WO2021139090A1 - 一种光电二极管及显示屏 - Google Patents

一种光电二极管及显示屏 Download PDF

Info

Publication number
WO2021139090A1
WO2021139090A1 PCT/CN2020/095708 CN2020095708W WO2021139090A1 WO 2021139090 A1 WO2021139090 A1 WO 2021139090A1 CN 2020095708 W CN2020095708 W CN 2020095708W WO 2021139090 A1 WO2021139090 A1 WO 2021139090A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
thickness
photodiode
transport layer
electron transport
Prior art date
Application number
PCT/CN2020/095708
Other languages
English (en)
French (fr)
Inventor
胡丽
石腾腾
查国伟
罗为
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/970,396 priority Critical patent/US11848393B2/en
Publication of WO2021139090A1 publication Critical patent/WO2021139090A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type

Definitions

  • the invention relates to the field of display technology, in particular to a photodiode and a display screen.
  • In-screen fingerprint recognition uses an array of photoelectric sensors integrated in the display to obtain fingerprint patterns.
  • photodiodes are mostly used for photoelectric sensors.
  • the current photodiode includes a first electrode 11, a p-doped layer 12, a light conversion layer 13, an n-doped layer 14 and a second electrode 15.
  • the p-doped layer and the n-doped layer absorb part of the light, the light absorption rate of the light conversion layer 13 is low, thereby reducing the photoelectric conversion efficiency.
  • the object of the present invention is to provide a photodiode and a display screen, which can improve the light absorption rate and photoelectric conversion efficiency of the light conversion layer.
  • the present invention provides a photodiode, including:
  • the electron transport layer is provided on the first electrode
  • the light conversion layer is provided on the electron transport layer
  • the hole transport layer is provided on the light conversion layer
  • the second electrode is arranged on the hole transport layer
  • the material of the first electrode is a transparent conductive material
  • the material of the second electrode is a metal material
  • the material of the second electrode is a transparent conductive material
  • the material of the first electrode is a metal material
  • the present invention also provides a display screen, which includes: a plurality of the above-mentioned photodiodes.
  • the photodiode and the display screen of the present invention include a first electrode; an electron transport layer provided on the first electrode; a light conversion layer provided on the electron transport layer; a hole transport layer provided on the light On the conversion layer; the second electrode is provided on the hole transport layer; when the direction of the incident light of the photodiode is the first direction, the material of the first electrode is a transparent conductive material, and the second electrode
  • the material of the electrode is a metal material; when the direction of the incident light of the photodiode is the second direction, the material of the second electrode is a transparent conductive material, and the material of the first electrode is a metal material; because the bottom electrode adopts Transparent conductive material, and the top electrode is made of metal material, so it can increase the light received by the light conversion layer, thereby improving the light absorption rate and photoelectric conversion efficiency.
  • Figure 1 is a schematic diagram of the structure of an existing photodiode
  • FIG. 2 is a schematic diagram of the structure of the photodiode of the present invention.
  • Figure 3 is the first spectrogram of the photodiode of the present invention.
  • Fig. 4 is a second spectrogram of the photodiode of the present invention.
  • Fig. 5 is a third spectrum diagram of the photodiode of the present invention.
  • Fig. 6 is a fourth spectrogram of the photodiode of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the photodiode of the present invention.
  • the photodiode 20 of the present invention includes a first electrode 21, an electron transport layer 22, a light conversion layer 23, a hole transport layer 24 and a second electrode 25.
  • the electron transport layer 22 is provided on the first electrode 21.
  • the light conversion layer 23 is provided on the electron transport layer 22.
  • the material of the light conversion layer 23 is preferably amorphous silicon. Since amorphous silicon has better light absorption in short wavelengths, light absorption can be further improved. rate. In one embodiment, in order to further increase the light absorption rate, the thickness of the light conversion layer 23 ranges from 40 nm to 1500 nm.
  • the hole transport layer 24 is provided on the light conversion layer 23.
  • the thickness range of the electron transport layer 24 and the thickness range of the hole transport layer 22 may both be 20 nm to 300 nm.
  • the materials of the hole transport layer 24 and the electron transport layer 22 include, but are not limited to, molybdenum oxide, zinc oxide, tungsten oxide, nickel oxide, titanium oxide, and organic semiconductors. Materials, C60, ICBA and BCP (inlaid copolymer).
  • the second electrode 25 is provided on the hole transport layer 24.
  • the direction of the incident light of the photodiode is the first direction, where the first direction is, for example, from bottom to top, that is, when the light is incident from the bottom
  • the material of the first electrode 21 is a transparent conductive material
  • the material of the second electrode 25 is The material is a metal material; that is, at this time, the second electrode 25 is the top electrode, the first electrode 21 is the bottom electrode, and the second electrode 25 has a reflective function.
  • the second electrode 25 can be a transparent ultra-thin metal film as the electrode; the metal material can also be other metal materials.
  • the metal material in order to increase the ability to reflect light, includes but is not limited to at least one of molybdenum and titanium.
  • the transparent conductive material may include, but is not limited to, a transparent conductive oxide, and the transparent conductive material may include at least one of ITO and IZO.
  • the thickness range of the first electrode 21 and the thickness range of the second electrode 25 are both 40 nm to 300 nm.
  • the second direction is, for example, from top to bottom, that is, top incident, that is, at this time, the first electrode 21 is the top electrode and the second electrode 25 is the bottom.
  • Electrode, the material of the second electrode 25 is a transparent conductive material, and the material of the first electrode 21 is a metal material.
  • the metal material can be the aforementioned metal material, and the transparent conductive material can also be the aforementioned transparent conductive material.
  • the top electrode is made of metal material and the bottom electrode is a transparent conductive material, light is transmitted to the light conversion layer through the bottom electrode, and all light can be reflected to the light conversion layer through the top electrode without being transmitted out, so the light conversion layer receives more light. The incoming light, thereby improving the light absorption rate and photoelectric conversion efficiency.
  • the absorption peak of the photodiode 20 is located in the first waveband range or the second waveband range.
  • the first waveband is, for example, the blue light waveband
  • the second waveband is, for example, the green light waveband.
  • the first wave band and the second wave band are not limited to this, and can be specifically set according to requirements.
  • the absorption peak of the photodiode 20 is located in the first waveband range;
  • the absorption peak of the photodiode 20 is located in the second wavelength range.
  • the absorption peak of the entire photodiode is in the blue wavelength range.
  • the range of the first electrode 21 is 210 nm to 230 nm, and the thickness of the electron transport layer 22 is in the range of 195 nm to 215 nm, the absorption peak of the entire photodiode is in the range of the green light band.
  • the material of the first electrode 21 is ITO
  • the material of the electron transport layer 22 is zinc oxide as an example, as shown in FIGS. 3 to 6, and in FIGS. 3 to 6, the abscissa represents the wavelength.
  • the unit is nm, and the ordinate represents the absorption rate (%).
  • 31 represents the absorption rate of the light conversion layer
  • 32 represents the absorption rate of the photodiode.
  • 33 represents the absorption rate of the light conversion layer
  • 34 represents the absorption rate of the photodiode.
  • the absorption peak of the entire photodiode is 540 nm, which is in the range of the green light band.
  • the thickness of the second electrode 25 and the electron transport layer 22 when the direction of the incident light of the photodiode 20 is the second direction, where the second direction is, for example, from top to bottom, the thickness of the second electrode 25 and the electron transport layer 22 When the thickness of the photodiode 20 satisfies the third preset condition, the absorption peak of the photodiode 20 is located in the first wavelength range. When the thickness of the second electrode 25 and the thickness of the electron transport layer 22 meet the fourth preset condition, the absorption peak of the photodiode 20 is located in the second wavelength range.
  • the absorption peak of the entire photodiode is in the blue wavelength range.
  • the absorption peak of the entire photodiode is in the range of the green light band.
  • 41 represents the absorption rate of the light conversion layer
  • 42 represents the absorption rate of the photodiode.
  • the absorption peak of the entire photodiode is 450 nm, that is, it is in the blue wavelength range.
  • 43 represents the absorption rate of the light conversion layer
  • 44 represents the absorption rate of the photodiode.
  • the absorption peak of the entire photodiode is 540 nm, which is within the range of the green light band.
  • the above photodiodes use amorphous silicon as the photosensitive material.
  • photons are converted into electron-hole pairs, and then electron-hole pairs After separation, electrons and holes are collected by the first electrode and the second electrode respectively, thereby generating a photocurrent.
  • the first electrode is an anode and the second electrode is a cathode.
  • the present invention also provides a display screen.
  • the display screen includes a plurality of photodiodes of any of the above types, and the plurality of photodiodes form a photoelectric sensor array.
  • the display screen may further include a display panel arranged under the photodiodes. It may include a switch array layer, and the switch array layer includes a plurality of thin film transistors.
  • each pixel has a capacitor to store the charge in the photocurrent, and the stored charge will be read by an external circuit.
  • the light intensity distribution information on the panel can be obtained, and thus fingerprint information can be obtained according to the light intensity distribution information. Since the photodiode of the present invention has a high light absorption rate, the accuracy of fingerprint information is further improved.
  • the photodiode and the display screen of the present invention include a first electrode; an electron transport layer provided on the first electrode; a light conversion layer provided on the electron transport layer; a hole transport layer provided on the light On the conversion layer; the second electrode is provided on the hole transport layer; when the direction of the incident light of the photodiode is the first direction, the material of the first electrode is a transparent conductive material, and the second electrode
  • the material of the electrode is a metal material; when the direction of the incident light of the photodiode is the second direction, the material of the second electrode is a transparent conductive material, and the material of the first electrode is a metal material; because the bottom electrode adopts Transparent conductive material, and the top electrode is made of metal material, so it can increase the light received by the light conversion layer, thereby improving the light absorption rate and photoelectric conversion efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供一种光电二极管及显示屏,该光电二极管依次包括:第一电极、第二电极,当所述光电二极管的入射光的方向为第一方向时,所述第一电极的材料为透明导电材料,所述第二电极的材料为金属材料;当所述光电二极管的入射光的方向为第二方向时,所述第二电极的材料为透明导电材料,所述第一电极的材料为金属材料。

Description

一种光电二极管及显示屏 技术领域
本发明涉及显示技术领域,特别是涉及一种光电二极管及显示屏。
背景技术
屏内指纹识别是利用集成于显示屏内的光电传感器阵列来获取指纹图案,光电传感器目前多选用光电二极管。
然而,如图1所示,目前的光电二极管包括第一电极11、p掺杂层12、光转换层13、n掺杂层14以及第二电极15。
技术问题
由于p掺杂层与n掺杂层会吸收一部分光,因此导致光转换层13的光吸收率较低,从而降低了光电转换效率。
因此,有必要提供一种光电二极管及显示屏,以解决现有技术所存在的问题。
技术解决方案
本发明的目的在于提供一种光电二极管及显示屏,能够提高光转换层的光吸收率和光电转换效率。
为解决上述技术问题,本发明提供一种光电二极管,包括:
第一电极;
电子传输层,设于所述第一电极上;
光转换层,设于所述电子传输层上;
空穴传输层,设于所述光转换层上;
第二电极,设于所述空穴传输层上;
当所述光电二极管的入射光的方向为第一方向时,所述第一电极的材料为透明导电材料,所述第二电极的材料为金属材料;
当所述光电二极管的入射光的方向为第二方向时,所述第二电极的材料为透明导电材料,所述第一电极的材料为金属材料。
本发明还提供一种显示屏,其包括:多个上述光电二极管。
有益效果
本发明的光电二极管及显示屏,包括第一电极;电子传输层,设于所述第一电极上;光转换层,设于所述电子传输层上;空穴传输层,设于所述光转换层上;第二电极,设于所述空穴传输层上;当所述光电二极管的入射光的方向为第一方向时,所述第一电极的材料为透明导电材料,所述第二电极的材料为金属材料;当所述光电二极管的入射光的方向为第二方向时,所述第二电极的材料为透明导电材料,所述第一电极的材料为金属材料;由于底电极采用透明导电材料,而顶电极采用金属材料,因此可以增加光转换层接收到的光线,从而提高了光吸收率以及光电转换效率。
附图说明
图1为现有光电二极管的结构示意图;
图2为本发明光电二极管的结构示意图;
图3为本发明光电二极管的第一种光谱图;
图4为本发明光电二极管的第二种光谱图;
图5为本发明光电二极管的第三种光谱图;
图6为本发明光电二极管的第四种光谱图。
本发明的实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是以相同标号表示。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
请参照图2至图6,图2为本发明光电二极管的结构示意图。
如图2所示,本发明的光电二极管20包括第一电极21、电子传输层22、光转换层23、空穴传输层24以及第二电极25。
电子传输层22设于所述第一电极21上。
光转换层23设于所述电子传输层22上,所述光转换层23的材料优选为非晶硅,由于非晶硅在短波长内具有更好的光吸收率,因此可以进一步提高光吸收率。在一实施方式中,为了进一步提高光吸收率,所述光转换层23的厚度范围为40nm~1500nm。
空穴传输层24设于所述光转换层23上。在一实施方式中,为了进一步提高光吸收率,所述电子传输层24的厚度范围和所述空穴传输层22的厚度范围均可为20nm~300nm。在一实施方式中,为了进一步提高光吸收率,所述空穴传输层24以及所述电子传输层22的材料包括但不限于氧化钼、氧化锌、氧化钨、氧化镍、氧化钛、有机半导体材料、C60、ICBA以及BCP(镶嵌共聚物)。
第二电极25设于所述空穴传输层24上。当所述光电二极管的入射光的方向为第一方向时,其中第一方向比如为由下至上,也即底入射时,第一电极21的材料为透明导电材料,所述第二电极25的材料为金属材料;也即此时第二电极25为顶电极,第一电极21为底电极,所述第二电极25具有反射功能。比如第二电极25可以选择透明超薄金属薄膜作为电极;金属材料也可以选择其它金属材料。在一实施方式中,为了增大反射光能力,该金属材料包括但不限于钼以及钛中的至少一种。透明导电材料可以包括但不限于透明导电氧化物,透明导电材料可以包括ITO和IZO中的至少一种。在一实施方式中,为了进一步提高光吸收率,所述第一电极21的厚度范围和所述第二电极25的厚度范围均为40nm~300nm。
当所述光电二极管的入射光的方向为第二方向时,其中第二方向比如为由上至下,也即顶入射,也即此时第一电极21为顶电极,第二电极25为底电极,所述第二电极25的材料为透明导电材料,所述第一电极21的材料为金属材料。该金属材料可以采用上述金属材料,透明导电材料也可采用上述透明导电材料。
由于顶电极为金属材料,底电极为透明导电材料,因此通过底电极将光线透射至光转换层,通过顶部电极可以将光线全部反射至光转换层而不透射出去,因此增加了光转换层接收到的光线,从而提高了光吸收率以及光电转换效率。
为了进一步提高光吸收率,所述光电二极管20的吸收峰位于第一波段范围或者第二波段范围内。在一实施方式中,第一波段比如为蓝光波段,第二波段比如为绿光波段。当然,第一波段和第二波段不限于此,具体可以根据需求设置。
在一实施方式中,当所述光电二极管20的入射光的方向为第一方向时,其中第一方向比如为由下至上,所述第一电极21的厚度和所述电子传输层22的厚度满足第一预设条件时,所述光电二极管20的吸收峰位于第一波段范围内;
当所述第一电极21的厚度和所述电子传输层22的厚度满足第二预设条件时,所述光电二极管20的吸收峰位于第二波段范围内。
比如,当第一电极21的厚度范围为160nm至190nm,所述电子传输层22的厚度范围为140nm至180nm时,整个光电二极管的吸收峰位于蓝光波段范围内。当第一电极21的范围为210nm至230nm,所述电子传输层22的厚度范围为195nm至215nm时,整个光电二极管的吸收峰位于绿光波段范围内。
在一实施方式中,以第一电极21的材料为ITO,所述电子传输层22的材料为氧化锌为例,如图3至6所示,图3至图6中,横坐标表示波长,单位为nm,纵坐标表示吸收率(%)。如图3所示,31表示光转换层的吸收率,32表示光电二极管的吸收率。当第一电极21的厚度为175nm,所述电子传输层22的厚度为165nm时,整个光电二极管的吸收峰为450nm,也即位于蓝光波段范围内。
如图4所示,33表示光转换层的吸收率,34表示光电二极管的吸收率。当第一电极21的范围为222nm,所述电子传输层22的厚度范围为204nm时,整个光电二极管的吸收峰为540nm,也即位于绿光波段范围内。
在另一实施方式中,当所述光电二极管20的入射光的方向为第二方向时,其中第二方向比如为由上至下,所述第二电极25的厚度和所述电子传输层22的厚度满足第三预设条件时,所述光电二极管20的吸收峰位于第一波段范围内。当所述第二电极25的厚度和所述电子传输层22的厚度满足第四预设条件时,所述光电二极管20的吸收峰位于第二波段范围内。
比如,在一实施方式中,当第二电极25的范围为95nm至110nm,所述电子传输层22的厚度范围为45nm至55nm时,整个光电二极管的吸收峰位于蓝光波段范围内。
当第二电极25的范围为135nm至150nm,所述电子传输层22的厚度范围为55nm至65nm时,整个光电二极管的吸收峰位于绿光波段范围内。
以第二电极25的材料为ITO,所述电子传输层22的材料为氧化锌为例,如图5所示,41表示光转换层的吸收率,42表示光电二极管的吸收率。当第二电极25的范围为104nm,所述电子传输层22的厚度范围为50nm时,整个光电二极管的吸收峰为450nm,也即位于蓝光波段范围内。
如图6所示,43表示光转换层的吸收率,44表示光电二极管的吸收率。当第二电极25的范围为143nm,所述电子传输层22的厚度范围为60nm时,整个光电二极管的吸收峰为540nm,也即位于绿光波段范围内。
以光转换层为非晶硅为例,上述光电二极管采用非晶硅来作为感光材料,当光从外界入射非晶硅层的时候,光子会被转换成电子空穴对,而后电子空穴对分离,电子与空穴分别被第一电极与第二电极收集,从而产生光电流。在一实施方式中,第一电极为阳极,第二电极为阴极。
本发明还提供一种显示屏,所述显示屏包括多个上述任意一种光电二极管,多个光电二极管形成光电传感器阵列,此外显示屏还可包括设于光电二极管下方的显示面板,该显示面板可以包括开关阵列层,开关阵列层包括多个薄膜晶体管。
当手指按压屏幕上时,指纹中的突起与凹陷对应的反射光强度是不同的,因此可以获取整个传感器阵列中的光电流大小的分布,就可以得到指纹图案。在传感器的阵列中,每一个像素点都有一个电容用来存储光电流中的电荷,而存储的电荷会被外部电路读取。通过获取整个阵列中的存储电容中的电荷大小的分布,便可以得到面板上的光强分布信息,从而根据光强分布信息得到指纹信息。由于本发明的光电二极管的光吸收率较高,因此进一步提高了指纹信息的准确度。
本发明的光电二极管及显示屏,包括第一电极;电子传输层,设于所述第一电极上;光转换层,设于所述电子传输层上;空穴传输层,设于所述光转换层上;第二电极,设于所述空穴传输层上;当所述光电二极管的入射光的方向为第一方向时,所述第一电极的材料为透明导电材料,所述第二电极的材料为金属材料;当所述光电二极管的入射光的方向为第二方向时,所述第二电极的材料为透明导电材料,所述第一电极的材料为金属材料;由于底电极采用透明导电材料,而顶电极采用金属材料,因此可以增加光转换层接收到的光线,从而提高了光吸收率以及光电转换效率。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种光电二极管,其包括:
    第一电极;
    电子传输层,设于所述第一电极上;
    光转换层,设于所述电子传输层上;
    空穴传输层,设于所述光转换层上;以及
    第二电极,设于所述空穴传输层上;
    当所述光电二极管的入射光的方向为第一方向时,所述第一电极的材料为透明导电材料,所述第二电极的材料为金属材料;
    当所述光电二极管的入射光的方向为第二方向时,所述第二电极的材料为透明导电材料,所述第一电极的材料为金属材料。
  2. 根据权利要求1所述的光电二极管,其中
    所述金属材料包括但不限于钼以及钛中的至少一种。
  3. 根据权利要求1所述的光电二极管,其中
    所述光电二极管的吸收峰位于第一波段范围内或者第二波段范围内。
  4. 根据权利要求3所述的光电二极管,其中
    当所述光电二极管的入射光的方向为第一方向时,所述第一电极的厚度和所述电子传输层的厚度满足第一预设条件时,所述光电二极管的吸收峰位于所述第一波段范围内;
    当所述第一电极的厚度和所述电子传输层的厚度满足第二预设条件时,所述光电二极管的吸收峰位于所述第二波段范围内。
  5. 根据权利要求4所述的光电二极管,其中
    当所述第一电极的厚度和所述电子传输层的厚度满足第一预设条件时,所第一电极的厚度范围为160nm至190nm,所述电子传输层的厚度范围为140nm至180nm。
  6. 根据权利要求4所述的光电二极管,其中
    当所述第一电极的厚度和所述电子传输层的厚度满足第二预设条件时,所第一电极的厚度范围为210nm至230nm,所述电子传输层的厚度范围为195nm至215nm。
  7. 根据权利要求3所述的光电二极管,其中
    当所述光电二极管的入射光的方向为第二方向时,所述第二电极的厚度和所述电子传输层的厚度满足第三预设条件时,所述光电二极管的吸收峰位于所述第一波段范围内;
    当所述第二电极的厚度和所述电子传输层的厚度满足第四预设条件时,所述光电二极管的吸收峰位于所述第二波段范围内。
  8. 根据权利要求7所述的光电二极管,其中当所述第二电极的厚度和所述电子传输层的厚度满足第三预设条件时,所述第二电极的范围为95nm至110nm,所述电子传输层的厚度范围为45nm至55nm。
  9. 根据权利要求7所述的光电二极管,其中当所述第二电极的厚度和所述电子传输层的厚度满足第四预设条件时,所述第二电极的范围为135nm至150nm,所述电子传输层的厚度范围为55nm至65nm。
  10. 根据权利要求1所述的光电二极管,其中
    所述第一电极的厚度范围和所述第二电极的厚度范围均为40nm~300nm。
  11. 根据权利要求1所述的光电二极管,其中
    所述电子传输层的厚度范围和所述空穴传输层的厚度范围均为20nm~300nm。
  12. 根据权利要求1所述的光电二极管,其中
    所述光转换层的厚度范围为40nm~1500nm。
  13. 一种显示屏,其包括光电二极管,其包括:
    第一电极;
    电子传输层,设于所述第一电极上;
    光转换层,设于所述电子传输层上;
    空穴传输层,设于所述光转换层上;以及
    第二电极,设于所述空穴传输层上;
    当所述光电二极管的入射光的方向为第一方向时,所述第一电极的材料为透明导电材料,所述第二电极的材料为金属材料;
    当所述光电二极管的入射光的方向为第二方向时,所述第二电极的材料为透明导电材料,所述第一电极的材料为金属材料。
  14. 根据权利要求13所述的显示屏,其中
    所述金属材料包括但不限于钼以及钛中的至少一种。
  15. 根据权利要求13所述的显示屏,其中
    所述光电二极管的吸收峰位于第一波段范围内或者第二波段范围内。
  16. 根据权利要求15所述的显示屏,其中
    当所述光电二极管的入射光的方向为第一方向时,所述第一电极的厚度和所述电子传输层的厚度满足第一预设条件时,所述光电二极管的吸收峰位于所述第一波段范围内;
    当所述第一电极的厚度和所述电子传输层的厚度满足第二预设条件时,所述光电二极管的吸收峰位于所述第二波段范围内。
  17. 根据权利要求16所述的显示屏,其中
    当所述第一电极的厚度和所述电子传输层的厚度满足第一预设条件时,所第一电极的厚度范围为160nm至190nm,所述电子传输层的厚度范围为140nm至180nm;
    当所述第一电极的厚度和所述电子传输层的厚度满足第二预设条件时,所第一电极的厚度范围为210nm至230nm,所述电子传输层的厚度范围为195nm至215nm。
  18. 根据权利要求15所述的显示屏,其中
    当所述光电二极管的入射光的方向为第二方向时,所述第二电极的厚度和所述电子传输层的厚度满足第三预设条件时,所述光电二极管的吸收峰位于所述第一波段范围内;
    当所述第二电极的厚度和所述电子传输层的厚度满足第四预设条件时,所述光电二极管的吸收峰位于所述第二波段范围内。
  19. 根据权利要求18所述的显示屏,其中当所述第二电极的厚度和所述电子传输层的厚度满足第三预设条件时,所述第二电极的范围为95nm至110nm,所述电子传输层的厚度范围为45nm至55nm;
    当所述第二电极的厚度和所述电子传输层的厚度满足第四预设条件时,所述第二电极的范围为135nm至150nm,所述电子传输层的厚度范围为55nm至65nm。
  20. 根据权利要求13所述的显示屏,其中
    所述第一电极的厚度范围和所述第二电极的厚度范围均为40nm~300nm。
PCT/CN2020/095708 2020-01-06 2020-06-12 一种光电二极管及显示屏 WO2021139090A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/970,396 US11848393B2 (en) 2020-01-06 2020-06-12 Photodiode and display screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010008948.7 2020-01-06
CN202010008948.7A CN111106189B (zh) 2020-01-06 2020-01-06 一种光电二极管及显示屏

Publications (1)

Publication Number Publication Date
WO2021139090A1 true WO2021139090A1 (zh) 2021-07-15

Family

ID=70425308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095708 WO2021139090A1 (zh) 2020-01-06 2020-06-12 一种光电二极管及显示屏

Country Status (3)

Country Link
US (1) US11848393B2 (zh)
CN (1) CN111106189B (zh)
WO (1) WO2021139090A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106189B (zh) 2020-01-06 2021-12-28 武汉华星光电技术有限公司 一种光电二极管及显示屏
CN113193062A (zh) * 2021-04-13 2021-07-30 Tcl华星光电技术有限公司 光电传感器及其制作方法、显示面板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014841A (ja) * 2009-07-06 2011-01-20 Kaneka Corp 積層型光電変換装置の製造方法
CN104904014A (zh) * 2012-11-02 2015-09-09 欧司朗Oled股份有限公司 有机光电子器件和用于运行有机光电子器件的方法
CN107507928A (zh) * 2017-07-20 2017-12-22 南开大学 一种调控钙钛矿/硅叠层电池中顶、底电池光电流匹配的方法
WO2019082852A1 (ja) * 2017-10-23 2019-05-02 住友化学株式会社 光電変換素子およびその製造方法
CN110085742A (zh) * 2014-04-25 2019-08-02 日本化药株式会社 用于摄像元件用光电转换元件的材料和包含该材料的光电转换元件
CN111106189A (zh) * 2020-01-06 2020-05-05 武汉华星光电技术有限公司 一种光电二极管及显示屏
CN111180532A (zh) * 2020-01-06 2020-05-19 武汉华星光电技术有限公司 一种光电二极管及其制作方法以及显示屏

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3530676B2 (ja) * 1995-04-26 2004-05-24 キヤノン株式会社 光受容部材の製造方法、該光受容部材、該光受容部材を有する電子写真装置及び該光受容部材を用いた電子写真プロセス
JP5303962B2 (ja) * 2008-02-28 2013-10-02 三菱電機株式会社 半導体受光素子
US9985153B2 (en) * 2013-08-29 2018-05-29 University Of Florida Research Foundation, Incorporated Air stable infrared photodetectors from solution-processed inorganic semiconductors
GB2554422A (en) * 2016-09-27 2018-04-04 Sumitomo Chemical Co Organic microcavity photodetectors with narrow and tunable spectral response
CN106684202B (zh) * 2017-01-04 2018-03-23 京东方科技集团股份有限公司 一种感光组件、指纹识别面板及装置
CN107275434B (zh) * 2017-04-20 2018-11-20 湖北大学 一种基于ZnO/CsPbBr3/MoO3结构的纯无机光电探测器
KR20190103706A (ko) * 2018-02-28 2019-09-05 한국에너지기술연구원 정공전달층이 삽입된 고효율 양면 투광형 칼코파이라이트계 태양전지와 그 제조방법 및 이를 적용한 건물일체형태양광발전모듈과 탠덤태양전지

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014841A (ja) * 2009-07-06 2011-01-20 Kaneka Corp 積層型光電変換装置の製造方法
CN104904014A (zh) * 2012-11-02 2015-09-09 欧司朗Oled股份有限公司 有机光电子器件和用于运行有机光电子器件的方法
CN110085742A (zh) * 2014-04-25 2019-08-02 日本化药株式会社 用于摄像元件用光电转换元件的材料和包含该材料的光电转换元件
CN107507928A (zh) * 2017-07-20 2017-12-22 南开大学 一种调控钙钛矿/硅叠层电池中顶、底电池光电流匹配的方法
WO2019082852A1 (ja) * 2017-10-23 2019-05-02 住友化学株式会社 光電変換素子およびその製造方法
CN111106189A (zh) * 2020-01-06 2020-05-05 武汉华星光电技术有限公司 一种光电二极管及显示屏
CN111180532A (zh) * 2020-01-06 2020-05-19 武汉华星光电技术有限公司 一种光电二极管及其制作方法以及显示屏

Also Published As

Publication number Publication date
US11848393B2 (en) 2023-12-19
CN111106189A (zh) 2020-05-05
US20230111648A1 (en) 2023-04-13
CN111106189B (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
US11101304B2 (en) Diode and fabrication method thereof, array substrate and display panel
CN103762251B (zh) 一种双栅极光电薄膜晶体管、像素电路及像素阵列
TWI410703B (zh) 光學感測元件、其製作方法及光學式觸控裝置
WO2021139090A1 (zh) 一种光电二极管及显示屏
US11387278B2 (en) Electronic devices and methods of manufacturing the same
WO2021139089A1 (zh) 一种光电二极管及其制作方法以及显示屏
US10084018B2 (en) Image sensor and electronic device including the same
TW201903488A (zh) 影像偵測顯示裝置、器件及其製備方法
US11275185B2 (en) Ray detector and ray detection panel
JP2000077640A (ja) 画像読み取り装置および放射線撮像装置
KR20160034068A (ko) 이미지 센서 및 이를 포함하는 전자 장치
US8193497B2 (en) Near-infrared photodetectors, image sensors employing the same, and methods of manufacturing the same
CN109509763A (zh) 一种提高量子效率的图像传感器像素单元结构和形成方法
US10546897B2 (en) Photoelectric device and image sensor and electronic device
JP2010251496A (ja) イメージセンサー
CN111508987A (zh) 一种传感器及其制作方法以及光电转换装置
US11804508B2 (en) Sensor, manufacturing method thereof, and photoelectric conversion device
KR101206758B1 (ko) 이종 적층형 박막 태양전지 및 그 제조방법
CN104979367B (zh) 探测器背板及其制作方法、x射线平板探测器、摄像系统
CN110379864B (zh) 光电二极管及其制作方法、阵列基板
US10804303B2 (en) Image sensors comprising an organic photo-detector, a photo-detector array and dual floating diffusion nodes and electronic devices including the same
CN220553453U (zh) 一种表面集成菲涅耳超透镜近红外MoTe2光电探测器
TWI702730B (zh) 光敏式薄膜電晶體及電磁波檢測裝置
CN114899317A (zh) 光电探测器件
WO2022217707A1 (zh) 光电传感器及其制作方法、显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912641

Country of ref document: EP

Kind code of ref document: A1