WO2017195808A1 - Aluminum alloy material, aluminum alloy material provided with adhesive resin layer, joined body, and production method for aluminum alloy material - Google Patents

Aluminum alloy material, aluminum alloy material provided with adhesive resin layer, joined body, and production method for aluminum alloy material Download PDF

Info

Publication number
WO2017195808A1
WO2017195808A1 PCT/JP2017/017638 JP2017017638W WO2017195808A1 WO 2017195808 A1 WO2017195808 A1 WO 2017195808A1 JP 2017017638 W JP2017017638 W JP 2017017638W WO 2017195808 A1 WO2017195808 A1 WO 2017195808A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
alloy material
film
adhesive resin
resin layer
Prior art date
Application number
PCT/JP2017/017638
Other languages
French (fr)
Japanese (ja)
Inventor
佑輔 高橋
悟 高田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016217096A external-priority patent/JP2017203213A/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2017195808A1 publication Critical patent/WO2017195808A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/14Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a face layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/12Light metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/28Cleaning or pickling metallic material with solutions or molten salts with molten salts
    • C23G1/34Light metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the present invention relates to an aluminum alloy material, an aluminum alloy material with an adhesive resin layer, a joined body using an aluminum alloy material or an aluminum alloy material with an adhesive resin layer, and a method for producing the aluminum alloy material.
  • a surface treatment for improving the corrosion resistance and paint adhesion of a metal surface is known from the viewpoint of corrosion prevention.
  • Patent Document 1 discloses that a solution containing a silicate ester, an aluminum inorganic salt, and polyethylene glycol and further containing a silane coupling agent is applied onto a galvanized steel sheet and dried to form a film.
  • a technique for improving paint adhesion and white rust resistance is described.
  • Patent Document 2 discloses a technique for improving paint adhesion by treating the surface of a metal material such as steel or aluminum alloy with an aqueous solution containing water glass such as sodium water glass and silane such as aminosilane. Are listed.
  • Patent Document 3 discloses an adhesive formed on a metal such as aluminum by treating it with an aqueous composition containing a tetraalkyl silicate such as tetraethyl orthosilicate and a hydrated oxide sol such as silica sol. A method for improving the initial adhesion of the coating film and the long-term stability of the adhesion is described.
  • Patent Document 1 and Patent Document 2 are intended only for the purpose of preventing corrosion of metal surfaces and improving the adhesion of paints. Therefore, although the formed film is thick, the mechanical film itself has low mechanical strength and becomes brittle with respect to tension and stress, and high adhesive strength cannot be obtained.
  • the present invention provides an aluminum alloy material, an aluminum alloy material with an adhesive resin layer, and an aluminum alloy that have excellent adhesion durability, even when exposed to a high-temperature and humid environment. It is a main object to provide a joined body using a material or an aluminum alloy material with an adhesive resin layer, and a method for producing the aluminum alloy material.
  • the present inventor found that the amount of Mg, Si and Cu are within a specific range on the surface of the aluminum substrate, and in the FT-IR spectrum.
  • the present inventors have found that excellent adhesion durability can be obtained by forming a film made of an oxide of aluminum containing silicon having a specific peak.
  • the present invention is an aluminum alloy material comprising an aluminum alloy base material and a film made of an oxide of aluminum containing silicon and formed on at least a part of the surface of the aluminum alloy base material.
  • the difference spectrum before and after the coating treatment obtained by applying parallel polarized light with an incident angle of 75 ° by Fourier transform infrared spectroscopy has an absorption peak top in the wave number region of 1550 to 1650 cm ⁇ 1.
  • the absorbance at the top is 0.001 or more
  • the coating contains Si at 20 atomic% or more and less than 80 atomic% and Mg at 0.1 atomic% or more and less than 30 atomic%, and Cu is 0.6 atom.
  • An aluminum alloy material regulated to less than% is provided.
  • the amounts of Si, Mg, and Cu in the film are values measured by a high-frequency glow discharge emission spectroscopy (GD-OES: Glow Discharge-Optical Emission Spectroscopy).
  • the aluminum alloy material of the present invention preferably has no absorption in the wave number region of 1440 to 1540 cm ⁇ 1 in the difference spectrum.
  • the aluminum alloy material may be used by directly bonding an adhesive resin to the film.
  • the present invention also provides an aluminum alloy material with an adhesive resin layer in which an adhesive resin layer is directly formed on the film of the aluminum alloy material.
  • the adhesive resin layer preferably contains an organic-inorganic coupling agent.
  • the adhesive resin layer preferably contains an epoxy resin.
  • the present invention also provides a joined body obtained by joining the aluminum alloy material and another member via an adhesive resin.
  • the present invention also provides a joined body in which the above-described aluminum alloy material with an adhesive resin layer and another member are joined via an adhesive resin layer.
  • the present invention is a method for producing an aluminum alloy material comprising a film forming step of forming a film made of an oxide of aluminum containing silicon on at least a part of the surface of an aluminum alloy substrate, the film forming step includes a heat treatment step for forming an oxide film on the surface of the aluminum alloy substrate, and an etching treatment step and a silicate treatment step after the heat treatment step, wherein the silicate treatment step is the etching treatment step.
  • An aluminum alloy material, wherein the oxide film is treated with an aqueous solution containing 0.008% by mass or more and less than 0.5% by mass of silicate as the silicate treatment step after or simultaneously with the etching treatment step.
  • a manufacturing method is also provided.
  • the etching amount in the etching treatment step it is preferable to control the etching amount in the etching treatment step to less than 700 nm.
  • the present invention it is possible to realize an aluminum alloy material that is hardly deteriorated in adhesive strength and is excellent in adhesion durability even when exposed to a high-temperature and humid environment.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an aluminum alloy material according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a method for manufacturing the aluminum alloy material shown in FIG.
  • FIG. 3 is a cross-sectional view schematically showing a configuration of an aluminum alloy material with an adhesive resin layer according to a modification of the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing a method of manufacturing the aluminum alloy material with an adhesive resin layer shown in FIG.
  • FIG. 5 is a cross-sectional view schematically showing a configuration example of a joined body according to the second embodiment of the present invention.
  • FIG. 6A is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an aluminum alloy material according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a method for manufacturing the aluminum alloy material
  • FIG. 6B is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention.
  • FIG. 8A is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention.
  • FIG. 8B is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention.
  • FIG. 9A is a side view schematically showing a method for measuring the cohesive failure rate.
  • FIG. 9B is a plan view schematically showing a method for measuring the cohesive failure rate.
  • An aluminum alloy material according to the present embodiment is an aluminum alloy material including an aluminum alloy base material and a film made of an oxide of aluminum containing silicon and formed on at least a part of the surface of the aluminum alloy base material.
  • the film has an absorption peak top in the wave number region of 1550 to 1650 cm ⁇ 1 in the difference spectrum before and after the film treatment obtained by applying parallel polarized light having an incident angle of 75 ° by Fourier transform infrared spectroscopy.
  • the absorbance at the peak top is 0.001 or more
  • the film contains Si at 20 atomic% or more and less than 80 atomic% and Mg at 0.1 atomic% or more and less than 30 atomic%, and Cu is contained. It is an aluminum alloy material regulated to less than 0.6 atomic%.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the aluminum alloy material of the present embodiment.
  • the aluminum alloy material 10 of the present embodiment has a film 2 formed on at least a part of the surface of an aluminum alloy base material 3 (hereinafter also referred to as a base material 3).
  • the substrate 3 is made of an aluminum alloy.
  • the type of aluminum alloy that forms the base material 3 is not particularly limited, and various non-heat-treatable or heat-treated aluminums that are defined in JIS or approximate to JIS, depending on the use of the processed member. It can be used by appropriately selecting from alloys.
  • the non-heat treatment type aluminum alloy there are pure aluminum (1000 series), Al—Mn series alloy (3000 series), Al—Si series alloy (4000 series), and Al—Mg series alloy (5000 series).
  • the heat-treatable aluminum alloy there are an Al—Cu—Mg alloy (2000 series), an Al—Mg—Si alloy (6000 series), and an Al—Zn—Mg alloy (7000 series).
  • the base material 3 preferably has a 0.2% proof stress of 100 MPa or more from the viewpoint of strength.
  • Aluminum alloys that can form a base material that satisfies such characteristics include those containing relatively large amounts of magnesium, such as 2000 series, 5000 series, 6000 series, and 7000 series, and these alloys are necessary. Depending on the condition, it may be tempered. Among various aluminum alloys, it is preferable to use a 6000 series aluminum alloy because it has excellent age-hardening ability, has a relatively small amount of alloy elements, and is excellent in scrap recyclability and formability.
  • the coating 2 is a coating made of an oxide of aluminum containing silicon and formed on at least a part of the surface of the substrate 3.
  • the film 2 absorbs in the wave number region of 1550 to 1650 cm ⁇ 1 in the difference spectrum before and after the film treatment obtained by incident parallel polarized light with an incident angle of 75 ° by Fourier transform infrared spectroscopy (FT-IR). It has a peak top, the absorbance at the peak top is 0.001 or more, and the coating 2 contains 20 atomic% or more and less than 80 atomic% of Si and 0.1 atomic% or more and less than 30 atomic% of Mg. At the same time, Cu is restricted to less than 0.6 atomic%.
  • the coating 2 is provided to increase the bonding strength and improve the adhesion durability.
  • the suitable range of each component amount contained in the film 2 will be described.
  • the coating 2 is formed on the entire one surface of the substrate 3, but the present embodiment is not limited to this.
  • the film 2 may be formed on only a part of the surface of the substrate 3.
  • the coating 2 may be formed on both surfaces of the base material 3.
  • ⁇ FT-IR spectrum> The formation mechanism of the film in the aluminum alloy material of this embodiment will be described below. First, when an aqueous solution of silicate is brought into contact with an oxide film on the surface of an aluminum substrate, a composite oxide of aluminosilicate having better corrosion resistance is generated. Next, the aqueous solution containing a trace amount of unreacted silicate remaining on the surface of the film reacts with carbon dioxide in the atmosphere during drying, and hydrogen carbonate and silicon dioxide are generated, so that the film becomes dense, It is thought that the corrosion resistance of the film is further improved.
  • bicarbonate has an absorption wavelength in the wave number region of 1550 to 1650 cm ⁇ 1 in the FT-IR analysis.
  • the aluminum alloy material of the present embodiment has an absorption peak top in the wave number region of 1550 to 1650 cm ⁇ 1 of the difference spectrum before and after the film treatment in the FT-IR analysis of the surface on which the film is formed. Absorbance at the top is 0.001 or more, hydrogen carbonate and silicon dioxide are sufficiently generated to form a dense film, and the film has excellent strength and corrosion resistance.
  • the absorbance at the peak top of absorption in the wave number region of 1550 to 1650 cm ⁇ 1 is preferably 0.005 or more, more preferably 0.007 or more.
  • GD-OES analysis high-frequency glow discharge optical emission spectrometry
  • an aluminum alloy material having an absorption wavelength in the wave number region of 1550 to 1650 cm ⁇ 1 has a layer of an aluminosilicate composite oxide film containing silicon dioxide from the outermost surface to the base material. Observed.
  • the aluminum alloy material having absorption in the wave number region of 1440 to 1540 cm ⁇ 1 it is observed that the layer containing carbonate is concentrated on the outermost surface.
  • the carbonate has an absorption wavelength in the wave number region of 1440 to 1540 cm ⁇ 1 in the FT-IR analysis.
  • the aluminum alloy material of the present embodiment has no absorption in the wave number region of 1440 to 1540 cm ⁇ 1 of the difference spectrum before and after the film treatment in the FT-IR analysis of the surface on which the film is formed. It is preferable. That is, the film of the aluminum alloy material of the present embodiment is preferably made of a complex oxide having no absorption in the wave number region of 1440 to 1540 cm ⁇ 1 in the difference spectrum before and after the film processing by FT-IR analysis.
  • the aluminum alloy constituting the base material of the aluminum alloy material usually contains magnesium (Mg) as an alloy component, and an oxide film that is a composite oxide of aluminum and magnesium is formed on the surface of the base material 3.
  • Mg magnesium
  • an adhesive resin is formed on the oxide film, the surface magnesium becomes a weak boundary layer of the adhesive interface, and the initial bonding strength is lowered.
  • the Mg content in the film is 30 atomic% or more, the bonding strength of the aluminum alloy material tends to decrease. Therefore, in the aluminum alloy material 10 of the present embodiment, the Mg content in the coating 2 is restricted to less than 30 atomic%. Thereby, adhesion durability can be improved.
  • the Mg content of the film 2 is preferably less than 25 atomic%, more preferably less than 20 atomic%, and still more preferably less than 10 atomic%, from the viewpoint of improving adhesion durability.
  • the lower limit of the Mg content of the film 2 is set to 0.1 atomic% or more from the viewpoint of economy.
  • the Mg content in the film 2 can be measured by high-frequency glow discharge optical emission spectrometry (GD-OES).
  • the method for adjusting the Mg content of the film 2 is not particularly limited.
  • an acid solution such as nitric acid, sulfuric acid and hydrofluoric acid, or an acidic solution such as mixed acid, or potassium hydroxide, sodium hydroxide, silicic acid.
  • a method of performing a surface treatment with an alkaline solution containing a salt and carbonate can be applied. This method adjusts the Mg content of the film 2 by dissolving magnesium in an acid or alkali solution.
  • the treatment time, temperature, concentration of the surface treatment solution and pH the film 2
  • the amount of Mg can be in the range described above.
  • Mg Even if Mg is contained to the extent of an impurity element, Mg may concentrate in the coating 2 when heat treatment is performed at high temperature, and adjustment by surface treatment with acid or alkali is possible. Is necessary as appropriate. It is also possible to adjust the surface treatment chemical solution by containing Mg ions.
  • Si content 20 atomic% or more and less than 80 atomic%> Since silicon has the effect of improving the corrosion resistance of the coating 2 and stabilizing it in a wet environment, it is possible to suppress a decrease in bonding strength by containing silicon in the coating 2.
  • the Si content in the coating 2 is set to 20 atom% or more and less than 80 atom%.
  • the Si content in the film 2 is preferably 25 atomic% or more, and more preferably 30 atomic% or more. Further, from the viewpoint of preventing the decrease in adhesive strength and the uniformity of spot weldability and chemical conversion treatment, the Si content in the coating 2 is preferably less than 75 atomic%, and more preferably less than 70 atomic%. preferable.
  • the Si content in the film 2 is adjusted, for example, by performing a surface treatment with an acid or an alkali in the same manner as described as a method for adjusting the amount of Mg. Moreover, it adjusts with the conditions of the process by the aqueous solution containing silicates, such as sodium silicate and potassium silicate mentioned above.
  • silicates such as sodium silicate and potassium silicate mentioned above.
  • the Cu content in the coating 2 is restricted to less than 0.6 atomic%.
  • membrane 2 is less than 0.5 atomic% from a viewpoint of an adhesive improvement with adhesive resin.
  • the etching method is not limited.
  • the same processing method as described in the numerical value limitation of Mg Can be applied. That is, for example, etching can be performed by treatment with an acid or alkali solution.
  • the element concentration such as Mg amount, Si amount, and Cu amount in the film 2 can be measured by, for example, a high-frequency glow discharge emission spectroscopic analysis (GD-OES: Glow Discharge-Optical Emission Spectroscopy).
  • GD-OES Glow Discharge-Optical Emission Spectroscopy
  • Mg sodium (Na), calcium (Ca), copper (Cu), iron (Fe), titanium (Ti) and other metal elements and silicon (Si) and other elements are measured.
  • a value obtained by calculating the content of Cu, Al, etc. as a percentage is defined as the amount of each element.
  • the thickness of the film 2 is preferably 1 to 30 nm.
  • in order to control the film thickness of the film 2 to be less than 1 nm excessive acid cleaning or the like is required, so that productivity is inferior and practicality tends to be lowered.
  • excessive etching by alkali degreasing or acid causes the Cu contained in the base material 3 to be concentrated on the surface, and causes a decrease in adhesion durability.
  • the film thickness of the film 2 is more preferably 2 nm or more and less than 20 nm from the viewpoints of chemical conversion and productivity.
  • FIG. 2 is a flowchart showing a method for manufacturing the aluminum alloy material 10 of the present embodiment shown in FIG. As shown in FIG. 2, when manufacturing the aluminum alloy material 10 of this embodiment, base material production process S1 and film formation process S2 are performed. Hereinafter, each step will be described.
  • the shape of the substrate is not particularly limited, and depending on the shape of a member produced using an aluminum alloy material, in addition to a plate shape, a cast material, a forged material, an extruded material (for example, a hollow bar shape), etc. Any shape that can be taken as In the base material manufacturing step S1, when a plate-shaped base material (substrate) is manufactured as an example, the substrate is manufactured by the following procedure, for example. First, an aluminum alloy having a predetermined composition is melted by continuous casting and cast to produce an ingot (melting casting process). Next, the produced ingot is subjected to homogenization heat treatment (homogenization heat treatment step).
  • the ingot subjected to homogenization heat treatment is hot-rolled to produce a hot-rolled sheet (hot-rolling step).
  • the hot-rolled sheet is subjected to rough annealing or intermediate annealing at 300 to 580 ° C., and cold rolling with a final cold rolling rate of 5% or more is performed at least once, so that a cold-rolled sheet (substrate) having a predetermined thickness is obtained. (Cold rolling process).
  • the temperature of rough annealing or intermediate annealing it is preferable to set the temperature of rough annealing or intermediate annealing to 300 ° C. or higher, and thereby the effect of improving formability is more exhibited.
  • the temperature of rough annealing or intermediate annealing shall be 580 degrees C or less, and this becomes easy to suppress the fall of the moldability by generation
  • the final cold rolling rate is preferably 5% or more, and thereby, the effect of improving the formability is more exhibited.
  • the conditions of homogenization heat processing and hot rolling are not specifically limited, It can carry out on the conditions in the case of obtaining a hot rolled sheet normally. Further, intermediate annealing may not be performed.
  • Step S2 Film formation process>
  • a film is formed on at least a part (that is, part or all) of the surface of the base material manufactured in the base material manufacturing process in step S1.
  • the film formation step (step S2) includes, for example, a heat treatment stage in which the base material 3 is heat-treated to form an oxide film, an etching treatment stage after the heat treatment stage, and a silica film.
  • An acid treatment stage As a silicate treatment step, treatment is performed with an aqueous solution containing silicate.
  • the film is formed so that the Mg amount, Si amount, and Cu amount in the film are in a specific range and have a specific peak in the FT-IR spectrum.
  • This heat treatment is preferably rapid heating at a heating rate of 100 ° C./min or more from the viewpoint of improving the strength.
  • the strength of the aluminum alloy material 10 and the strength after heating (baking) of the aluminum alloy material 10 can be further increased by setting the heating temperature to 400 ° C. or higher and performing rapid heating.
  • the heating temperature is set to 580 ° C. or less and performing rapid heating, it is possible to suppress a decrease in formability due to the occurrence of burning.
  • the holding time in the heat treatment is preferably 3 to 30 seconds.
  • the chemical solution (acid detergent) used in the pickling is not particularly limited, for example, a solution containing one or more selected from the group selected from sulfuric acid, nitric acid and hydrofluoric acid can be used.
  • the acid detergent may contain a surfactant in order to improve the degreasing property.
  • the pickling conditions can be appropriately set in consideration of the alloy composition of the base material 3, the thickness of the oxide film, etc., and are not particularly limited. For example, the pH is 2 or less, the treatment temperature is 10 to 80 ° C., Conditions with a processing time of 1 to 120 seconds can be applied.
  • the chemical solution used for alkali cleaning is not particularly limited, and for example, a solution containing at least one selected from the group selected from sodium hydroxide and potassium hydroxide can be used.
  • the conditions for the treatment with the alkaline solution can be appropriately set in consideration of the alloy composition of the substrate 3, the thickness of the oxide film, and the like, and are not particularly limited.
  • the pH is 10 or more
  • the treatment temperature is 10 to 80.
  • Conditions of ° C and a treatment time of 1 to 120 seconds can be applied.
  • the rinsing method is not particularly limited, and examples thereof include spraying and dipping.
  • Examples of the cleaning liquid used for rinsing include industrial water, pure water, and ion exchange water.
  • the processing conditions are adjusted so that the etching amount of the oxide film is preferably less than 700 nm, more preferably less than 500 nm.
  • the etching amount in the etching treatment stage in the present specification is the dissolution amount of the oxide film or the base material including the oxide film, and the decrease in weight before and after the etching treatment is measured, and the thickness (film thickness) is measured. ).
  • the conversion from the weight reduction amount to the film thickness is performed by calculating the aluminum thickness using the aluminum density of 2.7 g / cm 3 for convenience.
  • the total etching amount of the oxide film and the base material is defined as the etching amount.
  • a substrate having an oxide film is treated with an aqueous solution containing silicate (silicate aqueous solution).
  • the treatment with the silicate aqueous solution includes not only the application of the silicate aqueous solution but also the immersion in the silicate aqueous solution.
  • the silicate treatment stage is performed as the final stage of film formation in the film formation process, and no pickling is performed after the silicate treatment.
  • drying after treatment with an aqueous silicate solution is included in the silicate treatment step.
  • the pH of the silicate aqueous solution when the pH of the aqueous solution is lower than 7, silicate precipitates, so that aluminum and silicon cannot react. Accordingly, the pH of the silicate aqueous solution needs to be 7 or more, preferably 8 or more, and more preferably 9 or more. Moreover, although the upper limit of pH of silicate aqueous solution is not specifically limited, From the viewpoint of the ease of handling and safety
  • the pH of the silicate aqueous solution can be appropriately adjusted by adding a base such as sodium hydroxide, sodium carbonate, or ammonia.
  • the silicate concentration in the silicate aqueous solution is preferably less than 0.5% by mass, more preferably less than 0.3% by mass, and still more preferably 0%. Less than 2% by mass.
  • the type of silicate contained in the silicate aqueous solution is not particularly limited.
  • basic silicates include silicates of alkali metals such as lithium, sodium, and potassium, and ammonium silicates. Can be mentioned.
  • silicates only 1 type may be used independently and may be used in combination of 2 or more type.
  • the lithium silicate include lithium silicate.
  • sodium silicate examples include, for example, crystalline sodium orthosilicate (n / m: about 0.5), meta Sodium silicate (n / m: about 1), layered crystal sodium silicate (n / m: in the range of about 2 to 3), amorphous sodium silicate, or liquid water glass (JIS No. 1, 2 and 3).
  • crystalline sodium orthosilicate n / m: about 0.5
  • meta Sodium silicate n / m: about 1
  • layered crystal sodium silicate n / m: in the range of about 2 to 3
  • amorphous sodium silicate or liquid water glass (JIS No. 1, 2 and 3).
  • potassium silicate, potassium silicate etc. are mentioned, for example.
  • Examples of the application method of the silicate aqueous solution include immersion treatment, spraying, roll coating, bar coating, electrostatic coating and the like.
  • the silicate aqueous solution is dried.
  • the drying temperature is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and still more preferably 90 ° C. or higher.
  • the drying temperature is preferably 220 ° C. or lower, more preferably 200 ° C. or lower, and further preferably 190 ° C. or lower.
  • the drying time depends on the drying temperature, but is preferably 2 seconds or more, more preferably 5 seconds or more, and further preferably 10 seconds or more. Moreover, the said drying time becomes like this. Preferably it is 20 minutes or less, More preferably, it is 5 minutes or less, More preferably, it is 2 minutes or less.
  • the coating amount of the silicate aqueous solution is preferably adjusted so that the coating amount after drying is 1 mg / m 2 or more and 30 mg / m 2 or less from the viewpoint of obtaining a sufficient effect of improving the adhesion durability. More preferably, the coating amount after drying is adjusted to be 1.5 mg / m 2 or more and 20 mg / m 2 or less. If the coating amount of the silicate aqueous solution is too small, the amount of silicate is too small, and good adhesion durability may not be obtained. Moreover, when the application amount of the silicate aqueous solution becomes too large, the formed film becomes too thick, peeling occurs in the film, and the adhesion durability may be impaired.
  • the silicate treatment stage is performed after the etching treatment stage, but these may be performed in a single process.
  • the oxide film may be treated using a neutral or alkaline aqueous solution containing silicate.
  • a preliminary aging treatment step for performing a preliminary aging treatment may be provided after the film forming step S2.
  • This preliminary aging treatment is preferably performed by heating at 40 to 120 ° C. within 72 hours at a low temperature of 8 to 36 hours.
  • a foreign matter removing step for removing foreign matter on the surface of the aluminum alloy material 10 or a defective product removing step for removing defective products generated in each step may be performed.
  • the manufactured aluminum alloy material 10 may be coated with press oil on the surface thereof before the fabrication of the joined body or before processing into a member for an automobile.
  • press oil one containing an ester component is mainly used.
  • the method and conditions for applying the press oil to the aluminum alloy material 10 are not particularly limited, and methods and conditions for applying the normal press oil can be widely applied.
  • a press containing ethyl oleate as an ester component What is necessary is just to immerse the aluminum alloy material 10 in oil.
  • the ester component is not limited to ethyl oleate, and various materials such as butyl stearate and sorbitan monostearate can be used.
  • high adhesion durability can be obtained without performing water washing after treatment with an aqueous silicate solution or treatment with a silane coupling agent. Since the applied film can be obtained, the entire process can be reduced, which is very useful from the viewpoint of production efficiency.
  • the aluminum alloy material of the present embodiment may be used by directly bonding an adhesive resin to the film.
  • press oil may be applied to the surface of the aluminum alloy material, but in this specification, an adhesive resin is bonded to the aluminum alloy material applied with the press oil.
  • the adhesive resin is directly bonded to the aluminum alloy material film.
  • FIG. 3 is a cross-sectional view schematically showing a configuration of an aluminum alloy material with an adhesive resin layer according to this modification.
  • the same components as those of the aluminum alloy material 10 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the adhesive resin layer 4 is directly formed on the aluminum alloy material 11 with the adhesive resin layer of the present modification so as to cover the film 2 on the aluminum alloy material of the first embodiment described above. .
  • the adhesive resin layer 4 is made of an adhesive resin or the like, and the aluminum alloy material 11 with the adhesive resin layer of the present modification is joined to another member via the adhesive resin layer 4.
  • the other members include another aluminum alloy material in which a film is formed as in the case of the aluminum alloy material 11 with the adhesive resin layer, an aluminum alloy material in which no oxide film is formed, a resin molded body, and the like. .
  • the adhesive resin that constitutes the adhesive resin layer 4 is not particularly limited. When an aluminum alloy material such as an epoxy resin, a urethane resin, a nitrile resin, a nylon resin, or an acrylic resin is conventionally joined. The adhesive resin that has been used can be used. Of these, epoxy resins are preferable from the viewpoint of adhesive strength. Further, only one kind of adhesive resin may be used, or a plurality of adhesive resins may be used in combination.
  • the thickness of the adhesive resin layer 4 is not particularly limited, but is preferably 10 to 500 ⁇ m, and more preferably 50 to 400 ⁇ m. When the thickness of the adhesive resin layer 4 is less than 10 ⁇ m, the aluminum alloy material 11 with the adhesive resin layer and the aluminum alloy material not provided with another adhesive resin layer are joined via the adhesive resin layer 4. , High adhesion durability may not be obtained. On the other hand, when the thickness of the adhesive resin layer 4 exceeds 500 ⁇ m, the adhesive strength may be reduced.
  • the adhesive resin layer 4 may further contain an organic-inorganic coupling agent.
  • the type of organic-inorganic coupling agent contained in the adhesive resin layer 4 (adhesive resin) is not particularly limited.
  • a silane coupling agent a titanate coupling agent, an aluminate coupling agent, or a phosphate cup.
  • a ring agent or the like can be used.
  • the silane coupling agent at least one functional group such as vinyl group, styryl group, acrylic group, methacryl group, epoxy group, amino group, ureido group, mercapto group, isocyanate group and the like having high reactivity with the adhesive resin is used.
  • silane coupling agent having the above.
  • the functional group possessed by the silane coupling agent include, for example, an epoxy group, an amino group, and a ureido group.
  • the organic-inorganic coupling agent only one kind may be used alone, or two or more kinds may be used in combination.
  • FIG. 4 is a flowchart showing a method of manufacturing the aluminum alloy material 11 with an adhesive resin layer of the present modification shown in FIG.
  • an adhesive resin layer forming step S3 is performed in addition to the steps S1 to S2 described above.
  • Step S3 Adhesive resin layer forming step>
  • the adhesive resin layer 4 is formed so as to cover the film 2.
  • the method for forming the adhesive resin layer 4 is not particularly limited. For example, when the adhesive resin is a solid, it is heated and pressure-bonded, or dissolved in a solvent to obtain a solution. Further, when the adhesive resin is in a liquid state, a method of spraying or coating the surface of the film 2 as it is can be mentioned.
  • the preliminary aging treatment is performed after the film forming step S2 and / or the adhesive resin layer forming step S3, as in the first embodiment.
  • An aging treatment step may be provided.
  • the adhesive resin layer is provided in advance, the work such as applying the adhesive resin to the surface of the aluminum alloy material is omitted when producing a joined body or an automobile member. can do.
  • the configuration and effects other than those described above in the aluminum alloy material with an adhesive resin layer of the present modification are the same as those in the first embodiment described above.
  • the joined body of this embodiment uses the aluminum alloy material of the first embodiment described above or an aluminum alloy material with an adhesive resin layer of a modification thereof.
  • 5 to 8B are cross-sectional views schematically showing a configuration example of the joined body of this embodiment. 5 to 8B, the same components as those of the aluminum alloy material 10 and the aluminum alloy material 11 with the adhesive resin layer shown in FIGS. 1 and 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the two aluminum alloy materials 10 shown in FIG. 1 are arranged so that the surfaces on which the coating 2 is formed face each other. Further, it can be configured to be bonded via the adhesive resin 5. That is, in the bonded body 20, one surface of the adhesive resin 5 is bonded to the film 2 side of one aluminum alloy material 10 and the other surface is bonded to the film 2 side of the other aluminum alloy material 10.
  • the same adhesive resin as the adhesive resin layer 4 described above can be used as the adhesive resin 5.
  • an epoxy resin, a urethane resin, a nitrile resin, a nylon resin, an acrylic resin, or the like can be used as the adhesive resin 5.
  • the thickness of the adhesive resin 5 is not particularly limited, but is preferably 10 to 500 ⁇ m, more preferably 50 to 400 ⁇ m from the viewpoint of improving the adhesive strength.
  • both surfaces of the adhesive resin 5 are the coatings 2 of the aluminum alloy material 10 of the first embodiment.
  • the adhesive strength at the interface between the adhesive resin 5 and the film 2 is not easily lowered, and the adhesion durability is improved.
  • the adhesive durability at the interface is improved in all adhesive resins conventionally used for joining aluminum alloy materials without being affected by the type of the adhesive resin 5.
  • the coating 2 is formed on the surface on which the coating 2 of the aluminum alloy material 10 shown in FIG. It can also be set as the structure which joined the other aluminum alloy material 6 or the resin molding 7 which is not formed.
  • the other aluminum alloy material 6 on which the film 2 is not formed the same material as the base material 3 described above can be used.
  • the aluminum alloy material 6 is specified in JIS or approximate to JIS.
  • Various non-heat treatment type or heat treatment type aluminum alloys can be used.
  • Examples of the resin molded body 7 include glass fiber reinforced plastic (GFRP), carbon fiber reinforced plastic (CFRP), boron fiber reinforced plastic (BFRP), aramid fiber reinforced plastic (AFRP, KFRP), polyethylene fiber reinforced plastic (A fiber reinforced plastic molded body formed of various fiber reinforced plastics such as DFRP) and Zylon reinforced plastic (ZFRP) can be used. By using these fiber-reinforced plastic molded bodies, it is possible to reduce the weight of the joined body while maintaining a certain strength.
  • GFRP glass fiber reinforced plastic
  • CFRP carbon fiber reinforced plastic
  • BFRP boron fiber reinforced plastic
  • AFRP aramid fiber reinforced plastic
  • KFRP polyethylene fiber reinforced plastic
  • a fiber reinforced plastic molded body formed of various fiber reinforced plastics such as DFRP
  • ZFRP Zylon reinforced plastic
  • the resin molded body 7 is made of polypropylene (PP), acrylic-butadiene-styrene copolymer (ABS) resin, polyurethane (PU), polyethylene (PE), polyvinyl chloride (PVC). , Nylon 6, nylon 6,6, polystyrene (PS), polyethylene terephthalate (PET), polyamide (PA), polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), polyphthalamide (PPA), etc. No resin can be used.
  • PP polypropylene
  • ABS acrylic-butadiene-styrene copolymer
  • PU polyurethane
  • PE polyethylene
  • PVC polyvinyl chloride
  • the joined bodies 21a and 21b shown in FIG. 6A and FIG. 6B since one surface of the adhesive resin 5 is joined to the film 2 side of the aluminum alloy material 10, it was used as a member for an automobile, like the joined body 20 described above. At this time, even when exposed to a high temperature and humidity environment, the adhesion durability at the interface is improved without being influenced by the type of the adhesive resin. Moreover, since the joined body 21b shown to FIG. 6B has joined the aluminum alloy material 10 and the resin molding 7, it is lightweight compared with the joined body of aluminum alloy materials, By using this joined body 21b, Further weight reduction of the automobile can be realized.
  • the other configurations and effects of the joined bodies 21a and 21b shown in FIGS. 6A and 6B are the same as those of the joined body 20 shown in FIG.
  • the aluminum alloy material 11 with the adhesive resin layer provided with the adhesive resin layer 4 shown in FIG. 3, and the aluminum alloy material 10 not provided with the adhesive resin layer 4 shown in FIG. It can also be set as the structure which joined. Specifically, the film 2 side of the aluminum alloy material 10 is joined to the adhesive resin layer 4 side of the aluminum alloy material 11 with the adhesive resin layer. As a result, the film 2 of the aluminum alloy material 10 and the film 2 of the aluminum alloy material 11 with the adhesive resin layer were arranged to face each other via the adhesive resin layer 4 of the aluminum alloy material 11 with the adhesive resin layer. It has a configuration.
  • both surfaces of the adhesive resin layer 4 are joined to the film 2 of the aluminum alloy material 10 and the film 2 of the aluminum alloy material 11 with the adhesive resin layer, respectively.
  • the adhesion durability at the interface is improved without being affected by the type of the adhesive resin.
  • the structure and effect other than the above in the joined body 22 shown in FIG. 7 are the same as those of the joined body 20 shown in FIG.
  • the coating 2 is formed on the adhesive resin layer 4 side of the aluminum alloy material 11 with the adhesive resin layer provided with the adhesive resin layer 4 shown in FIG.
  • a resin molded body 7 such as another aluminum alloy material 6 or a fiber-reinforced plastic molded body in which no is formed is joined.
  • the joined body 23 is used as an automobile member in the same manner as the joined body 20 described above.
  • the joined body 23b shown to FIG. 8B has joined the aluminum alloy material 11 with an adhesive layer, and the resin molding 7, it is lightweight compared with the joined body of aluminum alloy materials, and weight reduction is calculated
  • the structures and effects of the joined bodies 23a and 23b shown in FIGS. 8A and 8B other than those described above are the same as those of the joined body 20 shown in FIG.
  • Method of manufacturing joined body As a manufacturing method of the joined bodies 20 to 23, particularly a joining method, a conventionally known joining method can be used.
  • the method for forming the adhesive resin 5 on the aluminum alloy material is not particularly limited.
  • an adhesive sheet prepared in advance using the adhesive resin 5 may be used, or the adhesive resin 5 may be formed on the surface of the film 2. You may form by spraying or apply
  • the bonded bodies 20 to 23 may be coated with press oil on their surfaces before being processed into automobile members, similarly to the aluminum alloy material 10 and the aluminum alloy material 11 with an adhesive layer.
  • an aluminum alloy material (with an adhesive resin layer) having a film 2 formed on both surfaces is used for the joined body of the present embodiment, these (adhesive) are bonded via an adhesive resin or an adhesive resin layer. It becomes possible to further join an aluminum alloy material (with a resin layer), another aluminum alloy material on which a film is not formed, or a resin molded body.
  • the member for motor vehicles of this embodiment uses the joined object of a 2nd embodiment mentioned above, for example, is a panel for motor vehicles.
  • the manufacturing method of the automobile member of the present embodiment is not particularly limited, but a conventionally known manufacturing method can be applied.
  • the joined members 20 to 23b shown in FIGS. 5 to 8B are cut or pressed to produce a member for an automobile having a predetermined shape.
  • the automobile member of the present embodiment is manufactured from the joined body of the second embodiment described above, even if it is exposed to a high-temperature and humid environment, the effects of the adhesive resin or the adhesive resin layer and the hydration of the film are hardly affected. Without receiving, elution of the aluminum alloy substrate can be suppressed. As a result, in the automotive member of this embodiment, it is possible to suppress interfacial peeling when exposed to a high-temperature and humid environment, and to suppress a decrease in adhesive strength.
  • an aluminum alloy material was produced by the following method and conditions, and its adhesion durability and the like were evaluated.
  • Example 1 Using a 6000 series aluminum alloy of JIS 6016 (Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%), an aluminum alloy cold-rolled sheet having a thickness of 1 mm was produced. And this cold-rolled board was cut
  • a 6000 series aluminum alloy of JIS 6016 Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%
  • an aqueous solution containing 0.018% by mass of sodium metasilicate (hereinafter also referred to as an aqueous sodium silicate solution) was uniformly applied to the surface with a bar coater. Then, it heat-dried at 100 degreeC for 1 minute, and obtained the aluminum alloy material of Example 1 which has a film
  • Example 2 An aluminum alloy material of Example 2 was obtained in the same manner as in Example 1 except that the sodium metasilicate concentration in the aqueous sodium silicate solution was 0.055% by mass.
  • Example 3 An aluminum alloy material of Example 3 was obtained in the same manner as Example 1 except that the sodium metasilicate concentration in the sodium silicate aqueous solution was 0.084% by mass.
  • Example 4 An aluminum alloy material of Example 4 was obtained in the same manner as in Example 1 except that the sodium metasilicate concentration in the aqueous sodium silicate solution was 0.12% by mass.
  • Example 5 An aluminum alloy material of Example 5 was obtained in the same manner as in Example 1 except that the sodium metasilicate concentration in the aqueous sodium silicate solution was 0.24% by mass.
  • Example 6 was carried out in the same manner as in Example 1 except that the alkaline degreasing time was 20 seconds, the pickling with sulfuric acid hydrofluoric acid was not performed, and the sodium metasilicate concentration in the sodium silicate aqueous solution was 0.084% by mass. An aluminum alloy material was obtained.
  • Example 7 Example 1 except that the alkali degreasing time was 100 seconds, the pickling time with sulfuric acid hydrofluoric acid was 100 seconds, and the sodium metasilicate concentration in the sodium silicate aqueous solution was 0.084% by mass, The aluminum alloy material of Example 7 was obtained.
  • the aluminum alloy material of Example 8 was obtained.
  • Comparative Example 1 An aluminum alloy material of Comparative Example 1 was obtained in the same manner as in Example 1 except that the sodium metasilicate concentration in the aqueous sodium silicate solution was 0.61% by mass.
  • Comparative Example 2 An aluminum alloy material of Comparative Example 2 was obtained in the same manner as in Example 1 except that the sodium metasilicate concentration in the aqueous sodium silicate solution was 0.0061% by mass.
  • Comparative Example 3 An aluminum alloy material of Comparative Example 3 was obtained in the same manner as in Example 1 except that the treatment with the sodium silicate aqueous solution was not performed.
  • Comparative Example 4 An aluminum alloy material of Comparative Example 4 was obtained in the same manner as in Example 1 except that the sodium metasilicate concentration in the aqueous sodium silicate solution was 0.12% by mass and the surface was washed with water after the treatment.
  • Comparative Example 5 An aluminum alloy material of Comparative Example 5 was obtained in the same manner as in Example 1 except that alkali degreasing and pickling were not performed and the sodium metasilicate concentration in the aqueous sodium silicate solution was 0.084% by mass.
  • Comparative Example 6 An aluminum alloy material of Comparative Example 6 was obtained in the same manner as in Example 1 except that the pickling time with sulfuric acid hydrofluoric acid was set to 300 seconds and the sodium metasilicate concentration in the sodium silicate aqueous solution was set to 0.084% by mass. .
  • IR spectrum measurement The aluminum alloy materials according to each of Examples and Comparative Examples having a coating on the surface were subjected to FT-IR (Fourier transform infrared spectrophotometer: Magna-750 spectrometer manufactured by Nicolet) using parallel polarized light with an incident angle of 75 °. ) the IR spectrum was measured by analyzing, reading the spectral intensity (absorbance) at a wave number region of the frequency domain and 1550 - 1650 cm -1 in the coating process 1440 - from the difference spectrum before and after 1540 cm -1. The results are shown in Table 1. In Table 1, “ ⁇ ” means that the absorbance was not measured.
  • the elemental component concentration in the film was measured while sputtering in the film thickness direction by high-frequency glow discharge optical emission spectrometry (GD-OES: model JY-5000RF manufactured by Horiba Joban Yvon).
  • Aluminum (Al), magnesium (Mg) ), Sodium (Na), potassium (K), lithium (Li), copper (Cu), iron (Fe), titanium (Ti) and other metal elements, and oxygen (O), nitrogen (N), carbon (C ), Silicon (Si), sulfur (S), and other elements were measured for the amount of each component.
  • magnesium (Mg), sodium (Na), potassium (K), lithium (Li), copper (Cu), and silicon (Si) the maximum concentration in the film was defined as the film concentration in the film.
  • the concentration of the outermost surface is the coating concentration of aluminum (Al).
  • oxygen (O) and carbon (C) are particularly susceptible to contamination on the outermost surface and in the vicinity thereof. From the above, in the concentration calculation of each element, the concentration was calculated excluding oxygen (O) and carbon (C). Oxygen (O) is highly likely to be affected by contamination at the outermost surface and in the vicinity thereof, and it is difficult to measure the exact concentration, but all sample films contain oxygen (O). It was clear that The results are shown in Table 1.
  • the coating amount was measured by fluorescent X-ray. Specifically, the amount of silicon in the film is measured with fluorescent X-rays, and the calibration curve is used to convert the intensity of the fluorescent X-rays and the amount of film, and further subtract the silicon amount contained in the substrate. did. The results are shown in Table 1.
  • the amount of etching is the amount of dissolution of the oxide film and the base material including the oxide film, and the amount of decrease in weight before and after the etching treatment was measured and estimated as the thickness (film thickness).
  • the conversion from the decrease in weight to the film thickness was performed by calculating the aluminum thickness using the aluminum density of 2.7 g / cm 3 for convenience.
  • 9A and 9B are diagrams schematically showing a method of measuring the cohesive failure rate
  • FIG. 9A is a side view
  • FIG. 9B is a plan view.
  • the adhesive resin 35 used here is a thermosetting epoxy resin-based adhesive resin (bisphenol A type epoxy resin amount 40 to 50 mass%).
  • the prepared adhesion test specimen was immersed in an aqueous sodium chloride solution having a concentration of 5% at 40 ° C. for 20 days and then pulled at a rate of 50 mm / min with a tensile tester to evaluate the cohesive failure rate of the adhesive resin at the bonded portion.
  • the cohesive failure rate was calculated based on Equation 1 below.
  • the test specimen a was used as one side after the tension of the adhesion test specimen, and the test specimen b was used as the other side.
  • the Si concentration in the film is higher than the range specified in the present invention, and has no absorption in the wave number region of 1550 to 1650 cm ⁇ 1 .
  • the adhesion durability was poor.
  • the aluminum alloy material of Comparative Example 1 had absorption in the wave number region of 1440 to 1540 cm ⁇ 1 .
  • the Si concentration in the film is lower than the range specified in the present invention, and the absorbance in the wave number region of 1550 to 1650 cm ⁇ 1 is lower than the range specified in the present invention.
  • the adhesion durability was poor.
  • the aluminum alloy material of Comparative Example 3 has a Si concentration in the film lower than the range specified in the present invention, and has no absorption in the wave number region of 1550 to 1650 cm ⁇ 1 and has poor adhesion durability. It was. The aluminum alloy material of Comparative Example 3 did not absorb even in the wave number region of 1440 to 1540 cm ⁇ 1 . Further, the aluminum alloy material of Comparative Example 4 had no absorption in the wave number region of 1550 to 1650 cm ⁇ 1 and had poor adhesion durability. The aluminum alloy material of Comparative Example 4 did not absorb even in the wave number region of 1440 to 1540 cm ⁇ 1 .
  • the aluminum alloy material of Comparative Example 5 had a Mg concentration in the film higher than the range specified in the present invention, and had poor adhesion durability.
  • the aluminum alloy material of Comparative Example 6 had a Cu concentration in the film higher than the range specified in the present invention, and had poor adhesion durability.
  • the aluminum alloy materials of Examples 1 to 9 that satisfy each requirement defined in the present invention had good wet durability under a high temperature and high humidity environment.
  • Base material 4 Adhesive resin layer 5, 35 Adhesive resin 6, 10 Aluminum alloy material 7 Resin molded body 11 Aluminum alloy material with adhesive resin layer 20, 21a, 21b, 22, 23a, 23b Joined body 31a, 31b Material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to an aluminum alloy material that comprises: an aluminum alloy base material; and a coating film that is formed on at least one portion of the surface of the aluminum alloy base material and that comprises an oxide of aluminum that includes silicon. Over a pre-and-post-coating difference spectrum obtained by Fourier-transform infrared spectroscopy using parallel polarized light that is incident at an angle of 75°, the coating film has an absorption peak top in the wavenumber domain of 1550-1650 cm-1, and the absorbance of the coating film at said peak top is 0.001 or higher. The Si content of the coating film is at least 20 at% but less than 80 at%, the Mg content of the coating film is at least 0.1 at% but less than 30 at%, and the Cu content of the coating film is restricted to less than 0.6 at%.

Description

アルミニウム合金材、接着樹脂層付きアルミニウム合金材、接合体、及びアルミニウム合金材の製造方法Aluminum alloy material, aluminum alloy material with adhesive resin layer, joined body, and method for producing aluminum alloy material
 本発明は、アルミニウム合金材、接着樹脂層付きアルミニウム合金材、アルミニウム合金材ないし接着樹脂層付きアルミニウム合金材を用いた接合体、及び、アルミニウム合金材の製造方法に関する。 The present invention relates to an aluminum alloy material, an aluminum alloy material with an adhesive resin layer, a joined body using an aluminum alloy material or an aluminum alloy material with an adhesive resin layer, and a method for producing the aluminum alloy material.
 自動車、船舶及び航空機などの輸送機に用いられる部材の軽量化の観点から、炭素繊維やアルミ合金、鉄鋼材料といった、強度、材質、質量等の異なる異種材料を接合する技術の開発が注目されている。特に、接着樹脂(樹脂接着剤)は、電食による材料の腐食がなく、多様な材料を腐食せずに接合可能なことから、近年積極的に研究されている。しかしながら、高湿環境下では、金属と接着樹脂の界面に水分が浸入し、金属表面の腐食・劣化が起こり、金属と接着樹脂の界面で容易に剥離するため、接着強度が著しく低下してしまう。そのため、金属と接着樹脂の界面を腐食から保護し、湿潤環境下でも接着強度を低下させないような前処理が、接着耐久性を左右する重要な因子となる。 From the viewpoint of reducing the weight of components used in transportation equipment such as automobiles, ships, and aircraft, development of technologies for joining different materials such as carbon fiber, aluminum alloy, and steel materials with different strengths, materials, and masses has attracted attention. Yes. In particular, adhesive resins (resin adhesives) have been actively researched in recent years because they do not corrode materials due to electrolytic corrosion and can bond various materials without corroding them. However, in a high humidity environment, moisture enters the interface between the metal and the adhesive resin, causing corrosion / deterioration of the metal surface and peeling easily at the interface between the metal and the adhesive resin, resulting in a significant decrease in adhesive strength. . For this reason, pretreatment that protects the interface between the metal and the adhesive resin from corrosion and does not reduce the adhesive strength even in a wet environment is an important factor that affects the adhesive durability.
 ここで、接着用前処理としては、防食の観点から、金属表面の耐食性や塗料密着性を向上させるための表面処理が知られている。 Here, as a pretreatment for bonding, a surface treatment for improving the corrosion resistance and paint adhesion of a metal surface is known from the viewpoint of corrosion prevention.
 例えば、特許文献1には、ケイ酸エステル、アルミニウム無機塩及びポリエチレングリコールを含有し、シランカップリング剤をさらに含有させた溶液を、亜鉛系めっき鋼板上に塗布、乾燥して皮膜を形成させることで、塗料密着性及び耐白錆性を向上させる手法が記載されている。 For example, Patent Document 1 discloses that a solution containing a silicate ester, an aluminum inorganic salt, and polyethylene glycol and further containing a silane coupling agent is applied onto a galvanized steel sheet and dried to form a film. Thus, a technique for improving paint adhesion and white rust resistance is described.
 また、特許文献2には、ナトリウム水ガラス等の水ガラスと、アミノシラン等のシランを含む水溶液により、鋼材やアルミニウム合金等の金属材料の表面を処理することで、塗料密着性を向上させる手法が記載されている。 Patent Document 2 discloses a technique for improving paint adhesion by treating the surface of a metal material such as steel or aluminum alloy with an aqueous solution containing water glass such as sodium water glass and silane such as aminosilane. Are listed.
 また、特許文献3には、テトラエチルオルソシリケート等のテトラアルキルシリケートと、シリカゾル等の水和酸化物ゾルを含む水性組成物でアルミニウム等の金属を処理することにより、その上に形成される接着剤などの塗膜の初期密着性や密着性の長期安定性を向上させる手法が記載されている。 Patent Document 3 discloses an adhesive formed on a metal such as aluminum by treating it with an aqueous composition containing a tetraalkyl silicate such as tetraethyl orthosilicate and a hydrated oxide sol such as silica sol. A method for improving the initial adhesion of the coating film and the long-term stability of the adhesion is described.
日本国特許第3289769号公報Japanese Patent No. 3289769 日本国特表2014-502287号公報Japanese National Table 2014-502287 日本国特表平10-510307号公報Japanese National Table No. 10-510307
 しかしながら、特許文献1や特許文献2に記載の手法は、あくまで金属表面の防食や塗料の密着性の改善を目的とするものである。したがって、形成される皮膜は肉厚となるが、肉厚な皮膜では皮膜自身の機械強度が低く、張力や応力に対して脆くなり、高い接着強度を得ることができない。 However, the methods described in Patent Document 1 and Patent Document 2 are intended only for the purpose of preventing corrosion of metal surfaces and improving the adhesion of paints. Therefore, although the formed film is thick, the mechanical film itself has low mechanical strength and becomes brittle with respect to tension and stress, and high adhesive strength cannot be obtained.
 また、特許文献3に記載の手法では、長期の湿潤劣化試験により接着強度が著しく減少してしまうため、接着耐久性は十分なものとはいえない。 Further, in the method described in Patent Document 3, since the adhesive strength is remarkably reduced by a long-term wet deterioration test, it cannot be said that the adhesion durability is sufficient.
 以上のような問題点を鑑みて、本発明は、高温湿潤環境に曝されても、接着強度が低下し難く、接着耐久性に優れたアルミニウム合金材、接着樹脂層付きアルミニウム合金材、アルミニウム合金材ないし接着樹脂層付きアルミニウム合金材を用いた接合体、及び、アルミニウム合金材の製造方法を提供することを主目的とする。 In view of the problems as described above, the present invention provides an aluminum alloy material, an aluminum alloy material with an adhesive resin layer, and an aluminum alloy that have excellent adhesion durability, even when exposed to a high-temperature and humid environment. It is a main object to provide a joined body using a material or an aluminum alloy material with an adhesive resin layer, and a method for producing the aluminum alloy material.
 本発明者は、前述した課題を解決するために、鋭意実験検討を行った結果、アルミニウム基材表面に、Mg量、Si量及びCu量が特定の範囲内であり、かつFT-IRスペクトルにおいて特定のピークを有する、ケイ素を含むアルミニウムの酸化物からなる皮膜を形成することで、優れた接着耐久性が得られることを見出し、本発明に至った。 As a result of intensive experiments to solve the above-mentioned problems, the present inventor found that the amount of Mg, Si and Cu are within a specific range on the surface of the aluminum substrate, and in the FT-IR spectrum. The present inventors have found that excellent adhesion durability can be obtained by forming a film made of an oxide of aluminum containing silicon having a specific peak.
 即ち、本発明は、アルミニウム合金基材と、前記アルミニウム合金基材の表面の少なくとも一部に形成された、ケイ素を含むアルミニウムの酸化物からなる皮膜を備えるアルミニウム合金材であって、前記皮膜は、フーリエ変換式赤外分光法により入射角75°の平行偏光を入射して得られる皮膜処理前後での差スペクトルにおいて、1550~1650cm-1の波数領域に吸収のピークトップを有し、前記ピークトップにおける吸光度が0.001以上であり、かつ、前記皮膜は、Siを20原子%以上80原子%未満及びMgを0.1原子%以上30原子%未満含有するとともに、Cuが0.6原子%未満に規制されているアルミニウム合金材を提供する。 That is, the present invention is an aluminum alloy material comprising an aluminum alloy base material and a film made of an oxide of aluminum containing silicon and formed on at least a part of the surface of the aluminum alloy base material. The difference spectrum before and after the coating treatment obtained by applying parallel polarized light with an incident angle of 75 ° by Fourier transform infrared spectroscopy has an absorption peak top in the wave number region of 1550 to 1650 cm −1. The absorbance at the top is 0.001 or more, and the coating contains Si at 20 atomic% or more and less than 80 atomic% and Mg at 0.1 atomic% or more and less than 30 atomic%, and Cu is 0.6 atom. An aluminum alloy material regulated to less than% is provided.
 ここで、前記皮膜中のSi量、Mg量、及びCu量は、高周波グロー放電発光分光分析法(GD-OES:Glow Discharge-Optical Emission Spectroscopy)により測定した値である。 Here, the amounts of Si, Mg, and Cu in the film are values measured by a high-frequency glow discharge emission spectroscopy (GD-OES: Glow Discharge-Optical Emission Spectroscopy).
 本発明のアルミニウム合金材においては、前記差スペクトルにおいて、1440~1540cm-1の波数領域に吸収を有さないことが好ましい。
 また、上記アルミニウム合金材は、皮膜に接着樹脂を直接接合して用いられてもよい。
The aluminum alloy material of the present invention preferably has no absorption in the wave number region of 1440 to 1540 cm −1 in the difference spectrum.
The aluminum alloy material may be used by directly bonding an adhesive resin to the film.
 また、本発明は、上記アルミニウム合金材の皮膜上に、接着樹脂層が直接形成されている、接着樹脂層付きアルミニウム合金材をも提供する。 The present invention also provides an aluminum alloy material with an adhesive resin layer in which an adhesive resin layer is directly formed on the film of the aluminum alloy material.
 本発明の接着樹脂層付きアルミニウム合金材においては、接着樹脂層が有機-無機カップリング剤を含んでいることが好ましい。 In the aluminum alloy material with an adhesive resin layer of the present invention, the adhesive resin layer preferably contains an organic-inorganic coupling agent.
 また、本発明の接着樹脂層付きアルミニウム合金材においては、接着樹脂層がエポキシ系樹脂を含んでいることが好ましい。 In the aluminum alloy material with an adhesive resin layer of the present invention, the adhesive resin layer preferably contains an epoxy resin.
 さらに、本発明は、上記アルミニウム合金材と他の部材とを、接着樹脂を介して接合させた接合体をも提供する。 Furthermore, the present invention also provides a joined body obtained by joining the aluminum alloy material and another member via an adhesive resin.
 さらに、本発明は、上記接着樹脂層付きアルミニウム合金材と他の部材とを、接着樹脂層を介して接合させた接合体をも提供する。 Furthermore, the present invention also provides a joined body in which the above-described aluminum alloy material with an adhesive resin layer and another member are joined via an adhesive resin layer.
 さらに、本発明は、アルミニウム合金基材の表面の少なくとも一部に、ケイ素を含むアルミニウムの酸化物からなる皮膜を形成する皮膜形成工程を備えるアルミニウム合金材の製造方法であって、前記皮膜形成工程は、前記アルミニウム合金基材の表面に酸化皮膜を形成させる加熱処理段階と、前記加熱処理段階後のエッチング処理段階及びケイ酸塩処理段階とを含み、前記ケイ酸塩処理段階は前記エッチング処理段階より後あるいは前記エッチング処理段階と同時であり、前記ケイ酸塩処理段階として、ケイ酸塩を0.008質量%以上0.5質量%未満含む水溶液で前記酸化皮膜を処理する、アルミニウム合金材の製造方法をも提供する。 Furthermore, the present invention is a method for producing an aluminum alloy material comprising a film forming step of forming a film made of an oxide of aluminum containing silicon on at least a part of the surface of an aluminum alloy substrate, the film forming step Includes a heat treatment step for forming an oxide film on the surface of the aluminum alloy substrate, and an etching treatment step and a silicate treatment step after the heat treatment step, wherein the silicate treatment step is the etching treatment step. An aluminum alloy material, wherein the oxide film is treated with an aqueous solution containing 0.008% by mass or more and less than 0.5% by mass of silicate as the silicate treatment step after or simultaneously with the etching treatment step. A manufacturing method is also provided.
 本発明のアルミニウム合金材の製造方法においては、前記ケイ酸塩を含む水溶液による処理の後には水洗を行わないことが好ましい。 In the method for producing an aluminum alloy material of the present invention, it is preferable not to perform water washing after the treatment with the aqueous solution containing silicate.
 本発明のアルミニウム合金材の製造方法においては、前記エッチング処理段階におけるエッチング量を700nm未満に制御することが好ましい。 In the method for producing an aluminum alloy material of the present invention, it is preferable to control the etching amount in the etching treatment step to less than 700 nm.
 本発明によれば、高温湿潤環境に曝されても、接着強度が低下し難く、接着耐久性に優れたアルミニウム合金材を実現することができる。 According to the present invention, it is possible to realize an aluminum alloy material that is hardly deteriorated in adhesive strength and is excellent in adhesion durability even when exposed to a high-temperature and humid environment.
図1は、本発明の第1の実施形態に係るアルミニウム合金材の構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a configuration of an aluminum alloy material according to the first embodiment of the present invention. 図2は、図1に示すアルミニウム合金材の製造方法を示すフローチャート図である。FIG. 2 is a flowchart showing a method for manufacturing the aluminum alloy material shown in FIG. 図3は、本発明の第1の実施形態の変形例に係る接着樹脂層付きアルミニウム合金材の構成を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a configuration of an aluminum alloy material with an adhesive resin layer according to a modification of the first embodiment of the present invention. 図4は、図3に示す接着樹脂層付きアルミニウム合金材の製造方法を示すフローチャート図である。FIG. 4 is a flowchart showing a method of manufacturing the aluminum alloy material with an adhesive resin layer shown in FIG. 図5は、本発明の第2の実施形態に係る接合体の構成例を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a configuration example of a joined body according to the second embodiment of the present invention. 図6Aは、本発明の第2の実施形態に係る接合体の他の構成例を模式的に示す断面図である。FIG. 6A is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention. 図6Bは、本発明の第2の実施形態に係る接合体の他の構成例を模式的に示す断面図である。FIG. 6B is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention. 図7は、本発明の第2の実施形態に係る接合体の他の構成例を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention. 図8Aは、本発明の第2の実施形態に係る接合体の他の構成例を模式的に示す断面図である。FIG. 8A is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention. 図8Bは、本発明の第2の実施形態に係る接合体の他の構成例を模式的に示す断面図である。FIG. 8B is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention. 図9Aは凝集破壊率の測定方法を模式的に示す側面図である。FIG. 9A is a side view schematically showing a method for measuring the cohesive failure rate. 図9Bは凝集破壊率の測定方法を模式的に示す平面図である。FIG. 9B is a plan view schematically showing a method for measuring the cohesive failure rate.
 以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. Note that the present invention is not limited to the embodiments described below.
(第1の実施形態)
 まず、本発明の第1の実施形態に係るアルミニウム合金材について説明する。
 本実施形態に係るアルミニウム合金材は、アルミニウム合金基材と、前記アルミニウム合金基材の表面の少なくとも一部に形成された、ケイ素を含むアルミニウムの酸化物からなる皮膜を備えるアルミニウム合金材であって、前記皮膜は、フーリエ変換式赤外分光法により入射角75°の平行偏光を入射して得られる皮膜処理前後での差スペクトルにおいて、1550~1650cm-1の波数領域に吸収のピークトップを有し、前記ピークトップにおける吸光度が0.001以上であり、かつ、前記皮膜は、Siを20原子%以上80原子%未満及びMgを0.1原子%以上30原子%未満含有するとともに、Cuが0.6原子%未満に規制されているアルミニウム合金材である。
(First embodiment)
First, the aluminum alloy material according to the first embodiment of the present invention will be described.
An aluminum alloy material according to the present embodiment is an aluminum alloy material including an aluminum alloy base material and a film made of an oxide of aluminum containing silicon and formed on at least a part of the surface of the aluminum alloy base material. The film has an absorption peak top in the wave number region of 1550 to 1650 cm −1 in the difference spectrum before and after the film treatment obtained by applying parallel polarized light having an incident angle of 75 ° by Fourier transform infrared spectroscopy. And the absorbance at the peak top is 0.001 or more, and the film contains Si at 20 atomic% or more and less than 80 atomic% and Mg at 0.1 atomic% or more and less than 30 atomic%, and Cu is contained. It is an aluminum alloy material regulated to less than 0.6 atomic%.
 図1は本実施形態のアルミニウム合金材の構成を模式的に示す断面図である。図1に示すように、本実施形態のアルミニウム合金材10は、アルミニウム合金基材3(以下、基材3ともいう)の表面の少なくとも一部に皮膜2が形成されている。 FIG. 1 is a cross-sectional view schematically showing the configuration of the aluminum alloy material of the present embodiment. As shown in FIG. 1, the aluminum alloy material 10 of the present embodiment has a film 2 formed on at least a part of the surface of an aluminum alloy base material 3 (hereinafter also referred to as a base material 3).
[基材3]
 基材3は、アルミニウム合金からなる。基材3を形成するアルミニウム合金の種類は、特に限定されるものではなく、加工される部材の用途に応じて、JISに規定される又はJISに近似する種々の非熱処理型若しくは熱処理型のアルミニウム合金から適宜選択して使用することができる。ここで、非熱処理型アルミニウム合金としては、純アルミニウム(1000系)、Al-Mn系合金(3000系)、Al-Si系合金(4000系)及びAl-Mg系合金(5000系)がある。また、熱処理型アルミニウム合金としては、Al-Cu-Mg系合金(2000系)、Al-Mg-Si系合金(6000系)及びAl-Zn-Mg系合金(7000系)がある。
[Substrate 3]
The substrate 3 is made of an aluminum alloy. The type of aluminum alloy that forms the base material 3 is not particularly limited, and various non-heat-treatable or heat-treated aluminums that are defined in JIS or approximate to JIS, depending on the use of the processed member. It can be used by appropriately selecting from alloys. Here, as the non-heat treatment type aluminum alloy, there are pure aluminum (1000 series), Al—Mn series alloy (3000 series), Al—Si series alloy (4000 series), and Al—Mg series alloy (5000 series). Further, as the heat-treatable aluminum alloy, there are an Al—Cu—Mg alloy (2000 series), an Al—Mg—Si alloy (6000 series), and an Al—Zn—Mg alloy (7000 series).
 例えば、本実施形態のアルミニウム合金材10を自動車用部材に用いる場合は、強度の観点から、基材3は0.2%耐力が100MPa以上であることが好ましい。このような特性を満足する基材を形成可能なアルミニウム合金としては、2000系、5000系、6000系及び7000系などのように、マグネシウムを比較的多く含有するものがあり、これらの合金は必要に応じて調質してもよい。また、各種アルミニウム合金の中でも、時効硬化能に優れ、合金元素量が比較的少なくスクラップのリサイクル性や成形性にも優れていることから、6000系アルミニウム合金を用いることが好ましい。 For example, when the aluminum alloy material 10 of the present embodiment is used for an automobile member, the base material 3 preferably has a 0.2% proof stress of 100 MPa or more from the viewpoint of strength. Aluminum alloys that can form a base material that satisfies such characteristics include those containing relatively large amounts of magnesium, such as 2000 series, 5000 series, 6000 series, and 7000 series, and these alloys are necessary. Depending on the condition, it may be tempered. Among various aluminum alloys, it is preferable to use a 6000 series aluminum alloy because it has excellent age-hardening ability, has a relatively small amount of alloy elements, and is excellent in scrap recyclability and formability.
[皮膜2]
 皮膜2は、基材3の表面の少なくとも一部に形成される、ケイ素を含むアルミニウムの酸化物からなる皮膜である。皮膜2は、フーリエ変換式赤外分光法(FT-IR)により入射角75°の平行偏光を入射して得られる皮膜処理前後での差スペクトルにおいて、1550~1650cm-1の波数領域に吸収のピークトップを有し、当該ピークトップにおける吸光度が0.001以上であり、かつ、皮膜2は、Siを20原子%以上80原子%未満及びMgを0.1原子%以上30原子%未満含有するとともに、Cuが0.6原子%未満に規制されている。この皮膜2は、接合強度を高くするとともに、接着耐久性の向上を図るために設けられている。以下、皮膜2に含まれる各成分量の好適な範囲について説明する。なお、図1に示されるアルミニウム合金材では、基材3の一方の表面の全部に皮膜2が形成されているが、本実施形態はこれに限定されるものではない。例えば、基材3の表面の一部のみに皮膜2が形成されていてもよい。また、基材3の両面に皮膜2が形成されていてもよい。
[Coating 2]
The coating 2 is a coating made of an oxide of aluminum containing silicon and formed on at least a part of the surface of the substrate 3. The film 2 absorbs in the wave number region of 1550 to 1650 cm −1 in the difference spectrum before and after the film treatment obtained by incident parallel polarized light with an incident angle of 75 ° by Fourier transform infrared spectroscopy (FT-IR). It has a peak top, the absorbance at the peak top is 0.001 or more, and the coating 2 contains 20 atomic% or more and less than 80 atomic% of Si and 0.1 atomic% or more and less than 30 atomic% of Mg. At the same time, Cu is restricted to less than 0.6 atomic%. The coating 2 is provided to increase the bonding strength and improve the adhesion durability. Hereinafter, the suitable range of each component amount contained in the film 2 will be described. In the aluminum alloy material shown in FIG. 1, the coating 2 is formed on the entire one surface of the substrate 3, but the present embodiment is not limited to this. For example, the film 2 may be formed on only a part of the surface of the substrate 3. Further, the coating 2 may be formed on both surfaces of the base material 3.
<FT-IRスペクトル>
 本実施形態のアルミニウム合金材における皮膜の形成メカニズムを以下に説明する。まず、アルミニウム基材表面の酸化皮膜にケイ酸塩の水溶液を接触させると、より耐食性に優れたアルミノケイ酸塩の複合酸化物が生成する。次に、皮膜表面に残った微量の未反応のケイ酸塩を含む水溶液が、乾燥中に大気中の二酸化炭素と反応し、炭酸水素塩と二酸化ケイ素が生成することで、皮膜が緻密となり、皮膜の耐食性がさらに高められると考えられる。
<FT-IR spectrum>
The formation mechanism of the film in the aluminum alloy material of this embodiment will be described below. First, when an aqueous solution of silicate is brought into contact with an oxide film on the surface of an aluminum substrate, a composite oxide of aluminosilicate having better corrosion resistance is generated. Next, the aqueous solution containing a trace amount of unreacted silicate remaining on the surface of the film reacts with carbon dioxide in the atmosphere during drying, and hydrogen carbonate and silicon dioxide are generated, so that the film becomes dense, It is thought that the corrosion resistance of the film is further improved.
 ここで、炭酸水素塩は、FT-IR分析において、1550~1650cm-1の波数領域に吸収波長を有する。本実施形態のアルミニウム合金材は、皮膜が形成されている表面のFT-IR分析において、皮膜処理前後での差スペクトルの1550~1650cm-1の波数領域に吸収のピークトップを有し、そのピークトップにおける吸光度が0.001以上であり、炭酸水素塩と二酸化ケイ素が十分に生成して緻密な皮膜が形成されており、皮膜の強度に優れるとともに、耐食性にも優れている。1550~1650cm-1の波数領域の吸収のピークトップにおける吸光度は、好ましくは0.005以上であり、より好ましくは0.007以上である。 Here, bicarbonate has an absorption wavelength in the wave number region of 1550 to 1650 cm −1 in the FT-IR analysis. The aluminum alloy material of the present embodiment has an absorption peak top in the wave number region of 1550 to 1650 cm −1 of the difference spectrum before and after the film treatment in the FT-IR analysis of the surface on which the film is formed. Absorbance at the top is 0.001 or more, hydrogen carbonate and silicon dioxide are sufficiently generated to form a dense film, and the film has excellent strength and corrosion resistance. The absorbance at the peak top of absorption in the wave number region of 1550 to 1650 cm −1 is preferably 0.005 or more, more preferably 0.007 or more.
 一方、皮膜上に未反応のケイ酸塩が過剰に存在すると、乾燥後にも皮膜表面にケイ酸塩が残存し、その一部は大気中の二酸化炭素と反応して炭酸塩を生じる。このようにして形成される皮膜は肉厚であり、皮膜表面に炭酸塩やケイ酸塩の微粒子が残存する。そのような皮膜は脆く、また、接着樹脂との密着性にも劣るため、接着耐久性は著しく低下することとなる。 On the other hand, if there is an excess of unreacted silicate on the film, the silicate remains on the surface of the film even after drying, and part of it reacts with carbon dioxide in the atmosphere to produce carbonate. The film thus formed is thick, and carbonate and silicate fine particles remain on the film surface. Such a film is brittle and has poor adhesion to the adhesive resin, so that the adhesion durability is significantly reduced.
 上記のメカニズムは高周波グロー放電発光分光分析(GD-OES分析)からも支持される。すなわち、GD-OES分析によれば、1550~1650cm-1の波数領域に吸収波長を有するアルミニウム合金材は、最表面から基材にかけて、二酸化ケイ素を含むアルミノケイ酸複合酸化皮膜の層を有することが観察される。一方、1440~1540cm-1の波数領域に吸収を有するアルミニウム合金材については、最表面に炭酸塩を含む層が濃化している様子が観察される。 The above mechanism is also supported by high-frequency glow discharge optical emission spectrometry (GD-OES analysis). That is, according to GD-OES analysis, an aluminum alloy material having an absorption wavelength in the wave number region of 1550 to 1650 cm −1 has a layer of an aluminosilicate composite oxide film containing silicon dioxide from the outermost surface to the base material. Observed. On the other hand, regarding the aluminum alloy material having absorption in the wave number region of 1440 to 1540 cm −1 , it is observed that the layer containing carbonate is concentrated on the outermost surface.
 ここで、炭酸塩は、FT-IR分析において、1440~1540cm-1の波数領域に吸収波長を有する。以上の観点から、本実施形態のアルミニウム合金材は、皮膜が形成されている表面のFT-IR分析において、皮膜処理前後での差スペクトルの1440~1540cm-1の波数領域に吸収を有さないことが好ましい。すなわち、本実施形態のアルミニウム合金材における皮膜は、FT-IR分析による皮膜処理前後での差スペクトルにおいて、1440~1540cm-1の波数領域に吸収を有さない複合酸化物からなることが好ましい。なお、本明細書において「1440~1540cm-1の波数領域に吸収を有さない」とは、1440~1540cm-1の波数領域に吸光度が測定されないことを意味する。
 なお、皮膜処理前後での差スペクトルとは、皮膜が形成されたアルミニウム合金材の、皮膜が形成されている表面の吸収スペクトルと、皮膜が形成されていないアルミニウム合金基材の吸収スペクトルとの間の差である。
Here, the carbonate has an absorption wavelength in the wave number region of 1440 to 1540 cm −1 in the FT-IR analysis. From the above viewpoint, the aluminum alloy material of the present embodiment has no absorption in the wave number region of 1440 to 1540 cm −1 of the difference spectrum before and after the film treatment in the FT-IR analysis of the surface on which the film is formed. It is preferable. That is, the film of the aluminum alloy material of the present embodiment is preferably made of a complex oxide having no absorption in the wave number region of 1440 to 1540 cm −1 in the difference spectrum before and after the film processing by FT-IR analysis. In the present specification, “having no absorption in the wave number region of 1440 to 1540 cm −1 ” means that no absorbance is measured in the wave number region of 1440 to 1540 cm −1 .
The difference spectrum before and after the film treatment is the difference between the absorption spectrum of the surface of the aluminum alloy material on which the film is formed and the absorption spectrum of the aluminum alloy substrate on which the film is not formed. Is the difference.
<Mg含有量:0.1原子%以上30原子%未満>
 アルミニウム合金材の基材を構成するアルミニウム合金には、通常、合金成分としてマグネシウム(Mg)が含まれており、このような基材3の表面にアルミニウムとマグネシウムの複合酸化物である酸化皮膜を形成すると、表面にマグネシウムが濃化した状態で存在することとなる。このため、酸化皮膜上に接着樹脂を形成すると、表面のマグネシウムが接着界面の弱境界層となり、初期の接合強度が低下する。
<Mg content: 0.1 atomic% or more and less than 30 atomic%>
The aluminum alloy constituting the base material of the aluminum alloy material usually contains magnesium (Mg) as an alloy component, and an oxide film that is a composite oxide of aluminum and magnesium is formed on the surface of the base material 3. When formed, magnesium will be present in a concentrated state on the surface. For this reason, when an adhesive resin is formed on the oxide film, the surface magnesium becomes a weak boundary layer of the adhesive interface, and the initial bonding strength is lowered.
 また、水分、酸素などが浸透してくる高温湿潤環境においては、接着樹脂との界面の水和や基材の腐食の原因となり、アルミニウム合金材の接合強度を低下させる。具体的には、皮膜中のMg含有量が30原子%以上になると、アルミニウム合金材の接合強度が低下する傾向がある。そこで、本実施形態のアルミニウム合金材10では、皮膜2におけるMg含有量を30原子%未満に規制する。これにより、接着耐久性を向上することができる。皮膜2のMg含有量は、接着耐久性向上の観点から、25原子%未満が好ましく、20原子%未満がより好ましく、さらに好ましくは10原子%未満である。 Also, in a high-temperature and humid environment where moisture, oxygen, etc. penetrate, it causes hydration of the interface with the adhesive resin and corrosion of the base material, thereby reducing the bonding strength of the aluminum alloy material. Specifically, when the Mg content in the film is 30 atomic% or more, the bonding strength of the aluminum alloy material tends to decrease. Therefore, in the aluminum alloy material 10 of the present embodiment, the Mg content in the coating 2 is restricted to less than 30 atomic%. Thereby, adhesion durability can be improved. The Mg content of the film 2 is preferably less than 25 atomic%, more preferably less than 20 atomic%, and still more preferably less than 10 atomic%, from the viewpoint of improving adhesion durability.
 一方、皮膜2のMg含有量の下限値は、経済性の観点から0.1原子%以上とする。なお、ここでいう皮膜2中のMg含有量は、高周波グロー放電発光分光分析法(GD-OES)により測定することができる。 On the other hand, the lower limit of the Mg content of the film 2 is set to 0.1 atomic% or more from the viewpoint of economy. Here, the Mg content in the film 2 can be measured by high-frequency glow discharge optical emission spectrometry (GD-OES).
 皮膜2のMg含有量を調整する方法は、特に限定されるものではないが、例えば、硝酸、硫酸及びフッ酸などの酸若しくは混酸等の酸性溶液、又は水酸化カリウム、水酸化ナトリウム、ケイ酸塩及び炭酸塩などを含むアルカリ溶液で表面処理する方法を適用することができる。この方法は、マグネシウムを酸又はアルカリ溶液に溶解させることにより、皮膜2のMg含有量を調整するものであり、処理時間、温度、表面処理液の濃度やpHを調整することで、皮膜2中のMg量を前述した範囲にすることができる。なお、不純物元素程度にMgが含有されている場合であっても、調質で高温の熱処理が行われるとMgが皮膜2中に濃化する場合があり、酸やアルカリでの表面処理による調整が適宜必要である。また、表面処理の薬液中にMgイオンを含有させて調整することも可能である。 The method for adjusting the Mg content of the film 2 is not particularly limited. For example, an acid solution such as nitric acid, sulfuric acid and hydrofluoric acid, or an acidic solution such as mixed acid, or potassium hydroxide, sodium hydroxide, silicic acid. A method of performing a surface treatment with an alkaline solution containing a salt and carbonate can be applied. This method adjusts the Mg content of the film 2 by dissolving magnesium in an acid or alkali solution. By adjusting the treatment time, temperature, concentration of the surface treatment solution and pH, the film 2 The amount of Mg can be in the range described above. Even if Mg is contained to the extent of an impurity element, Mg may concentrate in the coating 2 when heat treatment is performed at high temperature, and adjustment by surface treatment with acid or alkali is possible. Is necessary as appropriate. It is also possible to adjust the surface treatment chemical solution by containing Mg ions.
<Si含有量:20原子%以上80原子%未満>
 ケイ素は、皮膜2の耐食性を向上させ湿潤環境下で安定化させる効果があるため、皮膜2に珪素を含有させることにより、接合強度の低下を抑制することが可能となる。
<Si content: 20 atomic% or more and less than 80 atomic%>
Since silicon has the effect of improving the corrosion resistance of the coating 2 and stabilizing it in a wet environment, it is possible to suppress a decrease in bonding strength by containing silicon in the coating 2.
 ただし、皮膜2におけるSi含有量が20原子%未満の場合、前述した効果が小さくなる傾向があり、また、Si含有量が80原子%以上であると、皮膜が肉厚で脆弱となり、その結果接着強度が大きく低下する傾向がある。また、スポット溶接性や化成処理の均一性が低下する傾向にある。そこで、本実施形態のアルミニウム合金材10では、皮膜2におけるSi含有量を、20原子%以上80原子%未満とする。 However, when the Si content in the film 2 is less than 20 atomic%, the above-described effect tends to be small, and when the Si content is 80 atomic% or more, the film becomes thick and brittle, and as a result There exists a tendency for adhesive strength to fall large. Further, the spot weldability and the uniformity of the chemical conversion treatment tend to decrease. Therefore, in the aluminum alloy material 10 of the present embodiment, the Si content in the coating 2 is set to 20 atom% or more and less than 80 atom%.
 接着耐久性向上の観点から、皮膜2におけるSi含有量は、25原子%以上であることが好ましく、30原子%以上であることがより好ましい。また、接着強度の低下防止、及びスポット溶接性や化成処理の均一性の観点からは、皮膜2におけるSi含有量は、75原子%未満であることが好ましく、70原子%未満であることがより好ましい。 From the viewpoint of improving adhesion durability, the Si content in the film 2 is preferably 25 atomic% or more, and more preferably 30 atomic% or more. Further, from the viewpoint of preventing the decrease in adhesive strength and the uniformity of spot weldability and chemical conversion treatment, the Si content in the coating 2 is preferably less than 75 atomic%, and more preferably less than 70 atomic%. preferable.
 皮膜2中のSi含有量は、例えば、Mg量を調整する方法として記載したものと同様に、酸やアルカリによる表面処理を行うことによって調整される。また、上述した、ケイ酸ナトリウムやケイ酸カリウムなどのケイ酸塩を含む水溶液による処理の条件によって調整される。 The Si content in the film 2 is adjusted, for example, by performing a surface treatment with an acid or an alkali in the same manner as described as a method for adjusting the amount of Mg. Moreover, it adjusts with the conditions of the process by the aqueous solution containing silicates, such as sodium silicate and potassium silicate mentioned above.
<Cu含有量:0.6原子%未満>
 皮膜2を形成する際に基材3に対して脱脂工程や酸洗工程などにより過剰なエッチングを行うと、基材3に含まれるCuが表面に濃化し、皮膜2のCu含有量が増加する。皮膜2の表面にCuが存在すると、皮膜2の表面上に直接接合される接着樹脂との密着力が低下する。
<Cu content: less than 0.6 atomic%>
When excessive etching is performed on the base material 3 by a degreasing process, a pickling process, or the like when forming the film 2, the Cu contained in the base material 3 is concentrated on the surface, and the Cu content of the film 2 is increased. . When Cu is present on the surface of the film 2, the adhesion with the adhesive resin that is directly bonded onto the surface of the film 2 is reduced.
 そこで、本実施形態のアルミニウム合金材では、皮膜2中のCu含有量を0.6原子%未満に規制する。なお、皮膜2におけるCu量は、接着樹脂との密着性向上の観点から、0.5原子%未満であることが好ましい。 Therefore, in the aluminum alloy material of the present embodiment, the Cu content in the coating 2 is restricted to less than 0.6 atomic%. In addition, it is preferable that the amount of Cu in the film | membrane 2 is less than 0.5 atomic% from a viewpoint of an adhesive improvement with adhesive resin.
 皮膜2中のCu含有量の制御には、前処理によるエッチング量を調整する必要があるが、エッチング方法は限定されるものではなく、例えば、Mgの数値限定で記載したのと同様の処理方法を適用することができる。すなわち、例えば、酸又はアルカリ溶液による処理によりエッチングを行うことができる。 In order to control the Cu content in the film 2, it is necessary to adjust the etching amount by the pretreatment, but the etching method is not limited. For example, the same processing method as described in the numerical value limitation of Mg Can be applied. That is, for example, etching can be performed by treatment with an acid or alkali solution.
 ここで、皮膜2中のMg量、Si量、及びCu量等の元素濃度は、例えば、高周波グロー放電発光分光分析法(GD-OES:Glow Discharge-Optical Emission Spectroscopy)により測定することができる。本実施形態においては、GD-OESにより、基材3の厚さ方向に、酸素(O)、窒素(N)及び炭素(C)を除く各元素、具体的にはアルミニウム(Al)、マグネシウム(Mg)、ナトリウム(Na)、カルシウム(Ca)、銅(Cu)、鉄(Fe)及びチタン(Ti)などの金属元素並びに珪素(Si)などの元素を測定し、その結果からMg、Si、Cu、Al等の含有量を百分率で算出した値を各元素の量とする。 Here, the element concentration such as Mg amount, Si amount, and Cu amount in the film 2 can be measured by, for example, a high-frequency glow discharge emission spectroscopic analysis (GD-OES: Glow Discharge-Optical Emission Spectroscopy). In the present embodiment, each element except oxygen (O), nitrogen (N), and carbon (C), specifically aluminum (Al), magnesium (in the thickness direction of the base material 3 by GD-OES. Mg), sodium (Na), calcium (Ca), copper (Cu), iron (Fe), titanium (Ti) and other metal elements and silicon (Si) and other elements are measured. A value obtained by calculating the content of Cu, Al, etc. as a percentage is defined as the amount of each element.
<膜厚>
 皮膜2の膜厚は、1~30nmであることが好ましい。皮膜2の膜厚が1nm未満の場合、基材3を作製する際に使用される防錆油やアルミニウム合金材10から接合体又は自動車用部材を製造する際に使用されるプレス油中のエステル成分の吸着が抑制される。このため、皮膜2を設けなくても、アルミニウム合金材10の脱脂性、化成処理性及び接着耐久性を確保することができる。しかしながら、皮膜2の膜厚を1nm未満に制御するには、過度の酸洗浄などが必要となるため、生産性が劣り、実用性が低下しやすい。また、アルカリ脱脂や酸による過剰なエッチングは基材3に含有されるCuが表面濃化する原因となり、接着耐久性の低下の原因となる。
<Film thickness>
The thickness of the film 2 is preferably 1 to 30 nm. When the film thickness of the film 2 is less than 1 nm, the ester in the press oil used when producing a joined body or an automobile member from the rust preventive oil or the aluminum alloy material 10 used when the base material 3 is produced. Adsorption of components is suppressed. For this reason, even if it does not provide the membrane | film | coat 2, the degreasing | defatting property, chemical conversion treatment property, and adhesion durability of the aluminum alloy material 10 are securable. However, in order to control the film thickness of the film 2 to be less than 1 nm, excessive acid cleaning or the like is required, so that productivity is inferior and practicality tends to be lowered. Moreover, excessive etching by alkali degreasing or acid causes the Cu contained in the base material 3 to be concentrated on the surface, and causes a decrease in adhesion durability.
 一方、皮膜2の膜厚が30nmを超えると、皮膜量が過剰となり、表面に凹凸ができやすくなる。そして、皮膜2の表面に凹凸が生じると、例えば自動車用途において塗装工程の前に行う化成処理の際に化成斑が生じやすくなり、化成性の低下を招く。なお、皮膜2の膜厚は、化成性及び生産性などの観点から、2nm以上20nm未満であることがより好ましい。 On the other hand, when the film thickness of the film 2 exceeds 30 nm, the amount of the film becomes excessive, and irregularities are easily formed on the surface. When the surface of the coating 2 is uneven, for example, chemical conversion spots are likely to occur during the chemical conversion treatment performed before the coating process in automobile applications, leading to a decrease in chemical conversion. The film thickness of the film 2 is more preferably 2 nm or more and less than 20 nm from the viewpoints of chemical conversion and productivity.
[製造方法]
 次に、本実施形態のアルミニウム合金材の製造方法について説明する。図2は、図1に示される本実施形態のアルミニウム合金材10の製造方法を示すフローチャート図である。図2に示すように、本実施形態のアルミニウム合金材10を製造する際は、基材作製工程S1と、皮膜形成工程S2を行う。以下、各工程について説明する。
[Production method]
Next, the manufacturing method of the aluminum alloy material of this embodiment is demonstrated. FIG. 2 is a flowchart showing a method for manufacturing the aluminum alloy material 10 of the present embodiment shown in FIG. As shown in FIG. 2, when manufacturing the aluminum alloy material 10 of this embodiment, base material production process S1 and film formation process S2 are performed. Hereinafter, each step will be described.
<ステップS1:基材作製工程>
 基材の形状は特に限定されるものではなく、アルミニウム合金材を用いて作製する部材の形状等に応じて、板状の他、鋳造材、鍛造材、押し出し材(例えば、中空棒状等)等としてとりうる任意の形状であってもよい。基材作製工程S1では、例として板状の基材(基板)を作製する場合には、例えば下記の手順で、基板を作製する。先ず、所定の組成を有するアルミニウム合金を、連続鋳造により溶解し、鋳造して鋳塊を作製する(溶解鋳造工程)。次に、作製した鋳塊に均質化熱処理を施す(均質化熱処理工程)。その後、均質化熱処理された鋳塊に、熱間圧延を施して熱延板を作製する(熱間圧延工程)。そして、この熱延板に300~580℃で荒焼鈍又は中間焼鈍を行い、最終冷間圧延率5%以上の冷間圧延を少なくとも1回施して、所定の板厚の冷延板(基板)を得る(冷間圧延工程)。
<Step S1: Base material production process>
The shape of the substrate is not particularly limited, and depending on the shape of a member produced using an aluminum alloy material, in addition to a plate shape, a cast material, a forged material, an extruded material (for example, a hollow bar shape), etc. Any shape that can be taken as In the base material manufacturing step S1, when a plate-shaped base material (substrate) is manufactured as an example, the substrate is manufactured by the following procedure, for example. First, an aluminum alloy having a predetermined composition is melted by continuous casting and cast to produce an ingot (melting casting process). Next, the produced ingot is subjected to homogenization heat treatment (homogenization heat treatment step). Thereafter, the ingot subjected to homogenization heat treatment is hot-rolled to produce a hot-rolled sheet (hot-rolling step). Then, the hot-rolled sheet is subjected to rough annealing or intermediate annealing at 300 to 580 ° C., and cold rolling with a final cold rolling rate of 5% or more is performed at least once, so that a cold-rolled sheet (substrate) having a predetermined thickness is obtained. (Cold rolling process).
 冷間圧延工程では、荒焼鈍又は中間焼鈍の温度を300℃以上とすることが好ましく、これにより、成形性向上の効果がより発揮される。また、荒焼鈍又は中間焼鈍の温度は、580℃以下とすることが好ましく、これにより、バーニングの発生による成形性の低下を抑制しやすくなる。一方、最終冷間圧延率は、5%以上とすることが好ましく、これにより、成形性向上の効果がより発揮される。なお、均質化熱処理及び熱間圧延の条件は、特に限定されるものではなく、熱延板を通常得る場合の条件で行うことができる。また、中間焼鈍は行わなくてもよい。 In the cold rolling process, it is preferable to set the temperature of rough annealing or intermediate annealing to 300 ° C. or higher, and thereby the effect of improving formability is more exhibited. Moreover, it is preferable that the temperature of rough annealing or intermediate annealing shall be 580 degrees C or less, and this becomes easy to suppress the fall of the moldability by generation | occurrence | production of burning. On the other hand, the final cold rolling rate is preferably 5% or more, and thereby, the effect of improving the formability is more exhibited. In addition, the conditions of homogenization heat processing and hot rolling are not specifically limited, It can carry out on the conditions in the case of obtaining a hot rolled sheet normally. Further, intermediate annealing may not be performed.
<ステップS2:皮膜形成工程>
 皮膜形成工程(ステップS2)では、ステップS1の基材作製工程で作製された基材の表面の少なくとも一部(すなわち、一部又は全部)に、皮膜を形成する。本実施形態において、皮膜形成工程(ステップS2)は、具体的には、例えば、基材3を加熱処理して酸化皮膜を形成する加熱処理段階と、当該加熱処理段階後のエッチング処理段階及びケイ酸塩処理段階とを備える。ここで、ケイ酸塩処理段階としてケイ酸塩を含む水溶液で処理する。これにより、皮膜中のMg量、Si量、及びCu量が特定の範囲になるように、また、FT-IRスペクトルにおいて特定のピークを有するように、皮膜を形成する。
<Step S2: Film formation process>
In the film forming process (step S2), a film is formed on at least a part (that is, part or all) of the surface of the base material manufactured in the base material manufacturing process in step S1. In the present embodiment, specifically, the film formation step (step S2) includes, for example, a heat treatment stage in which the base material 3 is heat-treated to form an oxide film, an etching treatment stage after the heat treatment stage, and a silica film. An acid treatment stage. Here, as a silicate treatment step, treatment is performed with an aqueous solution containing silicate. Thereby, the film is formed so that the Mg amount, Si amount, and Cu amount in the film are in a specific range and have a specific peak in the FT-IR spectrum.
 加熱処理段階における加熱処理としては、基材3を、例えば400~580℃の温度に加熱して、基材3の表面に酸化皮膜を形成する。また、加熱処理は、アルミニウム合金材10の強度を調整する効果もある。なお、ここで行う加熱処理は、基材3が熱処理型アルミニウム合金で形成されている場合には溶体化処理であり、基材3が非熱処理型アルミニウム合金で形成されている場合には、焼鈍(最終焼鈍)における加熱処理である。 As the heat treatment in the heat treatment stage, the base material 3 is heated to a temperature of 400 to 580 ° C., for example, to form an oxide film on the surface of the base material 3. Further, the heat treatment also has an effect of adjusting the strength of the aluminum alloy material 10. The heat treatment performed here is a solution treatment when the substrate 3 is formed of a heat-treatable aluminum alloy, and is annealed when the substrate 3 is formed of a non-heat-treatable aluminum alloy. It is heat processing in (final annealing).
 この加熱処理は、強度向上の観点から、加熱速度100℃/分以上の急速加熱とすることが好ましい。また、加熱温度を400℃以上に設定して急速加熱することで、アルミニウム合金材10の強度や、そのアルミニウム合金材10の塗装後加熱(ベーキング)した後の強度を、より高めることができる。一方、加熱温度を580℃以下に設定して急速加熱することにより、バーニングの発生による成形性の低下を抑制することができる。更に、強度を向上させる観点からは、加熱処理における保持時間は3~30秒とすることが好ましい。このように基材3を、加熱温度400~580℃で加熱すると、基材3の表面に、例えば、膜厚が1~30nmの酸化皮膜が形成される。なお、加熱処理の前には、必要に応じてアルカリ脱脂等を行ってもよい。 This heat treatment is preferably rapid heating at a heating rate of 100 ° C./min or more from the viewpoint of improving the strength. Moreover, the strength of the aluminum alloy material 10 and the strength after heating (baking) of the aluminum alloy material 10 can be further increased by setting the heating temperature to 400 ° C. or higher and performing rapid heating. On the other hand, by setting the heating temperature to 580 ° C. or less and performing rapid heating, it is possible to suppress a decrease in formability due to the occurrence of burning. Furthermore, from the viewpoint of improving strength, the holding time in the heat treatment is preferably 3 to 30 seconds. When the substrate 3 is heated at a heating temperature of 400 to 580 ° C. in this way, an oxide film having a film thickness of 1 to 30 nm, for example, is formed on the surface of the substrate 3. In addition, you may perform alkali degreasing | defatting etc. as needed before heat processing.
 加熱処理後のエッチング処理段階においては、基材3上に形成された酸化皮膜の表面の一部又は全部に対して、酸性溶液による処理(酸洗)及びアルカリ溶液による処理(アルカリ洗浄、アルカリ脱脂)のうちの少なくとも1つを行う。酸洗の際に用いる薬液(酸洗剤)は、特に限定されるものではないが、例えば、硫酸、硝酸及びフッ酸から選ばれる群からなる1種以上を含む溶液を用いることができる。また、酸洗剤には、脱脂性を高めるために界面活性剤を含有させてもよい。また、酸洗の条件は、基材3の合金組成や酸化皮膜の厚み等を考慮して適宜設定することができ、特に限定されないが、たとえば、pHが2以下、処理温度10~80℃、処理時間1~120秒の条件を適用することができる。 In the etching treatment stage after the heat treatment, treatment with an acidic solution (pickling) and treatment with an alkaline solution (alkali washing, alkaline degreasing) are performed on part or all of the surface of the oxide film formed on the substrate 3. ) At least one of Although the chemical solution (acid detergent) used in the pickling is not particularly limited, for example, a solution containing one or more selected from the group selected from sulfuric acid, nitric acid and hydrofluoric acid can be used. The acid detergent may contain a surfactant in order to improve the degreasing property. The pickling conditions can be appropriately set in consideration of the alloy composition of the base material 3, the thickness of the oxide film, etc., and are not particularly limited. For example, the pH is 2 or less, the treatment temperature is 10 to 80 ° C., Conditions with a processing time of 1 to 120 seconds can be applied.
 また、アルカリ洗浄(アルカリ脱脂)の際に用いる薬液も、特に限定されるものではないが、例えば、水酸化ナトリウム及び水酸化カリウムから選ばれる群からなる1種以上を含む溶液を用いることができる。また、アルカリ溶液による処理の条件は、基材3の合金組成や酸化皮膜の厚み等を考慮して適宜設定することができ、特に限定されないが、例えば、pHが10以上、処理温度10~80℃、処理時間1~120秒の条件を適用することができる。 Also, the chemical solution used for alkali cleaning (alkali degreasing) is not particularly limited, and for example, a solution containing at least one selected from the group selected from sodium hydroxide and potassium hydroxide can be used. . Further, the conditions for the treatment with the alkaline solution can be appropriately set in consideration of the alloy composition of the substrate 3, the thickness of the oxide film, and the like, and are not particularly limited. For example, the pH is 10 or more, and the treatment temperature is 10 to 80. Conditions of ° C and a treatment time of 1 to 120 seconds can be applied.
 なお、アルカリ洗浄を行う場合においては、アルカリ洗浄よりも後に、酸洗を行うことが好ましい。この理由は以下のとおりである。すなわち、アルカリ洗浄では、基材表面のMgを除去することが難しく、基材表面のMgの存在によりエッチング量を増やす必要がある。しかしながら、エッチング量が増えるとCuの濃化の原因となることから、酸洗でMgを除去する必要があるためである。 In addition, when performing alkali cleaning, it is preferable to perform pickling after alkali cleaning. The reason for this is as follows. That is, with alkali cleaning, it is difficult to remove Mg on the substrate surface, and the amount of etching needs to be increased due to the presence of Mg on the substrate surface. However, increasing the etching amount causes the concentration of Cu, so it is necessary to remove Mg by pickling.
 また、各薬液での洗浄後にはリンスを行うことが好ましい。リンスの方法は特に限定されないが、例えば、スプレー、浸漬等が挙げられる。また、リンスに用いられる洗浄液としては、例えば、工業水、純水、イオン交換水等が挙げられる。 In addition, it is preferable to perform rinsing after washing with each chemical solution. The rinsing method is not particularly limited, and examples thereof include spraying and dipping. Examples of the cleaning liquid used for rinsing include industrial water, pure water, and ion exchange water.
 なお、銅を含むアルミニウム合金の過多のエッチングは、表面において銅の濃化を引き起し、劣化環境である高温湿潤環境において、接着樹脂の劣化の原因となる。したがって、酸化皮膜のエッチング量が、好ましくは700nm未満、より好ましくは500nm未満となるように処理条件を調整する。 It should be noted that excessive etching of an aluminum alloy containing copper causes copper concentration on the surface and causes deterioration of the adhesive resin in a high temperature and humid environment, which is a deteriorated environment. Accordingly, the processing conditions are adjusted so that the etching amount of the oxide film is preferably less than 700 nm, more preferably less than 500 nm.
 ここで、本願明細書中におけるエッチング処理段階におけるエッチング量とは、酸化皮膜や酸化皮膜を含む基材の溶解量であり、エッチング処理前後の重量の減少量を測定し、それを厚み(膜厚)として見積もることができる。なお、重量の減少量から膜厚への換算は、便宜上、アルミニウムの密度:2.7g/cmを用い、アルミニウムの厚みとして計算することにより行うものとする。また、酸化皮膜に加えて、酸化皮膜下の基材の一部もエッチングされる場合には、酸化皮膜と基材のエッチング量の合計を、上記エッチング量とする。 Here, the etching amount in the etching treatment stage in the present specification is the dissolution amount of the oxide film or the base material including the oxide film, and the decrease in weight before and after the etching treatment is measured, and the thickness (film thickness) is measured. ). In addition, the conversion from the weight reduction amount to the film thickness is performed by calculating the aluminum thickness using the aluminum density of 2.7 g / cm 3 for convenience. In addition to the oxide film, when a part of the base material under the oxide film is also etched, the total etching amount of the oxide film and the base material is defined as the etching amount.
 また、ケイ酸塩処理段階として、酸化皮膜を有する基材を、ケイ酸塩を含む水溶液(ケイ酸塩水溶液)で処理する。ここで、ケイ酸塩水溶液による処理には、ケイ酸塩水溶液の塗布の他、ケイ酸塩水溶液中への浸漬等も包含される。ケイ酸塩水溶液による処理を行うと、炭酸水素塩と二酸化ケイ素が生成し、酸化皮膜がより緻密な皮膜2となり、皮膜自体の強度が向上するとともに、耐食性も向上する。なお、ケイ酸塩処理段階は、皮膜形成工程の実質的な膜形成の最終段階として行われるものであり、ケイ酸塩処理の後に酸洗は行わない。ただし、ケイ酸塩水溶液による処理の後の乾燥は、当該ケイ酸塩処理段階に含まれるものとする。 Also, as a silicate treatment step, a substrate having an oxide film is treated with an aqueous solution containing silicate (silicate aqueous solution). Here, the treatment with the silicate aqueous solution includes not only the application of the silicate aqueous solution but also the immersion in the silicate aqueous solution. When the treatment with the silicate aqueous solution is performed, hydrogen carbonate and silicon dioxide are generated, and the oxide film becomes a denser film 2, which improves the strength of the film itself and also improves the corrosion resistance. Note that the silicate treatment stage is performed as the final stage of film formation in the film formation process, and no pickling is performed after the silicate treatment. However, drying after treatment with an aqueous silicate solution is included in the silicate treatment step.
 ここで、水溶液のpHが7よりも低いとケイ酸塩が沈殿するため、アルミニウムとケイ素が反応することができなくなる。したがって、ケイ酸塩水溶液のpHは7以上とする必要があり、好ましくは8以上であり、より好ましくは9以上である。また、ケイ酸塩水溶液のpHの上限は特に限定されるものではないが、溶液の取り扱い易さや安全性の観点からは、例えば14以下であり、好ましくは13以下である。なお、ケイ酸塩水溶液のpHは、例えば水酸化ナトリウムや炭酸ナトリウム、アンモニアなどの塩基を添加すること等により、適宜調整することができる。 Here, when the pH of the aqueous solution is lower than 7, silicate precipitates, so that aluminum and silicon cannot react. Accordingly, the pH of the silicate aqueous solution needs to be 7 or more, preferably 8 or more, and more preferably 9 or more. Moreover, although the upper limit of pH of silicate aqueous solution is not specifically limited, From the viewpoint of the ease of handling and safety | security of a solution, it is 14 or less, for example, Preferably it is 13 or less. The pH of the silicate aqueous solution can be appropriately adjusted by adding a base such as sodium hydroxide, sodium carbonate, or ammonia.
 酸化皮膜に塗布するケイ酸塩水溶液中のケイ酸塩の濃度は、0.008質量%以上0.5質量%未満であることが好ましい。ケイ酸塩水溶液中のケイ酸塩の濃度が0.008質量%以上であると、乾燥により炭酸水素塩と二酸化ケイ素が十分に生成されるため、皮膜が緻密となり、強度と耐食性に優れた皮膜を形成することができる。同様の観点から、ケイ酸塩水溶液中のケイ酸塩の濃度は、より好ましくは0.02質量%以上であり、さらに好ましくは0.06質量%以上である。一方、ケイ酸塩水溶液中のケイ酸塩の濃度が過度に高いと、乾燥後にも皮膜表面にケイ酸塩が残存し、その一部が大気中の二酸化炭素と反応して炭酸塩を生じるおそれがある。この場合、形成される皮膜は肉厚となり、また、皮膜表面に炭酸塩やケイ酸塩の微粒子が残存することとなる。その結果、形成される皮膜は脆く、また、接着樹脂との密着性にも劣り、接着耐久性が著しく低下するおそれがある。
 したがって、これを防止する観点から、ケイ酸塩水溶液中のケイ酸塩の濃度は、0.5質量%未満とすることが好ましく、より好ましくは0.3質量%未満であり、さらに好ましくは0.2質量%未満である。
It is preferable that the density | concentration of the silicate in the silicate aqueous solution apply | coated to an oxide film is 0.008 mass% or more and less than 0.5 mass%. When the concentration of the silicate in the silicate aqueous solution is 0.008% by mass or more, since the hydrogen carbonate and silicon dioxide are sufficiently generated by drying, the film becomes dense and the film has excellent strength and corrosion resistance. Can be formed. From the same viewpoint, the silicate concentration in the silicate aqueous solution is more preferably 0.02% by mass or more, and further preferably 0.06% by mass or more. On the other hand, if the silicate concentration in the silicate aqueous solution is excessively high, silicate remains on the surface of the film even after drying, and some of it may react with carbon dioxide in the atmosphere to produce carbonate. There is. In this case, the formed film becomes thick, and fine particles of carbonate or silicate remain on the surface of the film. As a result, the formed film is fragile and has poor adhesion to the adhesive resin, which may significantly reduce the adhesion durability.
Therefore, from the viewpoint of preventing this, the silicate concentration in the silicate aqueous solution is preferably less than 0.5% by mass, more preferably less than 0.3% by mass, and still more preferably 0%. Less than 2% by mass.
 ケイ酸塩水溶液に含まれるケイ酸塩の種類は特に限定されないが、例えば、塩基性のケイ酸塩としては、リチウム、ナトリウム、カリウム等のアルカリ金属のケイ酸塩や、アンモニウムケイ酸塩などが挙げられる。ここで、ケイ酸塩としては、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 リチウムケイ酸塩としては、例えば、ケイ酸リチウム等が挙げられる。
 ナトリウムケイ酸塩(mNaO・nSiOと表記でき、以下においてn/mをモル比で表す)としては、例えば、結晶質のオルト珪酸ナトリウム(n/m:約0.5前後)、メタ珪酸ナトリウム(n/m:約1前後)や層状結晶の珪酸ナトリウム(n/m:約2~3程度の範囲)、または非晶質の珪酸ナトリウム、または液体の水ガラス(JISの1号、2号、3号)等が挙げられる。
 カリウムケイ酸塩としては、例えば、ケイ酸カリウム等が挙げられる。
The type of silicate contained in the silicate aqueous solution is not particularly limited. For example, basic silicates include silicates of alkali metals such as lithium, sodium, and potassium, and ammonium silicates. Can be mentioned. Here, as a silicate, only 1 type may be used independently and may be used in combination of 2 or more type.
Examples of the lithium silicate include lithium silicate.
Examples of sodium silicate (mNa 2 O · nSiO 2 can be expressed as n / m in a molar ratio below) include, for example, crystalline sodium orthosilicate (n / m: about 0.5), meta Sodium silicate (n / m: about 1), layered crystal sodium silicate (n / m: in the range of about 2 to 3), amorphous sodium silicate, or liquid water glass (JIS No. 1, 2 and 3).
As potassium silicate, potassium silicate etc. are mentioned, for example.
 ケイ酸塩水溶液の塗布方法としては、浸漬処理、スプレー、ロールコート、バーコート、静電塗布等が挙げられる。 Examples of the application method of the silicate aqueous solution include immersion treatment, spraying, roll coating, bar coating, electrostatic coating and the like.
 また、酸化皮膜をケイ酸塩水溶液で処理した後には、水洗(リンス)を行わないことが好ましい。水洗(リンス)を行うと、皮膜の表面に残存する未反応のケイ酸塩水溶液が除去される結果、乾燥後にも炭酸水素塩と二酸化ケイ素が十分に生成されず、緻密な皮膜が得られなくなるおそれがある。 Also, it is preferable not to perform rinsing after the oxide film is treated with the silicate aqueous solution. Washing with water (rinse) removes the unreacted silicate aqueous solution remaining on the surface of the film. As a result, hydrogen carbonate and silicon dioxide are not sufficiently formed even after drying, and a dense film cannot be obtained. There is a fear.
 ケイ酸塩水溶液による処理後には、ケイ酸塩水溶液を乾燥させる。乾燥温度は、好ましくは70℃以上、より好ましくは80℃以上、更に好ましくは90℃以上である。また、乾燥温度が高すぎると、アルミニウム合金の特性に影響を及ぼすため、当該乾燥温度は、好ましくは220℃以下、より好ましくは200℃以下、更に好ましくは190℃以下である。また、乾燥時間は、乾燥温度にもよるが、好ましくは2秒以上であり、より好ましくは5秒以上であり、さらに好ましくは10秒以上である。また、当該乾燥時間は、好ましくは20分以下、より好ましくは5分以下、さらに好ましくは2分以下である。 After the treatment with the silicate aqueous solution, the silicate aqueous solution is dried. The drying temperature is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and still more preferably 90 ° C. or higher. In addition, if the drying temperature is too high, the characteristics of the aluminum alloy are affected. Therefore, the drying temperature is preferably 220 ° C. or lower, more preferably 200 ° C. or lower, and further preferably 190 ° C. or lower. The drying time depends on the drying temperature, but is preferably 2 seconds or more, more preferably 5 seconds or more, and further preferably 10 seconds or more. Moreover, the said drying time becomes like this. Preferably it is 20 minutes or less, More preferably, it is 5 minutes or less, More preferably, it is 2 minutes or less.
 ケイ酸塩水溶液の塗布量は、十分な接着耐久性の向上効果を得る観点から、乾燥後の皮膜量が1mg/m以上30mg/m以下となるように調整することが好ましい。また、より好ましくは、乾燥後の皮膜量が1.5mg/m以上20mg/m以下となるように調整する。ケイ酸塩水溶液の塗布量が少なすぎると、ケイ酸塩の量が少なくなりすぎ、良好な接着耐久性を得られない場合がある。また、ケイ酸塩水溶液の塗布量が多くなりすぎると、形成される皮膜が厚くなりすぎて皮膜内で剥離がおこり、接着耐久性が損なわれる場合がある。 The coating amount of the silicate aqueous solution is preferably adjusted so that the coating amount after drying is 1 mg / m 2 or more and 30 mg / m 2 or less from the viewpoint of obtaining a sufficient effect of improving the adhesion durability. More preferably, the coating amount after drying is adjusted to be 1.5 mg / m 2 or more and 20 mg / m 2 or less. If the coating amount of the silicate aqueous solution is too small, the amount of silicate is too small, and good adhesion durability may not be obtained. Moreover, when the application amount of the silicate aqueous solution becomes too large, the formed film becomes too thick, peeling occurs in the film, and the adhesion durability may be impaired.
 なお、上記したステップS1の皮膜形成工程では、エッチング処理段階の後にケイ酸塩処理段階を行っているが、これらを1回の処理で行ってもよい。具体的には、例えば、ケイ酸塩を含む、中性又はアルカリ性の水溶液を用いて酸化皮膜を処理してもよい。 In the above-described film forming step of Step S1, the silicate treatment stage is performed after the etching treatment stage, but these may be performed in a single process. Specifically, for example, the oxide film may be treated using a neutral or alkaline aqueous solution containing silicate.
<その他の工程>
 本実施形態のアルミニウム合金材10の製造方法では、前述した各工程に悪影響を与えない範囲において、各工程の間又は前後に、他の工程を含めてもよい。例えば、皮膜形成工程S2後に、予備時効処理を施す予備時効処理工程を設けてもよい。この予備時効処理は、72時間以内に40~120℃で、8~36時間の低温加熱することにより行うことが好ましい。この条件で予備時効処理することにより、成形性及びベーキング後の強度向上を図ることができる。その他に、例えばアルミニウム合金材10の表面の異物を除去する異物除去工程や、各工程で発生した不良品を除去する不良品除去工程などを行ってもよい。
<Other processes>
In the manufacturing method of the aluminum alloy material 10 of the present embodiment, other steps may be included between or before and after each step within a range that does not adversely affect each step described above. For example, a preliminary aging treatment step for performing a preliminary aging treatment may be provided after the film forming step S2. This preliminary aging treatment is preferably performed by heating at 40 to 120 ° C. within 72 hours at a low temperature of 8 to 36 hours. By performing pre-aging treatment under these conditions, it is possible to improve moldability and strength after baking. In addition, for example, a foreign matter removing step for removing foreign matter on the surface of the aluminum alloy material 10 or a defective product removing step for removing defective products generated in each step may be performed.
 そして、製造されたアルミニウム合金材10は、接合体の作製前又は自動車用部材への加工前に、その表面にプレス油が塗布される場合がある。プレス油は、エステル成分を含有するものが主に使用される。アルミニウム合金材10にプレス油を塗布する方法や条件は、特に限定されるものではなく、通常のプレス油を塗布する方法や条件が広く適用でき、例えば、エステル成分としてオレイン酸エチルを含有するプレス油に、アルミニウム合金材10を浸漬すればよい。なお、エステル成分もオレイン酸エチルに限定されるものではなく、ステアリン酸ブチルやソルビタンモノステアレートなど、様々なものを利用することができる。 And, the manufactured aluminum alloy material 10 may be coated with press oil on the surface thereof before the fabrication of the joined body or before processing into a member for an automobile. As the press oil, one containing an ester component is mainly used. The method and conditions for applying the press oil to the aluminum alloy material 10 are not particularly limited, and methods and conditions for applying the normal press oil can be widely applied. For example, a press containing ethyl oleate as an ester component What is necessary is just to immerse the aluminum alloy material 10 in oil. The ester component is not limited to ethyl oleate, and various materials such as butyl stearate and sorbitan monostearate can be used.
 以上詳述したように、本実施形態のアルミニウム合金材の製造方法によれば、ケイ酸塩水溶液による処理後の水洗や、シランカップリング剤による処理等の処理を行わなくとも高い接着耐久性を与える皮膜が得られるため、プロセス全体を縮小化でき、生産効率の観点からも非常に有用である。 As described above in detail, according to the manufacturing method of the aluminum alloy material of the present embodiment, high adhesion durability can be obtained without performing water washing after treatment with an aqueous silicate solution or treatment with a silane coupling agent. Since the applied film can be obtained, the entire process can be reduced, which is very useful from the viewpoint of production efficiency.
 本実施形態のアルミニウム合金材は、皮膜に接着樹脂を直接接合して用いられてもよい。ここで、上述したように、アルミニウム合金材の表面には、プレス油が塗布される場合があるが、本明細書においては、プレス油を塗布したアルミニウム合金材に接着樹脂を接合して用いる場合も、アルミニウム合金材の皮膜に接着樹脂を直接接合して用いることに包含されるものとする。 The aluminum alloy material of the present embodiment may be used by directly bonding an adhesive resin to the film. Here, as described above, press oil may be applied to the surface of the aluminum alloy material, but in this specification, an adhesive resin is bonded to the aluminum alloy material applied with the press oil. In addition, it is included that the adhesive resin is directly bonded to the aluminum alloy material film.
(第1の実施形態の変形例)
 次に、本発明の第1の実施形態の変形例に係る接着樹脂層付きアルミニウム合金材について説明する。図3は本変形例の接着樹脂層付きアルミニウム合金材の構成を模式的に示す断面図である。なお、図3においては、図1に示すアルミニウム合金材10の構成要素と同じものには同じ符号を付し、その詳細な説明は省略する。図3に示すように、本変形例の接着樹脂層付きアルミニウム合金材11は、前述した第1の実施形態のアルミニウム合金材における皮膜2を覆うように、接着樹脂層4が直接形成されている。
(Modification of the first embodiment)
Next, an aluminum alloy material with an adhesive resin layer according to a modification of the first embodiment of the present invention will be described. FIG. 3 is a cross-sectional view schematically showing a configuration of an aluminum alloy material with an adhesive resin layer according to this modification. In FIG. 3, the same components as those of the aluminum alloy material 10 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. As shown in FIG. 3, the adhesive resin layer 4 is directly formed on the aluminum alloy material 11 with the adhesive resin layer of the present modification so as to cover the film 2 on the aluminum alloy material of the first embodiment described above. .
[接着樹脂層4]
 接着樹脂層4は、接着樹脂等からなり、本変形例の接着樹脂層付きアルミニウム合金材11は、この接着樹脂層4を介して他の部材と接合される。なお、他の部材には、接着樹脂層付きアルミニウム合金材11と同様に皮膜が形成されている別のアルミニウム合金材、酸化皮膜が形成されていないアルミニウム合金材、樹脂成形体等が包含される。
[Adhesive resin layer 4]
The adhesive resin layer 4 is made of an adhesive resin or the like, and the aluminum alloy material 11 with the adhesive resin layer of the present modification is joined to another member via the adhesive resin layer 4. The other members include another aluminum alloy material in which a film is formed as in the case of the aluminum alloy material 11 with the adhesive resin layer, an aluminum alloy material in which no oxide film is formed, a resin molded body, and the like. .
 接着樹脂層4を構成する接着樹脂は、特に限定されるものではなく、エポキシ系樹脂、ウレタン系樹脂、ニトリル系樹脂、ナイロン系樹脂、アクリル系樹脂など、従来からアルミニウム合金材を接合する際に用いられてきた接着樹脂を用いることができる。なかでも、接着強度の観点からは、エポキシ系樹脂が好ましい。また、接着樹脂は1種のみを用いてもよく、あるいは複数を組み合わせて用いてもよい。 The adhesive resin that constitutes the adhesive resin layer 4 is not particularly limited. When an aluminum alloy material such as an epoxy resin, a urethane resin, a nitrile resin, a nylon resin, or an acrylic resin is conventionally joined. The adhesive resin that has been used can be used. Of these, epoxy resins are preferable from the viewpoint of adhesive strength. Further, only one kind of adhesive resin may be used, or a plurality of adhesive resins may be used in combination.
 接着樹脂層4の厚さも、特に限定されるものではないが、10~500μmが好ましく、50~400μmがより好ましい。接着樹脂層4の厚さが10μm未満の場合には、接着樹脂層付きアルミニウム合金材11と、他の接着樹脂層を備えていないアルミニウム合金材とを接着樹脂層4を介して接合する場合に、高い接着耐久性が得られないことがある。一方、接着樹脂層4の厚さが500μmを超える場合には、接着強度が小さくなる場合がある。 The thickness of the adhesive resin layer 4 is not particularly limited, but is preferably 10 to 500 μm, and more preferably 50 to 400 μm. When the thickness of the adhesive resin layer 4 is less than 10 μm, the aluminum alloy material 11 with the adhesive resin layer and the aluminum alloy material not provided with another adhesive resin layer are joined via the adhesive resin layer 4. , High adhesion durability may not be obtained. On the other hand, when the thickness of the adhesive resin layer 4 exceeds 500 μm, the adhesive strength may be reduced.
 また、接着樹脂層4(接着樹脂)は、有機-無機カップリング剤をさらに含有していてもよい。接着樹脂層4(接着樹脂)に含まれる有機-無機カップリング剤の種類は特に限定されないが、例えば、シランカップリング剤の他、チタネート系カップリング剤やアルミネート系カップリング剤、ホスフェート系カップリング剤などが使用可能である。また、シランカップリング剤としては、接着樹脂と反応性の高いビニル基、スチリル基、アクリル基、メタクリル基、エポキシ基、アミノ基、ウレイド基、メルカプト基、イソシアネート基等の官能基を少なくとも一つ以上有するシランカップリング剤を使用することが好ましい。シランカップリング剤の有する官能基の好適な具体例としては、例えば、エポキシ基、アミノ基、ウレイド基等が挙げられる。ここで、有機-無機カップリング剤としては、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The adhesive resin layer 4 (adhesive resin) may further contain an organic-inorganic coupling agent. The type of organic-inorganic coupling agent contained in the adhesive resin layer 4 (adhesive resin) is not particularly limited. For example, in addition to a silane coupling agent, a titanate coupling agent, an aluminate coupling agent, or a phosphate cup. A ring agent or the like can be used. Further, as the silane coupling agent, at least one functional group such as vinyl group, styryl group, acrylic group, methacryl group, epoxy group, amino group, ureido group, mercapto group, isocyanate group and the like having high reactivity with the adhesive resin is used. It is preferable to use the silane coupling agent having the above. Preferable specific examples of the functional group possessed by the silane coupling agent include, for example, an epoxy group, an amino group, and a ureido group. Here, as the organic-inorganic coupling agent, only one kind may be used alone, or two or more kinds may be used in combination.
[製造方法]
 次に、本変形例の接着樹脂層付きアルミニウム合金材11の製造方法について説明する。図4は、図3に示される本変形例の接着樹脂層付きアルミニウム合金材11の製造方法を示すフローチャート図である。図4に示すように、本変形例の接着樹脂層付きアルミニウム合金材11を製造する際は、前述したステップS1~S2に加えて、接着樹脂層形成工程S3を行う。
[Production method]
Next, the manufacturing method of the aluminum alloy material 11 with the adhesive resin layer of this modification is demonstrated. FIG. 4 is a flowchart showing a method of manufacturing the aluminum alloy material 11 with an adhesive resin layer of the present modification shown in FIG. As shown in FIG. 4, when manufacturing the aluminum alloy material 11 with an adhesive resin layer of this modification, an adhesive resin layer forming step S3 is performed in addition to the steps S1 to S2 described above.
<ステップS3:接着樹脂層形成工程>
 接着樹脂層形成工程S3では、皮膜2を覆うように、接着樹脂層4を形成する。接着樹脂層4の形成方法は、特に限定されるものではないが、例えば、接着樹脂が固体である場合には、熱を加えて圧着したり、これを溶剤に溶解させて溶液とした後に、また、接着樹脂が液状である場合にはそのまま、皮膜2の表面に噴霧したり塗布する方法が挙げられる。
<Step S3: Adhesive resin layer forming step>
In the adhesive resin layer forming step S3, the adhesive resin layer 4 is formed so as to cover the film 2. The method for forming the adhesive resin layer 4 is not particularly limited. For example, when the adhesive resin is a solid, it is heated and pressure-bonded, or dissolved in a solvent to obtain a solution. Further, when the adhesive resin is in a liquid state, a method of spraying or coating the surface of the film 2 as it is can be mentioned.
 また、本変形例の接着樹脂層付きアルミニウム合金材11においても、前述した第1の実施形態と同様に、皮膜形成工程S2及び/又は接着樹脂層形成工程S3の後に、予備時効処理を施す予備時効処理工程を設けてもよい。 Moreover, also in the aluminum alloy material 11 with the adhesive resin layer of this modification, the preliminary aging treatment is performed after the film forming step S2 and / or the adhesive resin layer forming step S3, as in the first embodiment. An aging treatment step may be provided.
 本変形例の接着樹脂層付きアルミニウム合金材においては、接着樹脂層をあらかじめ備えるため、接合体や自動車用部材を作製する際に、アルミニウム合金材の表面に接着樹脂を塗布するなどの作業を省略することができる。なお、本変形例の接着樹脂層付きアルミニウム合金材における上記以外の構成及び効果は、前述した第1の実施形態と同様である。 In the aluminum alloy material with an adhesive resin layer of this modification, since the adhesive resin layer is provided in advance, the work such as applying the adhesive resin to the surface of the aluminum alloy material is omitted when producing a joined body or an automobile member. can do. The configuration and effects other than those described above in the aluminum alloy material with an adhesive resin layer of the present modification are the same as those in the first embodiment described above.
(第2の実施形態)
 次に、本発明の第2の実施形態に係る接合体について説明する。本実施形態の接合体は、前述した第1の実施形態のアルミニウム合金材又はその変形例の接着樹脂層付きアルミニウム合金材を用いたものである。図5~8Bは本実施形態の接合体の構成例を模式的に示す断面図である。なお、図5~8Bにおいては、図1及び3に示すアルミニウム合金材10、接着樹脂層付きアルミニウム合金材11の構成要素と同じものには同じ符号を付し、その詳細な説明は省略する。
(Second Embodiment)
Next, the joined body according to the second embodiment of the present invention will be described. The joined body of this embodiment uses the aluminum alloy material of the first embodiment described above or an aluminum alloy material with an adhesive resin layer of a modification thereof. 5 to 8B are cross-sectional views schematically showing a configuration example of the joined body of this embodiment. 5 to 8B, the same components as those of the aluminum alloy material 10 and the aluminum alloy material 11 with the adhesive resin layer shown in FIGS. 1 and 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
[接合体の構成]
 本実施形態の接合体は、例えば、図5に示す接合体20のように、図1に示す2枚のアルミニウム合金材10を、皮膜2が形成されている面同士が対向するように配置し、接着樹脂5を介して接合した構成とすることができる。即ち、接合体20では、接着樹脂5は、一面が一方のアルミニウム合金材10の皮膜2側に接合され、その他面が他方のアルミニウム合金材10の皮膜2側に接合されている。
[Composition structure]
In the joined body of this embodiment, for example, like the joined body 20 shown in FIG. 5, the two aluminum alloy materials 10 shown in FIG. 1 are arranged so that the surfaces on which the coating 2 is formed face each other. Further, it can be configured to be bonded via the adhesive resin 5. That is, in the bonded body 20, one surface of the adhesive resin 5 is bonded to the film 2 side of one aluminum alloy material 10 and the other surface is bonded to the film 2 side of the other aluminum alloy material 10.
 ここで、本実施形態の接合体における接着樹脂5は、前述した接着樹脂層4を構成する接着樹脂と同様のものを使用することができる。具体的には、接着樹脂5は、エポキシ系樹脂、ウレタン系樹脂、ニトリル系樹脂、ナイロン系樹脂、アクリル系樹脂などを使用することができる。また、接着樹脂5の厚さは、特に限定されるものではないが、接着強度向上の観点から、10~500μmが好ましく、より好ましくは50~400μmである。 Here, as the adhesive resin 5 in the joined body of the present embodiment, the same adhesive resin as the adhesive resin layer 4 described above can be used. Specifically, an epoxy resin, a urethane resin, a nitrile resin, a nylon resin, an acrylic resin, or the like can be used as the adhesive resin 5. The thickness of the adhesive resin 5 is not particularly limited, but is preferably 10 to 500 μm, more preferably 50 to 400 μm from the viewpoint of improving the adhesive strength.
 接合体20では、前述したように、接着樹脂5の両面が、第1の実施形態のアルミニウム合金材10の皮膜2であるため、自動車用部材に用いた際、高温湿潤環境に曝されても、接着樹脂5と皮膜2との界面の接着強度が低下しにくく、接着耐久性が向上する。また、本実施形態の接合体20では、接着樹脂5の種類に影響されず、従来からアルミニウム合金材の接合に用いられている接着樹脂全般において界面での接着耐久性が向上する。 As described above, in the bonded body 20, both surfaces of the adhesive resin 5 are the coatings 2 of the aluminum alloy material 10 of the first embodiment. In addition, the adhesive strength at the interface between the adhesive resin 5 and the film 2 is not easily lowered, and the adhesion durability is improved. Moreover, in the joined body 20 of this embodiment, the adhesive durability at the interface is improved in all adhesive resins conventionally used for joining aluminum alloy materials without being affected by the type of the adhesive resin 5.
 また、図6Aに示す接合体21a又は図6Bに示す接合体21bのように、図1に示すアルミニウム合金材10の皮膜2が形成されている面に、接着樹脂5を介して、皮膜2が形成されていない他のアルミニウム合金材6又は樹脂成形体7を接合した構成とすることもできる。 Moreover, like the joined body 21a shown in FIG. 6A or the joined body 21b shown in FIG. 6B, the coating 2 is formed on the surface on which the coating 2 of the aluminum alloy material 10 shown in FIG. It can also be set as the structure which joined the other aluminum alloy material 6 or the resin molding 7 which is not formed.
 ここで、皮膜2が形成されていない他のアルミニウム合金材6には、前述した基材3と同様のものを使用することができ、具体的には、JISに規定される又はJISに近似する種々の非熱処理型若しくは熱処理型アルミニウム合金からなるものを使用することができる。 Here, as the other aluminum alloy material 6 on which the film 2 is not formed, the same material as the base material 3 described above can be used. Specifically, the aluminum alloy material 6 is specified in JIS or approximate to JIS. Various non-heat treatment type or heat treatment type aluminum alloys can be used.
 また、樹脂成形体7としては、例えば、ガラス繊維強化プラスチック(GFRP)、炭素繊維強化プラスチック(CFRP)、ボロン繊維強化プラスチック(BFRP)、アラミド繊維強化プラスチック(AFRP,KFRP)、ポリエチレン繊維強化プラスチック(DFRP)及びザイロン強化プラスチック(ZFRP)などの各種繊維強化プラスチックにより形成した繊維強化プラスチック成形体を用いることができる。これらの繊維強化プラスチック成形体を用いることにより、一定の強度を維持しつつ、接合体を軽量化することが可能となる。 Examples of the resin molded body 7 include glass fiber reinforced plastic (GFRP), carbon fiber reinforced plastic (CFRP), boron fiber reinforced plastic (BFRP), aramid fiber reinforced plastic (AFRP, KFRP), polyethylene fiber reinforced plastic ( A fiber reinforced plastic molded body formed of various fiber reinforced plastics such as DFRP) and Zylon reinforced plastic (ZFRP) can be used. By using these fiber-reinforced plastic molded bodies, it is possible to reduce the weight of the joined body while maintaining a certain strength.
 なお、樹脂成形体7は、前述した繊維強化プラスチック以外に、ポリプロピレン(PP)、アクリル-ブタジエン-スチレン共重合体(ABS)樹脂、ポリウレタン(PU)、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、ナイロン6、ナイロン6,6、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリアミド(PA)、ポリフェニレンスルフィド(PPS)、ポリブチレンテレフタレート(PBT)、ポリフタルアミド(PPA)などの繊維強化されていない樹脂を使用することもできる。 In addition to the above-mentioned fiber reinforced plastic, the resin molded body 7 is made of polypropylene (PP), acrylic-butadiene-styrene copolymer (ABS) resin, polyurethane (PU), polyethylene (PE), polyvinyl chloride (PVC). , Nylon 6, nylon 6,6, polystyrene (PS), polyethylene terephthalate (PET), polyamide (PA), polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), polyphthalamide (PPA), etc. No resin can be used.
 図6A及び図6Bに示す接合体21a,21bでは、接着樹脂5の片面がアルミニウム合金材10の皮膜2側に接合されているため、前述した接合体20と同様に、自動車用部材に用いた際、高温湿潤環境に曝されても、接着樹脂の種類に影響されず、界面での接着耐久性が向上する。また、図6Bに示す接合体21bは、アルミニウム合金材10と樹脂成形体7とを接合しているため、アルミニウム合金材同士の接合体に比べて軽量であり、この接合体21bを用いることにより自動車の更なる軽量化を実現することができる。なお、図6A及び図6Bに示す接合体21a,21bにおける上記以外の構成及び効果は、図5に示す接合体20と同様である。 In the joined bodies 21a and 21b shown in FIG. 6A and FIG. 6B, since one surface of the adhesive resin 5 is joined to the film 2 side of the aluminum alloy material 10, it was used as a member for an automobile, like the joined body 20 described above. At this time, even when exposed to a high temperature and humidity environment, the adhesion durability at the interface is improved without being influenced by the type of the adhesive resin. Moreover, since the joined body 21b shown to FIG. 6B has joined the aluminum alloy material 10 and the resin molding 7, it is lightweight compared with the joined body of aluminum alloy materials, By using this joined body 21b, Further weight reduction of the automobile can be realized. The other configurations and effects of the joined bodies 21a and 21b shown in FIGS. 6A and 6B are the same as those of the joined body 20 shown in FIG.
 更に、図7に示す接合体22のように、図3に示す接着樹脂層4を備えた接着樹脂層付きアルミニウム合金材11と、図1に示す接着樹脂層4を備えていないアルミニウム合金材10とを接合した構成とすることもできる。具体的には、接着樹脂層付きアルミニウム合金材11の接着樹脂層4側に、アルミニウム合金材10の皮膜2側が接合されたものである。その結果、アルミニウム合金材10の皮膜2と接着樹脂層付きアルミニウム合金材11の皮膜2は、それぞれ接着樹脂層付きアルミニウム合金材11の接着樹脂層4を介して、互いに対向するように配置された構成となっている。 Furthermore, like the joined body 22 shown in FIG. 7, the aluminum alloy material 11 with the adhesive resin layer provided with the adhesive resin layer 4 shown in FIG. 3, and the aluminum alloy material 10 not provided with the adhesive resin layer 4 shown in FIG. It can also be set as the structure which joined. Specifically, the film 2 side of the aluminum alloy material 10 is joined to the adhesive resin layer 4 side of the aluminum alloy material 11 with the adhesive resin layer. As a result, the film 2 of the aluminum alloy material 10 and the film 2 of the aluminum alloy material 11 with the adhesive resin layer were arranged to face each other via the adhesive resin layer 4 of the aluminum alloy material 11 with the adhesive resin layer. It has a configuration.
 接合体22では、接着樹脂層4の両面がアルミニウム合金材10の皮膜2と接着樹脂層付きアルミニウム合金材11の皮膜2にそれぞれ接合されているため、前述した接合体20と同様に、接合体22を自動車用部材に用いた際に、高温湿潤環境に曝されても、接着樹脂の種類に影響されず、界面での接着耐久性が向上する。なお、図7に示す接合体22における上記以外の構成及び効果は、図5に示す接合体20と同様である。 In the joined body 22, both surfaces of the adhesive resin layer 4 are joined to the film 2 of the aluminum alloy material 10 and the film 2 of the aluminum alloy material 11 with the adhesive resin layer, respectively. When 22 is used as a member for an automobile, even if it is exposed to a high-temperature and humid environment, the adhesion durability at the interface is improved without being affected by the type of the adhesive resin. In addition, the structure and effect other than the above in the joined body 22 shown in FIG. 7 are the same as those of the joined body 20 shown in FIG.
 更に、図8Aに示す接合体23a又は図8Bに示す接合体23bのように、図3に示す接着樹脂層4を備えた接着樹脂層付きアルミニウム合金材11の接着樹脂層4側に、皮膜2が形成されていない他のアルミニウム合金材6又は繊維強化プラスチック成形体などの樹脂成形体7を接合した構成とすることもできる。これら接合体23a,23bでは、接着樹脂層4の片面が接着樹脂層付きアルミニウム合金材11の皮膜2側に接合されているため、前述した接合体20と同様に、接合体23を自動車用部材に用いる際、高温湿潤環境に曝されても、接着樹脂の種類に影響されず、界面での接着耐久性が向上する。 Further, as in the joined body 23a shown in FIG. 8A or the joined body 23b shown in FIG. 8B, the coating 2 is formed on the adhesive resin layer 4 side of the aluminum alloy material 11 with the adhesive resin layer provided with the adhesive resin layer 4 shown in FIG. It is also possible to adopt a configuration in which a resin molded body 7 such as another aluminum alloy material 6 or a fiber-reinforced plastic molded body in which no is formed is joined. In these joined bodies 23a and 23b, since one surface of the adhesive resin layer 4 is joined to the film 2 side of the aluminum alloy material 11 with the adhesive resin layer, the joined body 23 is used as an automobile member in the same manner as the joined body 20 described above. When used in the above, even when exposed to a high-temperature wet environment, the adhesion durability at the interface is improved without being affected by the type of the adhesive resin.
 また、図8Bに示す接合体23bは、接着剤層付きアルミニウム合金材11と樹脂成形体7とを接合しているため、アルミニウム合金材同士の接合体に比べて軽量であり、軽量化が求められている自動車や車両の部材に好適である。なお、図8A及び図8Bに示す接合体23a,23bにおける上記以外の構成及び効果は、図5に示す接合体20と同様である。 Moreover, since the joined body 23b shown to FIG. 8B has joined the aluminum alloy material 11 with an adhesive layer, and the resin molding 7, it is lightweight compared with the joined body of aluminum alloy materials, and weight reduction is calculated | required. It is suitable for the members of automobiles and vehicles. The structures and effects of the joined bodies 23a and 23b shown in FIGS. 8A and 8B other than those described above are the same as those of the joined body 20 shown in FIG.
[接合体の製造方法]
 前述した接合体20~23の製造方法、特に接合方法は、従来公知の接合方法を用いることができる。そして、接着樹脂5をアルミニウム合金材に形成する方法は、特に限定されるものではないが、例えば、予め接着樹脂5によって作製した接着シートを用いてもよいし、接着樹脂5を皮膜2の表面に噴霧または塗布することによって形成してもよい。なお、接合体20~23は、アルミニウム合金材10や接着剤層付きアルミニウム合金材11と同様に、自動車用部材への加工前に、その表面にプレス油を塗布してもよい。
[Method of manufacturing joined body]
As a manufacturing method of the joined bodies 20 to 23, particularly a joining method, a conventionally known joining method can be used. The method for forming the adhesive resin 5 on the aluminum alloy material is not particularly limited. For example, an adhesive sheet prepared in advance using the adhesive resin 5 may be used, or the adhesive resin 5 may be formed on the surface of the film 2. You may form by spraying or apply | coating to. The bonded bodies 20 to 23 may be coated with press oil on their surfaces before being processed into automobile members, similarly to the aluminum alloy material 10 and the aluminum alloy material 11 with an adhesive layer.
 また、図示しないが、本実施形態の接合体に、両面に皮膜2が形成された(接着樹脂層付き)アルミニウム合金材を用いた場合、接着樹脂又は接着樹脂層を介して、これらの(接着樹脂層付き)アルミニウム合金材、皮膜が形成されていない他のアルミニウム合金材又は樹脂成形体を、さらに接合することが可能となる。 Although not shown, when an aluminum alloy material (with an adhesive resin layer) having a film 2 formed on both surfaces is used for the joined body of the present embodiment, these (adhesive) are bonded via an adhesive resin or an adhesive resin layer. It becomes possible to further join an aluminum alloy material (with a resin layer), another aluminum alloy material on which a film is not formed, or a resin molded body.
(第3の実施形態)
 次に、本発明の第3の実施形態に係る自動車用部材について説明する。本実施形態の自動車用部材は、前述した第2の実施形態の接合体を用いたものであり、例えば、自動車用パネルなどである。
(Third embodiment)
Next, the automotive member according to the third embodiment of the present invention will be described. The member for motor vehicles of this embodiment uses the joined object of a 2nd embodiment mentioned above, for example, is a panel for motor vehicles.
 また、本実施形態の自動車用部材の製造方法は、特に限定されるものではないが、従来公知の製造方法を適用することができる。例えば、図5~8Bに示す接合体20~23bに切断加工やプレス加工などを施して所定形状の自動車用部材を製造する。 Further, the manufacturing method of the automobile member of the present embodiment is not particularly limited, but a conventionally known manufacturing method can be applied. For example, the joined members 20 to 23b shown in FIGS. 5 to 8B are cut or pressed to produce a member for an automobile having a predetermined shape.
 本実施形態の自動車用部材は、前述した第2の実施形態の接合体から製造されるため、高温湿潤環境に曝されても、接着樹脂又は接着樹脂層と、皮膜の水和の影響をほとんど受けることなく、アルミニウム合金基材の溶出も抑制できる。その結果、本実施形態の自動車用部材では、高温湿潤環境に曝された場合の界面剥離を抑制し、接着強度の低下を抑制することが可能となる。 Since the automobile member of the present embodiment is manufactured from the joined body of the second embodiment described above, even if it is exposed to a high-temperature and humid environment, the effects of the adhesive resin or the adhesive resin layer and the hydration of the film are hardly affected. Without receiving, elution of the aluminum alloy substrate can be suppressed. As a result, in the automotive member of this embodiment, it is possible to suppress interfacial peeling when exposed to a high-temperature and humid environment, and to suppress a decrease in adhesive strength.
 以下、本発明の実施例及び比較例を挙げて、本発明の効果について具体的に説明する。本実施例においては、以下に示す方法及び条件で、アルミニウム合金材を作製し、その接着耐久性などを評価した。 Hereinafter, the effects of the present invention will be described in detail with reference to examples and comparative examples of the present invention. In this example, an aluminum alloy material was produced by the following method and conditions, and its adhesion durability and the like were evaluated.
<実施例1>
 JIS6016(Mg:0.54質量%、Si:1.11質量%、Cu:0.14質量%)の6000系アルミニウム合金を用いて、板厚1mmのアルミニウム合金冷延板を作製した。そして、この冷延板を長さ100mm、幅25mmに切断して基材とした。次に、この基材を、実体到達温度550℃まで加熱処理し、冷却した。続いて、基材を水酸化カリウムを含むpH13の水溶液で50℃にて40秒アルカリ脱脂した後、硫酸及びフッ酸を含むpH1の溶液で50℃にて40秒酸洗した。その後、メタケイ酸ナトリウムを0.018質量%含む水溶液(以下、ケイ酸ナトリウム水溶液ともいう)を、バーコーターで表面に均一に塗布した。その後、100℃で1分間加熱乾燥させて、表面に皮膜を有する実施例1のアルミニウム合金材を得た。
<Example 1>
Using a 6000 series aluminum alloy of JIS 6016 (Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%), an aluminum alloy cold-rolled sheet having a thickness of 1 mm was produced. And this cold-rolled board was cut | disconnected to length 100mm and width 25mm, and it was set as the base material. Next, this base material was heat-treated to an actual temperature of 550 ° C. and cooled. Subsequently, the substrate was alkali degreased with an aqueous solution of pH 13 containing potassium hydroxide at 50 ° C. for 40 seconds, and then pickled with a solution of pH 1 containing sulfuric acid and hydrofluoric acid at 50 ° C. for 40 seconds. Thereafter, an aqueous solution containing 0.018% by mass of sodium metasilicate (hereinafter also referred to as an aqueous sodium silicate solution) was uniformly applied to the surface with a bar coater. Then, it heat-dried at 100 degreeC for 1 minute, and obtained the aluminum alloy material of Example 1 which has a film | membrane on the surface.
<実施例2>
 ケイ酸ナトリウム水溶液中のメタケイ酸ナトリウム濃度を0.055質量%とした以外は実施例1と同様にして、実施例2のアルミニウム合金材を得た。
<Example 2>
An aluminum alloy material of Example 2 was obtained in the same manner as in Example 1 except that the sodium metasilicate concentration in the aqueous sodium silicate solution was 0.055% by mass.
<実施例3>
 ケイ酸ナトリウム水溶液中のメタケイ酸ナトリウム濃度を0.084質量%とした以外は実施例1と同様にして、実施例3のアルミニウム合金材を得た。
<Example 3>
An aluminum alloy material of Example 3 was obtained in the same manner as Example 1 except that the sodium metasilicate concentration in the sodium silicate aqueous solution was 0.084% by mass.
<実施例4>
 ケイ酸ナトリウム水溶液中のメタケイ酸ナトリウム濃度を0.12質量%とした以外は実施例1と同様にして、実施例4のアルミニウム合金材を得た。
<Example 4>
An aluminum alloy material of Example 4 was obtained in the same manner as in Example 1 except that the sodium metasilicate concentration in the aqueous sodium silicate solution was 0.12% by mass.
<実施例5>
 ケイ酸ナトリウム水溶液中のメタケイ酸ナトリウム濃度を0.24質量%とした以外は実施例1と同様にして、実施例5のアルミニウム合金材を得た。
<Example 5>
An aluminum alloy material of Example 5 was obtained in the same manner as in Example 1 except that the sodium metasilicate concentration in the aqueous sodium silicate solution was 0.24% by mass.
<実施例6>
 アルカリ脱脂の時間を20秒とし、硫酸フッ酸による酸洗を行わず、ケイ酸ナトリウム水溶液中のメタケイ酸ナトリウム濃度を0.084質量%とした以外は実施例1と同様にして、実施例6のアルミニウム合金材を得た。
<Example 6>
Example 6 was carried out in the same manner as in Example 1 except that the alkaline degreasing time was 20 seconds, the pickling with sulfuric acid hydrofluoric acid was not performed, and the sodium metasilicate concentration in the sodium silicate aqueous solution was 0.084% by mass. An aluminum alloy material was obtained.
<実施例7>
 アルカリ脱脂の時間を100秒とし、硫酸フッ酸による酸洗の時間を100秒とし、ケイ酸ナトリウム水溶液中のメタケイ酸ナトリウム濃度を0.084質量%とした以外は実施例1と同様にして、実施例7のアルミニウム合金材を得た。
<Example 7>
Example 1 except that the alkali degreasing time was 100 seconds, the pickling time with sulfuric acid hydrofluoric acid was 100 seconds, and the sodium metasilicate concentration in the sodium silicate aqueous solution was 0.084% by mass, The aluminum alloy material of Example 7 was obtained.
<実施例8>
 ケイ酸塩水溶液中のケイ酸化合物としてカネマイト(商品名:プリフィード、株式会社トクヤマシルテック製、n/m=2)を濃度0.10質量%で用いた以外は実施例1と同様にして、実施例8のアルミニウム合金材を得た。
<Example 8>
Example 1 except that kanemite (trade name: Prefeed, manufactured by Tokuyama Siltec Co., Ltd., n / m = 2) was used as the silicate compound in the silicate aqueous solution at a concentration of 0.10% by mass. The aluminum alloy material of Example 8 was obtained.
<実施例9>
 ケイ酸塩水溶液中のケイ酸化合物として3号水ガラス(和光純薬製、n/m=3)を濃度0.09質量%で用いた以外は実施例1と同様にして、実施例9のアルミニウム合金材を得た。
<Example 9>
Example 9 is the same as Example 1 except that No. 3 water glass (manufactured by Wako Pure Chemical Industries, n / m = 3) is used at a concentration of 0.09% by mass as the silicate compound in the silicate aqueous solution. An aluminum alloy material was obtained.
<比較例1>
 ケイ酸ナトリウム水溶液中のメタケイ酸ナトリウム濃度を0.61質量%とした以外は実施例1と同様にして、比較例1のアルミニウム合金材を得た。
<Comparative Example 1>
An aluminum alloy material of Comparative Example 1 was obtained in the same manner as in Example 1 except that the sodium metasilicate concentration in the aqueous sodium silicate solution was 0.61% by mass.
<比較例2>
 ケイ酸ナトリウム水溶液中のメタケイ酸ナトリウム濃度を0.0061質量%とした以外は実施例1と同様にして、比較例2のアルミニウム合金材を得た。
<Comparative Example 2>
An aluminum alloy material of Comparative Example 2 was obtained in the same manner as in Example 1 except that the sodium metasilicate concentration in the aqueous sodium silicate solution was 0.0061% by mass.
<比較例3>
 ケイ酸ナトリウム水溶液による処理を行わなかった以外は実施例1と同様にして、比較例3のアルミニウム合金材を得た。
<Comparative Example 3>
An aluminum alloy material of Comparative Example 3 was obtained in the same manner as in Example 1 except that the treatment with the sodium silicate aqueous solution was not performed.
<比較例4>
 ケイ酸ナトリウム水溶液中のメタケイ酸ナトリウム濃度を0.12質量%とし、処理後に表面を水洗した以外は実施例1と同様にして、比較例4のアルミニウム合金材を得た。
<Comparative Example 4>
An aluminum alloy material of Comparative Example 4 was obtained in the same manner as in Example 1 except that the sodium metasilicate concentration in the aqueous sodium silicate solution was 0.12% by mass and the surface was washed with water after the treatment.
<比較例5>
 アルカリ脱脂及び酸洗を行わず、ケイ酸ナトリウム水溶液中のメタケイ酸ナトリウム濃度を0.084質量%とした以外は実施例1と同様にして、比較例5のアルミニウム合金材を得た。
<Comparative Example 5>
An aluminum alloy material of Comparative Example 5 was obtained in the same manner as in Example 1 except that alkali degreasing and pickling were not performed and the sodium metasilicate concentration in the aqueous sodium silicate solution was 0.084% by mass.
<比較例6>
 硫酸フッ酸による酸洗時間を300秒とし、ケイ酸ナトリウム水溶液中のメタケイ酸ナトリウム濃度を0.084質量%とした以外は実施例1と同様にして、比較例6のアルミニウム合金材を得た。
<Comparative Example 6>
An aluminum alloy material of Comparative Example 6 was obtained in the same manner as in Example 1 except that the pickling time with sulfuric acid hydrofluoric acid was set to 300 seconds and the sodium metasilicate concentration in the sodium silicate aqueous solution was set to 0.084% by mass. .
(IRスペクトル測定)
 表面に皮膜を有する各実施例及び比較例に係るアルミニウム合金材について、入射角75°の平行偏光を使用して、FT-IR(フーリエ変換式赤外分光光度計:Nicolet社製 Magna-750 spectrometer)分析することによりIRスペクトルを測定し、皮膜処理前後での差スペクトルから1440~1540cm-1の波数領域及び1550~1650cm-1の波数領域におけるスペクトル強度(吸光度)を読み取った。その結果を表1に示す。なお、表1中の「-」とは、吸光度が測定されなかったことを表す。
(IR spectrum measurement)
The aluminum alloy materials according to each of Examples and Comparative Examples having a coating on the surface were subjected to FT-IR (Fourier transform infrared spectrophotometer: Magna-750 spectrometer manufactured by Nicolet) using parallel polarized light with an incident angle of 75 °. ) the IR spectrum was measured by analyzing, reading the spectral intensity (absorbance) at a wave number region of the frequency domain and 1550 - 1650 cm -1 in the coating process 1440 - from the difference spectrum before and after 1540 cm -1. The results are shown in Table 1. In Table 1, “−” means that the absorbance was not measured.
(皮膜成分の元素濃度測定)
 皮膜中の元素成分濃度は、高周波グロー放電発光分光分析法(GD-OES:ホリバ・ジョバンイボン社製型式JY-5000RF)により膜厚方向にスパッタしながら測定し、アルミニウム(Al)、マグネシウム(Mg)、ナトリウム(Na)、カリウム(K)、リチウム(Li)、銅(Cu)、鉄(Fe)及びチタン(Ti)等の金属元素、及び酸素(O)、窒素(N)、炭素(C)、ケイ素(Si)及び硫黄(S)等の元素について、各成分量の測定を行った。マグネシウム(Mg)、ナトリウム(Na)、カリウム(K)、リチウム(Li)、銅(Cu)及びケイ素(Si)については、皮膜中の最大濃度を、その皮膜中の皮膜濃度とした。アルミニウム(Al)については、基材と皮膜との界面近傍では基材の影響を受けるため、最表面の濃度をアルミニウム(Al)の皮膜濃度とした。ここで、これら各元素の濃度の算出において、特に酸素(O)及び炭素(C)は最表面やその近傍でコンタミの影響を受けやすい。以上のことから、各元素の濃度計算では、酸素(O)及び炭素(C)を除いて、濃度を算出した。なお、酸素(O)は、最表面及びその近傍ではコンタミの影響を受ける可能性が高く、正確な濃度を測定することは難しいが、すべてのサンプルの皮膜には酸素(O)が含まれていることは明確であった。結果を表1に示す。
(Element concentration measurement of film components)
The elemental component concentration in the film was measured while sputtering in the film thickness direction by high-frequency glow discharge optical emission spectrometry (GD-OES: model JY-5000RF manufactured by Horiba Joban Yvon). Aluminum (Al), magnesium (Mg) ), Sodium (Na), potassium (K), lithium (Li), copper (Cu), iron (Fe), titanium (Ti) and other metal elements, and oxygen (O), nitrogen (N), carbon (C ), Silicon (Si), sulfur (S), and other elements were measured for the amount of each component. For magnesium (Mg), sodium (Na), potassium (K), lithium (Li), copper (Cu), and silicon (Si), the maximum concentration in the film was defined as the film concentration in the film. Since aluminum (Al) is affected by the substrate near the interface between the substrate and the coating, the concentration of the outermost surface is the coating concentration of aluminum (Al). Here, in the calculation of the concentrations of these elements, oxygen (O) and carbon (C) are particularly susceptible to contamination on the outermost surface and in the vicinity thereof. From the above, in the concentration calculation of each element, the concentration was calculated excluding oxygen (O) and carbon (C). Oxygen (O) is highly likely to be affected by contamination at the outermost surface and in the vicinity thereof, and it is difficult to measure the exact concentration, but all sample films contain oxygen (O). It was clear that The results are shown in Table 1.
(皮膜量測定)
 皮膜量は、蛍光X線によって測定した。具体的には、蛍光X線によって皮膜中のケイ素量を測定し、校正曲線を用いて、蛍光X線の強度と皮膜量の換算を行い、さらに基材に含まれるケイ素量を差し引くことにより算出した。結果を表1に示す。
(Measurement of coating amount)
The coating amount was measured by fluorescent X-ray. Specifically, the amount of silicon in the film is measured with fluorescent X-rays, and the calibration curve is used to convert the intensity of the fluorescent X-rays and the amount of film, and further subtract the silicon amount contained in the substrate. did. The results are shown in Table 1.
<エッチング量の測定>
 エッチング量は、酸化皮膜や酸化皮膜を含む基材の溶解量であり、エッチング処理前後の重量の減少量を測定し、それを厚み(膜厚)として見積もった。なお、重量の減少量から膜厚への換算は、便宜上、アルミニウムの密度:2.7g/cmを用い、アルミニウムの厚みとして計算することにより行った。
<Measurement of etching amount>
The amount of etching is the amount of dissolution of the oxide film and the base material including the oxide film, and the amount of decrease in weight before and after the etching treatment was measured and estimated as the thickness (film thickness). In addition, the conversion from the decrease in weight to the film thickness was performed by calculating the aluminum thickness using the aluminum density of 2.7 g / cm 3 for convenience.
<凝集破壊率(接着耐久性)>
 図9A及び図9Bは凝集破壊率の測定方法を模式的に示す図であり、図9Aは側面図であり、図9Bは平面図である。図9A及び図9Bに示すように、構成が同じ2枚の供試材31a,31b(25mm幅)の端部を、熱硬化型エポキシ樹脂系接着樹脂によりラップ長10mm(接着面積:25mm×10mm)となるように重ね合わせ貼り付けた。
 ここで用いた接着樹脂35は熱硬化型エポキシ樹脂系接着樹脂(ビスフェノールA型エポキシ樹脂量40~50質量%)である。また、接着樹脂35の厚さが250μmとなるように微量のガラスビーズ(平均粒径250μm)を接着樹脂35に添加して調節した。
 重ね合わせてから30分間、室温で乾燥させて、その後、170℃で20分間加熱し、熱硬化処理を実施した。その後、室温で24時間静置して接着試験体を作製した。
<Cohesive failure rate (adhesion durability)>
9A and 9B are diagrams schematically showing a method of measuring the cohesive failure rate, FIG. 9A is a side view, and FIG. 9B is a plan view. As shown in FIGS. 9A and 9B, the end portions of two test materials 31a and 31b (25 mm width) having the same configuration are wrapped with a thermosetting epoxy resin adhesive resin with a wrap length of 10 mm (adhesion area: 25 mm × 10 mm). ).
The adhesive resin 35 used here is a thermosetting epoxy resin-based adhesive resin (bisphenol A type epoxy resin amount 40 to 50 mass%). Further, a small amount of glass beads (average particle size 250 μm) was added to the adhesive resin 35 so that the thickness of the adhesive resin 35 was 250 μm.
After superposition, they were dried at room temperature for 30 minutes, and then heated at 170 ° C. for 20 minutes to carry out a thermosetting treatment. Then, it left still at room temperature for 24 hours, and produced the adhesion test body.
 作製した接着試験体を、40℃、濃度5%の塩化ナトリウム水溶液に20日間浸漬後、引張試験機にて50mm/分の速度で引張り、接着部分の接着樹脂の凝集破壊率を評価した。凝集破壊率は下記数式1に基づいて算出した。なお、下記数式1においては、接着試験体の引張後の片側を試験片a、もう片方を試験片bとした。 The prepared adhesion test specimen was immersed in an aqueous sodium chloride solution having a concentration of 5% at 40 ° C. for 20 days and then pulled at a rate of 50 mm / min with a tensile tester to evaluate the cohesive failure rate of the adhesive resin at the bonded portion. The cohesive failure rate was calculated based on Equation 1 below. In addition, in the following numerical formula 1, the test specimen a was used as one side after the tension of the adhesion test specimen, and the test specimen b was used as the other side.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 各試験条件とも3本ずつ作製し、凝集破壊率は3本の平均値とした。また、評価基準は、凝集破壊率が60%未満を不良(×)、60%以上70%未満をやや良好(△)、70%以上90%未満を良好(○)90%以上を優れている(◎)とした。その結果を表1に示す。 Three samples were prepared for each test condition, and the cohesive failure rate was the average value of the three samples. Further, the evaluation criteria are excellent when the cohesive failure rate is less than 60% as bad (x), 60% or more and less than 70% is slightly good (Δ), and 70% or more and less than 90% is good (◯) is 90% or more (◎). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、比較例1のアルミニウム合金材は、皮膜中のSi濃度が本発明に規定の範囲よりも高く、1550~1650cm-1の波数領域に吸収を有さないものであり、接着耐久性に乏しかった。なお、比較例1のアルミニウム合金材は、1440~1540cm-1の波数領域に吸収を有していた。
 また、比較例2のアルミニウム合金材は、皮膜中のSi濃度が本発明に規定の範囲よりも低く、1550~1650cm-1の波数領域における吸光度が本発明に規定の範囲よりも小さいものであり、接着耐久性に乏しかった。
 また、比較例3のアルミニウム合金材は、皮膜中のSi濃度が本発明に規定の範囲よりも低く、1550~1650cm-1の波数領域に吸収を有さないものであり、接着耐久性に乏しかった。なお、比較例3のアルミニウム合金材は、1440~1540cm-1の波数領域にも吸収を有していなかった。
 また、比較例4のアルミニウム合金材は、1550~1650cm-1の波数領域に吸収を有さないものであり、接着耐久性に乏しかった。なお、比較例4のアルミニウム合金材は、1440~1540cm-1の波数領域にも吸収を有していなかった。
 また、比較例5のアルミニウム合金材は、皮膜中のMg濃度が本発明に規定の範囲よりも高く、接着耐久性に乏しかった。
 また、比較例6のアルミニウム合金材は、皮膜中のCu濃度が本発明に規定の範囲よりも高く、接着耐久性に乏しかった。
As shown in Table 1, in the aluminum alloy material of Comparative Example 1, the Si concentration in the film is higher than the range specified in the present invention, and has no absorption in the wave number region of 1550 to 1650 cm −1 . The adhesion durability was poor. The aluminum alloy material of Comparative Example 1 had absorption in the wave number region of 1440 to 1540 cm −1 .
In the aluminum alloy material of Comparative Example 2, the Si concentration in the film is lower than the range specified in the present invention, and the absorbance in the wave number region of 1550 to 1650 cm −1 is lower than the range specified in the present invention. The adhesion durability was poor.
In addition, the aluminum alloy material of Comparative Example 3 has a Si concentration in the film lower than the range specified in the present invention, and has no absorption in the wave number region of 1550 to 1650 cm −1 and has poor adhesion durability. It was. The aluminum alloy material of Comparative Example 3 did not absorb even in the wave number region of 1440 to 1540 cm −1 .
Further, the aluminum alloy material of Comparative Example 4 had no absorption in the wave number region of 1550 to 1650 cm −1 and had poor adhesion durability. The aluminum alloy material of Comparative Example 4 did not absorb even in the wave number region of 1440 to 1540 cm −1 .
Further, the aluminum alloy material of Comparative Example 5 had a Mg concentration in the film higher than the range specified in the present invention, and had poor adhesion durability.
Moreover, the aluminum alloy material of Comparative Example 6 had a Cu concentration in the film higher than the range specified in the present invention, and had poor adhesion durability.
 一方、本発明に規定の各要件を満足する実施例1~9のアルミニウム合金材は、高温高湿環境下での良好な湿潤耐久性を有していた。 On the other hand, the aluminum alloy materials of Examples 1 to 9 that satisfy each requirement defined in the present invention had good wet durability under a high temperature and high humidity environment.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2016年5月10日付けで出願された日本特許出願(特願2016-094918)及び2016年11月7日付けで出願された日本特許出願(特願2016-217096)に基づいており、その全体が引用により援用される。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on May 10, 2016 (Japanese Patent Application No. 2016-094918) and a Japanese patent application filed on November 7, 2016 (Japanese Patent Application No. 2016-217096). Which is incorporated by reference in its entirety.
 2 皮膜
 3 基材
 4 接着樹脂層
 5、35 接着樹脂
 6、10 アルミニウム合金材
 7 樹脂成形体
 11 接着樹脂層付きアルミニウム合金材
 20、21a、21b、22、23a、23b 接合体
 31a、31b 供試材
2 Coating 3 Base material 4 Adhesive resin layer 5, 35 Adhesive resin 6, 10 Aluminum alloy material 7 Resin molded body 11 Aluminum alloy material with adhesive resin layer 20, 21a, 21b, 22, 23a, 23b Joined body 31a, 31b Material

Claims (11)

  1.  アルミニウム合金基材と、
     前記アルミニウム合金基材の表面の少なくとも一部に形成された、ケイ素を含むアルミニウムの酸化物からなる皮膜を備えるアルミニウム合金材であって、
     前記皮膜は、フーリエ変換式赤外分光法により入射角75°の平行偏光を入射して得られる皮膜処理前後での差スペクトルにおいて、1550~1650cm-1の波数領域に吸収のピークトップを有し、前記ピークトップにおける吸光度が0.001以上であり、かつ、前記皮膜は、Siを20原子%以上80原子%未満及びMgを0.1原子%以上30原子%未満含有するとともに、Cuが0.6原子%未満に規制されているアルミニウム合金材。
    An aluminum alloy substrate;
    An aluminum alloy material provided with a film made of an oxide of aluminum containing silicon, formed on at least a part of the surface of the aluminum alloy substrate,
    The film has a peak peak of absorption in a wave number region of 1550 to 1650 cm −1 in a difference spectrum before and after the film treatment obtained by applying parallel polarized light with an incident angle of 75 ° by Fourier transform infrared spectroscopy. The absorbance at the peak top is 0.001 or more, and the film contains 20 atomic% or more and less than 80 atomic% of Si and 0.1 atomic% or more and less than 30 atomic% of Mg, and 0% of Cu. Aluminum alloy material restricted to less than 6 atomic%.
  2.  前記差スペクトルにおいて、1440~1540cm-1の波数領域に吸収を有さない請求項1に記載のアルミニウム合金材。 The aluminum alloy material according to claim 1, wherein the difference spectrum has no absorption in a wave number region of 1440 to 1540 cm -1 .
  3.  前記皮膜に接着樹脂を直接接合して用いられる請求項1に記載のアルミニウム合金材。 The aluminum alloy material according to claim 1, which is used by directly bonding an adhesive resin to the film.
  4.  請求項1に記載のアルミニウム合金材の前記皮膜上に接着樹脂層が直接形成されている、接着樹脂層付きアルミニウム合金材。 An aluminum alloy material with an adhesive resin layer, wherein an adhesive resin layer is directly formed on the film of the aluminum alloy material according to claim 1.
  5.  前記接着樹脂層が有機-無機カップリング剤を含む請求項4に記載の接着樹脂層付きアルミニウム合金材。 The aluminum alloy material with an adhesive resin layer according to claim 4, wherein the adhesive resin layer contains an organic-inorganic coupling agent.
  6.  前記接着樹脂層がエポキシ系樹脂を含む請求項4に記載の接着樹脂層付きアルミニウム合金材。 The aluminum alloy material with an adhesive resin layer according to claim 4, wherein the adhesive resin layer includes an epoxy resin.
  7.  請求項1~3のいずれか1項に記載のアルミニウム合金材と他の部材とを、接着樹脂を介して接合させた接合体。 A joined body obtained by joining the aluminum alloy material according to any one of claims 1 to 3 and another member via an adhesive resin.
  8.  請求項4~6のいずれか1項に記載の接着樹脂層付きアルミニウム合金材と他の部材とを、前記接着樹脂層を介して接合させた接合体。 A joined body in which the aluminum alloy material with an adhesive resin layer according to any one of claims 4 to 6 and another member are joined via the adhesive resin layer.
  9.  アルミニウム合金基材の表面の少なくとも一部にケイ素を含むアルミニウムの酸化物からなる皮膜を形成する皮膜形成工程を備えるアルミニウム合金材の製造方法であって、
     前記皮膜形成工程は、前記アルミニウム合金基材の表面に酸化皮膜を形成させる加熱処理段階と、前記加熱処理段階後のエッチング処理段階及びケイ酸塩処理段階とを含み、前記ケイ酸塩処理段階は前記エッチング処理段階より後あるいは前記エッチング処理段階と同時であり、
     前記ケイ酸塩処理段階として、ケイ酸塩を0.008質量%以上0.5質量%未満含む水溶液で前記酸化皮膜を処理する、アルミニウム合金材の製造方法。
    A method for producing an aluminum alloy material comprising a film forming step of forming a film made of an oxide of aluminum containing silicon on at least a part of a surface of an aluminum alloy substrate,
    The film forming step includes a heat treatment stage for forming an oxide film on the surface of the aluminum alloy substrate, an etching treatment stage and a silicate treatment stage after the heat treatment stage, and the silicate treatment stage includes After the etching step or at the same time as the etching step,
    The manufacturing method of the aluminum alloy material which processes the said oxide film with the aqueous solution which contains 0.008 mass% or more and less than 0.5 mass% of silicate as the said silicate process step.
  10.  前記ケイ酸塩を含む水溶液による処理の後には水洗を行わない請求項9に記載のアルミニウム合金材の製造方法。 10. The method for producing an aluminum alloy material according to claim 9, wherein washing with water is not performed after the treatment with the aqueous solution containing silicate.
  11.  前記エッチング処理段階におけるエッチング量を700nm未満に制御する請求項9又は10に記載のアルミニウム合金材の製造方法。 The method for producing an aluminum alloy material according to claim 9 or 10, wherein an etching amount in the etching treatment stage is controlled to be less than 700 nm.
PCT/JP2017/017638 2016-05-10 2017-05-10 Aluminum alloy material, aluminum alloy material provided with adhesive resin layer, joined body, and production method for aluminum alloy material WO2017195808A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-094918 2016-05-10
JP2016094918 2016-05-10
JP2016-217096 2016-11-07
JP2016217096A JP2017203213A (en) 2016-05-10 2016-11-07 Aluminum alloy material, aluminum alloy material with adhesive resin layer, joined body and method for producing aluminum alloy material

Publications (1)

Publication Number Publication Date
WO2017195808A1 true WO2017195808A1 (en) 2017-11-16

Family

ID=60267983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017638 WO2017195808A1 (en) 2016-05-10 2017-05-10 Aluminum alloy material, aluminum alloy material provided with adhesive resin layer, joined body, and production method for aluminum alloy material

Country Status (1)

Country Link
WO (1) WO2017195808A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140751A1 (en) * 2020-01-08 2021-07-15 株式会社デンソー Structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50157233A (en) * 1974-06-10 1975-12-19
JPS59175795A (en) * 1983-03-26 1984-10-04 古河アルミニウム工業株式会社 Anode oxidizing method of ic board aluminum substrate
JPS6422383A (en) * 1987-07-20 1989-01-25 Nihon Parkerizing Process for imparting hydrophilic property to aluminum surface
JPH06306345A (en) * 1993-04-27 1994-11-01 Aisin Chem Co Ltd Adhesive composition for aluminum alloy
WO2015125897A1 (en) * 2014-02-21 2015-08-27 株式会社神戸製鋼所 Aluminum alloy plate, joined body, and automotive member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50157233A (en) * 1974-06-10 1975-12-19
JPS59175795A (en) * 1983-03-26 1984-10-04 古河アルミニウム工業株式会社 Anode oxidizing method of ic board aluminum substrate
JPS6422383A (en) * 1987-07-20 1989-01-25 Nihon Parkerizing Process for imparting hydrophilic property to aluminum surface
JPH06306345A (en) * 1993-04-27 1994-11-01 Aisin Chem Co Ltd Adhesive composition for aluminum alloy
WO2015125897A1 (en) * 2014-02-21 2015-08-27 株式会社神戸製鋼所 Aluminum alloy plate, joined body, and automotive member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140751A1 (en) * 2020-01-08 2021-07-15 株式会社デンソー Structure
JP2021109336A (en) * 2020-01-08 2021-08-02 株式会社デンソー Structure
CN114929473A (en) * 2020-01-08 2022-08-19 株式会社电装 Structure body
JP7434901B2 (en) 2020-01-08 2024-02-21 株式会社デンソー Structure

Similar Documents

Publication Publication Date Title
WO2016076344A1 (en) Aluminum alloy material, bonded body, member for automobiles, and method for producing aluminum alloy material
JP6283240B2 (en) Aluminum alloy plate, joined body and automotive member
JP6426135B2 (en) Method of manufacturing a metal sheet having a Zn-Al-Mg coating, comprising the application of an acidic solution and an adhesive, and the corresponding metal sheet and assembly
WO2015125897A1 (en) Aluminum alloy plate, joined body, and automotive member
WO2017006804A1 (en) Aluminum alloy manufacturing method, aluminum alloy, and conjugate
JP6457193B2 (en) Aluminum alloy material and bonded body with excellent adhesion durability, or automobile parts
JP2017203209A (en) Method for producing aluminum alloy material, aluminum alloy material and joined body
KR102165012B1 (en) Aqueous solution for metal surface treatment, metal surface treatment method and joint
WO2017195806A1 (en) Aluminum alloy material production method, aluminum alloy material, and bonded object
JP2017203213A (en) Aluminum alloy material, aluminum alloy material with adhesive resin layer, joined body and method for producing aluminum alloy material
WO2017195811A1 (en) Aluminum alloy material, aluminum alloy material provided with adhesive resin layer, production method for aluminum alloy material, and production method for aluminum alloy material provided with adhesive resin layer
WO2017195808A1 (en) Aluminum alloy material, aluminum alloy material provided with adhesive resin layer, joined body, and production method for aluminum alloy material
KR101469324B1 (en) Aluminium alloy plate for a vehicle, bonded body using the same and vehicular member
JP2017203212A (en) Aluminum alloy material, aluminum alloy material with adhesive resin layer, method for producing aluminum alloy material and method for producing aluminum alloy material with adhesive resin layer
JP5968956B2 (en) Aluminum alloy plate, joined body and automobile member using the same
JP2017203208A (en) Aqueous solution for metal surface treatment, method for treating metal surface and joined body
KR20020040756A (en) Anti-corrosion method and treatment for a metal substrate pretreated with a zinc-based protective coating layer
US20190119817A1 (en) Aluminum material surface treatment method, surface treatment apparatus, and treated surface aluminum material
WO2017195805A1 (en) Aluminum alloy material, aluminum alloy material provided with adhesive resin layer, joined body, and production method for aluminum alloy material
WO2017006805A1 (en) Aqueous metal surface treatment solution, metal surface treatment method, and conjugate
JP6721406B2 (en) Aluminum alloy material, aluminum alloy material with adhesive resin layer, method for producing aluminum alloy material, and method for producing aluminum alloy material with adhesive resin layer
JP5969087B2 (en) Surface-treated aluminum alloy plate
JP6290042B2 (en) Aluminum alloy material and bonded body with excellent adhesion durability, or automobile parts
JP6278882B2 (en) Surface-treated aluminum alloy plate and manufacturing method thereof
WO2017170015A1 (en) Aluminum material surface treatment method, surface treatment apparatus, and treated surface aluminum material

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796168

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796168

Country of ref document: EP

Kind code of ref document: A1