WO2021140407A1 - 半導体装置、および半導体装置の作製方法 - Google Patents
半導体装置、および半導体装置の作製方法 Download PDFInfo
- Publication number
- WO2021140407A1 WO2021140407A1 PCT/IB2020/062468 IB2020062468W WO2021140407A1 WO 2021140407 A1 WO2021140407 A1 WO 2021140407A1 IB 2020062468 W IB2020062468 W IB 2020062468W WO 2021140407 A1 WO2021140407 A1 WO 2021140407A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insulator
- oxide
- conductor
- region
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D99/00—Subject matter not provided for in other groups of this subclass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02178—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02266—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02337—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
- H01L21/0234—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02488—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02565—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02576—N-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02609—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/05—Making the transistor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/70—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6704—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/673—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
- H10D30/6733—Multi-gate TFTs
- H10D30/6734—Multi-gate TFTs having gate electrodes arranged on both top and bottom sides of the channel, e.g. dual-gate TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6755—Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6757—Thin-film transistors [TFT] characterised by the structure of the channel, e.g. transverse or longitudinal shape or doping profile
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Definitions
- transistors are widely applied in electronic devices such as integrated circuits (ICs) or image display devices (also simply referred to as display devices).
- ICs integrated circuits
- image display devices also simply referred to as display devices.
- Silicon-based semiconductor materials are widely known as semiconductor thin films applicable to transistors, but oxide semiconductors are attracting attention as other materials.
- One aspect of the present invention is to provide a semiconductor device having little variation in transistor characteristics. Alternatively, one aspect of the present invention is to provide a semiconductor device having good reliability. Alternatively, one aspect of the present invention is to provide a semiconductor device having good electrical characteristics. Alternatively, one aspect of the present invention is to provide a semiconductor device having a large on-current. Alternatively, one aspect of the present invention is to provide a semiconductor device capable of miniaturization or high integration. Alternatively, one aspect of the present invention is to provide a semiconductor device having low power consumption.
- a second opening is formed in the third insulator, a fourth insulator is formed on the third insulator, and a fourth insulator is formed on the inside of the second opening, and a second conductor is formed on the fourth insulator.
- a method for manufacturing a semiconductor device which removes a fourth insulator located above the third insulator and a second conductor.
- one aspect of the present invention is a first insulator, a second insulator having an opening on the first insulator, and a third insulator provided inside the opening and having a first recess.
- the first conductor and the second conductor, which are electrically connected and separated from each other, the fourth insulator on the second oxide, and the fourth insulator are sandwiched between the second conductors.
- one aspect of the present invention it is possible to provide a semiconductor device having little variation in transistor characteristics.
- one aspect of the present invention can provide a semiconductor device with good reliability.
- one aspect of the present invention can provide a semiconductor device having good electrical characteristics.
- one aspect of the present invention can provide a semiconductor device having a large on-current.
- one aspect of the present invention can provide a low power consumption semiconductor device.
- 11A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
- 11B and 11C are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
- FIG. 12A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
- 12B and 12C are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
- FIG. 13A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
- 13B and 13C are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
- FIG. 14A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
- 14B and 14C are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
- FIG. 15A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
- 15B and 15C are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
- FIG. 16A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
- 16B and 16C are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
- 17A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
- 17B and 17C are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
- FIG. 18A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
- 18B and 18C are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
- FIG. 19A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
- 19B and 19C are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
- 20A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
- 20B and 20C are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
- FIG. 21A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
- 21B and 21C are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
- FIG. 22A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
- 22B and 22C are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
- 23A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
- 23B and 23C are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
- FIG. 24 is a top view illustrating a microwave processing apparatus according to an aspect of the present invention.
- FIG. 25 is a cross-sectional view illustrating a microwave processing apparatus according to an aspect of the present invention.
- FIG. 26 is a cross-sectional view illustrating a microwave processing apparatus according to an aspect of the present invention.
- FIG. 27 is a cross-sectional view illustrating a microwave processing apparatus according to an aspect of the present invention.
- 28A and 28B are cross-sectional views of a semiconductor device according to an aspect of the present invention.
- a top view also referred to as a "plan view”
- a perspective view the description of some components may be omitted.
- some hidden lines may be omitted.
- the ordinal numbers attached as the first, second, etc. are used for convenience, and do not indicate the process order or the stacking order. Therefore, for example, the "first” can be appropriately replaced with the “second” or “third” for explanation.
- the ordinal numbers described in the present specification and the like may not match the ordinal numbers used to specify one aspect of the present invention.
- X and Y are connected, the case where X and Y are electrically connected and the case where X and Y function. It is assumed that the case where X and Y are directly connected and the case where X and Y are directly connected are disclosed in the present specification and the like. Therefore, it is not limited to a predetermined connection relationship, for example, a connection relationship shown in a figure or a sentence, and a connection relationship other than the connection relationship shown in the figure or the sentence is also disclosed in the figure or the sentence.
- X and Y are assumed to be objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
- the channel width in the region where the channel is actually formed (hereinafter, also referred to as “effective channel width”) and the channel width shown in the top view of the transistor. (Hereinafter, also referred to as “apparent channel width”) and may be different.
- the effective channel width may be larger than the apparent channel width, and the influence thereof may not be negligible.
- the proportion of the channel forming region formed on the side surface of the semiconductor may be large. In that case, the effective channel width is larger than the apparent channel width.
- FIG. 1A is a top view of the semiconductor device.
- 1B and 1C are cross-sectional views of the semiconductor device.
- FIG. 1B is a cross-sectional view of the portion shown by the alternate long and short dash line of A1-A2 in FIG. 1A, and is also a cross-sectional view of the transistor 200 in the channel length direction.
- FIG. 1C is a cross-sectional view of the portion shown by the alternate long and short dash line of A3-A4 in FIG. 1A, and is also a cross-sectional view of the transistor 200 in the channel width direction.
- some elements are omitted for the purpose of clarifying the figure.
- the conductor 1 is provided, and the second conductor of the conductor 240b is further provided inside.
- the height of the upper surface of the conductor 240 and the height of the upper surface of the insulator 284 in the region overlapping the conductor 246 can be made about the same.
- the conductor 240 may be provided as a single layer or a laminated structure having three or more layers. When the structure has a laminated structure, an ordinal number may be given in the order of formation to distinguish them.
- the lower insulator 250a is formed by using an insulator that easily allows oxygen to pass through, and the upper insulator 250b. Is preferably formed using an insulator having a function of suppressing the diffusion of oxygen. With such a configuration, oxygen contained in the insulator 250a can be suppressed from diffusing into the conductor 260. That is, it is possible to suppress a decrease in the amount of oxygen supplied to the oxide 230. In addition, oxidation of the conductor 260 by oxygen contained in the insulator 250a can be suppressed.
- the ALD method utilizes the self-regulating properties of atoms to deposit atoms layer by layer, so ultra-thin film formation is possible, film formation into structures with a high aspect ratio is possible, and pins. It has the effects of being able to form a film with few defects such as holes, being able to form a film with excellent coverage, and being able to form a film at a low temperature.
- the PEALD method it may be preferable to use plasma because it is possible to form a film at a lower temperature.
- Some precursors used in the ALD method contain carbon and the like. Therefore, the film provided by the ALD method may contain a large amount of impurities such as carbon as compared with the film provided by other film forming methods.
- the metal oxide may be configured to function as a part of the first gate electrode.
- a metal oxide that can be used as the oxide 230 can be used as the metal oxide.
- the electric resistance value of the metal oxide can be lowered to form a conductor. This can be called an OC (Oxide Conductor) electrode.
- the insulator 280 that functions as an interlayer film preferably has a low dielectric constant.
- a material having a low dielectric constant as an interlayer film, it is possible to reduce the parasitic capacitance generated between the wirings.
- the insulator 280 is provided, for example, by using the same material as the insulator 216.
- silicon oxide and silicon oxide nitride are preferable because they are thermally stable.
- materials such as silicon oxide, silicon oxide nitride, and silicon oxide having pores are preferable because a region containing oxygen desorbed by heating can be easily formed.
- the insulator 282 and the insulator 284 preferably function as a barrier insulating film that suppresses impurities such as water and hydrogen from diffusing into the insulator 280 from above, and have a function of capturing impurities such as hydrogen. Is preferable. Further, the insulator 282 and the insulator 284 preferably function as a barrier insulating film that suppresses the permeation of oxygen. As the insulator 282 and the insulator 284, a metal oxide having an amorphous structure, for example, an insulator such as aluminum oxide may be used.
- the conductors in contact with the insulator 283, the insulator 284, the insulator 282, the insulator 280, and the insulator 272 suppress the permeation of impurities such as water and hydrogen.
- a conductive material having a function For example, tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, ruthenium oxide and the like are preferably used.
- the conductive material having a function of suppressing the permeation of impurities such as water and hydrogen may be used in a single layer or in a laminated state. Further, it is possible to prevent impurities such as water and hydrogen contained in the layer above the insulator 283 from being mixed into the oxide 230 through the conductor 240a and the conductor 240b.
- an insulator such as silicon nitride, aluminum oxide, or silicon nitride may be used. Since the insulator 241a and the insulator 241b are provided in contact with the insulator 274, the insulator 283, the insulator 284, the insulator 282, the insulator 280, and the insulator 272, water and hydrogen contained in the insulator 280 and the like are provided. It is possible to prevent impurities such as the above from being mixed into the oxide 230 through the conductor 240a and the conductor 240b. In particular, silicon nitride is suitable because it has a high barrier property against hydrogen. Further, it is possible to prevent oxygen contained in the insulator 280 from being absorbed by the conductor 240a and the conductor 240b.
- Examples of the insulator having a high specific dielectric constant include gallium oxide, hafnium oxide, zirconium oxide, oxides having aluminum and hafnium, nitride oxides having aluminum and hafnium, oxides having silicon and hafnium, silicon and hafnium. There are nitrides having oxides, or nitrides having silicon and hafnium.
- the insulator that functions as a gate insulator is preferably an insulator having a region containing oxygen that is desorbed by heating.
- the oxygen deficiency of the oxide 230 can be compensated.
- tantalum nitride, titanium nitride, tungsten, a nitride containing titanium and aluminum, a nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, an oxide containing lanthanum and nickel, and the like are used. Is preferable.
- tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are difficult to oxidize.
- a laminated structure in which the above-mentioned material containing a metal element and a conductive material containing oxygen are combined is used for the conductor functioning as a gate electrode.
- a conductive material containing oxygen may be provided on the channel forming region side.
- Metal Oxide As the oxide 230, it is preferable to use a metal oxide (oxide semiconductor) that functions as a semiconductor.
- a metal oxide oxide semiconductor
- the metal oxide applicable to the oxide 230 according to the present invention will be described.
- the metal oxide is an In-M-Zn oxide having indium, the element M, and zinc.
- the element M is aluminum, gallium, yttrium, or tin.
- Other elements applicable to the element M include boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt and the like.
- the element M a plurality of the above-mentioned elements may be combined in some cases.
- a metal oxide having nitrogen may also be collectively referred to as a metal oxide. Further, a metal oxide having nitrogen may be referred to as a metal oxide nitride.
- the structure in the thick frame shown in FIG. 5A is an intermediate state between "Amorphous” and “Crystal", and belongs to a new boundary region (New crystal phase). .. That is, the structure can be rephrased as a structure completely different from the energetically unstable "Amorphous” or "Crystal".
- CAAC-OS is an oxide semiconductor having a plurality of crystal regions, and the plurality of crystal regions are oriented in a specific direction on the c-axis.
- the specific direction is the thickness direction of the CAAC-OS film, the normal direction of the surface to be formed of the CAAC-OS film, or the normal direction of the surface of the CAAC-OS film.
- the crystal region is a region having periodicity in the atomic arrangement. When the atomic arrangement is regarded as a lattice arrangement, the crystal region is also a region in which the lattice arrangement is aligned. Further, the CAAC-OS has a region in which a plurality of crystal regions are connected in the ab plane direction, and the region may have distortion.
- electron diffraction also referred to as nanobeam electron diffraction
- an electron beam having a probe diameter for example, 1 nm or more and 30 nm or less
- An electron diffraction pattern in which a plurality of spots are observed in a ring-shaped region centered on a direct spot may be acquired.
- CAC-OS has a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the membrane (hereinafter, also referred to as a cloud shape). It says.). That is, CAC-OS is a composite metal oxide having a structure in which the first region and the second region are mixed.
- the first region is a region in which indium oxide, indium zinc oxide, or the like is the main component.
- the second region is a region in which gallium oxide, gallium zinc oxide, or the like is the main component. That is, the first region can be rephrased as a region containing In as a main component. Further, the second region can be rephrased as a region containing Ga as a main component.
- a region containing In as a main component (No. 1) by EDX mapping acquired by using energy dispersive X-ray spectroscopy (EDX: Energy Dispersive X-ray spectroscopy). It can be confirmed that the region (1 region) and the region containing Ga as a main component (second region) have a structure in which they are unevenly distributed and mixed.
- EDX Energy Dispersive X-ray spectroscopy
- Oxide semiconductors have various structures, and each has different characteristics.
- the oxide semiconductor of one aspect of the present invention has two or more of amorphous oxide semiconductor, polycrystalline oxide semiconductor, a-like OS, CAC-OS, nc-OS, and CAAC-OS. You may.
- the oxide semiconductor as a transistor, a transistor with high field effect mobility can be realized. Moreover, a highly reliable transistor can be realized.
- a low impurity concentration and a low defect level density is referred to as high-purity intrinsic or substantially high-purity intrinsic.
- An oxide semiconductor having a low carrier concentration may be referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor.
- the nitrogen concentration in the channel formation region of the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18 atoms / cm 3 or less, more preferably 1 ⁇ 10 18 atoms. / Cm 3 or less, more preferably 5 ⁇ 10 17 atoms / cm 3 or less.
- hydrogen contained in an oxide semiconductor reacts with oxygen bonded to a metal atom to become water, which may form an oxygen deficiency.
- oxygen deficiency When hydrogen enters the oxygen deficiency, electrons that are carriers may be generated.
- a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using an oxide semiconductor containing hydrogen tends to have a normally-on characteristic. Therefore, it is preferable that hydrogen in the channel forming region of the oxide semiconductor is reduced as much as possible.
- the semiconductor material that can be used for the oxide 230 is not limited to the above-mentioned metal oxide.
- a semiconductor material having a bandgap (a semiconductor material that is not a zero-gap semiconductor) may be used.
- a semiconductor of a single element such as silicon, a compound semiconductor such as gallium arsenide, a layered substance (also referred to as an atomic layer substance, a two-dimensional material, or the like) that functions as a semiconductor as a semiconductor material.
- a layered substance also referred to as an atomic layer substance, a two-dimensional material, or the like
- the layered substance is a general term for a group of materials having a layered crystal structure.
- a layered crystal structure is a structure in which layers formed by covalent or ionic bonds are laminated via bonds that are weaker than covalent or ionic bonds, such as van der Waals forces.
- the layered material has high electrical conductivity in the unit layer, that is, high two-dimensional electrical conductivity.
- Chalcogenides are compounds containing chalcogens.
- chalcogen is a general term for elements belonging to Group 16, and includes oxygen, sulfur, selenium, tellurium, polonium, and livermorium.
- Examples of chalcogenides include transition metal chalcogenides and group 13 chalcogenides.
- Tungsten sulfide typically WS 2
- Tungsten disulfide typically WSe 2
- Tungsten tellurium typically WTe 2
- Hafnium sulfide typically HfS 2
- Hafnium serene typically typically
- Typical examples include HfSe 2 ), zirconium sulfide (typically ZrS 2 ), and zirconium selenium (typically ZrSe 2 ).
- the insulating material for forming an insulator, the conductive material for forming a conductor, or the semiconductor material for forming a semiconductor is a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method. Etc. can be used as appropriate to form a film.
- an insulator such as silicon nitride that is difficult for impurities such as water and hydrogen to permeate it is possible to suppress the diffusion of impurities such as water and hydrogen contained in the layer below the insulator 212. Further, by using an insulator such as silicon nitride that does not easily allow copper to permeate as the insulator 212, even if a metal such as copper that easily diffuses is used for the conductor in the lower layer (not shown) of the insulator 212, the metal is used. Can be suppressed from diffusing upward through the insulator 212.
- the insulator 214 it is preferable to use a metal oxide having an amorphous structure, for example, aluminum oxide, which has a high function of capturing hydrogen and fixing hydrogen. As a result, hydrogen contained in the insulator 216 or the like can be captured or fixed, and the hydrogen can be prevented from diffusing into the oxide 230.
- a metal oxide having an amorphous structure or aluminum oxide having an amorphous structure as the insulator 214 because hydrogen may be captured or fixed more effectively. Thereby, the transistor 200 having good characteristics and high reliability and the semiconductor device can be manufactured.
- a conductive film 205A is formed (see FIGS. 6A to 6C). It is desirable that the conductive film 205A contains a conductor having a function of suppressing the permeation of oxygen.
- a conductor having a function of suppressing the permeation of oxygen For example, tantalum nitride, tungsten nitride, titanium nitride and the like can be used. Alternatively, it can be a laminated film of a conductor having a function of suppressing oxygen permeation and a tantalum, tungsten, titanium, molybdenum, aluminum, copper or molybdenum tungsten alloy.
- the film formation of the conductive film 205A can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
- etching is performed to remove the upper part of the conductor 205b (see FIGS. 8A to 8C). As a result, the upper surface of the conductor 205b becomes lower than the upper surface of the conductor 205a and the upper surface of the insulator 216. Dry etching or wet etching may be used for etching the conductor 205b, but it is preferable to use dry etching for microfabrication.
- the conductive film 205C is formed on the insulator 216, the conductor 205a, and the conductor 205b (see FIGS. 9A to 9C). It is desirable that the conductive film 205C contains a conductor having a function of suppressing the permeation of oxygen, similarly to the conductive film 205A.
- the conductor 205a, the conductor 205b, and the conductor 205c remain only in the opening.
- the conductor 205 having a flat upper surface can be formed.
- the conductor 205b is wrapped in the conductor 205a and the conductor 205c. Therefore, impurities such as hydrogen are prevented from diffusing from the conductor 205b to the outside of the conductor 205a and the conductor 205c, and oxygen is mixed from the outside of the conductor 205a and the conductor 205c to oxidize the conductor 205b. Can be prevented.
- a part of the insulator 216 may be removed by the CMP treatment.
- the insulator 222 has a barrier property against hydrogen and water, hydrogen and water contained in the structure provided around the transistor 200 are suppressed from diffusing into the inside of the transistor 200 through the insulator 222. , The formation of oxygen deficiency in the oxide 230 can be suppressed.
- the film formation of the insulator 222 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
- hafnium oxide is formed as the insulator 222 by using the ALD method.
- the gas used in the above heat treatment is highly purified.
- the amount of water contained in the gas used in the heat treatment may be 1 ppb or less, preferably 0.1 ppb or less, and more preferably 0.05 ppb or less.
- an insulating film 224A is formed (see FIGS. 13A to 13C).
- the insulating film 224A can be deposited by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
- silicon oxide is formed as the insulating film 224A by using a sputtering method.
- a sputtering method that does not require hydrogen to be used as the film forming gas, the hydrogen concentration in the insulating film 224A can be reduced.
- the oxide film 230A and the oxide film 230B are formed by a sputtering method
- oxygen or a mixed gas of oxygen and a rare gas is used as the sputtering gas.
- excess oxygen in the oxide film formed can be increased.
- the above oxide film is formed by a sputtering method
- the above In—M—Zn oxide target or the like can be used.
- the proportion of oxygen contained in the sputtering gas may be 70% or more, preferably 80% or more, and more preferably 100%.
- the gas used in the above heat treatment is highly purified.
- the amount of water contained in the gas used in the heat treatment may be 1 ppb or less, preferably 0.1 ppb or less, and more preferably 0.05 ppb or less.
- the insulating film 224A, the oxide film 230A, and the oxide film 230B is removed, and the insulator 219 is exposed (see FIGS. 14A to 14C).
- the insulating film 224A, the oxide film 230A, and the oxide film 230B remain only in the opening, and the insulator 224, the oxide 230a, and the oxide 230b are formed, respectively. This makes it possible to form a laminate of the insulator 224 and the oxide 230 having a flat upper surface.
- a conductive film to be a conductive layer 242B is formed on the insulator 219, the insulator 224, and the oxide 230 (see FIGS. 15A to 15C).
- the film formation of the conductive film to be the conductive layer 242B can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
- a sputtering method for example, as the conductive film to be the conductive layer 242B, tantalum nitride may be formed by using a sputtering method.
- the heat treatment may be performed before the film formation of the conductive film to be the conductive layer 242B.
- the conductive film to be the conductive layer 242B is processed by a lithography method to form the conductive layer 242B (see FIGS. 15A to 15C).
- the conductive layer 242B is preferably arranged so as to overlap the oxide 230.
- the insulator 272 is formed on the insulator 219 and the conductive layer 242B (see FIGS. 15A to 15C).
- the film formation of the insulator 272 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
- silicon nitride, aluminum oxide, or the like can be used as the insulator 272 .
- the insulator 272 may have a laminated structure, for example, silicon nitride may be formed and aluminum oxide may be formed on the silicon nitride, or aluminum oxide may be formed and nitrided on the aluminum oxide. Silicon may be formed.
- silicon nitride is formed as the insulator 272 by a sputtering method.
- an insulating film to be the insulator 280 is formed on the insulator 272.
- the insulating film can be formed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
- a silicon oxide film may be formed by using a sputtering method.
- An insulator 280 containing excess oxygen can be formed by forming an insulating film to be an insulator 280 by a sputtering method in an atmosphere containing oxygen. Further, by using a sputtering method in which hydrogen does not have to be used as the film forming gas, the hydrogen concentration in the insulator 280 can be reduced.
- a part of the insulator 280, a part of the insulator 272, and a part of the conductive layer 242B are processed to form an opening reaching the oxide 230b.
- the opening is preferably formed so as to overlap the conductor 205.
- the conductor 242a and the conductor 242b are formed (see FIGS. 16A to 16C).
- a dry etching method or a wet etching method can be used for processing a part of the insulator 280, a part of the insulator 272, and a part of the conductive layer 242B.
- Processing by the dry etching method is suitable for microfabrication. Further, the processing may be performed under different conditions. For example, a part of the insulator 280 may be processed by a dry etching method, a part of the insulator 272 may be processed by a wet etching method, and a part of the conductive layer 242B may be processed by a dry etching method. Further, the processing of a part of the insulator 280 and a part of the conductive layer 242B may be performed under different conditions.
- the impurities include the components contained in the insulator 280, the insulator 272, and the conductive layer 242B, the components contained in the member used in the apparatus used for forming the opening, and the gas or liquid used for etching. Examples include those caused by the components contained in. Examples of the impurities include aluminum, silicon, tantalum, fluorine, chlorine and the like.
- the region of the metal oxide that has become a pseudo-amorphous oxide semiconductor (a-like OS: amorphous-like oxide semiconductor) due to the inhibition of CAAC-OS by impurities such as aluminum or silicon is defined as the non-CAAC region. May be called.
- the non CAAC region since the compactness of the crystal structure is reduced, V O H has a large amount of formation, the transistor tends to be normally on reduction. Therefore, the non-CAAC region of the oxide 230b is preferably reduced or removed.
- the oxide 230b has a layered CAAC structure.
- the conductor 242a or the conductor 242b and its vicinity function as a drain. That is, it is preferable that the oxide 230b near the lower end of the conductor 242a (conductor 242b) has a CAAC structure.
- the cleaning method include wet cleaning using a cleaning liquid, plasma treatment using plasma, cleaning by heat treatment, and the like, and the above cleanings may be appropriately combined.
- the cleaning treatment may deepen the groove.
- the cleaning treatment may be performed using an aqueous solution obtained by diluting ammonia water, oxalic acid, phosphoric acid, hydrofluoric acid or the like with carbonated water or pure water, pure water, carbonated water or the like.
- ultrasonic cleaning may be performed using these aqueous solutions, pure water, or carbonated water.
- these washings may be appropriately combined.
- an aqueous solution obtained by diluting hydrofluoric acid with pure water may be referred to as diluted hydrofluoric acid
- an aqueous solution obtained by diluting ammonia water with pure water may be referred to as diluted ammonia water.
- concentration, temperature, etc. of the aqueous solution may be appropriately adjusted depending on the impurities to be removed, the configuration of the semiconductor device to be washed, and the like.
- the ammonia concentration of the diluted ammonia water may be 0.01% or more and 5% or less, preferably 0.1% or more and 0.5% or less.
- the hydrogen fluoride concentration of the diluted hydrofluoric acid may be 0.01 ppm or more and 100 ppm or less, preferably 0.1 ppm or more and 10 ppm or less.
- a frequency of 200 kHz or higher preferably 900 kHz or higher. By using this frequency, damage to the oxide 230b and the like can be reduced.
- the above cleaning treatment may be performed a plurality of times, and the cleaning liquid may be changed for each cleaning treatment.
- a treatment using diluted hydrofluoric acid or diluted aqueous ammonia may be performed as the first cleaning treatment
- a treatment using pure water or carbonated water may be performed as the second cleaning treatment.
- wet cleaning is performed using diluted hydrofluoric acid, and then wet cleaning is performed using pure water or carbonated water.
- impurities adhering to or diffused inside the surface such as oxide 230a and oxide 230b can be removed.
- the crystallinity of the oxide 230b can be enhanced.
- the heat treatment may be performed after the etching or the cleaning.
- the heat treatment may be carried out at 100 ° C. or higher and 450 ° C. or lower, preferably 350 ° C. or higher and 400 ° C. or lower.
- the heat treatment is performed in an atmosphere of nitrogen gas or an inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
- the heat treatment is preferably performed in an oxygen atmosphere.
- oxygen is supplied to the oxide 230a and oxides 230b, it is possible to reduce the oxygen vacancies V O. Further, by performing such a heat treatment, the crystallinity of the oxide 230b can be improved.
- the heat treatment may be performed in a reduced pressure state.
- the heat treatment may be continuously performed in a nitrogen atmosphere without being exposed to the atmosphere.
- an insulating film to be the insulator 252 is formed.
- the insulating film to be the insulator 252 can be formed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
- silicon nitride is formed by using the ALD method.
- the insulating film to be the insulator 252 is anisotropically etched by a dry etching method to obtain the end of the conductor 242a, the end of the conductor 242b, the end of the insulator 272, and the insulator 280.
- An insulator 252 is formed in contact with the end portion (see FIGS. 17A to 17C).
- the insulator 252 is preferably in contact with at least the ends of the conductor 242a and the conductor 242b.
- an insulating film 250A to be an insulator 250a is formed (see FIGS. 18A to 18C).
- the heat treatment may be performed before the film formation of the insulating film 250A, and the heat treatment may be performed under reduced pressure to continuously form the insulating film 250A without exposure to the atmosphere. Moreover, it is preferable that the heat treatment is performed in an atmosphere containing oxygen. By performing such a treatment, the water and hydrogen adsorbed on the surface of the oxide 230b and the like can be removed, and the water concentration and the hydrogen concentration in the oxide 230a and the oxide 230b can be further reduced.
- the temperature of the heat treatment is preferably 100 ° C. or higher and 400 ° C. or lower.
- the insulating film 250A can be formed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. Further, the insulating film 250A is preferably formed by a film forming method using a gas in which hydrogen atoms are reduced or removed. Thereby, the hydrogen concentration of the insulating film 250A can be reduced. Since the insulating film 250A becomes an insulator 250 in contact with the oxide 230b in a later step, it is preferable that the hydrogen concentration is reduced in this way.
- the insulating film 250A is preferably formed by the PEALD method using a gas containing silicon and not containing a hydrocarbon (precursor) and an oxidizing gas (reactant). It is necessary that the film thickness of the insulator 250 of the miniaturized transistor 200, which functions as the gate insulating film, is extremely thin (for example, about 5 nm or more and 30 nm or less) and the variation is small.
- the PEALD method is a film-forming method in which a precursor and a reactor (oxidizing agent) are alternately introduced, and the film thickness can be adjusted by the number of times this cycle is repeated, so that the film thickness is precise. It can be adjusted.
- a gas containing silicon and not containing a hydrocarbon (precursor) and an oxidizing gas (reactant) it is possible to suppress the mixing of hydrogen in the insulating film 250A and the oxide 230b.
- a precursor containing impurities such as carbon for example, an organic precursor having a CH group is not used, impurities such as carbon and hydrocarbons can be suppressed from being mixed into the insulating film 250A.
- a denser film containing no impurities or the like can be formed, it is possible to prevent the diffusion of In from the oxide 230b to the insulating film 250A.
- an insulating film 250B to be an insulator 250b is formed (see FIGS. 18A to 18C).
- the insulating film 250B can be formed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
- the insulating film 250B is preferably formed by using an insulator having a function of suppressing the diffusion of oxygen. With such a configuration, oxygen contained in the insulator 250a can be suppressed from diffusing into the conductor 260. That is, it is possible to suppress a decrease in the amount of oxygen supplied to the oxide 230. In addition, oxidation of the conductor 260 by oxygen contained in the insulator 250a can be suppressed.
- the insulating film 250A can be provided using a material that can be used for the above-mentioned insulator 250, and the insulating film 250B can be provided using the same material as the insulator 222.
- the insulating film 250B may have a laminated structure.
- silicon nitride may be laminated on an insulator containing an oxide of one or both of aluminum and hafnium. With such a configuration, it is possible to prevent the conductor 260 formed in the subsequent step from being oxidized. Further, it is possible to prevent hydrogen contained in the conductor 260 from entering the oxide 230 via the insulator 250.
- silicon oxide is deposited as the insulating film 250A by the PECVD method, and hafnium oxide is deposited as the insulating film 250B by the thermal ALD method.
- microwave treatment is performed in an atmosphere containing oxygen (see FIGS. 18A to 18C).
- the dotted lines shown in FIGS. 18B and 18C indicate microwaves, high frequencies such as RF, oxygen plasma, oxygen radicals, and the like.
- the microwave processing device may have a power supply that applies RF to the substrate side.
- high-density plasma high-density oxygen radicals can be generated.
- oxygen ions generated by the high-density plasma can be efficiently guided into the oxide 230b.
- the microwave treatment is preferably performed under reduced pressure, and the pressure may be 60 Pa or more, preferably 133 Pa or more, more preferably 200 Pa or more, and further preferably 400 Pa or more.
- the oxygen flow rate ratio (O 2 / O 2 + Ar) is 50% or less, preferably 10% or more and 30% or less.
- the treatment temperature may be 750 ° C. or lower, preferably 500 ° C. or lower, for example, about 400 ° C.
- the heat treatment may be continuously performed without exposing to the outside air.
- oxygen gas is turned into plasma using a high frequency such as microwave or RF, and the oxygen plasma is converted into a conductor of oxide 230b. It can act on the region between 242a and the conductor 242b.
- the region 230bc can be irradiated with a high frequency wave such as a microwave or RF. That is, microwaves, high frequencies such as RF, oxygen plasma, and the like can be applied to the region 230bc shown in FIG. Plasma, by the action such as a microwave, and divide the V O H region 230Bc, hydrogen H can be removed from the area 230Bc.
- the carrier concentration can be decreased. Further, by supplying the oxygen radical generated by the oxygen plasma or the oxygen contained in the insulator 250 to the oxygen deficiency formed in the region 230 bc, the oxygen deficiency in the region 230 bc is further reduced and the carrier concentration is increased. Can be lowered.
- the conductor 242a and the conductor 242b are provided on the region 230ba and the region 230bb shown in FIG.
- the conductors 242a and 242b shield the action of microwaves, high frequencies such as RF, oxygen plasma, etc., so that these actions extend to the regions 230ba and 230bb. Absent.
- the microwave treatment, the region 230ba and area 230Bb, reduction of V O H, and excessive amount of oxygen supply does not occur, it is possible to prevent a decrease in carrier concentration.
- the oxide selectively oxygen deficiency in the semiconductor region 230Bc, a and V O H may be removed to an area 230Bc i-type or substantially i-type. Further, it is possible to suppress the supply of excess oxygen to the region 230ba and the region 230bb that function as the source region or the drain region, and to maintain the n-type. As a result, fluctuations in the electrical characteristics of the transistor 200 can be suppressed, and fluctuations in the electrical characteristics of the transistor 200 can be suppressed within the substrate surface.
- microwave treatment may be performed after the insulating film 250A is formed. Further, it is not necessary to perform the microwave treatment after the film formation of the insulating film 250A and not to perform the microwave treatment after the film formation of the insulating film 250B.
- the heat treatment may be performed under the same conditions as the above heat treatment.
- the treatment is carried out in a nitrogen atmosphere at a temperature of 400 ° C. for 1 hour.
- the heat treatment the water concentration and the hydrogen concentration in the insulator 250 and the insulator 280 can be reduced.
- the insulator 282 may be continuously formed without being exposed to the atmosphere.
- aluminum oxide is formed as the insulator 282a and the insulator 282b by a pulse DC sputtering method using an aluminum target in an atmosphere containing oxygen gas.
- the RF power applied to the substrate shall be 1.86 W / cm 2 or less.
- the insulator 282a is formed of RF power applied to the substrate as a 0 W / cm 2, the insulator 282b, the film of the RF power applied to the substrate as 0.31 W / cm 2.
- the insulator 282a, the insulator 282b, the insulator 280, the insulator 272, the insulator 219, the insulator 222, and the insulator 216 are processed until they reach the upper surface of the insulator 214 (see FIGS. 21A to 21C). ). Although wet etching may be used for the processing, it is preferable to use dry etching for fine processing.
- heat treatment may be performed.
- the heat treatment may be carried out at 250 ° C. or higher and 650 ° C. or lower, preferably 400 ° C. or higher and 600 ° C. or lower. Further, the heat treatment is preferably lower than the heat treatment temperature performed after the oxide film 243A is formed.
- the heat treatment is performed in an atmosphere of nitrogen gas or an inert gas.
- the insulator 282a, the insulator 282b, the insulator 280, the insulator 272, the insulator 219, the insulator 222, and the insulator 216 are processed to form the insulator 280 from the side surface.
- the oxygen contained in the insulator 280 and the hydrogen bonded to the oxygen can be released to the outside.
- the oxygen contained in the insulator 280 and the hydrogen bonded to the oxygen can be released to the outside. Hydrogen combined with oxygen is released as water. Therefore, unnecessary oxygen and hydrogen contained in the insulator 280 can be reduced.
- the insulator 283 is formed on the insulator 282b (see FIGS. 22A to 22C).
- the film formation of the insulator 283 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
- the film formation of the insulator 283 is preferably performed by using a sputtering method.
- a sputtering method that does not require hydrogen to be used as the film forming gas, the hydrogen concentration in the insulator 283 can be reduced.
- the insulator 283 may have a multi-layer structure.
- silicon nitride may be deposited by using a sputtering method, and silicon nitride may be deposited on the silicon nitride by using the ALD method.
- the transistor 200 By wrapping the transistor 200 with the insulator 283 and the insulator 214 having a high barrier property, it is possible to prevent moisture and hydrogen from entering from the outside.
- the insulator 284 is formed on the insulator 274 and the insulator 283 (see FIGS. 22A to 22C).
- the film formation of the insulator 284 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
- the film formation of the insulator 284 is preferably performed by using a sputtering method. By using a sputtering method that does not require hydrogen to be used as the film forming gas, the hydrogen concentration in the insulator 284 can be reduced.
- an opening reaching the conductor 242 is formed in the insulator 272, the insulator 280, the insulator 282, the insulator 283, and the insulator 284 (see FIGS. 23A and 23B).
- the opening may be formed by using a lithography method.
- the shape of the opening is circular in the top view, but the shape is not limited to this.
- the opening may have a substantially circular shape such as an ellipse, a polygonal shape such as a quadrangle, or a polygonal shape such as a quadrangle with rounded corners when viewed from above.
- an insulating film to be the insulator 241 is formed, and the insulating film is anisotropically etched to form the insulator 241.
- the film formation of the insulating film to be the insulator 241 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
- the insulating film to be the insulator 241 it is preferable to use an insulating film having a function of suppressing the permeation of oxygen.
- the anisotropic etching of the insulating film to be the insulator 241 for example, a dry etching method or the like may be used.
- a dry etching method or the like By providing the insulator 241 on the side wall portion of the opening, it is possible to suppress the permeation of oxygen from the outside and prevent the oxidation of the conductor 240a and the conductor 240b to be formed next. Further, it is possible to prevent impurities such as water and hydrogen from diffusing from the conductor 240a and the conductor 240b to the outside.
- a conductive film to be a conductor 240a and a conductor 240b is formed. It is desirable that the conductive film to be the conductor 240a and the conductor 240b has a laminated structure including a conductor having a function of suppressing the permeation of impurities such as water and hydrogen.
- impurities such as water and hydrogen.
- tantalum nitride, titanium nitride, or the like can be laminated with tungsten, molybdenum, copper, or the like.
- the film formation of the conductive film to be the conductor 240 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
- the conductor 240a and the conductor 240b having a flat upper surface can be formed by leaving the conductive film only in the opening (see FIG. 23B).
- a part of the upper surface of the insulator 286 may be removed by the CMP treatment.
- a conductive film to be a conductor 246 is formed.
- the film formation of the conductive film to be the conductor 246 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
- the conductive film to be the conductor 246 is processed by a lithography method to form a conductor 246a in contact with the upper surface of the conductor 240a and a conductor 246b in contact with the upper surface of the conductor 240b.
- a part of the insulator 284 in the region where the conductors 246a and 246b and the insulator 286 do not overlap may be removed.
- the semiconductor device having the transistor 200 shown in FIGS. 1A to 1C can be manufactured.
- the transistor 200 can be manufactured by using the method for manufacturing the semiconductor device shown in the present embodiment.
- microwave processing device that can be used in the method for manufacturing the semiconductor device will be described.
- FIG. 24 schematically shows a top view of the single-wafer multi-chamber manufacturing apparatus 2700.
- the manufacturing apparatus 2700 has an atmospheric side substrate supply chamber 2701 including a cassette port 2761 for accommodating the substrate and an alignment port 2762 for aligning the substrate, and an atmospheric side substrate transport for transporting the substrate from the atmospheric side substrate supply chamber 2701.
- Room 2702 and load lock chamber 2703a that carries in the substrate and switches the pressure in the room from atmospheric pressure to atmospheric pressure, or from reduced pressure to atmospheric pressure, and carries out the substrate and reduces the pressure in the room from reduced pressure to atmospheric pressure, or It has an unload lock chamber 2703b for switching from atmospheric pressure to depressurization, a transport chamber 2704 for transporting a substrate in vacuum, a chamber 2706a, a chamber 2706b, a chamber 2706c, and a chamber 2706d.
- the atmospheric side substrate transport chamber 2702 is connected to the load lock chamber 2703a and the unload lock chamber 2703b, the load lock chamber 2703a and the unload lock chamber 2703b are connected to the transport chamber 2704, and the transport chamber 2704 is connected to the chamber 2706a.
- Chamber 2706b, chamber 2706c and chamber 2706d are connected to the atmospheric side substrate transport chamber 2702.
- a gate valve GV is provided at the connection portion of each chamber, and each chamber can be independently held in a vacuum state except for the atmospheric side substrate supply chamber 2701 and the atmospheric side substrate transport chamber 2702. Further, a transfer robot 2763a is provided in the atmospheric side substrate transfer chamber 2702, and a transfer robot 2763b is provided in the transfer chamber 2704. The transfer robot 2763a and the transfer robot 2763b can transfer the substrate in the manufacturing apparatus 2700.
- the total pressure and partial pressure in the transport chamber 2704 and each chamber can be measured using a mass spectrometer.
- a mass spectrometer for example, a quadrupole mass spectrometer (also referred to as Q-mass) Qulee CGM-051 manufactured by ULVAC, Inc. may be used.
- the leak rate of the gas molecule (atom) having m / z of 28 is 1 ⁇ 10-5 Pa ⁇ m 3 / s or less, preferably 1 ⁇ 10-6 Pa ⁇ m 3 / s or less.
- the leak rate of the gas molecule (atom) having m / z of 44 is set to 3 ⁇ 10 -6 Pa ⁇ m 3 / s or less, preferably 1 ⁇ 10 -6 Pa ⁇ m 3 / s or less.
- the transport chamber 2704 and the opening and closing parts of each chamber may be sealed with a metal gasket.
- a metal gasket it is preferable to use a metal coated with iron fluoride, aluminum oxide, or chromium oxide.
- the metal gasket has higher adhesion than the O-ring and can reduce external leakage. Further, by using the passivation of the metal coated with iron fluoride, aluminum oxide, chromium oxide or the like, the released gas containing impurities released from the metal gasket can be suppressed, and the internal leak can be reduced.
- the members of the manufacturing apparatus 2700 are preferably made of only metal as much as possible.
- the surface thereof is made of iron fluoride, aluminum oxide, or oxide in order to suppress emitted gas. It is recommended to coat it thinly with chrome or the like.
- the adsorbents present in the transport chamber 2704 and each chamber do not affect the pressure of the transport chamber 2704 and each chamber because they are adsorbed on the inner wall, etc., but cause gas release when the transport chamber 2704 and each chamber are exhausted. It becomes. Therefore, although there is no correlation between the leak rate and the exhaust speed, it is important to use a pump having a high exhaust capacity to remove the adsorbents existing in the transport chamber 2704 and each chamber as much as possible and exhaust them in advance.
- the transport chamber 2704 and each chamber may be baked in order to promote the desorption of adsorbed substances. By baking, the desorption rate of the adsorbent can be increased by about 10 times. Baking may be performed at 100 ° C. or higher and 450 ° C. or lower.
- the desorption rate of water or the like which is difficult to desorb only by exhausting, can be further increased.
- the desorption rate of the adsorbent can be further increased.
- an inert gas such as a heated rare gas or oxygen
- the adsorbents in the transport chamber 2704 and each chamber can be desorbed, and the impurities existing in the transport chamber 2704 and each chamber can be reduced. It is effective to repeat this treatment 2 times or more and 30 times or less, preferably 5 times or more and 15 times or less.
- an inert gas or oxygen having a temperature of 40 ° C. or higher and 400 ° C. or lower, preferably 50 ° C. or higher and 200 ° C.
- the pressure in the transport chamber 2704 and each chamber is 0.1 Pa or higher and 10 kPa or lower.
- the pressure may be preferably 1 Pa or more and 1 kPa or less, more preferably 5 Pa or more and 100 Pa or less, and the pressure holding period may be 1 minute or more and 300 minutes or less, preferably 5 minutes or more and 120 minutes or less.
- the transfer chamber 2704 and each chamber are exhausted for a period of 5 minutes or more and 300 minutes or less, preferably 10 minutes or more and 120 minutes or less.
- Chambers 2706b and 2706c are, for example, chambers capable of performing microwave treatment on an object to be processed. It should be noted that the chamber 2706b and the chamber 2706c differ only in the atmosphere when microwave processing is performed. Since other configurations are common, they will be described together below.
- the board holder 2812 has a function of holding the board 2811. For example, it has a function of electrostatically chucking or mechanically chucking the substrate 2811. It also functions as an electrode to which power is supplied from the high frequency power supply 2816. Further, it has a heating mechanism 2813 inside and has a function of heating the substrate 2811.
- the vacuum pump 2817 for example, a dry pump, a mechanical booster pump, an ion pump, a titanium sublimation pump, a cryopump, a turbo molecular pump, or the like can be used. Further, in addition to the vacuum pump 2817, a cryotrap may be used. It is particularly preferable to use a cryopump and a cryotrap because water can be efficiently exhausted.
- the heating mechanism 2813 may be, for example, a heating mechanism that heats using a resistance heating element or the like. Alternatively, it may be a heating mechanism that heats by heat conduction or heat radiation from a medium such as a heated gas.
- RTA Rapid Thermal Annealing
- GRTA Gas Rapid Thermal Annealing
- LRTA Riv Rapid Thermal Annealing
- GRTA heat-treats using a high-temperature gas. As the gas, an inert gas is used.
- the gas supply source 2801 may be connected to the refiner via a mass flow controller.
- the gas it is preferable to use a gas having a dew point of ⁇ 80 ° C. or lower, preferably ⁇ 100 ° C. or lower.
- oxygen gas, nitrogen gas, and noble gas argon gas, etc. may be used.
- the dielectric plate 2809 for example, silicon oxide (quartz), aluminum oxide (alumina), yttrium oxide (itria), or the like may be used. Further, another protective layer may be formed on the surface of the dielectric plate 2809. As the protective layer, magnesium oxide, titanium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silicon oxide, aluminum oxide, yttrium oxide and the like may be used. Since the dielectric plate 2809 is exposed to a particularly high-density region of the high-density plasma 2810 described later, damage can be mitigated by providing a protective layer. As a result, it is possible to suppress an increase in particles during processing.
- the high frequency generator 2803 has, for example, a function of generating microwaves of 0.3 GHz or more and 3.0 GHz or less, 0.7 GHz or more and 1.1 GHz or less, or 2.2 GHz or more and 2.8 GHz or less.
- the microwave generated by the high frequency generator 2803 is transmitted to the mode converter 2805 via the waveguide 2804.
- the microwave transmitted as the TE mode is converted into the TEM mode.
- the microwave is transmitted to the slot antenna plate 2808 via the waveguide 2807.
- the slot antenna plate 2808 is provided with a plurality of slot holes, and microwaves pass through the slot holes and the dielectric plate 2809. Then, an electric field can be generated below the dielectric plate 2809 to generate high-density plasma 2810.
- ions and radicals corresponding to the gas type supplied from the gas supply source 2801 are present. For example, there are oxygen radicals and the like.
- oxygen radical treatment using the high-density plasma 2810 can be performed by introducing oxygen from the gas supply source 2801 in the chamber 2706b or the chamber 2706c.
- Chambers 2706a and 2706d have one or more lamps 2820, a substrate holder 2825, a gas inlet 2823, and an exhaust port 2830. Further, a gas supply source 2821, a valve 2822, a vacuum pump 2828, and a valve 2829 are provided outside the chamber 2706a and the chamber 2706d.
- the gas supply source 2821 is connected to the gas introduction port 2823 via a valve 2822.
- the vacuum pump 2828 is connected to the exhaust port 2830 via a valve 2829.
- the lamp 2820 is arranged to face the substrate holder 2825.
- the substrate holder 2825 has a function of holding the substrate 2824. Further, the substrate holder 2825 has a heating mechanism 2826 inside, and has a function of heating the substrate 2824.
- a light source having a function of radiating electromagnetic waves such as visible light or ultraviolet light
- a light source having a function of emitting an electromagnetic wave having a peak at a wavelength of 10 nm or more and 2500 nm or less, 500 nm or more and 2000 nm or less, or 40 nm or more and 340 nm or less may be used.
- a light source such as a halogen lamp, a metal halide lamp, a xenon arc lamp, a carbon arc lamp, a high-pressure sodium lamp, or a high-pressure mercury lamp may be used.
- the electromagnetic wave radiated from the lamp 2820 can be partially or completely absorbed by the substrate 2824 to modify the film or the like on the substrate 2824.
- defects can be created or reduced, or impurities can be removed. If the substrate 2824 is heated, defects can be efficiently generated or reduced, or impurities can be removed.
- the substrate holder 2825 may be heated by the electromagnetic waves radiated from the lamp 2820 to heat the substrate 2824. In that case, it is not necessary to have the heating mechanism 2826 inside the substrate holder 2825.
- the vacuum pump 2828 refers to the description about the vacuum pump 2817.
- the heating mechanism 2826 refers to the description about the heating mechanism 2813.
- the gas supply source 2821 refers to the description about the gas supply source 2801.
- the microwave processing device that can be used in this embodiment is not limited to the above.
- the microwave processing apparatus 2900 shown in FIG. 27 can be used.
- the microwave processing apparatus 2900 includes a quartz tube 2901, an exhaust port 2819, a gas supply source 2801, a valve 2802, a high frequency generator 2803, a waveguide 2804, a gas tube 2806, a vacuum pump 2817, and a valve 2818.
- the microwave processing apparatus 2900 has a substrate holder 2902 that holds a plurality of substrates 2811 (2811_1 to 2811_n, n is an integer of 2 or more) in the quartz tube 2901.
- the microwave processing apparatus 2900 may have the heating means 2903 on the outside of the quartz tube 2901.
- the microwave generated by the high frequency generator 2803 is irradiated to the substrate provided in the quartz tube 2901 via the waveguide 2804.
- the vacuum pump 2817 is connected to the exhaust port 2819 via a valve 2818, and the pressure inside the quartz tube 2901 can be adjusted.
- the gas supply source 2801 is connected to the gas pipe 2806 via a valve 2802, and a desired gas can be introduced into the quartz pipe 2901.
- the heating means 2903 can heat the substrate 2811 in the quartz tube 2901 to a desired temperature. Alternatively, the heating means 2903 may heat the gas supplied from the gas supply source 2801.
- the microwave processing apparatus 2900 can simultaneously perform heat treatment and microwave treatment on the substrate 2811. Further, after heating the substrate 2811, microwave treatment can be performed. Further, the substrate 2811 can be heat-treated after being microwave-treated.
- the substrates 2811_1 to 2811_n may all be processing substrates forming a semiconductor device or a storage device, or some of the substrates may be dummy substrates.
- the substrate 2811_1 and the substrate 2811_n may be used as dummy substrates, and the substrates 2811_2 to 2811_n-1 may be used as processing substrates.
- the substrate 2811_1, the substrate 2811_2, the substrate 2811_n-1, and the substrate 2811_n may be used as dummy substrates, and the substrates 2811_3 to 2811_n-2 may be used as processing substrates.
- a dummy substrate it is preferable to use a dummy substrate because a plurality of treated substrates can be uniformly treated during microwave treatment or heat treatment, and variations between the treated substrates can be reduced. For example, by arranging the dummy substrate on the processing substrate closest to the high frequency generator 2803 and the waveguide 2804, it is possible to suppress the direct exposure of the processing substrate to microwaves, which is preferable.
- FIG. 2A shows a top view of the semiconductor device.
- FIG. 2B is a cross-sectional view corresponding to the portion indicated by the alternate long and short dash line of A1-A2 shown in FIG. 2A.
- 2C is a cross-sectional view corresponding to the portion shown by the alternate long and short dash line in A3-A4 in FIG. 2A.
- some elements are omitted for the sake of clarity.
- the semiconductor device shown in FIGS. 2A to 2C is a modification of the semiconductor device shown in FIGS. 1A to 1C.
- the semiconductor device shown in FIGS. 2A to 2C is different from the semiconductor device shown in FIGS. 1A to 1C in that it does not have an insulator 252 and has an oxide 230c.
- an insulating film to be an insulator 252 is formed and anisotropic etching is performed to form an insulator 252.
- an oxide film to be an oxide 230c is formed.
- the oxide film to be the oxide 230c can be formed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
- the film formation of the oxide film to be the oxide 230c is preferable because it is possible to form a film having a uniform thickness even in a groove or an opening having a large aspect ratio by using the ALD method. Further, it is preferable to use the PEALD method because an oxide film which becomes an oxide 230c can be formed at a lower temperature than the thermal ALD method.
- a sputtering method is used to form an oxide film of the oxide 230c.
- the oxide 230c is subjected to CMP treatment to polish the oxide film to be the oxide 230c, the insulating film 250A, the insulating film 250B, the conductive film to be the conductor 260a, and the conductive film to be the conductor 260b until the insulator 280 is exposed. Form by doing.
- the film thickness of the oxide 230c is preferably 0.5 nm or more and 5 nm or less. More preferably, it is 1 nm or more and 3 nm or less.
- FIG. 3A shows a top view of the semiconductor device.
- FIG. 3B is a cross-sectional view corresponding to the portion indicated by the alternate long and short dash line of A1-A2 shown in FIG. 3A.
- FIG. 3C is a cross-sectional view corresponding to the portion shown by the alternate long and short dash line in A3-A4 in FIG. 3A.
- some elements are omitted for the sake of clarity.
- the same reference numerals are added to the structures having the same functions as the structures constituting the semiconductor devices shown in ⁇ Semiconductor device configuration example>.
- the materials described in detail in ⁇ Semiconductor device configuration example> can be used as the constituent materials of the semiconductor device.
- the transistor 200 includes an insulator 216 on the insulator 214 and a conductor 205 (conductor 205a, conductor 205b) arranged so as to be embedded in the insulator 214 or the insulator 216. , And the insulator 205c), the insulator 222 on the insulator 216, and the insulator 205, the insulator 224 on the insulator 222, the insulator 219 on the insulator 224, and the insulator 219.
- the oxides 230 (oxides 230a and 230b) arranged in such a manner, the insulator 219, the conductors 242a and the conductors 242b on the oxides 230, the insulators 252 on the oxides 230, and the insulation.
- the conductor 242 has a region in contact with a part of the upper surface of the oxide 230b. Further, the insulator 252 is in contact with at least the side surface of the conductor 242.
- the upper surface of the conductor 260 is arranged so as to substantially coincide with the upper surface of the insulator 250 and the upper surface of the insulator 280. Further, the insulator 282 is in contact with the upper surfaces of the conductor 260, the insulator 250, and the insulator 280, respectively.
- Insulator 224 is formed on the insulator 222, and insulator 219 is formed on the insulator 224.
- an opening reaching the insulator 224 is formed in the insulator 219 by a lithography method. Although wet etching may be used to form the openings, it is preferable to use dry etching for microfabrication.
- the oxide film 230A and the oxide film 230B are formed in this order. Regarding the film forming method and material of the oxide film 230A and the oxide film 230B, ⁇ method for manufacturing a semiconductor device> is taken into consideration.
- heat treatment conditions refer to ⁇ Method for manufacturing semiconductor devices>.
- the oxide 230 without using the dry etching method in this way, it is possible to suppress the formation of pollutants derived from the reaction product of the etching gas and the oxide 230. Further, since the etching mask is not used, the etching mask does not shrink or recede during etching, so that the amount of deviation from the design value can be suppressed. Therefore, it is advantageous for miniaturization. For other manufacturing methods, refer to ⁇ Manufacturing method of semiconductor device>.
- FIGS. 28A and 28B the transistor 200 according to one aspect of the present invention is provided, which is different from the ones shown in the above ⁇ Semiconductor device configuration example> and the above ⁇ Semiconductor device modification>.
- An example of a semiconductor device will be described.
- the same reference numerals are given to the structures having the same functions as the structures constituting the semiconductor devices (see FIGS. 1A to 1C) shown in ⁇ Semiconductor device configuration example>. I will add it.
- the constituent material of the transistor 200 the material described in detail in ⁇ Semiconductor device configuration example> can be used.
- FIGS. 28A and 28B show a configuration in which a plurality of transistors 200_1 to 200_n are comprehensively sealed with an insulator 283 and an insulator 214.
- the transistors 200_1 to 200_n appear to be arranged in the channel length direction, but the transistor 200_1 to the transistor 200_n are not limited to this.
- the transistors 200_1 to 200_1 may be arranged in the channel width direction or may be arranged in a matrix. Further, depending on the design, they may be arranged without regularity.
- a portion where the insulator 283 and the insulator 214 are in contact with each other (hereinafter, may be referred to as a sealing portion 265) is formed outside the plurality of transistors 200_1 to 200_n.
- the sealing portion 265 is formed so as to surround the plurality of transistors 200_1 to 200_n. With such a structure, a plurality of transistors 200_1 to 200_n can be wrapped with the insulator 283 and the insulator 214. Therefore, a plurality of transistor groups surrounded by the sealing portion 265 are provided on the substrate.
- a dicing line (sometimes referred to as a scribing line, a dividing line, or a cutting line) may be provided on the sealing portion 265. Since the substrate is divided at the dicing line, the transistor group surrounded by the sealing portion 265 is taken out as one chip.
- FIG. 28A an example in which a plurality of transistors 200_1 to 200_n are surrounded by one sealing portion 265 is shown, but the present invention is not limited to this.
- a plurality of transistors 200_1 to 200_n may be surrounded by a plurality of sealing portions.
- a plurality of transistors 200_1 to 200_n are surrounded by a sealing portion 265a, and further surrounded by an outer sealing portion 265b.
- the present invention it is possible to provide a semiconductor device having little variation in transistor characteristics. Further, according to one aspect of the present invention, it is possible to provide a semiconductor device having good reliability. Further, according to one aspect of the present invention, it is possible to provide a semiconductor device having good electrical characteristics. Further, according to one aspect of the present invention, it is possible to provide a semiconductor device having a large on-current. Further, according to one aspect of the present invention, it is possible to provide a semiconductor device capable of miniaturization or high integration. Further, according to one aspect of the present invention, a semiconductor device having low power consumption can be provided.
- FIG. 29 shows an example of a semiconductor device (storage device) according to one aspect of the present invention.
- the transistor 200 is provided above the transistor 300, and the capacitive element 100 is provided above the transistor 300 and the transistor 200.
- the transistor 200 the transistor 200 described in the previous embodiment can be used.
- the transistor 200 is a transistor in which a channel is formed in a semiconductor layer having an oxide semiconductor. Since the transistor 200 has a small off-current, it is possible to retain the stored contents for a long period of time by using the transistor 200 as a storage device. That is, since the refresh operation is not required or the frequency of the refresh operation is extremely low, the power consumption of the storage device can be sufficiently reduced.
- the wiring 1001 is electrically connected to the source of the transistor 300, and the wiring 1002 is electrically connected to the drain of the transistor 300. Further, the wiring 1003 is electrically connected to one of the source and drain of the transistor 200, the wiring 1004 is electrically connected to the first gate of the transistor 200, and the wiring 1006 is electrically connected to the second gate of the transistor 200. It is connected to the. Then, the gate of the transistor 300 and the other of the source and drain of the transistor 200 are electrically connected to one of the electrodes of the capacitance element 100, and the wiring 1005 is electrically connected to the other of the electrodes of the capacitance element 100. ..
- the transistor 300 is provided on the substrate 311 and functions as a conductor 316 that functions as a gate, an insulator 315 that functions as a gate insulator, a semiconductor region 313 that is a part of the substrate 311 and a low that functions as a source region or a drain region. It has a resistance region 314a and a low resistance region 314b.
- the transistor 300 may be either a p-channel type or an n-channel type.
- the semiconductor region 313 (a part of the substrate 311) on which the channel is formed has a convex shape. Further, the side surface and the upper surface of the semiconductor region 313 are provided so as to be covered with the conductor 316 via the insulator 315.
- the conductor 316 may be made of a material that adjusts the work function. Since such a transistor 300 utilizes a convex portion of a semiconductor substrate, it is also called a FIN type transistor. It should be noted that an insulator that is in contact with the upper portion of the convex portion and functions as a mask for forming the convex portion may be provided. Further, although the case where a part of the semiconductor substrate is processed to form a convex portion is shown here, the SOI substrate may be processed to form a semiconductor film having a convex shape.
- the transistor 300 shown in FIG. 29 is an example, and the transistor 300 is not limited to the structure thereof, and an appropriate transistor may be used according to the circuit configuration or the driving method.
- the insulator 130 includes, for example, silicon oxide, silicon nitride, silicon nitride, silicon nitride, aluminum oxide, aluminum nitride, aluminum nitride, aluminum nitride, hafnium oxide, hafnium oxide, hafnium oxide, hafnium nitride. Etc. may be used, and it can be provided in a laminated or single layer.
- the capacitive element 100 can secure a sufficient capacitance by having an insulator having a high dielectric constant (high-k), and by having an insulator having a large dielectric strength, the dielectric strength is improved and the capacitance is improved. Electrostatic destruction of the element 100 can be suppressed.
- the insulator of the high dielectric constant (high-k) material material having a high specific dielectric constant
- the insulator 217 is provided in contact with the side surface of the conductor 218 that functions as a plug.
- the insulator 217 is provided in contact with the inner wall of the opening formed in the insulator 210, the insulator 212, the insulator 214, and the insulator 216. That is, the insulator 217 is provided between the conductor 218 and the insulator 210, the insulator 212, the insulator 214, and the insulator 216. Since the conductor 205 can be formed in parallel with the conductor 218, the insulator 217 may be formed in contact with the side surface of the conductor 205.
- an insulating material having a function of suppressing the diffusion of impurities such as water and hydrogen and oxygen it is preferable to use silicon nitride, silicon nitride oxide, aluminum oxide or hafnium oxide.
- silicon nitride is preferable because it has a high barrier property against hydrogen.
- metal oxides such as magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, and tantalum oxide can be used.
- the structure can prevent the excess oxygen of the insulator 280 and the insulator 224 from diffusing to the outside. Therefore, the excess oxygen of the insulator 280 and the insulator 224 is efficiently supplied to the oxide in which the channel is formed in the transistor 200.
- the oxygen can reduce the oxygen deficiency of the oxide in which the channel is formed in the transistor 200.
- the oxide in which the channel is formed in the transistor 200 can be made into an oxide semiconductor having a low defect level density and stable characteristics. That is, it is possible to suppress fluctuations in the electrical characteristics of the transistor 200 and improve reliability.
- the insulator 145 is arranged so as to cover the conductor 115 and the insulator 142.
- the insulator 145 is, for example, silicon oxide, silicon nitride, silicon nitride, silicon nitride, zirconium oxide, aluminum oxide, aluminum oxide, aluminum nitride, aluminum nitride, hafnium oxide, hafnium oxide, hafnium oxide, nitrided. Hafnium or the like may be used, and it can be provided in a laminated or single layer.
- an insulating film in which zirconium oxide, aluminum oxide, and zirconium oxide are laminated in this order can be used.
- a material having a large dielectric strength such as silicon oxide or a material having a high dielectric constant (high-k) as the insulator 145.
- a laminated structure of a material having a large dielectric strength and a high dielectric constant (high-k) material may be used.
- silicon oxide, silicon oxide, silicon nitride, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, silicon oxide added with carbon and nitrogen, and vacancies are used as materials having high insulation strength.
- silicon oxide, resin, etc. silicon nitride (SiN x ) formed by the PEALD method, silicon oxide (SiO x ) formed by the PEALD method, and silicon nitride (SiN x ) formed by the PEALD method are laminated in this order. Insulation film can be used.
- an insulating film laminated in the order of zirconium oxide, silicon oxide formed by using the ALD method, and zirconium oxide can be used. By using such an insulator having a large dielectric strength, the dielectric strength can be improved and electrostatic breakdown of the capacitive element 100 can be suppressed.
- FIG. 31A is a cross-sectional view of a semiconductor device having a memory device 290.
- the memory device 290 shown in FIG. 31A has a capacitive device 292 in addition to the transistor 200 shown in FIGS. 1A to 1C.
- FIG. 31A corresponds to a cross-sectional view of the transistor 200 in the channel length direction.
- the capacitive device 292 a part of the manufacturing process of the transistor can also be used, so that the semiconductor device can be highly productive. Further, since one of the pair of electrodes of the capacitive device 292, that is, the conductor 242b also serves as the source electrode of the transistor, it is possible to reduce the area where the transistor and the capacitive device are arranged.
- FIG. 31B is a cross-sectional view of a semiconductor device having a memory device 290, which is different from the structure shown in FIG. 31A.
- the memory device 290 shown in FIG. 31B has a capacitive device 292 in addition to the transistor 200 shown in FIGS. 1A to 1C.
- a part of the capacitance device 292 shown in FIG. 31B is provided in the insulator 280 and the opening formed in the insulator 272, unlike the capacitance device 292 shown in FIG. 31A.
- FIG. 31B corresponds to a cross-sectional view of the transistor 200 in the channel length direction.
- the capacitance device 292 includes a conductor 242b, an insulator 293 provided on the conductor 242b, and a conductor 294 provided on the insulator 293.
- the insulator 293 and the conductor 294 are arranged in the openings formed in the insulator 280 and the insulator 272.
- the insulator 293 is provided in contact with the bottom surface and the side wall of the opening. That is, the insulator 293 is in contact with the upper surface of the conductor 242b, the side surface of the insulator 272, and the side surface of the insulator 280. Further, the insulator 293 is provided so as to form a recess along the shape of the opening.
- the conductor 294 is arranged in contact with the upper surface and the side surface of the insulator 293 so as to embed the recess.
- the heights of the upper surfaces of the insulator 293 and the conductor 294 may be substantially the same as the heights of the upper surfaces of the insulator 280, the insulator 250, and the conductor 260.
- the conductor 242b functions as a lower electrode of the capacitance device 292
- the conductor 294 functions as an upper electrode of the capacitance device 292
- the insulator 293 functions as a dielectric of the capacitance device 292.
- the capacitance device 292 constitutes the MIM capacitance.
- One of the pair of electrodes of the capacitive device 292, that is, the conductor 242b, can also serve as the source electrode of the transistor. Therefore, in the manufacturing process of the capacitive device 292, a part of the manufacturing process of the transistor can also be used, so that the semiconductor device can be highly productive.
- the insulator 293 can be provided separately from the configuration of the transistor 200, the structure and material of the insulator 293 can be appropriately selected according to the performance required for the capacitive device 292. Further, since one of the pair of electrodes of the capacitive device 292, that is, the conductor 242b also serves as the source electrode of the transistor, it is possible to reduce the area where the transistor and the capacitive device are arranged.
- a high dielectric constant (high-k) material for the insulator 293.
- a high dielectric constant (high-k) material material having a high specific dielectric constant
- the insulator 293 one in which films of these high dielectric constant materials are laminated may be used.
- the insulator 293, an insulating film in which zirconium oxide, aluminum oxide, and zirconium oxide are laminated in this order can be used.
- the conductor 294 for example, a material that can be used for the conductor 260 may be used. Further, the conductor 294 may have a laminated structure like the conductor 260.
- the insulator 293 and the conductor 294 may be formed before the film formation of the insulator 282, that is, before the step shown in FIG.
- the formation of the insulator 293 and the conductor 294 can be performed in the same manner as the formation of the insulator 250 and the conductor 260. That is, an opening is formed in the insulator 280 and the insulator 272, a laminated film to be the insulator 293 and the conductor 294 is formed so as to be embedded in the opening, and a part of the laminated film is treated with CMP. May be used to form the insulator 293 and the conductor 294.
- FIGS. 32A, 32B, 33, and 34 the transistor 200 and the capacitance device according to one aspect of the present invention, which are different from those shown in ⁇ Memory device configuration example 1> above.
- An example of the semiconductor device having 292 will be described.
- the semiconductor devices shown in FIGS. 32A, 32B, 33, and 34 the same structure as the structure constituting the semiconductor device (see FIG. 31A) shown in the previous embodiment and ⁇ Memory device configuration example 1>.
- the same reference numerals are added to structures having a function.
- the materials described in detail in the previous embodiment and ⁇ Memory device configuration example 1> can be used.
- the memory device shown in FIG. 31A is used as the memory device, but the present invention is not limited to this.
- the memory device shown in FIG. 31B may be used.
- the semiconductor device 600 has a line-symmetrical configuration with the alternate long and short dash line of A3-A4 as the axis of symmetry.
- One of the source electrode or the drain electrode of the transistor 200a and one of the source electrode or the drain electrode of the transistor 200b are configured so that the conductor 242c also serves.
- the conductor 246 that functions as wiring and the conductor 240 that also functions as a plug for connecting the transistor 200a and the transistor 200b are configured.
- the connection between the two transistors, the two capacitive devices, the wiring and the plug as described above, it is possible to provide a semiconductor device capable of miniaturization or high integration.
- the configuration example of the semiconductor device shown in FIG. 31A can be referred to.
- ⁇ Deformation example 2 of memory device >>
- the transistor 200a, the transistor 200b, the capacitive device 292a, and the capacitive device 292b have been mentioned as configuration examples of the semiconductor device, but the semiconductor device shown in the present embodiment is not limited to this.
- the semiconductor device 600 and the semiconductor device having the same configuration as the semiconductor device 600 may be connected via a capacitance portion.
- a semiconductor device having a transistor 200a, a transistor 200b, a capacitive device 292a, and a capacitive device 292b is referred to as a cell.
- the above-mentioned description relating to the transistor 200a, the transistor 200b, the capacitive device 292a, and the capacitive device 292b can be referred to.
- the conductor 294b that functions as one electrode of the capacitance device 292b of the semiconductor device 600 also serves as one electrode of the capacitance device of the semiconductor device 601 having the same configuration as the semiconductor device 600. It has become.
- the conductor 294a, which functions as one electrode of the capacitance device 292a of the semiconductor device 600 is on the left side of the semiconductor device 600, that is, in FIG. 32B, one of the capacitance devices of the semiconductor device adjacent to the semiconductor device 600 in the A1 direction. Also serves as an electrode.
- the cell on the right side of the semiconductor device 601, that is, in FIG. 32B has the same configuration for the cell in the A2 direction.
- a cell array (also referred to as a memory device layer) can be formed.
- the spacing between adjacent cells can be reduced, so that the projected area of the cell array can be reduced, and high integration is possible.
- a matrix-like cell array can be configured.
- FIG. 33 shows a cross-sectional view of a configuration in which n layers of the cell array 610 are laminated. As shown in FIG. 33, by stacking a plurality of cell cells (series cell array 610_1 to cell array 610_n), cells can be integrated and arranged without increasing the occupied area of the cell array. That is, a 3D cell array can be constructed.
- the memory device layer 415_1 to the memory device layer 415_1 each have a plurality of memory devices 420.
- the memory device 420 is electrically connected to the memory device 420 of the different memory device layers 415 and the transistor 200T of the transistor layer 413 via the conductor 424 and the conductor 205.
- the memory unit 470 is sealed by an insulator 212, an insulator 214, an insulator 282, and an insulator 283 (for convenience, hereinafter referred to as a sealing structure).
- An insulator 274 is provided around the insulator 283. Further, the insulator 274, the insulator 283, and the insulator 212 are provided with a conductor 440, which is electrically connected to the element layer 411.
- an insulator 280 is provided inside the sealing structure.
- the insulator 280 has a function of releasing oxygen by heating.
- the insulator 280 has an excess oxygen region.
- the insulator 212 and the insulator 283 are preferably materials having a function of having a high barrier property against hydrogen. Further, the insulator 214 and the insulator 282 are preferably materials having a function of capturing hydrogen or fixing hydrogen.
- examples of the material having a function of having a high barrier property against hydrogen include silicon nitride, silicon nitride, and the like.
- examples of the material having a function of capturing hydrogen or fixing hydrogen include aluminum oxide, hafnium oxide, and oxides containing aluminum and hafnium (hafnium aluminate).
- the crystal structure of the materials used for the insulator 212, the insulator 214, the insulator 282, and the insulator 283 is not particularly limited, but may be an amorphous or crystalline structure.
- Amorphous aluminum oxide may capture and adhere to hydrogen in greater amounts than highly crystalline aluminum oxide.
- the excess oxygen in the insulator 280 can be considered as the following model for the diffusion of hydrogen in the oxide semiconductor in contact with the insulator 280.
- Hydrogen present in the oxide semiconductor diffuses into other structures via the insulator 280 in contact with the oxide semiconductor. Due to the diffusion of the hydrogen, the excess oxygen in the insulator 280 reacts with the hydrogen in the oxide semiconductor to form an OH bond, and diffuses in the insulator 280.
- a hydrogen atom having an OH bond reaches a material having a function of capturing hydrogen or fixing hydrogen (typically, an insulator 282)
- the hydrogen atom becomes an atom in the insulator 282 (for example, an insulator 282). It reacts with oxygen atoms bonded to metal atoms, etc.) and is captured or fixed in the insulator 282.
- an insulator 280 having excess oxygen is formed on an oxide semiconductor, and then an insulator 282 is formed. After that, it is preferable to perform heat treatment. Specifically, the heat treatment is carried out in an atmosphere containing oxygen, an atmosphere containing nitrogen, or a mixed atmosphere of oxygen and nitrogen at a temperature of 350 ° C. or higher, preferably 400 ° C. or higher.
- the heat treatment time is 1 hour or longer, preferably 4 hours or longer, and more preferably 8 hours or longer.
- an insulator 283 is formed. Since the insulator 283 is a material having a function of having a high barrier property against hydrogen, hydrogen diffused to the outside or hydrogen existing on the outside is transferred to the inside, specifically, an oxide semiconductor, or the insulator 280. It is possible to prevent it from entering the side.
- the configuration performed after forming the insulator 282 has been illustrated, but the present invention is not limited to this.
- the above heat treatment may be performed after the transistor layer 413 is formed or after the memory device layer 415_1 to the memory device layer 415_3 are formed.
- hydrogen is diffused outward by the above heat treatment, hydrogen is diffused above or in the lateral direction of the transistor layer 413.
- hydrogen is diffused upward or laterally.
- the insulator 214 and the insulator 283 are adhered to each other to form the above-mentioned sealing structure.
- an OS transistor a transistor using an oxide as a semiconductor
- a storage device to which a capacitive element is applied hereinafter, may be referred to as an OS memory device
- the OS memory device is a storage device having at least a capacitance element and an OS transistor that controls charging / discharging of the capacitance element. Since the off-current of the OS transistor is extremely small, the OS memory device has excellent holding characteristics and can function as a non-volatile memory.
- FIG. 35A shows an example of the configuration of the OS memory device.
- the storage device 1400 has a peripheral circuit 1411 and a memory cell array 1470.
- the peripheral circuit 1411 includes a row circuit 1420, a column circuit 1430, an output circuit 1440, and a control logic circuit 1460.
- the column circuit 1430 includes, for example, a column decoder, a precharge circuit, a sense amplifier, a writing circuit, and the like.
- the precharge circuit has a function of precharging the wiring.
- the sense amplifier has a function of amplifying a data signal read from a memory cell.
- the wiring is the wiring connected to the memory cell of the memory cell array 1470, and will be described in detail later.
- the amplified data signal is output to the outside of the storage device 1400 as a data signal RDATA via the output circuit 1440.
- the row circuit 1420 has, for example, a row decoder, a word line driver circuit, and the like, and a row to be accessed can be selected.
- the storage device 1400 is supplied with a low power supply voltage (VSS), a high power supply voltage (VDD) for the peripheral circuit 1411, and a high power supply voltage (VIL) for the memory cell array 1470 as power supply voltages from the outside. Further, a control signal (CE, WE, RE), an address signal ADDR, and a data signal WDATA are input to the storage device 1400 from the outside.
- the address signal ADDR is input to the row decoder and column decoder, and the data signal WDATA is input to the write circuit.
- the control logic circuit 1460 processes the control signals (CE, WE, RE) input from the outside to generate the control signals of the row decoder and the column decoder.
- the control signal CE is a chip enable signal
- the control signal WE is a write enable signal
- the control signal RE is a read enable signal.
- the signal processed by the control logic circuit 1460 is not limited to this, and other control signals may be input as needed.
- the memory cell array 1470 has a plurality of memory cells MC arranged in a matrix and a plurality of wirings.
- the number of wires connecting the memory cell array 1470 and the row circuit 1420 is determined by the configuration of the memory cell MC, the number of memory cell MCs in a row, and the like.
- the number of wires connecting the memory cell array 1470 and the column circuit 1430 is determined by the configuration of the memory cell MC, the number of memory cell MCs in one row, and the like.
- FIG. 35A shows an example in which the peripheral circuit 1411 and the memory cell array 1470 are formed on the same plane
- the present embodiment is not limited to this.
- the memory cell array 1470 may be provided so as to overlap a part of the peripheral circuit 1411.
- a sense amplifier may be provided so as to overlap under the memory cell array 1470.
- FIGS. 36A to 36H An example of a memory cell configuration applicable to the above-mentioned memory cell MC will be described with reference to FIGS. 36A to 36H.
- [DOSRAM] 36A to 36C show an example of a circuit configuration of a DRAM memory cell.
- a DRAM using a memory cell of a 1OS transistor and 1 capacitance element type may be referred to as a DOSRAM (Dynamic Oxide Semiconductor Random Access Memory).
- the memory cell 1471 shown in FIG. 36A includes a transistor M1 and a capacitive element CA.
- the transistor M1 has a gate (sometimes called a top gate) and a back gate.
- the first terminal of the transistor M1 is connected to the first terminal of the capacitive element CA, the second terminal of the transistor M1 is connected to the wiring BIL, the gate of the transistor M1 is connected to the wiring WOL, and the back gate of the transistor M1. Is connected to the wiring BGL.
- the second terminal of the capacitive element CA is connected to the wiring LL.
- the memory cell 1471 shown in FIG. 36A corresponds to the storage device shown in FIGS. 31A and 31B. That is, the transistor M1 corresponds to the transistor 200, and the capacitive element CA corresponds to the capacitive device 292.
- the memory cell MC is not limited to the memory cell 1471, and the circuit configuration can be changed.
- the memory cell MC may have a configuration in which the back gate of the transistor M1 is connected to the wiring WOL instead of the wiring BGL, as in the memory cell 1472 shown in FIG. 36B.
- the memory cell MC may be a memory cell composed of a transistor having a single gate structure, that is, a transistor M1 having no back gate, as in the memory cell 1473 shown in FIG. 36C.
- a transistor 200 can be used as the transistor M1 and a capacitance device 292 or a capacitance element 100 can be used as the capacitance element CA.
- an OS transistor as the transistor M1
- the leakage current of the transistor M1 can be made very small. That is, since the written data can be held by the transistor M1 for a long time, the frequency of refreshing the memory cells can be reduced. Further, the refresh operation of the memory cell can be eliminated. Further, since the leak current is very small, it is possible to hold multi-valued data or analog data for the memory cell 1471, the memory cell 1472, and the memory cell 1473.
- the sense amplifier is provided so as to overlap under the memory cell array 1470 as described above, the bit line can be shortened. As a result, the bit line capacity is reduced, and the holding capacity of the memory cell can be reduced.
- [NOSRAM] 36D to 36G show an example of a circuit configuration of a gain cell type memory cell having a 2-transistor and 1-capacity element.
- the memory cell 1474 shown in FIG. 36D includes a transistor M2, a transistor M3, and a capacitance element CB.
- the transistor M2 has a top gate (sometimes referred to simply as a gate) and a back gate.
- NOSRAM Nonvolatile Oxide Semiconductor RAM
- the first terminal of the transistor M2 is connected to the first terminal of the capacitive element CB, the second terminal of the transistor M2 is connected to the wiring WBL, the gate of the transistor M2 is connected to the wiring WOL, and the back gate of the transistor M2. Is connected to the wiring BGL.
- the second terminal of the capacitive element CB is connected to the wiring CAL.
- the first terminal of the transistor M3 is connected to the wiring RBL, the second terminal of the transistor M3 is connected to the wiring SL, and the gate of the transistor M3 is connected to the first terminal of the capacitive element CB.
- the wiring WBL functions as a write bit line
- the wiring RBL functions as a read bit line
- the wiring WOL functions as a word line.
- the wiring CAL functions as wiring for applying a predetermined potential to the second terminal of the capacitance element CB.
- the wiring BGL functions as wiring for applying an electric potential to the back gate of the transistor M2.
- the threshold voltage of the transistor M2 can be increased or decreased by applying an arbitrary potential to the wiring BGL.
- the memory cell 1474 shown in FIG. 36D corresponds to the storage device shown in FIGS. 29 and 30. That is, the transistor M2 is in the transistor 200, the capacitive element CB is in the capacitive element 100, the transistor M3 is in the transistor 300, the wiring WBL is in the wiring 1003, the wiring WOL is in the wiring 1004, the wiring BGL is in the wiring 1006, and the wiring CAL is in the wiring 1006.
- the wiring RBL corresponds to the wiring 1002
- the wiring SL corresponds to the wiring 1001.
- the memory cell MC is not limited to the memory cell 1474, and the circuit configuration can be changed as appropriate.
- the memory cell MC may have a configuration in which the back gate of the transistor M2 is connected to the wiring WOL instead of the wiring BGL, as in the memory cell 1475 shown in FIG. 36E.
- the memory cell MC may be a memory cell composed of a transistor having a single gate structure, that is, a transistor M2 having no back gate, as in the memory cell 1476 shown in FIG. 36F.
- the memory cell MC may have a configuration in which the wiring WBL and the wiring RBL are combined as one wiring BIL, as in the memory cell 1477 shown in FIG. 36G.
- a transistor 200 can be used as the transistor M2
- a transistor 300 can be used as the transistor M3
- a capacitance element 100 can be used as the capacitance element CB.
- OS transistor an OS transistor
- the leakage current of the transistor M2 can be made very small.
- the written data can be held by the transistor M2 for a long time, so that the frequency of refreshing the memory cells can be reduced. Further, the refresh operation of the memory cell can be eliminated.
- the leak current is very small, multi-valued data or analog data can be held in the memory cell 1474. The same applies to the memory cells 1475 to 1477.
- the transistor M3 may be a transistor having silicon in the channel forming region (hereinafter, may be referred to as a Si transistor).
- the conductive type of the Si transistor may be an n-channel type or a p-channel type.
- the Si transistor may have higher field effect mobility than the OS transistor. Therefore, a Si transistor may be used as the transistor M3 that functions as a readout transistor. Further, by using a Si transistor for the transistor M3, the transistor M2 can be provided by stacking the transistor M3 on the transistor M3, so that the occupied area of the memory cell can be reduced and the storage device can be highly integrated.
- the transistor M3 may be an OS transistor.
- an OS transistor is used for the transistor M2 and the transistor M3, the circuit can be configured by using only the n-type transistor in the memory cell array 1470.
- FIG. 36H shows an example of a gain cell type memory cell having a 3-transistor and 1-capacity element.
- the memory cell 1478 shown in FIG. 36H includes transistors M4 to M6 and a capacitive element CC.
- the capacitive element CC is appropriately provided.
- the memory cell 1478 is electrically connected to the wiring BIL, the wiring RWL, the wiring WWL, the wiring BGL, and the wiring GNDL.
- Wiring GNDL is a wiring that gives a low level potential.
- the memory cell 1478 may be electrically connected to the wiring RBL and the wiring WBL instead of the wiring BIL.
- the transistor M4 is an OS transistor having a back gate, and the back gate is electrically connected to the wiring BGL.
- the back gate and the gate of the transistor M4 may be electrically connected to each other. Alternatively, the transistor M4 does not have to have a back gate.
- the transistor M5 and the transistor M6 may be an n-channel Si transistor or a p-channel Si transistor, respectively.
- the transistors M4 to M6 may be OS transistors.
- the memory cell array 1470 can be configured by using only n-type transistors.
- the transistor 200 can be used as the transistor M4
- the transistor 300 can be used as the transistor M5 and the transistor M6, and the capacitance element 100 can be used as the capacitance element CC.
- the leakage current of the transistor M4 can be made very small.
- the configurations of the peripheral circuit 1411, the memory cell array 1470, and the like shown in the present embodiment are not limited to the above.
- the arrangement or function of these circuits and the wiring, circuit elements, etc. connected to the circuits may be changed, deleted, or added as necessary.
- the storage device of one aspect of the present invention has a high operating speed and can retain data for a long period of time.
- FIGS. 37A and 37B An example of a chip 1200 on which the semiconductor device of the present invention is mounted is shown with reference to FIGS. 37A and 37B.
- a plurality of circuits (systems) are mounted on the chip 1200.
- SoC system on chip
- the chip 1200 has a CPU 1211, GPU 1212, one or more analog arithmetic units 1213, one or more memory controllers 1214, one or more interfaces 1215, one or more network circuits 1216, and the like.
- the chip 1200 is provided with a bump (not shown) and is connected to the first surface of the package substrate 1201 as shown in FIG. 37B. Further, a plurality of bumps 1202 are provided on the back surface of the first surface of the package substrate 1201 and are connected to the motherboard 1203.
- the motherboard 1203 may be provided with a storage device such as a DRAM 1221 and a flash memory 1222.
- a storage device such as a DRAM 1221 and a flash memory 1222.
- the DOSRAM shown in the previous embodiment can be used for the DRAM 1221.
- the NO SRAM shown in the previous embodiment can be used for the flash memory 1222.
- the wiring between the CPU 1211 and the GPU 1212 can be shortened, and the data transfer from the CPU 1211 to the GPU 1212, the data transfer between the memory of the CPU 1211 and the GPU 1212, And after the calculation on the GPU 1212, the calculation result can be transferred from the GPU 1212 to the CPU 1211 at high speed.
- the analog arithmetic unit 1213 has one or both of an A / D (analog / digital) conversion circuit and a D / A (digital / analog) conversion circuit. Further, the product-sum calculation circuit may be provided in the analog calculation unit 1213.
- the memory controller 1214 has a circuit that functions as a controller of the DRAM 1221 and a circuit that functions as an interface of the flash memory 1222.
- the interface 1215 has an interface circuit with an externally connected device such as a display device, a speaker, a microphone, a camera, and a controller.
- the controller includes a mouse, a keyboard, a game controller, and the like.
- USB Universal Serial Bus
- HDMI registered trademark
- High-Definition Multimedia Interface High-Definition Multimedia Interface
- the network circuit 1216 has a network circuit such as a LAN (Local Area Network). It may also have a circuit for network security.
- LAN Local Area Network
- the above circuit (system) can be formed on the chip 1200 by the same manufacturing process. Therefore, even if the number of circuits required for the chip 1200 increases, it is not necessary to increase the manufacturing process, and the chip 1200 can be manufactured at low cost.
- the package board 1201 provided with the chip 1200 having the GPU 1212, the DRAM 1221, and the motherboard 1203 provided with the flash memory 1222 can be referred to as the GPU module 1204.
- the GPU module 1204 Since the GPU module 1204 has a chip 1200 using SoC technology, its size can be reduced. Further, since it is excellent in image processing, it is suitable for use in portable electronic devices such as smartphones, tablet terminals, laptop PCs, and portable (take-out) game machines.
- a deep neural network (DNN), a convolutional neural network (CNN), a recurrent neural network (RNN), a self-encoder, a deep Boltzmann machine (DBM), and a deep belief network (Deep belief network) are provided by a product-sum calculation circuit using GPU1212. Since a method such as DBN) can be executed, the chip 1200 can be used as an AI chip, or the GPU module 1204 can be used as an AI system module.
- FIG. 38A shows a perspective view of the electronic component 700 and the substrate on which the electronic component 700 is mounted (mounting substrate 704).
- the electronic component 700 shown in FIG. 38A has a storage device 720 in the mold 711. In FIG. 38A, a part is omitted in order to show the inside of the electronic component 700.
- the electronic component 700 has a land 712 on the outside of the mold 711. The land 712 is electrically connected to the electrode pad 713, and the electrode pad 713 is electrically connected to the storage device 720 by a wire 714.
- the electronic component 700 is mounted on, for example, the printed circuit board 702. A plurality of such electronic components are combined and electrically connected to each other on the printed circuit board 702 to complete the mounting board 704.
- the storage device 720 has a drive circuit layer 721 and a storage circuit layer 722.
- the electronic component 730 can be mounted on another substrate by using various mounting methods, not limited to BGA and PGA.
- BGA Band-GPU
- PGA Stimble Pin Grid Array
- LGA Land-GPU
- QFP Quad Flat Package
- QFJ Quad Flat J-leaded package
- QFN QuadFN
- the electronic device of one aspect of the present invention may have an antenna.
- the display unit can display video or information.
- the antenna may be used for non-contact power transmission.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thin Film Transistor (AREA)
- Semiconductor Memories (AREA)
- Noodles (AREA)
- Bipolar Transistors (AREA)
- Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2021569603A JP7640472B2 (ja) | 2020-01-10 | 2020-12-28 | 半導体装置、および半導体装置の作製方法 |
| KR1020227022508A KR20220124700A (ko) | 2020-01-10 | 2020-12-28 | 반도체 장치 및 반도체 장치의 제작 방법 |
| CN202080092368.9A CN114930547A (zh) | 2020-01-10 | 2020-12-28 | 半导体装置及半导体装置的制造方法 |
| US17/787,982 US20230027402A1 (en) | 2020-01-10 | 2020-12-28 | Semiconductor device and method for fabricating semiconductor device |
| JP2025025809A JP2025071240A (ja) | 2020-01-10 | 2025-02-20 | 半導体装置 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2020-002997 | 2020-01-10 | ||
| JP2020002997 | 2020-01-10 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2021140407A1 true WO2021140407A1 (ja) | 2021-07-15 |
Family
ID=76788512
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2020/062468 Ceased WO2021140407A1 (ja) | 2020-01-10 | 2020-12-28 | 半導体装置、および半導体装置の作製方法 |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20230027402A1 (enExample) |
| JP (2) | JP7640472B2 (enExample) |
| KR (1) | KR20220124700A (enExample) |
| CN (1) | CN114930547A (enExample) |
| WO (1) | WO2021140407A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024084366A1 (ja) * | 2022-10-21 | 2024-04-25 | 株式会社半導体エネルギー研究所 | 半導体装置、及び、記憶装置 |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11929436B2 (en) | 2021-02-02 | 2024-03-12 | Taiwan Semiconductor Manufacturing Company Limited | Thin transistor including a hydrogen-blocking dielectric barrier and methods for forming the same |
| US11856751B2 (en) * | 2021-03-12 | 2023-12-26 | Taiwan Semiconductor Manufacturing Company Limited | Drain sharing for memory cell thin film access transistors and methods for forming the same |
| US12218252B2 (en) * | 2021-08-30 | 2025-02-04 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure with source and drain electrode embedded within semiconductor layer and manufacturing method thereof |
| US12133396B2 (en) * | 2021-08-30 | 2024-10-29 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor device, integrated circuit and method of manufacturing the same |
| CN119159015B (zh) * | 2024-11-20 | 2025-06-27 | 江苏爱矽半导体科技有限公司 | 一种半导体封装机 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2014195062A (ja) * | 2013-03-01 | 2014-10-09 | Semiconductor Energy Lab Co Ltd | 半導体装置およびその作製方法 |
| JP2015005738A (ja) * | 2013-05-20 | 2015-01-08 | 株式会社半導体エネルギー研究所 | 半導体装置およびその作製方法 |
| JP2015005733A (ja) * | 2013-05-20 | 2015-01-08 | 株式会社半導体エネルギー研究所 | 半導体装置 |
| WO2019166914A1 (ja) * | 2018-02-28 | 2019-09-06 | 株式会社半導体エネルギー研究所 | 半導体装置、および半導体装置の作製方法 |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH09139508A (ja) * | 1995-11-10 | 1997-05-27 | Toyota Motor Corp | 薄膜トランジスタの製造方法 |
| US7419858B2 (en) * | 2006-08-31 | 2008-09-02 | Sharp Laboratories Of America, Inc. | Recessed-gate thin-film transistor with self-aligned lightly doped drain |
| CN102804360B (zh) | 2009-12-25 | 2014-12-17 | 株式会社半导体能源研究所 | 半导体装置 |
| DE112011102644B4 (de) | 2010-08-06 | 2019-12-05 | Semiconductor Energy Laboratory Co., Ltd. | Integrierte Halbleiterschaltung |
| US9343579B2 (en) * | 2013-05-20 | 2016-05-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
| US9954003B2 (en) * | 2016-02-17 | 2018-04-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and electronic device |
-
2020
- 2020-12-28 KR KR1020227022508A patent/KR20220124700A/ko active Pending
- 2020-12-28 WO PCT/IB2020/062468 patent/WO2021140407A1/ja not_active Ceased
- 2020-12-28 JP JP2021569603A patent/JP7640472B2/ja active Active
- 2020-12-28 CN CN202080092368.9A patent/CN114930547A/zh active Pending
- 2020-12-28 US US17/787,982 patent/US20230027402A1/en active Pending
-
2025
- 2025-02-20 JP JP2025025809A patent/JP2025071240A/ja active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2014195062A (ja) * | 2013-03-01 | 2014-10-09 | Semiconductor Energy Lab Co Ltd | 半導体装置およびその作製方法 |
| JP2015005738A (ja) * | 2013-05-20 | 2015-01-08 | 株式会社半導体エネルギー研究所 | 半導体装置およびその作製方法 |
| JP2015005733A (ja) * | 2013-05-20 | 2015-01-08 | 株式会社半導体エネルギー研究所 | 半導体装置 |
| WO2019166914A1 (ja) * | 2018-02-28 | 2019-09-06 | 株式会社半導体エネルギー研究所 | 半導体装置、および半導体装置の作製方法 |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024084366A1 (ja) * | 2022-10-21 | 2024-04-25 | 株式会社半導体エネルギー研究所 | 半導体装置、及び、記憶装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2025071240A (ja) | 2025-05-02 |
| JP7640472B2 (ja) | 2025-03-05 |
| JPWO2021140407A1 (enExample) | 2021-07-15 |
| US20230027402A1 (en) | 2023-01-26 |
| KR20220124700A (ko) | 2022-09-14 |
| CN114930547A (zh) | 2022-08-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7640472B2 (ja) | 半導体装置、および半導体装置の作製方法 | |
| JP7550759B2 (ja) | 半導体装置、および半導体装置の作製方法 | |
| WO2021171136A1 (ja) | 金属酸化物、金属酸化物の成膜方法、および金属酸化物の成膜装置 | |
| JP7730973B2 (ja) | 半導体装置の作製方法 | |
| WO2021019334A1 (ja) | 半導体装置 | |
| JP2025065235A (ja) | 半導体装置 | |
| WO2020250083A1 (ja) | 半導体装置、および半導体装置の作製方法 | |
| JP2025164843A (ja) | 記憶装置 | |
| JP2025096393A (ja) | 半導体装置の作製方法 | |
| WO2020229914A1 (ja) | 半導体装置、および半導体装置の作製方法 | |
| WO2021198836A1 (ja) | 半導体装置、および半導体装置の作製方法 | |
| WO2021084369A1 (ja) | 半導体装置 | |
| JP2022039096A (ja) | 半導体装置およびその作製方法 | |
| JP7710994B2 (ja) | 半導体装置 | |
| WO2022038456A1 (ja) | 半導体装置の作製方法 | |
| WO2022038453A1 (ja) | 絶縁膜の改質方法、および半導体装置の作製方法 | |
| WO2021070007A1 (ja) | 半導体装置 | |
| JP7777531B2 (ja) | ハフニウムジルコニウム酸化物の製造方法 | |
| WO2021130592A1 (ja) | 半導体装置、および半導体装置の作製方法 | |
| WO2021090116A1 (ja) | 半導体装置およびその作製方法 | |
| WO2021090104A1 (ja) | 半導体装置およびその作製方法 | |
| JP7787342B2 (ja) | 半導体装置 | |
| JP7778703B2 (ja) | 半導体装置の作製方法 | |
| JP7679305B2 (ja) | 半導体装置 | |
| WO2022043809A1 (ja) | 半導体装置の作製方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20912905 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2021569603 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 20912905 Country of ref document: EP Kind code of ref document: A1 |