic modulus of the hard layer measured using a scanning probe microscope is larger than the elastic modulus of the main body layer.
    The structure according to any one of claims 1 to 3.
  5.  上記硬質層の弾性率は、上記接着界面から離れるにつれて小さくなる、
     請求項4に記載の構造体。
    The elastic modulus of the hard layer decreases as the distance from the adhesive interface increases.
    The structure according to claim 4.
  6.  上記接着樹脂は、エポキシ樹脂またはシリコーン樹脂である、
     請求項1から請求項5のいずれか1項に記載の構造体。
    The adhesive resin is an epoxy resin or a silicone resin.
    The structure according to any one of claims 1 to 5.
  7.  上記硬質層の厚さは、0.5μm以上である、
     請求項1から請求項6のいずれか1項に記載の構造体。
    The thickness of the hard layer is 0.5 μm or more.
    The structure according to any one of claims 1 to 6.
  8.  上記硬質層の厚さは、1μm以上である、
     請求項1から請求項6のいずれか1項に記載の構造体。
    The thickness of the hard layer is 1 μm or more.
    The structure according to any one of claims 1 to 6.
PCT/JP2020/042952 2020-01-08 2020-11-18 Structure WO2021140751A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080092136.3A CN114929473A (en) 2020-01-08 2020-11-18 Structure body
US17/859,448 US20220340797A1 (en) 2020-01-08 2022-07-07 Structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020001210A JP7434901B2 (en) 2020-01-08 2020-01-08 Structure
JP2020-001210 2020-01-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/859,448 Continuation US20220340797A1 (en) 2020-01-08 2022-07-07 Structure

Publications (1)

Publication Number Publication Date
WO2021140751A1 true WO2021140751A1 (en) 2021-07-15

Family

ID=76787821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042952 WO2021140751A1 (en) 2020-01-08 2020-11-18 Structure

Country Status (4)

Country Link
US (1) US20220340797A1 (en)
JP (1) JP7434901B2 (en)
CN (1) CN114929473A (en)
WO (1) WO2021140751A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881784A (en) * 1994-09-13 1996-03-26 Furukawa Electric Co Ltd:The Surface treatment of aluiminum or aluminum alloy material
JP2006509106A (en) * 2002-12-09 2006-03-16 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション Aqueous coating solution and method for treating metal surface
WO2017006805A1 (en) * 2015-07-09 2017-01-12 株式会社神戸製鋼所 Aqueous metal surface treatment solution, metal surface treatment method, and conjugate
WO2017195808A1 (en) * 2016-05-10 2017-11-16 株式会社神戸製鋼所 Aluminum alloy material, aluminum alloy material provided with adhesive resin layer, joined body, and production method for aluminum alloy material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052292A (en) * 2009-09-03 2011-03-17 Shingijutsu Kenkyusho:Kk Aluminum alloy article, aluminum alloy member, and method for producing the same
JP2017203213A (en) * 2016-05-10 2017-11-16 株式会社神戸製鋼所 Aluminum alloy material, aluminum alloy material with adhesive resin layer, joined body and method for producing aluminum alloy material
CN110506136B (en) * 2017-05-08 2020-06-23 日本轻金属株式会社 Coated aluminum material for bonding and aluminum resin composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881784A (en) * 1994-09-13 1996-03-26 Furukawa Electric Co Ltd:The Surface treatment of aluiminum or aluminum alloy material
JP2006509106A (en) * 2002-12-09 2006-03-16 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション Aqueous coating solution and method for treating metal surface
WO2017006805A1 (en) * 2015-07-09 2017-01-12 株式会社神戸製鋼所 Aqueous metal surface treatment solution, metal surface treatment method, and conjugate
WO2017195808A1 (en) * 2016-05-10 2017-11-16 株式会社神戸製鋼所 Aluminum alloy material, aluminum alloy material provided with adhesive resin layer, joined body, and production method for aluminum alloy material

Also Published As

Publication number Publication date
JP7434901B2 (en) 2024-02-21
US20220340797A1 (en) 2022-10-27
CN114929473A (en) 2022-08-19
JP2021109336A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
WO2021140751A1 (en) Structure
JP6609672B2 (en) Aluminum composite material, composite structure and manufacturing method thereof
JP2009144010A (en) Adhesive film and method for producing the same
JPH11351785A (en) Heat exchanger and its manufacture
AU631472B2 (en) Method for bonding joints with an organic adhesive using a water soluble silane modified amorphous hydrated metal oxide primer
JP2003028307A (en) Metal gasket material plate and manufacturing method thereof
JP2011148937A (en) Solvent-type epoxy adhesive and adhering method
JP7167719B2 (en) Bonded structure and manufacturing method thereof
Pike Inorganic primers in bonded joints
JP2016070527A (en) Heat exchanger
US4888079A (en) Method for bonding joints with an organic adhesive using a water soluble amorphous hydrated metal oxide primer
US20150056453A1 (en) Adhesive strength enhancement of shape memory polymer composite and metal joint
JP2989132B2 (en) Manufacturing method of polyamide laminated aluminum plate
Minford Comparative aluminium joint evaluations in varying saltwater exposure conditions
JP2023148355A (en) Composite member
JP5077731B2 (en) Energy absorbing member
KR100492491B1 (en) Composite film and lead frame adhering this film
JPS63135475A (en) Method for bonding plural articles
Ma et al. New two-part epoxy paste structural adhesives for a thick bondline
JP5100255B2 (en) Stainless steel plate / adhesive structure between objects and disassembly method thereof
JP2012188480A (en) Composition and composite of polyphenylene sulfide resin, and method for producing them
Kerr et al. Some aspects of silane technology for surface coatings and adhesives
JP2022044319A (en) Different material friction stir joining method and different material friction stir joining member
JPH05254052A (en) Laminate and method for forming film
JPH05254053A (en) Laminate and method for forming film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911382

Country of ref document: EP

Kind code of ref document: A1