WO2021138959A1 - 一种新型电芬顿催化降解VOCs的技术 - Google Patents

一种新型电芬顿催化降解VOCs的技术 Download PDF

Info

Publication number
WO2021138959A1
WO2021138959A1 PCT/CN2020/075371 CN2020075371W WO2021138959A1 WO 2021138959 A1 WO2021138959 A1 WO 2021138959A1 CN 2020075371 W CN2020075371 W CN 2020075371W WO 2021138959 A1 WO2021138959 A1 WO 2021138959A1
Authority
WO
WIPO (PCT)
Prior art keywords
vocs
electro
fenton
catalytic degradation
solution
Prior art date
Application number
PCT/CN2020/075371
Other languages
English (en)
French (fr)
Inventor
江波
牛庆赫
刘树梁
孟宪哲
苏晴
关雨欣
宁亚男
王婧茹
刘奕捷
罗思义
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2021138959A1 publication Critical patent/WO2021138959A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/106Peroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation

Definitions

  • This application belongs to the application field of atmospheric treatment technology, and specifically relates to a technology for catalytically degrading VOCs using electro-Fenton.
  • Volatile organic compounds refer to organic compounds with a saturated vapor pressure greater than 70.91Pa at normal temperature and a standard atmospheric pressure of 101.3kPa with a boiling point below 50-260°C and an initial boiling point equal to 250°C, or at normal temperature and pressure Any organic solid or liquid that can volatilize.
  • VOCs play an important role in air pollution. They can generate PM2.5 and ozone, which are one of the main causes of haze.
  • VOCs are toxic and will directly harm human health, cause adverse effects on human eyes and respiratory system, damage the internal organs and nervous system, and even cause acute poisoning and even carcinogenesis in severe cases. Therefore, the governance of VOCs has been a research hotspot in recent years.
  • the technologies currently used for the treatment of VOCs include catalytic combustion method, plasma method, and microbial purification method.
  • Catalytic combustion method means that the emitted VOCs are burned at a short time and at a lower temperature under the action of a specific catalyst, and finally converted into carbon dioxide and water.
  • This technology does not produce open flames, low combustion temperature, and no NO X , but it has disadvantages such as catalyst poisoning and high energy consumption.
  • the plasma method uses high-energy electron rays to activate, ionize, and crack the components of the VOCs in the exhaust gas, thereby causing a series of complex chemical reactions such as oxidation to achieve VOCs degradation, but the high energy consumption and high risk factor limit its wide range application.
  • Microbial method uses the metabolism of microorganisms to convert volatile organic compounds into inorganic substances, but it can only treat low VOCs concentrations.
  • the technology has low efficiency in treating organic gases with low solubility.
  • this application provides a method for catalytically degrading VOCs using electro-Fenton.
  • the technical solution of the present application is that the VOCs mixed gas enters the solution from the bottom of the reactor through microporous aeration.
  • the Fenton reaction constructed by anodic oxidation and cathodic catalysis to produce H 2 O 2 can generate a large number of strong oxidizing hydroxyl radicals.
  • This active species can oxidize the VOCs aerated into the reaction system into soluble intermediate products, Carbon dioxide, water, inorganic substances and other products.
  • the aeration process of VOCs can provide sufficient oxygen for the catalytic reduction of the cathode and increase the output of H 2 O 2.
  • the lift pump is used to lift the electrolyte to the top of the reaction device, and the spray device forms a spray, which further increases the contact time and contact area of the VOCs and the solution, and improves the processing efficiency.
  • the anode can be a BDD electrode, a DSA electrode, a tin antimony electrode, a ruthenium iridium electrode, an iridium tantalum electrode, a PbO 2 electrode, and the like.
  • the cathode may be graphite, carbon black/PTFE gas diffusion electrode, graphite felt, carbon felt loaded with carbon nanotubes, and the like.
  • the electrode spacing between the anode and the cathode can vary from 1 to 10 cm.
  • the current density can vary between 1-50 mA/cm 2.
  • the pH value of the electric Fenton system can range from 2.0 to 6.0.
  • the concentration of the iron ions can range from 5 to 1000 mg/L.
  • the said microporous aeration device can be a membrane type microporous aerator, a tube type aerator, a disc type aerator, a microporous ceramic aerator, etc.
  • the spray device can be set on the top of the reactor, and part of the electrolyte is lifted to the spray device by a lift pump to form a spray, and part of the mixed gas overflowing the electrolyte is brought back into the system, increasing the gas-liquid contact time and contact area. Further improve the degradation effect of VOCs.
  • the oxygen in the mixed gas of VOCs can be used as the raw material for the cathode oxygen reduction reaction, generating a large amount of hydrogen peroxide, which reacts with the Fe 2+ added in the solution to generate strong oxidizing hydroxyl radicals ( ⁇ OH).
  • the technology operates at room temperature and pressure, and can be applied to the treatment of room temperature and low concentration VOCs, and the process has no chemical reagents and no secondary pollution.
  • Electrode is used as anode
  • carbon black/PTFE gas diffusion electrode is used as cathode.
  • Use 0.05M Na 2 SO 4 as the electrolyte adjust the initial pH to 3, and add a small amount of FeSO 4 to the solution.
  • the concentration of chlorobenzene is 200ppm, and it enters the solution through the membrane microporous aerator at a flow rate of 1L/min.
  • the electrolyte is sprayed from the spray device on the top through the lift pump, and part of the gas overflowing from the solution is brought back to the solution.
  • the processed gas is connected to a weather chromatograph through a rubber tube at the top of the reactor to monitor the processing degree of VOCs in real time.
  • the carbon black/PTFE gas diffusion electrode uses a 20-mesh stainless steel mesh, and forms a mixed emulsion with anhydrous ethanol according to the mass ratio of carbon black to PTFE of 1:2, evaporates and removes the anhydrous ethanol, and covers the paste on the stainless steel mesh.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本申请涉及大气处理领域,特别涉及一种新型电芬顿催化降解VOCs的技术。VOCs混合气体经过微孔曝气,从反应器底部进入溶液。在该体系内,阳极氧化以及阴极催化产生H2O2所构筑的芬顿反应可产生大量强氧化性的羟基自由基,该活性物种可将曝气进入反应体系的VOCs氧化为可溶性中间产物、二氧化碳、水、无机物等产物。此外,VOCs的曝气过程可为阴极催化还原提供充足的氧气,提升了H2O2的产量。利用提升泵将溶液提升至反应装置顶部,经喷淋装置形成喷雾,进一步增加了VOCs与溶液的接触时间和接触面积,提升了处理效率。

Description

一种新型电芬顿催化降解VOCs的技术 技术领域
本申请属于大气处理技术的应用领域,具体涉及一种利用电芬顿催化降解VOCs的技术。
背景技术
挥发性有机物(VOCs,volatile organic compounds)是指常温下饱和蒸汽压大于70.91Pa、标准大气压101.3kPa下沸点在50~260℃以下且初馏点等于250℃的有机化合物,或在常温常压下任何能挥发的有机固体或液体。主要包括脂肪烃类(环乙烷、丙烯等)、芳香烃类(笨、甲苯等)、卤代烃类(二氯甲烷等)、醇类(甲醇、乙醇等)、醛类(甲醛、乙醛等)、酮类(丙酮等)等。VOCs在大气污染中扮演着重要的角色,可生成颗粒物PM2.5和臭氧,是产生雾霾的主要原因之一。此外,大部分VOCs呈毒性会直接危害人体健康,会对人的眼睛和呼吸系统造成不良影响,损害内脏及神经系统,严重时还会造成急性中毒甚至致癌。因此,VOCs治理近些年来是研究热点。
目前用于VOCs处理的技术有催化燃烧法、等离子体法、微生物净化法。催化燃烧法是指排放的VOCs在特定催化剂的作用下在短时间、较低温度下进行燃烧,最终转化为二氧化碳和水。该技术不会产生明火、燃烧温度较低,不会产生NO X,但存在催化剂中毒、能耗高等弊端。等离子体法技术是利用高能电子射线激活、电离、裂解排放气体中VOCs的各组分,从而发生氧化等一系列复杂化学反应,实现VOCs降解,但是能耗高,危险系数高限制了其大范围应用。微生物法是利用微生物的新陈代谢,将挥发性有机化合物转化为无机物,但其只能处理较低的VOCs浓度,此外该技术对溶解度较低的有机气体处理效率低。针对目前VOCs治理领域的技术缺陷,迫切需要一种低消耗安全性能高的解决VOCs的问题的工艺方法。
发明内容
根据以上现有技术的不足,本申请提供一种利用电芬顿催化降解VOCs的方法。
本申请的技术方案是:VOCs混合气体经过微孔曝气,从反应器底部进入溶液。在该体系内,阳极氧化以及阴极催化产生H 2O 2所构筑的芬顿反应可产生大量强氧化性的羟基自由基,该活性物种可将曝气进入反应体系的VOCs氧化为可溶性中间产物、二氧化碳、水、无机物等产物。此外,VOCs的曝气过程可为阴极催化还原提供充足的氧气,提升了H 2O 2的产量。利用提升泵将电解液提升至反应装置顶部,经喷淋装置形成喷雾,进一步增加了VOCs与溶液的接触时间和接触面积,提升了处理效率。
其中,优选方案如下:
所述的阳极,可以为BDD电极、DSA电极、锡锑电极、钌铱电极、铱钽电极、PbO 2电极等。
所述的阴极,可以为石墨、碳黑/PTFE气体扩散电极、石墨毡、负载碳纳米管的碳毡等。
所述的阳极、阴极之间电极间距,可为1-10cm之间不等。
所述的电流密度,可以为1-50mA/cm 2之间不等。
所述的电芬顿体系pH值,可以为2.0-6.0之间不等。
所述的铁离子的浓度,可以为5-1000mg/L之间不等。
所述的微孔曝气装置,可以为膜片式微孔曝气器、管式曝气器、盘式曝气器、微孔陶瓷曝气器等。
所述的喷淋装置,可以设置在反应器顶部,通过提升泵将部分电解液提升至喷淋装置,形成喷雾,将溢出电解液的部分混合气体带回体系内,增加气液接触时间和接触面积。进一步提高VOCs的降解效果。
本申请的优点在于:
(1)VOCs混合气体中的氧气可以作为阴极氧还原反应的原料,产生大量的过氧化氢,与溶液中添加的Fe 2+反应,生成强氧化性的羟基自由基(·OH)。
(2)利用阳极氧化、阴极还原协同产生的大量的具有强氧化性的羟基自由基(·OH),将部分VOCs直接氧化为H 2O和CO 2
(3)该技术常温常压运行,可应用于常温、低浓度VOCs的治理,且该过程无化学试剂添加,无二次污染。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1:
采用二氧化铅为阳极,碳黑/PTFE气体扩散电极为阴极。采用0.05M Na 2SO 4为电解液,初始pH值调节为3,向溶液中加入少量的FeSO 4。氯苯浓度为200ppm,以流量为1L/min通过膜片式微孔曝气器进入溶液中。电解液通过提升泵从顶部的喷淋装置形成喷雾,将部分溢出溶液的气体重新带回溶液。经过处理后的气体,在反应器的顶部通过橡皮管与气象色谱仪相连,实时监测VOCs的处理程度。
其中碳黑/PTFE气体扩散电极,采用20目的不锈钢网,按照碳黑与PTFE的质量比为 1:2与无水乙醇形成混合乳液,蒸发去除无水乙醇,将膏状物覆盖在不锈钢网上,采用适合的压力压制成片状,马弗炉内350℃高温煅烧60min。
工作电流密度为20mA/cm 2时,VOCs氧化吸收率为96%。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在不脱离本申请的原理和宗旨的情况下在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (7)

  1. 一种新型电芬顿催化降解VOCs的技术,其特征在于:VOCs混合气体经过微孔曝气,从反应器底部进入溶液,在该体系内,阳极氧化以及阴极催化产生H 2O 2所构筑的芬顿反应可产生大量强氧化性的羟基自由基,该活性物种可将曝气进入反应体系的VOCs氧化为可溶性中间产物、二氧化碳、水、无机物等产物,此外,VOCs的曝气过程可为阴极催化还原提供充足的氧气,提升了H 2O 2的产量,利用提升泵将溶液提升至反应装置顶部,经喷淋装置形成喷雾,进一步增加了VOCs与溶液的接触时间和接触面积,提升了处理效率。
  2. 根据权利1要求所述的一种新型电芬顿催化降解VOCs的技术,其特征在于:所述的阳极,可为BDD电极、DSA电极、锡锑电极、钌铱电极、铱钽电极、PbO 2电极等。
  3. 根据权利1要求所述的一种新型电芬顿催化降解VOCs的技术,其特征在于:所述的阴极,可为石墨、碳黑/PTFE气体扩散电极、石墨毡、负载碳纳米管的碳毡等。
  4. 根据权利1要求所述的一种新型电芬顿催化降解VOCs的技术,其特征在于:阴阳极电极间距可为1-10cm,电流密度可为1-50mA/cm 2,输入电压波形可为直流或者脉冲等。
  5. 根据权利1要求所述的一种新型电芬顿催化降解VOCs的技术,其特征在于:电芬顿反应pH为2.0-6.0,铁离子浓度为5-1000mg/L。
  6. 根据权利1要求所述的一种新型电芬顿催化降解VOCs的技术,其特征在于:所述的曝气装置,可为膜片式微孔曝气器、管式曝气器、盘式曝气器、微孔陶瓷曝气器。
  7. 根据权利1要求所述的一种新型电芬顿催化降解VOCs的技术,其特征在于:所述的喷淋装置可设置在反应器的顶部,通过提升泵将电解液提升至喷淋装置形成喷雾,吸收和降解部分溢出的VOCs。
PCT/CN2020/075371 2020-01-09 2020-02-14 一种新型电芬顿催化降解VOCs的技术 WO2021138959A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010023753.X 2020-01-09
CN202010023753.XA CN111185089B (zh) 2020-01-09 2020-01-09 一种新型电芬顿催化降解VOCs的技术

Publications (1)

Publication Number Publication Date
WO2021138959A1 true WO2021138959A1 (zh) 2021-07-15

Family

ID=70684829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075371 WO2021138959A1 (zh) 2020-01-09 2020-02-14 一种新型电芬顿催化降解VOCs的技术

Country Status (2)

Country Link
CN (1) CN111185089B (zh)
WO (1) WO2021138959A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870616A (zh) * 2022-06-10 2022-08-09 盐城工学院 一种处理挥发性有机废气的电生物-类芬顿一体式反应器
CN115318079A (zh) * 2022-06-28 2022-11-11 中材国际环境工程(北京)有限公司 一种基于电化学技术的气体处理装置及处理方法
CN116462381A (zh) * 2023-06-20 2023-07-21 生态环境部海河流域北海海域生态环境监督管理局生态环境监测与科学研究中心 电芬顿协同类电芬顿高效处理高盐有机废水方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112807995B (zh) * 2021-01-28 2023-03-31 深圳市普瑞美泰环保科技有限公司 电化学法降解气态污染物的装置及其方法
CN117531345B (zh) * 2024-01-09 2024-04-19 天津大学 用于除味和消毒清洗的电化学方法及电解池装置、系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254964A (ja) * 2008-04-16 2009-11-05 Mitsui Eng & Shipbuild Co Ltd 揮発性有機化合物含有水の処理装置および処理方法
CN208320447U (zh) * 2018-04-26 2019-01-04 常州千帆环保科技有限公司 利用芬顿氧化处理有机废气的装置
CN110040821A (zh) * 2019-05-15 2019-07-23 哈尔滨工业大学 一种脉冲式双阴极电芬顿反应器及利用其处理有机废水的方法
WO2019175038A1 (fr) * 2018-03-14 2019-09-19 Universite Paris Est Marne La Vallee Dispositif de régénération du charbon actif

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2080686B1 (es) * 1994-02-16 1996-10-16 S E De Carburos Metalicos S A Proceso y equipo de depuracion electrolitica en aguas residuales contaminadas utilizando catodos de oxigeno.
CN201361521Y (zh) * 2008-12-30 2009-12-16 黄立维 一种有害废气的净化装置
CN102188902B (zh) * 2011-05-06 2013-04-24 中国科学院广州能源研究所 有机气体的光催化燃料电池光电催化及其与相转移相联合的处理方法
CN205925352U (zh) * 2016-06-30 2017-02-08 江苏齐清环境科技有限公司 粒子群电极电催化氧化处理水溶性有机废气的装置
CN106582274A (zh) * 2016-12-15 2017-04-26 东南大学 一种光助电化学催化氧化油烟的装置和方法
CL2017000727A1 (es) * 2017-03-28 2017-09-29 Bayco Ingenieria Eirl Planta de tratamiento de residuos industriales líquidos la cual utiliza el sistema fenton para reducir moléculas orgánicas.
CN207805280U (zh) * 2017-12-14 2018-09-04 深圳市冠升华实业发展有限公司 一种净化VOCs的装置
CN208426812U (zh) * 2018-04-04 2019-01-25 微碳(广州)低碳科技有限公司 用于有机废气处理的新型电催化氧化处理设备
CN110237665B (zh) * 2019-07-24 2023-12-19 河北瑛泽环保科技有限公司 一种电催化氧化voc治理装置
CN110585916B (zh) * 2019-09-30 2021-01-12 华中师范大学 电芬顿催化氧化去除气态污染物的方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254964A (ja) * 2008-04-16 2009-11-05 Mitsui Eng & Shipbuild Co Ltd 揮発性有機化合物含有水の処理装置および処理方法
WO2019175038A1 (fr) * 2018-03-14 2019-09-19 Universite Paris Est Marne La Vallee Dispositif de régénération du charbon actif
CN208320447U (zh) * 2018-04-26 2019-01-04 常州千帆环保科技有限公司 利用芬顿氧化处理有机废气的装置
CN110040821A (zh) * 2019-05-15 2019-07-23 哈尔滨工业大学 一种脉冲式双阴极电芬顿反应器及利用其处理有机废水的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870616A (zh) * 2022-06-10 2022-08-09 盐城工学院 一种处理挥发性有机废气的电生物-类芬顿一体式反应器
CN115318079A (zh) * 2022-06-28 2022-11-11 中材国际环境工程(北京)有限公司 一种基于电化学技术的气体处理装置及处理方法
CN116462381A (zh) * 2023-06-20 2023-07-21 生态环境部海河流域北海海域生态环境监督管理局生态环境监测与科学研究中心 电芬顿协同类电芬顿高效处理高盐有机废水方法
CN116462381B (zh) * 2023-06-20 2023-09-01 生态环境部海河流域北海海域生态环境监督管理局生态环境监测与科学研究中心 电芬顿协同类电芬顿高效处理高盐有机废水方法

Also Published As

Publication number Publication date
CN111185089B (zh) 2021-09-28
CN111185089A (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
WO2021138959A1 (zh) 一种新型电芬顿催化降解VOCs的技术
CN101406838B (zh) 活性炭负载铁氧化物催化剂的制备方法及其废水处理体系
CN110559853B (zh) 阳极和阴极同步电化学法去除气态污染物的方法及其装置
CN105126613B (zh) 一种低温等离子催化氧化气体除臭方法
US11739009B2 (en) Device for decomplexation and enhanced removal of copper based on self-induced fenton-like reaction constructed by electrochemistry coupled with membrane separation, and use thereof
US10730010B2 (en) Device and method for purifying sulfur dioxide and nitrogen oxide in flue gas
US20240058749A1 (en) Device and method for degrading gaseous organic pollutant through electrochemical process
CN103130307A (zh) 一种臭氧、光电化学耦合氧化的水处理装置及方法
CN113353932A (zh) 火龙果皮制备的分级孔生物炭电催化剂及制备方法和应用
CN109847752B (zh) 通过过渡双金属氧化复合催化材料光电活化过硫酸盐处理氨气并产电的pec体系
CN107670478A (zh) 一种废水站废气处理工艺
CN110316787A (zh) 一种气液放电协同复合型光催化剂水处理装置及处理方法
CN105126614B (zh) 一种低温等离子气体除臭装置
CN110937667A (zh) 一种无需曝气的电芬顿水处理方法及装置
CN112870939B (zh) 一种用于连续有效去除空气污染物的生物耦合催化反应体系
CN112156647A (zh) 一种高压电辅助光催化净化模组、净化装置及方法
CN108889288A (zh) 一种还原型二氧化钛光催化剂及其制备方法和应用
CN106731542B (zh) 一种磷化氢气体的电化学处理装置及方法
CN111905739B (zh) 一种应用于制氧机的催化剂的制备方法
CN214261381U (zh) 一种高压电辅助光催化净化模组及净化装置
CN114931956A (zh) 一种低风阻宽湿度臭氧催化分解材料及其制备方法
CN211561231U (zh) 一种高活性原子氧除臭机
CN209968113U (zh) 一种催化协同去除不同溶解度VOCs的多相放电系统
JPS6028884A (ja) 電解を含む排水の処理方法
KR102619784B1 (ko) 석탄계 활성탄과 과산화수소를 이용한 휘발성 유기 화합물의 분해 순환 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 31/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20911516

Country of ref document: EP

Kind code of ref document: A1