WO2020238735A1 - 离线式不间断电源及其控制方法 - Google Patents

离线式不间断电源及其控制方法 Download PDF

Info

Publication number
WO2020238735A1
WO2020238735A1 PCT/CN2020/091458 CN2020091458W WO2020238735A1 WO 2020238735 A1 WO2020238735 A1 WO 2020238735A1 CN 2020091458 W CN2020091458 W CN 2020091458W WO 2020238735 A1 WO2020238735 A1 WO 2020238735A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
transformer
rechargeable battery
terminal
output
Prior art date
Application number
PCT/CN2020/091458
Other languages
English (en)
French (fr)
Inventor
胡武华
邓亮
Original Assignee
联正电子(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联正电子(深圳)有限公司 filed Critical 联正电子(深圳)有限公司
Priority to US17/613,803 priority Critical patent/US11949282B2/en
Publication of WO2020238735A1 publication Critical patent/WO2020238735A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition

Definitions

  • the invention relates to the field of electronic circuits, in particular to an offline uninterruptible power supply and a control method thereof.
  • Offline uninterruptible power supply when the mains voltage is within the normal range, the mains supply power to the load directly, and the rechargeable battery is in the charging state; when the mains voltage is abnormal or the power fails, the inverter will switch to the working state, and the The DC power in the rechargeable battery is converted into a stable AC output; when the mains voltage is low or high, the transformer connected to the AC input terminal is used to adjust the voltage of the mains power, so that the AC output terminal has a stable output voltage.
  • Fig. 1 is a circuit diagram of an offline uninterruptible power supply in the prior art.
  • the offline uninterruptible power supply 1 includes an electromagnetic compatibility (EMC) filter 11 connected between its AC input terminal 10 and AC output terminal 10'; a safety switch 12, which is constructed as a double pole single Throw relay or include safety switch unit 121 and safety switch unit 122; first switch 131, second switch 132 and output switch 14 connected in sequence between safety switch 12 and terminal L of AC output terminal 10'; transformer Tr1, transformer One end T1 of the primary side of Tr1 is connected between the safety switch 12 and the terminal N of the AC output terminal 10', wherein the first switch 131 is operable to connect the safety switch 12 to the other end T2 and tap T3 of the primary side of the transformer Tr1 One, the second switch 132 is operable to connect the output switch 14 to the other end T2 of the primary side of the transformer Tr1 and one of the taps T3; and the rechargeable battery 16, the bidirectional converter 15 and the auxiliary power supply system 17, the rechargeable battery 16
  • FIG. 1 does not show the mains detection device for detecting the mains voltage, the battery detection device for detecting the charging state of the rechargeable battery 16, and the working state for controlling the bidirectional converter 15. And a control device that controls the switching states of the safety switch 12, the first switch 131, the second switch 132, and the output switch 14.
  • the offline uninterruptible power supply 1 is controlled to be in the automatic voltage step-down regulation mode, wherein the safety switch 12 and the output switch 14 are controlled to be turned on, and the first switch 131 is controlled to be connected to the transformer On the primary side terminal T2 of Tr1, the second switch 132 is controlled to be connected to the tap T3 on the primary side of the transformer Tr1, whereby the AC output terminal 10' outputs AC power with a reduced voltage.
  • the bidirectional converter 15 is controlled to convert the alternating current on the secondary side of the transformer Tr1 into direct current, so as to charge the rechargeable battery 16 and provide direct current to the auxiliary power supply system 17.
  • the offline uninterruptible power supply 1 is controlled to be in the automatic voltage boost regulation mode, wherein the safety switch 12 and the output switch 14 are controlled to be turned on, and the first switch 131 is controlled to be connected to the transformer The tap T3 of the primary side of Tr1, the second switch 132 is controlled to be connected to the terminal T2 of the primary side of the transformer Tr1, so that the AC output terminal 10' outputs AC power with increased voltage.
  • the bidirectional converter 15 is controlled to convert the alternating current on the secondary side of the transformer Tr1 into direct current, so as to charge the rechargeable battery 16 and provide direct current to the auxiliary power supply system 17.
  • the offline uninterruptible power supply 1 is controlled to be in the battery mode.
  • the safety switch 12 is controlled to be turned off
  • the output switch 14 is controlled to be turned on
  • the second switch 132 is controlled to be connected to the terminal T2 of the primary side of the transformer Tr1
  • the bidirectional converter 15 is controlled to work to charge the
  • the direct current of the battery 16 is converted into alternating current, and after being transformed by the transformer Tr1, the required alternating current is obtained at the alternating current output terminal 10'.
  • the rechargeable battery 16 provides DC power to the auxiliary power supply system 17.
  • the offline uninterruptible power supply 1 is controlled to be in the normal mode.
  • the safety switch 12 and the output switch 14 are controlled to be turned on, and the first switch 131 and the second switch 132 are controlled to be both connected to the terminal T2 on the primary side of the transformer Tr1.
  • the bidirectional converter 15 is controlled to convert the alternating current on the secondary side of the transformer Tr1 into direct current, so as to charge the rechargeable battery 16 and provide direct current to the auxiliary power supply system 17.
  • FIG. 2 is an equivalent circuit diagram of the offline uninterruptible power supply shown in FIG. 1 after the rechargeable battery is fully charged in the normal mode.
  • the commercial power at the AC input terminal 10 passes through the EMC filter 11, the safety switch 12, the first switch 131, the second switch 132, and the output switch 14 which are turned on, and then is transmitted to the AC output terminal 10'.
  • the contacts of the three switches between the safety switch 12 and the terminal L of the AC output terminal 10' reduce the power efficiency.
  • the primary side of the transformer Tr1 is electrically connected to the AC output terminal 10', so the transformer Tr1 has a relatively large no-load loss.
  • the transformer Tr1 is always working, and the bidirectional converter 15 is controlled to always work, and the rechargeable battery 16 is always in a floating state after being fully charged.
  • the rechargeable battery 16 has been in a floating state, the positive plate of the rechargeable battery 16 will be deactivated, and a large amount of PbSO 4 will be generated and absorbed on the negative plate. This will lead to a decrease in its activity and an increase in internal resistance, and thus the capacity of the rechargeable battery 16 will rapidly decrease and its life span will be greatly reduced.
  • an offline uninterruptible power supply including:
  • a safety switch connected between the AC input terminal and the AC output terminal
  • a transformer one end of the primary side of which is connected to one terminal of the AC output end;
  • a first switch, a second switch, and an output switch are sequentially connected between the safety switch and the other terminal of the AC output terminal, and the first switch is operable to connect the safety switch to the transformer.
  • the other end of the transformer side and one of the taps, the second switch is operable to connect the output switch to the other end of the primary side of the transformer and one of the taps;
  • a third switch operable to connect the safety switch to one of the first switch and the other terminal of the AC output terminal
  • a bidirectional converter which controllably converts the alternating current on the secondary side of the transformer into direct current to charge the rechargeable battery, and converts the direct current of the rechargeable battery into alternating current.
  • the offline uninterruptible power supply further includes:
  • a charger the input terminal of which is connected to the AC input terminal through the safety switch, and the AC power at the AC input terminal is controllably converted into DC power;
  • the input terminal of the auxiliary power supply system is connected to the output terminal of the charger.
  • the third switch includes:
  • a first switching terminal connected between the output switch and the other terminal of the AC output terminal
  • the output terminal of the charger is connected to both ends of the rechargeable battery.
  • the offline uninterruptible power supply further includes a diode, the anode of which is connected to the positive electrode of the rechargeable battery, and the cathode of which is connected to the positive terminal of the output end of the charger.
  • the output power of the charger is less than the maximum charging power of the rechargeable battery, and the output voltage of the charger is greater than the voltage across the rechargeable battery.
  • the offline uninterruptible power supply further includes:
  • a mains detection device configured to detect the mains voltage of the AC output terminal
  • a battery detection device configured to detect the state of charge of the rechargeable battery
  • a control device configured to control the working state of the charger and the bidirectional converter according to the mains voltage and the state of charge of the rechargeable battery, and control the safety switch, the first switch, the second switch, The switching state of the third switch and the output switch.
  • the control device controls the safety switch to turn on, controls the third switch to be connected to the first switch, and controls the The first switch is connected to the tap of the primary side of the transformer, the second switch is controlled to be connected to the other end of the primary side of the transformer, and the output switch is controlled to be turned on; wherein, when the electrical battery is not When fully charged, the control device controls the charger to stop working, and controls the bidirectional converter to convert the alternating current on the secondary side of the transformer into direct current; and when the rechargeable battery is fully charged, the control device The two-way converter is controlled to stop working, and the charger is controlled to convert the AC power at the AC input terminal into DC power.
  • the control device controls the safety switch to turn on; wherein, when the rechargeable battery is not fully charged, the control The device controls the third switch to be connected to the first switch, controls the first switch and the second switch to be connected to the other end of the primary side of the transformer, controls the output switch to conduct, and controls the bidirectional conversion To convert the alternating current on the secondary side of the transformer into direct current; when the rechargeable battery is fully charged, the control device controls the third switch to be connected to the other terminal of the alternating current output end to control the The output switch is turned off, the two-way converter is controlled to stop working, and the charger is controlled to convert the AC power at the AC input terminal into DC power.
  • the control device controls the safety switch to turn on, controls the third switch to be connected to the first switch, and controls the The first switch is connected to the other end of the primary side of the transformer, controls the second switch to be connected to the tap of the primary side of the transformer, and controls the output switch to conduct; wherein, when the rechargeable battery is not When fully charged, the control device controls the charger to stop working, and controls the bidirectional converter to convert the alternating current on the secondary side of the transformer into direct current; when the rechargeable battery is fully charged, the control The device controls the two-way converter to stop working, and controls the charger to convert the AC power at the AC input terminal into DC power.
  • the control device controls the safety switch to turn off, and controls the second switch to connect to the other end of the primary side of the transformer,
  • the output switch is controlled to be turned on, and the bidirectional converter is controlled to convert the direct current of the rechargeable battery into alternating current.
  • the present invention also provides a control method for the above-mentioned offline uninterruptible power supply, including the following steps: detecting the mains voltage of the AC output terminal, detecting the charging state of the rechargeable battery, and according to the mains voltage and The charging state of the rechargeable battery controls the working state of the charger and the bidirectional converter, and controls the switching states of the safety switch, the first switch, the second switch, the third switch, and the output switch.
  • the safety switch when the first threshold voltage ⁇ the mains voltage ⁇ the second threshold voltage, the safety switch is controlled to be turned on, the third switch is controlled to be connected to the first switch, and the first switch is controlled to be connected To the tap of the primary side of the transformer, control the second switch to connect to the other end of the primary side of the transformer, and control the output switch to conduct; wherein, when the chargeable battery is not fully charged, Control the charger to stop working, and control the bidirectional converter to convert the alternating current on the secondary side of the transformer into direct current; and when the rechargeable battery is fully charged, control the bidirectional converter to stop working, and control all The charger converts the AC power at the AC input terminal into DC power.
  • the safety switch is controlled to be turned on; wherein, when the rechargeable battery is not fully charged, the third switch is controlled to be connected To the first switch, control the first switch and the second switch to connect to the other end of the primary side of the transformer, control the output switch to turn on, and control the bidirectional converter to connect the two The alternating current on the secondary side is converted into direct current; when the rechargeable battery is fully charged, the third switch is controlled to be connected to the other terminal of the AC output end, the output switch is controlled to be turned off, and the bidirectional converter is controlled to stop Work to control the charger to convert the AC power at the AC input terminal into DC power.
  • the safety switch when the third threshold voltage ⁇ the mains voltage ⁇ the fourth threshold voltage, the safety switch is controlled to be turned on, the third switch is controlled to be connected to the first switch, and the first switch is controlled to be connected To the other end of the primary side of the transformer, control the second switch to connect to the tap of the primary side of the transformer, and control the output switch to turn on; wherein, when the rechargeable battery is not fully charged , Control the charger to stop working, control the bidirectional converter to convert the alternating current on the secondary side of the transformer into direct current; when the rechargeable battery is fully charged, control the bidirectional converter to stop working, and control The charger converts the AC power at the AC input terminal into DC power.
  • control the safety switch when the mains voltage ⁇ the first threshold voltage or ⁇ the fourth threshold voltage, control the safety switch to turn off, control the second switch to be connected to the other end of the primary side of the transformer, and control the output
  • the switch is turned on and controls the bidirectional converter to convert the direct current of the rechargeable battery into alternating current.
  • the offline uninterruptible power supply of the present invention has high power transmission efficiency, can choose a small charger with a small input withstand voltage, reduces the cost of the charger, and can also prevent the rechargeable battery from being in a floating charge state, and can extend the power Rechargeable battery life and reduce the cost of rechargeable batteries.
  • Fig. 1 is a circuit diagram of an offline uninterruptible power supply in the prior art.
  • FIG. 2 is an equivalent circuit diagram of the offline uninterruptible power supply shown in FIG. 1 after the rechargeable battery is fully charged in the normal mode.
  • Fig. 3 is a circuit diagram of an off-line uninterruptible power supply according to a first embodiment of the present invention.
  • Fig. 4 is an equivalent circuit diagram of the offline uninterruptible power supply shown in Fig. 3 after the rechargeable battery is fully charged in the normal mode.
  • Fig. 5 is a circuit diagram of an off-line uninterruptible power supply according to a second embodiment of the present invention.
  • Fig. 6 is an equivalent circuit diagram of the offline uninterruptible power supply shown in Fig. 5 after the rechargeable battery is fully charged in the normal mode.
  • Fig. 3 is a circuit diagram of an off-line uninterruptible power supply according to a first embodiment of the present invention. As shown in FIG. 3, it is basically the same as FIG. 1 except that the offline uninterruptible power supply 2 further includes a charger 28 and a third switch 29.
  • the third switch 29 includes a common terminal connected to the second safety switch unit 222 of the safety switch 22, a first switching terminal S1 electrically connected between the output switch 24 and the terminal L of the AC output terminal 20', and the first switch The common terminal of 231 is connected to the second switching terminal S2.
  • the third switch 29 is operable to connect the safety switch 22 to the first switch 231 and one of the terminals L of the AC output terminal 20', and the safety switch 22 is used to realize the feedback protection function.
  • the input terminal of the charger 28 is connected to the AC input terminal 20 through the safety switch 22, that is, one terminal of its input terminal is connected between the first safety switch unit 221 and one terminal N of the AC output terminal 20', and the other terminal of the input terminal is connected Between the second safety switch unit 222 and the third switch 29, the output terminal of the charger 28 is connected to the input terminal of the auxiliary power supply system 27.
  • FIG. 1 In order to simplify the circuit diagram, FIG. 1
  • a mains detection device for detecting the mains voltage
  • a battery detection device for detecting the charging state of the rechargeable battery 26, and a control device for controlling the charger 28 and The working state of the bidirectional converter 25 and the switching states of the safety switch 22, the first switch 231, the second switch 232, the third switch 29, and the output switch 24 are controlled.
  • the offline uninterruptible power supply 2 is controlled to be in the normal mode.
  • the safety switch 22 that is, the first safety switch unit 221 and the second safety switch unit 222
  • the common terminal of the control third switch 29 is connected to the second switching terminal S2 (that is, the third switch 29 is connected to the first switch 231)
  • the first switch 231 and the second switch 232 are It is controlled to be connected to the terminal T22 of the primary side of the transformer Tr2, and the output switch 24 is controlled to be turned on, and the AC power of the AC input terminal 20 will be transmitted to the AC output terminal 20'.
  • the bidirectional converter 25 is controlled to convert the alternating current on the secondary side of the transformer Tr2 into direct current so as to quickly charge the rechargeable battery 26 and provide direct current to the auxiliary power supply system 27.
  • Fig. 4 is an equivalent circuit diagram of the offline uninterruptible power supply shown in Fig. 3 after the rechargeable battery is fully charged in the normal mode.
  • the power transmission efficiency of the equivalent circuit shown in Figure 2 was 95.62%, and the power transmission efficiency of the equivalent circuit shown in Figure 4 was increased to 98.75%, thus improving the power transmission efficiency. This meets the Energy Star certification standards implemented by the US Environmental Protection Agency and the Department of Energy.
  • the offline uninterruptible power supply 2 is controlled to be in the automatic voltage step-down regulation mode.
  • the safety switch 22 is controlled to be turned on
  • the third switch 29 is controlled so that its common terminal is connected to the second switching terminal S2 (that is, the third switch 29 is connected to the first switch 231)
  • the first switch 231 is controlled to Connected to the terminal T22 of the primary side of the transformer Tr2
  • the second switch 232 is controlled to be connected to the tap T23 of the primary side of the transformer Tr2
  • the output switch 24 is controlled to be turned on.
  • the charger 28 stops working, and the bidirectional converter 25 is controlled to convert the alternating current on the secondary side of the transformer Tr2 into direct current to quickly charge the rechargeable battery 26 and provide
  • the auxiliary power supply system 27 provides direct current.
  • the bidirectional converter 25 stops working, and the charger 28 is controlled to convert the alternating current of the AC input terminal 20 into direct current to charge the rechargeable battery 26 and provide the auxiliary power supply system 27 The required direct current.
  • the offline uninterruptible power supply 2 is controlled to be in the automatic voltage boost regulation mode.
  • the safety switch 22 is controlled to be turned on
  • the third switch 29 is controlled so that its common terminal is connected to the second switching terminal S2 (that is, the second safety switch unit 222 is connected to the first switch 231)
  • the first switch 231 is It is controlled to be connected to the tap T23 of the primary side of the transformer Tr2
  • the second switch 232 is controlled to be connected to the terminal T22 of the primary side of the transformer Tr2
  • the output switch 24 is controlled to be turned on.
  • the charger 28 stops working, and the bidirectional converter 25 is controlled to convert the alternating current on the secondary side of the transformer Tr2 to direct current, so as to quickly charge the rechargeable battery 26 and supply auxiliary power
  • the system 27 provides direct current.
  • the bidirectional converter 25 stops working, and the charger 28 is controlled to convert the alternating current of the AC input terminal 20 into direct current to charge the rechargeable battery 26 and provide the auxiliary power supply system 27 The required direct current.
  • the offline uninterruptible power supply 2 is controlled to be in battery mode, wherein the safety switch 22 is controlled to be off, and the second switch 232 is controlled to be connected To the terminal T22 on the primary side of the transformer Tr2, and the output switch 24 is controlled to be turned on, and the bidirectional converter 25 is controlled to convert the direct current of the rechargeable battery 26 into alternating current.
  • the output Terminal 20' gets the required alternating current.
  • the rechargeable battery 26 provides direct current to the auxiliary power supply system 27.
  • the charger 28 is controlled to work to supply power to the auxiliary power supply system 27. Since in the uninterruptible power supply, the power of the auxiliary power supply system 27 is far less than the maximum charging power of the rechargeable battery 26, a small charger that matches the power of the auxiliary power supply system 27 can be selected, that is, the output power of the charger 28 is less than The maximum charging power of the rechargeable battery 26 to reduce the cost of the circuit.
  • the first switch 231 and the second switch 232 are controlled to be connected to the terminal T22 of the primary side of the transformer Tr2, so that all windings of the primary side of the transformer Tr2
  • the electrical connection to the AC input terminal 20 can effectively prevent the transformer Tr2 from being saturated.
  • the second switch 232 is controlled to be connected to the terminal T22 of the primary side of the transformer Tr2, so that all the windings of the primary side of the transformer Tr2 are electrically connected to the AC output terminal 20'.
  • the ratio is constant, it is possible to obtain an AC voltage as large as possible at the AC output terminal 20'.
  • the rechargeable battery 26 with a smaller output voltage can be selected, thereby reducing the cost of the rechargeable battery 26.
  • Fig. 5 is a circuit diagram of an off-line uninterruptible power supply according to a second embodiment of the present invention.
  • Figure 5 also does not show the mains detection device, the battery detection device and the control device.
  • the offline uninterruptible power supply 3 is basically the same as the offline uninterruptible power supply 2 described in FIG. 3. The difference is that the offline uninterruptible power supply 3 also includes a positive electrode connected to a rechargeable battery 36 and a charger 38 A diode D3 between the positive terminal of the output terminal, wherein the anode of the diode D3 is connected to the positive terminal of the rechargeable battery 36, and its cathode is connected to the positive terminal of the output terminal of the charger 38.
  • Fig. 6 is an equivalent circuit diagram of the offline uninterruptible power supply shown in Fig. 5 after the rechargeable battery is fully charged in the normal mode.
  • the charger 38 is controlled to provide the required DC power to the auxiliary power supply system 37.
  • the charging voltage of the charger 38 is greater than the voltage across the rechargeable battery 36.
  • the rechargeable battery 36 does not supply power to the auxiliary power supply system 37 through the diode D3, and due to the reverse cut-off function of the diode D3, the charger 38 does not The rechargeable battery 36 that is fully charged continues to be charged. Therefore, the rechargeable battery 36 is in the sleep mode at this time, which can extend the service life.
  • the control method is the same as the control method of the off-line uninterruptible power supply 2, which will not be repeated here.
  • the rechargeable battery 36 is in a sleep mode after being fully charged, which can extend the service life.
  • the control method is the same as the control method of the off-line uninterruptible power supply 2, which will not be repeated here.
  • the rechargeable battery 36 is in a sleep mode after being fully charged, which can extend the service life.
  • control method is the same as the control method of the offline uninterruptible power supply 2, which will not be repeated here.
  • the bidirectional converter 35 stops charging the rechargeable battery 36, and at the same time, the charger 38 starts working and provides the required DC power to the auxiliary power supply system 37. Due to the reverse blocking function of the diode D3, the charger 38 will not charge the rechargeable battery 36 at this time. In addition, the output voltage of the charger 38 is higher than the voltage at both ends of the rechargeable battery 36. At this time, the rechargeable battery 36 does not supply power to the auxiliary power supply system 37 through the diode D3. The rechargeable battery 36 is neither charged nor discharged, which avoids being in a floating charge state all the time.
  • the bidirectional converter 35 When the rechargeable battery 36 needs to be charged, the bidirectional converter 35 operates to quickly charge the rechargeable battery 36. When the rechargeable battery 36 is fully charged, the bidirectional converter 35 stops working, and the rechargeable battery 36 is automatically in a sleep mode, which greatly extends the life of the rechargeable battery 36.
  • the charger 38 in the normal mode or the automatic voltage regulation mode, when the rechargeable battery 36 is not fully charged, the charger 38 is controlled to always work to provide the required DC power to the auxiliary power supply system 37 .
  • the bidirectional converter can be implemented by a single circuit module that realizes the above-mentioned functions, or it can be implemented by a combination of circuit modules.
  • the EMC filter is suitable for suppressing grid noise and high harmonics and the noise and high frequency harmonics generated by switching power supplies. Therefore, in applications where power quality is not high, offline uninterruptible power supplies may not have EMC filtering. Device.
  • the EMC filter is connected to the AC input terminal through a safety switch (that is, the safety switch is connected between the AC input terminal and the EMC filter).
  • the control method of the present invention selects different working modes based on the mains voltage at the AC input terminal. For example, when the mains voltage ⁇ the first threshold voltage, the offline uninterruptible power supply is in battery mode; when the first threshold voltage ⁇ the mains voltage ⁇ the second threshold voltage, the offline uninterruptible power supply is in the automatic voltage boost regulation mode ; When the second threshold voltage ⁇ mains voltage ⁇ third threshold voltage, the offline uninterruptible power supply is in normal mode; when the third threshold voltage ⁇ mains voltage ⁇ fourth threshold voltage, the offline uninterruptible power supply is in automatic voltage Step-down regulation mode; when the fourth threshold voltage ⁇ mains voltage, the offline uninterruptible power supply is in battery mode.
  • the control method of the present invention does not intend to limit the specific values of the first, second, third, and fourth threshold voltages.
  • the user is responsible for the rated voltage of the mains, the allowable voltage deviation range of the load, and the turns ratio of the transformer.
  • the rated voltage of the mains power supply is 220 volts
  • the allowable voltage range of the load is 200 volts to 240 volts.
  • the ratio of the number of turns of the terminal T1 and the tap T3 of the transformer Tr1 to the number of turns of the terminal T1 and the terminal T2 is 5. : 6, the first threshold voltage can be selected as 167 volts, the second threshold voltage can be selected as 200 volts, the third threshold voltage can be selected as 240 volts, and the fourth threshold voltage can be selected as 288 volts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

一种离线式不间断电源及其控制方法,所述离线式不间断电源包括:连接在交流输入端(20)和交流输出端(20')之间的安全开关(22);变压器(Tr2),其一次侧的一端连接至所述交流输出端(20')的一个端子;在所述安全开关(22)和所述交流输出端(20')的另一个端子之间依次连接的第一开关(231)、第二开关(232)和输出开关(24),所述第一开关(231)可操作地使得所述安全开关(20')连接至所述变压器(Tr2)的一次侧的另一端和抽头之一,所述第二开关(232)可操作地使得所述输出开关(24)连接至所述变压器(Tr2)的一次侧的另一端和抽头之一;第三开关(29),其可操作地使得所述安全开关(20')连接至所述第一开关(231)和交流输出端(20')的另一个端子之一;以及双向变换器(25)。所述离线式不间断电源具有较高的电能传输效率。

Description

离线式不间断电源及其控制方法 技术领域
本发明涉及电子线路领域,具体涉及一种离线式不间断电源及其控制方法。
背景技术
离线式不间断电源,在市电电压在正常范围内时直接由市电向负载供电,且可充电电池处于充电状态;当市电电压异常或停电时,逆变器切换到工作状态,将可充电电池中的直流电转换为稳定的交流电输出;当市电电压偏低或偏高时,连接在交流输入端的变压器用于调节市电的电压,从而使得交流输出端具有稳定的输出电压。
图1是现有技术中的一种离线式不间断电源的电路图。如图1所示,离线式不间断电源1包括在其交流输入端10和交流输出端10’之间连接的电磁兼容性(EMC)滤波器11;安全开关12,其被构造为双刀单掷继电器或包括安全开关单元121和安全开关单元122;在安全开关12和交流输出端10’的端子L之间依次连接的第一开关131、第二开关132和输出开关14;变压器Tr1,变压器Tr1的一次侧的一端T1连接在安全开关12和交流输出端10’的端子N之间,其中第一开关131可操作地使得安全开关12连接至变压器Tr1的一次侧的另一端T2和抽头T3之一,第二开关132可操作地使得输出开关14连接至变压器Tr1的一次侧的另一端T2和抽头T3之一;以及可充电电池16,双向变换器15和辅助供电系统17,可充电电池16通过双向变换器15连接至变压器Tr1的二次侧,辅助供电系统17的输入端连接至可充电电池16两端,其用于给离线式不间断电源1提供各种所需的电压。其中为了简化电路图,图1并未示出用于检测市电电压的市电检测装置,用于检测可充电电池16的充电状态的电池检测装置,以及用于控制双向变换器15的工作状态,以及控制安全开关12、第一开关131、第二开关132、和输出开关14的开关状态的控制装置。
当市电电压偏高时,离线式不间断电源1被控制为处于自动电压降压调节模式,其中,安全开关12和输出开关14被控制为导通,第一开关131被控制为连接至变压器Tr1的一次侧的端子T2,第二开关132被控制为连接至变压器Tr1的一次侧的抽头T3,由此交流输出端10’输出电压降低的 交流电。同时双向变换器15被控制为将变压器Tr1的二次侧的交流电转换为直流电,以对可充电电池16进行充电,且给辅助供电系统17提供直流电。
当市电电压偏低时,离线式不间断电源1被控制为处于自动电压升压调节模式,其中,安全开关12和输出开关14被控制为导通,第一开关131被控制为连接至变压器Tr1的一次侧的抽头T3,第二开关132被控制为连接至变压器Tr1的一次侧的端子T2,由此交流输出端10’输出电压升高的交流电。同时双向变换器15被控制为将变压器Tr1的二次侧的交流电转换为直流电,以对可充电电池16进行充电,且给辅助供电系统17提供直流电。
当市电电压异常(例如电压过高)或停电时,离线式不间断电源1被控制为处于电池模式。其中,安全开关12被控制为断开,输出开关14被控制为导通,第二开关132被控制连接至变压器Tr1的一次侧的端子T2,双向变换器15被控制为工作,以将可充电电池16的直流电转换为交流电,经过变压器Tr1变压后,在交流输出端10’得到所需的交流电。同时,可充电电池16给辅助供电系统17提供直流电。
当市电电压在正常范围内时,离线式不间断电源1被控制为处于正常模式。安全开关12和输出开关14被控制为导通,第一开关131和第二开关132被控制为都连接至变压器Tr1的一次侧的端子T2。同时双向变换器15被控制为将变压器Tr1的二次侧的交流电转换为直流电,以对可充电电池16进行充电,且给辅助供电系统17提供直流电。
图2是图1所示的离线式不间断电源在正常模式下可充电电池被充满电后的等效电路图。如图2所示,交流输入端10的市电通过EMC滤波器11,以及导通的安全开关12、第一开关131、第二开关132和输出开关14后传输至交流输出端10’。一方面,安全开关12和交流输出端10’的端子L之间的3个开关的触点降低电能效率。另一方面,变压器Tr1的一次侧与交流输出端10’电连接,因此变压器Tr1具有较大的空载损耗。再者,变压器Tr1一直工作,且双向变换器15被控制为一直工作,可充电电池16充满电后一直处于浮充电状态。当可充电电池16一直处于浮充电状态时,可充电电池16的正极板会失活,产生大量的PbSO 4并被吸收到负极板上。这将导致其活性降低,且内阻升高,进而可充电电池16的容量将迅速下降,寿命将大大减少。
发明内容
针对现有技术存在的上述技术问题,本发明提供了一种离线式不间断电源,包括:
连接在交流输入端和交流输出端之间的安全开关;
变压器,其一次侧的一端连接至所述交流输出端的一个端子;
在所述安全开关和所述交流输出端的另一个端子之间依次连接的第一开关、第二开关和输出开关,所述第一开关可操作地使得所述安全开关连接至所述变压器的一次侧的另一端和抽头之一,所述第二开关可操作地使得所述输出开关连接至所述变压器的一次侧的另一端和抽头之一;
第三开关,其可操作地使得所述安全开关连接至所述第一开关和交流输出端的另一个端子之一;以及
双向变换器,其可控地将所述变压器的二次侧的交流电转换为直流电以对可充电电池进行充电,以及将所述可充电电池的直流电转换为交流电。
优选的,所述离线式不间断电源还包括:
充电器,其输入端通过所述安全开关连接至所述交流输入端,且可控地将所述交流输入端的交流电转换为直流电;以及
辅助供电系统,其输入端连接至所述充电器的输出端。
优选的,所述第三开关包括:
与所述安全开关连接的公共端子;
连接至所述输出开关和所述交流输出端的另一个端子之间的第一切换端子;以及
连接至所述第一开关的第二切换端子。
优选的,所述充电器的输出端连接至所述可充电电池的两端。
优选的,所述离线式不间断电源还包括二极管,其阳极连接至所述可充电电池的正极,其阴极连接至所述充电器的输出端的正极端子。
优选的,所述充电器的输出功率小于所述可充电电池的最大充电功率,且所述充电器的输出电压大于所述可充电电池两端的电压。
优选的,所述离线式不间断电源还包括:
市电检测装置,其被配置为检测所述交流输出端的市电电压;
电池检测装置,其被配置为检测所述可充电电池的充电状态;以及
控制装置,其被配置为根据所述市电电压和所述可充电电池的充电状 态控制所述充电器和双向变换器的工作状态,以及控制所述安全开关、第一开关、第二开关、第三开关和输出开关的开关状态。
优选的,当第一阈值电压≤所述市电电压<第二阈值电压时,所述控制装置控制所述安全开关导通,控制所述第三开关连接至所述第一开关,控制所述第一开关连接至所述变压器的一次侧的抽头,控制所述第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通;其中,当所述可电电池未被充满电时,所述控制装置控制所述充电器停止工作,且控制双向变换器将所述变压器的二次侧的交流电转换为直流电;以及当所述可充电电池充满电时,所述控制装置控制所述双向变换器停止工作,且控制所述充电器将所述交流输入端的交流电转换为直流电。
优选的,当第二阈值电压≤所述市电电压<第三阈值电压时,所述控制装置控制所述安全开关导通;其中,当所述可充电电池未被充满电时,所述控制装置控制所述第三开关连接至所述第一开关,控制所述第一开关和第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通,控制所述双向变换器以将所述变压器的二次侧的交流电转换为直流电;当所述可充电电池充满电时,所述控制装置控制所述第三开关连接至所述交流输出端的另一个端子,控制所述输出开关断开,控制所述双向变换器停止工作,控制所述充电器以将所述交流输入端的交流电转换为直流电。
优选的,当第三阈值电压≤所述市电电压<第四阈值电压时,所述控制装置控制所述安全开关导通,控制所述第三开关连接至所述第一开关,控制所述第一开关连接至所述变压器的一次侧的另一端,控制所述第二开关连接至所述变压器的一次侧的抽头,且控制所述输出开关导通;其中,当所述可充电电池未被充满电时,所述控制装置控制所述充电器停止工作,控制所述双向变换器将所述变压器的二次侧的交流电转换为直流电;当所述可充电电池充满电时,所述控制装置控制所述双向变换器停止工作,且控制所述充电器将所述交流输入端的交流电转换为直流电。
优选的,当所述市电电压<第一阈值电压或≥第四阈值电压时,所述控制装置控制所述安全开关断开,控制第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通,控制所述双向变换器以将所述可充电电池的直流电转换为交流电。
本发明还提供了一种用于上述离线式不间断电源的控制方法,包括下列步骤:检测所述交流输出端的市电电压,检测所述可充电电池的充电状 态,根据所述市电电压和所述可充电电池的充电状态控制所述充电器和双向变换器的工作状态,以及控制所述安全开关、第一开关、第二开关、第三开关和输出开关的开关状态。
优选的,当第一阈值电压≤所述市电电压<第二阈值电压时,控制所述安全开关导通,控制所述第三开关连接至所述第一开关,控制所述第一开关连接至所述变压器的一次侧的抽头,控制所述第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通;其中,当所述可电电池未被充满电时,控制所述充电器停止工作,且控制双向变换器将所述变压器的二次侧的交流电转换为直流电;以及当所述可充电电池充满电时,控制所述双向变换器停止工作,且控制所述充电器将所述交流输入端的交流电转换为直流电。
优选的,当第二阈值电压≤所述市电电压<第三阈值电压时,控制所述安全开关导通;其中,当所述可充电电池未被充满电时,控制所述第三开关连接至所述第一开关,控制所述第一开关和第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通,控制所述双向变换器以将所述变压器的二次侧的交流电转换为直流电;当所述可充电电池充满电时,控制所述第三开关连接至所述交流输出端的另一个端子,控制所述输出开关断开,控制所述双向变换器停止工作,控制所述充电器以将所述交流输入端的交流电转换为直流电。
优选的,当第三阈值电压≤所述市电电压<第四阈值电压时,控制所述安全开关导通,控制所述第三开关连接至所述第一开关,控制所述第一开关连接至所述变压器的一次侧的另一端,控制所述第二开关连接至所述变压器的一次侧的抽头,且控制所述输出开关导通;其中,当所述可充电电池未被充满电时,控制所述充电器停止工作,控制所述双向变换器将所述变压器的二次侧的交流电转换为直流电;当所述可充电电池充满电时,控制所述双向变换器停止工作,且控制所述充电器将所述交流输入端的交流电转换为直流电。
优选的,当所述市电电压<第一阈值电压或≥第四阈值电压时,控制所述安全开关断开,控制第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通,控制所述双向变换器以将所述可充电电池的直流电转换为交流电。
本发明的离线式不间断电源具有较高的电能传输效率,可以选择小型 的、输入耐压较小的充电器,降低充电器的成本,还能够避免可充电电池处于浮充电状态,并且延长可充电电池的寿命以及降低可充电电池的成本。
附图说明
以下参照附图对本发明实施例作进一步说明,其中:
图1是现有技术中的一种离线式不间断电源的电路图。
图2是图1所示的离线式不间断电源在正常模式下可充电电池被充满电后的等效电路图。
图3是根据本发明第一个实施例的离线式不间断电源的电路图。
图4是图3所示的离线式不间断电源在正常模式下可充电电池被充满电后的等效电路图。
图5是根据本发明第二个实施例的离线式不间断电源的电路图。
图6是图5所示的离线式不间断电源在正常模式下可充电电池被充满电后的等效电路图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图通过具体实施例对本发明进一步详细说明。
图3是根据本发明第一个实施例的离线式不间断电源的电路图。如图3所示,其与图1基本相同,区别在于,离线式不间断电源2还包括充电器28和第三开关29。第三开关29包括与安全开关22的第二安全开关单元222连接的公共端子,电连接在输出开关24和交流输出端20’的端子L之间的第一切换端子S1,以及与第一开关231的公共端子连接的第二切换端子S2。第三开关29可操作地使得安全开关22连接至第一开关231和交流输出端20’的端子L之一,安全开关22用于实现反馈保护功能。充电器28的输入端通过安全开关22连接至交流输入端20,即其输入端的一个端子连接至第一安全开关单元221和交流输出端20’的一个端子N之间,输入端的另一个端子连接至第二安全开关单元222和第三开关29之间,充电器28的输出端连接至辅助供电系统27的输入端。其中为了简化电路图,图3同样未示出用于检测市电电压的市电检测装置,用于检测可充电电池26的充电状态的电池检测装置,以及控制装置,其用于控制充电器28和双向变换器25的工作状态,以及控制安全开关22、第一开关231、第二 开关232、第三开关29和输出开关24的开关状态。
以下将分情况介绍离线式不间断电源2的工作模式。
(1)当市电电压在正常范围内时,离线式不间断电源2被控制为处于正常模式。其中,安全开关22(即第一安全开关单元221和第二安全开关单元222)被控制为导通。如果可充电电池26未被充满电,控制第三开关29的公共端子与第二切换端子S2连接(即使得第三开关29连接至第一开关231),第一开关231和第二开关232被控制为都连接至变压器Tr2的一次侧的端子T22,以及输出开关24被控制为导通,交流输入端20的交流电将传输至交流输出端20’。同时双向变换器25被控制为将变压器Tr2的二次侧的交流电转换为直流电,以对可充电电池26进行快速充电,且给辅助供电系统27提供直流电。
如果可充电电池26被充满电,此时第三开关29被控制为使其公共端子连接至第一切换端子S1(即第三开关29连接至交流输出端20’的端子L),输出开关24被控制为断开,双向变换器25被控制为停止给可充电电池26充电,同时充电器28被控制为将交流输入端20的交流电转换为直流电,以对可充电电池26充电,且给辅助供电系统27提供所需的直流电。图4是图3所示的离线式不间断电源在正常模式下可充电电池被充满电后的等效电路图。图4所示的等效电路与图2所示的等效电路相比可知:第一,变压器Tr2的一次侧并未连接在电路中,因此不存在变压器空载损耗,且双向变换器25停止工作。第二,安全开关22通过第三开关29直接连接至交流输出端20’的端子L,减少了2个开关的触点损耗。第三,第三开关29处于常闭状态,且输出开关24处于常开状态,因此减少了输出开关24的电磁线圈(图3未示出)损耗。发明人在相同的条件进行测试,图2所示的等效电路的电能传输效率为95.62%,图4所示的等效电路的电能传输效率升高到了98.75%,因此提高了电能传输效率,由此满足美国环境保护局和能源部实施的能源之星认证标准。
(2)当市电电压偏高时,离线式不间断电源2被控制为处于自动电压降压调节模式。其中,安全开关22被控制为导通,第三开关29被控制为使其公共端子连接至第二切换端子S2(即第三开关29连接至第一开关231),第一开关231被控制为连接至变压器Tr2的一次侧的端子T22,第二开关232被控制为连接至变压器Tr2的一次侧的抽头T23,且输出开关24被控制为导通。
其中,如果可充电电池26未被充满电,充电器28停止工作,双向变换器25被控制为将变压器Tr2的二次侧的交流电转换为直流电,以对可充电电池26进行快速充电,且给辅助供电系统27提供直流电。
如果可充电电池26已充满电,双向变换器25停止工作,且充电器28被控制为将交流输入端20的交流电转换为直流电,以对可充电电池26进行充电,且给辅助供电系统27提供所需的直流电。
(3)当市电电压偏低时,离线式不间断电源2被控制为处于自动电压升压调节模式。其中,安全开关22被控制为导通,第三开关29被控制为使其公共端子连接至第二切换端子S2(即将第二安全开关单元222连接至第一开关231),第一开关231被控制为连接至变压器Tr2的一次侧的抽头T23,第二开关232被控制为连接至变压器Tr2的一次侧的端子T22,且输出开关24被控制为导通。
如果可充电电池26未被充满电,充电器28停止工作,双向变换器25被控制为将变压器Tr2的二次侧的交流电转换为直流电,以对可充电电池26进行快速充电,且给辅助供电系统27提供直流电。
如果可充电电池26已充满电,双向变换器25停止工作,且充电器28被控制为将交流输入端20的交流电转换为直流电,以对可充电电池26进行充电,且给辅助供电系统27提供所需的直流电。
(4)当市电电压异常(例如电压过高)或停电时,离线式不间断电源2被控制为处于电池模式,其中,安全开关22被控制为断开,第二开关232被控制为连接至变压器Tr2的一次侧的端子T22,且输出开关24被控制为导通,同时双向变换器25被控制为将可充电电池26的直流电转换为交流电,经过变压器Tr2变压后,从而在交流输出端20’得到所需的交流电。同时可充电电池26给辅助供电系统27提供直流电。
当市电电压过高时,由于安全开关22被控制为断开,交流输入端20的市电并不会通过处于断开状态的安全开关22传输至充电器28的输入端,因此充电器28可以选择输入耐压较小的充电器,以降低电路的成本。
结合上述工作模式可知,在可充电电池26充满电后,充电器28被控制为工作以对辅助供电系统27进行供电。由于在不间断电源中,辅助供电系统27的功率远小于可充电电池26的最大充电功率,因此可以选择与辅助供电系统27的功率相适配的小型充电器,即充电器28的输出功率小于可充电电池26的最大充电功率,以降低电路的成本。
在正常模式中,当可充电电池26未被充满电时,第一开关231和第二开关232被控制为都连接至变压器Tr2的一次侧的端子T22,由此变压器Tr2的一次侧的全部绕组电连接至交流输入端20,能够有效防止变压器Tr2饱和。
在电池模式中,第二开关232被控制为连接至变压器Tr2的一次侧的端子T22,由此变压器Tr2的一次侧的全部绕组电连接至交流输出端20’,在双向变换器25的占空比不变的情况下,能够在交流输出端20’获得尽可能大的交流电压。与第二开关232被控制为连接至变压器Tr2的一次侧的抽头T23相比较,可以选择输出电压较小的可充电电池26,由此降低了可充电电池26的成本。
图5是根据本发明第二个实施例的离线式不间断电源的电路图。其中图5同样未示出市电检测装置、电池检测装置和控制装置。如图5所示,离线式不间断电源3与图3所述的离线式不间断电源2基本相同,区别在于,离线式不间断电源3还包括连接在可充电电池36的正极和充电器38的输出端的正极端子之间的二极管D3,其中二极管D3的阳极连接至可充电电池36的正极,其阴极连接至充电器38的输出端的正极端子。
以下将分情况介绍离线式不间断电源3的工作模式。
(1)当市电电压在正常范围内时,其控制方法与离线式不间断电源2的控制方法相同,在此不予以赘述。图6是图5所示的离线式不间断电源在正常模式下可充电电池被充满电后的等效电路图。如图6所示,充电器38被控制为给辅助供电系统37提供所需的直流电。充电器38的充电电压大于可充电电池36两端的电压,可充电电池36并不会通过二极管D3对辅助供电系统37进行供电,而且由于二极管D3的反向截止功能,充电器38也不会对处于充满电的可充电电池36继续充电。因此可充电电池36此时处于休眠模式,这样可以延长使用寿命。
(2)当市电电压偏高时,其控制方法与离线式不间断电源2的控制方法相同,在此不予以赘述。同样可充电电池36充满电之后处于休眠模式,这样可以延长使用寿命。
(3)当市电电压偏低时,其控制方法与离线式不间断电源2的控制方法相同,在此不予以赘述。同样可充电电池36充满电之后处于休眠模式,这样可以延长使用寿命。
(4)当市电电压异常或停电时,其控制方法与离线式不间断电源2 的控制方法相同,在此不予以赘述。
综上可知,当可充电电池36充满电后,双向变换器35停止对可充电电池36进行充电,同时充电器38开始工作并给辅助供电系统37提供所需的直流电。由于二极管D3的反向截止功能,此时充电器38并不会给可充电电池36充电。另外,使得充电器38的输出电压高于可充电电池36两端的电压,此时可充电电池36并不会通过二极管D3对辅助供电系统37进行供电。可充电电池36既没有被充电,也没有放电,避免了一直处于浮充电状态。
当需要对可充电电池36进行充电时,双向变换器35工作以对可充电电池36迅速地充电。当可充电电池36充满电后,双向变换器35停止工作,可充电电池36自动地处于休眠模式,极大地延长了可充电电池36的寿命。
在本发明的其他控制方法中,在正常模式或自动电压调节模式中,当可充电电池36未被充满电时,充电器38被控制为一直工作,以对辅助供电系统37提供所需的直流电。
在本发明的上述实施例中,双向变换器可以采用实现上述功能的单个电路模块实施,也可以采用电路模块组合实施,例如选用能够将直流逆变成交流的电路模块和利用交流电逆变成直流电给电池充电的电路模块的组合,比如为逆变器。
EMC滤波器适用于抑制电网噪声和高谐波及开关电源所产生的噪声和高频谐波,因此在对用电质量要求不高的应用场合中,离线式不间断电源也可以不具有EMC滤波器。在本发明的其他实施例中,EMC滤波器通过安全开关连接至交流输入端(即安全开关连接在交流输入端和EMC滤波器之间)。
本发明的控制方法基于交流输入端的市电电压来选择不同的工作模式。例如,当市电电压<第一阈值电压时,离线式不间断电源处于电池模式;当第一阈值电压≤市电电压<第二阈值电压时,离线式不间断电源处于自动电压升压调节模式;当第二阈值电压≤市电电压<第三阈值电压时,离线式不间断电源处于正常模式;当第三阈值电压≤市电电压<第四阈值电压时,离线式不间断电源处于自动电压降压调节模式;当第四阈值电压≤市电电压时,离线式不间断电源处于电池模式。本发明的控制方法并不意欲限定第一、第二、第三、第四阈值电压的具体数值,而是由用户根据 市电的额定电压大小,负载允许的电压偏差范围以及变压器的匝数比来选择。例如市电的额定电压值为220伏特,负载允许的电压范围是200伏特~240伏特,变压器Tr1的一次侧的端子T1和抽头T3的匝数与端子T1和端子T2的匝数的比值为5:6,则第一阈值电压可以选择为167伏特,第二阈值电压可以选择为200伏特,第三阈值电压可以选择为240伏特,第四阈值电压可以选择为288伏特。
虽然本发明已经通过优选实施例进行了描述,然而本发明并非局限于这里所描述的实施例,在不脱离本发明范围的情况下还包括所作出的各种改变以及变化。

Claims (13)

  1. 一种离线式不间断电源,其特征在于,包括:
    连接在交流输入端和交流输出端之间的安全开关;
    变压器,其一次侧的一端连接至所述交流输出端的一个端子;
    在所述安全开关和所述交流输出端的另一个端子之间依次连接的第一开关、第二开关和输出开关,所述第一开关可操作地使得所述安全开关连接至所述变压器的一次侧的另一端和抽头之一,所述第二开关可操作地使得所述输出开关连接至所述变压器的一次侧的另一端和抽头之一;
    第三开关,其可操作地使得所述安全开关连接至所述第一开关和交流输出端的另一个端子之一;以及
    双向变换器,其可控地将所述变压器的二次侧的交流电转换为直流电以对可充电电池进行充电,以及将所述可充电电池的直流电转换为交流电。
  2. 根据权利要求1所述的离线式不间断电源,其特征在于,所述离线式不间断电源还包括:
    充电器,其输入端通过所述安全开关连接至所述交流输入端,且可控地将所述交流输入端的交流电转换为直流电;以及
    辅助供电系统,其输入端连接至所述充电器的输出端。
  3. 根据权利要求2所述的离线式不间断电源,其特征在于,所述第三开关包括:
    与所述安全开关连接的公共端子;
    连接至所述输出开关和所述交流输出端的另一个端子之间的第一切换端子;以及
    连接至所述第一开关的第二切换端子。
  4. 根据权利要求2所述的离线式不间断电源,其特征在于,所述充电器的输出端连接至所述可充电电池的两端。
  5. 根据权利要求2所述的离线式不间断电源,其特征在于,所述离线式不间断电源还包括二极管,其阳极连接至所述可充电电池的正极,其阴极连接至所述充电器的输出端的正极端子。
  6. 根据权利要求5所述的离线式不间断电源,其特征在于,所述充电器的输出功率小于所述可充电电池的最大充电功率,且所述充电器的输出电压大于所述可充电电池两端的电压。
  7. 根据权利要求2至6中任一项所述的离线式不间断电源,其特征在于,所述离线式不间断电源还包括:
    市电检测装置,其被配置为检测所述交流输出端的市电电压;
    电池检测装置,其被配置为检测所述可充电电池的充电状态;以及
    控制装置,其被配置为根据所述市电电压和所述可充电电池的充电状态控制所述充电器和双向变换器的工作状态,以及控制所述安全开关、第一开关、第二开关、第三开关和输出开关的开关状态。
  8. 根据权利要求7所述的离线式不间断电源,其特征在于:
    当第一阈值电压≤所述市电电压<第二阈值电压时,所述控制装置控制所述安全开关导通,控制所述第三开关连接至所述第一开关,控制所述第一开关连接至所述变压器的一次侧的抽头,控制所述第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通;其中,当所述可电电池未被充满电时,所述控制装置控制所述充电器停止工作,且控制双向变换器将所述变压器的二次侧的交流电转换为直流电;以及,当所述可充电电池充满电时,所述控制装置控制所述双向变换器停止工作,且控制所述充电器将所述交流输入端的交流电转换为直流电;
    当第二阈值电压≤所述市电电压<第三阈值电压时,所述控制装置控制所述安全开关导通;其中,当所述可充电电池未被充满电时,所述控制装置控制所述第三开关连接至所述第一开关,控制所述第一开关和第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通,控制所述双向变换器以将所述变压器的二次侧的交流电转换为直流电;当所述可充电电池充满电时,所述控制装置控制所述第三开关连接至所述交流输出端的另一个端子,控制所述输出开关断开,控制所述双向变换器停止工作,控制所述充电器以将所述交流输入端的交流电转换为直流电;
    当第三阈值电压≤所述市电电压<第四阈值电压时,所述控制装置控制所述安全开关导通,控制所述第三开关连接至所述第一开关,控制所述第一开关连接至所述变压器的一次侧的另一端,控制所述第二开关连接至所述变压器的一次侧的抽头,且控制所述输出开关导通;其中,当所述可充电电池未被充满电时,所述控制装置控制所述充电器停止工作,控制所述双向变换器将所述变压器的二次侧的交流电转换为直流电;当所述可充电电池充满电时,所述控制装置控制所述双向变换器停止工作,且控制所述充电器将所述交流输入端的交流电转换为直流电;
    或,当所述市电电压<第一阈值电压或≥第四阈值电压时,所述控制装置控制所述安全开关断开,控制第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通,控制所述双向变换器以将所述可充电电池的直流电转换为交流电。
  9. 一种用于如权利要求2至6中任一项所述的离线式不间断电源的控制方法,其特征在于,包括下列步骤:检测所述交流输出端的市电电压,检测所述可充电电池的充电状态,根据所述市电电压和所述可充电电池的充电状态控制所述充电器和双向变换器的工作状态,以及控制所述安全开关、第一开关、第二开关、第三开关和输出开关的开关状态。
  10. 根据权利要求9所述的控制方法,其特征在于,当第一阈值电压≤所述市电电压<第二阈值电压时,控制所述安全开关导通,控制所述第三开关连接至所述第一开关,控制所述第一开关连接至所述变压器的一次侧的抽头,控制所述第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通;
    其中,当所述可电电池未被充满电时,控制所述充电器停止工作,且控制双向变换器将所述变压器的二次侧的交流电转换为直流电;以及
    当所述可充电电池充满电时,控制所述双向变换器停止工作,且控制所述充电器将所述交流输入端的交流电转换为直流电。
  11. 根据权利要求9所述的控制方法,其特征在于,当第二阈值电压≤所述市电电压<第三阈值电压时,控制所述安全开关导通;
    其中,当所述可充电电池未被充满电时,控制所述第三开关连接至所述第一开关,控制所述第一开关和第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通,控制所述双向变换器以将所述变压器的二次侧的交流电转换为直流电;
    当所述可充电电池充满电时,控制所述第三开关连接至所述交流输出端的另一个端子,控制所述输出开关断开,控制所述双向变换器停止工作,控制所述充电器以将所述交流输入端的交流电转换为直流电。
  12. 根据权利要求9所述的控制方法,其特征在于,当第三阈值电压≤所述市电电压<第四阈值电压时,控制所述安全开关导通,控制所述第三开关连接至所述第一开关,控制所述第一开关连接至所述变压器的一次侧的另一端,控制所述第二开关连接至所述变压器的一次侧的抽头,且控制所述输出开关导通;
    其中,当所述可充电电池未被充满电时,控制所述充电器停止工作,控制所述双向变换器将所述变压器的二次侧的交流电转换为直流电;
    当所述可充电电池充满电时,控制所述双向变换器停止工作,且控制所述充电器将所述交流输入端的交流电转换为直流电。
  13. 根据权利要求9所述的控制方法,其特征在于,当所述市电电压<第一阈值电压或≥第四阈值电压时,控制所述安全开关断开,控制第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通,控制所述双向变换器以将所述可充电电池的直流电转换为交流电。
PCT/CN2020/091458 2019-05-24 2020-05-21 离线式不间断电源及其控制方法 WO2020238735A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/613,803 US11949282B2 (en) 2019-05-24 2020-05-21 Offline uninterruptible power source and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910439590.0A CN110061559B (zh) 2019-05-24 2019-05-24 离线式不间断电源及其控制方法
CN201910439590.0 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020238735A1 true WO2020238735A1 (zh) 2020-12-03

Family

ID=67324418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091458 WO2020238735A1 (zh) 2019-05-24 2020-05-21 离线式不间断电源及其控制方法

Country Status (3)

Country Link
US (1) US11949282B2 (zh)
CN (1) CN110061559B (zh)
WO (1) WO2020238735A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111917174B (zh) * 2020-08-27 2023-05-02 东莞市硕擎能源科技有限公司 Ups电源及其电压调节装置
CN112701781A (zh) * 2021-01-26 2021-04-23 东莞市硕擎能源科技有限公司 Ups的节能电源电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176460A (ja) * 2003-12-09 2005-06-30 Fuji Electric Fa Components & Systems Co Ltd 無停電電源装置
CN102163870A (zh) * 2010-02-24 2011-08-24 硕天科技股份有限公司 省电式不断电系统
CN104810871A (zh) * 2014-01-26 2015-07-29 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 不间断电源及其启动方法
CN104953696A (zh) * 2014-03-27 2015-09-30 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 在线互动式不间断电源
CN105634108A (zh) * 2014-11-06 2016-06-01 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 离线式不间断电源

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259476B2 (en) * 2005-04-26 2007-08-21 Always “On” UPS Systems Inc. DC and AC uninterruptible power supply
US8212402B2 (en) * 2009-01-27 2012-07-03 American Power Conversion Corporation System and method for limiting losses in an uninterruptible power supply
JP2010233358A (ja) * 2009-03-27 2010-10-14 Tdk-Lambda Corp 電池保護回路、電池保護方法、電源装置およびプログラム
CN202026129U (zh) * 2009-12-11 2011-11-02 沪东重机有限公司 船用智能柴油机电控系统的交流供电设备
CN101976871B (zh) * 2010-10-22 2013-03-06 艾默生网络能源有限公司 一种ups电源控制电路和ups电源
US10218217B2 (en) * 2013-09-30 2019-02-26 Schneider Electric It Corporation UPS for mixed AC and DC loads
CN104882913A (zh) * 2014-02-27 2015-09-02 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 一种ups电路
CN104065157B (zh) * 2014-06-09 2017-02-15 深圳微网能源管理系统实验室有限公司 一种改进供电可靠性的不间断电源
US20160226304A1 (en) * 2015-01-30 2016-08-04 Francisco L. Castro Electrical power generation system
JP6451708B2 (ja) * 2016-09-06 2019-01-16 株式会社オートネットワーク技術研究所 車載用のバックアップ装置
US10641831B2 (en) * 2017-08-25 2020-05-05 Schneider Electric It Corporation Battery current measurement
US10944287B2 (en) * 2018-07-02 2021-03-09 Schneider Electric It Corporation AVR bypass relay welding detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176460A (ja) * 2003-12-09 2005-06-30 Fuji Electric Fa Components & Systems Co Ltd 無停電電源装置
CN102163870A (zh) * 2010-02-24 2011-08-24 硕天科技股份有限公司 省电式不断电系统
CN104810871A (zh) * 2014-01-26 2015-07-29 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 不间断电源及其启动方法
CN104953696A (zh) * 2014-03-27 2015-09-30 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 在线互动式不间断电源
CN105634108A (zh) * 2014-11-06 2016-06-01 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 离线式不间断电源

Also Published As

Publication number Publication date
US20220231535A1 (en) 2022-07-21
US11949282B2 (en) 2024-04-02
CN110061559A (zh) 2019-07-26
CN110061559B (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
TWI221695B (en) Uninterruptible power system
US9425678B2 (en) Switching power supply apparatus and semiconductor device
US9088221B2 (en) High-voltage power supply module and power supply system
US20220376548A1 (en) Online interactive uninterruptible power supply and method for control thereof
WO2020238735A1 (zh) 离线式不间断电源及其控制方法
US11870360B2 (en) Bidirectional insulating DC-DC converter, control apparatus therefor, and operating method thereof
US8093865B2 (en) Charging device with backflow prevention
RU2732280C1 (ru) Источник бесперебойного питания - статический обратимый преобразователь для питания потребителей переменного и постоянного тока и заряда (подзаряда) аккумуляторной батареи
JP5828774B2 (ja) 2次電池の充放電装置およびそれを用いた充放電検査装置
CN110061560B (zh) 离线式不间断电源及其控制方法
US7230353B2 (en) Charging circuit in uninterruptible power supply system
KR102411269B1 (ko) 저발열 무선 전력 수신 장치
KR101058351B1 (ko) 레귤레이터와 인버터를 갖는 배터리 충전/방전 제어회로
CN218940750U (zh) 离线式不间断电源
CN113169576A (zh) 具有多个次级变压器电路的电池充电器
TW202030968A (zh) 直流輸出不斷電電源供應器
JP2020031528A (ja) 無停電電源装置及びその動作方法
CN213213177U (zh) 离线式不间断电源
CN219659470U (zh) 一种隔离式高频在线不间断电源
CN220754413U (zh) 一种交流供电电路及逆变器辅助供电系统
CN116961378B (zh) Ac-dc开关电源及其控制方法
JP7405704B2 (ja) 蓄電システム
CN216794695U (zh) 一种充电电路、充电器和充电系统
CN110768342B (zh) 储能设备和充放电系统
US20030043608A1 (en) Power circuit in uninterruptible power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813170

Country of ref document: EP

Kind code of ref document: A1