WO2017170015A1 - Aluminum material surface treatment method, surface treatment apparatus, and treated surface aluminum material - Google Patents

Aluminum material surface treatment method, surface treatment apparatus, and treated surface aluminum material Download PDF

Info

Publication number
WO2017170015A1
WO2017170015A1 PCT/JP2017/011342 JP2017011342W WO2017170015A1 WO 2017170015 A1 WO2017170015 A1 WO 2017170015A1 JP 2017011342 W JP2017011342 W JP 2017011342W WO 2017170015 A1 WO2017170015 A1 WO 2017170015A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum material
zirconium
titanium
amount
coating
Prior art date
Application number
PCT/JP2017/011342
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 小島
陽介 太田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016231695A external-priority patent/JP6227749B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US16/089,535 priority Critical patent/US20190119817A1/en
Priority to CN201780020257.5A priority patent/CN108884571A/en
Publication of WO2017170015A1 publication Critical patent/WO2017170015A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides

Definitions

  • the present invention is obtained by a surface treatment method of an aluminum material using a treatment liquid containing at least one of a titanium fluoride compound and a zirconium fluoride compound, a surface treatment apparatus used in the surface treatment method, and the surface treatment method.
  • the present invention relates to a surface-treated aluminum material that is suitably used for transportation equipment such as automobiles, ships, and airplanes, particularly automobile panels.
  • Aluminum material is attracting attention as a material that replaces the part where the iron material has been used so far, because the specific gravity is as light as about 1/3 that of the iron material.
  • an Al—Mg based alloy or an Al—Mg—Si based alloy is used depending on the characteristics.
  • a method for joining aluminum materials in addition to a welding method such as brazing, a mechanical joining method such as caulking or rivet, a joining method using adhesion is also frequently used.
  • Bonding with an adhesive is a surface bonding suitable for increasing rigidity, and has a feature that not only bonding of aluminum materials but also bonding of different materials with different metals or resins can be performed with less restrictions. In addition, it is possible to suppress electric corrosion, and to easily bond regardless of the thickness of the material to be bonded, the bonding location, and the like. However, since the joint portion joined by the adhesive deteriorates due to the intrusion of moisture, oxygen, chloride ions, etc., and the adhesive strength is lowered, sufficient adhesion durability is required. Conventionally, as a technique for improving the adhesion durability of an aluminum material, a surface treatment method for forming a film on the surface of the aluminum material with a treatment liquid containing titanium and zirconium has been proposed.
  • Patent Document 1 proposes a pretreatment method for applying an adhesive for a metal material.
  • the adhesive coating pretreatment method of Patent Document 1 includes a step (I) of treating an object to be treated comprising an aluminum-based substrate with a chemical conversion treatment solution containing a zirconium fluorine complex and / or a titanium fluorine complex, and a silane cup. And a step (II) of applying a surface treatment liquid containing a hydrolyzed polycondensate of a ring agent.
  • Patent Document 2 proposes a method of forming a chromium-free chemical conversion coating on the surface of an aluminum alloy by a non-rinsing method. Then, the method of forming a chromium-free chemical conversion coating of Patent Document 2 is such that a solution containing a predetermined organic film-forming agent is brought into contact with the surface of the aluminum alloy without rinsing after a contact time of 1 to 40 seconds. The surface solution is dried at a temperature of 50 to 125 ° C.
  • a reactive type treatment As a surface treatment method of an aluminum material, there is a reactive type treatment in which a treatment liquid is attached to an aluminum material and reacted, and then washed and dried to form a film. Since the reactive type treatment is mainly performed by spraying a treatment liquid on an aluminum material or immersing the aluminum material in the treatment liquid, an excess amount of the treatment liquid is generally used. Moreover, the reaction type treatment requires securing the reaction time of the treatment solution before washing with water. For this reason, the reactive type treatment is difficult in terms of productivity, environmental suitability, etc., because the amount of treatment liquid used and the amount of waste liquid tend to be bulky, take a long processing time.
  • a surface treatment method for an aluminum material there is also a coating type treatment in which a coating liquid is formed without applying water washing after applying a treatment liquid to the aluminum material.
  • the coating type processing the amount of processing liquid used and the amount of waste liquid can be reduced, and the processing time can be shortened.
  • the aluminum concentration of the treatment liquid is difficult to increase, energy costs and environmental loads can be reduced.
  • the film formed by the coating-type process tends to have lower adhesion durability than the film formed by the reactive-type process.
  • An aluminum material having a film formed by coating-type surface treatment is desired to improve the adhesion durability because the adhesion strength is significantly lowered when it is bonded to other materials and placed in a wet environment.
  • the present invention was devised to solve the above problems, and the problem is that the surface on which the film having excellent adhesion durability can be formed on the surface of the aluminum material while reducing the energy cost and the environmental load. It is in providing a processing method and a surface treatment apparatus. Another object of the present invention is to provide a surface-treated aluminum material having excellent adhesion durability.
  • a surface treatment method for an aluminum material includes a step of applying a treatment liquid containing at least one of a titanium fluoride compound and a zirconium fluoride compound to the surface of the aluminum material; Forming a film by drying the treatment liquid applied to the surface of the material, and the treatment liquid applied to the surface of the aluminum material comprises the concentration of the titanium fluoride compound and the zirconium fluoride compound.
  • the total concentration was 20 to 400 ppm in terms of titanium and zirconium, and the treatment liquid was applied to the surface of the aluminum material so that the total of titanium and zirconium was 4 to 25 mg / m 2 .
  • the titanium concentration and the zirconium concentration of the treatment liquid are appropriate amounts, when the treatment liquid is dried, it is derived from the treatment liquid containing a titanium fluoride compound, a zirconium fluoride compound, or the like. Unreacted fluorine compound does not remain, and the amount of fluorine compound distributed on the surface of the film is reduced. And a film
  • membrane exhibits favorable adhesion durability by the quantity of a fluorine compound being reduced. Moreover, since it is a coating type surface treatment method, it is not necessary to wash the treatment liquid reacted on the surface of the aluminum material or the film formed on the surface. Therefore, the treatment time for the surface treatment is shortened, and the amount of waste liquid after washing is also reduced.
  • the applied treatment liquid when the applied treatment liquid is dried, 0 to 40% of the titanium fluoride compound or the zirconium fluoride compound contained in the treatment liquid is volatilized and lost. Since the treated liquid is applied by adjusting the total coating amount of titanium and zirconium, the coating amount of the coating formed by drying is also appropriate. Therefore, the coating amount is not too small, and the corrosion resistance and adhesion to the adhesive are not impaired, and the coating amount is too weak to cause the coating to become brittle. As a result, the film exhibits excellent adhesion durability.
  • An aluminum material surface treatment apparatus is applied to a surface of an aluminum material, a coating part that applies a treatment liquid containing at least one of a titanium fluoride compound and a zirconium fluoride compound to the surface of the aluminum material.
  • the treatment liquid applied to the surface of the aluminum material has a total concentration of the titanium fluoride compound and the zirconium fluoride compound of titanium. 20 to 400 ppm in terms of conversion and zirconium, and the application unit applied the treatment liquid to the surface of the aluminum material so that the total of titanium and zirconium was 4 to 25 mg / m 2 .
  • a surface treatment apparatus since the application part applies a treatment liquid having appropriate titanium concentration and zirconium concentration, the unreacted fluorine compound derived from the treatment liquid does not remain in the drying part, and the surface of the film The amount of the fluorine compound distributed in is reduced. And a film
  • the application part applies the treatment liquid having appropriate titanium concentration and zirconium concentration by adjusting the total application amount of titanium and zirconium
  • the coating amount of the formed film is also appropriate. Therefore, the coating amount is not too small, and the corrosion resistance and adhesion to the adhesive are not impaired, and the coating amount is too weak to cause the coating to become brittle. As a result, the film exhibits excellent adhesion durability.
  • fluorine compounds that desorb in the drying section can be treated reliably if a scrubber or the like is installed in the drying section, and it is not necessary to install a washing device after the drying section. Therefore, it is possible to easily realize a highly compact and small surface treatment apparatus.
  • the aluminum material is an aluminum plate, and includes a transport unit that passes the aluminum plate through the application unit and the drying unit.
  • the processing capability of the coating type surface treatment is improved and the productivity is further improved.
  • the surface-treated aluminum material according to the present invention is a coating-type surface-treated aluminum material comprising an aluminum material and a film containing at least one of titanium and zirconium formed on the surface of the aluminum material,
  • the total amount of the titanium coating amount and the zirconium coating amount is 3 to 17 mg / m 2 , and the ratio of the fluorine amount on the surface to the sum of the titanium amount and the zirconium amount (fluorine amount / titanium amount and zirconium amount) ) was 4.0 or less.
  • the coating formed on the surface of the aluminum material has a predetermined titanium coating amount and zirconium coating amount, so that the coating adhesion durability is excellent.
  • a film having excellent adhesion durability can be formed on the surface of an aluminum material while reducing energy cost and environmental load. Moreover, according to the surface treatment aluminum material of this invention, the adhesion durability of a film
  • membrane will be excellent.
  • the surface treatment apparatus 21 includes a treatment liquid coating apparatus (application section) 11, a drying apparatus (drying section) 12, and a transport roll (transport section) 20.
  • the treatment liquid coating apparatus 11 and the drying apparatus 12 are arranged adjacent to each other so that the treatment by the drying apparatus 12 can be performed after the treatment by the treatment liquid coating apparatus 11.
  • each structure with which the surface treatment apparatus 21 is provided is demonstrated.
  • the treatment liquid coating apparatus 11 is an apparatus that applies a treatment liquid to the surface of the aluminum material 1.
  • a treatment liquid containing at least one of a titanium fluoride compound and a zirconium fluoride compound is applied to the surface of the aluminum material 1.
  • the “coating” performed here is a processing operation for the coating type surface treatment, and differs from the coating for the reactive type surface treatment in accordance with the amount of the processing liquid adhered to the surface of the aluminum material 1.
  • the coating amount means a treatment operation obtained after drying the coating.
  • the treatment liquid coating apparatus 11 does not include a water washing apparatus for rinsing unnecessary reaction products remaining after the reaction of the treatment liquid.
  • the treatment liquid coating apparatus 11 may be any apparatus that can apply the treatment liquid to the surface of the aluminum material 1.
  • a roll coater as shown in FIG. 2 or various coaters (coating machines) such as a conventionally known bar coater or die coater may be used.
  • coaters coating machines
  • you may provide a processing bath when setting it as the apparatus which performs an immersion method, you may provide a processing bath.
  • the treatment liquid applied by the treatment liquid coating apparatus 11 has a total concentration of the titanium fluoride compound and the zirconium fluoride compound of 20 to 400 ppm in terms of titanium and zirconium.
  • the treatment liquid coating apparatus 11 needs to apply the treatment liquid onto the surface of the aluminum material 1 so that the total coating amount of titanium and zirconium is 4 to 25 mg / m 2 . Therefore, it is preferable that the treatment liquid coating apparatus 11 is operated so as to apply the treatment liquid at a coating amount of 20 to 100 mL / m 2 .
  • the concentration of the treatment liquid, the total coating amount of titanium and zirconium, and the coating amount of the treatment liquid will be specifically described in the surface treatment method of the present invention described later.
  • the drying device 12 is a device that dries the aluminum material 1 carried in from the treatment liquid coating device 11.
  • the coating liquid 2 is formed by drying the processing liquid applied to the surface of the aluminum material 1 by the processing liquid coating apparatus 11.
  • the drying device 12 may be any device that can perform a drying process on the aluminum material 1 coated with the treatment liquid.
  • it may be a device that applies heat treatment (treatment temperature: 50 to 150 ° C., treatment time: 10 to 60 seconds) to the applied treatment liquid, or a device that blows hot air or dry air onto the applied treatment liquid. It may be.
  • a scrubber can be installed for the treatment of the desorbing fluorine compound.
  • the aluminum material 1 processed in the drying device 12 has a reduced amount of fluorine on the surface of the coating 2 when the drying of the treatment liquid is completed. Therefore, a water rinsing device for rinsing the formed film 2 does not have to be provided between the drying device 12 and the winding device 13.
  • the transport roll 20 transports the aluminum material 1 to the treatment liquid coating device 11 and the drying device 12.
  • the processing object in the processing liquid coating apparatus 11 and the drying apparatus 12 is a long strip-shaped aluminum plate, and the transport roll 20 performs each processing while passing (moving) the aluminum plate. (Structure which performs surface treatment) is shown. With such a configuration, the processing capability is improved, and the productivity of the aluminum material 1 (surface-treated aluminum material) having the film 2 formed on the surface can be increased.
  • the surface treatment device 21 includes a dispensing device 10 and a winding device 13.
  • the aluminum plate dispensed from the dispensing device 10 is continuously processed in the length direction and collected by the winding device 13. Therefore, the processing performed while the sheet is passed by the transport roll 20 becomes more efficient, and the productivity is improved.
  • a conveyor or the like may be used instead of the transport roll 20, or the dispensing device 10 and the winding device 13 may not be provided. Good.
  • the surface treatment apparatus 21 configured as described above further includes a conventionally known alkali cleaning apparatus and pickling apparatus in the previous stage of the treatment liquid coating apparatus 11, and each of the alkali cleaning apparatus and the pickling apparatus is provided with a water washing apparatus. (Not shown).
  • the alkali cleaning device and the pickling device are devices for removing the oil remaining on the surface of the aluminum material 1 and the aluminum oxide film and magnesium oxide film formed on the surface.
  • the surface treatment method of the present invention includes a treatment liquid coating step S5 and a drying step S6.
  • the surface treatment method of the present invention may include an alkali washing step S1, a water washing step S2, an acid washing step S3, and a water washing step S4 before the treatment liquid coating step S5.
  • an alkali washing step S1 a water washing step S2, an acid washing step S3, and a water washing step S4 before the treatment liquid coating step S5.
  • FIG. 3 is referred as an example.
  • the alkali cleaning step S1 is a step of removing oil remaining on the surface of the aluminum material 1 by cleaning the surface of the aluminum material 1 with alkali.
  • the oil component is lubricating oil or the like attached to the surface of the aluminum material 1 when the aluminum material 1 is produced.
  • the alkali cleaning device and the alkali cleaning conditions conventionally known devices and conditions provided along the carry-in route of the aluminum material 1 are used.
  • the alkali cleaning step S1 can be omitted.
  • the water washing step S2 is a step of removing alkali remaining on the surface of the aluminum material 1 by washing the surface of the aluminum material 1 with water.
  • Conventionally known apparatuses and conditions are used for the rinsing apparatus and rinsing conditions.
  • the water washing step S2 may also be omitted.
  • the acid cleaning step S3 is a step of removing the aluminum oxide film and the magnesium oxide film remaining on the surface of the aluminum material 1 by cleaning the surface of the aluminum material 1 with an acid.
  • the aluminum oxide film and the magnesium oxide film are oxide films formed on the surface of the aluminum material 1 when the aluminum material 1 is produced.
  • the acid cleaning apparatus and the acid cleaning conditions conventionally known apparatuses and conditions are used. If the amount of aluminum oxide film or magnesium oxide film remaining on the surface of the aluminum material 1 can be ignored, the acid cleaning step S3 can be omitted.
  • the water washing step S4 is a step of removing the acid remaining on the surface of the aluminum material 1 by washing the surface of the aluminum material 1 with water. Conventionally known apparatuses and conditions are used for the rinsing apparatus or rinsing conditions. When the acid washing step S3 is omitted, the water washing step S4 may be omitted.
  • the treatment liquid application step S5 is a step of applying a treatment liquid containing at least one of a titanium fluoride compound and a zirconium fluoride compound to the surface of the aluminum material 1.
  • the treatment liquid applied to the surface of the aluminum material 1 reacts with the aluminum material 1 to form a film 2 containing at least one of titanium and zirconium on the surface of the aluminum material 1.
  • the application in the treatment liquid application step S5 is a treatment operation for the application type surface treatment, and differs from the application for the reaction type surface treatment according to the amount of the treatment liquid adhered to the surface of the aluminum material 1.
  • the coating amount means a treatment operation obtained after drying the coating.
  • the coating in the treatment liquid coating step S5 may be in any form of a coating method, a spray method, and a dipping method as long as it is a processing operation for a coating type surface treatment.
  • the application in the treatment liquid application step S5 preferably does not include a water washing step for rinsing unnecessary reaction products remaining after the reaction of the treatment liquid.
  • the titanium fluoride compound is, for example, fluorotitanate such as K 2 TiF 6 , (NH 4 ) 2 TiF 6, or fluorotitanate such as H 2 TiF 6 .
  • the zirconium fluoride compound include fluorozirconates such as K 2 ZrF 6 and (NH 4 ) 2 ZrF 6 and fluorozirconate acids such as H 2 ZrF 6 .
  • the film 2 containing at least one of titanium and zirconium is formed, for example, by the following series of reactions.
  • Reaction formula (IV) Al 3+ + ZrF 6 2 ⁇ ⁇ AlF 6 3 ⁇ + Zr 4+ ...
  • the total concentration of the titanium fluoride compound and the zirconium fluoride compound is 20 to 400 ppm in terms of titanium and zirconium.
  • titanium conversion and zirconium conversion mean converting the concentration (mass / volume) of each compound into the concentration of titanium atom or zirconium atom contained in each compound.
  • the total amount (g / m 2 ) of zirconium in terms of metal zirconium
  • the coating amount in terms of the mass of metal atoms can be within an appropriate range for the formation of the film 2.
  • the converted value of the total concentration is less than 20 ppm, the film 2 having a sufficient film amount cannot be formed.
  • the total converted value exceeds 400 ppm, it becomes difficult for fluorine compounds such as hydrogen fluoride derived from the treatment liquid to be detached, and the amount of fluorine compounds on the surface of the film 2 increases, and the adhesion durability of the film 2 increases. Sex is reduced.
  • the converted value of the total concentration of the titanium fluoride compound and the concentration of the zirconium fluoride compound may be 40 ppm or more, 80 ppm or more, or 120 ppm or more from the viewpoint of increasing the coating amount of the coating 2. Also good. Further, from the viewpoint of improving the adhesion durability, it may be 360 ppm or less, 320 ppm or less, or 280 ppm or more.
  • the coating amount of the treatment liquid on the surface to be coated of the aluminum material 1 is preferably 20 to 100 mL / m 2 .
  • the coating amount of the treatment liquid is less than 20 mL / m 2 , it is necessary to set the concentration of the treatment liquid high when forming the coating film 2 having an appropriate coating amount.
  • the concentration of the treatment liquid is too high, the amount of the fluorine compound generated on the surface of the film 2 increases, and the adhesion durability of the film 2 decreases.
  • the coating amount of the treatment liquid exceeds 100 mL / m 2 , the reaction efficiency and the uniformity of the film 2 are deteriorated, and it is difficult to form an appropriate film 2.
  • the amount of application of the aluminum material 1 to the surface to be applied can be adjusted by adjusting the amount of treatment liquid to be applied, the conveyance speed of the aluminum material 1, and the like.
  • the treatment liquid is applied to the surface of the aluminum material 1 so that the total of titanium and zirconium is 4 to 25 mg / m 2 .
  • this total amount is the sum of the metal titanium conversion amount converted into the mass of the titanium atom, and the metal zirconium conversion amount converted into the mass of the zirconium atom.
  • the coating 2 having a sufficient coating amount cannot be formed.
  • the coating amount of the coating 2 becomes too thick, and the fluorine compound increases accordingly, so that the adhesion durability of the coating 2 is lowered.
  • the total of titanium and zirconium is more preferably 5 mg / m 2 or more from the viewpoint of increasing the coating amount of the coating 2. When the total amount is increased in this way, corrosion resistance and adhesion durability are improved. Further, the total of titanium and zirconium is more preferably 20 mg / m 2 or less from the viewpoint of improving adhesion durability. With such a total amount, the coating amount of the coating 2 does not become excessive, and the coating 2 is difficult to become brittle, so that peeling and the like are also prevented. In order to apply the treatment liquid by adjusting the total of titanium and zirconium, the concentration of the treatment liquid and the application amount of the treatment liquid to the coated surface of the aluminum material 1 may be adjusted.
  • the drying step S6 is a step of forming the film 2 by drying the treatment liquid applied to the surface of the aluminum material 1 in the treatment liquid application step S5.
  • the drying process in the drying step S6 may be, for example, a process of heating the applied processing solution (processing temperature: 50 to 150 ° C., processing time: 10 to 60 seconds), or hot air is applied to the applied processing solution. Or a process of blowing dry air.
  • the aluminum material 1 treated in the drying step S6 has a reduced amount of fluorine on the surface of the coating 2 when the drying of the treatment liquid is completed. Therefore, after the drying step S6, a surface-treated aluminum material having excellent adhesion durability can be produced without performing a water washing step of washing the film 2 with water.
  • the surface-treated aluminum material obtained by the surface treatment method of the present invention will be described.
  • the surface-treated aluminum material includes an aluminum material 1 and a film 2 formed on the surface of the aluminum material 1.
  • the surface of the aluminum material 1 means at least one surface of the aluminum material 1, and includes a so-called single side, double side, or a plurality of sides. Each configuration will be described below.
  • the aluminum material 1 is provided in the form of a coiled or sheet-like plate material, or a cast or extruded material, and is preferably provided as a plate material.
  • the aluminum alloy constituting the aluminum material 1 is preferably an Al—Mg alloy or an Al—Mg—Si alloy.
  • the Al—Mg based alloy is a 5000 series alloy specified by JIS, and the Al—Mg—Si based alloy is a 6000 series alloy specified by JIS.
  • the thickness of the aluminum material 1 is 0.7 to 3.0 mm. When the thickness is less than 0.7 mm, the strength is insufficient, and when the thickness exceeds 3.0 mm, the manufacturing cost is increased.
  • the thickness of the aluminum material 1 is preferably 0.8 mm or more from the viewpoint of strength, and preferably 2.3 mm or less from the viewpoint of manufacturing cost.
  • the film 2 is a film containing a predetermined amount of titanium and zirconium.
  • the titanium in the film 2 is preferably at least one of titanium oxide and titanium fluoride, and the zirconium in the film 2 is preferably at least one of zirconium oxide and zirconium fluoride.
  • the coating 2 is made of aluminum and impurities in addition to titanium and zirconium.
  • the remaining aluminum includes aluminum oxide, aluminum fluoride, and the like.
  • the total amount of the titanium coating amount in terms of metal titanium and the zirconium coating amount in terms of metal zirconium is 3 to 17 mg / m 2 .
  • the coating 2 preferably satisfies at least one of a titanium coating amount of 1 to 10 mg / m 2 in terms of metallic titanium and a zirconium coating amount of 1 to 10 mg / m 2 in terms of metallic zirconium. .
  • the total amount of titanium layer weight and zirconium coating amount of the coating 2 is less than 3 mg / m 2, the effect of suppressing hydration at the surface of the aluminum material 1 is not sufficient, the film interior at the time of bonding exceeds 17 mg / m 2 It becomes easy to cause destruction.
  • the lower limit of the total amount of the titanium film and the zirconium film of the film 2 is preferably 5 mg / m 2 , and the destruction of the inside of the film during bonding is suppressed. Therefore, the upper limit of the total amount of the titanium film amount and the zirconium film amount of the film 2 is preferably 15 mg / m 2 .
  • the amount of the titanium film of the film 2 is less than 1 mg / m 2 , the above effect is not obtained.
  • the amount of the titanium film exceeds 10 mg / m 2 , the above effect is saturated and the manufacturing cost is increased.
  • the inside of the film is easily broken during bonding.
  • the amount of the titanium film is preferably 2 mg / m 2 or more.
  • 8 mg / m 2 or less is preferable from the viewpoint of suppressing an increase in the manufacturing cost of the film 2 and the destruction of the inside of the film.
  • the amount of the zirconium film of the film 2 is less than 1 mg / m 2 , the above effect is not obtained, and if the amount of the zirconium film exceeds 10 mg / m 2 , the above effect is saturated and the manufacturing cost is increased. It becomes easy to cause destruction.
  • the amount of the zirconium film is preferably 2 mg / m 2 or more from the viewpoint of suppressing hydration on the surface of the aluminum material 1. On the other hand, 8 mg / m 2 or less is preferable from the viewpoint of suppressing an increase in the manufacturing cost of the film 2 and the destruction of the inside of the film.
  • the thickness of the coating 2 is not particularly limited as long as the titanium coating amount and the zirconium coating amount are predetermined amounts, but it is preferably 10 to 150 nm. When the thickness of the film 2 is less than 10 nm, it is difficult to maintain the adhesion durability. On the other hand, if the thickness of the film 2 exceeds 150 nm, the durability of the adhesion is saturated and the manufacturing cost is likely to increase.
  • the coating 2 has a ratio of “fluorine conversion amount (fluorine amount)” and “sum of metal titanium conversion amount (titanium amount) and metal zirconium conversion amount (zirconium amount)” on the surface (fluorine amount / titanium amount and zirconium amount). Is less than or equal to 4.0.
  • the value of this ratio is expressed as “surface F / (Ti + Zr)”.
  • the film 2 is formed by a drying process and takes such a value of the surface F / (Ti + Zr) when not yet washed with water. This is because the amount of the fluorine compound on the surface of the film 2 is reduced by setting the concentration of the treatment liquid low and adjusting the coating amount of the treatment liquid.
  • the film 2 has excellent adhesion durability because the amount of the fluorine compound is thus reduced.
  • the surface F / (Ti + Zr) of the film 2 exceeds 4.0, the amount of fluorine compound on the surface of the film 2 is too large, so that the adhesive strength between the aluminum material 1 and other materials such as iron material becomes low. Also, the adhesion durability is lowered. Further, the adhesive that bonds the aluminum material 1 and the other material easily peels off, and it is difficult to maintain the adhesive state particularly in a wet environment.
  • the surface F / (Ti + Zr) of the film 2 is preferably 3.0 or less, more preferably 2.5 or less, and even more preferably 2.0 or less, from the viewpoint of improving adhesion durability and the like.
  • the surface F / (Ti + Zr) of the coating 2 can be adjusted by adjusting the concentration of the titanium fluoride compound or the zirconium fluoride compound in the treatment liquid. Further, the surface F / (Ti + Zr) can be obtained by measuring the atomic concentration distribution of fluorine equivalent, metal titanium equivalent, and metal zirconium equivalent by X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy). it can.
  • the measurement conditions of X-ray photoelectron spectroscopy can be measured using, for example, aluminum K ⁇ as a radiation source, data collection time (Dwell): 100 ms, pass energy (pass): 30 eV, and no etching.
  • the converted amount of each element can be quantified based on the peak intensity.
  • the titanium coating amount and the zirconium coating amount of the coating 2 can be measured by fluorescent X-ray (XRF: X-ray Fluorescence Analysis). Further, the thickness of the coating 2 can be measured by a glow discharge optical emission spectrometer (GD-OES: Glow Discharge Optical Emission Spectroscopy). Further, the method for measuring the coating amount and thickness is not limited to XRF and GD-OES, and any measuring method having the same accuracy as the measuring method may be used.
  • an aluminum plate having a width of 150 mm, a length of 200 mm, and a thickness of 1.0 mm was produced using a JIS-defined 6016 series alloy.
  • the aluminum plate was alkali degreased and washed with water, then acid washed and washed with water.
  • the treatment liquid (25 ° C.) having the concentrations shown in Table 1 was applied in various coating amounts to the surface of the aluminum plate washed with water after acid cleaning. Thereafter, a coating type surface-treated aluminum material (No. 1 to 11) was produced by performing a drying treatment at 110 ° C. for 30 seconds.
  • a treatment liquid (50 ° C.) containing 150 ppm of fluorotitanate acid as a titanium fluoride compound and 250 ppm of fluorozirconate acid as a zirconium fluoride compound was sprayed on the surface of the aluminum plate washed with water after acid cleaning for 3 seconds. . Then, after performing the water washing process for 25 second with 25 degreeC water, the reactive type surface treatment aluminum material (No. 12) was produced by performing room temperature drying.
  • the titanium coating amount and the zirconium coating amount were measured by fluorescent X-rays (XRF).
  • the coating amount of the surface-treated aluminum material was measured on one plate randomly taken out from a plurality of surface-treated aluminum materials treated under the same conditions.
  • the measurement position per plate is a surface having a width of 150 mm and a length of 200 mm, and is a circular region with a diameter of 30 mm centered on four points 50 mm inside and one point at the center of the plate diagonally from the four corners. , A total of 5 locations.
  • the coating amount of the surface-treated aluminum material was determined as an average value of the measured values at a total of five locations.
  • the atomic concentration of fluorine equivalent amount, metal titanium equivalent amount, and metal zirconium equivalent amount on the surface of the coating formed on the surface of the surface-treated aluminum material was measured by X-ray photoelectron spectroscopy (XPS).
  • the surface F / (Ti + Zr) was calculated.
  • the surface F / (Ti + Zr) of the surface-treated aluminum material was measured for one plate randomly taken out from a plurality of surface-treated aluminum materials treated under the same conditions. The measurement position per one plate was a surface of 150 mm width ⁇ 200 mm length, and a total of 5 square areas of 1 mm square located at each of the four corners and the center of the plate.
  • the surface F / (Ti + Zr) of the surface-treated aluminum material was determined as an average value of the measured values at a total of five locations.
  • a specific method for producing the adhesion test body 34 is as follows.
  • the lower test piece 31 and the upper test piece 33 were laminated and pasted with a thermosetting epoxy resin adhesive 32 so as to have a wrap length of 10 mm (adhesion area: 25 mm ⁇ 10 mm). .
  • glass beads particles 250 ⁇ m were added to the adhesive 32 and adjusted so that the thickness of the adhesive 32 was 250 ⁇ m. Thereafter, it was baked and cured at 170 ° C. for 20 minutes. Then, it left still at room temperature for 24 hours, and was set as the adhesion test body 34.
  • Adhesion durability test After the produced adhesion test body 34 was held in neutral salt spray for 14 days, unbonded portions of the lower and upper test pieces 31 and 33 were grasped, and a shear tensile test was performed at a speed of 10 mm / min. For the tensile test, an AG-50kNI autograph manufactured by Shimadzu Corporation was used. And the observation of the fracture
  • Adhesion durability test failure mode
  • Cohesive failure rate (%) 100 ⁇ ⁇ (interface peeling area of lower test piece 31 / bonding area of lower test piece 31) ⁇ 100 + (interface peeling area of upper test piece 33 / bonding area of upper test piece 33) ⁇ 100) ⁇ (1) Further, the evaluation criteria for the fracture mode were a failure “x” when the cohesive fracture rate was less than 90% and a good “ ⁇ ” when 90% or more.
  • Adhesion durability test Adhesive strength
  • the maximum stress at break was determined from the stress-strain diagram obtained during the tensile test, and was used as the adhesive strength.
  • Table 1 shows the method used for the surface treatment, the titanium equivalent and zirconium equivalent concentrations of the treatment liquid applied to the surface of the aluminum plate, the application amount of the treatment liquid, the coating amount, and the results of the surface F / (Ti + Zr). The evaluation results of the form and the results of the adhesive strength are shown respectively.
  • the surface-treated aluminum material according to No. 12 has a film formed by a reactive surface treatment and is washed with water, the value of “surface F / (Ti + Zr)” is low. For this reason, the adhesive strength is high, the form of fracture due to peeling hardly occurs, and the adhesion durability of the film is excellent.
  • the coating-type surface-treated aluminum materials according to 8 to 9 have a high value of “Surface F / (Ti + Zr)” because the concentration of the applied treatment liquid is not in an appropriate range and the concentration is too high. For this reason, the adhesive strength is low, and a destructive form due to peeling is likely to occur, and the adhesion durability of the film is not improved.
  • the coating type surface-treated aluminum materials according to Nos. 10 to 11 have a low value of “Surface F / (Ti + Zr)” because the coating amount of the treatment liquid is not in an appropriate range and a film having an appropriate film amount is not formed.
  • the film is fragile. For this reason, the adhesive strength is low, and a destructive form due to peeling is likely to occur, and the adhesion durability of the film is not improved.
  • the surface treatment method, the surface treatment apparatus, and the aluminum surface treatment material according to the present invention have been described in detail with reference to the embodiments and examples.
  • the gist of the present invention is not limited to the above-described contents.
  • the scope of rights should be construed based on the claims. Needless to say, the contents of the present invention can be modified and changed based on the above description.
  • the aluminum agent of the present invention has a film having excellent adhesion durability while reducing energy cost and environmental load, and is useful for transportation equipment such as automobiles, ships, and aircraft, particularly automobile panels.

Abstract

A coating is formed by coating a treatment solution containing a 20-400 ppm total, calculated as titanium and calculated as zirconium, of a titanium fluoride compound and/or a zirconium fluoride compound on the surface of an aluminum material so that the total of titanium and zirconium is 4-25 mg/m2, and drying.

Description

アルミニウム材の表面処理方法、表面処理装置および表面処理アルミニウム材Surface treatment method of aluminum material, surface treatment apparatus, and surface treated aluminum material
 本発明は、フッ化チタン化合物およびフッ化ジルコニウム化合物の少なくとも1種を含有する処理液によるアルミニウム材の表面処理方法、その表面処理方法で用いられる表面処理装置、および、その表面処理方法により得られ、自動車、船舶、航空機などの輸送用機器、特に自動車用パネルに好適に使用される表面処理アルミニウム材に関する。 The present invention is obtained by a surface treatment method of an aluminum material using a treatment liquid containing at least one of a titanium fluoride compound and a zirconium fluoride compound, a surface treatment apparatus used in the surface treatment method, and the surface treatment method. The present invention relates to a surface-treated aluminum material that is suitably used for transportation equipment such as automobiles, ships, and airplanes, particularly automobile panels.
 自動車産業では、近年、CO排出規制などの地球環境問題から、部材の軽量化による燃費の向上が求められている。アルミニウム材は、比重が鉄材料の約1/3と軽いため、今まで鉄材料が使用されていた部分に軽量化が求められて置き換わる材料として注目されている。アルミニウム材としては、Al-Mg系合金、Al-Mg-Si系合金がその特性に応じて使用されている。アルミニウム材を接合する方法としては、ろう付けなどの溶接法や、かしめ、リベットなどによる機械的接合法のほか、接着による接合法も多用されている。 In recent years, in the automobile industry, improvement in fuel consumption has been demanded by reducing the weight of members due to global environmental problems such as CO 2 emission regulations. Aluminum material is attracting attention as a material that replaces the part where the iron material has been used so far, because the specific gravity is as light as about 1/3 that of the iron material. As the aluminum material, an Al—Mg based alloy or an Al—Mg—Si based alloy is used depending on the characteristics. As a method for joining aluminum materials, in addition to a welding method such as brazing, a mechanical joining method such as caulking or rivet, a joining method using adhesion is also frequently used.
 接着剤による接着は、剛性を高めるのに適した面接合であり、また、アルミニウム材同士の接合のみならず、異種金属や樹脂などとの異材接合も制約少なく行えるという特徴がある。また、電食を抑制したり、被接合材の厚さや、接合箇所などに依らず、容易に接合したりすることを可能としている。しかし、接着剤によって接合された接合部は、水分、酸素、塩化物イオンなどの浸入により劣化し、接着強度が低下するため、十分な接着耐久性が要求される。従来、アルミニウム材の接着耐久性を向上させる技術としては、チタンおよびジルコウニムを含有する処理液によりアルミニウム材の表面に皮膜を形成させる表面処理方法が提案されている。 Bonding with an adhesive is a surface bonding suitable for increasing rigidity, and has a feature that not only bonding of aluminum materials but also bonding of different materials with different metals or resins can be performed with less restrictions. In addition, it is possible to suppress electric corrosion, and to easily bond regardless of the thickness of the material to be bonded, the bonding location, and the like. However, since the joint portion joined by the adhesive deteriorates due to the intrusion of moisture, oxygen, chloride ions, etc., and the adhesive strength is lowered, sufficient adhesion durability is required. Conventionally, as a technique for improving the adhesion durability of an aluminum material, a surface treatment method for forming a film on the surface of the aluminum material with a treatment liquid containing titanium and zirconium has been proposed.
 例えば、特許文献1には、金属材料の接着剤塗布前処理方法が提案されている。そして、特許文献1の接着剤塗布前処理方法は、アルミニウム系基材からなる被処理物をジルコニウムフッ素錯体および/またはチタンフッ素錯体を含有する化成処理液により処理する工程(I)と、シランカップリング剤の加水分解重縮合物を含有する表面処理液を塗布する工程(II)とからなる。 For example, Patent Document 1 proposes a pretreatment method for applying an adhesive for a metal material. And the adhesive coating pretreatment method of Patent Document 1 includes a step (I) of treating an object to be treated comprising an aluminum-based substrate with a chemical conversion treatment solution containing a zirconium fluorine complex and / or a titanium fluorine complex, and a silane cup. And a step (II) of applying a surface treatment liquid containing a hydrolyzed polycondensate of a ring agent.
 特許文献2には、無濯ぎ法でアルミニウム合金の表面に無クロム化成被覆を形成する方法が提案されている。そして、特許文献2の無クロム化成被覆を形成する方法は、所定の有機皮膜形成剤を含有する溶液とアルミニウム合金の表面を接触させ、1~40秒の接触時間の後、濯ぎをせずに、50~125℃の温度で表面の溶液を乾燥させている。 Patent Document 2 proposes a method of forming a chromium-free chemical conversion coating on the surface of an aluminum alloy by a non-rinsing method. Then, the method of forming a chromium-free chemical conversion coating of Patent Document 2 is such that a solution containing a predetermined organic film-forming agent is brought into contact with the surface of the aluminum alloy without rinsing after a contact time of 1 to 40 seconds. The surface solution is dried at a temperature of 50 to 125 ° C.
日本国特開2006-152267号公報Japanese Unexamined Patent Publication No. 2006-152267 日本国特表平9-511548号公報Japanese National Table No. 9-511548
 アルミニウム材の表面処理方法としては、アルミニウム材に処理液を付着させて反応させた後、水洗および乾燥を行って皮膜を形成する反応型の処理がある。反応型の処理は、主として、アルミニウム材に処理液を噴霧したり、アルミニウム材を処理液に浸漬させて行うため、一般に、過剰量の処理液を使用する。また、反応型の処理は、水洗を行う前に処理液の反応時間を確保することを要する。そのため、反応型の処理は、処理液の使用量や廃液量が嵩み易く、処理時間も掛かり、生産性や環境適合性などの点で難がある。 As a surface treatment method of an aluminum material, there is a reactive type treatment in which a treatment liquid is attached to an aluminum material and reacted, and then washed and dried to form a film. Since the reactive type treatment is mainly performed by spraying a treatment liquid on an aluminum material or immersing the aluminum material in the treatment liquid, an excess amount of the treatment liquid is generally used. Moreover, the reaction type treatment requires securing the reaction time of the treatment solution before washing with water. For this reason, the reactive type treatment is difficult in terms of productivity, environmental suitability, etc., because the amount of treatment liquid used and the amount of waste liquid tend to be bulky, take a long processing time.
 反応型の処理であっても、一度使用された処理液を回収し、次処理において再利用すれば、処理液の使用量や廃液量を削減することは可能である。ところが、処理液をアルミニウム材に付着させると、表面のアルミニウムがエッチングされて溶出し、処理液のアルミニウム濃度は高くなっていく。処理液のアルミニウム濃度が高くなると、アルミニウム材の表面近傍においてpHの上昇が抑制されてしまうので、十分量の皮膜を形成するのが困難になる。処理液の温度を上げれば、処理液を増量せずとも皮膜量を改善することはできるものの、処理液を加温するにはエネルギーコストが掛かる。 Even in the case of reaction type processing, it is possible to reduce the amount of processing liquid used and the amount of waste liquid by collecting the processing liquid once used and reusing it in the next processing. However, when the treatment liquid is attached to the aluminum material, the aluminum on the surface is etched and eluted, and the aluminum concentration of the treatment liquid increases. When the aluminum concentration of the treatment liquid is increased, an increase in pH is suppressed in the vicinity of the surface of the aluminum material, so that it is difficult to form a sufficient amount of film. If the temperature of the treatment liquid is increased, the amount of the film can be improved without increasing the amount of the treatment liquid, but it takes energy cost to heat the treatment liquid.
 これに対して、アルミニウム材の表面処理方法としては、処理液をアルミニウム材に塗布した後、水洗を行うこと無く皮膜を形成する塗布型の処理もある。塗布型の処理によれば、処理液の使用量や廃液量が少なくて済み、処理時間も短縮される。また、処理液のアルミニウム濃度も高くはなり難いので、エネルギーコストや環境負荷を軽減することができる。しかし、塗布型の処理によって形成される皮膜は、反応型の処理によって形成される皮膜と比較して接着耐久性が低くなる傾向がある。塗布型の表面処理によって皮膜を形成したアルミニウム材は、他材と接着して湿潤環境下におくと、接着強度の低下が著しいため、接着耐久性を向上させることが望まれている。 On the other hand, as a surface treatment method for an aluminum material, there is also a coating type treatment in which a coating liquid is formed without applying water washing after applying a treatment liquid to the aluminum material. According to the coating type processing, the amount of processing liquid used and the amount of waste liquid can be reduced, and the processing time can be shortened. In addition, since the aluminum concentration of the treatment liquid is difficult to increase, energy costs and environmental loads can be reduced. However, the film formed by the coating-type process tends to have lower adhesion durability than the film formed by the reactive-type process. An aluminum material having a film formed by coating-type surface treatment is desired to improve the adhesion durability because the adhesion strength is significantly lowered when it is bonded to other materials and placed in a wet environment.
 そこで、本発明は、前記問題を解決すべく創案されたもので、その課題は、エネルギーコストおよび環境負荷を軽減しながらも、優れた接着耐久性を有する皮膜をアルミニウム材の表面に形成できる表面処理方法および表面処理装置を提供することにある。また、本発明の課題は、優れた接着耐久性を有する表面処理アルミニウム材を提供することにある。 Therefore, the present invention was devised to solve the above problems, and the problem is that the surface on which the film having excellent adhesion durability can be formed on the surface of the aluminum material while reducing the energy cost and the environmental load. It is in providing a processing method and a surface treatment apparatus. Another object of the present invention is to provide a surface-treated aluminum material having excellent adhesion durability.
 前記課題を解決するため、本発明に係るアルミニウム材の表面処理方法は、フッ化チタン化合物およびフッ化ジルコニウム化合物の少なくとも1種を含有する処理液をアルミニウム材の表面に塗布する工程と、前記アルミニウム材の表面に塗布された処理液を乾燥させて皮膜を形成する工程と、を含み、前記アルミニウム材の表面に塗布される処理液は、前記フッ化チタン化合物の濃度と前記フッ化ジルコニウム化合物の濃度の合計がチタン換算およびジルコニウム換算で20~400ppmであり、前記処理液を、チタンとジルコニウムの合計が4~25mg/mとなるように前記アルミニウム材の表面に塗布することとした。 In order to solve the above problems, a surface treatment method for an aluminum material according to the present invention includes a step of applying a treatment liquid containing at least one of a titanium fluoride compound and a zirconium fluoride compound to the surface of the aluminum material; Forming a film by drying the treatment liquid applied to the surface of the material, and the treatment liquid applied to the surface of the aluminum material comprises the concentration of the titanium fluoride compound and the zirconium fluoride compound. The total concentration was 20 to 400 ppm in terms of titanium and zirconium, and the treatment liquid was applied to the surface of the aluminum material so that the total of titanium and zirconium was 4 to 25 mg / m 2 .
 このような表面処理方法によると、処理液のチタン濃度およびジルコニウム濃度が適量であるので、その処理液を乾燥させたとき、フッ化チタン化合物、フッ化ジルコニウム化合物などを含有する処理液に由来する未反応のフッ素化合物が残留せず、皮膜の表面に分布するフッ素化合物の量が低減される。そして、フッ素化合物の量が低減されることによって、皮膜が良好な接着耐久性を発揮することとなる。また、塗布型の表面処理方法であるため、アルミニウム材の表面で反応した処理液や、表面に形成された皮膜を水洗することを要しない。それ故、表面処理の処理時間が短縮されると共に、水洗後の廃液量も低減される。すなわち、生産性や環境適合性が向上し、エネルギーコストも抑えることができる。また、一般に、塗布された処理液が乾燥すると、処理液に含まれていたフッ化チタン化合物やフッ化ジルコニウム化合物の0~40%が揮発して失われるところ、チタン濃度およびジルコニウム濃度が適量とされた処理液を、チタンとジルコニウムの合計の塗布量を調整して塗布するので、乾燥により形成される皮膜の皮膜量も適切になる。それ故、皮膜量が少な過ぎて耐食性や接着剤との密着性が損なわれたり、皮膜量が多過ぎることに起因して皮膜が脆弱化したりするようなことが無く、フッ素化合物の低減と相俟って、皮膜が優れた接着耐久性を発揮することとなる。 According to such a surface treatment method, since the titanium concentration and the zirconium concentration of the treatment liquid are appropriate amounts, when the treatment liquid is dried, it is derived from the treatment liquid containing a titanium fluoride compound, a zirconium fluoride compound, or the like. Unreacted fluorine compound does not remain, and the amount of fluorine compound distributed on the surface of the film is reduced. And a film | membrane exhibits favorable adhesion durability by the quantity of a fluorine compound being reduced. Moreover, since it is a coating type surface treatment method, it is not necessary to wash the treatment liquid reacted on the surface of the aluminum material or the film formed on the surface. Therefore, the treatment time for the surface treatment is shortened, and the amount of waste liquid after washing is also reduced. That is, productivity and environmental compatibility are improved, and energy costs can be suppressed. In general, when the applied treatment liquid is dried, 0 to 40% of the titanium fluoride compound or the zirconium fluoride compound contained in the treatment liquid is volatilized and lost. Since the treated liquid is applied by adjusting the total coating amount of titanium and zirconium, the coating amount of the coating formed by drying is also appropriate. Therefore, the coating amount is not too small, and the corrosion resistance and adhesion to the adhesive are not impaired, and the coating amount is too weak to cause the coating to become brittle. As a result, the film exhibits excellent adhesion durability.
 本発明に係るアルミニウム材の表面処理装置は、フッ化チタン化合物およびフッ化ジルコニウム化合物の少なくとも1種を含有する処理液をアルミニウム材の表面に塗布する塗布部と、前記アルミニウム材の表面に塗布された処理液を乾燥させて皮膜を形成する乾燥部と、を備え、前記アルミニウム材の表面に塗布される処理液は、前記フッ化チタン化合物の濃度と前記フッ化ジルコニウム化合物の濃度の合計がチタン換算およびジルコニウム換算で20~400ppmであり、前記塗布部は、前記処理液を、チタンとジルコニウムの合計が4~25mg/mとなるように前記アルミニウム材の表面に塗布することとした。 An aluminum material surface treatment apparatus according to the present invention is applied to a surface of an aluminum material, a coating part that applies a treatment liquid containing at least one of a titanium fluoride compound and a zirconium fluoride compound to the surface of the aluminum material. The treatment liquid applied to the surface of the aluminum material has a total concentration of the titanium fluoride compound and the zirconium fluoride compound of titanium. 20 to 400 ppm in terms of conversion and zirconium, and the application unit applied the treatment liquid to the surface of the aluminum material so that the total of titanium and zirconium was 4 to 25 mg / m 2 .
 このような表面処理装置によると、塗布部が、チタン濃度およびジルコニウム濃度が適量な処理液を塗布するので、乾燥部において、処理液に由来する未反応のフッ素化合物が残留せず、皮膜の表面に分布するフッ素化合物の量が低減される。そして、フッ素化合物の量が低減されることによって、皮膜が良好な接着耐久性を発揮することとなる。また、塗布部が処理液を塗布することによって皮膜を形成するため、アルミニウム材の表面で反応した処理液や、表面に形成された皮膜を水洗することを要しない。それ故、表面処理の処理時間が短縮されると共に、水洗後の廃液量も低減される。すなわち、生産性や環境適合性が高く、エネルギーコストも抑えられる。また、塗布部は、チタン濃度およびジルコニウム濃度が適量とされた処理液を、チタンとジルコニウムの合計の塗布量を調整して塗布するので、形成される皮膜の皮膜量も適切になる。それ故、皮膜量が少な過ぎて耐食性や接着剤との密着性が損なわれたり、皮膜量が多過ぎることに起因して皮膜が脆弱化したりするようなことが無く、フッ素化合物の低減と相俟って、皮膜が優れた接着耐久性を発揮することとなる。また、乾燥部において脱離するフッ素化合物は、乾燥部にスクラバーなどを設置すれば、確実に処理することができるし、乾燥部の後段に水洗装置を設置することを要しないので、環境適合性が高く小型化された表面処理装置を容易に実現できる。 According to such a surface treatment apparatus, since the application part applies a treatment liquid having appropriate titanium concentration and zirconium concentration, the unreacted fluorine compound derived from the treatment liquid does not remain in the drying part, and the surface of the film The amount of the fluorine compound distributed in is reduced. And a film | membrane exhibits favorable adhesion durability by the quantity of a fluorine compound being reduced. Moreover, since a coating part forms a film | membrane by apply | coating a process liquid, it is not necessary to wash the process liquid which reacted on the surface of the aluminum material, and the film | membrane formed on the surface with water. Therefore, the treatment time for the surface treatment is shortened, and the amount of waste liquid after washing is also reduced. That is, productivity and environmental compatibility are high, and energy costs can be suppressed. In addition, since the application part applies the treatment liquid having appropriate titanium concentration and zirconium concentration by adjusting the total application amount of titanium and zirconium, the coating amount of the formed film is also appropriate. Therefore, the coating amount is not too small, and the corrosion resistance and adhesion to the adhesive are not impaired, and the coating amount is too weak to cause the coating to become brittle. As a result, the film exhibits excellent adhesion durability. In addition, fluorine compounds that desorb in the drying section can be treated reliably if a scrubber or the like is installed in the drying section, and it is not necessary to install a washing device after the drying section. Therefore, it is possible to easily realize a highly compact and small surface treatment apparatus.
 本発明に係るアルミニウム材の表面処理装置は、前記アルミニウム材がアルミニウム板であり、前記アルミニウム板を前記塗布部および前記乾燥部に通板させる搬送部を備えることが好ましい。 In the surface treatment apparatus for an aluminum material according to the present invention, it is preferable that the aluminum material is an aluminum plate, and includes a transport unit that passes the aluminum plate through the application unit and the drying unit.
 このような表面処理装置によると、塗布型の表面処理の処理能力が向上して生産性がより向上する。 According to such a surface treatment apparatus, the processing capability of the coating type surface treatment is improved and the productivity is further improved.
 本発明に係る表面処理アルミニウム材は、アルミニウム材と、前記アルミニウム材の表面に形成されたチタンおよびジルコニウムの少なくとも1種を含有する皮膜と、を備える塗布型表面処理アルミニウム材であって、前記皮膜は、チタン皮膜量とジルコニウム皮膜量との合計量が3~17mg/mであり、かつ、表面におけるフッ素量と、チタン量とジルコニウム量の和との比(フッ素量/チタン量とジルコニウム量の和)が4.0以下であることとした。 The surface-treated aluminum material according to the present invention is a coating-type surface-treated aluminum material comprising an aluminum material and a film containing at least one of titanium and zirconium formed on the surface of the aluminum material, The total amount of the titanium coating amount and the zirconium coating amount is 3 to 17 mg / m 2 , and the ratio of the fluorine amount on the surface to the sum of the titanium amount and the zirconium amount (fluorine amount / titanium amount and zirconium amount) ) Was 4.0 or less.
 このような表面処理アルミニウム材によると、アルミニウム材の表面に形成された皮膜が、所定のチタン皮膜量およびジルコニウム皮膜量であることによって、皮膜の接着耐久性が優れたものとなる。 According to such a surface-treated aluminum material, the coating formed on the surface of the aluminum material has a predetermined titanium coating amount and zirconium coating amount, so that the coating adhesion durability is excellent.
 本発明の表面処理方法および表面処理装置によれば、エネルギーコストおよび環境負荷を軽減しながらも、優れた接着耐久性を有する皮膜をアルミニウム材の表面に形成できる。また、本発明の表面処理アルミニウム材によれば、皮膜の接着耐久性が優れたものとなる。 According to the surface treatment method and the surface treatment apparatus of the present invention, a film having excellent adhesion durability can be formed on the surface of an aluminum material while reducing energy cost and environmental load. Moreover, according to the surface treatment aluminum material of this invention, the adhesion durability of a film | membrane will be excellent.
本発明に係る表面処理方法の工程を模式的に示す図である。It is a figure which shows typically the process of the surface treatment method which concerns on this invention. 本発明の表面処理方法で使用される表面処理装置を模式的に示す図である。It is a figure which shows typically the surface treatment apparatus used with the surface treatment method of this invention. 本発明に係る表面処理アルミニウム材の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the surface treatment aluminum material which concerns on this invention. 表面処理アルミニウム材の接着性評価試験の手順を模式的に示す図である。It is a figure which shows typically the procedure of the adhesiveness evaluation test of a surface treatment aluminum material.
 本発明に係る表面処理方法、表面処理装置および表面処理アルミニウム材の実施形態について説明する。まず、本発明の表面処理方法で用いられる表面処理装置について説明する。図2に示すように、表面処理装置21は、処理液塗布装置(塗布部)11と、乾燥装置(乾燥部)12と、搬送ロール(搬送部)20と、を備える。なお、この表面処理装置21では、処理液塗布装置11による処理の次に、乾燥装置12による処理を行えるように、処理液塗布装置11と乾燥装置12とが隣り合って配置されている。以下、表面処理装置21が備える各構成について説明する。 Embodiments of a surface treatment method, a surface treatment apparatus, and a surface-treated aluminum material according to the present invention will be described. First, the surface treatment apparatus used in the surface treatment method of the present invention will be described. As shown in FIG. 2, the surface treatment apparatus 21 includes a treatment liquid coating apparatus (application section) 11, a drying apparatus (drying section) 12, and a transport roll (transport section) 20. In the surface treatment apparatus 21, the treatment liquid coating apparatus 11 and the drying apparatus 12 are arranged adjacent to each other so that the treatment by the drying apparatus 12 can be performed after the treatment by the treatment liquid coating apparatus 11. Hereinafter, each structure with which the surface treatment apparatus 21 is provided is demonstrated.
(処理液塗布装置)
 処理液塗布装置11は、アルミニウム材1の表面に、処理液を塗布する装置である。そして、処理液塗布装置11では、アルミニウム材1の表面にフッ化チタン化合物およびフッ化ジルコニウム化合物の少なくとも1種を含有する処理液が塗布される。ここで行われる「塗布」は、塗布型の表面処理のための処理操作であり、反応型の表面処理のための塗布とは異なり、アルミニウム材1の表面に付着させた処理液量に応じた皮膜量が皮膜の乾燥後に得られる処理操作を意味する。図2においては、処理液をアルミニウム材1に塗り付ける塗布法による形態を示しているが、塗布型の表面処理の目的で用いられる装置である限り、処理液をアルミニウム材1に噴霧して塗布する噴霧法を行う装置であってもよいし、処理液にアルミニウム材1を浸漬させて塗布する浸漬法を行う装置であってもよい。但し、処理液塗布装置11は、処理液の反応後に残存している不要な反応生成物を濯ぐための水洗装置を付帯しないことが好ましい。
(Processing liquid application equipment)
The treatment liquid coating apparatus 11 is an apparatus that applies a treatment liquid to the surface of the aluminum material 1. In the treatment liquid coating apparatus 11, a treatment liquid containing at least one of a titanium fluoride compound and a zirconium fluoride compound is applied to the surface of the aluminum material 1. The “coating” performed here is a processing operation for the coating type surface treatment, and differs from the coating for the reactive type surface treatment in accordance with the amount of the processing liquid adhered to the surface of the aluminum material 1. The coating amount means a treatment operation obtained after drying the coating. Although FIG. 2 shows a form by a coating method in which the treatment liquid is applied to the aluminum material 1, the treatment liquid is sprayed and applied to the aluminum material 1 as long as the apparatus is used for the purpose of a coating type surface treatment. The apparatus which performs a spraying method may be sufficient, and the apparatus which performs the immersion method which immerses and apply | coats the aluminum material 1 to a process liquid may be sufficient. However, it is preferable that the treatment liquid coating apparatus 11 does not include a water washing apparatus for rinsing unnecessary reaction products remaining after the reaction of the treatment liquid.
 処理液塗布装置11は、アルミニウム材1の表面に対して処理液を塗布できる装置であればよい。例えば、図2に示すようなロールコーターであってもよいし、従来公知のバーコーター、ダイコーターといった各種コーター(塗工機)であってもよい。また、噴霧法を行う装置とする場合は、スプレーを備えてよいし、浸漬法を行う装置とする場合は、処理浴を備えてよい。 The treatment liquid coating apparatus 11 may be any apparatus that can apply the treatment liquid to the surface of the aluminum material 1. For example, a roll coater as shown in FIG. 2 or various coaters (coating machines) such as a conventionally known bar coater or die coater may be used. Moreover, when it is set as the apparatus which performs the spraying method, you may provide a spray, and when setting it as the apparatus which performs an immersion method, you may provide a processing bath.
 処理液塗布装置11が塗布する処理液は、詳細には、フッ化チタン化合物の濃度とフッ化ジルコニウム化合物の濃度の合計がチタン換算およびジルコニウム換算で20~400ppmである。処理液塗布装置11は、処理液を、チタンとジルコニウムの合計の塗布量が4~25mg/mとなるようにアルミニウム材1の表面に塗布する必要がある。そのため、処理液塗布装置11は、処理液を20~100mL/mの塗布量で塗布するように運転されることが好ましい。なお、処理液の濃度、チタンとジルコニウムの合計の塗布量、処理液の塗布量については、後記する本発明の表面処理方法で具体的に説明する。 Specifically, the treatment liquid applied by the treatment liquid coating apparatus 11 has a total concentration of the titanium fluoride compound and the zirconium fluoride compound of 20 to 400 ppm in terms of titanium and zirconium. The treatment liquid coating apparatus 11 needs to apply the treatment liquid onto the surface of the aluminum material 1 so that the total coating amount of titanium and zirconium is 4 to 25 mg / m 2 . Therefore, it is preferable that the treatment liquid coating apparatus 11 is operated so as to apply the treatment liquid at a coating amount of 20 to 100 mL / m 2 . The concentration of the treatment liquid, the total coating amount of titanium and zirconium, and the coating amount of the treatment liquid will be specifically described in the surface treatment method of the present invention described later.
(乾燥装置)
 乾燥装置12は、処理液塗布装置11から搬入されるアルミニウム材1を乾燥する装置である。乾燥装置12では、処理液塗布装置11によってアルミニウム材1の表面に塗布された処理液を乾燥させて皮膜2を形成する。乾燥装置12は、処理液が塗布されたアルミニウム材1に対して乾燥処理を施すことができる装置であればよい。例えば、塗布された処理液に加熱処理(処理温度:50~150℃、処理時間:10~60秒)を施す装置であってもよいし、塗布された処理液に熱風や乾燥空気を吹き付ける装置であってもよい。また、脱離するフッ素化合物の処理のために、スクラバーを設置することもできる。乾燥装置12において処理されたアルミニウム材1は、後記するように、処理液の乾燥が終了した時点で、皮膜2の表面のフッ素量が低減されている。そのため、乾燥装置12と、巻き取り装置13との間には、形成された皮膜2を水洗する水洗装置が備えられていなくてよい。
(Drying device)
The drying device 12 is a device that dries the aluminum material 1 carried in from the treatment liquid coating device 11. In the drying device 12, the coating liquid 2 is formed by drying the processing liquid applied to the surface of the aluminum material 1 by the processing liquid coating apparatus 11. The drying device 12 may be any device that can perform a drying process on the aluminum material 1 coated with the treatment liquid. For example, it may be a device that applies heat treatment (treatment temperature: 50 to 150 ° C., treatment time: 10 to 60 seconds) to the applied treatment liquid, or a device that blows hot air or dry air onto the applied treatment liquid. It may be. In addition, a scrubber can be installed for the treatment of the desorbing fluorine compound. As will be described later, the aluminum material 1 processed in the drying device 12 has a reduced amount of fluorine on the surface of the coating 2 when the drying of the treatment liquid is completed. Therefore, a water rinsing device for rinsing the formed film 2 does not have to be provided between the drying device 12 and the winding device 13.
(搬送ロール)
 搬送ロール20は、アルミニウム材1を処理液塗布装置11や乾燥装置12に搬送する。図2においては、処理液塗布装置11や乾燥装置12における処理対象が、長尺帯状のアルミニウム板であって、搬送ロール20が、このアルミニウム板を通板(移動)させながら各処理を行う構成(表面処理を施す構成)を示している。このような構成であると、処理能力が向上し、表面に皮膜2が形成されたアルミニウム材1(表面処理アルミニウム材)の生産性を高くすることができる。
(Transport roll)
The transport roll 20 transports the aluminum material 1 to the treatment liquid coating device 11 and the drying device 12. In FIG. 2, the processing object in the processing liquid coating apparatus 11 and the drying apparatus 12 is a long strip-shaped aluminum plate, and the transport roll 20 performs each processing while passing (moving) the aluminum plate. (Structure which performs surface treatment) is shown. With such a configuration, the processing capability is improved, and the productivity of the aluminum material 1 (surface-treated aluminum material) having the film 2 formed on the surface can be increased.
 また、図2においては、表面処理装置21が、払い出し装置10および巻き取り装置13を備えている。このような構成であると、払い出し装置10から払い出されたアルミニウム板が長さ方向に連続的に各処理を施されて巻き取り装置13に回収される。そのため、搬送ロール20によって通板させながら行う処理がさらに効率的になり、生産性が向上する。但し、鋳物または押し出し加工材の形状のアルミニウム材1を処理する場合などは、搬送ロール20に代えて、コンベヤなどを利用してもよいし、払い出し装置10および巻き取り装置13を備えなくてもよい。 Further, in FIG. 2, the surface treatment device 21 includes a dispensing device 10 and a winding device 13. With such a configuration, the aluminum plate dispensed from the dispensing device 10 is continuously processed in the length direction and collected by the winding device 13. Therefore, the processing performed while the sheet is passed by the transport roll 20 becomes more efficient, and the productivity is improved. However, in the case of processing the aluminum material 1 in the shape of a cast or extruded material, a conveyor or the like may be used instead of the transport roll 20, or the dispensing device 10 and the winding device 13 may not be provided. Good.
 以上のように構成された表面処理装置21は、従来公知のアルカリ洗浄装置および酸洗装置を、処理液塗布装置11の前段にさらに備え、アルカリ洗浄装置および酸洗装置のそれぞれに水洗装置を付帯して備えていてもよい(図示せず)。アルカリ洗浄装置や酸洗装置は、アルミニウム材1の表面に残存する油分、表面に形成されたアルミニウム酸化皮膜やマグネシウム酸化皮膜を除去するための装置である。 The surface treatment apparatus 21 configured as described above further includes a conventionally known alkali cleaning apparatus and pickling apparatus in the previous stage of the treatment liquid coating apparatus 11, and each of the alkali cleaning apparatus and the pickling apparatus is provided with a water washing apparatus. (Not shown). The alkali cleaning device and the pickling device are devices for removing the oil remaining on the surface of the aluminum material 1 and the aluminum oxide film and magnesium oxide film formed on the surface.
 次に、本発明に係る表面処理方法について、図面を参照して説明する。
 図1に示すように、本発明の表面処理方法は、処理液塗布工程S5と、乾燥工程S6とを含むことを特徴とする。本発明の表面処理方法は、処理液塗布工程S5の前にアルカリ洗浄工程S1と、水洗工程S2と、酸洗浄工程S3と、水洗工程S4とを含むものであってもよい。以下、各工程について、具体的に説明する。なお、本発明の表面処理方法で得られる表面処理アルミニウム材の構成については、一例として図3を参照する。
Next, the surface treatment method according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, the surface treatment method of the present invention includes a treatment liquid coating step S5 and a drying step S6. The surface treatment method of the present invention may include an alkali washing step S1, a water washing step S2, an acid washing step S3, and a water washing step S4 before the treatment liquid coating step S5. Hereinafter, each step will be specifically described. In addition, about the structure of the surface treatment aluminum material obtained with the surface treatment method of this invention, FIG. 3 is referred as an example.
(アルカリ洗浄工程)
 アルカリ洗浄工程S1は、アルミニウム材1の表面をアルカリで洗浄することによって、アルミニウム材1の表面に残存する油分を除去する工程である。ここで、油分は、アルミニウム材1を作製する際に、アルミニウム材1の表面に付着した潤滑油などである。アルカリ洗浄装置やアルカリ洗浄条件については、アルミニウム材1の搬入経路に沿って設けられる従来公知の装置や条件が用いられる。なお、アルミニウム材1の表面に残存する油分の付着量が無視できる場合には、アルカリ洗浄工程S1を省略することが可能である。
(Alkali cleaning process)
The alkali cleaning step S1 is a step of removing oil remaining on the surface of the aluminum material 1 by cleaning the surface of the aluminum material 1 with alkali. Here, the oil component is lubricating oil or the like attached to the surface of the aluminum material 1 when the aluminum material 1 is produced. As the alkali cleaning device and the alkali cleaning conditions, conventionally known devices and conditions provided along the carry-in route of the aluminum material 1 are used. In addition, when the adhesion amount of the oil remaining on the surface of the aluminum material 1 can be ignored, the alkali cleaning step S1 can be omitted.
(水洗工程)
 水洗工程S2は、アルミニウム材1の表面を水洗することによって、アルミニウム材1の表面に残存するアルカリを除去する工程である。水洗装置や水洗条件については、従来公知の装置や条件が用いられる。なお、前記アルカリ洗浄工程S1を省略したときは、水洗工程S2についても省略してよい。
(Washing process)
The water washing step S2 is a step of removing alkali remaining on the surface of the aluminum material 1 by washing the surface of the aluminum material 1 with water. Conventionally known apparatuses and conditions are used for the rinsing apparatus and rinsing conditions. In addition, when the alkali washing step S1 is omitted, the water washing step S2 may also be omitted.
(酸洗浄工程)
 酸洗浄工程S3は、アルミニウム材1の表面を酸で洗浄することによって、アルミニウム材1の表面に残存するアルミニウム酸化皮膜やマグネシウム酸化皮膜を除去する工程である。ここで、アルミニウム酸化皮膜およびマグネシウム酸化皮膜は、アルミニウム材1を作製する際に、アルミニウム材1の表面に形成される酸化皮膜である。酸洗浄装置や酸洗浄条件については、従来公知の装置や条件が用いられる。なお、アルミニウム材1の表面に残存するアルミニウム酸化皮膜やマグネシウム酸化皮膜の皮膜量が無視できる場合には、酸洗浄工程S3を省略することが可能である。
(Acid cleaning process)
The acid cleaning step S3 is a step of removing the aluminum oxide film and the magnesium oxide film remaining on the surface of the aluminum material 1 by cleaning the surface of the aluminum material 1 with an acid. Here, the aluminum oxide film and the magnesium oxide film are oxide films formed on the surface of the aluminum material 1 when the aluminum material 1 is produced. As the acid cleaning apparatus and the acid cleaning conditions, conventionally known apparatuses and conditions are used. If the amount of aluminum oxide film or magnesium oxide film remaining on the surface of the aluminum material 1 can be ignored, the acid cleaning step S3 can be omitted.
(水洗工程)
 水洗工程S4は、アルミニウム材1の表面を水洗することによって、アルミニウム材1の表面に残存する酸を除去する工程である。水洗装置または水洗条件については、従来公知の装置や条件が用いられる。なお、前記酸洗浄工程S3を省略したときは、水洗工程S4についても省略してよい。
(Washing process)
The water washing step S4 is a step of removing the acid remaining on the surface of the aluminum material 1 by washing the surface of the aluminum material 1 with water. Conventionally known apparatuses and conditions are used for the rinsing apparatus or rinsing conditions. When the acid washing step S3 is omitted, the water washing step S4 may be omitted.
(処理液塗布工程)
 処理液塗布工程S5は、フッ化チタン化合物およびフッ化ジルコニウム化合物の少なくとも1種を含有する処理液をアルミニウム材1の表面に塗布する工程である。処理液塗布工程S5において、アルミニウム材1の表面に塗布された処理液はアルミニウム材1と反応し、アルミニウム材1の表面にチタンおよびジルコニウムの少なくとも1種を含有する皮膜2を形成する。処理液塗布工程S5における塗布は、塗布型の表面処理のための処理操作であり、反応型の表面処理のための塗布とは異なり、アルミニウム材1の表面に付着させた処理液量に応じた皮膜量が皮膜の乾燥後に得られる処理操作を意味する。処理液塗布工程S5における塗布は、塗布型の表面処理のための処理操作である限り、塗布法、噴霧法および浸漬法のいずれの形態であってもよい。但し、処理液塗布工程S5における塗布は、処理液の反応後に残存している不要な反応生成物を濯ぐための水洗工程を付帯しないことが好ましい。
(Processing liquid application process)
The treatment liquid application step S5 is a step of applying a treatment liquid containing at least one of a titanium fluoride compound and a zirconium fluoride compound to the surface of the aluminum material 1. In the treatment liquid coating step S <b> 5, the treatment liquid applied to the surface of the aluminum material 1 reacts with the aluminum material 1 to form a film 2 containing at least one of titanium and zirconium on the surface of the aluminum material 1. The application in the treatment liquid application step S5 is a treatment operation for the application type surface treatment, and differs from the application for the reaction type surface treatment according to the amount of the treatment liquid adhered to the surface of the aluminum material 1. The coating amount means a treatment operation obtained after drying the coating. The coating in the treatment liquid coating step S5 may be in any form of a coating method, a spray method, and a dipping method as long as it is a processing operation for a coating type surface treatment. However, the application in the treatment liquid application step S5 preferably does not include a water washing step for rinsing unnecessary reaction products remaining after the reaction of the treatment liquid.
 ここで、フッ化チタン化合物とは、例えば、KTiF、(NHTiFなどのフルオロチタネート、HTiFなどのフルオロチタネート酸などである。フッ化ジルコニウム化合物とは、例えば、KZrF、(NHZrFなどのフルオロジルコネート、HZrFなどのフルオロジルコネート酸などである。 Here, the titanium fluoride compound is, for example, fluorotitanate such as K 2 TiF 6 , (NH 4 ) 2 TiF 6, or fluorotitanate such as H 2 TiF 6 . Examples of the zirconium fluoride compound include fluorozirconates such as K 2 ZrF 6 and (NH 4 ) 2 ZrF 6 and fluorozirconate acids such as H 2 ZrF 6 .
 なお、チタンおよびジルコニウムの少なくとも1種を含有する皮膜2は、例えば、以下の一連の反応によって形成される。
Al ⇔ Al3++3e             ・・・反応式(I)
+2HO+4e ⇔ 4OH           ・・・反応式(II)
2H+2e ⇔ H             ・・・反応式(III)
Al3++TiF 2- ⇔ AlF 3-+Ti4+ ・・・反応式(IV)
Al3++ZrF 2- ⇔ AlF 3-+Zr4+ ・・・反応式(V)
Ti4++3HO ⇔ TiO・HO+4H ・・・反応式(VI)
Zr4++3HO ⇔ ZrO・HO+4H ・・・反応式(VII)
The film 2 containing at least one of titanium and zirconium is formed, for example, by the following series of reactions.
Al ⇔ Al 3+ + 3e - ··· reaction formula (I)
O 2 + 2H 2 O + 4e - ⇔ 4OH - ··· reaction formula (II)
2H + + 2e ⇔ H 2. Reaction formula (III)
Al 3+ + TiF 6 2− ⇔ AlF 6 3− + Ti 4+・ ・ ・ Reaction formula (IV)
Al 3+ + ZrF 6 2− ⇔ AlF 6 3− + Zr 4+ ... Reaction formula (V)
Ti 4+ + 3H 2 O⇔TiO 2 · H 2 O + 4H + ... Reaction formula (VI)
Zr 4+ + 3H 2 O⇔ZrO 2 .H 2 O + 4H + ... Reaction formula (VII)
 アルミニウム材1の表面に塗布する処理液は、フッ化チタン化合物の濃度とフッ化ジルコニウム化合物の濃度の合計をチタン換算およびジルコニウム換算で20~400ppmとする。なお、チタン換算およびジルコニウム換算とは、各化合物の濃度(質量/体積)を各化合物に含まれているチタン原子ないしジルコニウム原子の濃度に換算することを意味する。このような濃度の処理液を用いることにより、後記するような範囲の塗布量(20~100mL/m)で処理液を塗布したとき、アルミニウム材1に塗布されるチタン(金属チタン換算量)とジルコニウム(金属ジルコニウム換算量)の合計(g/m)、すなわち、金属原子の質量に換算した塗布量を、皮膜2の形成に適正な範囲とすることができる。一方、濃度の合計の換算値が20ppm未満であると、十分な皮膜量の皮膜2を形成することができない。また、濃度の合計の換算値が400ppmを超えると、処理液に由来するフッ化水素などのフッ素化合物が脱離し難くなって皮膜2の表面のフッ素化合物の量が増加し、皮膜2の接着耐久性が低下する。 In the treatment liquid applied to the surface of the aluminum material 1, the total concentration of the titanium fluoride compound and the zirconium fluoride compound is 20 to 400 ppm in terms of titanium and zirconium. In addition, titanium conversion and zirconium conversion mean converting the concentration (mass / volume) of each compound into the concentration of titanium atom or zirconium atom contained in each compound. By using the treatment liquid having such a concentration, titanium applied to the aluminum material 1 when the treatment liquid is applied at a coating amount (20 to 100 mL / m 2 ) in a range as described later (amount equivalent to titanium metal). And the total amount (g / m 2 ) of zirconium (in terms of metal zirconium), that is, the coating amount in terms of the mass of metal atoms, can be within an appropriate range for the formation of the film 2. On the other hand, when the converted value of the total concentration is less than 20 ppm, the film 2 having a sufficient film amount cannot be formed. When the total converted value exceeds 400 ppm, it becomes difficult for fluorine compounds such as hydrogen fluoride derived from the treatment liquid to be detached, and the amount of fluorine compounds on the surface of the film 2 increases, and the adhesion durability of the film 2 increases. Sex is reduced.
 フッ化チタン化合物の濃度とフッ化ジルコニウム化合物の濃度の合計の換算値は、皮膜2の皮膜量を高くする観点などからは、40ppm以上としてもよいし、80ppm以上としてもよいし、120ppm以上としてもよい。また、接着耐久性を向上させる観点などからは、360ppm以下としてもよいし、320ppm以下としてもよいし、280ppm以上としてもよい。 The converted value of the total concentration of the titanium fluoride compound and the concentration of the zirconium fluoride compound may be 40 ppm or more, 80 ppm or more, or 120 ppm or more from the viewpoint of increasing the coating amount of the coating 2. Also good. Further, from the viewpoint of improving the adhesion durability, it may be 360 ppm or less, 320 ppm or less, or 280 ppm or more.
 処理液のアルミニウム材1の被塗布面に対する塗布量は、20~100mL/mが好ましい。処理液の塗布量が20mL/m未満であると、適正な皮膜量の皮膜2を形成するにあたって、処理液の濃度を高く設定することを要する。ところが、処理液の濃度を高くし過ぎると、皮膜2の表面に生じるフッ素化合物の量が増加し、皮膜2の接着耐久性が低下する。一方、処理液の塗布量が100mL/mを超えると、反応効率や皮膜2の均一性が悪くなり、適正な皮膜2を形成するのが困難になる。なお、アルミニウム材1の被塗布面に対する塗布量は、例えば、塗布する処理液の量や、アルミニウム材1の搬送速度などを加減して調整することができる。 The coating amount of the treatment liquid on the surface to be coated of the aluminum material 1 is preferably 20 to 100 mL / m 2 . When the coating amount of the treatment liquid is less than 20 mL / m 2 , it is necessary to set the concentration of the treatment liquid high when forming the coating film 2 having an appropriate coating amount. However, if the concentration of the treatment liquid is too high, the amount of the fluorine compound generated on the surface of the film 2 increases, and the adhesion durability of the film 2 decreases. On the other hand, when the coating amount of the treatment liquid exceeds 100 mL / m 2 , the reaction efficiency and the uniformity of the film 2 are deteriorated, and it is difficult to form an appropriate film 2. The amount of application of the aluminum material 1 to the surface to be applied can be adjusted by adjusting the amount of treatment liquid to be applied, the conveyance speed of the aluminum material 1, and the like.
 処理液塗布工程S5においては、詳細には、処理液を、チタンとジルコニウムの合計が4~25mg/mとなるようにアルミニウム材1の表面に塗布する。なお、この合計量は、チタン原子の質量に換算した金属チタン換算量と、ジルコニウム原子の質量に換算した金属ジルコニウム換算量との和である。このような合計量にして処理液を塗布すると、処理液に含まれていたチタン原子やジルコニウム原子の一部が乾燥により揮発して失われたとき、皮膜2の皮膜量も適正な範囲となる。一方、チタンとジルコニウムの合計が4mg/m未満であると、十分な皮膜量の皮膜2を形成することができない。また、チタンとジルコニウムの合計が25mg/mを超えると、皮膜2の皮膜量が厚くなり過ぎ、フッ素化合物もこれに応じて多くなるので、皮膜2の接着耐久性が低下する。 In the treatment liquid application step S5, specifically, the treatment liquid is applied to the surface of the aluminum material 1 so that the total of titanium and zirconium is 4 to 25 mg / m 2 . In addition, this total amount is the sum of the metal titanium conversion amount converted into the mass of the titanium atom, and the metal zirconium conversion amount converted into the mass of the zirconium atom. When the treatment liquid is applied in such a total amount, when a part of titanium atoms and zirconium atoms contained in the treatment liquid is volatilized and lost by drying, the film amount of the film 2 is also in an appropriate range. . On the other hand, when the total of titanium and zirconium is less than 4 mg / m 2 , the coating 2 having a sufficient coating amount cannot be formed. On the other hand, if the total of titanium and zirconium exceeds 25 mg / m 2 , the coating amount of the coating 2 becomes too thick, and the fluorine compound increases accordingly, so that the adhesion durability of the coating 2 is lowered.
 チタンとジルコニウムの合計は、皮膜2の皮膜量を高くする観点などからは、5mg/m以上がより好ましい。このように合計量を高くすると、耐食性や接着耐久性が向上する。また、チタンとジルコニウムの合計は、接着耐久性を向上させる観点などからは、20mg/m以下がより好ましい。このような合計量であれば、皮膜2の皮膜量が過大にならず、皮膜2が脆弱化し難いので、剥がれなども防止される。なお、チタンとジルコニウムの合計を調整して処理液を塗布するには、処理液の濃度、処理液のアルミニウム材1の被塗布面に対する塗布量を加減すればよい。 The total of titanium and zirconium is more preferably 5 mg / m 2 or more from the viewpoint of increasing the coating amount of the coating 2. When the total amount is increased in this way, corrosion resistance and adhesion durability are improved. Further, the total of titanium and zirconium is more preferably 20 mg / m 2 or less from the viewpoint of improving adhesion durability. With such a total amount, the coating amount of the coating 2 does not become excessive, and the coating 2 is difficult to become brittle, so that peeling and the like are also prevented. In order to apply the treatment liquid by adjusting the total of titanium and zirconium, the concentration of the treatment liquid and the application amount of the treatment liquid to the coated surface of the aluminum material 1 may be adjusted.
(乾燥工程)
 乾燥工程S6は、処理液塗布工程S5においてアルミニウム材1の表面に塗布された処理液を乾燥させて皮膜2を形成する工程である。乾燥工程S6における乾燥処理は、例えば、塗布された処理液を加熱する処理(処理温度:50~150℃、処理時間:10~60秒)であってもよいし、塗布された処理液に熱風や乾燥空気を吹き付ける処理であってもよい。乾燥工程S6において処理されたアルミニウム材1は、後記するように、処理液の乾燥が終了した時点で、皮膜2の表面のフッ素量が低減されている。そのため、乾燥工程S6の後、皮膜2を水洗する水洗工程を実施すること無く、接着耐久性に優れた表面処理アルミニウム材を製造することができる。
(Drying process)
The drying step S6 is a step of forming the film 2 by drying the treatment liquid applied to the surface of the aluminum material 1 in the treatment liquid application step S5. The drying process in the drying step S6 may be, for example, a process of heating the applied processing solution (processing temperature: 50 to 150 ° C., processing time: 10 to 60 seconds), or hot air is applied to the applied processing solution. Or a process of blowing dry air. As will be described later, the aluminum material 1 treated in the drying step S6 has a reduced amount of fluorine on the surface of the coating 2 when the drying of the treatment liquid is completed. Therefore, after the drying step S6, a surface-treated aluminum material having excellent adhesion durability can be produced without performing a water washing step of washing the film 2 with water.
 次に、本発明の表面処理方法で得られる表面処理アルミニウム材について説明する。図3に示すように、表面処理アルミニウム材は、アルミニウム材1と、アルミニウム材1の表面に形成された皮膜2とを備える。ここで、アルミニウム材1の表面とは、アルミニウム材1の少なくとも一面を意味し、いわゆる片面、両面または複数の面が含まれる。
 以下、各構成について説明する。
Next, the surface-treated aluminum material obtained by the surface treatment method of the present invention will be described. As shown in FIG. 3, the surface-treated aluminum material includes an aluminum material 1 and a film 2 formed on the surface of the aluminum material 1. Here, the surface of the aluminum material 1 means at least one surface of the aluminum material 1, and includes a so-called single side, double side, or a plurality of sides.
Each configuration will be described below.
(アルミニウム材)
 アルミニウム材1は、コイル状もしくはシート状の板材、または、鋳物もしくは押し出し加工材の形状で提供され、好ましくは板材として提供される。アルミニウム材1を構成するアルミニウム合金としては、Al-Mg系合金、Al-Mg-Si系合金が好ましい。Al-Mg系合金はJIS規定の5000系合金であり、Al-Mg-Si系合金はJIS規定の6000系合金である。
(Aluminum material)
The aluminum material 1 is provided in the form of a coiled or sheet-like plate material, or a cast or extruded material, and is preferably provided as a plate material. The aluminum alloy constituting the aluminum material 1 is preferably an Al—Mg alloy or an Al—Mg—Si alloy. The Al—Mg based alloy is a 5000 series alloy specified by JIS, and the Al—Mg—Si based alloy is a 6000 series alloy specified by JIS.
 アルミニウム材1の厚さは、0.7~3.0mmである。厚さが0.7mm未満であると強度不足になり、厚さ3.0mmを超えると製造コストアップにつながる。アルミニウム材1の厚さは、強度の観点から0.8mm以上が好ましく、製造コストの観点から2.3mm以下が好ましい。 The thickness of the aluminum material 1 is 0.7 to 3.0 mm. When the thickness is less than 0.7 mm, the strength is insufficient, and when the thickness exceeds 3.0 mm, the manufacturing cost is increased. The thickness of the aluminum material 1 is preferably 0.8 mm or more from the viewpoint of strength, and preferably 2.3 mm or less from the viewpoint of manufacturing cost.
(皮膜)
 皮膜2は、所定量のチタンおよびジルコニウムを含有する皮膜である。そして、皮膜2におけるチタンは、チタン酸化物およびチタンフッ化物の少なくとも一方であることが好ましく、皮膜2におけるジルコニウムは、ジルコニウム酸化物およびジルコニウムフッ化物の少なくとも一方であることが好ましい。また、皮膜2は、チタンおよびジルコニウムのほかに、残部がアルミニウムおよび不純物からなる。ここで、残部のアルミニウムにはアルミニウム酸化物、アルミニウムフッ化物などが含まれる。
(Film)
The film 2 is a film containing a predetermined amount of titanium and zirconium. The titanium in the film 2 is preferably at least one of titanium oxide and titanium fluoride, and the zirconium in the film 2 is preferably at least one of zirconium oxide and zirconium fluoride. The coating 2 is made of aluminum and impurities in addition to titanium and zirconium. Here, the remaining aluminum includes aluminum oxide, aluminum fluoride, and the like.
 皮膜2は、金属チタン換算量のチタン皮膜量と金属ジルコニウム換算量のジルコニウム皮膜量との合計量を3~17mg/mとする。そして、皮膜2は、チタン皮膜量が金属チタン換算量で1~10mg/m、および、ジルコニウム皮膜量が金属ジルコニウム換算量で1~10mg/mのうちの少なくとも一方を満足するのが好ましい。これにより、水、酸素、塩化物イオンなどの劣化因子に対する安定性が増し、湿潤環境におけるアルミニウム材1の表面における水和が抑制される。また、皮膜2の接着耐久性が向上する。 In the coating 2, the total amount of the titanium coating amount in terms of metal titanium and the zirconium coating amount in terms of metal zirconium is 3 to 17 mg / m 2 . The coating 2 preferably satisfies at least one of a titanium coating amount of 1 to 10 mg / m 2 in terms of metallic titanium and a zirconium coating amount of 1 to 10 mg / m 2 in terms of metallic zirconium. . Thereby, the stability with respect to deterioration factors, such as water, oxygen, and a chloride ion, increases, and the hydration in the surface of the aluminum material 1 in a humid environment is suppressed. Moreover, the adhesion durability of the film 2 is improved.
 皮膜2のチタン皮膜量とジルコニウム皮膜量との合計量は、3mg/m未満では、アルミニウム材1の表面における水和の抑制効果が十分でなく、17mg/mを超えると接着時に皮膜内部の破壊が生じ易くなる。また、アルミニウム材1の表面における水和を抑制する観点から、皮膜2のチタン皮膜量とジルコニウム皮膜量との合計量の下限値は5mg/mが好ましく、接着時の皮膜内部の破壊を抑制する観点から、皮膜2のチタン皮膜量とジルコニウム皮膜量との合計量の上限値は15mg/mが好ましい。 The total amount of titanium layer weight and zirconium coating amount of the coating 2 is less than 3 mg / m 2, the effect of suppressing hydration at the surface of the aluminum material 1 is not sufficient, the film interior at the time of bonding exceeds 17 mg / m 2 It becomes easy to cause destruction. Further, from the viewpoint of suppressing hydration on the surface of the aluminum material 1, the lower limit of the total amount of the titanium film and the zirconium film of the film 2 is preferably 5 mg / m 2 , and the destruction of the inside of the film during bonding is suppressed. Therefore, the upper limit of the total amount of the titanium film amount and the zirconium film amount of the film 2 is preferably 15 mg / m 2 .
 皮膜2のチタン皮膜量が1mg/m未満であると前記の効果がなく、チタン皮膜量が10mg/m超えると前記の効果が飽和し製造コストアップとなる。また、接着時に皮膜内部の破壊が生じ易くなる。チタン皮膜量は、アルミニウム材1の表面における水和を抑制する観点からは、2mg/m以上が好ましい。一方、皮膜2の製造コストアップおよび皮膜内部の破壊を抑制する観点からは、8mg/m以下が好ましい。 When the amount of the titanium film of the film 2 is less than 1 mg / m 2 , the above effect is not obtained. When the amount of the titanium film exceeds 10 mg / m 2 , the above effect is saturated and the manufacturing cost is increased. In addition, the inside of the film is easily broken during bonding. From the viewpoint of suppressing hydration on the surface of the aluminum material 1, the amount of the titanium film is preferably 2 mg / m 2 or more. On the other hand, 8 mg / m 2 or less is preferable from the viewpoint of suppressing an increase in the manufacturing cost of the film 2 and the destruction of the inside of the film.
 また、皮膜2のジルコニウム皮膜量が1mg/m未満であると前記の効果がなく、ジルコニウム皮膜量が10mg/m超えると前記の効果が飽和し製造コストアップとなり、また、接着時に皮膜内部の破壊が生じ易くなる。ジルコニウム皮膜量は、アルミニウム材1の表面における水和を抑制する観点からは、2mg/m以上が好ましい。一方、皮膜2の製造コストアップおよび皮膜内部の破壊を抑制する観点からは、8mg/m以下が好ましい。 Further, if the amount of the zirconium film of the film 2 is less than 1 mg / m 2 , the above effect is not obtained, and if the amount of the zirconium film exceeds 10 mg / m 2 , the above effect is saturated and the manufacturing cost is increased. It becomes easy to cause destruction. The amount of the zirconium film is preferably 2 mg / m 2 or more from the viewpoint of suppressing hydration on the surface of the aluminum material 1. On the other hand, 8 mg / m 2 or less is preferable from the viewpoint of suppressing an increase in the manufacturing cost of the film 2 and the destruction of the inside of the film.
 皮膜2の厚さは、チタン皮膜量およびジルコニウム皮膜量が所定量であれば特に限定されないが、10~150nmであることが好ましい。皮膜2の厚さが10nm未満であると接着耐久性が維持し難くなる。一方、皮膜2の厚さが150nmを超えると接着耐久性が飽和し製造コストアップになり易い。 The thickness of the coating 2 is not particularly limited as long as the titanium coating amount and the zirconium coating amount are predetermined amounts, but it is preferably 10 to 150 nm. When the thickness of the film 2 is less than 10 nm, it is difficult to maintain the adhesion durability. On the other hand, if the thickness of the film 2 exceeds 150 nm, the durability of the adhesion is saturated and the manufacturing cost is likely to increase.
 皮膜2は、表面における「フッ素換算量(フッ素量)」と、「金属チタン換算量(チタン量)と金属ジルコニウム換算量(ジルコニウム量)の和」との比(フッ素量/チタン量とジルコニウム量の和)が4.0以下である。以下、この比の値を「表面F/(Ti+Zr)」と表記する。皮膜2は、乾燥処理によって成膜され、未だ水洗されていない時点でこのような表面F/(Ti+Zr)の値をとる。処理液の濃度が低く設定されると共に、処理液の塗布量が調節されることで、皮膜2の表面のフッ素化合物の量が低減されるからである。皮膜2は、このようにフッ素化合物の量が低減されることで、優れた接着耐久性を有するものとなっている。 The coating 2 has a ratio of “fluorine conversion amount (fluorine amount)” and “sum of metal titanium conversion amount (titanium amount) and metal zirconium conversion amount (zirconium amount)” on the surface (fluorine amount / titanium amount and zirconium amount). Is less than or equal to 4.0. Hereinafter, the value of this ratio is expressed as “surface F / (Ti + Zr)”. The film 2 is formed by a drying process and takes such a value of the surface F / (Ti + Zr) when not yet washed with water. This is because the amount of the fluorine compound on the surface of the film 2 is reduced by setting the concentration of the treatment liquid low and adjusting the coating amount of the treatment liquid. The film 2 has excellent adhesion durability because the amount of the fluorine compound is thus reduced.
 皮膜2の表面F/(Ti+Zr)は、4.0を超えると、皮膜2の表面のフッ素化合物の量が多過ぎることにより、アルミニウム材1と鉄材料などの他材との接着強度が低くなり、接着耐久性も低下する。また、アルミニウム材1と他材とを接着する接着剤が容易に剥離し、特に湿潤環境下において接着状態を維持し難くなるので好ましくない。皮膜2の表面F/(Ti+Zr)は、接着耐久性などを向上させる観点からは、3.0以下が好ましく、2.5以下がより好ましく、2.0以下がさらに好ましい。 If the surface F / (Ti + Zr) of the film 2 exceeds 4.0, the amount of fluorine compound on the surface of the film 2 is too large, so that the adhesive strength between the aluminum material 1 and other materials such as iron material becomes low. Also, the adhesion durability is lowered. Further, the adhesive that bonds the aluminum material 1 and the other material easily peels off, and it is difficult to maintain the adhesive state particularly in a wet environment. The surface F / (Ti + Zr) of the film 2 is preferably 3.0 or less, more preferably 2.5 or less, and even more preferably 2.0 or less, from the viewpoint of improving adhesion durability and the like.
 皮膜2の表面F/(Ti+Zr)は、処理液における、フッ化チタン化合物やフッ化ジルコニウム化合物の濃度を加減することによって調整することができる。また、表面F/(Ti+Zr)は、フッ素換算量、金属チタン換算量、および金属ジルコニウム換算量の原子濃度分布をX線光電子分光(XPS:X-ray Photoelectron Spectroscopy)で測定することで求めることができる。X線光電子分光の測定条件は、例えば、線源にアルミニウムKαを用い、データ収集時間(Dwell):100ms、パスエネルギ(pass):30eV、エッチングなしの条件で測定することができる。それぞれの元素の換算量は、ピーク強度に基いて定量することができる。 The surface F / (Ti + Zr) of the coating 2 can be adjusted by adjusting the concentration of the titanium fluoride compound or the zirconium fluoride compound in the treatment liquid. Further, the surface F / (Ti + Zr) can be obtained by measuring the atomic concentration distribution of fluorine equivalent, metal titanium equivalent, and metal zirconium equivalent by X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy). it can. The measurement conditions of X-ray photoelectron spectroscopy can be measured using, for example, aluminum Kα as a radiation source, data collection time (Dwell): 100 ms, pass energy (pass): 30 eV, and no etching. The converted amount of each element can be quantified based on the peak intensity.
 皮膜2のチタン皮膜量およびジルコニウム皮膜量は、蛍光X線(XRF:X-ray Fluorescence Analysis)によって測定することが可能である。また、皮膜2の厚さは、グロー放電発光分析装置(GD-OES:Glow Discharge Optical Emission Spectroscopy)によって測定することが可能である。また、皮膜量および厚さの測定法は、XRF、GD-OESに限定されず、前記測定法と同精度を持つ測定法であればよい。 The titanium coating amount and the zirconium coating amount of the coating 2 can be measured by fluorescent X-ray (XRF: X-ray Fluorescence Analysis). Further, the thickness of the coating 2 can be measured by a glow discharge optical emission spectrometer (GD-OES: Glow Discharge Optical Emission Spectroscopy). Further, the method for measuring the coating amount and thickness is not limited to XRF and GD-OES, and any measuring method having the same accuracy as the measuring method may be used.
 次に、本発明の表面処理方法および表面処理アルミニウム材について、本発明の要件を満たす実施例と、本発明の要件を満たさない比較例と、を対比させて具体的に説明する。 Next, the surface treatment method and the surface-treated aluminum material of the present invention will be specifically described by comparing an example that satisfies the requirements of the present invention with a comparative example that does not satisfy the requirements of the present invention.
 まず、JIS規定の6016系合金を用いて、幅150mm×長さ200mm×厚さ1.0mmのアルミニウム板を作製した。このアルミニウム板をアルカリ脱脂、水洗し、次いで酸洗浄、水洗した。 First, an aluminum plate having a width of 150 mm, a length of 200 mm, and a thickness of 1.0 mm was produced using a JIS-defined 6016 series alloy. The aluminum plate was alkali degreased and washed with water, then acid washed and washed with water.
 酸洗浄後に水洗したアルミニウム板の表面に対して、表1に示す濃度の処理液(25℃)を、各塗布量で塗布した。その後、110℃、30秒の乾燥処理を行うことで、塗布型表面処理アルミニウム材(No.1~11)を作製した。 The treatment liquid (25 ° C.) having the concentrations shown in Table 1 was applied in various coating amounts to the surface of the aluminum plate washed with water after acid cleaning. Thereafter, a coating type surface-treated aluminum material (No. 1 to 11) was produced by performing a drying treatment at 110 ° C. for 30 seconds.
 一方、酸洗浄後に水洗したアルミニウム板の表面に対して、フッ化チタン化合物としてフルオロチタネート酸を150ppm、フッ化ジルコニウム化合物としてフルオロジルコネート酸を250ppm含有する処理液(50℃)を3秒間噴霧した。その後、25℃の水で60秒間の水洗処理を行った後、室温乾燥を行うことで、反応型表面処理アルミニウム材(No.12)を作製した。 On the other hand, a treatment liquid (50 ° C.) containing 150 ppm of fluorotitanate acid as a titanium fluoride compound and 250 ppm of fluorozirconate acid as a zirconium fluoride compound was sprayed on the surface of the aluminum plate washed with water after acid cleaning for 3 seconds. . Then, after performing the water washing process for 25 second with 25 degreeC water, the reactive type surface treatment aluminum material (No. 12) was produced by performing room temperature drying.
 作製した表面処理アルミニウム材(No.1~12)の表面に形成された皮膜について、チタン皮膜量およびジルコニウム皮膜量を、蛍光X線(XRF)により測定した。表面処理アルミニウム材の皮膜量は、同一の条件で処理した複数の表面処理アルミニウム材の中から無作為に取り出した1枚の板について測定した。1枚の板あたりの測定位置は、幅150mm×長さ200mmの表面であって、四隅から対角線上に50mm内側の4点と板の中央の1点のそれぞれを中心とする直径30mmの円形領域、計5箇所とした。表面処理アルミニウム材の皮膜量は、計5箇所における測定値の平均値として求めた。また、作製した表面処理アルミニウム材(No.1~12)の表面に形成された皮膜の表面のフッ素換算量、金属チタン換算量、および金属ジルコニウム換算量の原子濃度をX線光電子分光(XPS)で測定し、表面F/(Ti+Zr)を算出した。表面処理アルミニウム材の表面F/(Ti+Zr)は、同様に、同一の条件で処理した複数の表面処理アルミニウム材の中から無作為に取り出した1枚の板について測定した。1枚の板あたりの測定位置は、幅150mm×長さ200mmの表面であって、四隅と板の中央のそれぞれに位置する1mm角の正方形領域、計5箇所とした。表面処理アルミニウム材の表面F/(Ti+Zr)は、計5箇所における測定値の平均値として求めた。 For the coating formed on the surface of the produced surface-treated aluminum material (No. 1 to 12), the titanium coating amount and the zirconium coating amount were measured by fluorescent X-rays (XRF). The coating amount of the surface-treated aluminum material was measured on one plate randomly taken out from a plurality of surface-treated aluminum materials treated under the same conditions. The measurement position per plate is a surface having a width of 150 mm and a length of 200 mm, and is a circular region with a diameter of 30 mm centered on four points 50 mm inside and one point at the center of the plate diagonally from the four corners. , A total of 5 locations. The coating amount of the surface-treated aluminum material was determined as an average value of the measured values at a total of five locations. Further, the atomic concentration of fluorine equivalent amount, metal titanium equivalent amount, and metal zirconium equivalent amount on the surface of the coating formed on the surface of the surface-treated aluminum material (No. 1 to 12) was measured by X-ray photoelectron spectroscopy (XPS). The surface F / (Ti + Zr) was calculated. Similarly, the surface F / (Ti + Zr) of the surface-treated aluminum material was measured for one plate randomly taken out from a plurality of surface-treated aluminum materials treated under the same conditions. The measurement position per one plate was a surface of 150 mm width × 200 mm length, and a total of 5 square areas of 1 mm square located at each of the four corners and the center of the plate. The surface F / (Ti + Zr) of the surface-treated aluminum material was determined as an average value of the measured values at a total of five locations.
 次に、表面処理アルミニウム材(No.1~12)を用いて、図4に示すような下側試験片31と、上側試験片33と、を接着剤32を介して接合した接着試験体34をそれぞれ作製した。そして、これらの接着試験体34を用いて、以下の接着耐久性試験を行った。接着試験体34の具体的な作製方法は、次のとおりである。 Next, using a surface-treated aluminum material (No. 1 to 12), an adhesion test body 34 in which a lower test piece 31 and an upper test piece 33 as shown in FIG. Were prepared. And the following adhesion durability tests were done using these adhesion test bodies 34. A specific method for producing the adhesion test body 34 is as follows.
 図4に示すように、下側試験片31と上側試験片33とを、熱硬化型エポキシ樹脂系接着剤32によりラップ長10mm(接着面積:25mm×10mm)となるように重ね合わせ貼り付けた。このとき、接着剤32の厚さが250μmとなるようにガラスビーズ(粒径250μm)を接着剤32に添加して調節した。その後、170℃×20分で焼付、硬化させた。その後、室温で24時間静置して接着試験体34とした。 As shown in FIG. 4, the lower test piece 31 and the upper test piece 33 were laminated and pasted with a thermosetting epoxy resin adhesive 32 so as to have a wrap length of 10 mm (adhesion area: 25 mm × 10 mm). . At this time, glass beads (particle size 250 μm) were added to the adhesive 32 and adjusted so that the thickness of the adhesive 32 was 250 μm. Thereafter, it was baked and cured at 170 ° C. for 20 minutes. Then, it left still at room temperature for 24 hours, and was set as the adhesion test body 34.
(接着耐久性試験)
 作製した接着試験体34を中性塩水噴霧中で14日間保持した後、下側および上側試験片31、33の未接着の部位を掴み、10mm/minの速度でせん断引張試験を行った。引張試験には、島津製作所製のAG-50kNIオートグラフを使用した。そして、接着試験体34の破壊形態の観察および接着強度の算出を以下の手順で行い、接着耐久性を評価した。なお、各接着試験体34は3本ずつ作製し、以下の凝集破壊率および接着強度は3本の平均値とした。
(Adhesion durability test)
After the produced adhesion test body 34 was held in neutral salt spray for 14 days, unbonded portions of the lower and upper test pieces 31 and 33 were grasped, and a shear tensile test was performed at a speed of 10 mm / min. For the tensile test, an AG-50kNI autograph manufactured by Shimadzu Corporation was used. And the observation of the fracture | rupture form of the adhesion test body 34 and calculation of adhesion strength were performed in the following procedures, and adhesion durability was evaluated. Three adhesion test specimens 34 were prepared, and the following cohesive failure rate and adhesive strength were average values of the three.
(接着耐久性試験:破壊形態)
 引張試験後の接着試験体34の剥離状態を観察し、接着剤32の内部での破壊を凝集破壊、下側試験片31と接着剤32との界面、および、上側試験片33と接着剤32との界面での剥離を界面破壊とし、下式(1)で破壊形態の指標としての凝集破壊率を算出した。
 凝集破壊率(%)=100-{(下側試験片31の界面剥離面積/下側試験片31の接着面積)×100+(上側試験片33の界面剥離面積/上側試験片33の接着面積)×100)}・・・(1)
 また、破壊形態の評価基準は、凝集破壊率が90%未満を不良「×」、90%以上を良好「○」とした。
(Adhesion durability test: failure mode)
The peeled state of the adhesion test body 34 after the tensile test is observed, the fracture inside the adhesive 32 is agglomerated, the interface between the lower test piece 31 and the adhesive 32, and the upper test piece 33 and the adhesive 32. Peeling at the interface was defined as interfacial fracture, and the cohesive failure rate as an index of fracture mode was calculated by the following equation (1).
Cohesive failure rate (%) = 100 − {(interface peeling area of lower test piece 31 / bonding area of lower test piece 31) × 100 + (interface peeling area of upper test piece 33 / bonding area of upper test piece 33) × 100)} (1)
Further, the evaluation criteria for the fracture mode were a failure “x” when the cohesive fracture rate was less than 90% and a good “◯” when 90% or more.
(接着耐久性試験:接着強度)
 引張試験時に得られた応力-ひずみ線図から破断時の最大応力を求めて接着強度とした。
(Adhesion durability test: Adhesive strength)
The maximum stress at break was determined from the stress-strain diagram obtained during the tensile test, and was used as the adhesive strength.
 次の表1に、表面処理に用いた方法、アルミニウム板の表面に塗布した処理液のチタン換算およびジルコニウム換算の濃度、処理液の塗布量、皮膜量、表面F/(Ti+Zr)の結果、破壊形態の評価結果、接着強度の結果をそれぞれ示す。 The following Table 1 shows the method used for the surface treatment, the titanium equivalent and zirconium equivalent concentrations of the treatment liquid applied to the surface of the aluminum plate, the application amount of the treatment liquid, the coating amount, and the results of the surface F / (Ti + Zr). The evaluation results of the form and the results of the adhesive strength are shown respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、参考例として示すNo.12に係る表面処理アルミニウム材は、反応型の表面処理によって皮膜が形成されており、水洗処理されているため、「表面F/(Ti+Zr)」の値が低くなっている。そのため、接着強度が高く、剥離による破壊形態が生じ難くなっており、皮膜の接着耐久性が優れたものとなっている。 As shown in Table 1, No. Since the surface-treated aluminum material according to No. 12 has a film formed by a reactive surface treatment and is washed with water, the value of “surface F / (Ti + Zr)” is low. For this reason, the adhesive strength is high, the form of fracture due to peeling hardly occurs, and the adhesion durability of the film is excellent.
 一方、塗布型の表面処理によって皮膜を形成したNo.1~7に係る塗布型表面処理アルミニウム材は、塗布した処理液の濃度および塗布量が適正な範囲にあるので、「表面F/(Ti+Zr)」の値が小さく抑えられている。塗布型の表面処理によって皮膜が形成されており、水洗処理されていないにもかかわらず、水洗処理されているNo.12に係る反応型表面処理アルミニウム材と同等に、接着強度が高く、剥離による破壊形態が生じ難くなっており、皮膜の接着耐久性が優れたものとなっている。 On the other hand, No. in which a film was formed by coating type surface treatment. Since the coating-type surface-treated aluminum materials according to 1 to 7 have a concentration and a coating amount of the coated treatment liquid in an appropriate range, the value of “surface F / (Ti + Zr)” is kept small. The film was formed by the surface treatment of the coating type, and although it was not washed with water, it was washed with water. As in the case of the reactive surface-treated aluminum material according to No. 12, the adhesive strength is high, the form of fracture due to peeling is less likely to occur, and the adhesion durability of the film is excellent.
 これに対して、No.8~9に係る塗布型表面処理アルミニウム材は、塗布した処理液の濃度が適正な範囲に無く、濃度が高過ぎるので、「表面F/(Ti+Zr)」の値が高くなっている。そのため、接着強度が低く、剥離による破壊形態が生じ易くなっており、皮膜の接着耐久性が改善されていない。 On the other hand, No. The coating-type surface-treated aluminum materials according to 8 to 9 have a high value of “Surface F / (Ti + Zr)” because the concentration of the applied treatment liquid is not in an appropriate range and the concentration is too high. For this reason, the adhesive strength is low, and a destructive form due to peeling is likely to occur, and the adhesion durability of the film is not improved.
 また、No.10~11に係る塗布型表面処理アルミニウム材は、処理液の塗布量が適正な範囲に無く、適正な皮膜量の皮膜が形成されていないので、「表面F/(Ti+Zr)」の値は低いものの、皮膜が脆弱になっている。そのため、接着強度が低く、剥離による破壊形態が生じ易くなっており、皮膜の接着耐久性が改善されていない。 No. The coating type surface-treated aluminum materials according to Nos. 10 to 11 have a low value of “Surface F / (Ti + Zr)” because the coating amount of the treatment liquid is not in an appropriate range and a film having an appropriate film amount is not formed. However, the film is fragile. For this reason, the adhesive strength is low, and a destructive form due to peeling is likely to occur, and the adhesion durability of the film is not improved.
 以上、本発明に係る表面処理方法、表面処理装置およびアルミニウム表面処理材料について実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は特許請求の範囲の記載に基づいて解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて改変・変更などすることができることはいうまでもない。 As described above, the surface treatment method, the surface treatment apparatus, and the aluminum surface treatment material according to the present invention have been described in detail with reference to the embodiments and examples. However, the gist of the present invention is not limited to the above-described contents. The scope of rights should be construed based on the claims. Needless to say, the contents of the present invention can be modified and changed based on the above description.
 本出願は、2016年3月29日出願の日本特許出願(特願2016-066564)、2016年11月29日出願の日本特許出願(特願2016-231695)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on March 29, 2016 (Japanese Patent Application No. 2016-066564) and a Japanese patent application filed on November 29, 2016 (Japanese Patent Application No. 2016-231695). Incorporated herein by reference.
 本発明のアルミニウム剤は、エネルギーコストおよび環境負荷を軽減しながらも、優れた接着耐久性を有する皮膜を有し、自動車、船舶、航空機などの輸送用機器、特に自動車用パネルに有用である。 The aluminum agent of the present invention has a film having excellent adhesion durability while reducing energy cost and environmental load, and is useful for transportation equipment such as automobiles, ships, and aircraft, particularly automobile panels.
S1 アルカリ洗浄工程
S2 水洗工程
S3 酸洗浄工程
S4 水洗工程
S5 処理液塗布工程
S6 乾燥工程
1 アルミニウム材
2 皮膜
3 表面処理アルミニウム材
11 処理液塗布装置
12 乾燥装置
21 表面処理装置
31 下側試験片
32 接着剤
33 上側試験片
34 接着試験体
S1 Alkali washing step S2 Water washing step S3 Acid washing step S4 Water washing step S5 Treatment liquid application step S6 Drying step 1 Aluminum material 2 Film 3 Surface treatment aluminum material 11 Treatment liquid application device 12 Drying device 21 Surface treatment device 31 Lower test piece 32 Adhesive 33 Upper test piece 34 Adhesive specimen

Claims (4)

  1.  フッ化チタン化合物およびフッ化ジルコニウム化合物の少なくとも1種を含有する処理液をアルミニウム材の表面に塗布する工程と、
     前記アルミニウム材の表面に塗布された処理液を乾燥させて皮膜を形成する工程と、を含み、
     前記アルミニウム材の表面に塗布される処理液は、前記フッ化チタン化合物の濃度と前記フッ化ジルコニウム化合物の濃度の合計がチタン換算およびジルコニウム換算で20~400ppmであり、
     前記処理液を、チタンとジルコニウムの合計が4~25mg/mとなるように前記アルミニウム材の表面に塗布するアルミニウム材の表面処理方法。
    Applying a treatment liquid containing at least one of a titanium fluoride compound and a zirconium fluoride compound to the surface of the aluminum material;
    Drying the treatment liquid applied to the surface of the aluminum material to form a film,
    The treatment liquid applied to the surface of the aluminum material has a total concentration of the titanium fluoride compound and the zirconium fluoride compound of 20 to 400 ppm in terms of titanium and zirconium,
    A surface treatment method for an aluminum material, wherein the treatment liquid is applied to the surface of the aluminum material so that the total of titanium and zirconium is 4 to 25 mg / m 2 .
  2.  フッ化チタン化合物およびフッ化ジルコニウム化合物の少なくとも1種を含有する処理液をアルミニウム材の表面に塗布する塗布部と、
     前記アルミニウム材の表面に塗布された処理液を乾燥させて皮膜を形成する乾燥部と、を備え、
     前記アルミニウム材の表面に塗布される処理液は、前記フッ化チタン化合物の濃度と前記フッ化ジルコニウム化合物の濃度の合計がチタン換算およびジルコニウム換算で20~400ppmであり、
     前記塗布部は、前記処理液を、チタンとジルコニウムの合計が4~25mg/mとなるように前記アルミニウム材の表面に塗布するアルミニウム材の表面処理装置。
    An application part for applying a treatment liquid containing at least one of a titanium fluoride compound and a zirconium fluoride compound to the surface of the aluminum material;
    A drying unit that forms a film by drying the treatment liquid applied to the surface of the aluminum material,
    The treatment liquid applied to the surface of the aluminum material has a total concentration of the titanium fluoride compound and the zirconium fluoride compound of 20 to 400 ppm in terms of titanium and zirconium,
    The application unit is a surface treatment apparatus for an aluminum material that applies the treatment liquid to the surface of the aluminum material so that the total of titanium and zirconium is 4 to 25 mg / m 2 .
  3.  前記アルミニウム材がアルミニウム板であり、
     前記アルミニウム板を前記塗布部および前記乾燥部に通板させる搬送部を備える請求項2に記載のアルミニウム材の表面処理装置。
    The aluminum material is an aluminum plate;
    The surface treatment apparatus for an aluminum material according to claim 2, further comprising a transport unit that passes the aluminum plate through the coating unit and the drying unit.
  4.  アルミニウム材と、前記アルミニウム材の表面に形成されたチタンおよびジルコニウムの少なくとも1種を含有する皮膜と、を備える塗布型表面処理アルミニウム材であって、
     前記皮膜は、チタン皮膜量とジルコニウム皮膜量との合計量が3~17mg/mであり、かつ、表面におけるフッ素量と、チタン量とジルコニウム量の和との比(フッ素量/チタン量とジルコニウム量の和)が4.0以下である塗布型表面処理アルミニウム材。
    A coating-type surface-treated aluminum material comprising: an aluminum material; and a film containing at least one of titanium and zirconium formed on the surface of the aluminum material,
    The film has a total amount of titanium film amount and zirconium film amount of 3 to 17 mg / m 2 , and the ratio of the fluorine amount on the surface and the sum of the titanium amount and the zirconium amount (fluorine amount / titanium amount and A coating type surface-treated aluminum material having a sum of zirconium amounts of 4.0 or less.
PCT/JP2017/011342 2016-03-29 2017-03-22 Aluminum material surface treatment method, surface treatment apparatus, and treated surface aluminum material WO2017170015A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/089,535 US20190119817A1 (en) 2016-03-29 2017-03-22 Aluminum material surface treatment method, surface treatment apparatus, and treated surface aluminum material
CN201780020257.5A CN108884571A (en) 2016-03-29 2017-03-22 Surface treatment method, surface processing device and the surface treated aluminum material of aluminium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016066564 2016-03-29
JP2016-066564 2016-03-29
JP2016231695A JP6227749B2 (en) 2016-03-29 2016-11-29 Surface treatment method of aluminum material and surface-treated aluminum material
JP2016-231695 2016-11-29

Publications (1)

Publication Number Publication Date
WO2017170015A1 true WO2017170015A1 (en) 2017-10-05

Family

ID=59964372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011342 WO2017170015A1 (en) 2016-03-29 2017-03-22 Aluminum material surface treatment method, surface treatment apparatus, and treated surface aluminum material

Country Status (1)

Country Link
WO (1) WO2017170015A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114746579A (en) * 2019-09-27 2022-07-12 株式会社Uacj Aluminum alloy material and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018992A (en) * 2002-06-20 2004-01-22 Furukawa Sky Kk Nonchromium type aluminum underlayer treatment material having excellent coating film adhesion and acid elution resistance
JP2007176072A (en) * 2005-12-28 2007-07-12 Furukawa Sky Kk Resin coated aluminum plate and manufacturing method of the same
JP2013087312A (en) * 2011-10-14 2013-05-13 Nippon Paint Co Ltd Paint pretreatment agent for coating-type paint, and coating-type painting method
JP2015027662A (en) * 2013-07-16 2015-02-12 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Method for application of aqueous treatment solution on surface of moved steel strip
JP2015124390A (en) * 2013-12-25 2015-07-06 日本ペイント株式会社 Surface treatment method for heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018992A (en) * 2002-06-20 2004-01-22 Furukawa Sky Kk Nonchromium type aluminum underlayer treatment material having excellent coating film adhesion and acid elution resistance
JP2007176072A (en) * 2005-12-28 2007-07-12 Furukawa Sky Kk Resin coated aluminum plate and manufacturing method of the same
JP2013087312A (en) * 2011-10-14 2013-05-13 Nippon Paint Co Ltd Paint pretreatment agent for coating-type paint, and coating-type painting method
JP2015027662A (en) * 2013-07-16 2015-02-12 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Method for application of aqueous treatment solution on surface of moved steel strip
JP2015124390A (en) * 2013-12-25 2015-07-06 日本ペイント株式会社 Surface treatment method for heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114746579A (en) * 2019-09-27 2022-07-12 株式会社Uacj Aluminum alloy material and method for producing same

Similar Documents

Publication Publication Date Title
Lunder et al. Effect of pre-treatment on the durability of epoxy-bonded AA6060 aluminium joints
JP6426135B2 (en) Method of manufacturing a metal sheet having a Zn-Al-Mg coating, comprising the application of an acidic solution and an adhesive, and the corresponding metal sheet and assembly
JP3895300B2 (en) Corrosion resistant surface treatment for adhesion of metal structural adhesives
EP3109343A1 (en) Aluminum alloy plate, joined body, and automotive member
TW201619449A (en) Electroceramic coating for magnesium alloys
CN114787419A (en) Method for producing a flat steel product having a zinc-based metal protective layer and a phosphate coating produced on the surface of the metal protective layer, and flat steel product of this type
KR102165012B1 (en) Aqueous solution for metal surface treatment, metal surface treatment method and joint
JP6227749B2 (en) Surface treatment method of aluminum material and surface-treated aluminum material
JP2007176072A (en) Resin coated aluminum plate and manufacturing method of the same
JP2017203209A (en) Method for producing aluminum alloy material, aluminum alloy material and joined body
WO2017170015A1 (en) Aluminum material surface treatment method, surface treatment apparatus, and treated surface aluminum material
JP4915068B2 (en) Aluminum alloy can lid with excellent corrosion resistance and adhesion and method for producing the same
JP6750964B2 (en) Method for manufacturing aluminum alloy material
US20180216235A1 (en) Aqueous solution for metal surface treatment, metal surface treatment method, and bonded article
JP5483566B2 (en) Surface-treated aluminum alloy material and joined body using the alloy material
WO2017195811A1 (en) Aluminum alloy material, aluminum alloy material provided with adhesive resin layer, production method for aluminum alloy material, and production method for aluminum alloy material provided with adhesive resin layer
JP2008050692A (en) Painted aluminum material
JP6510844B2 (en) Surface treatment method, surface treatment apparatus and aluminum surface treatment material
JP2017203213A (en) Aluminum alloy material, aluminum alloy material with adhesive resin layer, joined body and method for producing aluminum alloy material
JP6322427B2 (en) Method for producing resin-coated aluminum plate
JP6495702B2 (en) Surface treatment method and surface treatment apparatus
JP6721406B2 (en) Aluminum alloy material, aluminum alloy material with adhesive resin layer, method for producing aluminum alloy material, and method for producing aluminum alloy material with adhesive resin layer
JP2007203615A (en) Resin-coated aluminum sheet and its manufacturing method
JP2017203212A (en) Aluminum alloy material, aluminum alloy material with adhesive resin layer, method for producing aluminum alloy material and method for producing aluminum alloy material with adhesive resin layer
JP2003003296A (en) Surface treated aluminum material and aluminum formed body

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774556

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774556

Country of ref document: EP

Kind code of ref document: A1