WO2021139713A1 - 在线互动式不间断电源及其控制方法 - Google Patents

在线互动式不间断电源及其控制方法 Download PDF

Info

Publication number
WO2021139713A1
WO2021139713A1 PCT/CN2021/070610 CN2021070610W WO2021139713A1 WO 2021139713 A1 WO2021139713 A1 WO 2021139713A1 CN 2021070610 W CN2021070610 W CN 2021070610W WO 2021139713 A1 WO2021139713 A1 WO 2021139713A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
threshold
input terminal
power supply
output terminal
Prior art date
Application number
PCT/CN2021/070610
Other languages
English (en)
French (fr)
Inventor
张怀超
张翔
方松盛
Original Assignee
伊顿智能动力有限公司
张怀超
张翔
方松盛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊顿智能动力有限公司, 张怀超, 张翔, 方松盛 filed Critical 伊顿智能动力有限公司
Priority to EP21738156.5A priority Critical patent/EP4089874A4/en
Priority to US17/757,796 priority patent/US20220376548A1/en
Publication of WO2021139713A1 publication Critical patent/WO2021139713A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/10Control circuit supply, e.g. means for supplying power to the control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • the invention relates to an uninterruptible power supply, in particular to an online interactive uninterruptible power supply and a control method thereof.
  • the online interactive uninterruptible power supply can continuously supply power to the load.
  • the mains supplies power to the load;
  • the automatic voltage regulator or " “Automatic voltage regulator” automatically boost or step down the voltage of the mains to supply power to the load; when the mains is out of power or is too high, the load is supplied through a rechargeable battery.
  • Fig. 1 is a circuit diagram of an online interactive uninterruptible power supply in the prior art.
  • the online interactive uninterruptible power supply 1 includes a switch S11, an automatic voltage regulator AVR1, a switch S12, and a switch S13 connected in sequence between the AC input terminal 111 and the AC output terminal 112;
  • the output terminal is connected to the input terminal of the full-bridge inverter 14, wherein the switch S12 controllably causes the AC output terminal 112 to be connected to one of the output terminals of the automatic voltage regulator AVR1 and the full-bridge inverter 14;
  • FIG. 1 does not show the voltage detection device and the control device therein.
  • Bypass mode When the voltage amplitude of the mains is greater than the first threshold and less than the second threshold (for example, greater than 200 volts and less than 240 volts), the auxiliary power supply 121 is powered by the rechargeable battery 12 to provide the control device with the required DC voltage (for example, 5 volts, 12 volts, 24 volts, etc.) to realize the AC start of the online interactive uninterruptible power supply 1.
  • the required DC voltage for example, 5 volts, 12 volts, 24 volts, etc.
  • FIG 2 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in Figure 1 in bypass mode.
  • the control device controls the switch S11 to turn on, controls the boost switch S14 and the buck switch S15 in the automatic voltage regulator AVR1 so that the two are connected through a wire and the control switch S16 is disconnected, and the switch S12 is controlled.
  • the automatic voltage regulator AVR1 is connected to the switch S13 and the AC output terminal 112, and the control switch S13 is turned on, so that the mains of the AC input terminal 111 is electrically connected to the AC output terminal 112 through the conductive switch and the wire, for The load at the AC output terminal 112 supplies power.
  • the control device simultaneously controls the DC-DC converter 13 and the full-bridge inverter 14 not to work, and controls the charger 16 to work to charge the rechargeable battery 12.
  • the charger 16 is controlled to stop working to stop charging the rechargeable battery 12.
  • Boost mode when the voltage amplitude of the mains is greater than the third threshold and not greater than the first threshold (for example, greater than 160 volts and not greater than 200 volts), that is, when the mains voltage provided by the AC input terminal 111 is low, it can be charged
  • the battery 12 supplies power to the auxiliary power supply 121 to realize the AC start of the online interactive uninterruptible power supply 1.
  • Fig. 3 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in Fig. 1 in a boost mode.
  • the control device controls the switch S11 to turn on, controls the switch S16 in the automatic voltage regulator AVR1 to turn on so that one terminal of the winding is connected to the neutral or neutral line, and controls the automatic voltage regulator AVR1.
  • the boost switch S14 and the buck switch S15 have their movable contacts connected to the tap and the other end of the winding respectively; the switch S12 is controlled so that the automatic voltage regulator AVR1 is connected to the switch S13 and the AC output terminal 112, and the control switch S13 is turned on ,
  • the automatic voltage regulator AVR1 automatically boosts the commercial power at the AC input terminal 111 and transmits it to the AC output terminal 112.
  • the control device simultaneously controls the DC-DC converter 13 and the full-bridge inverter 14 not to work, and controls the charger 16 to work to charge the rechargeable battery 12. When the rechargeable battery 12 is fully charged, the charger 16 is controlled to stop working to stop charging the rechargeable battery 12.
  • Step-down mode when the voltage amplitude of the mains power is not less than the second threshold and less than the fourth threshold (for example, not less than 240 volts and less than 280 volts), that is, when the mains voltage provided by the AC input terminal 111 is high, it can be charged
  • the battery 12 supplies power to the auxiliary power supply 121 to realize the AC start of the online interactive uninterruptible power supply 1.
  • Fig. 4 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in Fig. 1 in a step-down mode.
  • the control device controls the switch S11 to turn on, controls the switch S16 in the automatic voltage regulator AVR1 to turn on so that one terminal of the winding is connected to the neutral or neutral line, and controls the automatic voltage regulator AVR1.
  • the step-up switch S14 and the step-down switch S15 have their movable contacts connected to the other end and the tap of the winding respectively; the switch S12 is controlled so that the automatic voltage regulator AVR1 is connected to the switch S13 and the AC output terminal 112, and the control switch S13 conducts The automatic voltage regulator AVR1 automatically steps down the mains voltage at the AC input terminal 111 and transmits it to the AC output terminal 112.
  • the control device simultaneously controls the DC-DC converter 13 and the full-bridge inverter 14 not to work, and controls the charger 16 to work to charge the rechargeable battery 12. When the rechargeable battery 12 is fully charged, the charger 16 is controlled to stop working to stop charging the rechargeable battery 12.
  • Battery mode When the voltage amplitude of the mains is not greater than the third threshold or not less than the fourth threshold (for example, not greater than 160 volts or not less than 280 volts), that is, when the mains voltage is too high or the power is cut off, the rechargeable battery 12
  • the auxiliary power supply 121 is supplied with power to realize the start of the online interactive uninterruptible power supply 1.
  • Fig. 5 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in Fig. 1 in battery mode.
  • the control device controls the switch S11 to be turned off, the control switch S13 to turn on, and controls the switch S12 so that the AC output terminal 112 is connected to the output terminal of the full-bridge inverter 14, and controls the DC-DC converter 13 to work
  • the direct current in the rechargeable battery 12 is converted into pulsating direct current
  • the inverter 15 is controlled to work to convert the pulsating direct current into alternating current to supply power to the load at the AC output terminal 112 (not shown in FIG. 5).
  • the control device controls the charger 16 to work to recover the peak power output by the DC-DC converter 13 so that the full-bridge inverter 14 outputs sinusoidal AC power.
  • the auxiliary power supply 121 is powered by the rechargeable battery 12 to provide the required DC voltage to the control device, thereby achieving online The AC start of the interactive uninterruptible power supply 1.
  • the online interactive uninterruptible power supply 1 shown in Fig. 1 is not connected to the rechargeable battery 12, when the AC input 111 is connected to the mains, because there is no rechargeable battery to supply power, the auxiliary power supply 121 cannot provide the required DC to the control device. Voltage, the AC start of the online interactive uninterruptible power supply 1 cannot be realized.
  • an online interactive uninterruptible power supply including:
  • a rectifier circuit the input end of which is connected to the AC input end;
  • a charger the input terminal of which is connected to the output terminal of the rectifier circuit, and the output terminal of which is used to connect to a rechargeable battery;
  • a DC-DC converter the input end of which is connected to the rechargeable battery
  • a first inverter the input terminal of which is connected to the output terminal of the DC-DC converter
  • the switch is configured to controllably connect the AC output terminal to one of the automatic voltage regulator and the output terminal of the first inverter.
  • the online interactive uninterruptible power supply includes a diode, the anode of the diode is connected to the anode output terminal of the DC-DC converter, and the cathode of the diode is connected to the anode input terminal of the charger, and the DC -The negative output terminal of the DC converter is connected to the negative input terminal of the charger.
  • the online interactive uninterruptible power supply includes a first switch connected between the AC input terminal and the automatic voltage regulator, and the input terminal of the rectifier circuit is connected to the AC input terminal and the automatic voltage regulator. Between the first switch.
  • the first switch is a DC relay.
  • the online interactive uninterruptible power supply includes a second switch connected to the input terminal of the rectifier circuit, and the second switch is a normally closed switch.
  • the online interactive uninterruptible power supply includes: a first electromagnetic interference filter connected between the AC input terminal and the first switch; and/or connected between the switch and the AC output A second electromagnetic interference filter between terminals; and/or a filter circuit connected between the output terminal of the rectifier circuit and the input terminal of the charger.
  • the DC-DC converter includes: a second inverter for converting the direct current of the rechargeable battery into a first alternating current; a transformer including a primary side and a secondary side, the primary side Connected to the output end of the second inverter and used to boost the first alternating current into a second alternating current; a rectifier filter circuit, the input end of which is connected to the secondary side of the transformer, and is used to The second alternating current is rectified into pulsating direct current.
  • the first inverter is a full-bridge inverter, which is used to convert the pulsating direct current into a third alternating current.
  • the full-bridge inverter includes four switching tubes, and the switching frequency of the four switching tubes is equal to the frequency of the mains.
  • the online interactive uninterruptible power supply includes a control device for: when the voltage amplitude of the mains at the AC input terminal is greater than a first threshold and less than a second threshold, control the switch so that the The AC output terminal is connected to the automatic voltage regulator, the automatic voltage regulator is controlled so that the first switch is connected to the switch through a wire, and the charger is controlled to charge the rechargeable battery, Control the DC-DC converter and the first inverter to not work at the same time; or when the voltage amplitude of the mains at the AC input terminal is greater than the third threshold and not greater than the first threshold, control the switch so that all The AC output terminal is connected to the automatic voltage regulator, the automatic voltage regulator is controlled so that the commercial power at the AC input terminal is boosted and then transmitted to the switch, and the charger is controlled to charge the rechargeable The battery is charged while controlling the DC-DC converter and the first inverter not to work; or when the voltage amplitude of the mains at the AC input terminal is not less than the second threshold and less than the fourth threshold
  • the online interactive uninterruptible power supply includes a diode, the anode of the diode is connected to the anode output terminal of the DC-DC converter, and the cathode of the diode is connected to the anode input terminal of the charger, and the DC The negative output terminal of the DC converter is connected to the negative input terminal of the charger, and the control device is used when the voltage amplitude of the mains at the AC input terminal is not greater than the third threshold or not less than the fourth threshold, and When the AC output terminal is unloaded, the charger is also controlled to recover the peak power output by the DC-DC converter.
  • the online interactive uninterruptible power supply includes a first switch connected between the AC input terminal and the automatic voltage regulator, and the input terminal of the rectifier circuit is connected to the AC input terminal and the automatic voltage regulator.
  • the control device is used when the voltage amplitude of the mains power at the AC input end is greater than a first threshold and less than a second threshold, or when the voltage amplitude of the mains power at the AC input end is greater than
  • the third threshold is not greater than the first threshold, or when the voltage amplitude of the mains at the AC input terminal is not less than the second threshold and less than the fourth threshold
  • the first switch is controlled to be turned on; when the AC input When the voltage amplitude of the mains power at the terminal is not greater than the third threshold or not less than the fourth threshold, the first switch is controlled to be turned off.
  • the online interactive uninterruptible power supply includes a second switch connected to the input terminal of the rectifier circuit, the second switch is a normally closed switch, and the voltage amplitude of the mains at the AC input terminal is not greater than When the third threshold or not less than the fourth threshold, the second switch is controlled to be turned off.
  • the present invention also provides a control method for the online interactive uninterruptible power supply as described above, which includes detecting the voltage amplitude of the mains at the AC input terminal, and when the voltage amplitude of the mains is greater than the first When the threshold value is less than the second threshold value, controlling the switch so that the AC output terminal is connected to the automatic voltage regulator, and controlling the automatic voltage regulator so that the first switch is connected to the switch through a wire, And control the charger to charge the rechargeable battery, while controlling the DC-DC converter and the first inverter not to work; or when the voltage amplitude of the mains is greater than the third threshold and not When the value is greater than the first threshold, the switch is controlled so that the AC output terminal is connected to the automatic voltage regulator, and the automatic voltage regulator is controlled so that the commercial power at the AC input terminal is boosted and transmitted to the switch , And control the charger to charge the rechargeable battery, while controlling the DC-DC converter and the first inverter not to work; or when the voltage amplitude of the mains is not less than the
  • the online interactive uninterruptible power supply includes a diode, the anode of the diode is connected to the anode output terminal of the DC-DC converter, and the cathode of the diode is connected to the anode input terminal of the charger, and the DC The negative output terminal of the DC converter is connected to the negative input terminal of the charger, and the control method further includes when the voltage amplitude of the mains at the AC input terminal is not greater than a third threshold or not less than a fourth threshold, and When the AC output terminal has no load, the charger is controlled to recover the peak power output by the DC-DC converter.
  • the online interactive uninterruptible power supply includes a first switch connected between the AC input terminal and the automatic voltage regulator, and the input terminal of the rectifier circuit is connected to the AC input terminal and the automatic voltage regulator.
  • the control method further includes: when the voltage amplitude of the mains power at the AC input terminal is greater than a first threshold and less than a second threshold, or when the voltage amplitude of the mains power at the AC input terminal When it is greater than the third threshold and not greater than the first threshold, or when the voltage amplitude of the mains at the AC input terminal is not less than the second threshold and less than the fourth threshold, the first switch is controlled to be turned on; When the voltage amplitude of the mains at the input terminal is not greater than the third threshold or not less than the fourth threshold, the first switch is controlled to be turned off.
  • the online interactive uninterruptible power supply includes a second switch connected to the input terminal of the rectifier circuit, the second switch is a normally closed switch, and the control method further includes: When the voltage amplitude of the electricity is not greater than the third threshold or not less than the fourth threshold, the second switch is controlled to be turned off.
  • the online interactive uninterruptible power supply of the present invention can realize battery-free AC starting, can recover the peak power output by the DC-DC converter in battery mode, reduce the voltage that the switch tube in the inverter bears, and reduce its cost , And the first switch can be a low-voltage DC relay with a small size and low power consumption, which reduces the cost and avoids misoperation of the switch state and does not generate noise.
  • Fig. 1 is a circuit diagram of an online interactive uninterruptible power supply in the prior art.
  • Figure 2 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in Figure 1 in bypass mode.
  • Fig. 3 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in Fig. 1 in a boost mode.
  • Fig. 4 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in Fig. 1 in a step-down mode.
  • Fig. 5 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in Fig. 1 in battery mode.
  • Fig. 6 is a circuit diagram of an online interactive uninterruptible power supply according to the first embodiment of the present invention.
  • Fig. 7 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in Fig. 6 in bypass mode.
  • Fig. 8 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in Fig. 6 in a boost mode.
  • Fig. 9 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in Fig. 6 in a step-down mode.
  • Fig. 10 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in Fig. 6 in battery mode.
  • Fig. 11 is a circuit diagram of an online interactive uninterruptible power supply according to a second embodiment of the present invention.
  • Fig. 6 is a circuit diagram of an online interactive uninterruptible power supply according to the first embodiment of the present invention.
  • the online interactive uninterruptible power supply 2 includes a switch S21, an automatic voltage regulator AVR2, and a switch S22 connected in sequence between an AC input terminal 211 and an AC output terminal 212; a rechargeable battery 22, The DC-DC converter 23 and the full-bridge inverter 24, wherein the input end of the DC-DC converter 23 is connected to both ends of the rechargeable battery 22, and its output end is connected to the input end of the full-bridge inverter 24, wherein
  • the switch S22 controllably connects one of the output terminals of the automatic voltage regulator AVR2 and the full-bridge inverter 24 to the AC output terminal 212; the charger switch 27, the rectifier circuit 25, and the charger 26 are connected in sequence, wherein the charger The switch 27 is a normally closed switch, which is connected between the AC input terminal 211 and the input terminal of the rectifier circuit 25, the output terminal of the rectifier circuit 25 is connected to the input terminal of
  • the automatic voltage regulator AVR2 includes an autotransformer Tr21, a step-up switch S24, a step-down switch S25 and a switch S26.
  • One terminal of the winding of the autotransformer Tr21 is connected to the neutral line (or neutral line) through the switch S26.
  • the movable contact of the switch S24 is controllably connected to the other terminal and the tap of the winding of the autotransformer
  • the movable contact of the step-down switch S25 is controllably connected to the other terminal and the tap of the winding of the autotransformer one.
  • the DC-DC converter 23 includes a push-pull inverter, a high-frequency transformer, and a high-frequency rectifier filter circuit.
  • the input end of the push-pull inverter is connected to both ends of the rechargeable battery 22, and the output end is connected to the high-frequency transformer.
  • On the primary side the secondary side of the high-frequency transformer is connected to the input end of the high-frequency rectifier filter circuit.
  • the push-pull inverter is used to invert the low-voltage direct current of the rechargeable battery 22 into high-frequency low-voltage alternating current
  • the high-frequency transformer is used to boost the high-frequency low-voltage alternating current
  • the high-frequency rectifier filter circuit is used to rectify and filter to obtain a voltage boost. High direct current.
  • the full-bridge inverter 24, the rectifier circuit 25, and the charger 26 can use the corresponding circuit modules in the prior art, and the specific circuit structure thereof will not be described in detail here.
  • the bypass mode the boost mode
  • the buck mode the battery mode.
  • the online interactive uninterruptible power supply 2 is not connected to the rechargeable battery 21 in the bypass mode, the boost mode, and the step-down mode.
  • the corresponding equivalent circuit diagram is shown as a dashed line. Rechargeable battery 21.
  • Bypass mode When the voltage amplitude of the mains is greater than the first threshold and less than the second threshold (for example, greater than 200 volts and less than 240 volts), that is, the AC input terminal 211 provides normal AC power allowed by the load. Assuming that the online interactive uninterruptible power supply 2 is not connected to the rechargeable battery 21, during the AC startup process, the AC input terminal 211 is connected to the input terminal of the rectifier circuit 25 through the conductive charger switch 27, and the rectifier circuit 25 provides the charger 26 with Direct current, the direct current voltage output by the charger 26 is used to supply power to the auxiliary power supply 221, so that the auxiliary power supply 221 provides the required direct current voltage to the control device in the online interactive uninterruptible power supply 2.
  • Fig. 7 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in Fig. 6 in bypass mode.
  • the control device controls the switch S21 to turn on, controls the switch S26 in the automatic voltage regulator AVR2 to turn off, and controls the moving contacts of the boost switch S24 and the buck switch S25 to be connected by wires, and controls the switch S22
  • the automatic voltage regulator AVR2 is connected to the AC output terminal 212, so that the AC input terminal 211 is connected to the AC output terminal 212 through a conductive switch and a wire, and provides the required AC power to the load.
  • the online interactive uninterruptible power supply 2 realizes a battery-free AC start.
  • the control device controls the charger 26 to work to charge the rechargeable battery 22, until the rechargeable battery 22 is fully charged, the charger switch 27 is controlled to be in an off state, And control the charger 26 to stop working.
  • Boost mode when the voltage amplitude of the mains is greater than the third threshold and not greater than the first threshold (for example, greater than 160 volts and not greater than 200 volts), that is, when the mains voltage provided by the AC input terminal 211 is low, the auxiliary power supply
  • the establishment process of 221 is the same as that of the bypass mode, and will not be repeated here.
  • Fig. 8 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in Fig. 6 in a boost mode.
  • the control device controls the switch S21 to turn on, controls the switch S26 in the automatic voltage regulator AVR2 to turn on, and controls the boost switch S24 to connect its movable contact to the tap of the winding of the autotransformer Tr21, and controls the step-down switch S25 to make it
  • the movable contact is connected to the other end of the winding of the autotransformer Tr21; the switch S22 is controlled to connect the automatic voltage regulator AVR2 to the AC output terminal 212, and the DC-DC converter 23 and the full-bridge inverter 24 are controlled to stop working.
  • the control device When the online interactive uninterruptible power supply 2 is connected to the rechargeable battery 22, the control device also controls the charger 26 to work to use the commercial power provided by the AC input terminal 211 to charge the rechargeable battery 22 until the rechargeable battery 22 is fully charged.
  • the charger 26 stops working and controls the charger switch 27 to turn off.
  • Step-down mode When the voltage amplitude of the mains power is not less than the second threshold and less than the fourth threshold (for example, not less than 240 volts and less than 280 volts), that is, when the mains voltage provided by the AC input terminal 211 is high, the auxiliary power supply The establishment process of 221 is the same as that of the bypass mode, and will not be repeated here.
  • the fourth threshold for example, not less than 240 volts and less than 280 volts
  • Fig. 9 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in Fig. 6 in a step-down mode.
  • the control device controls the switch S21 to turn on, controls the switch S26 in the automatic voltage regulator AVR2 to turn on, and controls the boost switch S24 to connect its movable contact to the other end of the winding of the autotransformer Tr21 and Control the step-down switch S25 to connect its movable contact to the tap of the winding of the autotransformer Tr21, control the switch S22 to connect the automatic voltage regulator AVR2 to the AC output terminal 212, and control the DC-DC converter 23 and the full-bridge inverter at the same time.
  • the inverter 24 stops working.
  • the charger 26 When the online interactive uninterruptible power supply 2 is connected to the rechargeable battery 22, the charger 26 is controlled to use the commercial power provided by the AC input terminal 211 to charge the rechargeable battery 22. After the rechargeable battery 22 is fully charged, the charger 26 is controlled. Stop working and control the charger switch 27 to turn off.
  • the online interactive uninterruptible power supply 2 when the online interactive uninterruptible power supply 2 is not connected to the rechargeable battery 22, it can also achieve AC startup.
  • the rechargeable battery 22 is used to power the auxiliary power source 221, thereby assisting
  • the power supply 221 can provide the required DC voltage to the control device.
  • Fig. 10 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in Fig. 6 in battery mode.
  • the control device controls the switch S21 to turn off, controls the switch S22 so that the output terminal of the full-bridge inverter 24 is connected to the AC output terminal 212, controls the charger switch 27 to turn off, and controls the DC-DC converter 23 It works with the full-bridge inverter 24, where the DC-DC converter 23 is used to convert the direct current of the rechargeable battery 22 into pulsating direct current, and the full-bridge inverter 24 is used to convert the pulsating direct current into alternating current and output to the AC output terminal 212 .
  • the online interactive uninterruptible power supply 2 omits the switch S21 (that is, it is replaced by a wire), in the battery mode, the AC power of the AC output terminal 212 may be connected to the automatic voltage regulator AVR2 through the switch S22 with a small contact gap.
  • the switch S21 as a safety switch or a safety relay is controlled to be turned off in the battery mode, and a relay with a larger contact gap can be selected to prevent the AC power of the AC output terminal 212 from being connected to the AC input terminal 211.
  • the control device provides a pulse width modulation signal to the power switch tube (switch tube for short) in the charger 26 to provide a pulse width modulation signal to the rechargeable battery 22 Charge it.
  • the DC-DC converter 23 is controlled to output a sine wave voltage with a phase angle of 0-90°; in the 1/4-1/2 mains cycle, control
  • the charger 26 works to charge the rechargeable battery 22, and at the same time causes the DC-DC converter 23 to output a sine wave voltage with a phase angle of 90°-180°; within 1/2-3/4 of the mains cycle, the DC-DC converter is controlled.
  • the DC converter 23 works to output a sine wave voltage with a phase angle of 0-90°; in a 3/4-1 mains cycle, the charger 26 is controlled to work to charge the rechargeable battery 22, and at the same time, the DC-DC converter 23 outputs a sine wave voltage with a phase angle of 90°-180°.
  • the DC-DC converter 23 outputs the direct current of the steamed bread wave waveform, and the full-bridge inverter 24 outputs the alternating current of the sine wave.
  • the online interactive uninterruptible power supply 2 omits the charger switch 27 (that is, it is replaced by a wire), in the battery mode, the AC input terminal 211 will be transmitted to the charging through the rectifier circuit 25 The input terminal of the charger 26, thereby obtaining pulsating direct current at the input terminal of the charger 26.
  • the direct current output from the DC-DC converter 23 may not be transmitted to the input terminal of the charger 26 through the diode D21, and thus the charger 26 cannot recover the peak power output by the DC-DC converter 23.
  • the charger switch 27 is controlled to be turned off in the battery mode, so that the direct current output by the DC-DC converter 23 can be transmitted to the input terminal of the charger 26.
  • the switching tube 243 and the switching tube 242 in the full-bridge inverter 24 are controlled to be turned on, and in the negative half cycle, the switching tube 241 and the switching tube are controlled. 244 is on.
  • the switching tubes 243 and 242 are controlled to be turned off, and the switching tube 241 is controlled to be turned on and the switching tube 244 is controlled to be turned off, then the voltage across the switching tube 244 is equal to the AC output terminal.
  • the voltage at 212 is added to the voltage at the output terminal of the DC-DC converter 23.
  • the voltage across the switch tube 244 is equal to the voltage at the AC output terminal 212 at this time. If the charger 26 is controlled to not work in the battery mode, the voltage across the switch tube 244 is equal to twice the voltage of the AC output terminal 212 at this time. From this, it can be known that the peak power output by the DC-DC converter 23 is recovered, and the voltage borne by the switch tube 244 in the full-bridge inverter 24 is reduced. In the same way, recovering the peak power output by the DC-DC converter 23 can also reduce the voltages borne by the switching tubes 241, 242, and 243. Therefore, the full-bridge inverter 24 can choose a switching tube with a voltage resistance halved to reduce its cost.
  • the online interactive uninterruptible power supply 2 of the present invention can realize battery-free AC starting. That is, without connecting the rechargeable battery 22, the online interactive uninterruptible power supply 2 can be AC started in the bypass mode, the boost mode, and the step-down mode. It is also possible to recover the peak power output by the DC-DC converter 23 in the battery mode.
  • the switch S21 in the online interactive uninterruptible power supply 2 can be selected as a small low-voltage DC relay, which has the following advantages compared with AC relays powered by mains: DC relays are conventional normally open switches with a wide range of options ; Auxiliary power supply 221 can provide a stable low-voltage DC voltage to the DC relay, no matter how the voltage amplitude of the mains changes, the switching state of the DC relay will not be mis-operated and will not produce noise; the DC relay is small in size and power consumption low.
  • the high-frequency transformer in the DC-DC converter 23 in this embodiment can be selected as a small-sized and light-weight high-frequency magnetic core material, thereby greatly improving the power density of the circuit.
  • the rechargeable battery 22 can be a low-voltage rechargeable battery, which greatly reduces the cost of the battery.
  • the full-bridge inverter 24 of the present invention is used to convert pulsating direct current into alternating current. Therefore, the full-bridge inverter 24 can be a low-frequency full-bridge inverter.
  • the switching frequencies of the four switching tubes in the full-bridge inverter 24 are Equal to the frequency of the mains, a switch tube with a low switching frequency can significantly reduce the cost of the device.
  • all four switching tubes in the full-bridge inverter 24 may not have anti-parallel diodes, which facilitates the selection of electronic components.
  • Fig. 11 is a circuit diagram of an online interactive uninterruptible power supply according to a second embodiment of the present invention.
  • the online interactive uninterruptible power supply 3 is basically the same as the online interactive uninterruptible power supply 2 shown in FIG. 6. The difference is that the online interactive uninterruptible power supply 3 also includes an AC input terminal 311 and a switch S31.
  • the electromagnetic interference (EMI) filter 381, the EMI filter 382 connected between the switch S32 and the AC output terminal 312, the filter circuit connected between the output terminal of the rectifier circuit 35 and the input terminal of the charger 26 383, and the DC-DC converter 33 includes a full-bridge inverter, a transformer, and a rectifier filter circuit connected in sequence.
  • the working mode of the online interactive uninterruptible power supply 3 is the same as that of the online interactive uninterruptible power supply 2, and will not be repeated here.
  • the EMI filter 381, the EMI filter 382, and the filter circuit 383 are used to filter high-frequency signals to avoid interference caused by high-frequency noise signals, so that the online interactive uninterruptible power supply 3 has the ability to resist electromagnetic interference.
  • the push-pull inverter in the DC-DC converter 23 can be replaced with a full-bridge inverter or a half-bridge inverter, and the full-bridge inverter in the DC-DC converter 33
  • the inverter can be replaced with a half-bridge inverter or a push-pull inverter.
  • a full-wave rectifier circuit is used instead of the full-bridge rectifier circuit in the DC-DC converters 23 and 33.
  • the DC-DC converters 23, 33 can be replaced with a step-up chopper circuit (or Boost circuit), which is used to The direct current of the rechargeable battery is directly boosted to the required bus voltage, and the inverter 24 can be a full-bridge inverter or a half-bridge inverter.
  • Boost circuit step-up chopper circuit
  • the rectifier circuits 25, 35 in the above-mentioned embodiments of the present invention are not limited to full-bridge rectifier circuits, and can also be other rectifier circuits such as half-wave rectifier circuits or full-wave rectifier circuits for rectifying the AC power at the AC input end into DC power and Output to the input terminals of the chargers 26 and 36.
  • the chargers 26 and 36 of the present invention are respectively used to convert the DC power output by the rectifier circuits 25 and 35 into DC power and charge the rechargeable battery. They are not limited to being a flyback charger, but can also be used to convert the rectifier circuit Other types of chargers that convert the output direct current into direct current.
  • the automatic voltage regulator of the present invention can also use other connection structures in the prior art and automatic voltage regulators with boosting and step-down ratios.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

本发明提供了一种在线互动式不间断电源及其控制方法,在线互动式不间断电源包括:在交流输入端和交流输出端之间依次连接自动电压调节器和切换开关;整流电路,其输入端连接所述交流输入端;充电器,其输入端连接至所述整流电路的输出端,其输出端用于连接至可充电电池;DC-DC变换器,其输入端连接至所述可充电电池;以及第一逆变器,其输入端连接至所述DC-DC变换器的输出端;其中,所述切换开关被配置为可控地将所述交流输出端连接至所述自动电压调节器和所述第一逆变器的输出端之一。本发明的在线互动式不间断电源能够实现无电池交流启动。

Description

在线互动式不间断电源及其控制方法 技术领域
本发明涉及不间断电源,具体涉及一种在线互动式不间断电源及其控制方法。
背景技术
在线互动式不间断电源能够持续不断地给负载进行供电。当市电的电压幅值正常或在负载所能容许的范围内时,由市电向负载进行供电;当市电的电压幅值偏高或偏低时,通过自动电压调节器(或称“自动电压调整器”)对市电的电压进行自动升压或降压后对负载进行供电;当市电断电或过高时,通过可充电电池对负载进行供电。
图1是现有技术中的一种在线互动式不间断电源的电路图。如图1所示,在线互动式不间断电源1包括在交流输入端111和交流输出端112之间依次连接的开关S11、自动电压调节器AVR1、切换开关S12和开关S13;依次连接的可充电电池12、DC-DC变换器13和全桥逆变器14,以及由可充电电池12供电的辅助电源121,其中DC-DC变换器13的输入端连接至可充电电池12的两端,其输出端连接至全桥逆变器14的输入端,其中切换开关S12可控地使得交流输出端112连接至自动电压调节器AVR1和全桥逆变器14的输出端之一;以及依次连接的全桥整流电路15、滤波电路19和充电器16,其中整流电路15的输入端连接至切换开关S12和交流输出端112之间,其输出端连接至滤波电路19的输入端,滤波电路19的输出端连接至充电器16的输入端,且充电器16的输出端连接至可充电电池12的两端。
本领域的技术人员可知,为了清楚地示出在线互动式不间断电源1的电路模块和电子元器件之间的连接关系,图1并未示出其中的电压检测装置和控制装置。
以下将简单描述在线互动式不间断电源1的四种工作模式。
旁路模式:当市电的电压幅值大于第一阈值且小于第二阈值时(例如 大于200伏特且小于240伏特),辅助电源121在可充电电池12的供电下,给控制装置提供所需的直流电压(例如5伏特、12伏特和24伏特等)以实现在线互动式不间断电源1的交流启动。
图2是图1所示的在线互动式不间断电源在旁路模式下的等效电路图。如图2所示,控制装置控制开关S11导通,控制自动电压调节器AVR1中的升压开关S14和降压开关S15使得两者之间通过导线连接且控制开关S16断开,控制切换开关S12使得自动电压调节器AVR1连接至开关S13和交流输出端112,且控制开关S13导通,由此交流输入端111的市电通过导通的开关和导线电连接至交流输出端112,用于给交流输出端112的负载供电。控制装置同时控制DC-DC变换器13和全桥逆变器14不工作,且控制充电器16工作以对可充电电池12进行充电。当可充电电池12充满电时,控制充电器16停止工作以停止对可充电电池12充电。
升压模式:当市电的电压幅值大于第三阈值且不大于第一阈值时(例如大于160伏特且不大于200伏特),即交流输入端111提供的市电电压偏低时,可充电电池12给辅助电源121供电,以实现在线互动式不间断电源1的交流启动。
图3是图1所示的在线互动式不间断电源在升压模式的等效电路图。如图3所示,控制装置控制开关S11导通,控制自动电压调节器AVR1中的开关S16导通使得其中的绕组的一个端子连接至零线或中性线,控制自动电压调节器AVR1中的升压开关S14和降压开关S15使其动触点分别连接至绕组的抽头和另一端;控制切换开关S12使得自动电压调节器AVR1连接至开关S13和交流输出端112,且控制开关S13导通,自动电压调节器AVR1对交流输入端111的市电进行自动升压后传输至交流输出端112。控制装置同时控制DC-DC变换器13和全桥逆变器14不工作,且控制充电器16工作以对可充电电池12进行充电。当可充电电池12充满电时,控制充电器16停止工作以停止对可充电电池12充电。
降压模式:当市电的电压幅值不小于第二阈值且小于第四阈值时(例如不小于240伏特且小于280伏特),即交流输入端111提供的市电电压偏高时,可充电电池12给辅助电源121供电,以实现在线互动式不间断 电源1的交流启动。
图4是图1所示的在线互动式不间断电源在降压模式的等效电路图。如图4所示,控制装置控制开关S11导通,控制自动电压调节器AVR1中的开关S16导通使得其中的绕组的一个端子连接至零线或中性线,控制自动电压调节器AVR1中的升压开关S14和降压开关S15使其动触点分别连接至绕组的另一端和抽头,;控制切换开关S12使得自动电压调节器AVR1连接至开关S13和交流输出端112,且控制开关S13导通,自动电压调节器AVR1对交流输入端111的市电进行自动降压后传输至交流输出端112。控制装置同时控制DC-DC变换器13和全桥逆变器14不工作,且控制充电器16工作以对可充电电池12进行充电。当可充电电池12充满电时,控制充电器16停止工作以停止对可充电电池12充电。
电池模式:当市电的电压幅值不大于第三阈值或不小于第四阈值时(例如不大于160伏特或不小于280伏特),即市电电压过高或断电时,可充电电池12给辅助电源121供电,以实现在线互动式不间断电源1的启动。
图5是图1所示的在线互动式不间断电源在电池模式下的等效电路图。如图5所示,控制装置控制开关S11断开,控制开关S13导通,控制切换开关S12使得交流输出端112连接至全桥逆变器14的输出端,控制DC-DC变换器13工作以将可充电电池12中的直流电转换为脉动直流电,控制逆变器15工作以将脉动直流电转换为交流电,以给交流输出端112的负载(图5未示出)供电。当交流输出端112空载(即未连接负载)时,控制装置控制充电器16工作回收DC-DC变换器13输出的峰值功率,以使得全桥逆变器14输出正弦交流电。
综上所述,在线互动式不间断电源1在旁路模式、升压模式和降压模式下,辅助电源121在可充电电池12的供电下给控制装置提供所需的直流电压,从而实现在线互动式不间断电源1的交流启动。
如果图1所示的在线互动式不间断电源1没有连接可充电电池12,当交流输入端111接入市电时,由于没有可充电电池供电,辅助电源121不能给控制装置提供所需的直流电压,无法实现在线互动不间断电源1的交 流启动。
发明内容
针对现有技术存在的上述技术问题,本发明提供了一种在线互动式不间断电源,包括:
在交流输入端和交流输出端之间依次连接自动电压调节器和切换开关;
整流电路,其输入端连接所述交流输入端;
充电器,其输入端连接至所述整流电路的输出端,其输出端用于连接至可充电电池;
DC-DC变换器,其输入端连接至所述可充电电池;以及
第一逆变器,其输入端连接至所述DC-DC变换器的输出端;
其中,所述切换开关被配置为可控地将所述交流输出端连接至所述自动电压调节器和所述第一逆变器的输出端之一。
优选的,所述在线互动式不间断电源包括二极管,所述二极管的正极连接至所述DC-DC变换器的正极输出端子,其负极连接至所述充电器的正极输入端子,且所述DC-DC变换器的负极输出端子连接至所述充电器的负极输入端子。
优选的,所述在线互动式不间断电源包括连接在所述交流输入端和所述自动电压调节器之间的第一开关,且所述整流电路的输入端连接至所述交流输入端和所述第一开关之间。
优选的,所述第一开关为直流继电器。
优选的,所述在线互动式不间断电源包括连接在所述整流电路的输入端的第二开关,所述第二开关为常闭型开关。
优选的,所述在线互动式不间断电源包括:连接在所述交流输入端和所述第一开关之间的第一电磁干扰滤波器;和/或连接在所述切换开关和所述交流输出端之间的第二电磁干扰滤波器;和/或滤波电路,所述滤波电路连接在所述整流电路的输出端和所述充电器的输入端之间。
优选的,所述DC-DC变换器包括:第二逆变器,其用于将所述可充 电电池的直流电转换为第一交流电;变压器,其包括一次侧和二次侧,所述一次侧连接至所述第二逆变器的输出端,且用于将所述第一交流电升压为第二交流电;整流滤波电路,其输入端连接至所述变压器的二次侧,用于将所述第二交流电整流为脉动直流电。
优选的,所述第一逆变器为全桥逆变器,其用于将所述脉动直流电转换为第三交流电。
优选的,所述全桥逆变器包括四个开关管,所述四个开关管的开关频率等于市电的频率。
优选的,所述在线互动式不间断电源包括控制装置,其用于:当所述交流输入端的市电的电压幅值大于第一阈值且小于第二阈值时,控制所述切换开关使得所述交流输出端连接至所述自动电压调节器,控制所述自动电压调节器使得所述第一开关通过导线连接至所述切换开关,且控制所述充电器以对所述可充电电池进行充电,同时控制所述DC-DC变换器和第一逆变器不工作;或当所述交流输入端的市电的电压幅值大于第三阈值且不大于第一阈值时,控制所述切换开关使得所述交流输出端连接至所述自动电压调节器,控制所述自动电压调节器使得所述交流输入端的市电升压后传输至所述切换开关,且控制所述充电器以对所述可充电电池进行充电,同时控制所述DC-DC变换器和第一逆变器不工作;或当所述交流输入端的市电的电压幅值不小于第二阈值且小于第四阈值时,控制所述切换开关使得所述交流输出端连接至所述自动电压调节器,控制所述自动电压调节器使得所述交流输入端的市电降压后传输至所述切换开关,且控制所述充电器以对所述可充电电池进行充电,同时控制所述DC-DC变换器和第一逆变器不工作;或当所述交流输入端的市电的电压幅值不大于第三阈值或不小于第四阈值时,控制所述切换开关使得所述交流输出端连接至所述第一逆变器的输出端,控制所述DC-DC变换器以将所述可充电电池的直流电转换为脉动直流电,控制所述第一逆变器以将所述脉动直流电转换为第三交流电。
优选的,所述在线互动式不间断电源包括二极管,所述二极管的正极连接至所述DC-DC变换器的正极输出端子,其负极连接至所述充电器的 正极输入端子,且所述DC-DC变换器的负极输出端子连接至所述充电器的负极输入端子,所述控制装置用于当所述交流输入端的市电的电压幅值不大于第三阈值或不小于第四阈值、且所述交流输出端空载时,还控制所述充电器工作以回收所述DC-DC变换器输出的峰值功率。
优选的,所述在线互动式不间断电源包括连接在所述交流输入端和所述自动电压调节器之间的第一开关,且所述整流电路的输入端连接至所述交流输入端和所述第一开关之间,所述控制装置用于当所述交流输入端的市电的电压幅值大于第一阈值且小于第二阈值时,或当所述交流输入端的市电的电压幅值大于第三阈值且不大于第一阈值时,或当所述交流输入端的市电的电压幅值不小于第二阈值且小于第四阈值时,控制所述第一开关导通;当所述交流输入端的市电的电压幅值不大于第三阈值或不小于第四阈值时,控制所述第一开关断开。
优选的,所述在线互动式不间断电源包括连接在所述整流电路的输入端的第二开关,所述第二开关为常闭型开关,当所述交流输入端的市电的电压幅值不大于第三阈值或不小于第四阈值时,控制所述第二开关断开。
本发明还提供了一种用于如上所述的在线互动式不间断电源的控制方法,包括检测所述交流输入端的市电的电压幅值,以及当所述市电的电压幅值大于第一阈值且小于第二阈值时,控制所述切换开关使得所述交流输出端连接至所述自动电压调节器,控制所述自动电压调节器使得所述第一开关通过导线连接至所述切换开关,且控制所述充电器以对所述可充电电池进行充电,同时控制所述DC-DC变换器和第一逆变器不工作;或当所述市电的电压幅值大于第三阈值且不大于第一阈值时,控制所述切换开关使得所述交流输出端连接至所述自动电压调节器,控制所述自动电压调节器使得所述交流输入端的市电升压后传输至所述切换开关,且控制所述充电器以对所述可充电电池进行充电,同时控制所述DC-DC变换器和第一逆变器不工作;或当所述市电的电压幅值不小于第二阈值且小于第四阈值时,控制所述切换开关使得所述交流输出端连接至所述自动电压调节器,控制所述自动电压调节器使得所述交流输入端的市电降压后传输至所述切换开关,且控制所述充电器以对所述可充电电池进行充电,同时控制所 述DC-DC变换器和第一逆变器不工作;或当所述市电的电压幅值不大于第三阈值或不小于第四阈值时,控制所述切换开关使得所述交流输出端连接至所述第一逆变器的输出端,控制所述DC-DC变换器以将所述可充电电池的直流电转换为脉动直流电,控制所述第一逆变器以将所述脉动直流电转换为第三交流电。
优选的,所述在线互动式不间断电源包括二极管,所述二极管的正极连接至所述DC-DC变换器的正极输出端子,其负极连接至所述充电器的正极输入端子,且所述DC-DC变换器的负极输出端子连接至所述充电器的负极输入端子,所述控制方法还包括当所述交流输入端的市电的电压幅值不大于第三阈值或不小于第四阈值、且所述交流输出端空载时,控制所述充电器工作以回收所述DC-DC变换器输出的峰值功率。
优选的,所述在线互动式不间断电源包括连接在所述交流输入端和所述自动电压调节器之间的第一开关,且所述整流电路的输入端连接至所述交流输入端和所述第一开关之间,所述控制方法还包括:当所述交流输入端的市电的电压幅值大于第一阈值且小于第二阈值时,或当所述交流输入端的市电的电压幅值大于第三阈值且不大于第一阈值时,或当所述交流输入端的市电的电压幅值不小于第二阈值且小于第四阈值时,控制所述第一开关导通;当所述交流输入端的市电的电压幅值不大于第三阈值或不小于第四阈值时,控制所述第一开关断开。
优选的,所述在线互动式不间断电源包括连接在所述整流电路的输入端的第二开关,所述第二开关为常闭型开关,所述控制方法还包括:当所述交流输入端的市电的电压幅值不大于第三阈值或不小于第四阈值时,控制所述第二开关断开。
本发明的在线互动式不间断电源能够实现无电池交流启动,在电池模式下能够回收DC-DC变换器输出的峰值功率,减小了逆变器中的开关管承受的电压,降低了其成本,且第一开关可以选用体积小、功耗低的低压直流继电器,降低成本且避免其开关状态出现误操作且不会产生噪音。
附图说明
以下参照附图对本发明实施例作进一步说明,其中:
图1是现有技术中的一种在线互动式不间断电源的电路图。
图2是图1所示的在线互动式不间断电源在旁路模式下的等效电路图。
图3是图1所示的在线互动式不间断电源在升压模式的等效电路图。
图4是图1所示的在线互动式不间断电源在降压模式的等效电路图。
图5是图1所示的在线互动式不间断电源在电池模式下的等效电路图。
图6是根据本发明第一个实施例的在线互动式不间断电源的电路图。
图7是图6所示的在线互动式不间断电源在旁路模式下的等效电路图。
图8是图6所示的在线互动式不间断电源在升压模式下的等效电路图。
图9是图6所示的在线互动式不间断电源在降压模式下的等效电路图。
图10是图6所示的在线互动式不间断电源在电池模式下的等效电路图。
图11是根据本发明第二个实施例的在线互动式不间断电源的电路图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图通过具体实施例对本发明进一步详细说明。
图6是根据本发明第一个实施例的在线互动式不间断电源的电路图。如图6所示,在线式互动不间断电源2包括在交流输入端211和交流输出端212之间依次连接的开关S21、自动电压调节器AVR2和切换开关S22;依次连接的可充电电池22、DC-DC变换器23和全桥逆变器24,其中DC-DC变换器23的输入端连接至可充电电池22的两端,其输出端连接至全桥逆变器24的输入端,其中切换开关S22可控地使得自动电压调节器AVR2和全桥逆变器24的输出端之一连接至交流输出端212;依次连接的充电器开关27、整流电路25和充电器26,其中充电器开关27为常闭型开关,其连接在交流输入端211和整流电路25的输入端之间,整流电路25的输出端连接至充电器26的输入端,且充电器26的输出端连接至可充电电池22的两端且用于给辅助电源221供电;以及二极管D21,其中二极管D21的正极连接至DC-DC变换器23的正极输出端子,其负极连接至 充电器26的正极输入端子,DC-DC变换器23的负极输出端子连接充电器26的负极输入端子。
自动电压调节器AVR2包括自耦变压器Tr21、升压开关S24、降压开关S25和开关S26,其中自耦变压器Tr21的绕组的一个端子通过开关S26连接至零线(或中性线),升压开关S24的动触点可控地连接至自耦变压器的绕组的另一个端子和抽头之一,且降压开关S25的动触点可控地连接至自耦变压器的绕组的另一个端子和抽头之一。
DC-DC变换器23包括推挽逆变器、高频变压器和高频整流滤波电路,推挽逆变器的输入端连接至可充电电池22的两端,其输出端连接至高频变压器的一次侧,高频变压器的二次侧连接至高频整流滤波电路的输入端。其中推挽逆变器用于将可充电电池22的低压直流电逆变为高频低压交流电,高频变压器用于使得高频低压交流电升压,高频整流滤波电路用于整流和滤波从而得到电压升高的直流电。
全桥逆变器24、整流电路25和充电器26可选用现有技术中相应的电路模块,其具体电路结构在此不再详细描述。
同理,本领域的技术人员应当知道,为了简化图6所示的在线互动式比间断电源2,其并未示出电压检测装置和控制装置。
下面将根据市电的电压幅值分情况讨论在线互动式不间断电源2的旁路模式、升压模式、降压模式和电池模式共四种工作模式。为了清楚地说明本发明的技术优点,假定在线互动式不间断电源2在旁路模式、升压模式和降压模式下并未连接可充电电池21,在相应的等效电路图中以虚线示出可充电电池21。
旁路模式:当市电的电压幅值大于第一阈值且小于第二阈值时(例如大于200伏特且小于240伏特),即交流输入端211提供负载所容许的正常交流电。假定在线互动式不间断电源2没有连接可充电电池21,在交流启动过程中,交流输入端211通过导通的充电器开关27连接至整流电路25的输入端,整流电路25给充电器26提供直流电,充电器26输出的直流电压用于给辅助电源221供电,由此辅助电源221给在线互动式不间断电源2中的控制装置提供所需的直流电压。
图7是图6所示的在线互动式不间断电源在旁路模式下的等效电路图。如图7所示,控制装置控制开关S21导通,控制自动电压调节器AVR2中的开关S26断开、且控制升压开关S24和降压开关S25的动触点通过导线连接,控制切换开关S22使得自动电压调节器AVR2连接至交流输出端212,由此交流输入端211通过导通的开关和导线连接至交流输出端212,且给负载提供所需的交流电。由此在线互动式不间断电源2实现了无电池交流启动。
当在线互动式不间断电源2连接可充电电池22时,控制装置控制充电器26工作以对可充电电池22进行充电,直到可充电电池22充满电时,控制充电器开关27处于断开状态,且控制充电器26停止工作。
升压模式:当市电的电压幅值大于第三阈值且不大于第一阈值时(例如大于160伏特且不大于200伏特),即交流输入端211提供的市电电压偏低时,辅助电源221的建立过程与旁路模式相同,在此不再赘述。
图8是图6所示的在线互动式不间断电源在升压模式下的等效电路图。控制装置控制开关S21导通,控制自动电压调节器AVR2中的开关S26导通、且控制升压开关S24使其动触点连接至自耦变压器Tr21的绕组的抽头,控制降压开关S25使其动触点连接至自耦变压器Tr21的绕组的另一端;控制切换开关S22使得自动电压调节器AVR2连接至交流输出端212,同时控制DC-DC变换器23和全桥逆变器24停止工作。当在线互动式不间断电源2连接可充电电池22时,控制装置还控制充电器26工作以利用交流输入端211提供的市电对可充电电池22充电,直到可充电电池22充满电后,控制充电器26停止工作且控制充电器开关27断开。
降压模式:当市电的电压幅值不小于第二阈值且小于第四阈值时(例如不小于240伏特且小于280伏特),即交流输入端211提供的市电电压偏高时,辅助电源221的建立过程与旁路模式相同,在此不再赘述。
图9是图6所示的在线互动式不间断电源在降压模式下的等效电路图。如图9所示,控制装置控制开关S21导通,控制自动电压调节器AVR2中的开关S26导通、且控制升压开关S24使其动触点连接至自耦变压器Tr21的绕组的另一端以及控制降压开关S25使其动触点连接至自耦变压器Tr21 的绕组的抽头,控制切换开关S22使得自动电压调节器AVR2连接至交流输出端212,同时控制DC-DC变换器23和全桥逆变器24停止工作。当在线互动式不间断电源2连接可充电电池22时,控制充电器26工作以利用交流输入端211提供的市电对可充电电池22充电,直到可充电电池22充满电后,控制充电器26停止工作且控制充电器开关27断开。
综上可知,当在线互动式不间断电源2没有连接可充电电池22时,其也能够实现交流启动。
电池模式:当市电的电压幅值不大于第三阈值或不小于第四阈值时(例如不大于160伏特或不小于280伏特),可充电电池22用于给辅助电源221供电,由此辅助电源221能够给控制装置提供所需的直流电压。
图10是图6所示的在线互动式不间断电源在电池模式下的等效电路图。如图10所示,控制装置控制开关S21断开,控制切换开关S22使得全桥逆变器24的输出端连接至交流输出端212,控制充电器开关27断开,控制DC-DC变换器23和全桥逆变器24工作,其中DC-DC变换器23用于将可充电电池22的直流电转换为脉动直流电,全桥逆变器24用于将脉动直流电转换为交流电输出至交流输出端212。
假如在线互动式不间断电源2省略了开关S21(即用导线代替),在电池模式下,交流输出端212的交流电可能通过具有较小触点间隙的切换开关S22跨接至自动电压调节器AVR2,从而使得交流输入端211带电,操作人员触碰到交流输入端211从而造成触电危险。因此开关S21作为安规开关或安规继电器在电池模式下被控制为断开,且可以选用触点间隙较大的继电器,以避免交流输出端212的交流电跨接至交流输入端211。
在电池模式下,如果交流输出端212空载(即未连接负载)时,此时需要回收DC-DC变换器23输出的峰值功率,一方面利用回收的能量对可充电电池22进行充电,另一方面将全桥逆变器24输出的电压波形修正为正弦波。由于DC-DC变换器23的输出端通过二极管D21连接至充电器26的输入端,控制装置给充电器26中的功率开关管(简称开关管)提供脉宽调制信号,以对可充电电池22进行充电。具体而言,在0-1/4市电周期内,控制DC-DC变换器23工作以输出0-90°相位角的正弦波电压;在 1/4-1/2市电周期内,控制充电器26工作以对可充电电池22进行充电,同时使得DC-DC变换器23输出90°-180°相位角的正弦波电压;在1/2-3/4市电周期内,控制DC-DC变换器23工作以输出0-90°相位角的正弦波电压;在3/4-1市电周期内,控制充电器26工作以对可充电电池22进行充电,同时使得DC-DC变换器23输出90°-180°相位角的正弦波电压。最终使得DC-DC变换器23输出馒头波波形的直流电,且全桥逆变器24输出正弦波的交流电。
参考图6和图10所示,假如在线互动式不间断电源2省略了充电器开关27(即用导线代替),在电池模式下,交流输入端211的市电将通过整流电路25传输至充电器26的输入端,由此在充电器26的输入端获得脉动直流电。此时可能导致DC-DC变换器23输出的直流电无法通过二极管D21传输至充电器26的输入端,由此充电器26无法回收DC-DC变换器23输出的峰值功率。由此可知,充电器开关27在电池模式下被控制为断开,使得DC-DC变换器23输出的直流电能够传输至充电器26的输入端。
再次参考图10所示,在交流输出端212的交流电的正半周内,控制全桥逆变器24中的开关管243和开关管242导通,在负半周内,控制开关管241和开关管244导通。在正半周向负半周转变时,如果开关管243、242被控制为截止,且开关管241被控制为导通且开关管244被控制为截止,此时开关管244两端的电压等于交流输出端212的电压加上DC-DC变换器23输出端的电压。假如在电池模式下控制充电器26工作以回收DC-DC变换器23输出的峰值功率,此时开关管244两端的电压等于交流输出端212的电压。假如在电池模式下控制充电器26不工作,此时开关管244两端的电压等于交流输出端212的电压的2倍。由此可知回收DC-DC变换器23输出的峰值功率,减小全桥逆变器24中的开关管244承受的电压。同理,回收DC-DC变换器23输出的峰值功率也能减小开关管241、242、243承受的电压。因此全桥逆变器24可以选择耐压减半的开关管以降低其成本。
本发明的在线互动式不间断电源2能够实现无电池交流启动。也就是 说,在不连接可充电电池22的情况下,在线互动式不间断电源2能能够在旁路模式、升压模式和降压模式下交流启动。还能够在电池模式下,回收DC-DC变换器23输出的峰值功率。
另外,在线互动式不间断电源2中的开关S21可以选用小型低压直流继电器,其与由市电供电的交流继电器相比,具有如下优点:直流继电器为常规的常开型开关,可选择范围大;辅助电源221能够给直流继电器提供稳定的低压直流电压,无论市电的电压幅值如何变化,直流继电器的开关状态都不会出现误操作且不会产生噪音;直流继电器的体积小、功耗低。
本实施例中的DC-DC变换器23中的高频变压器可以选用体积小、重量轻的高频磁芯材料,从而大大提高了电路的功率密度。另外,可充电电池22可以选择低电压的可充电电池,极大地降低了电池成本。
本发明的全桥逆变器24用于将脉动直流电转换为交流电,因此全桥逆变器24可以选用低频全桥逆变器,其中全桥逆变器24中的4个开关管的开关频率等于市电的频率,具有低开关频率的开关管能显著地降低器件的成本。而且全桥逆变器24中的4个开关管都可以不具有反向并联的二极管,便于电子元器件的选型。
本领域的技术人员可知,根据负载的类型和市电的额定电压值,上述第一阈值、第二阈值、第三阈值和第四阈值可以选择其他的数值。
图11是根据本发明第二个实施例的在线互动式不间断电源的电路图。如图11所示,在线互动式不间断电源3与图6所示的在线互动式不间断电源2基本相同,区别在于,在线互动式不间断电源3还包括连接在交流输入端311和开关S31之间的电磁干扰(EMI)滤波器381,连接在切换开关S32和交流输出端312之间的EMI滤波器382,连接在整流电路35的输出端和充电器26的输入端之间的滤波电路383,且DC-DC变换器33包括依次连接的全桥逆变器、变压器和整流滤波电路。在线互动式不间断电源3的工作模式与在线互动式不间断电源2相同,在此不再赘述。
EMI滤波器381、EMI滤波器382和滤波电路383用于过滤高频信号,避免了高频噪音信号带来的干扰,使得在线互动式不间断电源3具有抗电磁干扰能力。
在本发明的其他实施例中,DC-DC变换器23中的推挽逆变器可以被替换为全桥逆变器或半桥逆变器,DC-DC变换器33中的全桥逆变器可以被替换为半桥逆变器或推挽逆变器。
在本发明的其他实施例中,采用全波整流电路代替DC-DC变换器23、33中全桥整流电路。
在本发明的其他实施例中,当可充电电池具有较高的电池电压时,DC-DC变换器23、33可以被替换为升压斩波电路(或称Boost电路),其用于将可充电电池的直流电直接升压为所需的母线电压,同时逆变器24可以选用全桥逆变器或半桥逆变器。
本发明上述实施例中的整流电路25、35并不限于是全桥整流电路,还可以是半波整流电路或全波整流电路等其他整流电路,以用于将交流输入端的交流电整流为直流电并输出至充电器26、36的输入端。
本发明的充电器26、36分别用于将整流电路25、35输出的直流电转换为直流电并对可充电电池进行充电,其并不限于是反激式充电器,还可以是用于将整流电路输出的直流电转换为直流电的其他类型的充电器。
本发明的自动电压调节器还可以选用现有技术中的其他连接结构和升压、降压比的自动电压调节器。
虽然本发明已经通过优选实施例进行了描述,然而本发明并非局限于这里所描述的实施例,在不脱离本发明范围的情况下还包括所作出的各种改变以及变化。

Claims (17)

  1. 一种在线互动式不间断电源,其特征在于,包括:
    在交流输入端和交流输出端之间依次连接自动电压调节器和切换开关;
    整流电路,其输入端连接所述交流输入端;
    充电器,其输入端连接至所述整流电路的输出端,其输出端用于连接至可充电电池;
    DC-DC变换器,其输入端连接至所述可充电电池;以及
    第一逆变器,其输入端连接至所述DC-DC变换器的输出端;
    其中,所述切换开关被配置为可控地将所述交流输出端连接至所述自动电压调节器和所述第一逆变器的输出端之一。
  2. 根据权利要求1所述的在线互动式不间断电源,其特征在于,所述在线互动式不间断电源包括二极管,所述二极管的正极连接至所述DC-DC变换器的正极输出端子,其负极连接至所述充电器的正极输入端子,且所述DC-DC变换器的负极输出端子连接至所述充电器的负极输入端子。
  3. 根据权利要求1所述的在线互动式不间断电源,其特征在于,所述在线互动式不间断电源包括连接在所述交流输入端和所述自动电压调节器之间的第一开关,且所述整流电路的输入端连接至所述交流输入端和所述第一开关之间。
  4. 根据权利要求3所述的在线互动式不间断电源,其特征在于,所述第一开关为直流继电器。
  5. 根据权利要求1所述的在线互动式不间断电源,其特征在于,所述在线互动式不间断电源包括连接在所述整流电路的输入端的第二开关,所述第二开关为常闭型开关。
  6. 根据权利要求3所述的在线互动式不间断电源,其特征在于,所述在线互动式不间断电源包括:
    连接在所述交流输入端和所述第一开关之间的第一电磁干扰滤波器;和/或
    连接在所述切换开关和所述交流输出端之间的第二电磁干扰滤波器;和/或
    滤波电路,所述滤波电路连接在所述整流电路的输出端和所述充电器的输入端之间。
  7. 根据权利要求1至6中任一项所述的在线互动式不间断电源,其特征在于,所述DC-DC变换器包括:
    第二逆变器,其用于将所述可充电电池的直流电转换为第一交流电;
    变压器,其包括一次侧和二次侧,所述一次侧连接至所述第二逆变器的输出端,且用于将所述第一交流电升压为第二交流电;
    整流滤波电路,其输入端连接至所述变压器的二次侧,用于将所述第二交流电整流为脉动直流电。
  8. 根据权利要求7所述的在线互动式不间断电源,其特征在于,所述第一逆变器为全桥逆变器,其用于将所述脉动直流电转换为第三交流电。
  9. 根据权利要求8所述的在线互动式不间断电源,其特征在于,所述全桥逆变器包括四个开关管,所述四个开关管的开关频率等于市电的频率。
  10. 根据权利要求1所述的在线互动式不间断电源,其特征在于,所述在线互动式不间断电源包括控制装置,其用于:
    当所述交流输入端的市电的电压幅值大于第一阈值且小于第二阈值时,控制所述切换开关使得所述交流输出端连接至所述自动电压调节器,控制所述自动电压调节器使得所述第一开关通过导线连接至所述切换开关,且控制所述充电器以对所述可充电电池进行充电,同时控制所述DC-DC变换器和第一逆变器不工作;或
    当所述交流输入端的市电的电压幅值大于第三阈值且不大于第一阈值时,控制所述切换开关使得所述交流输出端连接至所述自动电压调节器,控制所述自动电压调节器使得所述交流输入端的市电升压后传输至所述切换开关,且控制所述充电器以对所述可充电电池进行充电,同时控制所述DC-DC变换器和第一逆变器不工作;或
    当所述交流输入端的市电的电压幅值不小于第二阈值且小于第四阈 值时,控制所述切换开关使得所述交流输出端连接至所述自动电压调节器,控制所述自动电压调节器使得所述交流输入端的市电降压后传输至所述切换开关,且控制所述充电器以对所述可充电电池进行充电,同时控制所述DC-DC变换器和第一逆变器不工作;或
    当所述交流输入端的市电的电压幅值不大于第三阈值或不小于第四阈值时,控制所述切换开关使得所述交流输出端连接至所述第一逆变器的输出端,控制所述DC-DC变换器以将所述可充电电池的直流电转换为脉动直流电,控制所述第一逆变器以将所述脉动直流电转换为第三交流电。
  11. 根据权利要求10所述的在线互动式不间断电源,其特征在于,所述在线互动式不间断电源包括二极管,所述二极管的正极连接至所述DC-DC变换器的正极输出端子,其负极连接至所述充电器的正极输入端子,且所述DC-DC变换器的负极输出端子连接至所述充电器的负极输入端子,所述控制装置用于当所述交流输入端的市电的电压幅值不大于第三阈值或不小于第四阈值、且所述交流输出端空载时,还控制所述充电器工作以回收所述DC-DC变换器输出的峰值功率。
  12. 根据权利要求10所述的在线互动式不间断电源,其特征在于,所述在线互动式不间断电源包括连接在所述交流输入端和所述自动电压调节器之间的第一开关,且所述整流电路的输入端连接至所述交流输入端和所述第一开关之间,所述控制装置用于
    当所述交流输入端的市电的电压幅值大于第一阈值且小于第二阈值时,或当所述交流输入端的市电的电压幅值大于第三阈值且不大于第一阈值时,或当所述交流输入端的市电的电压幅值不小于第二阈值且小于第四阈值时,控制所述第一开关导通;
    当所述交流输入端的市电的电压幅值不大于第三阈值或不小于第四阈值时,控制所述第一开关断开。
  13. 根据权利要求10所述的在线互动式不间断电源,其特征在于,所述在线互动式不间断电源包括连接在所述整流电路的输入端的第二开关,所述第二开关为常闭型开关,当所述交流输入端的市电的电压幅值不大于第三阈值或不小于第四阈值时,控制所述第二开关断开。
  14. 一种用于如权利要求1所述的在线互动式不间断电源的控制方法,其特征在于,包括检测所述交流输入端的市电的电压幅值,以及
    当所述市电的电压幅值大于第一阈值且小于第二阈值时,控制所述切换开关使得所述交流输出端连接至所述自动电压调节器,控制所述自动电压调节器使得所述第一开关通过导线连接至所述切换开关,且控制所述充电器以对所述可充电电池进行充电,同时控制所述DC-DC变换器和第一逆变器不工作;或
    当所述市电的电压幅值大于第三阈值且不大于第一阈值时,控制所述切换开关使得所述交流输出端连接至所述自动电压调节器,控制所述自动电压调节器使得所述交流输入端的市电升压后传输至所述切换开关,且控制所述充电器以对所述可充电电池进行充电,同时控制所述DC-DC变换器和第一逆变器不工作;或
    当所述市电的电压幅值不小于第二阈值且小于第四阈值时,控制所述切换开关使得所述交流输出端连接至所述自动电压调节器,控制所述自动电压调节器使得所述交流输入端的市电降压后传输至所述切换开关,且控制所述充电器以对所述可充电电池进行充电,同时控制所述DC-DC变换器和第一逆变器不工作;或
    当所述市电的电压幅值不大于第三阈值或不小于第四阈值时,控制所述切换开关使得所述交流输出端连接至所述第一逆变器的输出端,控制所述DC-DC变换器以将所述可充电电池的直流电转换为脉动直流电,控制所述第一逆变器以将所述脉动直流电转换为第三交流电。
  15. 根据权利要求14所述的控制方法,其特征在于,所述在线互动式不间断电源包括二极管,所述二极管的正极连接至所述DC-DC变换器的正极输出端子,其负极连接至所述充电器的正极输入端子,且所述DC-DC变换器的负极输出端子连接至所述充电器的负极输入端子,所述控制方法还包括当所述交流输入端的市电的电压幅值不大于第三阈值或不小于第四阈值、且所述交流输出端空载时,控制所述充电器工作以回收所述DC-DC变换器输出的峰值功率。
  16. 根据权利要求14所述的控制方法,其特征在于,所述在线互动 式不间断电源包括连接在所述交流输入端和所述自动电压调节器之间的第一开关,且所述整流电路的输入端连接至所述交流输入端和所述第一开关之间,所述控制方法还包括:
    当所述交流输入端的市电的电压幅值大于第一阈值且小于第二阈值时,或当所述交流输入端的市电的电压幅值大于第三阈值且不大于第一阈值时,或当所述交流输入端的市电的电压幅值不小于第二阈值且小于第四阈值时,控制所述第一开关导通;
    当所述交流输入端的市电的电压幅值不大于第三阈值或不小于第四阈值时,控制所述第一开关断开。
  17. 根据权利要求14所述的控制方法,其特征在于,所述在线互动式不间断电源包括连接在所述整流电路的输入端的第二开关,所述第二开关为常闭型开关,所述控制方法还包括:当所述交流输入端的市电的电压幅值不大于第三阈值或不小于第四阈值时,控制所述第二开关断开。
PCT/CN2021/070610 2020-01-08 2021-01-07 在线互动式不间断电源及其控制方法 WO2021139713A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21738156.5A EP4089874A4 (en) 2020-01-08 2021-01-07 ONLINE INTERACTIVE UNINTERRUPTIBLE POWER SUPPLY AND METHOD FOR CONTROLLING THE SAME
US17/757,796 US20220376548A1 (en) 2020-01-08 2021-01-07 Online interactive uninterruptible power supply and method for control thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010017851.2 2020-01-08
CN202010017851.2A CN113098121A (zh) 2020-01-08 2020-01-08 在线互动式不间断电源及其控制方法

Publications (1)

Publication Number Publication Date
WO2021139713A1 true WO2021139713A1 (zh) 2021-07-15

Family

ID=76663386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070610 WO2021139713A1 (zh) 2020-01-08 2021-01-07 在线互动式不间断电源及其控制方法

Country Status (4)

Country Link
US (1) US20220376548A1 (zh)
EP (1) EP4089874A4 (zh)
CN (1) CN113098121A (zh)
WO (1) WO2021139713A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114421601B (zh) * 2022-03-28 2022-08-19 深圳奥特迅电力设备股份有限公司 电源系统及其控制方法和控制装置
CN115664177A (zh) * 2022-10-20 2023-01-31 华为数字能源技术有限公司 一种不间断电源的配电电路和供电系统
CN115765143A (zh) * 2022-11-30 2023-03-07 哈尔滨思哲睿智能医疗设备股份有限公司 一种供电电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150155712A1 (en) * 2013-09-09 2015-06-04 Inertech Ip Llc Multi-level medium voltage data center static synchronous compensator (dcstatcom) for active and reactive power control of data centers connected with grid energy storage and smart green distributed energy sources
CN104810871A (zh) * 2014-01-26 2015-07-29 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 不间断电源及其启动方法
CN104953696A (zh) * 2014-03-27 2015-09-30 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 在线互动式不间断电源
CN105337325A (zh) * 2014-08-06 2016-02-17 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 一种ups电路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9299524B2 (en) * 2010-12-30 2016-03-29 Innovolt, Inc. Line cord with a ride-through functionality for momentary disturbances
CN105634108B (zh) * 2014-11-06 2020-03-13 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 离线式不间断电源
US11349335B2 (en) * 2019-11-25 2022-05-31 Cyber Power Systems, Inc. Power supplying device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150155712A1 (en) * 2013-09-09 2015-06-04 Inertech Ip Llc Multi-level medium voltage data center static synchronous compensator (dcstatcom) for active and reactive power control of data centers connected with grid energy storage and smart green distributed energy sources
CN104810871A (zh) * 2014-01-26 2015-07-29 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 不间断电源及其启动方法
CN104953696A (zh) * 2014-03-27 2015-09-30 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 在线互动式不间断电源
CN105337325A (zh) * 2014-08-06 2016-02-17 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 一种ups电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4089874A4 *

Also Published As

Publication number Publication date
EP4089874A4 (en) 2024-02-28
CN113098121A (zh) 2021-07-09
EP4089874A1 (en) 2022-11-16
US20220376548A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
WO2021139713A1 (zh) 在线互动式不间断电源及其控制方法
WO2021232785A1 (zh) 三桥臂拓扑装置、控制方法、以及不间断电源系统
CN107852095B (zh) 充电装置
US5909360A (en) Uninterruptible power supplies
US7042740B2 (en) Soft-switching half-bridge inverter power supply system
TW561672B (en) DC/DC conversion method and the converter thereof
TWI373900B (en) High efficiency charging circuit and power supplying system
US20130039104A1 (en) Bidirectional multimode power converter
WO2016112784A1 (zh) 不间断电源及其控制方法
JP2011114978A (ja) 直列共振型コンバータ回路
WO2015096613A1 (zh) 在线互动式不间断电源及其控制方法
WO2021232749A1 (zh) 三桥臂拓扑装置及不间断电源系统
CN110995025A (zh) 一种开关电源电路
US10411502B2 (en) UPS circuit
CN102255356B (zh) 高效率的不间断电源
WO2020238735A1 (zh) 离线式不间断电源及其控制方法
CN105634108B (zh) 离线式不间断电源
JP3239513B2 (ja) 電源装置
US6697269B2 (en) Single-stage converter compensating power factor
JPH0646535A (ja) 充電器
KR100322763B1 (ko) 인버터 겸용 충전기
CN108336814B (zh) 一种后备式ups
RU2404439C1 (ru) Двухступенчатая электронная нагрузка
KR20020015465A (ko) 무정전 스위칭 모드 전원 장치
US11811329B2 (en) Remotely programmable multi mode bidirectional power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021738156

Country of ref document: EP

Effective date: 20220808