TWI361932B - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
TWI361932B
TWI361932B TW096145746A TW96145746A TWI361932B TW I361932 B TWI361932 B TW I361932B TW 096145746 A TW096145746 A TW 096145746A TW 96145746 A TW96145746 A TW 96145746A TW I361932 B TWI361932 B TW I361932B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
phase retardation
retardation plate
crystal display
optical element
Prior art date
Application number
TW096145746A
Other languages
Chinese (zh)
Other versions
TW200841087A (en
Inventor
Kazuhiro Joten
Original Assignee
Toshiba Matsushita Display Tec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Matsushita Display Tec filed Critical Toshiba Matsushita Display Tec
Publication of TW200841087A publication Critical patent/TW200841087A/en
Application granted granted Critical
Publication of TWI361932B publication Critical patent/TWI361932B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Description

1361932 九、發明說明: 【發明所屬之技術領域】 本發明一般係關於液晶顯示裝置,更特定言之係關於透 射液顯示裝置,其具有包括水平配向(h〇m〇gene〇USly aligned)之液晶分子的一液晶層。 【先前技術】 關於正視方向上具有極佳顯示特徵的垂直配向模式 液晶顯示裝置,如扭轉向列(TN)模式液晶顯示裝置,已提 出藉由應用用於補償視角之延遲膜實現寬視角特徵之技術 (例如,參見日本專利申請K〇KAI公開案第 號)。 此外C提出製造雙軸向雙折射膜之技術,其可應用於 液晶顯示裝置,例如超扭轉向列(STN)模式液晶顯示裝置 (’J如參見日本專利巾請KOKAI公開案第2005-181451 號)。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a liquid crystal display device, and more particularly to a transmissive liquid display device having a liquid crystal including horizontal alignment (US) a liquid crystal layer of a molecule. [Prior Art] Regarding a vertical alignment mode liquid crystal display device having excellent display characteristics in a front view direction, such as a twisted nematic (TN) mode liquid crystal display device, it has been proposed to realize a wide viewing angle characteristic by applying a retardation film for compensating a viewing angle. Technology (for example, see Japanese Patent Application K〇KAI Publication No.). In addition, C proposes a technique for manufacturing a biaxial birefringent film, which can be applied to a liquid crystal display device, such as a super twisted nematic (STN) mode liquid crystal display device ('J. See Japanese Patent Laid-Open KOKAI Publication No. 2005-181451 ).

、年來關於、及態成將包括水平配向之液晶分子的液晶 層固持在-對基板間的液晶顯示裝置,存在改善顯示品質 之需求’例如改善對比度及增加視角。另-方面,一直需 要減小整個裝置之厚度並降低成本。 【發明内容】 本發明已考慮上述問題 顯示品質之液晶顯示裝置 低。 本發明之目的係提供具有良好 ’其可實現厚度減小及成本降 依據本發明之一方面 提供一種液晶顯示裝置,其包 127101-100H25.doc 1361932 3 : —液晶顯示面板,其中包括水平配向液晶分子的液晶 層被固持在置放成彼此相對的一第一基板與一第二基板之 間;一第一光學元件,其係設置於該液晶顯示面板之外表 面之一上並且包括一第一偏光板、以及置放於該第一偏光 板與該液晶顯示面板之間的一第一相延遲板及一第二相延 遲板,以及一第二光學元件,其包括設置於該液晶顯示面 板之另一外表面上的一第二偏光板,其中該第一相延遲板 係對一預疋波長之光賦予一預定延遲的相延遲板,並且其 中向列液晶分子被固定化為該等向列液晶分子沿一法線方 向混合配向的狀態。 本發明可提供具有良好顯示品質之液晶顯示裝置,其可 實現厚度減小及成本降低。 以下說明中將提出本發明之額外目的與優點,且其中一 部分可自該說明中明顯得知,或係可藉本發明實作所瞭 解。本發明之目的及優點可藉於以下特定指出之設備及組 合而予以實現與獲得。 【實施方式】 一具體實施例的液晶In the past, there has been a demand for improving the display quality by, for example, improving the contrast and increasing the viewing angle of a liquid crystal display device in which a liquid crystal layer including horizontally aligned liquid crystal molecules is held between the substrates. On the other hand, there is always a need to reduce the thickness of the entire device and reduce costs. SUMMARY OF THE INVENTION The present invention has been conceived in view of the above problems. The display quality of the liquid crystal display device is low. The object of the present invention is to provide a liquid crystal display device having a good thickness reduction and cost reduction according to one aspect of the present invention, which comprises a package 127101-100H25.doc 1361932 3: - a liquid crystal display panel including horizontal alignment liquid crystal The liquid crystal layer of the molecule is held between a first substrate and a second substrate disposed opposite to each other; a first optical element is disposed on one of the outer surfaces of the liquid crystal display panel and includes a first a polarizing plate, a first phase retarding plate and a second phase retarding plate disposed between the first polarizing plate and the liquid crystal display panel, and a second optical component, which is disposed on the liquid crystal display panel a second polarizing plate on the other outer surface, wherein the first phase retarding plate imparts a predetermined retardation phase retardation plate to light of a predetermined wavelength, and wherein the nematic liquid crystal molecules are immobilized into the isotropic column The liquid crystal molecules are mixed and aligned in a normal direction. The present invention can provide a liquid crystal display device having good display quality, which can achieve thickness reduction and cost reduction. Additional objects and advantages of the invention will be set forth in the description in the description. The objects and advantages of the invention may be realized and obtained by the <RTIgt; Embodiments of a liquid crystal of a specific embodiment

板AR相對的反基板(第二基板)CT、以 以及固持在陣列基板 現在將參考附圖說明依據本發明之一具選 顯示裝置。此具體實施例中,例示一液晶薄 括藉由選擇性傳遞背光顯示影像的透射式顯 12710M001125.doc -6 -Counter-substrate (second substrate) CT opposite to the board AR, and holding on the array substrate A display device according to one of the present invention will now be described with reference to the accompanying drawings. In this embodiment, a liquid crystal thin film is shown by selectively transmitting a backlight to display a transmissive image 12710M001125.doc -6 -

1361932 » I AR與反基板CT之間的液晶層LQ。 此外,液晶顯示裝置包括第一光學元件〇D1,其係提供 於液晶顯示面板LPN之外表面之一上(即陣列基板AR之一 外表面,其與面向液晶層LQ之另一外表面相對),以及一 第一光學元件0D2,其係提供於液晶顯示面板LPN之另一 外表面上(即反基板CT之一外表面,其與面向液晶層之 另一外表面相對)。另外,液晶顯示裝置包括背光單元 BL ’其從第一光學元件01)1側照明液晶顯示面板lPN。 液晶顯示面板LPN包括顯示一影像之複數個顯示區域 DSP。顯示區域DSP由按mxn矩陣配置的複數個像素Ρχ組 成。 藉由使用具有光透射性之絕緣基板丨〇,例如玻璃板或石 英板’形成陣列基板AR。明確而言,陣列基板AR在顯示 區域DSP中包括置放於個別像素内内的數目(mXn)個像素 電極EP、沿像素電極EP之列方向形成的數目η個掃描線 Υ(Υ1至Υη)、沿像素電極ΕΡ之行方向形成的數目m個信號 線X(X 1至Xm)、以及在包括個別像素ρχ内掃描線γ與信號 線X間之交點的區域内置放之數目(mXn)個切換元件W。 另外’在顯示區域DSP附近之驅動電路區域DCT内,陣 列基板AR包括連接至數目n個掃描線γ之掃描線驅動器 的至少一部分以及連接至數目„!個信號線X之信號線驅動 器XD的至少一部分。感測線驅動器Yd根據控制器cnt之 控制連續供應掃描信號(驅動信號)至數目η個掃描線γ ^在 控制器CNT之控制下’信號線驅動器xd在藉由掃描信號 127101-100I125.doc 1361932 開啟各列之切換元件w之一時序時供應視訊信號(驅動信 號)至數目m之信號線X。因此,各列内之像素電極ep係設 定於對應於經由相關聯之切換元件W供應的視訊信號之像 素電位。 例如’各切換元件W係η通道薄膜電晶體,並包括置放 於絕緣基板10上之半導體層12。可藉由使用(例如)多晶矽 或非晶矽形成半導體層12 ^此具體實施例中,半導體層u 由多晶矽形成。半導體層12包括源極區域12S及汲極區域 12D ’通道區域12C插入兩者之間。採用閘極絕緣膜14覆 蓋半導體層12。 將切換元件W之閘極電極WG連接至一相關聯掃描線 Y(或與掃描線Y整合地形成)。將閘極電極WG及掃描線γ 置放於閘極絕緣膜14上。採用層間絕緣膜16覆蓋閘極電極 WG及掃描線γ。 將切換元件W之源極電極WS及汲極電極WD置放於閘極 電極WG之兩側上的層間絕緣膜16上。將源極電極ws連接 至一相關聯信號線X(或與信號線X整合地形成),並接觸半 導體層12之源極區域12S。將没極電極WD連接至一相關聯 像素電極EP(或與像素電極EP整合地形成),並接觸半導體 層12之汲極區域12D。採用有機絕緣膜18覆蓋源極電極 WS、汲極電極WD及信號線X。 將像素電極EP置放於有機絕緣膜18上並經由形成於有機 絕緣膜18内之接觸孔電性連接至汲極電極wd。像素電極 EP由光透射式導電材料形成,例如氧化銦錫(IT〇)。採用 127101-100H25.doc 1361932 • 配向膜20覆蓋置放於各相關聯像素ρχ内之像素電極Ερβ 另一方面,藉由使用光透射式絕緣基板30,例如玻璃板 或石英板,形成反基板CT。明確而言,反基板(:1包括顯 示區域DSP内之反電極ΕΤ。反電極Ετ係置放成與像素電極 ΕΡ相對,其與複數個像素ρχ相關聯。反電極由光透 射式導電材料形成,例如ΙΤ〇。採用配向膜36覆蓋反電極 ΕΤ 〇 彩色顯示型液晶顯示裝置包括在與各像素相關聯之液晶 _ 顯不面板LPN之内表面上提供的濾色器層34。圖2所示之 範例中,將濾色器層34提供於反基板CT上。濾色器層34由 複數個色彩之彩色樹脂形成,例如紅色、藍色及綠色三原 色。與紅色像素、藍色像素及綠色像素分別相關聯地置放 紅色樹脂、藍色樹脂及綠色樹脂。可將濾色器層3 4置放於 陣列基板AR側上。 藉由黑色矩陣(未顯示)分割個別像素ρχ。將黑色矩陣置 φ 放成與線路相對,例如提供於陣列基板AR上之掃描線γ、 信號線X及切換元件W。 當將反基板CT及上述陣列基板入汉置放成其配向膜20及 36相對時,藉由置放於配向膜2〇與刊間的未顯示間隔物 (例如由树月曰材料形成之圓柱形間隔物)提供預定間隙。液 晶層LQ由包括液晶分子4〇之液晶複合物組成,其係密封 於陣列基板AR之配向膜20與反基板CT之配向膜3 6間的間 隙内。此具體實施例中,液晶層LQ包括扭轉角度為〇度(水 平配向)之液晶分子40。 12710M00H25.doc 1361932 依據本發明之具體實施例之液晶顯示裝置中,如圖3所 示,第一光學元件0D1及第二光學元件〇D2控制通過其的 光之偏光狀態。明確而言,第一光學元件OD1控制通過第 一光學元件0D1之光的偏光狀態,以便橢圓形偏光之偏光 狀態下的光(其盡可能接近線性偏光)可入射至液晶層LQ 上。因此,入射至第一光學元件OD1上之背光的偏光狀態 係在背光通過第一光學元件0D1時轉換為預定偏光狀態。 接著,從第一光學元件0D1發出乏背光在保持預定偏光狀 態的同時進入液晶層LQ。當對液晶層LQ施加用於黑色顯 示之電壓(黑色顯示電壓)時,入射至液晶顯示面板LPN上 的光之偏光狀態受液晶層LQ之相位差異影響並改變至實 質線性偏光狀態。 第二光學元件0D2控制通過第二光學元件〇D2之光的偏 光狀態’以便線性偏光(或盡可能接近線性偏光之糖圓形 偏光)之偏光狀態下的光可入射至液晶層LQ上。因此,入 射至第二光學元件〇D2上之光的偏光狀態係在光通過第二 光學元件OD2時轉換為預定偏光狀態,即線性偏光狀態。 換言之’已通過第一光學元件〇Dl及液晶顯示面板LPN 之光的偏光狀態實質上係線性偏光,其橢圓率(=短轴方向 振幅Es/長轴方向振幅Ep)實質上等於已通過第二光學元件 OD2的光之橢圓率。此情況下,實質線性偏光係具有〇 j或 更小的糖圓率之偏光狀態,較佳的係〇 〇2或更小。採用此 結構,可改善液晶顯示面板LPN法線方向上的對比度,並 且可增加視角。 12710M001125.doc •10· 1361932 下面將詳細說明個別結構組件。 第一光學元件0D1經組態以包括第一偏光板51,以及置 放於第一偏光板51與液晶顯示面板LPN之間的第一相延遲 板RF1及第二相延遲板RF 2。圖3所示之範例中,將第一相 延遲板RF1置放於第一偏光板51與液晶顯示面板LPN之間 (陣列基板AR)。將第二相延遲板RF2置放於第一偏光板5 i 與第一相延遲板RF1之間。 第二光學元件0D2由第二偏光板52組成。 此具體實施例中使用的第一偏光板51及第二偏光板52各 個具有在垂直於光行進方向之平面内彼此垂直之吸收轴及 透射軸。該等偏光器之各個從在隨機方向上具有振盪平面 的光中擷取在平行於透射轴之一方向上具有一振盪平面的 光,即線性偏光狀態中的光。 此處使用之第一相延遲板RF1係具有光學各向異性之相 延遲板。如圖4A所示,第一相延遲板RF1包括液晶膜層 60,其中將具有光學正單轴折射率各向異性之向列液晶分 子6 1固化至在液晶相位中沿法線方向(即相延遲板之厚度 方向)混合配向液晶分子的狀態。 此液晶膜層60中,例如陣列基板AR側上之介面附近, 液晶分子61A以較大傾斜角與介面配向(即實質上垂直於介 面來配向液晶分子61A)。另一方面,在第二相延遲板rf2 側上的介面附近,將液晶分子61B以較小傾斜角與介面配 向(即實質上平行於介面來配向液晶分子61B)。簡言之, 在液晶顯示面板LPN中,陣列基板AR側上液晶分子在施加 127l0l-1001125.doc 11 1361932 電壓時之配向方向與包括於第一相延遲板RF1中的液晶分 子之混合方向相差180。。可將NH膜(由Nippon Oil Corporation製造)施加為第一相延遲板RF1。此液晶膜具有 光學補償液晶層LQ之延遲的功能,由於包括於液晶層 中之液晶分子40與此液晶膜之配向對應於具有視角增加功 能之相延遲板,其隨視角變更。 關於液晶層LQ,其中具有折射率各向異性之液晶分子 40與具有折射率各向異性之相延遲板的配向根據施加電壓 更’當說明雙折射時’慢轴對應於折射率較大之軸,快 速軸對應於折射率較小之軸。假定慢轴與特別射線之振盪 平面一致’並且快速軸與普通射線之振盪平面一致。當普 通射線之折射率及特別射線之折射率分別係⑽及ne,並且 沿射線行進方向延伸的液晶層LQ之厚度為d時,液晶層LQ 之延遲由△ n*d (nm)=(ne.d-no-d)(即 Δ n=ne-no)定義。此 外’關於相延遲板,使用對應於三個相互垂直軸之主要折 射率。若對應於相延遲板平面内相互垂直轴之主要折射率 係nx及ny,對應於法線方向(即相延遲板之厚度方向)之軸 的主要折射率係nz,並且相延遲板厚度為d,相延遲板之 正面延遲由R=(nx-ny).d定義。 包括於第一光學元件OD1中的第一相延遲板RF1及第二 相延遲板RF2之各個具有彼此垂直之慢軸及快速軸,並具 有預定正面延遲。 明確而言,第一相延遲板RF1除上述視角增加功能外具 有相延遲板之一功能,其在預定波長(例如550 nm)之光成 127101-100H25.doc 136,1932 分間賦予一預定延遲(即延遲λ/m,其中乂係波長,m係正 數)’該等光成分通過作為液晶分子61之導向體的慢軸及 垂直於慢軸之快速轴。 此外,第二相延遲板RF2係在預定波長(例如550 nm)之 光成分間賦予一預定延遲(即延遲λ/η,其中2係波長,而n 係正數)的相延遲板’該等光成分通過快速軸及慢轴。 ZEONOR(由OPTES製造)及ARTON(由JSR製造)可應用於第 二相延遲板RF2。 第一光學元件OD1中,將個別結構組件配置成第一偏光 板51之吸收轴Α1、第一相延遲板RF1之平面内慢軸D1及第 二相延遲板RF2之平面内慢軸D2具有預定角度關係。明確 而言’將第二相延遲板尺以置放於第一偏光板51上,以便 第二相延遲板RF2之慢軸D2與第一偏光板51之吸收轴Α1* 大約45°。將第一相延遲板RF1置放於第二相延遲板RF2 上’以便第一相延遲板RF 1之慢軸d 1與第二相延遲板RF2 之慢轴D2成大約90。。在將第一光學元件〇D1置放於液晶 顯示面板LPN上之情形中’將第一光學元件〇〇1置放成具 有視角增加功能之第一相延遲板RF丨的慢轴D丨實質上平行 於液晶層LQ之液晶分子40的導向體(陣列基板Ar側上配向 膜20的磨擦方向)’並且第一相延遲板RF1内液晶分子61的 混合配向方向與陣列基板AR側上配向膜2〇之磨擦方向相 對。 此外’第二光學元件〇D2中’將第二偏光板52置放成其 吸收軸A2垂直於(大約9〇。)第一偏光板51之吸收軸Ai。 127101-1001125.doc 1361932 藉由此結構,第一光學元件0D1具有轉換至具有預定橢 圓率之橢圓偏光或實質線性偏光的功能,以及增加視角之 功能。此外’第二光學元件〇D2具有轉換至其橢圓率實質 上等於已通過第一光學元件001及液晶顯示面板lpn之光 的橢圓率之實質線性偏光的功能。 特定言之’形成相延遲板之雙折射材料具有雙折射材料 之主要折射率取決於光波長的特徵。相應地,相延遲板之 延遲R取決於通過光之波長。因此’如上所述,藉由利用 第一光學元件0D1 ’其中組合至少兩種相延遲板,可減輕 延遲R之波長相依性,並且可在用於彩色顯示的所有波長 範圍内賦予預定延遲並可獲得期望偏光狀態。 明確而言,將發自第—光學元件〇D1之背光轉換為實質 線性偏光’並入射至液晶層1(^上。假定實質線性偏光之 長轴方向平行於X軸。液晶層Lq中’對在未施加電壓時 (或在施加低電壓時)已進入液晶層Lq之實質線性偏光賦予 延遲λ/2。因此’將發自液晶層Lq之光轉換至線性偏光, 其垂直於進入液晶層之實質線性偏光。簡言之,此線性偏 光之振盪平面平行於Υ軸,其垂直於X軸。因此,藉由對 第二光學元件0D2應用具有平行於χ轴之吸收轴的第二偏 光板52,可無需使用某一其他相延遲板而在較高透射比 (&quot;白色顯示&quot;)下傳遞發自液晶層LQ之線性偏光。 另一方面’液晶層LQ中,對在施加電壓時(或在施加高 電壓時)入射至液晶層LQ之實質線性偏光賦予實質零延 遲。因此’發自液晶層LQ之光保持等於剛進入液晶層之 127101-1001125.doc • 14 · 136.1932 實質線性偏光之偏光狀態的偏光狀態。簡言之,此實質線 性偏光的振盪平面平行於又轴》因此,藉由對第二光學元 件OD2應用具有平行於X軸之吸收轴的第二偏光板52,可 無需使用某一其他相延遲板而在較高吸收比(&quot;黑色顯示&quot;) 下吸收發自液晶層LQ之線性偏光。如上所述,由於第二 光學元件係僅由第二偏光板52組成而不使用相延遲板,可 實現厚度減小及成本降低,並可獲得良好光學特徵。 接下來,關於用於獲得良好光學特徵之方法,特定言之 係黑色顯示時的光學補償,說明第一光學元件〇D 1内第一 相延遲板RF1之正面延遲r(rF1)及第二相延遲板尺^之正 面延遲R(RF2)與黑色顯示時液晶層LQ之殘餘延遲r(Lq)間 的關係。 現在說明液晶層LQ之殘餘延遲R(LQ)。在對液晶層 加黑色顯示之電壓(&quot;黑色顯示電壓&quot;)的情形中,定位於遠 離基板介面之中間部分(,,中間平面”)内的液晶分子4〇係配 向成其長轴方向實質上平行於電場方向。因此,液晶層 LQ之中間平面的正面延遲係視為實質零(nm)。然而,在基 板介面附近配向的液晶分子4〇受介面之配向限制力(&quot;錨 定”)影響,該等液晶分子40具有低電壓回應,並且該等液 晶分子40保持實質初始配向狀態。相應地,液晶層 基板介面附近的正面延遲不會變為零(nm)。因此,即使對 液晶層LQ施加足夠高之黑色顯示電壓,以便實現黑色顯 示,由於基板介面處的蚊影f,正面延遲保留於液晶層 •LQ内。此一般稱為&quot;殘餘延遲&quot;。 12710M001125.doc •15- 1361932 本具體實施例中,(1)所使用的液晶層LQ、第一相延遲 板RF1及第二相延遲板RF2之各個具有正延遲,(2)液晶層 LQ内液晶分子40的導向體係設定為實質上平行於第一相 延遲板RF1之慢軸D1,以及(3)第一相延遲板RF1之慢軸D1 係設定成與第二相延遲板RF2之慢轴D2成大約90°。相應 地,第一光學元件OD1的第一相延遲板RF1之正面延遲 R(RF1)及第二相延遲板RF2之正面延遲R(RF2)與液晶層LQ 之殘餘延遲 R(LQ)的總延遲 R(total)由 R(total)=R(LQ)+R(RFl)-R(RF2)表達。 此等式中,個別延遲係設定成R(total)變為零,即R(LQ) + R(RF1) = R(RF2)。因此,可實現第一光學元件0D1與液 晶層LQ之間的光學補償。明確而言,本具體實施例中, 並未藉由第一光學元件0D1本身將背光偏光狀態轉換為實 質線性偏光狀態。考慮液晶層LQ之殘餘延遲,將發自液 晶顯示面板LPN之光的偏光狀態轉換為實質線性偏光(橢圓 率 &lt; 0.1) 〇 更具體而言,液晶層LQ之殘餘延遲與第一相延遲板RF1 之正面延遲的總和係設定為實質上等於第二相延遲板RF2 之正面延遲。因此,黑色顯示中,在背光已通過第一光學 元件0D1及液晶層LQ後,可將來自背光單元BL之背光轉 換為盡可能接近線性偏光之偏光狀態中的光。所以,即使 在黑色顯示情形以及上述白色顯色情形中,可使發自第一 光學元件0D1及液晶層LQ之光的偏光狀態接近橢圓率實質 為零的線性偏光,從而可簡單地藉由對第二光學元件OD2 127101-1001125.doc 161361932 » Liquid crystal layer LQ between I AR and counter substrate CT. Further, the liquid crystal display device includes a first optical element 〇D1 which is provided on one of the outer surfaces of the liquid crystal display panel LPN (ie, an outer surface of the array substrate AR opposite to the other outer surface facing the liquid crystal layer LQ) And a first optical element OD2 provided on the other outer surface of the liquid crystal display panel LPN (ie, an outer surface of the counter substrate CT opposite to the other outer surface facing the liquid crystal layer). Further, the liquid crystal display device includes a backlight unit BL' which illuminates the liquid crystal display panel 1PN from the side of the first optical element 01)1. The liquid crystal display panel LPN includes a plurality of display areas DSP for displaying an image. The display area DSP is composed of a plurality of pixels 配置 arranged in an mxn matrix. The array substrate AR is formed by using an insulating substrate 光 having a light transmissive property such as a glass plate or a quartz plate. Specifically, the array substrate AR includes the number (mXn) of pixel electrodes EP placed in the individual pixels, and the number n of scanning lines Υ (Υ1 to Υη) formed along the column direction of the pixel electrode EP in the display area DSP. a number m of signal lines X (X 1 to Xm) formed along the row direction of the pixel electrode 、, and a number of built-in areas (mXn) in a region including intersections between the scanning lines γ and the signal lines X in the individual pixels ρ χ Switch component W. Further, in the drive circuit region DCT near the display area DSP, the array substrate AR includes at least a portion of the scan line driver connected to the number n of scan lines γ and at least a signal line driver XD connected to the number „! Part of the sense line driver Yd continuously supplies the scan signal (drive signal) to the number n of scan lines γ ^ according to the control of the controller cnt ^ under the control of the controller CNT 'the signal line driver xd is by the scan signal 127101-100I125.doc 1361932, when one of the switching elements w of each column is turned on, the video signal (drive signal) is supplied to the signal line X of the number m. Therefore, the pixel electrode ep in each column is set to correspond to the supply via the associated switching element W. The pixel potential of the video signal. For example, 'each switching element W is an n-channel thin film transistor, and includes a semiconductor layer 12 placed on the insulating substrate 10. The semiconductor layer 12 can be formed by using, for example, polysilicon or amorphous germanium. In this embodiment, the semiconductor layer u is formed of polysilicon. The semiconductor layer 12 includes a source region 12S and a drain region 12D 'channel region 1 2C is interposed between the two. The semiconductor layer 12 is covered with a gate insulating film 14. The gate electrode WG of the switching element W is connected to an associated scanning line Y (or formed integrally with the scanning line Y). The WG and the scanning line γ are placed on the gate insulating film 14. The gate electrode WG and the scanning line γ are covered by the interlayer insulating film 16. The source electrode WS and the drain electrode WD of the switching element W are placed on the gate electrode. On the interlayer insulating film 16 on both sides of the WG, the source electrode ws is connected to an associated signal line X (or formed integrally with the signal line X), and contacts the source region 12S of the semiconductor layer 12. The electrode WD is connected to an associated pixel electrode EP (or formed integrally with the pixel electrode EP) and contacts the drain region 12D of the semiconductor layer 12. The source electrode WS, the drain electrode WD, and the signal line are covered with the organic insulating film 18. The pixel electrode EP is placed on the organic insulating film 18 and electrically connected to the gate electrode wd via a contact hole formed in the organic insulating film 18. The pixel electrode EP is formed of a light transmissive conductive material such as indium tin oxide. (IT〇). Adopt 127101-100H25.doc 136 1932 • The alignment film 20 covers the pixel electrode Ερβ placed in each associated pixel ρχ. On the other hand, the counter substrate CT is formed by using a light transmissive insulating substrate 30 such as a glass plate or a quartz plate. The substrate (: 1 includes a counter electrode 内 in the display area DSP. The counter electrode Ε is placed opposite to the pixel electrode ,, which is associated with a plurality of pixels ρ 。. The counter electrode is formed of a light transmissive conductive material, such as germanium. The counter electrode is covered with an alignment film 36. The color display type liquid crystal display device includes a color filter layer 34 provided on the inner surface of the liquid crystal display panel LPN associated with each pixel. In the example shown in Fig. 2, the color filter layer 34 is provided on the counter substrate CT. The color filter layer 34 is formed of a plurality of color colored resins such as red, blue, and green. A red resin, a blue resin, and a green resin are placed in association with the red pixel, the blue pixel, and the green pixel, respectively. The color filter layer 34 can be placed on the array substrate AR side. The individual pixels ρ 分割 are divided by a black matrix (not shown). The black matrix is placed φ in opposition to the line, for example, the scanning line γ, the signal line X, and the switching element W provided on the array substrate AR. When the counter substrate CT and the array substrate are placed in the opposite direction to form the alignment films 20 and 36, the spacers (for example, the column formed by the tree raft material) placed between the alignment film 2 and the magazine are not displayed. The spacers provide a predetermined gap. The liquid crystal layer LQ is composed of a liquid crystal composite including liquid crystal molecules, which is sealed in the gap between the alignment film 20 of the array substrate AR and the alignment film 36 of the counter substrate CT. In this embodiment, the liquid crystal layer LQ includes liquid crystal molecules 40 having a twist angle (horizontal alignment). 12710M00H25.doc 1361932 In a liquid crystal display device according to a specific embodiment of the present invention, as shown in Fig. 3, the first optical element OD1 and the second optical element 〇D2 control the polarization state of light passing therethrough. Specifically, the first optical element OD1 controls the polarization state of the light passing through the first optical element OD1 so that the light in the polarization state of the elliptical polarization (which is as close as possible to the linear polarization) can be incident on the liquid crystal layer LQ. Therefore, the polarization state of the backlight incident on the first optical element OD1 is converted to a predetermined polarization state when the backlight passes through the first optical element OD1. Next, the spent backlight from the first optical element OD1 enters the liquid crystal layer LQ while maintaining the predetermined polarization state. When a voltage for black display (black display voltage) is applied to the liquid crystal layer LQ, the polarization state of light incident on the liquid crystal display panel LPN is affected by the phase difference of the liquid crystal layer LQ and changes to a substantially linear polarization state. The second optical element OD2 controls the polarization state of the light passing through the second optical element 〇D2 so that light in a polarized state of linearly polarized light (or as close as possible to the linearly polarized sugar circularly polarized light) can be incident on the liquid crystal layer LQ. Therefore, the polarization state of the light incident on the second optical element 〇D2 is converted into a predetermined polarization state, that is, a linear polarization state, when the light passes through the second optical element OD2. In other words, the polarization state of the light having passed through the first optical element 〇D1 and the liquid crystal display panel LPN is substantially linearly polarized, and the ellipticity (=the short-axis direction amplitude Es/the long-axis direction amplitude Ep) is substantially equal to the second pass. The ellipticity of the light of the optical element OD2. In this case, the substantially linear polarizing system has a polarizing state of 〇 j or less, and a preferred system is 〇 2 or less. With this structure, the contrast in the normal direction of the LPN of the liquid crystal display panel can be improved, and the viewing angle can be increased. 12710M001125.doc •10· 1361932 The individual structural components are detailed below. The first optical element OD1 is configured to include a first polarizing plate 51, and a first phase retardation plate RF1 and a second phase retardation plate RF2 disposed between the first polarizing plate 51 and the liquid crystal display panel LPN. In the example shown in Fig. 3, the first phase retardation plate RF1 is placed between the first polarizing plate 51 and the liquid crystal display panel LPN (array substrate AR). The second phase retardation plate RF2 is placed between the first polarizing plate 5 i and the first phase retardation plate RF1. The second optical element OD2 is composed of a second polarizing plate 52. The first polarizing plate 51 and the second polarizing plate 52 used in this embodiment each have an absorption axis and a transmission axis which are perpendicular to each other in a plane perpendicular to the traveling direction of the light. Each of the polarizers extracts light having an oscillation plane in a direction parallel to one of the transmission axes, that is, light in a linearly polarized state, from light having an oscillation plane in a random direction. The first phase retardation plate RF1 used herein is a phase retardation plate having optical anisotropy. As shown in FIG. 4A, the first phase retardation plate RF1 includes a liquid crystal film layer 60 in which nematic liquid crystal molecules 61 having optical positive uniaxial refractive index anisotropy are solidified to a normal direction in the liquid crystal phase (ie, phase The thickness direction of the retardation plate is a state in which the alignment liquid crystal molecules are mixed. In the liquid crystal film layer 60, for example, in the vicinity of the interface on the side of the array substrate AR, the liquid crystal molecules 61A are aligned with the interface at a large inclination angle (i.e., aligned to the liquid crystal molecules 61A substantially perpendicular to the interface). On the other hand, in the vicinity of the interface on the side of the second phase retardation plate rf2, the liquid crystal molecules 61B are aligned with the interface at a small inclination angle (i.e., aligned to the liquid crystal molecules 61B substantially parallel to the interface). In short, in the liquid crystal display panel LPN, the alignment direction of the liquid crystal molecules on the array substrate AR side when applying a voltage of 127101 - 1001125.doc 11 1361932 is different from the mixing direction of the liquid crystal molecules included in the first phase retardation plate RF1 by 180. . . An NH film (manufactured by Nippon Oil Corporation) can be applied as the first phase retardation plate RF1. This liquid crystal film has a function of optically compensating for the retardation of the liquid crystal layer LQ, since the alignment of the liquid crystal molecules 40 included in the liquid crystal layer with the liquid crystal film corresponds to a phase retardation plate having a viewing angle increasing function, which varies depending on the viewing angle. Regarding the liquid crystal layer LQ, the alignment of the liquid crystal molecules 40 having refractive index anisotropy and the phase retardation plate having refractive index anisotropy is more according to the applied voltage. When the birefringence is described, the slow axis corresponds to the axis having a large refractive index. The fast axis corresponds to the axis with a smaller refractive index. It is assumed that the slow axis coincides with the oscillation plane of the special ray and the fast axis coincides with the oscillation plane of the ordinary ray. When the refractive index of the ordinary ray and the refractive index of the special ray are respectively (10) and ne, and the thickness of the liquid crystal layer LQ extending in the traveling direction of the ray is d, the retardation of the liquid crystal layer LQ is Δ n*d (nm)=(ne .d-no-d) (ie Δ n=ne-no) definition. Further, regarding the phase retardation plate, the main refractive index corresponding to three mutually perpendicular axes is used. If the main refractive index systems nx and ny corresponding to mutually perpendicular axes in the plane of the phase retardation plate, the main refractive index nz corresponding to the axis of the normal direction (ie, the thickness direction of the phase retardation plate) is nz, and the phase retardation plate thickness is d The front delay of the phase delay plate is defined by R = (nx - ny).d. Each of the first phase retardation plate RF1 and the second phase retardation plate RF2 included in the first optical element OD1 has a slow axis and a fast axis perpendicular to each other, and has a predetermined front retardation. Specifically, the first phase retardation plate RF1 has a function of a phase retardation plate in addition to the above-described viewing angle increasing function, which imparts a predetermined delay between 127101-100H25.doc 136, 1932 at a predetermined wavelength (for example, 550 nm). That is, the delay λ/m, in which the lanthanide wavelength, m is a positive number, 'the light components pass through the slow axis which is the director of the liquid crystal molecules 61 and the fast axis which is perpendicular to the slow axis. Further, the second phase retardation plate RF2 is a phase retardation plate that imparts a predetermined delay (i.e., delay λ/η, where 2 is a wavelength, and n is a positive number) between light components of a predetermined wavelength (for example, 550 nm). The components pass through the fast axis and the slow axis. ZEONOR (manufactured by OPTES) and ARTON (manufactured by JSR) can be applied to the second phase retardation plate RF2. In the first optical element OD1, the individual structural components are arranged such that the absorption axis 第一1 of the first polarizing plate 51, the in-plane slow axis D1 of the first phase retardation plate RF1, and the in-plane slow axis D2 of the second phase retardation plate RF2 have predetermined Angle relationship. Specifically, the second phase retardation ruler is placed on the first polarizing plate 51 so that the slow axis D2 of the second phase retardation plate RF2 and the absorption axis Α 1* of the first polarizing plate 51 are about 45°. The first phase retardation plate RF1 is placed on the second phase retardation plate RF2' such that the slow axis d1 of the first phase retardation plate RF1 and the slow axis D2 of the second phase retardation plate RF2 are about 90. . In the case where the first optical element 〇D1 is placed on the liquid crystal display panel LPN, the first optical element 〇〇1 is placed in a slow axis D丨 of the first phase retardation plate RF丨 having a viewing angle increasing function. The guide body of the liquid crystal molecules 40 parallel to the liquid crystal layer LQ (the rubbing direction of the alignment film 20 on the array substrate Ar side)' and the mixed alignment direction of the liquid crystal molecules 61 in the first phase retardation plate RF1 and the alignment film 2 on the array substrate AR side The direction of rubbing is opposite. Further, the 'second optical element 〇D2' places the second polarizing plate 52 such that its absorption axis A2 is perpendicular to (about 9 Å.) the absorption axis Ai of the first polarizing plate 51. 127101-1001125.doc 1361932 With this configuration, the first optical element OD1 has a function of switching to elliptically polarized light or substantially linearly polarized light having a predetermined ellipsometric ratio, and a function of increasing the viewing angle. Further, the 'second optical element 〇D2 has a function of switching to a substantially linear polarization whose ellipticity is substantially equal to the ellipticity of the light having passed through the first optical element 001 and the liquid crystal display panel lpn. Specifically, the birefringent material forming the phase retardation plate has a characteristic that the main refractive index of the birefringent material depends on the wavelength of the light. Accordingly, the retardation R of the phase retardation plate depends on the wavelength of the passing light. Therefore, as described above, by using the first optical element OD1' in which at least two phase retardation plates are combined, the wavelength dependence of the delay R can be alleviated, and a predetermined delay can be imparted in all wavelength ranges for color display and The desired polarization state is obtained. Specifically, the backlight from the first optical element 〇D1 is converted into substantially linear polarization 'and incident on the liquid crystal layer 1 (assuming that the long-axis direction of the substantially linear polarization is parallel to the X-axis. In the liquid crystal layer Lq The substantial linear polarization that has entered the liquid crystal layer Lq when no voltage is applied (or when a low voltage is applied) imparts a delay of λ/2. Therefore, 'the light from the liquid crystal layer Lq is converted to linearly polarized light, which is perpendicular to the liquid crystal layer. Substantially linearly polarized. In short, the plane of oscillation of the linearly polarized light is parallel to the Υ axis, which is perpendicular to the X axis. Therefore, by applying the second polarizing plate 52 having the absorption axis parallel to the χ axis to the second optical element OD2 It is possible to transmit linear polarization from the liquid crystal layer LQ at a higher transmittance (&quot;white display&quot;) without using some other phase retardation plate. On the other hand, in the liquid crystal layer LQ, when voltage is applied ( Or substantially at the time of applying a high voltage, the substantially linear polarization incident on the liquid crystal layer LQ gives a substantially zero delay. Therefore, the light emitted from the liquid crystal layer LQ remains equal to the 127101-1001125.doc • 14 · 136.1932 substantially linearly polarized light that has just entered the liquid crystal layer. a polarization state of the polarized state. In short, the substantially linearly polarized oscillation plane is parallel to the axis. Therefore, by applying the second polarizing plate 52 having the absorption axis parallel to the X axis to the second optical element OD2, Linear polarized light from the liquid crystal layer LQ is absorbed at a higher absorption ratio (&quot;black display&quot;) without using some other phase retardation plate. As described above, since the second optical element is only composed of the second polarizing plate 52 Composition without using a phase retardation plate, thickness reduction and cost reduction can be achieved, and good optical characteristics can be obtained. Next, regarding the method for obtaining good optical characteristics, specifically, optical compensation when black display is shown, The front side delay r(rF1) of the first phase retardation plate RF1 in the optical element 〇D1 and the front side delay R(RF2) of the second phase delay plater ^ and the residual delay r(Lq) of the liquid crystal layer LQ in the black display The relationship between the residual retardation R(LQ) of the liquid crystal layer LQ is now explained. In the case where the voltage of the black display is applied to the liquid crystal layer (&quot;black display voltage&quot;), it is positioned in the middle portion away from the substrate interface (,, middle The liquid crystal molecules in the plane ") are aligned such that their long axis directions are substantially parallel to the direction of the electric field. Therefore, the front retardation of the midplane of the liquid crystal layer LQ is regarded as substantially zero (nm). However, alignment is performed near the substrate interface. The liquid crystal molecules 4 are affected by the alignment limiting force (&quot;anchoration) of the interface, the liquid crystal molecules 40 have a low voltage response, and the liquid crystal molecules 40 maintain a substantially initial alignment state. Accordingly, the liquid crystal layer substrate interface is nearby The front side delay does not become zero (nm). Therefore, even if a sufficiently high black display voltage is applied to the liquid crystal layer LQ to realize black display, the front retardation remains in the liquid crystal layer • LQ due to the mosquito shadow f at the substrate interface . This is commonly referred to as &quot;residual delay&quot;. 12710M001125.doc • 15-1361932 In this embodiment, (1) each of the liquid crystal layer LQ, the first phase retardation plate RF1, and the second phase retardation plate RF2 used has a positive retardation, and (2) the liquid crystal in the liquid crystal layer LQ The guiding system of the molecules 40 is set to be substantially parallel to the slow axis D1 of the first phase retardation plate RF1, and (3) the slow axis D1 of the first phase retardation plate RF1 is set to be the slow axis D2 of the second phase retardation plate RF2. It is about 90°. Correspondingly, the total delay of the front retardation R(RF1) of the first phase retardation plate RF1 of the first optical element OD1 and the front retardation R(RF2) of the second phase retardation plate RF2 and the residual delay R(LQ) of the liquid crystal layer LQ R(total) is expressed by R(total) = R(LQ) + R(RFl) - R(RF2). In this equation, the individual delays are set such that R(total) becomes zero, ie R(LQ) + R(RF1) = R(RF2). Therefore, optical compensation between the first optical element OD1 and the liquid crystal layer LQ can be achieved. Specifically, in the present embodiment, the backlight polarization state is not converted to a substantially linear polarization state by the first optical element OD1 itself. Considering the residual retardation of the liquid crystal layer LQ, the polarization state of the light emitted from the liquid crystal display panel LPN is converted into substantially linear polarization (ellipticity &lt; 0.1). More specifically, the residual retardation of the liquid crystal layer LQ and the first phase retardation plate The sum of the frontal delays of RF1 is set to be substantially equal to the positive delay of the second phase retarder RF2. Therefore, in the black display, after the backlight has passed through the first optical element OD1 and the liquid crystal layer LQ, the backlight from the backlight unit BL can be converted into light in a polarized state as close as possible to the linearly polarized light. Therefore, even in the case of the black display and the above-described white color development, the polarization state of the light emitted from the first optical element OD1 and the liquid crystal layer LQ can be made to be close to the linear polarization in which the ellipticity is substantially zero, so that it can be simply Second optical component OD2 127101-1001125.doc 16

1361932 • I 應用第二偏光板52來獲得良好光學特徵。 接下來’說明液晶顯示面板LPN上之第一光學元件〇m 及第二光學元件0D2的配置。 參考圖4B予以說明,其中從反基板ct側觀察液晶顯示 裝置。出於方便目的,將彼此垂直的χ軸及γ軸定義在平 行於陣列基板AR(或反基板CT)之主要表面的平面中,並 將此板之法線方向定義為2轴。短語&quot;平面内&quot;意味著&quot;由χ 轴及Υ軸定義之平面内。例如,χ軸對應於螢幕之水平方 向,Υ軸對應於螢幕之法線方向。假定χ軸之正(+)側上方 向(0方位)對應於螢幕右側,χ轴之負(_)侧上方向(18〇。方 位)對應於螢幕左側。另外,假定γ軸之正(+)側上方向(9〇。 方位)對應於螢幕上侧,γ軸之負㈠側上方向(270。方位)對 應於螢幕下侧。 液晶顯示面板LPN中,陣列基板AR側上的配向膜2〇之磨 擦方向係設定為與X軸成45。。 根據配向膜20之磨擦方向設定液晶顯示面板LpN上之第 一光學元件OD1的配置。明確而言,將第一相延遲板尺” 置放成其慢軸D1係引導至平行於配向膜2〇之磨擦方向的 45。至225。方位。此時,包括於第一相延遲板尺^内之液晶 分子的混合方向係與配向膜2〇之磨擦方向相對的方向上之 225°方位。將第二相延遲板RF2之慢軸〇2置放成實質上垂 直於第一相延遲板RF1之慢軸D1(即135。方位此外,將 第一偏光板51置放成其吸收軸八丨與第一相延遲板尺”之慢 軸D1及第二相延遲板RF2之慢軸D2成大約45。,例如9〇。至 127l01-1001125.doc 17 1361932 270°方位。 另一方面,根據(例如)在黑色顯示時發自液晶層LQ之實 質線性偏光的方位方向設定液晶顯示面板Lpn上的第二光 學元件OD2之配置(此情形中方位方向平行於X轴明確 而言,第二光學元件OD2中,第二偏光板52係置放成其吸 收軸A2實質上平行於發自第一光學元件〇;〇1及液晶層LQ 的光之偏光狀態(實質線性偏光)的橢圓體長軸方向。簡言 之’可將第二偏光板52置放成其吸收轴A2位於〇。至18〇。方 位。 圖5顯示當對液晶層LQ應用黑色顯示電壓(例如4.8 v) 時’發自具有上述結構之第一光學元件〇D 1及液晶層LQ的 背光之偏光狀態。黑色顯示狀態中,發自第一光學元件 OD1及液晶層LQ之光的偏光狀態具有相對於長軸方向内振 幅(Ep)的最小可能振幅(Es)。偏光之橢圓率大約為〇〇17。 此外’應瞭解’實質線性偏光之長轴方向係大約〇。方位(X 轴)。因此,應暸解為了顯示高品質黑色影像,第二偏光 板52之吸收軸A2較佳的係設定於〇。方位。 (範例) 接下來’說明依據本具體實施例之液晶顯示裝置的範 例。例如,液晶顯示裝置係按以下方式設計。 液晶顯示面板LPN中,液晶層LQ由液晶複合物組成,其 包括水平配向之液晶分子。MJ041113(由Merck製造, △ η=0·065)係應用為液晶複合物。此時,藉由陣列基板ar 側上的配向膜20之磨擦方向限制液晶分子4〇之導向體(液 12710M001125.doc •18- 曰曰分子之長抽方向),並設定為與X軸成45。。將液晶層lq 内之間隙没定為4.9 pm。為實現黑色顯示,欲施加於液晶 層LQ之電壓係設定於4 8(ν),此時液晶層lQ之殘餘延遲為 60 (nm) 〇 首先’為補償因液晶分子4〇引起之雙折射,將置放於陣 列基板AR之外表面上之第一光學元件〇〇1之第一相延遲板 RF1的慢轴D1(即第一相延遲板RF1之液晶分子61的配向方 向)’係係設定於實質上與陣列基板Ar之磨擦方向相對的 方位方向(例如225。方位),以便建立補償關係。例如,將 第一相延遲板RF1之正面延遲設定於i 〇〇 nm ° 隨後’將第二相延遲板RF2之慢軸D2設定於方位方向 (例如135。方位),其實質上垂直於液晶分子4〇及第一相延 遲板RF1之慢軸D1。將第二相延遲板rF2之正面延遲設定 於(例如)160 nm,其對應於液晶層LQ之殘餘延遲與第一相 延遲板RF1之正面延遲的總和。 之後’將第一偏光板51之吸收轴A1設定於一方位方向 (例如90°方位),其與第一相延遲板rf 1之慢轴d 1及第二相 延遲板RF2之慢軸D2大約成45°交又。 另一方面,將置放於反基板CT之外表面的第二光學元 件OD2之第二偏光板52的吸收軸A2係設定於一方位方向 (例如0。方位),其實質上垂直於第一偏光板51之吸收轴 A1。如圖4B所示’相延遲板之慢轴的上述方位方向及偏 光板之吸收轴的方位方向係由與X軸所成角度定義。 液晶層LQ之殘餘延遲R(LQ)、第一相延遲板RF1之延遲 127101-1001125.doc • 19- 1361932 R(RF1)、及第二相延遲板RF2之延遲R(RF2)不限於上述 值。若延遲值滿足R(LQ)+R(RF1)=R(RF2)之關係,所有情 形中獲得相同結果。 將具有37°之平均傾斜角度β的NH膜(由Nippon Oil Corporation製造)施加為第一相延遲板(RF1)。此情況下, 將平均傾斜角度β定義為深度方向主要折射率nz與法線方 向之角度。按簡化方式,將平均傾斜角度β定義為由[(較 高傾斜角+較低傾斜角)/2+較低傾斜角]給出之值。例如, 如圖4Α所示,••較高傾斜角&quot;對應於液晶分子61Α之傾斜角 (即向陣列基板之主要表面傾斜),其係包括於混合配向之 液晶分子内並以最大角度升高至陣列基板AR之主要表 面。&quot;較低傾斜角”對應於液晶分子61B之傾斜角,其係包 括於混合配向之液晶分子中並以最小角度升高至陣列基板 AR之主要表面。將ZEONOR(由OPTES製造)應用於第二相 延遲板RF2。 依據本範例,如圖6所示,獲得視角與對比率之相依性 的測量結果。在顯示關於視角與對比率之相依性的測量結 果之圖式中’中心對應於液晶顯示面板LPn之法線方向, 關於法線方向之同心圓對應於與法線方向成1〇。至8 〇。之傾 斜角(視角)。藉由連接個別方位方向上之等對比率區域獲 得圖6之特徵圖。 如圖ό所示,依據此範例’確認在螢幕之上下方向及左 右方向上獲得關於等對比率(CR)=10:1之160。的充分寬視 角。螢幕法線方向上之對比度係4〇〇。 127101-100I125.doc -20- 1361932 另一方面,圖7A顯示比較範例1之結構。液晶顯示面板 LPN之結構與範例中相同》然而,比較範例1中,第一光 學元件OD1包含第一偏光板、1/2波長板及具有平均傾斜角 度β 28。的NH膜,以及第二光學元件〇D2包含第二偏光 板、1/2波長板及1/4波長板。 圖7Β顯不具有圖7Α所不結構之比較範例1内視角盘對比 率之相依性的測量結果。關於等對比率(CR)=1〇:1之視角 範圍在螢幕之上下方向及左右方向上分別係14〇/145。。榮 幕法線方向上之對比度係250。比較範例1之測量結果劣於 該範例之測量結果。 依據本發明之範例,關於螢幕法線方向上的對比度及等 對比率之視角範圍確認改良。關於該等測量,藉由BM5_ A(由TOPCON製造)測量螢幕法線方向之對比度,並藉由 Ez-Contrast(由ELDIM製造)測量視角特徵。 接下來’清楚說明本具體實施例與具有圖8所示結構的 比較範例2(其係基於與本具體實施例相同之概念)間的差 異’並對本具體實施例中為何獲得良好視角特徵予以說 明。 本具體實施例與圖8所示比較範例2之差異僅在於包括於 本具體實施例令之第一光學元件〇m内的第二相延遲板 RF2在比較範例2中係包括於第二光學元件〇D2内。本具體 實施例及比較範例2關於以下方面相同:液晶層Lq ;第一 光學元件OD1内第一偏光板51及第一相延遲板RF1之軸向 角度間關係;第一相延遲板尺^與包括於液晶層LQ内之液 127101-1001 J25.doc •21· 1361932 B曰分子40之導向體間的軸向角度間關係;第一相延遲板 RF1之正面延遲R(RF1);以及第一相延遲板RF1之平均傾 斜角度。此外,本具體實施例及比較範例2關於以下方面 相同.包括於第二光學元件〇D2内之第二偏光板52的吸收 軸A2相對於液晶顯示面板LPN之置放角度;包括第二光學 兀件内之第二相延遲板!^2的正面延遲R(RF2);以及 第二相延遲板RF2之慢軸D2與第一相延遲板RF1之慢軸D1 之軸向角度間關係。因此,顯然前侧方向上(即螢幕法線 方向)T-V特徵(即應用於液晶層LQi透射比與電壓間關係) 在本具體實施例與圖2所示之比較範例2間相同。 圖9A顯示本具體實施例之視角特徵的模擬結果,圖9B 顯示比較範例2之視角特徵的模擬結果。從該等模擬結 果,應瞭解該具體實施例及比較範例2在前側方向上具有 實質相同特徵,但在視角特徵上完全不同,並且本具體實 施例具有良好視角特徵,但比較範例2具有較窄視角。 為解釋此結果,關於各結構,對發自第一光學元件 及液晶層LQ之背光的偏光狀態與已通過第二光學元件〇d2 之環境光的偏光狀態間匹配執行一分析。 現在假定對液晶層LQ施加用於黑色顯示之預定電壓 (=4.8 V)。圖10A係顯示本具體實施例中螢幕上下方向上的 兩個偏光狀態間匹配之特徵圖,圖10B係顯示比較範例2中 勞幕上下方向上的兩個偏光狀態間匹配之特徵圖。橫座標 表示與螢幕上下方向上的法線所成角度,縱座標表示55〇 nm波長下之橢圓率’作為指示偏光狀態之參數。圖式内符 127101-1001125.doc •22· 1361932 號A對應於發自第一光學元件0D1及液晶層Lq之背光的 偏光狀態,符號&quot;B”對應於已通過第二光學元件〇D2之環 境光的偏光狀態。 液晶層LQ内液晶分子的方位方向係設定於45。。因此, 儘官圖10A及圖10B顯示螢幕上下方向上之視角特徵螢 幕左右方向上呈現相同視角特徵。為實現良好視角補償, 重要的係發自第一光學元件〇D1及液晶層[(^的背光之偏光 狀態實質上與已通過第二光學元件〇D2之環境光的偏光狀 態一致。 從圖10A可清楚,兩偏光狀態實質上在本具體實施例中 一致。然而,如圖丨0B所示,比較範例2中,兩偏光狀態隨 視角增加而變得顯著不同。此外,應瞭解,比較範例2内 之前側偏光狀態係橢圓率&gt;〇7之橢圓形偏光,而本具體實 施例中之前側偏光狀態接近橢圓率&lt; 〇.丨之實質線性偏光。 簡s之’本具體實施例與比較範例2之差異在於線性偏光 (或具有較小橢圓率之橢圓形偏光)主要用於本具體實施例 中’而圓形偏光(或具有較大橢圓率之橢圓形偏光)主要用 於比較範例2中。 在應用具有螢幕法線方向上的較大橢圓率之橢圓形偏光 情形中’如比較範例2 ’通常情形下無法獲得良好顯示品 質’除非在第二光學元件〇D2中額外提供在主要折射率 nx、ny及nz間具有nx==ny&gt;nz關係的第三相延遲板RF3(負α 板;n-C) ’或施加具有nx&gt;ny&lt;nu|係的負雙軸膜(NB)作為 第二相延遲板RF2。 127101-100H25.doc -23- 1361932 圖11A顯示在比較範例2之結構中將負C板(由Nitto Denko製造)置放成第二光學元件〇D2與液晶層lq間之第三 相延遲板的情形中之視角特徵》負C板中,將由&quot;Rth=[(nx-ny)/2_nz]x膜厚度&quot;定義的延遲(Rth)設定於80 nm。 圖11B顯示在將負c板(Rth=80 nm)置放於第二光學元件 OD2與液晶層lq間的結構中,發自第一光學元件〇〇1及液 晶層LQ之背光的偏光狀態與已通過第二光學元件〇d2之環 境光的偏光狀態間之匹配。兩種偏光狀態間的匹配良好, 並且亦可獲得良好視角特徵。 另一方面,本具體實施例中,可將發自第一光學元件 OD1及液晶層LQ之背光的偏光狀態轉換為接近橢圓率在螢 幕前側方向上&lt; 0.1的實質線性偏光之橢圓形偏光狀態。因 此,可藉由第二偏光板52本身完成視角補償,即使不對第 二光學元件0D2施加負C板(n-C)或負雙軸膜(NB)。因此, 可提供具有良好顯示品質之液晶顯示裝置,其可實現厚度 減小及成本降低。 本發明並不僅限於上述具體實施例。實務中,可修改結 構兀件,而不背離本發明之精神。可藉由適當組合具體實 施例中所揭示之結構元件實施各種發明。例如,可從具體 實施例中所揭示之所有結構元件省略某些結構元件。另 外,可適當地組合不同具體實施例中之結構元件。 ▲例如’上述具體實施例中,切換元件w之各個心通道 薄膜電晶體組成。然而’若可產生各種相似種類之驅動信 號,可採用其他結構。 127l01-100H25.doc -24 - 1361932 第二光學元件〇D2可包括對應於第二偏光板52與液晶顯 示面板LPN之間的負C板之第三相延遲板。明確而言,如 圖12A所示,在依據本發明之修改的液晶顯示裝置中,第 二光學元件0D2由第二偏光板52及第三相延遲板RF3組 成,其係置放於第二偏光板52與液晶顯示面板LPN之間。 第三相延遲板RF3具有一折射率各向異性,其係由關係 nx=ny&gt;nz定義,其中nx及ny係在第三相延遲板尺^之一平 面内相互垂直方向上的折射率,⑽係第三相延遲板RF3之 法線方向上的折射率。第三相延遲板RF3中,法線方向上 之延遲Rth係設定於8〇 nm。 依據關於此結構之修改,如圖丨2B所示,應瞭解與未提 供第三相延遲板RF3之具體實施例(圖3内顯示)的結構中視 角與對比率相依性之測量結果(圖6内顯示)相比,在具有較 低對比率之區域(例如CR=1〇:1)内獲得近似相等視角。然 而應瞭解’在未提供第三相延遲板RF3之具體實施例的結 構中在具有較同對比率之區域(例如CR=5 0:1)内獲得較 寬視角。儘嘗未顯不’即使在施加負雙軸膜(nb)作為第三 相延遲板RF3的情形中,可獲得相似特徵,如圖i2B所示。 根據上述結果,特定言之為增加較高對比率之區域,確 定具體實施例之結構(即第二光學元件不包括負⑶及負雙 轴膜的結構t)比第m件包括由負⑶或負雙轴膜組 成之第三相延遲板的結構更有利。 上述具體實施例中,較佳地第一相延遲板(RF1)僅由液 晶膜層60組成。明確而言’該具體實施例中,第—相延遲 12710I-100lJ25.doc -25- 1361932 板RF1由液晶膜層60組成,其接觸第二相延遲板RF2及液 晶顯示面板LPN之外表面(即構成陣列基板AR之絕緣基板 10的外表面)》具有包括混合配向之液晶分子之液晶膜層 的相延遲板,例如NH膜,係藉由以下方式獲得:在一基 底膜上執行配向處理,在基底膜上塗布液晶材料,以及將 液晶材料固化至液晶分子保持預定配向狀態的一狀態。三 醋酸纖維素(TAC)廣泛用作基底膜。然而,基底膜本身具 有延遲。為實現良好光學補償,需要藉由考慮基底膜延遲 來執行補償。因此,藉由將無基底膜之NH膜應用為上述 書 範例’可容易地實現光學補償。出於參考目的,圖13顯示 測量結果’其係在施加具有基底膜之NH膜作為與範例具 有相同結構之第一相延遲板RF1的情形中藉由測量視角與 對比率相依性而獲得。 應瞭解’在具有較低對比率(例如CR=1〇:1)之區域中獲 得近似等於圖6所示範例中的無基底膜結構之視角之一視 角。然而’應瞭解在範例之無基底膜結構中,在具有較高 對比率之區域(例如CR=50:1)*獲得較寬視角。根據上述籲 結果,特定言之,確定為了增加高對比率之區域,該範例 之結構(即應用無基底膜(無TAC)之第一相延遲板RF1的結 構)比應用具有基底膜(TAC)之第一相延遲板(RF1)的結構 更有利。 上述具體實施例中,較佳地使用具有液晶膜層6〇之第— 相延遲板RF1,其具有較大平均傾斜角度β,例如β=37。或 近似該值。出於參考目的,圖14顯示測量結果其係在與 12710M00U25.doc1361932 • I Apply the second polarizer 52 to achieve good optical characteristics. Next, the arrangement of the first optical element 〇m and the second optical element OD2 on the liquid crystal display panel LPN will be described. Description will be made with reference to Fig. 4B in which the liquid crystal display device is viewed from the side of the counter substrate ct. For convenience, the x-axis and the γ-axis perpendicular to each other are defined in a plane parallel to the main surface of the array substrate AR (or the counter substrate CT), and the normal direction of the plate is defined as 2 axes. The phrase &quot;in-plane&quot; means &quot; in the plane defined by the axis and the axis. For example, the x-axis corresponds to the horizontal direction of the screen and the x-axis corresponds to the normal direction of the screen. Assume that the positive (+) side of the χ axis (0 direction) corresponds to the right side of the screen, and the negative (_) side of the χ axis (18 〇. square) corresponds to the left side of the screen. In addition, it is assumed that the positive (+) side of the γ-axis (9 〇. azimuth) corresponds to the upper side of the screen, and the negative (one) side of the γ axis (270. azimuth) corresponds to the lower side of the screen. In the liquid crystal display panel LPN, the rubbing direction of the alignment film 2 on the array substrate AR side is set to be 45 with respect to the X-axis. . The arrangement of the first optical element OD1 on the liquid crystal display panel LpN is set in accordance with the rubbing direction of the alignment film 20. Specifically, the first phase retardation plate is placed such that its slow axis D1 is guided to a direction parallel to the rubbing direction of the alignment film 2 。 45 to 225. Azimuth. At this time, included in the first phase retardation ruler The mixing direction of the liquid crystal molecules in the ^ is 225° in the direction opposite to the rubbing direction of the alignment film 2〇. The slow axis 〇2 of the second phase retardation plate RF2 is placed substantially perpendicular to the first phase retardation plate. The slow axis D1 of RF1 (ie, 135. azimuth, in addition, the first polarizer 51 is placed such that its absorption axis gossip and the first phase retardation plate) slow axis D1 and the second phase retarder RF2 slow axis D2 Approximately 45. For example, 9〇. to 127l01-1001125.doc 17 1361932 270° azimuth. On the other hand, the liquid crystal display panel Lpn is set according to, for example, the azimuthal direction of the substantially linear polarization from the liquid crystal layer LQ when displayed in black. Arrangement of the second optical element OD2 (in this case, the azimuth direction is parallel to the X axis. In the second optical element OD2, the second polarizing plate 52 is placed such that its absorption axis A2 is substantially parallel to the first Optical element 〇; 〇1 and liquid crystal layer LQ light polarization state (substantial line The long axis direction of the ellipsoid of the polarized light. In short, the second polarizing plate 52 can be placed such that its absorption axis A2 is located at 〇. to 18 〇. Azimuth. Figure 5 shows when a black display voltage is applied to the liquid crystal layer LQ ( For example, 4.8 v) is a polarization state of a backlight emitted from the first optical element 〇D 1 and the liquid crystal layer LQ having the above structure. In the black display state, the polarization state of light from the first optical element OD1 and the liquid crystal layer LQ It has the smallest possible amplitude (Es) with respect to the amplitude (Ep) in the long axis direction. The ellipticity of the polarized light is about 〇〇 17. In addition, it should be understood that the long axis direction of the substantially linear polarization is about 〇. Azimuth (X axis) Therefore, it should be understood that in order to display a high-quality black image, the absorption axis A2 of the second polarizing plate 52 is preferably set to 〇. Azimuth. (Example) Next, an example of a liquid crystal display device according to the present embodiment will be described. For example, the liquid crystal display device is designed in the following manner. In the liquid crystal display panel LPN, the liquid crystal layer LQ is composed of a liquid crystal composite including horizontally aligned liquid crystal molecules. MJ041113 (manufactured by Merck, Δη=0·065) It is applied as a liquid crystal composite. At this time, the direction of the liquid crystal molecules 4 限制 is restricted by the rubbing direction of the alignment film 20 on the side of the array substrate ar (liquid 12710M001125.doc • 18- 曰曰 molecules long pumping direction), and is set To be 45 with the X axis. The gap in the liquid crystal layer lq is not set to 4.9 pm. To achieve the black display, the voltage to be applied to the liquid crystal layer LQ is set at 4 8 (ν), at this time, the residual of the liquid crystal layer lQ The retardation is 60 (nm) 〇 firstly to compensate for the birefringence caused by the liquid crystal molecules 4 ,, the slow axis of the first phase retardation plate RF1 of the first optical element 〇〇1 placed on the outer surface of the array substrate AR D1 (ie, the alignment direction of the liquid crystal molecules 61 of the first phase retardation plate RF1) is set in an azimuth direction (for example, 225) substantially opposite to the rubbing direction of the array substrate Ar. Azimuth) to establish a compensation relationship. For example, setting the front retardation of the first phase retardation plate RF1 to i 〇〇 nm ° and then 'setting the slow axis D2 of the second phase retardation plate RF2 to the azimuthal direction (eg, 135. azimuth), which is substantially perpendicular to the liquid crystal molecules 4〇 and the slow axis D1 of the first phase delay plate RF1. The front retardation of the second phase retardation plate rF2 is set to, for example, 160 nm, which corresponds to the sum of the residual retardation of the liquid crystal layer LQ and the front retardation of the first phase retardation plate RF1. Then, the absorption axis A1 of the first polarizing plate 51 is set in an azimuth direction (for example, a 90° orientation), which is approximately the slow axis D1 of the first phase retardation plate rf1 and the slow axis D2 of the second phase retardation plate RF2. Into 45 ° intersection again. On the other hand, the absorption axis A2 of the second polarizing plate 52 of the second optical element OD2 placed on the outer surface of the counter substrate CT is set in an azimuthal direction (for example, 0. azimuth) which is substantially perpendicular to the first The absorption axis A1 of the polarizing plate 51. The azimuth direction of the slow axis of the phase retardation plate and the azimuth direction of the absorption axis of the polarizing plate are defined by the angle with the X axis as shown in Fig. 4B. The residual delay R (LQ) of the liquid crystal layer LQ, the delay of the first phase retardation plate RF1, 127101-1001125.doc • 19-1361932 R (RF1), and the delay R (RF2) of the second phase retardation plate RF2 are not limited to the above values. . If the delay value satisfies the relationship of R(LQ) + R(RF1) = R(RF2), the same result is obtained in all cases. An NH film (manufactured by Nippon Oil Corporation) having an average tilt angle β of 37° was applied as the first phase retardation plate (RF1). In this case, the average tilt angle β is defined as the angle between the main refractive index nz and the normal direction in the depth direction. In a simplified manner, the average tilt angle β is defined as the value given by [(higher tilt angle + lower tilt angle) / 2 + lower tilt angle]. For example, as shown in FIG. 4A, the "higher tilt angle" corresponds to the tilt angle of the liquid crystal molecules 61 (ie, the tilt to the main surface of the array substrate), which is included in the liquid crystal molecules of the mixed alignment and rises at the maximum angle. Up to the main surface of the array substrate AR. &quot;Lower tilt angle&quot; corresponds to the tilt angle of the liquid crystal molecules 61B, which is included in the liquid crystal molecules of the mixed alignment and raised to the main surface of the array substrate AR at a minimum angle. ZEONOR (manufactured by OPTES) is applied to Two-phase retardation plate RF2. According to the present example, as shown in Fig. 6, the measurement results of the dependence of the viewing angle and the contrast ratio are obtained. In the diagram showing the measurement results of the dependence on the viewing angle and the contrast ratio, the center corresponds to the liquid crystal. The normal direction of the display panel LPn, the concentric circle with respect to the normal direction corresponds to a tilt angle (viewing angle) of 1 〇 to 8 〇. The graph is obtained by connecting equal contrast regions in individual azimuth directions. 6Characteristics diagram. As shown in Fig. ,, according to this example, it is confirmed that a sufficient wide viewing angle with respect to the equal-ratio (CR)=10:1 of 160 is obtained in the upper and lower directions of the screen and in the left-right direction. The contrast ratio is 4〇〇. 127101-100I125.doc -20- 1361932 On the other hand, FIG. 7A shows the structure of Comparative Example 1. The structure of the liquid crystal display panel LPN is the same as in the example. However, in Comparative Example 1, The optical element OD1 includes a first polarizing plate, a 1/2 wavelength plate, and an NH film having an average tilt angle β 28 , and the second optical element 〇 D2 includes a second polarizing plate, a 1/2 wavelength plate, and a 1/4 wavelength plate. Fig. 7 shows the measurement result of the contrast ratio of the viewing angle disc in Comparative Example 1 which does not have the structure of Fig. 7. The angle of view of the equal contrast ratio (CR) = 1 〇: 1 is in the upper and lower directions of the screen and the left and right direction. The upper contrast is 14〇/145. The contrast in the normal direction of the glory is 250. The measurement result of the comparative example 1 is inferior to the measurement result of the example. According to the example of the present invention, the contrast in the normal direction of the screen and the like The range of viewing angles of the contrast ratios was confirmed. For these measurements, the contrast of the normal direction of the screen was measured by BM5_A (manufactured by TOPCON), and the viewing angle characteristics were measured by Ez-Contrast (manufactured by ELDIM). This specific embodiment is described with respect to the difference between the comparative example 2 having the structure shown in Fig. 8 (which is based on the same concept as the specific embodiment) and why a good viewing angle feature is obtained in the specific embodiment. The difference between the specific embodiment and the comparative example 2 shown in FIG. 8 is that the second phase retardation plate RF2 included in the first optical component 〇m of the present embodiment is included in the second optical component in Comparative Example 2 The present embodiment and the comparative example 2 are the same in the following aspects: the liquid crystal layer Lq; the axial relationship between the first polarizing plate 51 and the first phase retardation plate RF1 in the first optical element OD1; the first phase retardation plate The relationship between the axial angle of the ruler and the liquid 127101-1001 J25.doc • 21· 1361932 B 曰 molecules included in the liquid crystal layer LQ; the front retardation R (RF1) of the first phase retardation plate RF1; And an average tilt angle of the first phase retardation plate RF1. In addition, the present embodiment and the comparative example 2 are the same in the following aspects. The absorption axis A2 of the second polarizing plate 52 included in the second optical element 〇D2 is disposed at an angle with respect to the liquid crystal display panel LPN; and includes the second optical 兀The second phase retarder in the piece! The frontal delay R (RF2) of ^2; and the axial relationship between the slow axis D2 of the second phase retardation plate RF2 and the slow axis D1 of the first phase retardation plate RF1. Therefore, it is apparent that the T-V characteristic in the front side direction (i.e., the normal direction of the screen) (i.e., the relationship between the transmittance and the voltage applied to the liquid crystal layer LQi) is the same as in the comparative example 2 shown in Fig. 2 in the present embodiment. Fig. 9A shows simulation results of the viewing angle characteristics of the present embodiment, and Fig. 9B shows simulation results of the viewing angle characteristics of Comparative Example 2. From the simulation results, it should be understood that the specific embodiment and Comparative Example 2 have substantially the same features in the front side direction, but are completely different in the viewing angle characteristics, and the specific embodiment has good viewing angle characteristics, but Comparative Example 2 has a narrower Perspective. To explain the result, with respect to each structure, an analysis is performed on the matching between the polarization state of the backlight from the first optical element and the liquid crystal layer LQ and the polarization state of the ambient light having passed through the second optical element 〇d2. It is now assumed that a predetermined voltage (= 4.8 V) for black display is applied to the liquid crystal layer LQ. Fig. 10A is a characteristic diagram showing the matching between the two polarization states in the up and down direction of the screen in the embodiment, and Fig. 10B is a characteristic diagram showing the matching between the two polarization states in the up and down direction of the screen in Comparative Example 2. The abscissa indicates an angle with the normal line in the up and down direction of the screen, and the ordinate indicates the ellipticity at a wavelength of 55 〇 nm as a parameter indicating the state of polarization. The figure symbol 127101-1001125.doc • 22· 1361932 A corresponds to the polarization state of the backlight from the first optical element 0D1 and the liquid crystal layer Lq, and the symbol &quot;B corresponds to the second optical element 〇D2 The polarization state of the ambient light. The orientation direction of the liquid crystal molecules in the liquid crystal layer LQ is set at 45. Therefore, the viewing angles in the vertical direction of the screen show the same viewing angle characteristics in the left and right direction of the screen in the vertical direction of Fig. 10A and Fig. 10B. The viewing angle compensation is important from the first optical element 〇D1 and the liquid crystal layer [(the polarized state of the backlight substantially coincides with the polarized state of the ambient light that has passed through the second optical element 〇D2. As is clear from FIG. 10A, The two polarization states are substantially identical in this embodiment. However, as shown in FIG. 0B, in Comparative Example 2, the two polarization states become significantly different as the viewing angle increases. In addition, it should be understood that the front side of Comparative Example 2 is The polarization state is an elliptical polarization of ellipticity &gt; ,7, and in the present embodiment, the front side polarization state is close to the ellipticity &lt; 〇.丨 substantial linear polarization. The difference between the example and the comparative example 2 is that linear polarization (or elliptical polarization with a small ellipticity) is mainly used in the present embodiment, and circular polarization (or elliptical polarization with a large ellipticity) is mainly used for In Comparative Example 2, in the case of applying an elliptical polarization with a large ellipticity in the normal direction of the screen, 'as in Comparative Example 2', a good display quality cannot be obtained normally unless it is additionally provided in the second optical element 〇D2. A third phase retardation plate RF3 (negative α plate; nC) having a relationship of nx==ny&gt;nz between the main refractive indices nx, ny, and nz or a negative biaxial film having a nx&gt;ny&lt;nu| system As the second phase retardation plate RF2. 127101-100H25.doc -23- 1361932 FIG. 11A shows that a negative C plate (manufactured by Nitto Denko) is placed in the structure of Comparative Example 2 as the second optical element 〇D2 and the liquid crystal layer. The viewing angle characteristic in the case of the third phase retardation plate between lq. In the negative C plate, the retardation (Rth) defined by &quot;Rth=[(nx-ny)/2_nz]x film thickness&quot; is set at 80 nm. Figure 11B shows the placement of a negative c-plate (Rth = 80 nm) on the second optical element OD2 and liquid In the structure between the layers lq, the polarization state of the backlight from the first optical element 〇〇1 and the liquid crystal layer LQ matches the polarization state of the ambient light that has passed through the second optical element 〇d2. The matching is good, and good viewing angle characteristics can also be obtained. On the other hand, in the specific embodiment, the polarization state of the backlight from the first optical element OD1 and the liquid crystal layer LQ can be converted to a near ellipticity in the front side of the screen. An elliptical polarization state of substantially linear polarization of 0.1. Therefore, the viewing angle compensation can be completed by the second polarizing plate 52 itself, even if the negative C plate (n-C) or the negative biaxial film (NB) is not applied to the second optical element OD2. Therefore, it is possible to provide a liquid crystal display device having good display quality, which can achieve thickness reduction and cost reduction. The invention is not limited to the specific embodiments described above. In practice, structural elements may be modified without departing from the spirit of the invention. Various inventions can be implemented by appropriately combining the structural elements disclosed in the specific embodiments. For example, some structural elements may be omitted from all structural elements disclosed in the specific embodiments. Further, structural elements in different specific embodiments may be combined as appropriate. ▲ For example, in the above specific embodiment, each of the heart channel thin film transistors of the switching element w is composed. However, other structures may be employed if a variety of similar types of drive signals are produced. 127l01-100H25.doc -24 - 1361932 The second optical element 〇D2 may include a third phase retardation plate corresponding to the negative C plate between the second polarizing plate 52 and the liquid crystal display panel LPN. Specifically, as shown in FIG. 12A, in the liquid crystal display device according to the modification of the present invention, the second optical element OD2 is composed of the second polarizing plate 52 and the third phase retardation plate RF3, and is placed in the second polarized light. Between the board 52 and the liquid crystal display panel LPN. The third phase retardation plate RF3 has a refractive index anisotropy, which is defined by the relationship nx=ny>nz, where nx and ny are refractive indices perpendicular to each other in a plane of the third phase retardation plate. (10) is a refractive index in the normal direction of the third phase retardation plate RF3. In the third phase retardation plate RF3, the retardation Rth in the normal direction is set at 8 〇 nm. According to the modification regarding this structure, as shown in FIG. 2B, the measurement results of the viewing angle and the contrast ratio in the structure of the specific embodiment (shown in FIG. 3) in which the third phase retardation plate RF3 is not provided should be understood (FIG. 6). In comparison, an approximately equal viewing angle is obtained in an area having a lower contrast ratio (for example, CR = 1 〇: 1). However, it should be understood that a wider viewing angle is obtained in a region having a more contrast ratio (e.g., CR = 50: 1) in the structure of the specific embodiment in which the third phase retardation plate RF3 is not provided. It is not obvious that even in the case where the negative biaxial film (nb) is applied as the third phase retardation plate RF3, similar features can be obtained as shown in Fig. i2B. According to the above results, specifically to increase the area of the higher contrast ratio, it is determined that the structure of the specific embodiment (ie, the second optical element does not include the negative (3) and the structure of the negative biaxial film t) includes the negative (3) or The structure of the third phase retardation plate composed of a negative biaxial film is more advantageous. In the above specific embodiment, preferably, the first phase retardation plate (RF1) is composed only of the liquid crystal film layer 60. Specifically, in the specific embodiment, the first phase delay is 12710I-100lJ25.doc -25-1361932. The plate RF1 is composed of a liquid crystal film layer 60 which contacts the second phase retardation plate RF2 and the outer surface of the liquid crystal display panel LPN (ie, The outer surface of the insulating substrate 10 constituting the array substrate AR) has a phase retardation plate including a liquid crystal film layer of mixed alignment liquid crystal molecules, for example, an NH film, which is obtained by performing alignment processing on a base film, The liquid crystal material is coated on the base film, and the liquid crystal material is cured to a state in which the liquid crystal molecules maintain a predetermined alignment state. Triacetate (TAC) is widely used as a basement membrane. However, the base film itself has a delay. To achieve good optical compensation, compensation needs to be performed by considering the base film delay. Therefore, optical compensation can be easily realized by applying the NH film without a base film to the above-described book example. For reference purposes, Fig. 13 shows the measurement result 'obtained by measuring the viewing angle and the contrast ratio in the case where the NH film having the base film is applied as the first phase retardation plate RF1 having the same structure as the example. It should be understood that an angle of view which is approximately equal to the angle of view of the baseless film structure in the example shown in Fig. 6 is obtained in a region having a lower contrast ratio (e.g., CR = 1 〇: 1). However, it should be understood that in the example base-free film structure, a wider viewing angle is obtained in a region having a higher contrast ratio (e.g., CR = 50: 1). According to the above-mentioned results, in particular, in order to increase the region of high contrast ratio, the structure of the example (i.e., the structure of the first phase retardation plate RF1 using no base film (without TAC)) has a base film (TAC) than the application. The structure of the first phase retardation plate (RF1) is more advantageous. In the above specific embodiment, the first phase retardation plate RF1 having the liquid crystal film layer 6 is preferably used, which has a large average inclination angle β, for example, β = 37. Or approximate this value. For reference purposes, Figure 14 shows the measurement results for the system with 12710M00U25.doc

S -26 - 1361932 • . 範例相同之結構中施加具有β=28。之液晶膜的第—延遲膜 (ΝΗ膜)之情形中藉由測量視角與對比率相依性而獲得。 應瞭解,在具有較低對比率(例如CR=i〇:i)之區域中獲 得近似等於圖6所示範例之㈣。結構中視角的—視角。^ 而,應瞭解在該範例之β=37。結構中,在具有較高對比率 之區域(例如CR=50:1)中獲得較寬視角。根據上述結果, 特定言之,確定為了增加高對比率之區域,該範例之結構 (即施加具有平均傾斜角度較大之液晶膜的第一相延遲板 RF1的結構)比施加具有平均傾斜角度較小之液晶膜的第— 相延遲板RF1的結構更有利。 【圖式簡單說明】 已併入並構成說明書之一部分的附圖說明本發明的具體 實施例,並且連同前面的一般說明與文中具體實施例的詳 細說明係用來解說本發明原理。 圖1示意性地顯示依據本發明之一具體實施例的液晶顯 示裝置之結構; 圖2示意性地顯示圖丨所示液晶顯示裝置的斷面結構; 圖3示意性地顯示可應用於圖2所示液晶顯示裝置的第一 光學元件及第二光學元件之結構; 圖4 A係用於說明在施加一電壓時液晶顯示面板之液晶分 子的配向與第一相延遲板之液晶分子的配向間關係的圖 式, 圖4B係用於說明圖3所示的相延遲板之慢轴方位方向及 偏光板之吸收軸方位方向的圖式; 127101-100H25.doc •27- 圖5係顯示依據本具體實施例在背光已通過液晶顯示裝 置内之第一光學元件及液晶層後之偏光狀態的特徵圖; 圖6係顯示關於本具體實施例之範例的液晶顯示裝置内 視角與對比率之相依性的測量結果之特徵圖; 圖7A示意性地顯示依據比較範例1之液晶顯示裝置的結 構; 圖7B係顯示依據比較範例1之的液晶顯示裝置内視角與 對比率之相依性的測量結果之特徵圖; 圖8示意性地顯示依據比較範例2之液晶顯示裝置的結 鲁 構; · 圖9A係顯示關於本具體實施例之範例的液晶顯示裝置内 視角與對比率之相依性的模擬結果之特徵圖; 圖9B係顯示依據比較範例2之的液晶顯示裝置内視角與 對比率之相依性的模擬結果之特徵圖; 圖10A係顯示在本具體實施例之範例中,已通過第一光 子元件及液晶層之背光的偏光狀態上下方向上橢圓率變更 與已通過第二光學元件之環境光之偏光狀態上下方向上橢 _ 圓率變更間匹配之特徵圖; 圖10B係顯示在比較範例2中’已通過第一光學元件及液 晶層之背光的偏光狀態上下方向上橢圓率變更與已通過第 二光學元件之環境光之偏光狀態上下方向上橢圓率變更間 匹配之特徵圖; 圖11A係顯示在將負c板置放於第二光學元件與液晶層 之間的情形中,比較範例2中視角與對比率之相依性的測 127101-1001125.docS -26 - 1361932 • . The same structure is applied with β=28. In the case of the first retardation film (ruthenium film) of the liquid crystal film, it is obtained by measuring the viewing angle and the contrast ratio. It should be understood that (4) is obtained in an area having a lower contrast ratio (e.g., CR = i 〇: i) which is approximately equal to the example shown in Fig. 6. The perspective of the structure - the perspective. ^ However, it should be understood that β = 37 in this example. In the structure, a wider viewing angle is obtained in a region having a higher contrast ratio (e.g., CR = 50: 1). According to the above results, in particular, in order to increase the area of the high contrast ratio, the structure of the example (i.e., the structure of applying the first phase retardation plate RF1 having the liquid crystal film having a large average inclination angle) is more than the application having the average inclination angle. The structure of the first phase retardation plate RF1 of the small liquid crystal film is more advantageous. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in FIG. 1 is a view schematically showing the structure of a liquid crystal display device according to an embodiment of the present invention; FIG. 2 is a view schematically showing a sectional structure of the liquid crystal display device shown in FIG.; FIG. 3 is a view schematically showing that it can be applied to FIG. The structure of the first optical element and the second optical element of the liquid crystal display device shown in FIG. 4A is used to illustrate the alignment between the liquid crystal molecules of the liquid crystal display panel and the alignment of the liquid crystal molecules of the first phase retardation plate when a voltage is applied. Figure 4B is a diagram for explaining the slow axis azimuth direction of the phase retardation plate shown in Figure 3 and the absorption axis azimuth direction of the polarizing plate; 127101-100H25.doc • 27- Figure 5 shows the basis DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A characteristic view of a polarized state after a backlight has passed through a first optical element and a liquid crystal layer in a liquid crystal display device; FIG. 6 is a view showing a dependency of a viewing angle and a contrast ratio in a liquid crystal display device according to an example of the present embodiment. FIG. 7A is a view schematically showing the structure of a liquid crystal display device according to Comparative Example 1; FIG. 7B is a view showing a viewing angle of the liquid crystal display device according to Comparative Example 1. A characteristic diagram of the measurement result of the dependency of the ratio; FIG. 8 schematically shows the structure of the liquid crystal display device according to Comparative Example 2; FIG. 9A shows the viewing angle and the pair of the liquid crystal display device according to the example of the present embodiment. FIG. 9B is a characteristic diagram showing simulation results of the dependence of the viewing angle and the contrast ratio in the liquid crystal display device according to Comparative Example 2; FIG. 10A shows an example of the present embodiment. a characteristic map in which the ellipticity in the vertical direction of the polarization state of the backlight of the first photonic element and the liquid crystal layer is matched with the change in the ellipsoidal-round rate change in the up-and-down direction of the polarization state of the ambient light that has passed through the second optical element; 10B shows that in the comparative example 2, the ellipticity change in the up-and-down direction of the polarization state of the backlight that has passed through the first optical element and the liquid crystal layer matches the ellipticity change in the up-and-down direction of the polarization state of the ambient light that has passed through the second optical element. FIG. 11A shows a case where a negative c-plate is placed between the second optical element and the liquid crystal layer, in Comparative Example 2 Measurement of the dependence of the angle of view and the contrast ratio 127101-1001125.doc

S -28- 136.1932 量結果之特徵圖; 圖11B係顯示在將負c板置放於第二光學元件與液晶層 之間的情形令,比較範例2中已通過第一光學元件及液晶 層之背光的偏光狀態上下方向上之橢圓率變更與已通過第 —光學元件之環境光的偏光狀態上下方向上之橢圓率變更 間匹配的特徵圖;FIG. 11B shows a situation in which a negative c-plate is placed between the second optical element and the liquid crystal layer, and the first optical element and the liquid crystal layer have passed through the comparative example 2. a characteristic map in which the ellipticity change in the up-and-down direction of the polarized state of the backlight is matched with the ellipticity change in the up-and-down direction of the polarized state of the ambient light passing through the first optical element;

圖12A示意性地顯示依據本具體實施例之修改的液晶顯 示裝置之結構,其中應用一第二光學元件,其係配置成將 第三相延遲板(負C板)置放於第二偏光板與液晶層之間; 圖12B係顯不在圖12所示之修改中,視角與對比率之相 依性的測量結果之特徵圖; 圖13係顯示本具體實施例中視角與對比率之相依性的測 量結果之特徵圖’其中包括基膜之NH膜用作第一相延遲 板;以及 圖14係顯*本具體實施例中視角與對0之相依性的測 量結果之特徵圖’其中具有28。平均傾斜角度之即膜用作 第一相延遲板。 【主要元件符號說明】 10 絕緣基板 12 半導體層 12C 通道區域 12D &gt;及極區域 12S 源極區域 14 閘極絕緣膜 127101-1001125.doc •29· 1361932 16 層間絕緣膜 18 有機絕緣膜 20 配向膜 30 光透射式絕緣基板 34 慮色器層 36 配向膜 40 液晶分子 51 第一偏光板 52 第二偏光板 60 液晶膜層 61A 液晶分子 61B 液晶分子 A1 吸收軸 AR 陣列基板 CNT 控制器 CT 反基板 D2 慢軸 DSP 顯示區域 EP 像素電極 ET 反電極 LPN 液晶顯不面板 LQ 液晶層 OD1 第一光學元件 OD2 第二光學元件 12710M001125.doc -30 1361932 » »12A is a view schematically showing the structure of a liquid crystal display device according to a modification of the present embodiment, wherein a second optical element is disposed which is configured to place a third phase retardation plate (negative C plate) on the second polarizing plate. FIG. 12B is a characteristic diagram showing measurement results of the dependence of the viewing angle and the contrast ratio in the modification shown in FIG. 12; FIG. 13 is a view showing the dependence of the viewing angle and the contrast ratio in the specific embodiment. A characteristic diagram of the measurement results 'the NH film including the base film is used as the first phase retardation plate; and FIG. 14 is a characteristic diagram of the measurement result of the angle of view and the dependence on 0 in the present embodiment. The film having the average tilt angle is used as the first phase retardation plate. [Main component symbol description] 10 Insulating substrate 12 Semiconductor layer 12C Channel region 12D &gt; and Polar region 12S Source region 14 Gate insulating film 127101-1001125.doc • 29· 1361932 16 Interlayer insulating film 18 Organic insulating film 20 Alignment film 30 Light transmissive insulating substrate 34 Color filter layer 36 Alignment film 40 Liquid crystal molecules 51 First polarizing plate 52 Second polarizing plate 60 Liquid crystal film layer 61A Liquid crystal molecules 61B Liquid crystal molecules A1 Absorption axis AR Array substrate CNT Controller CT Anti-substrate D2 Slow axis DSP display area EP pixel electrode ET Counter electrode LPN Liquid crystal display panel LQ Liquid crystal layer OD1 First optical element OD2 Second optical element 12710M001125.doc -30 1361932 » »

PX 像素 RF1 第一相延遲板 RF2 第二相延遲板 RF3 第三相延遲板 W 切換元件 WG 閘極電極 X 信號線 XD 信號線驅動器 Y 掃描線 YD 掃描線驅動器 127101-1001125.doc -31 -PX pixel RF1 first phase delay plate RF2 second phase delay plate RF3 third phase delay plate W switching element WG gate electrode X signal line XD signal line driver Y scan line YD scan line driver 127101-1001125.doc -31 -

Claims (1)

十、申請專利範圍: 1 ·—種液晶顯示裝置,其包含: 一液晶顯示面板,其中包括水平配向液晶分子的液晶 層被固持在置放成彼此相對之一第一基板與一第二基板 之間; 一第一光學元件’其係設置於該液晶顯示面板之外表 面之一上,並包括一第一偏光板,以及置放於該第一偏 光板與該液晶顯示面板之間之一第一相延遲板及一第二 相延遲板;及 一第二光學元件’其包括設置於該液晶顯示面板之另 一外表面上之一第二偏光板, 其中該第一相延遲板包括一液晶膜層,其對一預定波 長之光賦予一預定之相延遲.,且其中向列液晶分子被固 定化為一該等向列液晶分子沿一法線方向混合配向的狀 態; 其中在該第一光學元件内,該第一偏光板之一吸收軸 與該第二相延遲板之一慢轴之間的角度係設定於大約 45° ’該第一相延遲板之一慢轴及包括於該液晶層内之該 等液晶分子之一導向體(director)係設定為實質上平行, 及該第一相延遲板之該慢軸與該第二相延遲板之該慢轴 之間的角度係設定為大約90。;且 在該第二光學元件内,該第二偏光板之一吸收軸與該 第一偏光板之該吸收轴之間的角度係設定為大約90。。 2·如請求項1之液晶顯示裝置,其中該第一光學元件控制 127101-1001125.doc 1361932 通過該第一光學元件之光之一偏光狀態,使得具有實質 線性偏光之偏光狀態的光進入該液晶層。 3. 如請求項1之液晶顯示裝置,其中該第一相延遲板係由 接觸該第二相延遲板及該液晶顯示面板之該外表面的該 液晶膜層組成。 4. 如請求項1之液蟲顯示裝置,其中該液晶層之一殘餘延 遲及該第一相延遲板之一正面延遲(frontal retardati〇n) 的和實質上等於該第二相延遲板之一正面延遲。 5. 如請求項1之液晶顯示裝置,其中該第二光學元件包括 該第一偏光板與該液晶顯不面板之間之一第三相延遲 板,以及 該第三相延遲板具有一折射率各向異性,其係由 nx=ny&gt;nz之一關係定義,其中⑽及叮係該第三相延遽板 之一平面内相互垂直方向上的折射率,nz係該第三相延 遲板之一法線方向上的折射率。 6. 如請求項1之液晶顯示裝置,進一步包含一背光單元, 其從該第一光學元件側照明該液晶顯示面板。 127l01-1001125.docX. Patent application scope: 1 - A liquid crystal display device comprising: a liquid crystal display panel, wherein a liquid crystal layer including horizontal alignment liquid crystal molecules is held in a first substrate and a second substrate disposed opposite to each other a first optical component is disposed on one of the outer surfaces of the liquid crystal display panel, and includes a first polarizing plate, and is disposed between the first polarizing plate and the liquid crystal display panel a phase retarder and a second phase retarder; and a second optical component comprising: a second polarizer disposed on the other outer surface of the liquid crystal display panel, wherein the first phase retarder comprises a liquid crystal a film layer that imparts a predetermined phase delay to light of a predetermined wavelength, and wherein the nematic liquid crystal molecules are immobilized into a state in which the isotropic liquid crystal molecules are mixed and aligned in a normal direction; wherein In the optical component, an angle between an absorption axis of one of the first polarizers and one of the slow axes of the second phase retardation plate is set at about 45°, and one of the slow axes of the first phase retardation plate is included in the liquid One of the directors of the liquid crystal molecules in the crystal layer is set to be substantially parallel, and an angle between the slow axis of the first phase retardation plate and the slow axis of the second phase retardation plate is set. It is about 90. And in the second optical element, an angle between an absorption axis of the second polarizing plate and the absorption axis of the first polarizing plate is set to be about 90. . 2. The liquid crystal display device of claim 1, wherein the first optical element controls 127101-1001125.doc 1361932 by a polarized state of light of the first optical element such that light having a substantially linearly polarized polarization state enters the liquid crystal Floor. 3. The liquid crystal display device of claim 1, wherein the first phase retardation plate is composed of the liquid crystal film layer contacting the second phase retardation plate and the outer surface of the liquid crystal display panel. 4. The liquid worm display device of claim 1, wherein a residual delay of one of the liquid crystal layers and a frontal retardation of the first phase retardation plate is substantially equal to one of the second phase retardation plates Positive delay. 5. The liquid crystal display device of claim 1, wherein the second optical element comprises a third phase retardation plate between the first polarizing plate and the liquid crystal display panel, and the third phase retardation plate has a refractive index Anisotropy, which is defined by a relationship of nx=ny> nz, wherein (10) and lanthanum are refractive indices in a direction perpendicular to each other in a plane of the third phase retardation plate, and nz is the third phase retardation plate The refractive index in a normal direction. 6. The liquid crystal display device of claim 1, further comprising a backlight unit that illuminates the liquid crystal display panel from the first optical element side. 127l01-1001125.doc
TW096145746A 2006-12-19 2007-11-30 Liquid crystal display device TWI361932B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006341766 2006-12-19
JP2007260181A JP5072520B2 (en) 2006-12-19 2007-10-03 Liquid crystal display

Publications (2)

Publication Number Publication Date
TW200841087A TW200841087A (en) 2008-10-16
TWI361932B true TWI361932B (en) 2012-04-11

Family

ID=39703314

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096145746A TWI361932B (en) 2006-12-19 2007-11-30 Liquid crystal display device

Country Status (3)

Country Link
JP (1) JP5072520B2 (en)
KR (1) KR100950358B1 (en)
TW (1) TWI361932B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420196B (en) * 2008-12-11 2013-12-21 Au Optronics Corp Liquid crystal display device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332933A (en) * 1997-05-30 1998-12-18 Nippon Oil Co Ltd Optical anisotropic element
JP2002031717A (en) * 2000-07-14 2002-01-31 Nippon Mitsubishi Oil Corp Circularly polarizing plate and liquid crystal display device
JP2003156622A (en) * 2001-11-19 2003-05-30 Nippon Oil Corp Circularly polarizing plate and liquid crystal display device
JP4187616B2 (en) * 2002-09-06 2008-11-26 大日本印刷株式会社 Laminated retardation optical element, manufacturing method thereof, and liquid crystal display device
JP2004125830A (en) 2002-09-30 2004-04-22 Nippon Oil Corp Transflective liquid crystal display element
JP4307181B2 (en) * 2003-08-19 2009-08-05 富士フイルム株式会社 Optically anisotropic layer, retardation plate using the same, elliptically polarizing plate and liquid crystal display device
JP2004341207A (en) * 2003-05-15 2004-12-02 Koninkl Philips Electronics Nv Liquid crystal display device
JP2005107501A (en) * 2003-09-09 2005-04-21 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display device
JP4046116B2 (en) * 2004-02-26 2008-02-13 セイコーエプソン株式会社 Liquid crystal device and electronic device
JP4314186B2 (en) * 2004-12-07 2009-08-12 Nec液晶テクノロジー株式会社 Transflective liquid crystal display device
JP4228004B2 (en) * 2006-05-24 2009-02-25 新日本石油株式会社 Transmission type liquid crystal display device
JP4899153B2 (en) * 2006-09-05 2012-03-21 Nltテクノロジー株式会社 Liquid crystal display
JP2008309957A (en) * 2007-06-13 2008-12-25 Nippon Oil Corp Transmission type liquid crystal display device

Also Published As

Publication number Publication date
KR20080057168A (en) 2008-06-24
JP5072520B2 (en) 2012-11-14
JP2008176282A (en) 2008-07-31
TW200841087A (en) 2008-10-16
KR100950358B1 (en) 2010-03-29

Similar Documents

Publication Publication Date Title
US11747693B2 (en) Optical stack for switchable directional display
JP4909594B2 (en) Liquid crystal display
US7961276B2 (en) Circular polarizer, liquid crystal display device, and terminal device
WO2018221413A1 (en) Display device
TWI363899B (en)
US20060114381A1 (en) Liquid crystal display device with dual modes
US20090002609A1 (en) Liquid crystal display device
JP2005107501A (en) Liquid crystal display device
US20130050610A1 (en) Liquid crystal display
JP5072480B2 (en) Liquid crystal display
JP2006337676A (en) Liquid crystal display element
TWI361932B (en) Liquid crystal display device
JP4649149B2 (en) Liquid crystal display device
JP2007192916A (en) Liquid crystal display
JP2007025469A (en) Optical element and liquid crystal display device
US7589811B2 (en) Liquid crystal display device
JP2010032787A (en) Liquid crystal display
JP2009003432A (en) Liquid crystal display device
US20050140883A1 (en) Optical efficiency enhancing film and liquid crystal display using the same
JP2007334147A (en) Liquid crystal display
JP5072481B2 (en) Liquid crystal display
JP2007156086A (en) Liquid crystal display apparatus
JP5508700B2 (en) Liquid crystal display
JP4817741B2 (en) Liquid crystal display
JP2007156087A (en) Liquid crystal display apparatus