WO2021139646A1 - 液晶显示面板及其制备方法、显示装置 - Google Patents

液晶显示面板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2021139646A1
WO2021139646A1 PCT/CN2021/070299 CN2021070299W WO2021139646A1 WO 2021139646 A1 WO2021139646 A1 WO 2021139646A1 CN 2021070299 W CN2021070299 W CN 2021070299W WO 2021139646 A1 WO2021139646 A1 WO 2021139646A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
alignment film
layer
pretilt angle
display panel
Prior art date
Application number
PCT/CN2021/070299
Other languages
English (en)
French (fr)
Inventor
王菲菲
占红明
邵喜斌
季林涛
李博文
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020053145.9U external-priority patent/CN211014954U/zh
Priority claimed from CN202010276034.9A external-priority patent/CN113514984A/zh
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180008730.4A priority Critical patent/CN115023647B/zh
Priority to EP21733039.8A priority patent/EP4089476A4/en
Priority to US17/288,364 priority patent/US11703719B2/en
Publication of WO2021139646A1 publication Critical patent/WO2021139646A1/zh
Priority to US18/326,208 priority patent/US20230305340A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133749Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for low pretilt angles, i.e. lower than 15 degrees

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a liquid crystal display panel, a preparation method thereof, and a display device.
  • the liquid crystal display panel mainly includes a color filter (CF) substrate, an array substrate, and a liquid crystal layer disposed between the color filter substrate and the array substrate.
  • CF color filter
  • a liquid crystal display panel includes: a first base substrate and a second base substrate, a liquid crystal layer and an optical compensation layer which are arranged oppositely.
  • the liquid crystal layer is disposed between the first base substrate and the second base substrate;
  • the liquid crystal layer includes a first alignment film and a second alignment film arranged opposite to each other, and is located in the first alignment
  • the first alignment film is configured to anchor a portion of the second liquid crystal molecules in the second liquid crystal molecule layer that is close to it, so as to make contact with the first
  • the portion of the second liquid crystal molecules close to the alignment film generates a first pretilt angle;
  • the second alignment film is configured to anchor a portion of the second liquid crystal molecules in the second liquid crystal molecule layer that is close to the second liquid crystal molecule, so as to make contact with the second alignment film
  • the approaching part of the second liquid crystal molecules generates a second pretilt angle; the direction of the first pretilt angle is opposite
  • the optical compensation layer is disposed on a side of the first alignment film or the second alignment film away from the second liquid crystal molecule layer; the optical compensation layer includes a third alignment film and a first liquid crystal molecule layer;
  • the third alignment film is configured to anchor first liquid crystal molecules close to the first liquid crystal molecule layer, so that the first liquid crystal molecules close to the third alignment film generate a third pretilt angle; the first liquid crystal
  • the direction of the orthographic projection of the long axis of the molecule on the plane where the third alignment film is located is parallel or perpendicular to the direction of the orthographic projection of the long axis of the second liquid crystal molecule on the plane where the third alignment film is located.
  • the direction of the orthographic projection of the long axis of the first liquid crystal molecule on the plane of the third alignment film and the long axis of the second liquid crystal molecule on the plane of the third alignment film are When the direction of the orthographic projection is parallel; the direction of the third pretilt angle is the same as the direction of the first pretilt angle or the direction of the second pretilt angle.
  • the direction of the orthographic projection of the long axis of the first liquid crystal molecule on the plane of the third alignment film and the long axis of the second liquid crystal molecule on the plane of the third alignment film are When the direction of the orthographic projection is parallel, the sum of the in-plane retardation of the optical compensation layer and the in-plane retardation of the liquid crystal layer is equal to a positive integer multiple of the first wavelength; the range of the first wavelength is 535nm ⁇ 50nm.
  • the range of the in-plane retardation of the optical compensation layer is 185nm ⁇ 25nm; the range of the in-plane retardation of the liquid crystal layer is 350nm ⁇ 25nm.
  • the direction of the orthographic projection of the long axis of the first liquid crystal molecule on the plane of the third alignment film and the long axis of the second liquid crystal molecule on the plane of the third alignment film are When the directions of the orthographic projection are parallel, the range of the in-plane retardation of the optical compensation layer is 160 nm to 240 nm, and the range of the in-plane retardation of the liquid crystal layer is 350 nm ⁇ 25 nm.
  • the direction of the orthographic projection of the long axis of the first liquid crystal molecule on the plane of the third alignment film and the long axis of the second liquid crystal molecule on the plane of the third alignment film are When the direction of the orthographic projection is vertical, the in-plane retardation of the optical compensation layer is equal to the in-plane retardation of the liquid crystal layer.
  • the in-plane retardation of the liquid crystal layer ranges from 580 nm to 620 nm.
  • the in-plane retardation of the liquid crystal layer is any one of 580 nm, 590 nm, 600 nm, 610 nm, or 620 nm.
  • the third alignment film is disposed on a side of the first base substrate close to the liquid crystal layer.
  • the third alignment film is disposed on the side of the first base substrate away from the liquid crystal layer.
  • the third alignment film is disposed on a side of the second base substrate close to the liquid crystal layer.
  • the third alignment film is disposed on a side of the second base substrate away from the liquid crystal layer.
  • the optical compensation layer further includes a third base substrate, and the third base substrate and the third alignment film are located on the same side or different sides of the first liquid crystal molecular layer.
  • the third alignment film and the second alignment film are disposed on opposite sides of the third base substrate.
  • the optical compensation layer further includes a fourth alignment film disposed on a side of the third base substrate away from the liquid crystal layer or disposed on the second substrate The substrate is close to the side of the liquid crystal layer; the fourth alignment film is configured to anchor the portion of the first liquid crystal molecules in the first liquid crystal molecule layer that is close to it, so that the portion close to the fourth alignment film is The first liquid crystal molecules generate a fourth pretilt angle; the direction of the fourth pretilt angle is opposite or the same as the direction of the third pretilt angle.
  • the fourth alignment film and the second alignment film are disposed on opposite sides of the third base substrate.
  • the third alignment film is disposed on the side of the second base substrate close to the liquid crystal layer, and the side of the first liquid crystal molecule layer close to the liquid crystal layer is further provided with a flat layer
  • the second alignment film is arranged on a side of the flat layer close to the liquid crystal layer.
  • the alignment direction of the first alignment film is the same as the alignment direction of the second alignment film.
  • the optical compensation film layer is a +A compensation film layer.
  • the first pretilt angle, the second pretilt angle, and the third pretilt angle are equal in magnitude.
  • the size range of the first pretilt angle, the second pretilt angle, and the third pretilt angle is 2° ⁇ 2°.
  • the range of the first pretilt angle, the second pretilt angle, and the third pretilt angle is 2° ⁇ 1°.
  • a functional film layer is further provided on the first base substrate; the functional film layer and the optical compensation layer are disposed on opposite sides of the liquid crystal layer; or, the functional film layer And the liquid crystal layer are arranged on opposite sides of the optical compensation layer.
  • the second liquid crystal molecules are negative liquid crystal molecules.
  • a display device in another aspect, includes: the display panel as described in any of the above embodiments.
  • a method for manufacturing a liquid crystal display panel including: forming a first alignment film on one side of a first base substrate.
  • a third alignment film is formed on one side of the second base substrate.
  • a first liquid crystal molecule layer is formed on the third alignment film and cured, so that the first liquid crystal molecules in the first liquid crystal molecule layer have a third pretilt angle.
  • a second alignment film is formed on the first liquid crystal molecule layer.
  • the first base substrate on which the first alignment film is formed and the second base substrate on which the second alignment film is formed are paired, and the first alignment film and the second A second liquid crystal molecule layer is formed between the alignment films; wherein a portion of the second liquid crystal molecules in the second liquid crystal molecule layer that is close to the first alignment film has a first pretilt angle, and the second liquid crystal molecule layer is close to the first alignment film.
  • a portion of the second liquid crystal molecules of the second alignment film has a second pretilt angle, and the direction of the first pretilt angle is opposite to the direction of the second pretilt angle; and the long axis of the second liquid crystal molecule is at the first pretilt angle.
  • the direction of the orthographic projection of the plane where the three alignment film is located is parallel or perpendicular to the direction of the orthographic projection of the long axis of the first liquid crystal molecule on the plane where the third alignment film is located.
  • the preparation method before forming the second alignment film on the first liquid crystal molecule layer, the preparation method further includes: forming a flat layer on the first liquid crystal molecule layer.
  • FIG. 1A is a schematic structural diagram of a liquid crystal display panel provided by an embodiment of the disclosure.
  • FIG. 1B to FIG. 1I are schematic structural diagrams of another liquid crystal display panel provided by embodiments of the disclosure.
  • FIG. 1J is a schematic diagram of a first direction and a third direction provided by an embodiment of the present disclosure
  • FIG. 2A is a perspective view of a distribution state of first liquid crystal molecules and second liquid crystal molecules according to an embodiment of the disclosure
  • 2B is a structural diagram of a first alignment film, a second alignment film, and a third alignment film provided by an embodiment of the disclosure
  • FIG. 2C is a structural diagram of another third alignment film provided by an embodiment of the disclosure.
  • 2D is a cross-sectional view of a first alignment film provided by an embodiment of the disclosure.
  • 2E is a cross-sectional view of a second alignment film provided by an embodiment of the disclosure.
  • 2F is a cross-sectional view of a third alignment film provided by an embodiment of the disclosure.
  • 3A is a schematic diagram of the structure of a liquid crystal display panel in the related art
  • FIG. 3B is a schematic diagram of the position of the polarization state of the light in the related art when passing through each layer in the liquid crystal display panel in the Bangka sphere;
  • FIG. 4A is a position diagram of the polarization state of light when passing through each layer in the liquid crystal display panel provided by an embodiment of the present disclosure, in a Poincare sphere diagram;
  • 4B is a position diagram of the polarization state of another light provided by an embodiment of the present disclosure when passing through various layers in the liquid crystal display panel in a Pománça sphere;
  • FIG. 5 is a schematic diagram of a polarization angle-brightness curve diagram of a liquid crystal display panel provided by an embodiment of the disclosure and a schematic diagram of a polarization angle-brightness curve diagram of a liquid crystal display panel in the related art;
  • FIGS. 6A to 6G are schematic structural diagrams of another liquid crystal display panel provided by embodiments of the disclosure.
  • FIG. 7 is a schematic structural diagram of another liquid crystal display panel provided by an embodiment of the disclosure.
  • FIGS 8A to 8B are schematic structural diagrams of another liquid crystal display panel provided by embodiments of the present disclosure.
  • FIGS. 9A-9B are schematic structural diagrams of another liquid crystal display panel provided by embodiments of the disclosure.
  • FIG. 10 is a schematic flowchart of a method for manufacturing a liquid crystal display panel provided by an embodiment of the disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • the expressions “coupled” and “connected” and their extensions may be used.
  • the term “connected” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more components have direct physical or electrical contact.
  • the term “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content of this document.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C", and both include the following combinations of A, B, and C: only A, only B, only C, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and the combination of A and B.
  • the term “if” is optionally interpreted as meaning “when” or “when” or “in response to determination” or “in response to detection.”
  • the phrase “if it is determined" or “if [the stated condition or event] is detected” is optionally interpreted to mean “when determining" or “in response to determining" Or “when [stated condition or event] is detected” or “in response to detecting [stated condition or event]”.
  • “same”, “opposite”, “equal”, “parallel”, “perpendicular”, etc. include the stated value and the average value within the acceptable deviation range of the specified value, wherein the stated value may
  • the acceptable range of deviation is determined by those of ordinary skill in the art taking into account the measurement being discussed and the error associated with the measurement of a specific quantity (ie, the limitations of the measurement system), for example, “same” includes absolute same and approximately the same, where approximately The same range is within the acceptable deviation range.
  • the exemplary embodiments are described herein with reference to cross-sectional views and/or plan views as idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Therefore, variations in the shape with respect to the drawings due to, for example, manufacturing technology and/or tolerances can be envisaged. Therefore, the exemplary embodiments should not be construed as being limited to the shape of the area shown herein, but include shape deviations due to, for example, manufacturing.
  • an etched area shown as a rectangle will generally have curved features. Therefore, the areas shown in the drawings are schematic in nature, and their shapes are not intended to show the actual shape of the area of the device, and are not intended to limit the scope of the exemplary embodiments.
  • the present disclosure provides a display device.
  • the display device is, for example, a display device using an ADS (Advanced Super Dimension Switch, Advanced Super Dimension Switch) mode.
  • ADS Advanced Super Dimension Switch, Advanced Super Dimension Switch
  • the display device may be any device that displays images whether in motion (for example, video) or fixed (for example, still images), and regardless of text or pictures.
  • the display device can be a variety of display devices, including but not limited to mobile phones, wireless devices, personal data assistants (Portable Android Device, abbreviated as PAD), handheld or portable computers, GPS (Global Positioning System, global positioning) System) receiver/navigator, camera, MP4 (full name MPEG-4 Part 14) video player, camera, game console, flat panel display, computer monitor, car monitor (for example, car's driving recorder or reversing image and many more.
  • GPS Global Positioning System, global positioning) System
  • MP4 full name MPEG-4 Part 14
  • the display device includes, for example, a liquid crystal display panel and a backlight module, where the backlight module is used to provide the liquid crystal display panel with a light source for display.
  • the liquid crystal display panel 1 provided by the present disclosure includes: a first base substrate 11 and a second base substrate 12 arranged opposite to each other.
  • the materials of the first base substrate 11 and the second base substrate 12 are, for example, the same, for example, both are glass, but of course they can also be different, which is not limited in the present disclosure.
  • the liquid crystal layer 14 is disposed between the first base substrate 11 and the second base substrate 12.
  • the liquid crystal layer 14 includes a first alignment film 141 and a second alignment film 142 disposed opposite to each other, and a second liquid crystal molecule layer 140 located between the first alignment film 141 and the second alignment film 142.
  • the first alignment film 141 is configured to anchor a portion of the second liquid crystal molecules 140' close to the second liquid crystal molecule layer 140, so that a portion of the second liquid crystal molecules 140' close to the first alignment film 141 generates a first pretilt angle ⁇ ;
  • the second alignment film 142 is configured to anchor a portion of the second liquid crystal molecules 140' close to the second liquid crystal molecule layer 140, so that a portion of the second liquid crystal molecules 140' close to the second alignment film 142 generates a second pretilt angle ⁇ , Wherein, the direction of the first pretilt angle ⁇ is opposite to the direction of the second pretilt angle ⁇ .
  • the portion of the second liquid crystal molecules 140' close to the first alignment film 141 is the layer of second liquid crystal molecules 140' closest to the first alignment film 141; and the second alignment film 142
  • the adjacent part of the second liquid crystal molecules 140 ′ is the layer of second liquid crystal molecules 140 ′ closest to the second alignment film 142.
  • FIGS. 1A-1G only the layer of second liquid crystal molecules 140' closest to the first alignment film 141 in the second liquid crystal molecule layer 140 and the layer closest to the second alignment film 142 are shown in FIGS. 1A-1G.
  • the second liquid crystal molecule 140' is shown in FIGS. 1A-1G.
  • the optical compensation layer 15 is disposed on the side of the first alignment film 141 or the second alignment film 142 away from the second liquid crystal molecule layer 140; the optical compensation layer 15 includes the third alignment film 151 and the first liquid crystal molecule layer 150.
  • the third alignment film 151 is configured to anchor the first liquid crystal molecules 150 ′ close to the first liquid crystal molecule layer 150, so that the first liquid crystal molecules 150 ′ close to the third alignment film 151 generate a third pretilt angle ⁇ .
  • the direction of the orthographic projection of the long axis of the first liquid crystal molecule 150 ′ on the plane where the third alignment film 151 is located is parallel or perpendicular to the direction of the orthographic projection of the long axis of the second liquid crystal molecule 140 ′ on the plane where the third alignment film 151 is located.
  • the first liquid crystal molecules 150 ′ close to the third alignment film 151 are the first liquid crystal molecules 150 ′ that are closest to the third alignment film 151.
  • FIGS. 1A-1I only the layer of first liquid crystal molecules 150' in the first liquid crystal molecule layer 150 that is closest to the third alignment film 151 is shown in FIGS. 1A-1I.
  • the state of the liquid crystal display panel 1 shown in FIGS. 1A-1I is the state of the liquid crystal display panel 1 when no voltage is applied.
  • liquid crystal molecules they can be divided into rod-type liquid crystal molecules and discotic liquid crystal molecules according to their shape.
  • the long axis direction is the direction of the optical axis.
  • the short axis direction is the optical axis direction.
  • the first liquid crystal molecules 150 ′ in the first liquid crystal molecule layer 150 are rod-shaped liquid crystal molecules.
  • the second liquid crystal molecules 140 ′ in the second liquid crystal molecule layer 140 are rod-shaped liquid crystal molecules.
  • the second liquid crystal molecules 140' may be positive liquid crystal molecules or negative liquid crystal molecules.
  • the use of negative liquid crystal molecules for the second liquid crystal molecules 140' can make the light transmittance of the display panel higher, so the liquid crystal display panel 1 using negative liquid crystal molecules has a higher contrast and better display effect.
  • the alignment film can make at least part of the liquid crystal molecules in a pre-tilted state, so that the long axis of the at least part of the liquid crystal molecules has an angle with the plane where the alignment film is located.
  • the pretilt angle refers to the acute angle formed between the long axis of the rod-shaped liquid crystal molecules and the alignment direction of the alignment film. The planes intersect.
  • the pretilt angle of the second liquid crystal molecules 140' is the alignment between the long axis of the second liquid crystal molecules 140' and the first alignment film 141 when the liquid crystal display panel 1 is not energized or the voltage between the pixel electrode and the common electrode is 0
  • the pretilt angle of the first liquid crystal molecules 150' is the alignment between the long axis of the first liquid crystal molecules 150' and the third alignment film 151 when the liquid crystal display panel 1 is not energized or the voltage between the pixel electrode and the common electrode is 0 The acute angle between directions.
  • the alignment direction of the first alignment film 141 is the same as the alignment direction of the second alignment film 142; for example, the alignment direction of the first alignment film 141 and the alignment direction of the second alignment film 142 are both along the first alignment direction.
  • the first direction is, for example, the X axis (in the three-dimensional coordinate system) direction, which is schematically along the left and right directions on the paper in FIGS. 1A to 1I.
  • the alignment direction of the third alignment film 151 is the same as the alignment directions of the first alignment film 141 and the second alignment film 142, such as the first alignment film 141, the second alignment film 142, and the third alignment film 141.
  • the alignment directions of the alignment film 151 are all along the first direction.
  • the alignment direction of the third alignment film 151 is perpendicular to the alignment direction of the first alignment film 141 and the second alignment film 142, for example, the alignment direction of the first alignment film 141 and the second alignment film 142 Along the first direction, the alignment direction of the third alignment film 151 is along the second direction, the second direction is perpendicular to the first direction, and the second direction is, for example, the Y axis (in the three-dimensional coordinate system) direction, as shown in FIGS. 1H and 1I Schematically, it is the inside and outside directions of the paper surface perpendicular to the paper surface.
  • the first liquid crystal molecules 150' and the second liquid crystal molecules 140' are parallel to each other regardless of the tilt angle.
  • the second liquid crystal molecules 140' anchored by the first alignment film 141 generate a first pretilt angle ⁇
  • the second liquid crystal molecules 140' anchored by the second alignment film 142 generate a second pretilt angle ⁇ .
  • the first liquid crystal molecules 150' anchored by the tri-alignment film 151 generate a third pretilt angle ⁇ .
  • the first pretilt angle ⁇ is the acute angle formed between the straight line of the long axis of the second liquid crystal molecule 140' anchored by the first alignment film 141 and the first direction
  • the second pretilt angle ⁇ is the sharp angle formed by the second direction.
  • the third pretilt angle ⁇ is the first liquid crystal molecule 150 anchored by the third alignment film 151
  • the orthographic projection of the long axis of the first liquid crystal molecule 150 ′ on the plane of the third alignment film 151 and the orthographic projection of the long axis of the second liquid crystal molecule 140 ′ on the plane of the third alignment film 151 are parallel.
  • the first liquid crystal molecules 150' and the second The liquid crystal molecules 140 ′ are perpendicular to each other, and the second liquid crystal molecules 140 ′ anchored by the first alignment film 141 and the second liquid crystal molecules 140 ′ anchored by the second alignment film 142 are parallel to each other.
  • the second liquid crystal molecules 140' anchored by the first alignment film 141 generate a first pretilt angle ⁇
  • the second liquid crystal molecules 140' anchored by the second alignment film 142 generate a second pretilt angle ⁇ .
  • the first liquid crystal molecules 150' anchored by the tri-alignment film 151 generate a third pretilt angle ⁇ .
  • the first pretilt angle ⁇ is the acute angle formed between the straight line of the long axis of the second liquid crystal molecule 140' anchored by the first alignment film 141 and the first direction
  • the second pretilt angle ⁇ is the sharp angle formed by the second direction.
  • the third pretilt angle ⁇ is the first liquid crystal molecule 150 anchored by the third alignment film 151
  • the orthographic projection of the long axis of the first liquid crystal molecule 150 ′ on the plane of the third alignment film 151 and the orthographic projection of the long axis of the second liquid crystal molecule 140 ′ on the plane of the third alignment film 151 are perpendicular.
  • the alignment film is made of a polymer material, such as polyimide (Polyamic, PI).
  • the alignment direction of the alignment film includes a first direction and a second direction, and the pretilt angle is further determined on the basis of the alignment direction of the alignment film.
  • the production process of the alignment film allows the long axis direction of the liquid crystal molecules (including the first liquid crystal molecules 150' and the second liquid crystal molecules 140') to form an angle with the alignment direction of the alignment film.
  • the length between the long axis direction of the second liquid crystal molecule 140' and the first direction The acute angle is the first pretilt angle ⁇ or the second pretilt angle ⁇ ; the acute angle between the long axis direction of the first liquid crystal molecule 150 ′ and the first direction is the third pretilt angle ⁇ .
  • the alignment direction of the third alignment film 151 is the second direction
  • the acute angle between the long axis direction of the first liquid crystal molecules 150 ′ and the second direction is the third pretilt angle ⁇ .
  • the first alignment film 141, the second alignment film 142, and the third alignment film 151 can all be formed by, for example, a Rubbing (rubbing) alignment process.
  • the rubbing directions of the first alignment film 141, the second alignment film 142, and the third alignment film 151 include the alignment direction and the pretilt angle information of the first alignment film 141, the second alignment film 142, and the third alignment film 151, that is, the rubbing
  • the direction also determines the size and direction of the alignment direction and the pretilt angle.
  • the upper surface of the alignment film (for example, the first alignment film 141) (that is, the side surface close to the second liquid crystal molecule 140' ) Will form an inclined upward (that is, diagonally to the second liquid crystal molecule 140') angle with respect to its lower surface (that is, the side surface away from the second liquid crystal molecule 140').
  • the alignment film for example, the first alignment film 141
  • the second alignment film will form an inclined upward (that is, diagonally to the second liquid crystal molecule 140') angle with respect to its lower surface (that is, the side surface away from the second liquid crystal molecule 140').
  • an oblique direction will appear from left to right. Slope to the upper right or diagonally to the lower right.
  • the first alignment film 141 and the second alignment film 142 can be manufactured through the same process.
  • the state of the first alignment film 141 is shown in FIG. 2D, but in the process of use, referring to FIG. 1A, the first alignment film 141 and the second alignment film 142 are arranged oppositely, so that the first alignment film 141 and the second alignment film 142 are arranged oppositely.
  • the directions of the pretilt angle ⁇ and the second pretilt angle ⁇ are different.
  • the alignment direction of the first alignment film 141 and the rubbing direction of the second alignment film 142 are the same.
  • the alignment direction of the third alignment film 151 is the same as the alignment direction of the first alignment film 141 and the second alignment film 142, you can choose to rub from left to right, or you can choose to rub from right to left;
  • an included angle will appear from left to right from left to right;
  • the alignment direction of the alignment film 151 from right to left, will present an included angle diagonally to the upper left (as shown in FIG. 2F) or diagonally to the lower left.
  • the first liquid crystal molecules 150' close to the third alignment film 151 will generate a third pretilt angle ⁇ .
  • the rubbing directions of the first alignment film 141, the second alignment film 142, and the third alignment film 151 can determine the alignment directions of the first alignment film 141, the second alignment film 142, and the third alignment film 151, and the presetting of the liquid crystal molecules.
  • each alignment direction mentioned in the present disclosure may include two rubbing directions.
  • the alignment direction is the first direction, which can include rubbing from one end to the other end along the first direction (as shown in Figure 2D), or rubbing along the path opposite to the "from one end to the other end" ( Figure 2F).
  • the rubbing direction can determine the direction of the pretilt angle, and when the alignment direction of the alignment film is the same, if the rubbing direction is different, the direction of the pretilt angle may be different. For example, when the alignment directions of the alignment films are all along the first direction, the directions of the pretilt angles generated when rubbing from left to right and rubbing from right to left are opposite.
  • the direction of the first pretilt angle ⁇ is opposite to the direction of the second pretilt angle ⁇ .
  • the direction of the first pretilt angle ⁇ is opposite to the direction of the second pretilt angle ⁇ , and refers to the direction of the first pretilt angle ⁇ and the second pretilt angle ⁇ relative to the same base substrate, for example, relative to the first base substrate 11. In the opposite direction.
  • any point O'on the straight line is used to establish a plane rectangular coordinate system X'O'Z ', wherein the straight line is located in the established coordinate system X'O'Z', and the O'-Z' direction is the thickness direction of the liquid crystal display panel 1, which is divided into 4 quadrants in the rectangular coordinate system X'O'Z' (x'>0,z'>0 in the first quadrant; x' ⁇ 0,z'>0 in the second quadrant; x' ⁇ 0,z' ⁇ 0 in the third quadrant; x'>0 , z' ⁇ 0, in the fourth quadrant), when two straight lines both pass through the first quadrant and the third quadrant, the directions of the two straight lines can be understood as the same, and further, the two straight lines determined by the two straight lines
  • the directions of the two pretilt angles determined by the two straight lines are opposite.
  • the second liquid crystal molecule 140' anchored by the first alignment film 141 has a straight line where its long axis passes through the first and third quadrants defined above; the second liquid crystal molecule 140' anchored by the second alignment film 142
  • the long axis of the straight line passes through the second and fourth quadrants defined above. Therefore, the direction of the first pretilt angle ⁇ and the direction of the second pretilt angle ⁇ are opposite.
  • the structure and manufacturing process of the first alignment film 141 and the second alignment film 142 can be made completely the same, thereby reducing the first alignment film 141 and the second alignment film 141. 142 production difficulty.
  • the direction of the orthographic projection of the long axis of the first liquid crystal molecule 150' on the plane of the third alignment film 151 is the same as the direction of the orthographic projection of the long axis 140' of the second liquid crystal molecule on the plane of the third alignment film 151.
  • the directions are parallel.
  • the direction of the orthographic projection of the long axis of the first liquid crystal molecule 150' on the plane where the third alignment film 151 is located is parallel to the direction of the orthographic projection of the long axis 140' of the second liquid crystal molecule on the plane where the third alignment film 151 is located.
  • the straight line of the orthographic projection of the long axis of a liquid crystal molecule 150 ′ on the plane of the third alignment film 151 is parallel to or coincides with the straight line of the orthographic projection of the long axis 140 ′ of the second liquid crystal molecule on the plane of the third alignment film 151.
  • the alignment direction of the third alignment film 151 is the first direction, and the optical compensation layer 15 is used to realize positive compensation for the liquid crystal layer 14.
  • the direction of the orthographic projection of the long axis of the first liquid crystal molecule 150' on the plane of the third alignment film 151 and the orthographic projection of the long axis of the second liquid crystal molecule 140' on the plane of the third alignment film 151 The direction is parallel.
  • the direction of the third pretilt angle ⁇ is the same as the direction of the first pretilt angle ⁇ or the second pretilt angle
  • the same direction of ⁇ means that with respect to the same base substrate, for example, with respect to the first base substrate 11, the direction of the third pretilt angle ⁇ is the same as the direction of the first pretilt angle ⁇ or the direction of the second pretilt angle ⁇ .
  • any point O'on the straight line is used to establish a plane rectangular coordinate system X' O'Z', wherein the straight line is located in the established coordinate system X'O'Z', and the O'-Z' direction is the thickness direction of the liquid crystal display panel 1, divided in the rectangular coordinate system X'O'Z' 4 quadrants divided into 4 quadrants (x'>0,z'>0 in the first quadrant; x' ⁇ 0,z'>0 in the second quadrant; x' ⁇ 0,z' ⁇ 0 in the second quadrant.
  • the directions of the two pretilt angles determined by the two straight lines are the same; if the two straight lines both pass through the second quadrant and the fourth quadrant, the directions of the two straight lines can also be understood as the same.
  • the directions of the two determined pretilt angles are also the same; if the first straight line passes the first quadrant and the third quadrant, and the other straight line passes the second quadrant and the fourth quadrant, the directions of the two straight lines can be understood as opposite. Furthermore, the directions of the two pretilt angles determined by the two straight lines are opposite.
  • the structure and manufacturing process of the third alignment film 151 are the same as those of the first alignment film 141 and the second alignment film.
  • the structure and manufacturing process of 142 are exactly the same.
  • the rubbing direction of the third alignment film 151 is the same as the first pretilt angle ⁇ .
  • the rubbing direction of an alignment film 141 is opposite.
  • the rubbing direction of the third alignment film 151 is from right to left, and the rubbing direction of the first alignment film 141 is from left to right.
  • the manufacturing processes of the two are similar, and the alignment directions are the same. It is also easier to make.
  • the direction of the orthographic projection of the long axis of the first liquid crystal molecule 150' on the plane of the third alignment film 151 and the orthographic projection of the long axis 140' of the second liquid crystal molecule on the plane of the third alignment film 151 The direction is vertical.
  • the direction of the orthographic projection of the long axis of the first liquid crystal molecule 150' on the plane where the third alignment film 151 is located is perpendicular to the direction of the orthographic projection of the long axis 140' of the second liquid crystal molecule on the plane where the third alignment film 151 is located.
  • the straight line of the orthographic projection of the long axis of a liquid crystal molecule 150 ′ on the plane of the third alignment film 151 is perpendicular to the straight line of the orthographic projection of the long axis 140 ′ of the second liquid crystal molecule on the plane of the third alignment film 151.
  • the alignment direction of the third alignment film 151 is the second direction, and the optical compensation layer 15 is used to realize reverse compensation for the liquid crystal layer 14.
  • the direction of the orthographic projection of the first liquid crystal molecule 150' on the plane where the third alignment film 151 is located is along the second direction, and the long axis of the second liquid crystal molecule 140' is located on the third alignment film 151.
  • the direction of the orthographic projection of the plane is along the first direction and is therefore vertical.
  • the first liquid crystal molecule 150' and the long axis of the second liquid crystal molecule 140' are perpendicular to each other in the direction of the orthographic projection of the plane where the third alignment film 151 is located, the first The orthographic projection of the long axis of the liquid crystal molecule 150 ′ on the plane of the third alignment film 151 and the orthographic projection of the long axis of the second liquid crystal molecule 140 ′ on the plane of the third alignment film 151 are also perpendicular to each other.
  • the relationship between the alignment direction of the third alignment film 151 and the alignment directions of the first alignment film 141 and the second alignment film 142 determines the compensation effect of the optical compensation layer 15, and how to achieve normal compensation and reverse for the optical compensation layer 15 Compensation, the following will be detailed on the basis of comparing related technologies.
  • the liquid crystal display panel 1 in the related art has a light leakage problem in the L0 state.
  • the L0 state refers to a state in which the liquid crystal display panel 1 is in a dark state when no voltage is applied, and the backlight module normally provides a light source.
  • the liquid crystal display panel 1 When the liquid crystal display panel 1 is in the L0 state, when the liquid crystal display panel 1 is subjected to pressure (such as the pressure generated when pressed), the liquid crystal display panel 1 will be deformed. Among them, the first base substrate 11 and the first base substrate 11 in the array substrate are deformed. The second base substrate 12 in the color filter substrate will deform due to pressure and generate non-uniform stress.
  • the non-uniform stress will change the polarization state of the light in the liquid crystal display panel 1.
  • the first base substrate 11 and the second base substrate 11 The magnitude of the change of the polarization state of the light by the base substrate 12 is the same, and the direction is opposite, so that mutual cancellation can be achieved.
  • the structure of the liquid crystal display panel 1 in FIG. 3A referring to the Bonga sphere diagram shown in FIG.
  • the light emitted from the backlight module passes through the first polarizer 18, and the polarization of the light is The state of polarization is at point O, when the light is linearly polarized light; after the light passes through the first substrate 11, it is affected by the inhomogeneous stress, and the state of polarization is at point O 1 , when the light is elliptically polarized light; after the liquid crystal layer 14 is modulated by the liquid crystal molecules, the polarization state is located at a point O 2, this time line of light to elliptically polarized light; light after the second substrate 12, by the non-uniformity of stress, the polarization state Located at point O 3 , the light is elliptically polarized light at this time, and there is a distance between point O 3 and point O, that is to say, the light incident on the second polarizer 19 is elliptically polarized light instead of linearly polarized light, thus causing some The ellipt
  • the liquid crystal display panel 1 in the related art also has a polarization problem. Because the liquid crystal molecules are birefringent materials, when light enters the tilted liquid crystal molecules, birefringence (there are two light components of the long axis and the short axis) will occur, which leads to differences in ⁇ n when viewed at different positions, which leads to differences. There is a difference in the transmittance of light in the wavelength band.
  • ⁇ n is the difference between the refractive index n 0 of the extraordinary light and the refractive index n e of the ordinary light, where the ordinary light is the light that obeys the law of refraction, and the extraordinary light is the light that does not obey the law of refraction.
  • the refractive index n 0 of ordinary light corresponds to the short axis of the liquid crystal molecule, so the refractive index n 0 of ordinary light is constant; the refractive index n of extraordinary light is constant. e changes with the direction of light travel, corresponding to the long axis direction of the liquid crystal molecules.
  • 3A when the liquid crystal display panel 1 is observed on the left side of the liquid crystal display panel 1, the observed light exits in the direction of arrow L, when the liquid crystal display panel 1 is observed on the right side of the liquid crystal display panel 1, the observed light When the liquid crystal display panel 1 is viewed from the front of the liquid crystal display panel 1, the observed light exits in the arrow F direction.
  • the effective paths of the liquid crystal molecules in the liquid crystal layer 14 through which the light passes may be different.
  • the effective path of light passing through the liquid crystal molecules is S 1 ; when viewed from the front side, the effective path of light passing through the liquid crystal molecules is S 2 ; when viewed from the right, the effective path of light passing through the liquid crystal molecules Is S 3 ; where S 1 >S 2 >S 3 .
  • n e corresponds to the long axis of the liquid crystal molecules, so there is ⁇ n1 ⁇ n2 ⁇ n3; among them, ⁇ n1 Is ⁇ n on the left, ⁇ n2 is ⁇ n on the front, and ⁇ n3 is ⁇ n on the right.
  • the range of changes between S 1 , S 2 , and S 3 is not the same as the range of changes between ⁇ n1, ⁇ n2, and ⁇ n3, so for the liquid crystal display panel 1, the left ⁇ n1 ⁇ S 1 ⁇ ⁇ n2 ⁇ S 2 ⁇ n3 ⁇ S 1 , so the color of the liquid crystal display panel 1 observed from the left side of the liquid crystal display panel 1 and the color of the liquid crystal display panel 1 observed from the right side of the liquid crystal display panel 1 are different, so The liquid crystal display panel 1 has a problem of color shift.
  • the liquid crystal display panel 1 in the related art has the problem of L0 light leakage and color shift.
  • the first base substrate 11 and the second base substrate 12 will produce non-uniform stress due to deformation.
  • the changes in the polarization state of the light will cancel each other out, and the optical The compensation layer 15 can forward or reversely compensate the change in the polarization state of the light from the liquid crystal layer 14, so that the light emitted from the second base substrate 12 is linearly polarized light, and when the light emitted from the second base substrate 12 is In the case of linearly polarized light, even if the liquid crystal display panel 1 is pressed, the linearly polarized light will not be emitted from the liquid crystal display panel 1. Therefore, the liquid crystal display panel 1 in the present disclosure does not have the problem of L0 light leakage.
  • the problem of L0 light leakage in the liquid crystal display panel 1 of the present disclosure is described as follows: Since the polarizer in the liquid crystal display panel 1 also affects the polarization state of light, in order to facilitate the analysis of the state of light in the liquid crystal display panel 1, it is necessary to The liquid crystal display panel 1 in the present disclosure further includes a first polarizer disposed on the side of the first base substrate 11 away from the liquid crystal layer 14 and a second polarizer disposed on the side of the second base substrate 12 away from the liquid crystal layer 14 Analyze under the circumstances.
  • the optical compensation layer 15 can positively compensate the liquid crystal layer 14 for light
  • the change of the polarization state, that is, the optical compensation layer 15 plays a role of positive compensation.
  • the light emitted from the backlight module passes through the first polarizer, and the polarization state is located at point O.
  • the light is linearly polarized light; After passing through the first base substrate 11, the polarization state is located at the point O 1 under the influence of the non-uniform stress.
  • the light is elliptically polarized light; after the light passes through the liquid crystal layer 14, it is retarded by the second liquid crystal molecular layer 140.
  • the polarization state is at the point O 2 , when the light is elliptically polarized light; after the light passes through the optical compensation layer 15, it is modulated by the phase retardation of the first liquid crystal molecular layer 150, and the polarization state is at the point O 3 , the point O 3 coincides with point O 1 , at this time the light is elliptically polarized light; after the light passes through the second base substrate 12, it is affected by the non-uniform stress, and the polarization state is at point O, at this time the light becomes linearly polarized light again , So that the light incident on the second polarizer is linearly polarized light.
  • the optical compensation Layer 15 can play a certain compensation role.
  • the optical compensation layer 15 can reversely compensate the change in the polarization state of the light by the liquid crystal layer 14, that is, optical compensation Layer 15 plays a role of reverse compensation.
  • the light emitted from the backlight module passes through the first polarizer, and the polarization state is at point O. At this time, the light is linearly polarized light; After passing through the first base substrate 11, the polarization state is located at the point O 1 under the influence of the non-uniform stress.
  • the light is elliptically polarized light; after the light passes through the liquid crystal layer 14, it is retarded by the second liquid crystal molecular layer 140.
  • modulation polarization state is located at a point O 2, this time line of light to elliptically polarized light; light after the optical compensation layer 15, liquid crystal molecules by the first phase retardation modulation layer 150, the polarization state is located at a point O 3, at this time
  • the light is elliptically polarized light, and the polarization state O 3 and the polarization state O 1 are coincident; after the light passes through the second base substrate 12, the polarization state is located at the point O due to the influence of the non-uniform stress, and the light changes again.
  • the optical compensation layer 15 can play a certain compensation role.
  • the optical compensation layer 15 when the optical compensation layer 15 is compensated in the forward direction, the polarization state O 1 , the polarization state O 2 and the polarization state O 3 rotate in the clockwise direction to form a circle; referring to FIG. 4B, when the optical compensation layer 15 is compensated in the reverse direction, Rotate in the counterclockwise direction from the polarization state O 1 to the polarization state O 2 , and rotate in the clockwise direction from the polarization state O 2 to the polarization state O 3 , and the amplitude of the rotation is the same, so that the polarization state O 3 returns to the polarization state O 1 Location. Therefore, using the optical compensation layer 15 to compensate the phase retardation of the liquid crystal layer 14 can solve the light leakage problem of the liquid crystal display panel 1 in the L0 state.
  • the retardation of the optical compensation layer 15 can be adjusted by adjusting the relevant parameters (such as refractive index properties and thickness) of the first liquid crystal molecular layer 150, thereby realizing the forward compensation or the reverse compensation of the optical compensation layer 15.
  • the present disclosure compensates for the phase retardation of the liquid crystal layer 14 forward or backward by adding the phase retardation generated by the optical compensation layer 15, so as to make the polarization state of the light emitted from the optical compensation layer 15 It can be moved from the point O 2 to the point O 3 , and the point O3 and the point O1 coincide, so as to solve the problem of light leakage in the positive viewing angle in the L0 state.
  • the optical compensation layer 15 can perform a certain compensation function under different viewing angles. Therefore, when the liquid crystal display panel 1 is viewed from the left and right sides, the leakage brightness of the liquid crystal display panel 1 in the present disclosure is relatively higher than that of the liquid crystal display in the related art.
  • the light leakage brightness of the panel 1 is also relatively small, and when viewing the LCD panel 1 from the left and right sides, the color shift can be used to measure the display effect of the LCD panel 1. Therefore, the degree of color shift of the LCD panel 1 in the present disclosure Compared with the related art, the color shift of the liquid crystal display panel 1 is lower, and the display effect is better.
  • the light leakage in the L0 state can be a phenomenon that occurs when viewing the liquid crystal display panel 1 at a front viewing angle, and the color shift can be when viewing the liquid crystal display panel 1 from the left or right side (side viewing angle) in the L0 state. It is a phenomenon that the color shift can only be perceived by the human eye due to light leakage. Therefore, while the present disclosure can reduce the brightness of the light leakage of the liquid crystal display panel 1, it can also reduce the brightness corresponding to the color shift, thereby improving the display effect of the liquid crystal display panel 1.
  • FIGS. 1H and 1I uses reverse compensation to solve the problem of light leakage at the front viewing angle in the L0 state.
  • the optical compensation layer 15 can perform a certain compensation function under different viewing angles. Therefore, when the liquid crystal display panel 1 is viewed from the left and right sides, the leakage brightness of the liquid crystal display panel 1 in the present disclosure is relatively higher than that of the liquid crystal display panel in the related art. The light leakage brightness of 1 is also relatively small.
  • the optical compensation layer 15 can improve the light leakage phenomenon in the L0 state, and rely on optical compensation The compensation effect of layer 15 at different viewing angles.
  • the leakage brightness of the liquid crystal display panel 1 in the present disclosure is also smaller than that of the liquid crystal display panel 1 in the related art.
  • the brightness of the leakage light is smaller, the brightness of the liquid crystal display panel 1 is lower.
  • the display difference between different display areas that the human eye can perceive is smaller and less obvious, that is to say, the smaller the brightness of the leakage light, the liquid crystal
  • the color shift of the display panel 1 during display is lighter. Therefore, the color shift of the liquid crystal display panel 1 in the present disclosure is lower than that of the liquid crystal display panel 1 in the related art, and the display effect is better.
  • the first pretilt angle ⁇ , the second pretilt angle ⁇ , and the third pretilt angle ⁇ are equal in magnitude.
  • the first pretilt angle ⁇ , the second pretilt angle ⁇ , and the third pretilt angle ⁇ are equal, which means that the degree of the pretilt angle is equal, and is equal to the alignment film (including the first alignment film 141, the second alignment film 142, and the third alignment film).
  • the alignment direction of the film 151) is irrelevant. Regardless of whether the alignment direction of the third alignment film 151 is the same as or perpendicular to the alignment directions of the first alignment film 141 and the second alignment film 142, the size of the third pretilt angle ⁇ can be set to the first pretilt angle ⁇ and the second pretilt angle
  • the magnitude of ⁇ is equal or approximately equal.
  • the difficulty of manufacturing each alignment film can be reduced.
  • the range of the first pretilt angle ⁇ , the second pretilt angle ⁇ , and the third pretilt angle ⁇ is 2° ⁇ 2°.
  • the range of the first pretilt angle ⁇ , the second pretilt angle ⁇ , and the third pretilt angle ⁇ is 2° ⁇ 1°.
  • the first pretilt angle ⁇ , the second pretilt angle ⁇ , and the third pretilt angle ⁇ are all 2°, for example.
  • the first pretilt angle ⁇ , the second pretilt angle ⁇ , and the third pretilt angle ⁇ are all 1° or 3°, for example.
  • the degrees of the first pretilt angle ⁇ , the second pretilt angle ⁇ , and the third pretilt angle ⁇ are all small, for example, 1°, even if the directions of the first pretilt angle ⁇ and the second pretilt angle ⁇ are different, they are actually close to
  • the long axis direction of the second liquid crystal molecules 140 ′ of the first alignment film 141 and the long axis direction of the second liquid crystal molecules 140 ′ close to the second alignment film 142 are also substantially parallel.
  • the alignment direction of the third alignment film 151 is the same as the alignment direction of the first alignment film 141, the long axis direction of the first liquid crystal molecules 150' and the long axis direction of the second liquid crystal molecules 140' are also approximately the same;
  • the alignment direction of the third alignment film 151 is perpendicular to the alignment direction of the first alignment film 141, the long axis direction of the first liquid crystal molecules 150' and the long axis direction of the second liquid crystal molecules 140' are substantially perpendicular.
  • the long axis direction of the first liquid crystal molecule 150' is parallel to the long axis direction of the second liquid crystal molecule 140', so that the optical compensation layer 15 can realize positive compensation for the liquid crystal layer 14;
  • the long axis of the first liquid crystal molecule 150' The direction is perpendicular to the long axis direction of the second liquid crystal molecule 140', so that the optical compensation layer 15 can realize reverse compensation for the liquid crystal layer 14.
  • Both forward compensation and reverse compensation can improve the appearance of the liquid crystal display panel 1 in the L0 state.
  • the long axis of the second liquid crystal molecule 140' is in the plane of the first alignment film 141 or the second alignment film 142 or the third alignment film 151
  • the orthographic projections are along the first direction.
  • the third pretilt angle ⁇ when the alignment direction of the third alignment film 151 is the same as that of the first alignment film 141 and the second alignment film 142, the long axis of the first liquid crystal molecule 150' is in the first alignment film 141 Or the orthographic projection in the plane of the second alignment film 142 or the third alignment film 151 is also along the first direction; when the alignment direction of the third alignment film 151 is perpendicular to the first alignment film 141 and the second alignment film 142, the first The orthographic projections of the long axis of the liquid crystal molecules 150 ′ on the plane where the first alignment film 141 or the second alignment film 142 or the third alignment film 151 are located are all along the second direction.
  • first pretilt angle ⁇ the normal operation of the liquid crystal layer 14 and the optical compensation layer 15 can be ensured, and the production of the first pretilt angle can be reduced.
  • Process requirements for ⁇ , the second pretilt angle ⁇ , and the third pretilt angle ⁇ are different in size, the normal operation of the liquid crystal layer 14 and the optical compensation layer 15 can be ensured, and the production of the first pretilt angle can be reduced.
  • the X axis is the optical axis of the second liquid crystal molecules in the second liquid crystal molecule layer 140. It should be noted that when the X-axis and the second liquid crystal molecule layer 140 have a small inclination angle (for example, an inclination angle within 5°), it can also be considered that the X axis is located in the plane of the second liquid crystal molecule layer 140.
  • the in-plane retardation R OLC of the second liquid crystal molecular layer 140 (n xLC ⁇ n yLC ) ⁇ d LC .
  • the in-plane retardation of the second liquid crystal molecular layer 140 can be understood as the actual retardation when light passes through the second liquid crystal molecular layer 140 in the normal direction (vertical direction).
  • the in-plane retardation of the second liquid crystal molecular layer 140 can be regarded as the in-plane retardation of the liquid crystal layer 14.
  • the optical compensation layer 15 includes a first liquid crystal molecule layer 150.
  • the X 1 axis is the optical axis of the first liquid crystal molecule layer 150. It should be noted that when the X 1 axis and the first liquid crystal molecule layer 150 have a small inclination angle (for example, an inclination angle within 5°), it can also be considered that the X 1 axis is located in the plane of the first liquid crystal molecule layer 150. It is understandable that when the X 1 axis and the first liquid crystal molecule layer 150 have a small inclination angle, there will be a certain difference between n y1 and n z1 . Taking the above into consideration, n y1 can be equal to or approximately equal to n z1. .
  • the in-plane retardation R O1 of the first liquid crystal molecular layer 150 (n x1 ⁇ n y1 ) ⁇ d 1 , where n x1 is the refractive index in the X 1 axis direction in the plane of the first liquid crystal molecular layer 150 , and n y1 is The refractive index in the Y 1 axis direction perpendicular to the X 1 axis in the plane of the first liquid crystal molecule layer 150, and d 1 is the thickness of the first liquid crystal molecule layer 150.
  • R O1 is the in-plane retardation of the first liquid crystal molecular layer 150, which can be understood as the actual retardation when light passes through the first liquid crystal molecular layer 150 in the normal direction (vertical direction). It can be understood that the phase retardation of the optical compensation layer 15 is played by the first liquid crystal molecular layer 150, and the in-plane retardation of the first liquid crystal molecular layer 150 can be regarded as the in-plane retardation of the optical compensation layer 15. On this basis, it can be understood that the optical compensation layer 15 can be regarded as a +A compensation film layer.
  • the direction of the orthographic projection of the long axis of the first liquid crystal molecule 150' on the plane of the first alignment film 141 and the orthographic projection of the long axis of the second liquid crystal molecule 140' on the plane of the third alignment film 151 When the directions are parallel, the sum of the in-plane retardation of the optical compensation layer 15 and the in-plane retardation of the liquid crystal layer 14 is equal to a positive integer multiple of the first wavelength; the range of the first wavelength is 535nm ⁇ 50nm.
  • the optical compensation layer 15 plays a role of positive compensation. Therefore, the transmittance of light in the liquid crystal display panel 1 can be controlled by controlling the sum of the in-plane retardation of the optical compensation layer 15 and the liquid crystal layer 14.
  • the in-plane retardation of the optical compensation layer 15 can be made the same as the in-plane retardation of the liquid crystal layer 14.
  • the sum of the retardations is equal to a positive integer multiple of the first wavelength.
  • the range of the first wavelength is 535nm ⁇ 50nm, that is, the minimum value of the first wavelength is 485nm, the maximum value is 585nm, and the median value is 535nm.
  • the sum of the in-plane retardation of the optical compensation layer 15 and the in-plane retardation of the liquid crystal layer 14 is 535nm, it not only makes the liquid crystal display panel 1 in the L0 state, significantly reduces the light leakage of the front viewing angle and the side viewing angle, but also enables the side view
  • the light leakage appears blue. Compared with red, yellow, green and other color casts, the bluish cast is more acceptable. Therefore, setting the first wavelength range at 535nm ⁇ 50nm further improves the display effect.
  • the direction of the orthographic projection of the long axis of the first liquid crystal molecule 150' on the plane of the first alignment film 141 and the direction of the long axis of the second liquid crystal molecule 140' on the plane of the third alignment film 151 are positive.
  • the range of the in-plane retardation of the optical compensation layer 15 is 185 nm ⁇ 25 nm; the range of the in-plane retardation of the liquid crystal layer 14 is 350 nm ⁇ 25 nm.
  • the minimum value of the in-plane retardation of the optical compensation layer 15 is, for example, 160 nm, the maximum value is, for example, 210 nm, and the median value is, for example, 185 nm; the minimum value of the in-plane retardation of the liquid crystal layer 14 is, for example, 325 nm, and the maximum value is, for example, 375 nm.
  • the value is 350 nm, for example.
  • the sum of the in-plane retardation of the optical compensation layer 15 and the in-plane retardation of the liquid crystal layer 14 is equal to a positive integer multiple of the first wavelength; the range of the first wavelength is 535nm ⁇ 25nm.
  • the sum of the in-plane retardation of the optical compensation layer 15 and the in-plane retardation of the liquid crystal layer 14 is equal to a positive integer multiple of the first wavelength; the first wavelength is 535 nm.
  • the direction of the orthographic projection of the long axis of the first liquid crystal molecule 150' on the plane of the first alignment film 141 and the direction of the long axis of the second liquid crystal molecule 140' on the plane of the third alignment film 151 When the directions of the orthographic projection are parallel, the range of the in-plane retardation of the optical compensation layer 15 is 160 nm to 240 nm, and the range of the in-plane retardation of the liquid crystal layer 14 is 350 nm ⁇ 25 nm.
  • the in-plane retardation of the optical compensation layer 15 is, for example, any one of 160 nm, 180 nm, 200 nm, 220 nm, and 240 nm.
  • the in-plane retardation of the optical compensation layer 15 is in the range of 160 nm to 240 nm, the positive compensation effect of the optical compensation layer 15 is better, and the appropriate in-plane retardation of the liquid crystal layer 14 can be matched to provide a variety of optical compensation layers.
  • the combination of 15 and the liquid crystal layer 14 ultimately ensures that the liquid crystal display panel 1 has a better display effect.
  • the optical compensation layer 15 When the optical compensation layer 15 is used for forward compensation, the requirements for in-plane retardation are introduced, and when the optical compensation layer 15 is used for reverse compensation, the requirements for in-plane retardation are introduced below.
  • the direction of the orthographic projection of the long axis of the first liquid crystal molecule 150' on the plane where the third alignment film 151 is and the long axis of the second liquid crystal molecule 140' on the plane where the third alignment film 151 is located is positive.
  • the optical compensation layer 15 will perform a reverse compensation function.
  • the in-plane retardation of the optical compensation layer 15 is equal to the in-plane retardation of the liquid crystal layer 14.
  • the optical compensation layer 15 plays the role of reverse compensation, when the in-plane retardation of the optical compensation layer 15 is equal to the in-plane retardation of the liquid crystal layer 14, the optical compensation layer 15 can completely offset the liquid crystal layer. 14 Influence on the polarization state of light.
  • the range of the in-plane retardation of the liquid crystal layer 14 is, for example, 580 nm to 620 nm.
  • the in-plane retardation of the liquid crystal layer 14 is any one of 580 nm, 590 nm, 600 nm, 610 nm, or 620 nm.
  • the in-plane retardation of the liquid crystal layer 14 and the optical compensation layer 15 is relatively close to the wavelengths of red and green light, which makes The liquid crystal layer 14 and the optical compensation layer 15 have low transmittances relative to red and green light. That is, setting the in-plane retardation of the liquid crystal layer 14 and the optical compensation layer 15 to 580 nm to 620 nm can relatively reduce red light and The amount of green light passing through.
  • the wavelength range of blue light is 440 nm to 475 nm, which is quite different from the setting range of the in-plane retardation of the liquid crystal layer 14 and the optical compensation layer 15, which makes the transmittance of blue light relatively higher.
  • the color of the liquid crystal display panel 1 is blue regardless of whether the liquid crystal display panel 1 is viewed from the left side or the liquid crystal display panel 1 is viewed from the right side. This enables the liquid crystal display panel 1 to further avoid the problem of color shift.
  • the in-plane retardation of the above-mentioned liquid crystal layer 14 is any one of 580 nm, 590 nm, 600 nm, 610 nm, or 620 nm.
  • the value is relatively close to the wavelength of red or green light, which makes the liquid crystal display panel 1 have the best display effect when the in-plane retardation of the liquid crystal layer 14 is 600 nm. .
  • optical compensation layer 15 can also be a +B compensation layer or other compensation layers that can play the same role as the optical compensation 15 in the present application.
  • the third alignment film 151 is disposed on the side of the first base substrate 11 close to the liquid crystal layer 14.
  • the third alignment film 151 is disposed on the side of the first base substrate 11 away from the liquid crystal layer 14.
  • the third alignment film 151 is disposed on the side of the second base substrate 12 close to the liquid crystal layer 14.
  • the third alignment film 151 is disposed on the side of the second base substrate 12 away from the liquid crystal layer 14.
  • the alignment direction of the third alignment film 151 is the same as the alignment direction of the first alignment film 141 and the second alignment film 142.
  • the third alignment film 151 is disposed on the side of the second base substrate 12 close to the liquid crystal layer 14.
  • the alignment direction of the third alignment film 151 is perpendicular to the alignment direction of the first alignment film 141 and the second alignment film 142.
  • the first liquid crystal molecules 150' in the optical compensation layer 15 are cured in the optical compensation layer 15.
  • the position and pretilt angle of the first liquid crystal molecules 150' are fixed and are not affected by the electric field in the liquid crystal display panel 1.
  • the position of the optical compensation layer 15 can be changed according to different design requirements, process requirements, etc., to improve the adaptability of the optical compensation layer 15 to different liquid crystal display panels 1.
  • the optical compensation layer 15 further includes a third base substrate 13, and the third base substrate 13 and the third alignment film 151 are located on the same side of the first liquid crystal molecule layer 150 or on different sides. side.
  • the material of the third base substrate 13 is the same as the materials of the first base substrate 11 and the second base substrate 12, for example.
  • the thickness of the third base substrate 13 is less than or equal to the thickness of the first base substrate 11 and/or the second base substrate 12.
  • the third base substrate 13 and the third alignment film 151 are respectively located on both sides of the first liquid crystal molecular layer 150, wherein, in FIG. 6A, the alignment direction of the third alignment film 151 and the first alignment The alignment directions of the film 141 and the second alignment film 142 are the same; in FIG. 6B, the alignment direction of the third alignment film 151 is perpendicular to the alignment direction of the first alignment film 141 and the second alignment film 142.
  • the third alignment film 151 is located on the third base substrate 13, that is, the third alignment film 151 and the third base substrate 13 are located on the same side of the first liquid crystal molecular layer 150, where the third alignment film
  • the alignment direction of 151 is the same as the alignment direction of the first alignment film 141 and the second alignment film 142.
  • the third alignment film 151 is located on the third base substrate 13, that is, the third alignment film 151 and the third base substrate 13 are located on the same side of the first liquid crystal molecule layer 150, wherein the third alignment film The alignment direction of the film 151 is perpendicular to the alignment direction of the first alignment film 141 and the second alignment film 142.
  • the third base substrate 13 After the third base substrate 13 is provided in the liquid crystal display panel 1, on the one hand, when the third alignment film 151 and the third base substrate 13 are located on different sides of the first liquid crystal molecular layer 150, the third base substrate 13 has The flattening effect facilitates the subsequent production of other layers on the side of the third base substrate 13 away from the first liquid crystal molecule layer 150, for example, the production of the second alignment film 142; on the other hand, when the third alignment film 151 and the third substrate When the substrate 13 is on the same side, when the third alignment film 151 is made, it can be directly fabricated on the third base substrate 13, and then the third base substrate 13 and the second base substrate 12 are aligned and injected into the second base substrate.
  • a liquid crystal molecule 150' forms the first liquid crystal molecule layer 150, so that the third alignment film 151 can be manufactured independently, and the process conditions (such as high temperature) in the process of making the third alignment film 151 will not affect the first base substrate 11 or another film layer that has been fabricated on the second base substrate 12, the other film layer is, for example, a thin film transistor layer.
  • the third alignment film 151 and the second alignment film 142 are disposed on opposite sides of the third base substrate 13.
  • the opposite sides of the third base substrate 13 are, for example, the upper surface and the lower surface of the third base substrate 13.
  • the third alignment film 151 and the second alignment film 142 are disposed on opposite sides of the third base substrate 13, it is convenient to directly fabricate the third alignment film 151 and the second alignment film 142 on the third base substrate 13, so that the first
  • the preparation processes of the tri-alignment film 151 and the second alignment film 142 are relatively independent from the preparation of other structures in the liquid crystal display panel 1 (for example, the second base substrate 12 and the second base substrate 12). Since other film layers often need to be fabricated on the first base substrate 11 and the second base substrate 12, for example, a thin film transistor layer needs to be fabricated on the first base substrate 11, and a thin film transistor layer needs to be fabricated on the second base substrate 12.
  • the preparation process of the third alignment film 151 and the second alignment film 142 is independent of other structures in the liquid crystal display panel 1, on the one hand, the preparation efficiency of the liquid crystal display panel 1 can be improved, and on the other hand, the production efficiency of the liquid crystal display panel 1 can be improved.
  • Other structures are affected when the third alignment film 151 and the second alignment film 142 are made.
  • the optical compensation layer 15 further includes a fourth alignment film 152, and the fourth alignment film 152 is disposed on the side of the third base substrate 13 away from the liquid crystal layer 14 or the second The base substrate 12 is close to the side of the liquid crystal layer 14.
  • the fourth alignment film 152 is configured to anchor a portion of the first liquid crystal molecules 150' close to the first liquid crystal molecule layer 150, so that a portion of the first liquid crystal molecules 150' close to the fourth alignment film 152 generates a fourth pretilt angle ⁇ ;
  • the alignment direction of the fourth alignment film 152 is the same as the alignment direction of the third alignment film 151, and the direction of the fourth pretilt angle ⁇ is opposite or the same as the direction of the third pretilt angle ⁇ .
  • the fourth alignment film 152 is disposed on the side of the third base substrate 13 away from the liquid crystal layer 14, and the third alignment film 151 is disposed on the side of the first base substrate 11 close to the liquid crystal layer 14, that is, The third alignment film 151 and the fourth alignment film 152 are opposed to each other.
  • the third alignment film 151 is disposed on the side of the third base substrate 13 away from the liquid crystal layer 14, and the fourth alignment film 152 is disposed on the second base substrate 12 close to the liquid crystal.
  • the alignment direction of the fourth alignment film 152 is the same as the alignment direction of the third alignment film 151, and the alignment direction of the third alignment film 151 can be the same as the alignment directions of the first alignment film 141 and the second alignment film 142.
  • the alignment direction of the alignment film 151 is along the first direction; it can also be perpendicular to the alignment direction of the first alignment film 141 and the second alignment film 142.
  • the alignment direction of the third alignment film 151 is along the second direction, so the fourth The alignment direction of the alignment film 152 includes two structures along the first direction and along the second direction. 6E and FIG. 6F take as an example that the alignment direction of the third alignment film 151 is the same as the alignment directions of the first alignment film 141 and the second alignment film 142.
  • the third alignment film 151 and the fourth alignment film 152 simultaneously anchor the one For the first liquid crystal molecules 150', the fourth pretilt angle ⁇ is equal to the third pretilt angle ⁇ , and the directions are the same.
  • the fourth alignment film 152 can increase the anchoring force to the first liquid crystal molecules 150', and further fix the position of the first liquid crystal molecules 150' to be constant.
  • the third alignment film 151 can anchor a portion of the first liquid crystal molecules close to it.
  • the fourth alignment film 152 can anchor a portion of the first liquid crystal molecules 150' close to it, the fourth pretilt angle ⁇ is equal to or approximately the same as the third pretilt angle ⁇ , and the direction of the fourth pretilt angle ⁇ is the same as that of the third pretilt angle ⁇ .
  • the directions of the third pretilt angle ⁇ are the same, the arrangement directions of the first liquid crystal molecules 150 ′ in the entire first liquid crystal molecule layer 150 are the same or approximately the same.
  • the first liquid crystal molecules 150' when the direction of the fourth pretilt angle ⁇ and the direction of the third pretilt angle ⁇ are opposite, when the liquid crystal display panel 1 is viewed from different viewing angles, the first liquid crystal molecules 150' at different positions in the first liquid crystal molecule layer 150 The phase difference can be equal or nearly equal, and the polarization state is the same, so that the ability of the liquid crystal display panel 1 to improve color shift can be further improved. Since the fourth alignment film 152 is used in conjunction with the third alignment film 151, the first liquid crystal molecule 150' can have a multi-layer structure, so that the types of liquid crystal molecules that can be used as the first liquid crystal molecule 150' increase. To a certain extent, the production cost of the liquid crystal display panel 1 can also be reduced.
  • the fourth alignment film 152 and the second alignment film 142 are disposed on opposite sides of the third base substrate 13.
  • the fourth alignment film 152 and the second alignment film 142 are fabricated on the third substrate, and the fabrication process is relatively simple.
  • the third alignment film 151 is disposed on the side of the second base substrate 12 close to the liquid crystal layer 14.
  • the first liquid crystal molecular layer 150 is also provided with a flat layer 16 on the side close to the liquid crystal layer 14.
  • the second alignment film 142 is disposed on the side of the flat layer 16 close to the liquid crystal layer 14.
  • the planarization layer 16 is also called an OC (overcoat) layer.
  • the material of the planarization layer 16 can be organic, such as polyimide.
  • the planarization layer 16 mainly plays a role of planarization.
  • the first liquid crystal molecule layer 150 is far away from the second substrate. After the flat layer 16 is provided on one side of the substrate 12, a relatively flat surface can be provided for subsequent production of the second alignment film 142, and the quality of the second alignment film 142 can be improved.
  • the thickness of the first alignment film 141, the second alignment film 142, the third alignment film 151, and the fourth alignment film 152 ranges from 0.01 ⁇ m to 10 ⁇ m, for example.
  • each alignment film (including the first alignment film 141 to the fourth alignment film 152) within the above-mentioned thickness range is small, which is beneficial to realize the thinner and lighter of the liquid crystal display panel 1.
  • the first pretilt angle ⁇ , the second pretilt angle ⁇ , the third pretilt angle ⁇ , and the fourth pretilt angle ⁇ are equal in magnitude.
  • the range of the first pretilt angle ⁇ , the second pretilt angle ⁇ , the third pretilt angle ⁇ , and the fourth pretilt angle ⁇ is 2° ⁇ 2°.
  • the first pretilt angle ⁇ , the second pretilt angle ⁇ , the third pretilt angle ⁇ , and the fourth pretilt angle ⁇ are all equal to 2°.
  • the magnitudes of the first pretilt angle ⁇ , the second pretilt angle ⁇ , the third pretilt angle ⁇ , and the fourth pretilt angle ⁇ are all equal to 4°.
  • first pretilt angle ⁇ the second pretilt angle ⁇
  • third pretilt angle ⁇ the fourth pretilt angle ⁇
  • fourth pretilt angle ⁇ the fourth pretilt angle ⁇
  • the foregoing description of the directions of each pretilt angle is based on the relative position of each pretilt angle in the liquid crystal display panel 1.
  • the specific values of the first pretilt angle ⁇ , the second pretilt angle ⁇ , the third pretilt angle ⁇ , and the fourth pretilt angle ⁇ can be selected according to actual needs and process conditions, so as to reduce the manufacturing difficulty of the liquid crystal display panel 1 process.
  • the first base substrate 11 is, for example, a substrate in an array substrate
  • the second base substrate 12 is, for example, a substrate in a color filter substrate.
  • the state of the liquid crystal display panel 1 shown in FIGS. 6A to 6G and FIG. 7 is the state of the liquid crystal display panel 1 when no voltage is applied.
  • a functional film layer 17 is further provided on the first base substrate 11; the functional film layer 17 and the optical compensation layer 15 are disposed on opposite sides of the liquid crystal layer 14; or The film layer 17 and the liquid crystal layer 14 are disposed on opposite sides of the optical compensation layer 15.
  • the functional film layer 17 includes, for example, a thin film transistor layer, a pixel electrode layer, a common electrode layer, a data line, an insulating layer, etc.
  • the specific positions and specific structures of each film layer in the functional film layer 17 are determined according to different design requirements. This is not limited.
  • the positions of the functional film layer 17, the liquid crystal layer 14, and the optical compensation layer 15 can be selected according to requirements when the normal operation of the liquid crystal display panel 1 can be ensured, so that the position of each film layer in the liquid crystal display panel 1 is set more flexible.
  • the thin film transistor layer 170 in the functional film layer 17 is disposed on the side of the first base substrate 11 close to the liquid crystal layer 14.
  • the thin film transistor layer 170 includes a plurality of thin film transistors, and the source and The drain and the data line 171 are made of the same conductive material and the same layer; on the side of the data line 171 away from the first base substrate 11, a first insulating layer 172, a common electrode layer 173, a second insulating layer 174, and pixels are stacked in sequence.
  • the electrode layer 175 and the third insulating layer 176 wherein the pixel electrode layer 175 includes a plurality of strip electrodes spaced apart from each other, the common electrode layer 173 includes a common electrode in a planar structure, and both the pixel electrode and the common electrode are transparent;
  • the material of the insulating layer 172, the second insulating layer 174, and the third insulating layer 176 may be an inorganic material, such as at least one of silicon oxide and silicon nitride, or an organic material, such as polyimide. The present disclosure There is no restriction on this.
  • the pixel electrode layer 175 is closer to the liquid crystal layer 14 than the common electrode layer 173, so the pixel electrode has a striped structure and the common electrode has a planar structure.
  • the common electrode layer 173 is closer to the liquid crystal layer 14 than the pixel electrode layer 175, so the common electrode has a striped structure, and the pixel electrode has a planar structure.
  • both the pixel electrode and the common electrode have a strip structure.
  • the liquid crystal display panel 1 further includes a first polarizer 18 and a second polarizer 19, and the polarization direction of the first polarizer 18 and the polarization direction of the second polarizer 19 are perpendicular to each other. Or roughly perpendicular to each other.
  • the first polarizer 18 is disposed on the side of the first base substrate 11 away from the liquid crystal layer 14, and the second polarizer 19 is disposed on the side of the second base substrate 12 away from the liquid crystal layer 14.
  • the first polarizer 18 and the second polarizer 19 are used to change the polarization state of light.
  • the first polarizer 18 is used to make the light emitted from the backlight module become linearly polarized light
  • the second polarizer 19 is used to polarize it. Light rays in the same direction appear.
  • Those skilled in the art can understand that when the liquid crystal display panel 1 is in the L0 state, the direction of the linearly polarized light incident on the second polarizer 19 is perpendicular to the polarization direction of the second polarizer 19, so the linear Polarized light cannot be emitted from the second polarizer 19.
  • an embodiment of the present disclosure further provides a method for manufacturing the liquid crystal display panel 1, including:
  • a first alignment film 141 is formed on one side of the first base substrate 11.
  • the material of the first alignment film 141 is, for example, polyimide.
  • the polyimide is coated on the first base substrate 11 by coating, and then the alignment rubbing process of the first alignment film 141 is performed. The process can determine the alignment direction of the first alignment film 141 and the magnitude and direction of the first pretilt angle ⁇ .
  • a third alignment film 151 is formed on one side of the second base substrate 12.
  • the alignment direction of the third alignment film 151 formed is the same as or perpendicular to the alignment direction of the first alignment film 141.
  • the alignment direction of the third alignment film 151 is the same as the alignment direction of the first alignment film 141, that is, along the first direction; referring to Figs. 1H to 1I, the alignment direction of the third alignment film 151 is the same as that of the first alignment film 141.
  • the alignment direction of one alignment film 141 is vertical, that is, the alignment direction of the third alignment film 151 is along the second direction.
  • a first liquid crystal molecule layer 150 is formed on the third alignment film 151 and cured, so that the first liquid crystal molecule 150' in the first liquid crystal molecule layer 150 has a third pretilt angle ⁇ .
  • the first liquid crystal molecule 150 ′ For example, by adding a polymer, such as a photopolymer or a thermal polymer, to the first liquid crystal molecule 150 ′, and then curing the polymer by ultraviolet light, heating, etc., the first liquid crystal molecule layer 150 is cured.
  • a polymer such as a photopolymer or a thermal polymer
  • the alignment direction of the second alignment film 142 formed is the same as the alignment direction of the first alignment film 141.
  • the alignment directions of the first alignment film 141 and the second alignment film 142 are both along the first direction.
  • S5. Pair the first base substrate 11 on which the first alignment film 141 is formed and the second base substrate 12 on which the second alignment film 142 is formed, and place between the first alignment film 141 and the second alignment film 142 A second liquid crystal molecule layer 140 is formed; wherein a portion of the second liquid crystal molecules 140' in the second liquid crystal molecule layer 140 close to the first alignment film 141 has a first pretilt angle ⁇ , and the second liquid crystal molecule layer 140 is close to the second alignment film A part of the second liquid crystal molecules 140' of 142 has a second pretilt angle ⁇ ; the direction of the first pretilt angle ⁇ is opposite to the direction of the second pretilt angle ⁇ ; and the long axis of the second liquid crystal molecule 140' is located at the third alignment film 151
  • the direction of the orthographic projection of the plane is parallel or perpendicular to the direction of the ortho
  • the long axis of the second liquid crystal molecule 140' is in the same direction as the orthographic projection on the plane where the third alignment film 151 is located.
  • the long axis of the first liquid crystal molecule 150' is parallel to the direction of the orthographic projection of the plane where the third alignment film 151 is located; when the alignment direction of the third alignment film 151 is perpendicular to the alignment direction of the first alignment film 141 and the second alignment film 142
  • the direction of the orthographic projection of the long axis of the second liquid crystal molecule 140' on the plane of the third alignment film 151 is perpendicular to the direction of the orthographic projection of the long axis of the first liquid crystal molecule 150' on the plane of the third alignment film 151.
  • the direction of the first pretilt angle ⁇ is opposite to the direction of the second pretilt angle ⁇ .
  • the direction of the third pretilt angle ⁇ is the same as the direction of the first pretilt angle ⁇ or the second pretilt angle ⁇ In the same direction.
  • the direction of the third pretilt angle ⁇ is the direction of the first pretilt angle ⁇
  • the second pretilt angle ⁇ The directions are perpendicular to each other.
  • the first liquid crystal molecule 150' and the second liquid crystal molecule 140' may be the same liquid crystal molecule or different kinds of liquid crystal molecules, and only need to meet the design requirements of the liquid crystal display panel 1 in the present disclosure. limited.
  • the manufacturing method of the above-mentioned liquid crystal display panel 1 has the same beneficial effects as the above-mentioned liquid crystal display panel 1, so it will not be repeated here.
  • the method for manufacturing the liquid crystal display panel 1 further includes:
  • a flat layer 16 is formed on the first liquid crystal molecule layer 150.
  • the flat layer 16 can make the surface of the first liquid crystal molecule layer 150 close to the liquid crystal layer 14 more flat, which facilitates the subsequent preparation of the second alignment film 142 on the flat layer 16.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示面板及其制备方法、显示装置,涉及显示技术领域。液晶显示面板包括:相对设置的第一衬底基板和第二衬底基板、液晶层和光学补偿层。其中,液晶层包括第一配向膜、第二配向膜和第二液晶分子层;第一配向膜配置为使与其靠近的部分第二液晶分子产生第一预倾角;第二配向膜配置为使与其靠近的部分第二液晶分子产生第二预倾角;第一预倾角的方向与第二预倾角的方向相反。光学补偿层包括第三配向膜和第一液晶分子层;第三配向膜配置为使与其靠近的第一液晶分子产生第三预倾角;第一液晶分子的长轴在第三配向膜所在平面的正投影的方向与第二液晶分子的长轴在第三配向膜所在平面的正投影的方向平行或垂直。

Description

液晶显示面板及其制备方法、显示装置
本申请要求于2020年01月10日提交的、申请号为202020053145.9的中国专利申请和于2020年04月09日提交的、申请号为202010276034.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种液晶显示面板及其制备方法、显示装置。
背景技术
液晶显示器(Liquid Crystal Display,简称LCD)具有体积小、功耗低、无辐射等特点,在当前的显示器市场中占据主导地位。液晶显示面板主要包括彩膜(Color Filter,简称CF)基板、阵列(Array)基板以及设置于彩膜基板和阵列基板之间的液晶层。
发明内容
一方面,提供一种液晶显示面板。所述液晶显示面板包括:相对设置的第一衬底基板和第二衬底基板、液晶层和光学补偿层。所述液晶层,设置于所述第一衬底基板和所述第二衬底基板之间;所述液晶层包括相对设置的第一配向膜和第二配向膜、以及位于所述第一配向膜和所述第二配向膜之间的第二液晶分子层;所述第一配向膜配置为锚定所述第二液晶分子层中与其靠近的部分第二液晶分子,使与所述第一配向膜靠近的部分所述第二液晶分子产生第一预倾角;所述第二配向膜配置为锚定所述第二液晶分子层中与其靠近的部分第二液晶分子,使与第二配向膜靠近的部分所述第二液晶分子产生第二预倾角;所述第一预倾角的方向与所述第二预倾角的方向相反。所述光学补偿层设置于所述第一配向膜或所述第二配向膜远离所述第二液晶分子层的一侧;所述光学补偿层包括第三配向膜和第一液晶分子层;所述第三配向膜配置为锚定所述第一液晶分子层中与其靠近的第一液晶分子,使与第三配向膜靠近的所述第一液晶分子产生第三预倾角;所述第一液晶分子的长轴在所述第三配向膜所在平面的正投影的方向与所述第二液晶分子的长轴在所述第三配向膜所在平面的正投影的方向平行或垂直。
在一些实施例中,在所述第一液晶分子的长轴在所述第三配向膜所在平面的正投影的方向与所述第二液晶分子的长轴在所述第三配向膜所在平面的正投影的方向平行的情况下;所述第三预倾角的方向与所述第一预倾角的方向或所述第二预倾角的方向相同。
在一些实施例中,在所述第一液晶分子的长轴在所述第三配向膜所在平面的正投影的方向与所述第二液晶分子的长轴在所述第三配向膜所在平面的正投影的方向平行的情况下,所述光学补偿层的面内延迟与所述液晶层的面内延迟之和等于第一波长的正整数倍;所述第一波长的范围为535nm±50nm。
在一些实施例中,所述光学补偿层的面内延迟的范围为185nm±25nm;所述液晶层的面内延迟的范围为350nm±25nm。
在一些实施例中,在所述第一液晶分子的长轴在所述第三配向膜所在平面的正投影的方向与所述第二液晶分子的长轴在所述第三配向膜所在平面的正投影的方向平行的情况下,所述光学补偿层的面内延迟的范围为160nm~240nm,所述液晶层的面内延迟的范围为350nm±25nm。
在一些实施例中,在所述第一液晶分子的长轴在所述第三配向膜所在平面的正投影的方向与所述第二液晶分子的长轴在所述第三配向膜所在平面的正投影的方向垂直的情况下,所述光学补偿层的面内延迟与所述液晶层的面内延迟相等。
在一些实施例中,所述液晶层的面内延迟的范围为580nm~620nm。
在一些实施例中,所述液晶层的面内延迟为580nm、590nm、600nm、610nm或620nm中的任一个。
在一些实施例中,所述第三配向膜设置于所述第一衬底基板靠近所述液晶层的一侧。
或者,在一些实施例中,第三配向膜设置于第一衬底基板远离液晶层的一侧。
或者,在一些实施例中,所述第三配向膜设置于所述第二衬底基板靠近所述液晶层的一侧。
或者,在一些实施例中,所述第三配向膜设置于所述第二衬底基板远离所述液晶层的一侧。
在一些实施例中,所述光学补偿层还包括第三衬底基板,所述第三衬底基板和所述第三配向膜位于所述第一液晶分子层的同侧或者异侧。
在一些实施例中,所述第三配向膜和所述第二配向膜设置于所述第三衬底基板的相对两侧。
在一些实施例中,所述光学补偿层还包括第四配向膜,所述第四配向膜设置于所述第三衬底基板远离所述液晶层的一侧或者设置于所述第二衬底基板靠近所述液晶层的一侧;所述第四配向膜配置为锚定所述第一液晶分子层中与其靠近的部分所述第一液晶分子,使与第四配向膜靠近的部分所述第一 液晶分子产生第四预倾角;所述第四预倾角的方向与所述第三预倾角的方向相反或相同。
在一些实施例中,所述第四配向膜和所述第二配向膜设置于所述第三衬底基板的相对两侧。
在一些实施例中,所述第三配向膜设置于所述第二衬底基板靠近所述液晶层的一侧,所述第一液晶分子层靠近所述液晶层的一侧还设有平坦层,所述第二配向膜设置于所述平坦层靠近所述液晶层的一侧。
在一些实施例中,所述第一配向膜的配向方向与所述第二配向膜的配向方向相同。
在一些实施例中,所述光学补偿膜层为+A补偿膜层。
在一些实施例中,所述第一预倾角、所述第二预倾角和所述第三预倾角的大小相等。
在一些实施例中,所述第一预倾角、所述第二预倾角和所述第三预倾角的大小范围为2°±2°。
在一些实施例中,所述第一预倾角、所述第二预倾角和所述第三预倾角的范围为2°±1°。
在一些实施例中,所述第一衬底基板上还设有功能膜层;所述功能膜层与所述光学补偿层设置于所述液晶层的相对两侧;或者,所述功能膜层与所述液晶层设置于所述光学补偿层的相对两侧。
在一些实施例中,所述第二液晶分子为负性液晶分子。
另一方面,提供一种显示装置。所述显示装置包括:如上述任一实施例所述的显示面板。
又一方面,提供一种液晶显示面板的制备方法,包括:在第一衬底基板的一侧形成第一配向膜。
在第二衬底基板的一侧形成第三配向膜。
在第三配向膜上形成第一液晶分子层并固化,使所述第一液晶分子层中的第一液晶分子具有第三预倾角。
在所述第一液晶分子层上形成第二配向膜。
将形成有所述第一配向膜的所述第一衬底基板和形成有所述第二配向膜的所述第二衬底基板对盒,并在所述第一配向膜和所述第二配向膜之间形成第二液晶分子层;其中,所述第二液晶分子层中靠近所述第一配向膜的部分第二液晶分子具有第一预倾角,所述第二液晶分子层中靠近所述第二配向膜的部分第二液晶分子具有第二预倾角,所述第一预倾角的方向与所述第二预 倾角的方向相反;且所述第二液晶分子的长轴在所述第三配向膜所在平面的正投影的方向与所述第一液晶分子的长轴在所述第三配向膜所在平面的正投影的方向平行或垂直。
在一些实施例中,在所述第一液晶分子层上形成所述第二配向膜之前,所述制备方法还包括:在所述第一液晶分子层上形成平坦层。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1A为本公开实施例提供的一种液晶显示面板的结构示意图;
图1B~图1I为本公开实施例提供的另一种液晶显示面板的结构示意图;
图1J为本公开实施例提供的一种第一方向和第三方向的示意图;
图2A为本公开实施例提供的一种第一液晶分子和第二液晶分子分布状态的立体图;
图2B为本公开实施例提供的一种第一配向膜、第二配向膜和第三配向膜的结构图;
图2C为本公开实施例提供的另一种第三配向膜的结构图;
图2D为本公开实施例提供的一种第一配向膜的截面图;
图2E为本公开实施例提供的一种第二配向膜的截面图;
图2F为本公开实施例提供的一种第三配向膜的截面图;
图3A为相关技术中的液晶显示面板的结构示意图;
图3B为相关技术中的光线在经过液晶显示面板中各层时的偏振态在邦加球图中的位置示意图;
图4A为本公开实施例提供的一种光线在经过液晶显示面板中各层时的偏振态在邦加球图中的位置图;
图4B为本公开实施例提供的另一种光线在经过液晶显示面板中各层时的偏振态在邦加球图中的位置图;
图5为本公开实施例提供的一种液晶显示面板的极化角-亮度曲线示意图和相关技术中的液晶显示面板的极化角-亮度曲线示意图的对比示 意图;
图6A~图6G为本公开实施例提供的另一种液晶显示面板的结构示意图;
图7为本公开实施例提供的另一种液晶显示面板的结构示意图;
图8A~图8B为本公开实施例提供的另一种液晶显示面板的结构示意图;
图9A~图9B为本公开实施例提供的另一种液晶显示面板的结构示意图;
图10为本公开实施例提供的一种液晶显示面板的制备方法的流程示意图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术 语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“相同”、“相反”、“相等”、“平行”、“垂直”等包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定,例如,“相同”包括绝对相同和近似相同,其中近似相同的范围处于可接受偏差范围内。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
本公开提供一种显示装置,该显示装置例如为使用ADS(Advanced Super Dimension Switch,高级超维场开关)模式的显示装置。
示例的,该显示装置,可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是图画的图像的任何装置。显示装置可以是 多种显示装置,多种显示装置包括但不限于移动电话、无线装置、个人数据助理(Portable Android Device,缩写为PAD)、手持式或便携式计算机、GPS(Global Positioning System,全球定位系统)接收器/导航器、相机、MP4(全称为MPEG-4 Part 14)视频播放器、摄像机、游戏控制台、平板显示器、计算机监视器、汽车显示器(例如,汽车的行车记录仪或倒车影像等)等。
该显示装置例如包括液晶显示面板和背光模组,其中背光模组用于为液晶显示面板提供用于显示的光源。
参考图1A-图1I,本公开提供的液晶显示面板1包括:相对设置的第一衬底基板11和第二衬底基板12。第一衬底基板11和第二衬底基板12的材料例如相同,例如均为玻璃,当然也可以不同,本公开对此不作限定。
液晶层14,设置于第一衬底基板11和第二衬底基板12之间。液晶层14包括相对设置的第一配向膜141和第二配向膜142、以及位于第一配向膜141和第二配向膜142之间的第二液晶分子层140。第一配向膜141配置为锚定第二液晶分子层140中与其靠近的部分第二液晶分子140′,使与第一配向膜141靠近的部分第二液晶分子140′产生第一预倾角α;第二配向膜142配置为锚定第二液晶分子层140中与其靠近的部分第二液晶分子140′,使与第二配向膜142靠近的部分第二液晶分子140′产生第二预倾角β,其中,第一预倾角α的方向与所第二预倾角β的方向相反。
参考图1A~图1G,示例的,与第一配向膜141靠近的部分第二液晶分子140′为与第一配向膜141最靠近的一层第二液晶分子140′;与第二配向膜142靠近的部分第二液晶分子140′为与第二配向膜142最靠近的一层第二液晶分子140′。
作为示意,图1A-图1G中仅画出了第二液晶分子层140中与第一配向膜141最靠近的一层第二液晶分子140′,以及与第二配向膜142最靠近的一层第二液晶分子140′。
光学补偿层15,设置于第一配向膜141或第二配向膜142远离第二液晶分子层140的一侧;光学补偿层15包括第三配向膜151和第一液晶分子层150。第三配向膜151配置为锚定第一液晶分子层150中与其靠近的第一液晶分子150′,使与第三配向膜151靠近的第一液晶分子150′产生第三预倾角γ。第一液晶分子150′的长轴在第三配向膜151所在平面的正投影的方向与第二液晶分子140′的长轴在第三配向膜151所在平面的正投影的方向平行或垂直。
参考图1A~图1G,示例的,与第三配向膜151靠近的第一液晶分子150′为与第三配向膜151最靠近的一层第一液晶分子150′。
作为示意,图1A-图1I中仅画出了第一液晶分子层150中与第三配向膜151最靠近的一层第一液晶分子150′。
需要说明的是,图1A-图1I示出的液晶显示面板1的状态,为液晶显示面板1在未加电压时的状态。
对于液晶分子而言,可根据其形状将其分为棒状(rod-type)液晶分子和盘状(discotic)液晶分子,在棒状液晶分子中,其长轴方向为光轴方向,在盘状液晶分子中,其短轴方向为光轴方向。在一些实施例中,第一液晶分子层150中的第一液晶分子150′为棒状液晶分子。在一些实施例中,第二液晶分子层140中的第二液晶分子140′为棒状液晶分子。
在一些实施例中,第二液晶分子140′可以为正性液晶分子或者负性液晶分子。由于在L255状态下,第二液晶分子140′使用负性液晶分子可以使显示面板光透过率较高,因此采用负性液晶分子的液晶显示面板1的对比度较高,显示效果较好。
配向膜可使得至少部分液晶分子处于预倾斜状态,使该至少部分液晶分子的长轴与配向膜所在的平面具有夹角。在本公开的一些实施例中,预倾角指的是棒状液晶分子的长轴与配向膜的配向方向之间所成的锐角夹角,具有预倾角的棒状液晶分子的长轴所在直线与配向膜所在的平面相交。
第二液晶分子140′呈现的预倾角为,在液晶显示面板1未通电时或像素电极与公共电极之间电压为0时,第二液晶分子140′的长轴与第一配向膜141的配向方向(或第二配向膜142的配向方向)之间的锐角夹角。
第一液晶分子150′呈现的预倾角为,在液晶显示面板1未通电时或像素电极与公共电极之间电压为0时,第一液晶分子150′的长轴与第三配向膜151的配向方向之间的锐角夹角。
示例的,参考图1A~图1I,第一配向膜141的配向方向与第二配向膜142的配向方向相同;例如第一配向膜141的配向方向与第二配向膜142的配向方向均沿第一方向,第一方向例如为X轴(三维坐标系中的)方向,在图1A~图1I示意性地,沿纸面左右方向。
示例的,参考图1A~图1G,第三配向膜151的配向方向与第一配向膜141和第二配向膜142的配向方向相同,例如第一配向膜141、第二配向膜142和第三配向膜151的配向方向均沿第一方向。
又示例的,参考图1H和1I,第三配向膜151的配向方向与第一配向膜141和第二配向膜142的配向方向垂直,例如第一配向膜141和第二配向膜142的配向方向沿第一方向,第三配向膜151的配向方向沿第二方向,第二方 向与第一方向相互垂直,第二方向例如为Y轴(三维坐标系中的)方向,在图1H和图1I示意性地,为垂直于纸面的纸面内外方向。
在第三配向膜151的配向方向与第一配向膜141和第二配向膜142的配向方向相同的情况下,不考虑倾角时,第一液晶分子150′和第二液晶分子140′相互平行。考虑倾角时,被第一配向膜141锚定的第二液晶分子140′产生第一预倾角α、被第二配向膜142锚定的第二液晶分子140′产生第二预倾角β,被第三配向膜151锚定的第一液晶分子150′产生第三预倾角γ。其中,第一预倾角α为被第一配向膜141锚定的第二液晶分子140′的长轴所在直线与第一方向之间所形成的锐角夹角,第二预倾角β为被第二配向膜142锚定的第二液晶分子140′的长轴所在直线与第一方向之间所形成的锐角夹角,第三预倾角γ为被第三配向膜151锚定的第一液晶分子150′的长轴方向与第二方向之间所形成的锐角夹角。第一液晶分子150′的长轴所在直线在第三配向膜151所在平面的正投影和第二液晶分子140′的长轴所在直线在第三配向膜151所在平面的正投影平行。
在第三配向膜151的配向方向与第一配向膜141和第二配向膜142的配向方向垂直的情况下,示例的,参考图2A,不考虑倾角时,第一液晶分子150′和第二液晶分子140′相互垂直,被第一配向膜141锚定的第二液晶分子140′和被第二配向膜142锚定的第二液晶分子140′相互平行。考虑倾角时,被第一配向膜141锚定的第二液晶分子140′产生第一预倾角α、被第二配向膜142锚定的第二液晶分子140′产生第二预倾角β,被第三配向膜151锚定的第一液晶分子150′产生第三预倾角γ。其中,第一预倾角α为被第一配向膜141锚定的第二液晶分子140′的长轴所在直线与第一方向之间所形成的锐角夹角,第二预倾角β为被第二配向膜142锚定的第二液晶分子140′的长轴所在直线与第一方向之间所形成的锐角夹角,第三预倾角γ为被第三配向膜151锚定的第一液晶分子150′的长轴方向与第二方向之间所形成的锐角夹角。第一液晶分子150′的长轴所在直线在第三配向膜151所在平面的正投影和第二液晶分子140′的长轴所在直线在第三配向膜151所在平面的正投影垂直。
配向膜是由聚合物材料制成,该聚合物材料例如为聚酰亚胺(Polyamic,PI)。配向膜(包括第一配向膜141、第二配向膜142和第三配向膜151)的配向方向包括第一方向和第二方向,而预倾角是在配向膜的配向方向确定的基础上进一步通过配向膜的生产工艺使液晶分子(包括第一液晶分子150′和第二液晶分子140′)的长轴方向和配向膜的配向方向之间可以形成一夹角。
示例的,参考图2B,第一配向膜141、第二配向膜142和第三配向膜151 的配向方向沿第一方向时,第二液晶分子140′的长轴方向与第一方向之间的锐角夹角为第一预倾角α或第二预倾角β;第一液晶分子150′的长轴方向与第一方向之间的锐角夹角为第三预倾角γ。
又示例的,参考图2C,当第三配向膜151的配向方向为第二方向时,第一液晶分子150′的长轴方向与第二方向之间的锐角夹角为第三预倾角γ。
第一配向膜141、第二配向膜142和第三配向膜151例如均可以通过Rubbing(摩擦)配向工艺形成。第一配向膜141、第二配向膜142和第三配向膜151的摩擦方向包括了第一配向膜141、第二配向膜142和第三配向膜151的配向方向和预倾角的信息,即摩擦方向同时决定了配向方向和预倾角的大小和方向。
示例的,参考图2D和图2E所示,在进行Rubbing(摩擦)配向工艺的过程中,配向膜(例如第一配向膜141)的上表面(即靠近第二液晶分子140′的一侧表面)上会相对于其下表面(即远离第二液晶分子140′的一侧表面)形成一个斜向上(即斜向第二液晶分子140′)的夹角。例如,参考图2D和图2E所示,自左向右摩擦时,沿着配向膜(包括第一配向膜141和第二配向膜142)的配向方向,从左至右会呈现出一个斜向右上或斜向右下的斜坡。虽然第一预倾角α和第二预倾角β的方向不同,但实际上第一配向膜141和第二配向膜142可以通过相同的工艺制作。在制作过程中,第一配向膜141的状态参考图2D所示,只是在使用的过程中,参考图1A所示,由于第一配向膜141和第二配向膜142相对设置,从而使得第一预倾角α和第二预倾角β的方向不同,实际上在制作过程中第一配向膜141的配向方向和第二配向膜142的摩擦方向是相同的。在第三配向膜151的配向方向与第一配向膜141和第二配向膜142的配向方向相同的情况下,既可以选择自左向右摩擦,也可以选择自右向左摩擦;当选择自左向右摩擦时,沿着第三配向膜151的配向方向,从左向右会呈现出一个斜向右上或斜向右下的夹角;当选择自右向左摩擦时,沿着第三配向膜151的配向方向,从右向左会呈现出一个斜向左上的夹角(如图2F所示)或斜向左下的夹角。基于此,在第三配向膜151的作用下,靠近第三配向膜151的第一液晶分子150′会产生第三预倾角γ。因此,第一配向膜141、第二配向膜142和第三配向膜151的摩擦方向可以分别决定第一配向膜141、第二配向膜142和第三配向膜151的配向方向以及液晶分子的预倾角方向。
值得注意的是,本公开中提到的每一个配向方向可以包含2个摩擦方向。例如配向方向为第一方向,既可以包括从沿着第一方向的一端到另外一端进 行摩擦(如图2D),又可以包括沿与所述“从一端到另外一端”相反的路径进行摩擦(如图2F)。
基于上述,本领域技术人员可以理解的是,摩擦方向可以决定预倾角的方向,而当配向膜的配向方向相同时,若摩擦方向不同,则可以导致预倾角的方向不同。例如,当配向膜的配向方向均沿第一方向时,从左向右摩擦和从右向左摩擦时所产生的预倾角的方向是相反的。
基于上述,在一些实施例中,参考图1A~图1I,第一预倾角α的方向与第二预倾角β的方向相反。
第一预倾角α的方向与第二预倾角β的方向相反,指的是相对于同一衬底基板,例如相对于第一衬底基板11,第一预倾角α的方向和第二预倾角β的方向相反。
结合图1A和图1B对第一预倾角α、第二预倾角β和第三预倾角γ的示例,参考图1J,若以直线上的任意一点O’建立平面直角坐标系X’O’Z’,其中,所述直线位于建立的坐标系X’O’Z’中,且O’-Z’方向为液晶显示面板1厚度方向,在直角坐标系X’O’Z’中划分4个象限(x’>0,z’>0时在第一象限;x’<0,z’>0时在第二象限;x’<0,z’<0时在第三象限;x’>0,z’<0时在第四象限),当两条直线均经过第一象限和第三象限时,该两条直线的方向可以理解为相同,进而,由该两条直线所确定的两个预倾角的方向相同;若当两条直线均经过第二象限和第四象限时,该两条直线的方向也可以理解为相同,进而,由该两条直线所确定的两个预倾角的方向也相同;若其中第一直线经过第一象限和第三象限,另一条直线经过第二象限和第四象限时,该两条直线的方向可以理解为相反,进而,由该两条直线所确定的两个预倾角的方向相反。
基于上述,结合图1A,被第一配向膜141锚定的第二液晶分子140’,其长轴所在直线经过上面定义的第一象限和第三象限;被第二配向膜142锚定的第二液晶分子140’,其长轴所在直线经过上面定义的第二象限和第四象限,因此,第一预倾角α的方向和第二预倾角β的方向相反。
当第一预倾角α和第二预倾角β的方向相反时,可以使得第一配向膜141和第二配向膜142的结构和制作工艺完全相同,从而降低第一配向膜141和第二配向膜142的制作难度。
在一些实施例中,第一液晶分子150′的长轴在第三配向膜151所在平面的正投影的方向与第二液晶分子的长轴140′在第三配向膜151所在平面的正投影的方向平行。
第一液晶分子150′的长轴在第三配向膜151所在平面的正投影的方向与 第二液晶分子的长轴140′在第三配向膜151所在平面的正投影的方向平行,是指第一液晶分子150′的长轴在第三配向膜151所在平面的正投影所在直线与第二液晶分子的长轴140′在第三配向膜151所在平面的正投影所在直线平行或重合。此时,第三配向膜151的配向方向为第一方向,光学补偿层15用于实现对液晶层14进行正向补偿。
参考图1A~图1G,第一液晶分子150′的长轴在第三配向膜151所在平面的正投影的方向和第二液晶分子140′的长轴在第三配向膜151所在平面的正投影的方向平行。
基于上述,当第三配向膜151的配向方向与第一配向膜141和第二配向膜142的配向方向相同时,第三预倾角γ的方向与第一预倾角α的方向或第二预倾角β的方向相同,指的是相对于同一衬底基板,例如相对于第一衬底基板11,第三预倾角γ的方向与第一预倾角α的方向或第二预倾角β的方向相同。
同样的,结合图1A和图1B对第一预倾角α、第二预倾角β和第三预倾角γ的示例,参考图1J,若以直线上的任意一点O’建立平面直角坐标系X’O’Z’,其中,所述直线位于建立的坐标系X’O’Z’中,且O’-Z’方向为液晶显示面板1厚度方向,在直角坐标系X’O’Z’中划分4个象限并划分4个象限(x’>0,z’>0时在第一象限;x’<0,z’>0时在第二象限;x’<0,z’<0时在第三象限;x’>0,z’<0时在第四象限),当两条直线均经过第一象限和第三象限时,该两条直线的方向可以理解为相同,进而,由该两条直线所确定的两个预倾角的方向相同;若当两条直线均经过第二象限和第四象限时,该两条直线的方向也可以理解为相同,进而,由该两条直线所确定的两个预倾角的方向也相同;若其中第一直线经过第一象限和第三象限,另一条直线经过第二象限和第四象限时,该两条直线的方向可以理解为相反,进而,由该两条直线所确定的两个预倾角的方向相反。
在一些实施例中,参考图1A,当第三预倾角γ的方向与第二预倾角β的方向相同时,第三配向膜151的结构和制作工艺与第一配向膜141、第二配向膜142的结构和制作工艺完全相同。
在一些实施例中,参考图1B,当第三预倾角γ的方向与第一预倾角α的方向相同时,在配向方向为第一方向的基础上,第三配向膜151的摩擦方向与第一配向膜141的摩擦方向相反,例如第三配向膜151的摩擦方向为从右向左,第一配向膜141的摩擦方向为从左向右,二者的制作工艺相近,且配向方向相同,亦比较便于制作。
在另一些实施例中,第一液晶分子150′的长轴在第三配向膜151所在平面的正投影的方向与第二液晶分子的长轴140′在第三配向膜151所在平面的正投影的方向垂直。
第一液晶分子150′的长轴在第三配向膜151所在平面的正投影的方向与第二液晶分子的长轴140′在第三配向膜151所在平面的正投影的方向垂直,是指第一液晶分子150′的长轴在第三配向膜151所在平面的正投影所在直线与第二液晶分子的长轴140′在第三配向膜151所在平面的正投影所在直线垂直。此时,第三配向膜151的配向方向为第二方向,光学补偿层15用于实现对液晶层14进行反向补偿。
参考图1H和图1I,第一液晶分子150′的长轴在第三配向膜151所在平面的正投影的方向沿第二方向,第二液晶分子140′的长轴在第三配向膜151所在平面的正投影的方向沿第一方向,因此是垂直的。
本领域技术人员可以理解的是,当第一液晶分子150′的长轴和第二液晶分子140′的长轴在第三配向膜151所在平面的正投影的方向相互垂直时,此时第一液晶分子150′的长轴所在直线在在第三配向膜151所在平面的正投影和第二液晶分子140′的长轴所在直线在在第三配向膜151所在平面的正投影也是相互垂直的。
第三配向膜151的配向方向与第一配向膜141和第二配向膜142的配向方向之间的关系决定了光学补偿层15的补偿作用,而对于光学补偿层15如何实现正常补偿和反向补偿,下面将在对比相关技术的基础上进行具体的阐述。
相关技术(参考图3A)中的液晶显示面板1,在L0状态下存在漏光问题,L0状态指的是当液晶显示面板1未加电压处于暗态,而背光模组正常提供光源的状态。在液晶显示面板1处于L0状态下时,当液晶显示面板1受到压力(比如按压时所产生的压力)时,液晶显示面板1会发生形变,其中,阵列基板中的第一衬底基板11和彩膜基板中的第二衬底基板12会因压力发生形变进而产生非均匀的应力,非均匀性的应力会改变液晶显示面板1中光线的偏振态,但是第一衬底基板11和第二衬底基板12对光线的偏振态的改变大小是相同的,方向是相反的,从而可以实现相互抵消。示例的,针对图3A中液晶显示面板1的结构,参考图3B所示的邦加球图,沿光线的出射方向,从背光模组出射的光线在经过第一偏振片18后,光线的偏振态位于点O处,此时光线为线偏振光线;光线在经过第一衬底基板11后,受非均匀性应力的影响,偏振态位于点O 1处,此时光线为椭圆偏振光线;光线在经过液晶层14 后,受到液晶分子的调制,偏振态位于点O 2处,此时光线为椭圆偏振光线;光线在经过第二衬底基板12后,受非均匀性应力的影响,偏振态位于点O 3处,此时光线为椭圆偏振光线,点O 3和点O之间存在距离,也就是说入射至第二偏振片19的光线为椭圆偏振光线而非线偏振光线,因此导致部分椭圆偏振光线从第二偏振片19出射,使得液晶显示面板1出现漏光问题。
除此之外,相关技术中的液晶显示面板1还存在偏光问题。由于液晶分子为双折射材料,因此当光线进入倾斜的液晶分子后会产生双折射(存在长轴和短轴两个光分量)现象,导致在不同的位置观察时△n存在差异,进而导致不同波段的光的透过率存在差异。此处,△n为非寻常光的折射率n 0与寻常光的折射率n e的差值,其中寻常光为遵守折射定律的光线,非寻常光为不遵守折射定律的光线。对于正性液晶分子而言,无论光线沿什么方向传播,寻常光的折射率n 0都对应液晶分子的短轴,因此寻常光的折射率n 0是不变的;非寻常光的折射率n e随着光线的行进方向而变化,对应液晶分子的长轴方向。参考图3A,当在液晶显示面板1的左侧观察液晶显示面板1时,所观察到的光线沿箭头L方向出射,当在液晶显示面板1的右侧观察液晶显示面板1时,所观察到的光线沿箭头R方向出射;当在液晶显示面板1的正面观察液晶显示面板1时,所观察到的光线沿箭头F方向出射。从不同的位置观察液晶显示面板1时,光线所经过的液晶层14中液晶分子的有效路径可能不同。示例的,从左侧观察时,光线通过液晶分子的有效路径为S 1;从正面侧观察时,光线通过液晶分子的有效路径为S 2;从右侧观察时,光线通过液晶分子的有效路径为S 3;其中,S 1>S 2>S 3。当光线通过液晶分子的有效路径不同时,△n也会受影响而变化,由于n 0不变,n e对应液晶分子的长轴,因此存在△n1<△n2<△n3;其中,△n1为左侧的△n,△n2为正面的△n,△n3为右侧的△n。但是S 1、S 2、S 3之间变化的幅度和△n1、△n2、△n3之间变化的幅度并不相同,从而对于液晶显示面板1而言,左侧的△n1×S 1≠△n2×S 2≠△n3×S 1,所以从液晶显示面板1的左侧观察到液晶显示面板1的颜色和从液晶显示面板1的右侧观察到液晶显示面板1的颜色并不同,因此液晶显示面板1存在色偏的问题。
从而,相关技术中的液晶显示面板1存在L0漏光问题和色偏问题。而本公开中的液晶显示面板在L0状态时,其中,第一衬底基板11和第二衬底基板12因发生形变而会产生非均匀的应力对光线偏振态的改变会相互抵消,且光学补偿层15可以正向补偿或者反向补偿液晶层14对光线偏振态的改变, 以使得从第二衬底基板12出射的光线为线偏振光线,当从第二衬底基板12出射的光线为线偏振光线时,即使液晶显示面板1受到压力,线偏振光线也不会从液晶显示面板1出射,因此本公开中的液晶显示面板1不存在L0漏光的问题。
下面对本公开中的液晶显示面板1不存在L0漏光的问题进行如下阐述:由于液晶显示面板1中的偏振片也会影响光线的偏振状态,因此为了便于分析液晶显示面板1中光线的状态,需要在本公开中的液晶显示面板1还包括设置于第一衬底基板11远离液晶层14一侧的第一偏振片和设置于第二衬底基板12远离液晶层14一侧的第二偏振片的情况下进行分析。
在第一配向膜141和第二配向膜142的配向方向与第三配向膜151的配向方向相同(即均沿第一方向)的情况下,光学补偿层15可以正向补偿液晶层14对光线偏振态的改变,即光学补偿层15起正向补偿的作用。参考图4A所示的邦加球图,沿光线的出射方向,从背光模组出射的光线经在经过第一偏振片后,偏振态位于点O处,此时光线为线偏振光线;光线在经过第一衬底基板11后,受非均匀性应力的影响,偏振态位于点O 1处,此时光线为椭圆偏振光线;光线在经过液晶层14后,受第二液晶分子层140相位延迟的调制,偏振态位于点O 2处,此时光线为椭圆偏振光线;光线在经过光学补偿层15后,受第一液晶分子层150相位延迟的调制,偏振态位于点O 3处,点O 3与点O 1重合,此时光线为椭圆偏振光线;光线在经过第二衬底基板12后,受非均匀性应力的影响,偏振态位于点O处,此时光线重新变为线偏振光线,从而入射至第二偏振片的光线为线偏振光线。而在L0状态下,即使液晶显示面板1受到压力,线偏振光线也是无法从第二偏振片出射的,因此避免了液晶显示面板1受力时发生的漏光现象,并且在不同视角下,光学补偿层15均可起到一定的补偿作用。
在第一配向膜141和第二配向膜142的配向方向与第三配向膜151的配向方向垂直的情况下,光学补偿层15可以反向补偿液晶层14对光线偏振态的改变,即光学补偿层15起反向补偿的作用。参考图4B所示的邦加球图,沿光线的出射方向,从背光模组出射的光线经在经过第一偏振片后,偏振态位于点O处,此时光线为线偏振光线;光线在经过第一衬底基板11后,受非均匀性应力的影响,偏振态位于点O 1处,此时光线为椭圆偏振光线;光线在经过液晶层14后,受第二液晶分子层140相位延迟的调制,偏振态位于点O 2处,此时光线为椭圆偏振光线;光线在经过光学补偿层15后,受第一液晶分子层150相位延迟的调制,偏振态位于点O 3处,此时光线为椭圆偏振光线, 偏振态O 3与偏振态O 1是重合的;光线在经过第二衬底基板12后,受非均匀性应力的影响,偏振态位于点O处,此时光线重新变为线偏振光线,从而入射至第二偏振片的光线为线偏振光线。而在L0状态下,即使液晶显示面板1受到压力,线偏振光线也无法从第二偏振片出射,因此避免了液晶显示面板1受力时发生的漏光现象,并且在不同视角下,光学补偿层15均可起到一定的补偿作用。
在图4B中,偏振态O 3与偏振态O 1之间存在一定的距离,仅是为了体现出偏振态O 1至偏振态O 2与偏振态O 2至偏振态O 3之间的关系,实际上偏振态O 3与偏振态O 1是重合的。
参考图4A,光学补偿层15正向补偿时,偏振态O 1、偏振态O 2和偏振态O 3沿顺时针方向旋转可组成一个圆;参考图4B,光学补偿层15反向补偿时,从偏振态O 1到偏振态O 2沿逆时针方向旋转,从偏振态O 2到偏振态O 3沿顺时针方向旋转,且旋转的幅度相同,从而使得偏振态O 3回到偏振态O 1的位置处。因此,使用光学补偿层15对液晶层14的相位延迟进行补偿,可以解决液晶显示面板1在L0状态下的漏光问题。
通过调整第一液晶分子层150的相关参数(如折射率性质、厚度)可以调整光学补偿层15的延迟量,进而实现光学补偿层15的正向补偿或反向补偿。
参考图4A和图4B,本公开通过增加光学补偿层15后所产生的相位延迟,来正向补偿或者反向补偿液晶层14的相位延迟,从而使得从光学补偿层15出射的光线的偏振态可以从点O 2处移动到点O 3处,且点O3和点O1重合,从而解决L0态下正视角漏光的问题。并且,光学补偿层15在不同视角下均可起到一定的补偿作用,因此从左侧和右侧观察液晶显示面板1时,本公开中液晶显示面板1的漏光亮度相对相关技术中的液晶显示面板1的漏光亮度也是较小的,而从左侧和右侧观看液晶显示面板1时,可以用色偏来衡量液晶显示面板1的显示效果,因此本公开中液晶显示面板1的色偏程度相对于相关技术中液晶显示面板1的色偏程度较低,显示效果较好。需要说明的是,L0状态下的漏光可以是正视角观看液晶显示面板1时出现的现象,而色偏,可以是在L0态下,从左侧或者右侧观看(侧视角)液晶显示面板1时出现的现象,色偏由于漏光才可以被人眼感知。所以,在本公开可以降低液晶显示面板1漏光的亮度时,也可以降低色偏对应的亮度,从而改善液晶显示面板1的显示效 果。
参考图1H和图1I,结合上面分析可知,图1H和图1I,所示结构利用反向补偿解决了L0态下正视角漏光的问题。而光学补偿层15在不同视角下均可起到一定的补偿作用,因此从左侧和右侧观察液晶显示面板1时,本公开中液晶显示面板1的漏光亮度相对相关技术中的液晶显示面板1的漏光亮度也是较小的。并且,被第一配向膜141锚定的第二液晶分子140′的倾斜方向和被第二配向膜142锚定的第二液晶分子140′的倾斜方向相反,从而使得对于液晶层14而言,从液晶显示面板1的左侧观察时的有效路径S 1等于从右侧观察时的有效路径S 3;进而使得液晶显示面板1左侧的△n1等于其右侧的△n3,使得△n1×S 1=△n3×S 3,在此基础上,由于第三配向膜151的配向方向与第一配向膜141、第二配向膜142的配向方向是垂直的,且第一液晶分子150′的倾斜方向是相同的,因此不会影响左侧的△n1×S 1和右侧的△n3×S 3,所以最终从液晶显示面板1的左侧和右侧观察的显示效果是相同的,所以,本公开中的液晶显示面板1可以解决色偏的问题。
基于上述,无论第三配向膜151的配向方向与第一配向膜141、第二配向膜142的配向方向相同或垂直,由于光学补偿层15均可以改善L0状态下的漏光现象,且凭借光学补偿层15在不同视角下的补偿作用,从左侧和右侧观察液晶显示面板1时,本公开中液晶显示面板1的漏光亮度相对相关技术中的液晶显示面板1的漏光亮度也是较小的,当漏光亮度越小时,液晶显示面板1的亮度较低,因此在观察时,人眼能够感知到的不同显示区域之间的显示差异越小、越不明显,也就是说漏光亮度越小则液晶显示面板1显示时的色偏程度越轻,因此本公开中液晶显示面板1的色偏程度相对于相关技术中液晶显示面板1的色偏程度较低,显示效果较好。
在一些实施例中,参考图1A~图1I,第一预倾角α、第二预倾角β和第三预倾角γ的大小相等。
第一预倾角α、第二预倾角β和第三预倾角γ相等,指的是预倾角的度数大小相等,而与配向膜(包括第一配向膜141、第二配向膜142和第三配向膜151)的配向方向无关。无论第三配向膜151的配向方向与第一配向膜141、第二配向膜142的配向方向相同或者垂直,第三预倾角γ的大小均可以设置的与第一预倾角α和第二预倾角β的大小相等或者大致相等。
第一预倾角α、第二预倾角β和第三预倾角γ相等或者大致相等时,可以降低各个配向膜的制作难度。
在一些实施例中,第一预倾角α、第二预倾角β和第三预倾角γ的范围 为2°±2°。
在另一些实施例中,第一预倾角α、第二预倾角β和第三预倾角γ的范围为2°±1°。
在此基础上,第一预倾角α、第二预倾角β和第三预倾角γ例如均为2°。
在一些实施例中,第一预倾角α、第二预倾角β和第三预倾角γ例如均为1°或3°。
由于第一预倾角α、第二预倾角β和第三预倾角γ的度数均较小,例如均为1°,所以即使第一预倾角α和第二预倾角β的方向不同,但实际靠近第一配向膜141的第二液晶分子140′的长轴方向和靠近第二配向膜142的第二液晶分子140′的长轴方向也是大致平行的。在第三配向膜151的配向方向与第一配向膜141的配向方向相同的情况下,第一液晶分子150′的长轴方向与第二液晶分子140′的长轴方向也是大致相同的;在第三配向膜151的配向方向与第一配向膜141的配向方向垂直的情况下,第一液晶分子150′的长轴方向与第二液晶分子140′的长轴方向是大致垂直的。其中,第一液晶分子150′的长轴方向和第二液晶分子140′的长轴方向平行,可以使得光学补偿层15实现对液晶层14的正向补偿;第一液晶分子150′的长轴方向和第二液晶分子140′的长轴方向垂直,可以使得光学补偿层15实现对液晶层14的反向补偿;正向补偿和反向补偿,均能改善液晶显示面板1在L0状态下出现的漏光问题和液晶显示面板1的色偏现象。
基于上述,无论第一预倾角α和第二预倾角β的大小是多少,第二液晶分子140′的长轴在第一配向膜141或第二配向膜142或第三配向膜151所在平面内的正投影均沿第一方向。无论第三预倾角γ的大小是多少,当第三配向膜151的配向方向与第一配向膜141和第二配向膜142相同时,第一液晶分子150′的长轴在第一配向膜141或第二配向膜142或第三配向膜151所在平面内的正投影也沿第一方向;当第三配向膜151的配向方向与第一配向膜141和第二配向膜142垂直时,第一液晶分子150′的长轴在第一配向膜141或第二配向膜142或第三配向膜151所在平面内的正投影均沿第二方向。从而,即使制作出的第一预倾角α、第二预倾角β、第三预倾角γ的大小不同时,也能保证液晶层14和光学补偿层15的正常工作,降低了制作第一预倾角α、第二预倾角β、第三预倾角γ时的工艺要求。
液晶层14包括第二液晶分子层140,第二液晶分子层140的折射率满足n xLC>n yLC≈n zLC或n xLC>n yLC=n zLC;其中,n xLC为第二液晶分子层140面内的X轴方向上的折射率,n yLC为在第二液晶分子层140面内与X轴垂直的Y轴 方向上的折射率,d LC为第二液晶分子层140的厚度。其中,X轴为第二液晶分子层140中第二液晶分子的光轴。需要说明的是,在X轴与第二液晶分子层140存在较小倾角(例如5°以内的倾角)的情况下,也可以认为X轴位于第二液晶分子层140的面内。第二液晶分子层140的面内延迟R OLC=(n xLC-n yLC)×d LC。第二液晶分子层140的面内延迟,可以理解为光在法线方向(垂直方向)上穿过第二液晶分子层140时的实际延迟。可以理解的是,由于液晶层14的相位延迟是由第二液晶分子层140发挥作用,第二液晶分子层140的面内延迟可以当作液晶层14的面内延迟。
光学补偿层15包括第一液晶分子层150。第一液晶分子层150的折射率满足n x1>n y1≈n z1或n x1>n y1=n z1,其中n x1为该第一液晶分子层150面内的X 1轴方向上的折射率,n y1为在该第一液晶分子层150面内与X 1轴垂直的Y 1轴方向上的折射率,n z1为在该第一液晶分子层150厚度方向上的折射率。其中,X 1轴为第一液晶分子层150的光轴。需要说明的是,在X 1轴与第一液晶分子层150存在较小倾角(例如5°以内的倾角)的情况下,也可以认为X 1轴位于第一液晶分子层150的面内。可以理解的是,在X 1轴与第一液晶分子层150存在较小倾角的情况下,n y1与n z1会存在一定差异,考虑到上述情况,所以n y1可以与n z1相等或近似相等。第一液晶分子层150的面内延迟R O1=(n x1-n y1)×d 1,其中,n x1为第一液晶分子层150面内的X 1轴方向上的折射率,n y1为在第一液晶分子层150面内与X 1轴垂直的Y 1轴方向上的折射率,d 1为第一液晶分子层150的厚度。其中,R O1为第一液晶分子层150的面内延迟,可以理解为光在法线方向(垂直方向)上穿过第一液晶分子层150时的实际延迟。可以理解的是,光学补偿层15的相位延迟是由第一液晶分子层150发挥作用,第一液晶分子层150的面内延迟可以当作光学补偿层15的面内延迟。在此基础上,可以理解的是,光学补偿层15可以认为是+A补偿膜层。
在一些实施例中,在第一液晶分子150′的长轴在第一配向膜141所在平面的正投影的方向和第二液晶分子140′的长轴在第三配向膜151所在平面的正投影的方向平行的情况下,光学补偿层15的面内延迟与液晶层14的面内延迟之和等于第一波长的正整数倍;第一波长的范围为535nm±50nm。在该种结构中,光学补偿层15起正向补偿作用,因此,可通过控制光学补偿层15和液晶层14的面内延迟之和来控制液晶显示面板1中光线的透过率。
通过调整光学补偿层15和/或液晶层14的液晶分子的折射率性质以及光学补偿层15和/或液晶层14的厚度,可以使得光学补偿层15的面内延迟与液晶层14的面内延迟之和等于第一波长的正整数倍。
示例的,第一波长的范围为535nm±50nm,即第一波长的最小值为485nm,最大值为585nm,中位值为535nm。光学补偿层15的面内延迟与液晶层14的面内延迟之和为535nm时,不仅使得液晶显示面板1在呈现L0状态时,显著减小正视角和侧视角的漏光,又可以使从侧视角观察液晶显示面板1时,呈现的漏光偏蓝色。相比与红、黄、绿等色偏颜色,色偏偏蓝色更易被人接受。因此将第一波长范围设置在535nm±50nm,进一步提升了显示效果。
经过实验验证,在方位角均为45°的情况下,在不同的极化角位置观察相关技术(参考图3A)中的液晶显示面板1时,液晶显示面板1出现漏光现象时,亮度随极化角变化的曲线为S1;在不同的极化角位置观察本公开中的采用图1A结构的液晶显示面板1,液晶显示面板1出现漏光现象时,亮度随极化角的变化曲线为S2,从图5中明显可以看出,本公开中的液晶显示面板1在出现漏光现象时,其漏光的亮度更低,因此本公开中液晶显示面板1的漏光现象相对于相关技术中的液晶显示面板1更不明显,也即,本公开中液晶显示面板1的品质更好。
在一些实施例中,在第一液晶分子150′的长轴在第一配向膜141所在平面的正投影的方向和第二液晶分子140′的长轴方向在第三配向膜151所在平面的正投影的方向平行的情况下,光学补偿层15的面内延迟的范围为185nm±25nm;液晶层14的面内延迟的范围为350nm±25nm。光学补偿层15的面内延迟的最小值例如为160nm,最大值例如为210nm,中位值例如为185nm;液晶层14的面内延迟的最小值例如为325nm,最大值例如为375nm,中位值例如为350nm。
在此基础上,在另一些实施例中,光学补偿层15的面内延迟与液晶层14的面内延迟之和等于第一波长的正整数倍;第一波长的范围为535nm±25nm。
在一些实施例中,光学补偿层15的面内延迟与液晶层14的面内延迟之和等于第一波长的正整数倍;第一波长为535nm。在另一些实施例中,在第一液晶分子150′的长轴在第一配向膜141所在平面的正投影的方向和第二液晶分子140′的长轴方向在第三配向膜151所在平面的正投影的方向平行的情况下,光学补偿层15的面内延迟的范围为160nm~240nm,液晶层14的面内延迟的范围为350nm±25nm。示例的,光学补偿层15的面内延迟例如为160nm、180nm、200nm、220nm和240nm中的任一个。
当光学补偿层15的面内延迟的范围在160nm~240nm内时,光学补偿层15的正向补偿作用较好,再搭配合适的液晶层14的面内延迟,从而能够提供 多种光学补偿层15和液晶层14的搭配组合,最终保证液晶显示面板1具有较好的显示效果。
上述对光学补偿层15起正向补偿作用时,对面内延迟的要求进行了介绍,下面对光学补偿层15起反向补偿作用时,对面内延迟的要求进行介绍。
在一些实施例中,在述第一液晶分子150′的长轴在第三配向膜151所在平面的正投影的方向与第二液晶分子140′的长轴在第三配向膜151所在平面的正投影的方向垂直的情况下,光学补偿层15将起反向补偿作用,此时光学补偿层15的面内延迟与液晶层14的面内延迟相等。在该种结构中,由于光学补偿层15起的是反向补偿的作用,因此当光学补偿层15的面内延迟与液晶层14的面内延迟相等时,光学补偿层15能够完全抵消液晶层14对光线偏振态的影响。
在此基础上,在一些实施例中,液晶层14的面内延迟的范围例如为580nm~620nm。
在此基础上,液晶层14的面内延迟量为580nm、590nm、600nm、610nm或620nm中的任一个。
由于红光的波长范围为:625nm~740nm;绿光的波长范围为492nm~577nm;因此,液晶层14和光学补偿层15的面内延迟量与红光和绿光的波长比较接近,这使得液晶层14和光学补偿层15相对于红光和绿光透过率较低,也即,将液晶层14和光学补偿层15的面内延迟设定为580nm~620nm,相对能够减少红光和绿光透过的量。而蓝光的波长范围为440nm~475nm,与液晶层14和光学补偿层15的面内延迟的设定范围相差较大,这使得蓝光的透过率相对较高一些。这样一来,液晶显示面板1暗态显示(L0状态下)时,无论从左侧观察液晶显示面板1,还是从右侧观察液晶显示面板1,液晶显示面板1的颜色均呈现蓝色,这使得液晶显示面板1能够进一步避免出现色偏的问题。
例如,上述液晶层14的面内延迟为580nm、590nm、600nm、610nm或620nm中的任一个。其中,在液晶层14的面内延迟为600nm时,该值与红光或绿光的波长均比较接近,这使得液晶层14的面内延迟为600nm时,液晶显示面板1的显示效果最佳。
当然,光学补偿层15还可以为+B补偿层或者其他能够起到与本申请中光学补偿15作用相同的补偿层。
在一些实施例中,参考图1F,第三配向膜151设置于第一衬底基板11靠近液晶层14的一侧。
在一些实施例中,参考图1D和图1E,第三配向膜151设置于第一衬底基板11远离液晶层14的一侧。
在另一些实施例中,参考图1A和图1B,第三配向膜151设置于第二衬底基板12靠近液晶层14的一侧。
在一些实施例中,参考图1C,第三配向膜151设置于第二衬底基板12远离液晶层14的一侧。
基于上述,参考图1A~图1G,第三配向膜151的配向方向与第一配向膜141和第二配向膜142的配向方向相同。
在另一些实施例中,参考图1H和图1I,第三配向膜151设置于第二衬底基板12靠近液晶层14的一侧。
第三配向膜151的配向方向与第一配向膜141和第二配向膜142的配向方向垂直。
光学补偿层15中的第一液晶分子150′固化于光学补偿层15中,第一液晶分子150′所处的位置和预倾角均是固定的,不受液晶显示面板1中的电场影响,因此光学补偿层15的位置可以根据不同的设计需求、工艺需求等进行改变,以提高光学补偿层15针对不同液晶显示面板1的适应性。
在一些实施例中,参考图6A~图6C,光学补偿层15还包括第三衬底基板13,第三衬底基板13和第三配向膜151位于第一液晶分子层150的同侧或者异侧。
在一些实施例中,第三衬底基板13的材料例如和第一衬底基板11、第二衬底基板12的材料相同。
在另一些实施例中,第三衬底基板13的厚度小于等于第一衬底基板11和/或第二衬底基板12的厚度。
参考图6A和图6B,第三衬底基板13和第三配向膜151分别位于第一液晶分子层150的两侧,其中,在图6A中,第三配向膜151的配向方向和第一配向膜141、第二配向膜142的配向方向相同;在图6B中,第三配向膜151的配向方向和第一配向膜141、第二配向膜142的配向方向垂直。
参考图6C所示,第三配向膜151位于第三衬底基板13上,即第三配向膜151和第三衬底基板13位于第一液晶分子层150的同侧,其中,第三配向膜151的配向方向和第一配向膜141、第二配向膜142的配向方向相同。
在另一些实施例中,第三配向膜151位于第三衬底基板13上,即第三配向膜151和第三衬底基板13位于第一液晶分子层150的同侧,其中,第三配向膜151的配向方向和第一配向膜141、第二配向膜142的配向方向垂直。
在液晶显示面板1中设置第三衬底基板13后,一方面,当第三配向膜151和第三衬底基板13位于第一液晶分子层150的异侧时,第三衬底基板13具有平坦作用,便于后续在第三衬底基板13远离第一液晶分子层150的一侧制作其它膜层,例如制作第二配向膜142;另一方面,当第三配向膜151和第三衬底基板13位于同侧时,在制作第三配向膜151时,可以直接在第三衬底基板13上制作,然后再将第三衬底基板13和第二衬底基板12进行对盒,注入第一液晶分子150′,形成第一液晶分子层150,从而使得第三配向膜151可以独立制作,且在制作第三配向膜151过程中的工艺条件(比如高温)不会影响第一衬底基板11或第二衬底基板12上已制作好的其它膜层,该其它膜层例如为薄膜晶体管层。
在另一些实施例中,参考图6C所示,第三配向膜151和第二配向膜142设置于第三衬底基板13的相对两侧。示例的,沿第三衬底基板13的厚度方向,第三衬底基板13的相对两侧例如为第三衬底基板13的上表面和下表面。
第三配向膜151和第二配向膜142设置于第三衬底基板13的相对两侧时,便于直接在第三衬底基板13上制作第三配向膜151和第二配向膜142,使得第三配向膜151和第二配向膜142的制备工艺相对于液晶显示面板1中的其它结构的制作(例如第二衬底基板12和第二衬底基板12)相对独立。由于第一衬底基板11和第二衬底基板12上往往还需要制作其它膜层,示例的,第一衬底基板11上还需要制作薄膜晶体管层,第二衬底基板12上还需要制作滤光层,因此第三配向膜151和第二配向膜142的制备工艺相对于液晶显示面板1中的其它结构独立时,一方面可以提高液晶显示面板1的制备效率,另一方面可以避免在制作第三配向膜151和第二配向膜142时影响其它结构。
在一些实施例中,参考图6D和图6E所示,光学补偿层15还包括第四配向膜152,第四配向膜152设置于第三衬底基板13远离液晶层14的一侧或者第二衬底基板12靠近液晶层14的一侧。第四配向膜152配置为锚定第一液晶分子层150中与其靠近的部分第一液晶分子150′,使与第四配向膜152靠近的部分第一液晶分子150′产生第四预倾角θ;第四配向膜152的配向方向与第三配向膜151的配向方向相同,第四预倾角θ的方向与第三预倾角γ的方向相反或相同。
参考图6D所示,第四配向膜152设置于第三衬底基板13远离液晶层14的一侧,第三配向膜151设置于第一衬底基板11靠近液晶层14的一侧,即,第三配向膜151和第四配向膜152相对设置。
在另一些实施例中,参考图6E~图6G,第三配向膜151设置于第三衬底 基板13远离液晶层14的一侧,第四配向膜152设置于第二衬底基板12靠近液晶层14的一侧。
第四配向膜152的配向方向和第三配向膜151的配向方向相同,而第三配向膜151的配向方向可以和第一配向膜141、第二配向膜142的配向方向相同,此时第三配向膜151的配向方向沿第一方向;也可以和第一配向膜141、第二配向膜142的配向方向垂直,此时,第三配向膜151的配向方向沿第二方向,所以,第四配向膜152的配向方向包括沿第一方向和沿第二方向两种结构。而图6E和图6F以第三配向膜151的配向方向和第一配向膜141、第二配向膜142的配向方向相同为例进行示意。
在一些实施例中,参考图6D和图6E,当第一液晶分子层150中的第一液晶分子150′为一层结构时,第三配向膜151和第四配向膜152同时锚定该一层第一液晶分子150′,第四预倾角θ的大小和第三预倾角γ的大小相等,方向相同。在该种结构中,第四配向膜152可以增加对第一液晶分子150′的锚定作用力,进一步固定第一液晶分子150′的位置恒定。
在另一些实施例中,参考图6F,第一液晶分子层150的第一液晶分子150′为多层(至少两层)时,第三配向膜151可以锚定与其靠近的部分第一液晶分子150′,第四配向膜152可以锚定与其靠近的部分第一液晶分子150′,第四预倾角θ的大小和第三预倾角γ的大小相等或者大致相等,第四预倾角θ的方向和第三预倾角γ的方向相同时,从而使得整个第一液晶分子层150中的第一液晶分子150′排列方向相同或者近似相同。参考图6G,第四预倾角θ的方向和第三预倾角γ的方向相反时,当从不同视角观看液晶显示面板1时,第一液晶分子层150中不同位置处的第一液晶分子150′的相位差可以相等或者接近相等,偏振态相同,从而可以进一步提高液晶显示面板1改善色偏的能力。由于第四配向膜152与第三配向膜151搭配使用,从而可以使得第一液晶分子150′可以为多层结构,使得可作为第一液晶分子150′使用的液晶分子的可选种类增多,在一定程度上还可以降低液晶显示面板1的生产成本。
在一些实施例中,参考图6D,第四配向膜152和第二配向膜142设置于第三衬底基板13的相对两侧。
在第三衬底上制作第四配向膜152和第二配向膜142,制作工艺也较为简单。
在一些实施例中,参考图7,第三配向膜151设置于第二衬底基板12靠近液晶层14的一侧,第一液晶分子层150靠近液晶层14的一侧还设有平坦层16,第二配向膜142设置于平坦层16靠近液晶层14的一侧。
平坦层16也称为OC(over coat)层,平坦层16的材料可以为有机物,例如为聚酰亚胺,平坦层16主要起平坦化作用,在第一液晶分子层150远离第二衬底基板12的一侧设置平坦层16后,可以为后续制作第二配向膜142提供较为平整的表面,提高制作的第二配向膜142的品质。
在一些实施例中,第一配向膜141、第二配向膜142、第三配向膜151和第四配向膜152的厚度范围例如为0.01μm-10μm。
在上述厚度范围内的各个配向膜(包括第一配向膜141至第四配向膜152)的厚度较小,有利于实现液晶显示面板1的轻薄化。
在另一些实施例中,如图6D~图6G,第一预倾角α、第二预倾角β、第三预倾角γ和第四预倾角θ的大小相等。
在一些实施例中,第一预倾角α、第二预倾角β、第三预倾角γ和第四预倾角θ的范围为2°±2°。
示例的,第一预倾角α、第二预倾角β、第三预倾角γ和第四预倾角θ的大小均等于2°。
又示例的,第一预倾角α、第二预倾角β、第三预倾角γ和第四预倾角θ的大小均等于4°。
需要说明的是,第一预倾角α、第二预倾角β、第三预倾角γ和第四预倾角θ不存在等于0°的情况。且上述对各个预倾角(第一预倾角α至第四预倾角θ)的方向的描述,均是基于各个预倾角在液晶显示面板1中的相对位置而言。
第一预倾角α、第二预倾角β、第三预倾角γ和第四预倾角θ的具体数值可根据实际需要和工艺条件进行选择,从而以降低液晶显示面板1工艺的制作难度。
在一些实施例中,第一衬底基板11例如为阵列基板中的衬底,第二衬底基板12例如为彩膜基板中的衬底。
需要说明的是,图6A-图6G以及图7中示出的液晶显示面板1的状态,为液晶显示面板1在未加电压时的状态。
基于此,在一些实施例中,参考图8A,第一衬底基板11上还设有功能膜层17;功能膜层17与光学补偿层15设置于液晶层14的相对两侧;或者,功能膜层17与液晶层14设置于光学补偿层15的相对两侧。功能膜层17例如包括薄膜晶体管层、像素电极层、公共电极层、数据线和绝缘层等,功能膜层17中的各膜层的具体位置和具体结构根据不同的设计需求确定,本公开对此不作限定。功能膜层17、液晶层14和光学补偿层15的位置,在能够保 证液晶显示面板1正常工作的情况下,可以根据需求进行选择,从而使得液晶显示面板1中的各膜层的位置设置更灵活。
示例的,参考图8B,功能膜层17中的薄膜晶体管层170设置在第一衬底基板11靠近液晶层14的一侧,薄膜晶体管层170包括多个薄膜晶体管,薄膜晶体管中的源极和漏极与数据线171使用相同导电材料同层制作;在数据线171远离第一衬底基板11的一侧设有依次层叠第一绝缘层172、公共电极层173、第二绝缘层174、像素电极层175和第三绝缘层176,其中像素电极层175包括多个相互间隔的条状电极,公共电极层173包括呈面状结构的公共电极,像素电极和公共电极均为透明的;第一绝缘层172、第二绝缘层174和第三绝缘层176的材料可以为无机材料,例如氧化硅、氮化硅中的至少一种,也可以为有机材料,例如为聚酰亚胺,本公开对此不作限定。
在图8B所示的结构中,相对于公共电极层173,像素电极层175更靠近液晶层14,因此像素电极为条状结构,公共电极为面状结构。而在另一些实施例中,相对于像素电极层175,公共电极层173更靠近液晶层14,因此公共电极为条状结构,像素电极为面状结构。在又一些实施例中,像素电极和公共电极均为条状结构。
在此基础上,参考图9A和图9B,液晶显示面板1还包括第一偏振片18和第二偏振片19,且第一偏振片18的偏振方向和第二偏振片19的偏振方向相互垂直或者大致相互垂直。
示例的,第一偏振片18设置于第一衬底基板11远离液晶层14的一侧,第二偏振片19设置于第二衬底基板12远离液晶层14的一侧。
第一偏振片18和第二偏振片19用于改变光线的偏振态,其中第一偏振片18用于使从背光模组出射的光线成为线偏振光线,第二偏振片19用于使与其偏振方向相同的光线出现。而本领域技术人员可以理解的是,当液晶显示面板1处于L0状态时,入射至第二偏振片19的线偏振光线的方向与第二偏振片19的偏振方向是垂直的,因此该线线偏振光线无法从第二偏振片19出射。
参考图10,本公开的实施例还提供一种液晶显示面板1的制备方法,包括:
S1、在第一衬底基板11的一侧形成第一配向膜141。
第一配向膜141的材料例如为聚酰亚胺,例如通过涂覆方式将聚酰亚胺涂覆在第一衬底基板11上,然后进行第一配向膜141的配向摩擦工艺,通过配向摩擦工艺可以确定第一配向膜141的配向方向和第一预倾角α的大小和 方向。
S2、在第二衬底基板12的一侧形成第三配向膜151。
其中,形成的第三配向膜151的配向方向与第一配向膜141的配向方向相同或者垂直。
参考图1A~图1G,第三配向膜151的配向方向与第一配向膜141的配向方向相同,即均沿第一方向;参考图1H~图1I,第三配向膜151的配向方向与第一配向膜141的配向方向垂直,即第三配向膜151的配向方向沿第二方向。
S3、在第三配向膜151上形成第一液晶分子层150并固化,使第一液晶分子层150中的第一液晶分子150′具有第三预倾角γ。
例如通过向第一液晶分子150′中添加聚合物,例如光聚合物或热聚合物,然后再通过紫外光、加热等使聚合物固化,从而实现对第一液晶分子层150的固化。
S4、在第一液晶分子层150上形成第二配向膜142。
其中,形成的第二配向膜142的配向方向与第一配向膜141的配向方向相同。
示例的,参考图1A~图1I,第一配向膜141和第二配向膜142的配向方向均沿第一方向。S5、将形成有第一配向膜141的第一衬底基板11和形成有第二配向膜142的第二衬底基板12对盒,并在第一配向膜141和第二配向膜142之间形成第二液晶分子层140;其中,第二液晶分子层140中靠近第一配向膜141的部分第二液晶分子140′具有第一预倾角α,第二液晶分子层140中靠近第二配向膜142的部分第二液晶分子140′具有第二预倾角β;第一预倾角α的方向与第二预倾角β的方向相反;且第二液晶分子140′的长轴在第三配向膜151所在平面的正投影的方向与第一液晶分子150′的长轴在第三配向膜151所在平面的正投影的方向平行或垂直。
当第三配向膜151的配向方向与第一配向膜141和第二配向膜142的配向方向相同时,第二液晶分子140′的长轴在第三配向膜151所在平面的正投影的方向与第一液晶分子150′的长轴在第三配向膜151所在平面的正投影的方向平行;当第三配向膜151的配向方向与第一配向膜141和第二配向膜142的配向方向垂直时,第二液晶分子140′的长轴在第三配向膜151所在平面的正投影的方向与第一液晶分子150′的长轴在第三配向膜151所在平面的正投影的方向垂直。
参考图1A~图1I,虽然第一配向膜141和第二配向膜142的配向方向均 沿第一方向,但是第一预倾角α的方向与第二预倾角β的方向相反。在第三配向膜151的配向方向与第一配向膜141、第二配向膜142的配向方向相同的情况下,第三预倾角γ的方向与第一预倾角α的方向或第二预倾角β的方向相同。在第三配向膜151的配向方向与第一配向膜141、第二配向膜142的配向方向垂直的情况下,第三预倾角γ的方向与第一预倾角α的方向、第二预倾角β的方向之间垂直。
第一液晶分子150′和第二液晶分子140′可以是同一种液晶分子,也可以是不同种的液晶分子,只需满足本公开中液晶显示面板1的设计需求即可,本公开对此不作限定。
上述的液晶显示面板1的制备方法与上述的液晶显示面板1具有相同的有益效果,因此不再赘述。
在一些实施例中,参考图7,在第一液晶分子层150上形成第二配向膜142之前,液晶显示面板1的制备方法还包括:
在第一液晶分子层150上形成平坦层16。平坦层16可以使得第一液晶分子层150靠近液晶层14的一侧表面更为平整,便于后续在平坦层16上制备第二配向膜142。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种液晶显示面板,包括:
    相对设置的第一衬底基板和第二衬底基板;
    液晶层,设置于所述第一衬底基板和所述第二衬底基板之间;所述液晶层包括相对设置的第一配向膜和第二配向膜、以及位于所述第一配向膜和所述第二配向膜之间的第二液晶分子层;所述第一配向膜配置为锚定所述第二液晶分子层中与其靠近的部分第二液晶分子,使与所述第一配向膜靠近的部分所述第二液晶分子产生第一预倾角;所述第二配向膜配置为锚定所述第二液晶分子层中与其靠近的部分第二液晶分子,使与第二配向膜靠近的部分所述第二液晶分子产生第二预倾角;所述第一预倾角的方向与所述第二预倾角的方向相反;
    光学补偿层,设置于所述第一配向膜或所述第二配向膜远离所述第二液晶分子层的一侧;所述光学补偿层包括第三配向膜和第一液晶分子层;所述第三配向膜配置为锚定所述第一液晶分子层中与其靠近的第一液晶分子,使与第三配向膜靠近的所述第一液晶分子产生第三预倾角;所述第一液晶分子的长轴在所述第三配向膜所在平面的正投影的方向与所述第二液晶分子的长轴在所述第三配向膜所在平面的正投影的方向平行或垂直。
  2. 根据权利要求1所述的液晶显示面板,其中,在所述第一液晶分子的长轴在所述第三配向膜所在平面的正投影的方向与所述第二液晶分子的长轴在所述第三配向膜所在平面的正投影的方向平行的情况下;
    所述第三预倾角的方向与所述第一预倾角的方向或所述第二预倾角的方向相同。
  3. 根据权利要求1或2所述的液晶显示面板,其中,在所述第一液晶分子的长轴在所述第三配向膜所在平面的正投影的方向与所述第二液晶分子的长轴在所述第三配向膜所在平面的正投影的方向平行的情况下,所述光学补偿层的面内延迟与所述液晶层的面内延迟之和等于第一波长的正整数倍;所述第一波长的范围为535nm±50nm。
  4. 根据权利要求3所述的液晶显示面板,其中,所述光学补偿层的面内延迟的范围为185nm±25nm;所述液晶层的面内延迟的范围为350nm±25nm。
  5. 根据权利要求3所述的液晶显示面板,其中,在所述第一液晶分子的长轴在所述第三配向膜所在平面的正投影的方向与所述第二液晶分子的长轴在所述第三配向膜所在平面的正投影的方向平行的情况下,所述光学补偿层的面内延迟的范围为160nm~240nm,所述液晶层的面内延迟的范围为350nm±25nm。
  6. 根据权利要求1所述的液晶显示面板,其中,在所述第一液晶分子的长轴在所述第三配向膜所在平面的正投影的方向与所述第二液晶分子的长轴在所述第三配向膜所在平面的正投影的方向垂直的情况下,所述光学补偿层的面内延迟与所述液晶层的面内延迟相等。
  7. 根据权利要求6所述的液晶显示面板,其中,所述液晶层的面内延迟的范围为580nm~620nm。
  8. 根据权利要求7所述的液晶显示面板,其中,所述液晶层的面内延迟为580nm、590nm、600nm、610nm或620nm中的任一个。
  9. 根据权利要求1所述的液晶显示面板,其中,所述第三配向膜设置于所述第一衬底基板靠近所述液晶层的一侧;
    或者,第三配向膜设置于第一衬底基板远离液晶层的一侧;
    或者,所述第三配向膜设置于所述第二衬底基板靠近所述液晶层的一侧;
    或者,所述第三配向膜设置于所述第二衬底基板远离所述液晶层的一侧。
  10. 根据权利要求1所述的液晶显示面板,其中,所述光学补偿层还包括第三衬底基板,所述第三衬底基板和所述第三配向膜位于所述第一液晶分子层的同侧或者异侧。
  11. 根据权利要求10所述的液晶显示面板,其中,所述第三配向膜和所述第二配向膜设置于所述第三衬底基板的相对两侧。
  12. 根据权利要求10所述的液晶显示面板,其中,所述光学补偿层还包括第四配向膜,所述第四配向膜设置于所述第三衬底基板远离所述液晶层的一侧或者设置于所述第二衬底基板靠近所述液晶层的一侧;所述第四配向膜配置为锚定所述第一液晶分子层中与其靠近的部分所述第一液晶分子,使与第四配向膜靠近的部分所述第一液晶分子产生第四预倾角;所述第四预倾角的方向与所述第三预倾角的方向相反或相同。
  13. 根据权利要求12所述的液晶显示面板,其中,所述第四配向膜和所述第二配向膜设置于所述第三衬底基板的相对两侧。
  14. 根据权利要求1所述的液晶显示面板,其中,所述第三配向膜设置于所述第二衬底基板靠近所述液晶层的一侧,所述第一液晶分子层靠近所述液晶层的一侧还设有平坦层,所述第二配向膜设置于所述平坦层靠近所述液晶层的一侧。
  15. 根据权利要求1所述的液晶显示面板,其中所述第一配向膜的配向方向与所述第二配向膜的配向方向相同。
  16. 根据权利要求1所述的液晶显示面板,其中,所述光学补偿膜层为 +A补偿膜层。
  17. 根据权利要求1所述的液晶显示面板,其中,所述第一预倾角、所述第二预倾角和所述第三预倾角的大小相等。
  18. 根据权利要求1或17所述的液晶显示面板,其中,所述第一预倾角、所述第二预倾角和所述第三预倾角的大小范围为2°±2°。
  19. 根据权利要求1或17所述的液晶显示面板,其特征在于,所述第一预倾角、所述第二预倾角和所述第三预倾角的范围为2°±1°。
  20. 根据权利要求1所述的液晶显示面板,其中,所述第一衬底基板上还设有功能膜层;所述功能膜层与所述光学补偿层设置于所述液晶层的相对两侧;或者,所述功能膜层与所述液晶层设置于所述光学补偿层的相对两侧。
  21. 根据权利要求1所述的液晶显示面板,其中,所述第二液晶分子为负性液晶分子。
  22. 一种显示装置,包括权利要求1~20任一项所述的液晶显示面板。
  23. 一种液晶显示面板的制备方法,包括:
    在第一衬底基板的一侧形成第一配向膜;
    在第二衬底基板的一侧形成第三配向膜;
    在第三配向膜上形成第一液晶分子层并固化,使所述第一液晶分子层中的第一液晶分子具有第三预倾角;
    在所述第一液晶分子层上形成第二配向膜;
    将形成有所述第一配向膜的所述第一衬底基板和形成有所述第二配向膜的所述第二衬底基板对盒,并在所述第一配向膜和所述第二配向膜之间形成第二液晶分子层;其中,所述第二液晶分子层中靠近所述第一配向膜的部分第二液晶分子具有第一预倾角,所述第二液晶分子层中靠近所述第二配向膜的部分第二液晶分子具有第二预倾角,所述第一预倾角的方向与所述第二预倾角的方向相反;且所述第二液晶分子的长轴在所述第三配向膜所在平面的正投影的方向与所述第一液晶分子的长轴在所述第三配向膜所在平面的正投影的方向平行或垂直。
  24. 根据权利要求23所述的液晶显示面板的制备方法,其中,
    在所述第一液晶分子层上形成所述第二配向膜之前,所述制备方法还包括:在所述第一液晶分子层上形成平坦层。
PCT/CN2021/070299 2020-01-10 2021-01-05 液晶显示面板及其制备方法、显示装置 WO2021139646A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180008730.4A CN115023647B (zh) 2020-04-09 2021-01-05 液晶显示面板及其制备方法、显示装置
EP21733039.8A EP4089476A4 (en) 2020-01-10 2021-01-05 LIQUID CRYSTAL DISPLAY PANEL AND PREPARATION METHOD THEREFOR, AND DISPLAY DEVICE
US17/288,364 US11703719B2 (en) 2020-01-10 2021-01-05 Liquid crystal display panel and method of manufacturing the same, and display device
US18/326,208 US20230305340A1 (en) 2020-01-10 2023-05-31 Liquid crystal display panel and method of manufacturing the same, and display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202020053145.9U CN211014954U (zh) 2020-01-10 2020-01-10 液晶显示面板、对向基板及液晶显示装置
CN202020053145.9 2020-01-10
CN202010276034.9A CN113514984A (zh) 2020-04-09 2020-04-09 液晶显示面板及其制备方法、显示装置
CN202010276034.9 2020-04-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/288,364 A-371-Of-International US11703719B2 (en) 2020-01-10 2021-01-05 Liquid crystal display panel and method of manufacturing the same, and display device
US18/326,208 Continuation US20230305340A1 (en) 2020-01-10 2023-05-31 Liquid crystal display panel and method of manufacturing the same, and display device

Publications (1)

Publication Number Publication Date
WO2021139646A1 true WO2021139646A1 (zh) 2021-07-15

Family

ID=76787706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070299 WO2021139646A1 (zh) 2020-01-10 2021-01-05 液晶显示面板及其制备方法、显示装置

Country Status (3)

Country Link
US (2) US11703719B2 (zh)
EP (1) EP4089476A4 (zh)
WO (1) WO2021139646A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11703719B2 (en) * 2020-01-10 2023-07-18 Beijing Boe Display Technology Co., Ltd. Liquid crystal display panel and method of manufacturing the same, and display device
CN113687544A (zh) * 2020-05-18 2021-11-23 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101441075B1 (ko) * 2013-02-27 2014-09-17 동아대학교 산학협력단 4-도메인 수직정렬 액정 모드의 그레이 레벨 개선을 위한 광학보상구조
CN104076555A (zh) * 2013-03-29 2014-10-01 富士胶片株式会社 液晶显示装置
CN104317106A (zh) * 2014-11-20 2015-01-28 京东方科技集团股份有限公司 显示基板及其制造方法和显示装置
CN105911771A (zh) * 2016-07-07 2016-08-31 京东方科技集团股份有限公司 一种液晶显示组件及液晶显示装置
CN108761925A (zh) * 2018-05-24 2018-11-06 京东方科技集团股份有限公司 显示面板及其制作方法和显示装置
CN211014954U (zh) * 2020-01-10 2020-07-14 北京京东方显示技术有限公司 液晶显示面板、对向基板及液晶显示装置
CN211979379U (zh) * 2020-04-09 2020-11-20 京东方科技集团股份有限公司 液晶显示面板和显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4894036B2 (ja) * 2006-05-09 2012-03-07 スタンレー電気株式会社 液晶表示装置
TW200821691A (en) * 2006-07-26 2008-05-16 Toshiba Matsushita Display Tec Liquid crystal display device
DE102007005821B4 (de) * 2007-01-31 2013-11-14 Seereal Technologies S.A. Lichtmodulator und Verfahren zur Gewährleistung einer minimalen Amplitudenmodulation in phasenmodulierenden Lichtmodulatoren
JP5935394B2 (ja) * 2012-03-01 2016-06-15 Nltテクノロジー株式会社 横電界方式の液晶表示装置
CN104297993A (zh) * 2014-10-31 2015-01-21 京东方科技集团股份有限公司 光学补偿膜及制作方法、偏光片、液晶显示面板、显示装置
CN207650518U (zh) * 2017-12-26 2018-07-24 扬升照明股份有限公司 视角可切换装置以及视角可切换显示模块
CN108089377A (zh) 2018-02-13 2018-05-29 京东方科技集团股份有限公司 一种水平电场型的显示面板、其制作方法及显示装置
US11703719B2 (en) * 2020-01-10 2023-07-18 Beijing Boe Display Technology Co., Ltd. Liquid crystal display panel and method of manufacturing the same, and display device
CN115210635B (zh) * 2020-12-28 2024-04-09 京东方科技集团股份有限公司 液晶显示面板及其制作方法、显示装置
US11921376B2 (en) * 2021-01-29 2024-03-05 Beijing Boe Display Technology Co., Ltd. Liquid crystal display panel and method of manufacturing the same, and display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101441075B1 (ko) * 2013-02-27 2014-09-17 동아대학교 산학협력단 4-도메인 수직정렬 액정 모드의 그레이 레벨 개선을 위한 광학보상구조
CN104076555A (zh) * 2013-03-29 2014-10-01 富士胶片株式会社 液晶显示装置
CN104317106A (zh) * 2014-11-20 2015-01-28 京东方科技集团股份有限公司 显示基板及其制造方法和显示装置
CN105911771A (zh) * 2016-07-07 2016-08-31 京东方科技集团股份有限公司 一种液晶显示组件及液晶显示装置
CN108761925A (zh) * 2018-05-24 2018-11-06 京东方科技集团股份有限公司 显示面板及其制作方法和显示装置
CN211014954U (zh) * 2020-01-10 2020-07-14 北京京东方显示技术有限公司 液晶显示面板、对向基板及液晶显示装置
CN211979379U (zh) * 2020-04-09 2020-11-20 京东方科技集团股份有限公司 液晶显示面板和显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4089476A4

Also Published As

Publication number Publication date
US20230305340A1 (en) 2023-09-28
US20220050338A1 (en) 2022-02-17
EP4089476A1 (en) 2022-11-16
US11703719B2 (en) 2023-07-18
EP4089476A4 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
JP4032568B2 (ja) 液晶表示装置
US20020047968A1 (en) Liquid crystal display device
US20230305340A1 (en) Liquid crystal display panel and method of manufacturing the same, and display device
TWI437331B (zh) 液晶顯示裝置
US20120280953A1 (en) Display device
KR100966230B1 (ko) 시야각 조절이 가능한 액정 표시 장치
US9664945B2 (en) Display apparatus
US20100026937A1 (en) Viewing angle control device and display provided with the same
CN211979379U (zh) 液晶显示面板和显示装置
WO2022068265A1 (zh) 液晶显示面板及驱动方法、显示装置
JP2007163722A (ja) 液晶装置とその製造方法、位相差板、及び電子機器
US20240176190A1 (en) Liquid Crystal Display Panel and Method of Manufacturing the Same, and Display Device
WO2022140983A1 (zh) 液晶显示面板及其制作方法、显示装置
JP5075420B2 (ja) 液晶表示装置
TW200422691A (en) Liquid crystal display device and electronic appliance
US8169573B2 (en) Liquid crystal display device using a phase-difference film and in-plane switching mode liquid crystal display device using a phase-difference film
CN115023647B (zh) 液晶显示面板及其制备方法、显示装置
CN112859450B (zh) 液晶显示面板及显示装置
JPH11305232A (ja) 反射型液晶表示装置
CN110908169B (zh) 液晶显示面板
WO2023226014A1 (zh) 液晶显示面板和显示装置
TWI361932B (en) Liquid crystal display device
KR20070080129A (ko) 광학 필름 어셈블리와 이를 포함하는 액정 표시 장치
JP2008165043A (ja) 液晶表示素子
JPH11231807A (ja) 反射型液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21733039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021733039

Country of ref document: EP

Effective date: 20220810