WO2021138863A1 - 对管道内流动气体进行检测的检测装置 - Google Patents

对管道内流动气体进行检测的检测装置 Download PDF

Info

Publication number
WO2021138863A1
WO2021138863A1 PCT/CN2020/071079 CN2020071079W WO2021138863A1 WO 2021138863 A1 WO2021138863 A1 WO 2021138863A1 CN 2020071079 W CN2020071079 W CN 2020071079W WO 2021138863 A1 WO2021138863 A1 WO 2021138863A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air inlet
pipe
sensor module
outlet
Prior art date
Application number
PCT/CN2020/071079
Other languages
English (en)
French (fr)
Inventor
赵芳
刘宁
薛仕丁
宋龙
董典
徐明雪
刘孟辉
Original Assignee
西门子瑞士有限公司
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子瑞士有限公司, 西门子(中国)有限公司 filed Critical 西门子瑞士有限公司
Priority to PCT/CN2020/071079 priority Critical patent/WO2021138863A1/zh
Priority to EP20913009.5A priority patent/EP4089391A4/en
Priority to CN202080073550.XA priority patent/CN114585896B/zh
Priority to US17/791,668 priority patent/US20230032582A1/en
Publication of WO2021138863A1 publication Critical patent/WO2021138863A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2258Sampling from a flowing stream of gas in a stack or chimney
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions

Definitions

  • the invention relates to a detection device capable of detecting gas flowing in a pipeline, in particular to a detection device for detecting air quality in a ventilation pipeline in a ventilation system.
  • Ventilation ducts for example, for realizing indoor fresh air ventilation, that is, a common fresh air system.
  • the currently known device for detecting the concentration of dust in a gas flowing in a pipe includes a housing, a sensor module arranged in the housing, and a sampling tube extending from the housing.
  • the sensor module is, for example, a common dust sensor module.
  • the sampling pipe includes an air inlet channel and an air outlet channel, wherein one ends of the air inlet channel and the air outlet channel are respectively sealed into the pipe with respect to the surrounding environment, and the other ends are respectively sealed and communicated with the casing.
  • the air inlet channel has an air inlet on the side wall of the part that opens into the pipe.
  • the air outlet channel has an air outlet on the side wall of the part that opens into the pipe, wherein the air inlet faces the gas flow in the pipe.
  • the windward side of the direction, and the air outlet faces the leeward side of the gas flow direction in the pipe.
  • the sensor module includes an inlet and an outlet, and the gas to be detected flows in from the sensor inlet through the air inlet channel and flows out from the outlet and is discharged into the pipeline through the air outlet channel, so that the dust in the flowing gas is detected by the sensor module.
  • the sensor module will be affected by high wind speed, low wind speed and unstable air flow in the pipeline during measurement, especially the PM2.5 sensor is more susceptible because of its high sensitivity. Therefore, in this traditional air duct air sampling method, the sensor module will directly lead to inaccurate measurements.
  • a separate air pump is usually used in combination with two rubber or plastic pipes to draw air from the pipe to the sensor module.
  • an air pump to provide the air pressure difference between the air inlet passage and the air outlet passage, the air in the pipe will be sucked into the housing where the sensor module is installed.
  • the arrangement of the air pump adds additional components, which results in occupying more space and incurring higher costs.
  • the service life of the air pump is usually shorter than the service life of the sensor module and the sampling tube, so the use of the air pump will reduce the service life of the entire device for detecting dust in the pipeline.
  • the air pump will produce a lot of noise.
  • the air pump usually needs to be used in conjunction with a hose such as a rubber tube or a plastic tube, which will also affect the stability of the entire device.
  • the detection device capable of detecting gas flowing in a pipeline according to the present invention, includes a housing; a sampling pipe, the sampling pipe extends from the housing and is suitable for being placed in the pipeline, wherein
  • the sampling pipe has an air inlet channel and an air outlet channel that are isolated from each other, and the air inlet of the air inlet channel and the air outlet of the air outlet channel are arranged in the part where the sampling pipe passes into the pipe and are placed in the On the same side of the sampling pipe, the air inlet and the air outlet have the same gas flow area; and a sensor module, which is arranged in the housing and is connected to the air inlet channel in a gas communication manner to The gas sampled from the intake channel is detected.
  • the air inlet and the air outlet are arranged on the same side of the sampling tube.
  • the pressure at the air outlet caused by the airflow in the pipeline is basically balanced, thereby stabilizing the flow rate of the airflow flowing through the sensor module in the housing, thereby improving the measurement accuracy.
  • the orientation of the sampling tube can be simplified, and the sampling tube can be installed more flexibly.
  • the gas pressure at the air inlet caused by the air flow in the pipeline is substantially equal to the gas pressure at the air outlet caused by the air flow in the pipeline.
  • the gas pressure at the air inlet caused by the air flow in the pipeline is different from the gas pressure at the air outlet caused by the air flow in the pipeline by ⁇ 10% to ⁇ 1%, more preferably, the difference is between ⁇ 9% to ⁇ 1%, More preferably a difference of ⁇ 8% to ⁇ 1%, more preferably a difference of ⁇ 7% to ⁇ 1%, more preferably a difference of ⁇ 6% to ⁇ 1%, more preferably a difference of ⁇ 5% to ⁇ 1%, more preferably The difference is preferably ⁇ 4% to ⁇ 1%, more preferably ⁇ 3% to ⁇ 1%, more preferably ⁇ 2% to ⁇ 1%.
  • the gas pressure at the air inlet caused by the air flow in the pipe is equal to the gas pressure at the air outlet caused by the air flow in the pipe.
  • the sensor module has an inlet and an outlet, and the sensor module is further equipped with a fan, and the fan guides the airflow to be introduced from the inlet and out of the outlet. Since the pressure at the air inlet and the air outlet is basically balanced, the air in the pipe can be introduced into the air inlet channel and then into the sensor module only by a fan. Therefore, compared with the air pump set in the traditional sampling device, the detection device in the embodiment of the present invention does not need to be equipped with an independent air pump, so it saves more space and further reduces the cost, and it also avoids the noise generated by the air pump and does not need to be used as an air pump.
  • the rubber tube or plastic tube is used to provide the air inlet and outlet channels.
  • the air inlet and the air outlet both face the upstream direction of the gas flow in the pipeline. This facilitates the flow of gas in the pipeline into the air inlet channel.
  • the air inlet and the air outlet are arranged adjacent to each other.
  • the air inlet and/or the air outlet have a plurality of air holes. Since the air inlet and the air outlet are arranged adjacent to each other, the pressure at the air inlet and the pressure at the air outlet can be more balanced.
  • the air inlet and/or the air outlet having multiple air holes makes the design of the sampling tube more flexible.
  • the air inlet and the air outlet are both arranged on the windward side of the sampling pipe with respect to the gas flow direction in the pipe. This makes it easier to introduce the detection gas into the intake channel and the sensor module through the fan.
  • the air inlet and the air outlet are both arranged on the leeward side of the sampling pipe with respect to the gas flow direction in the pipe.
  • the air inlet and the air outlet are both arranged on the end surface of the end of the sampling tube extending into the pipe. Therefore, the sampling tube can be constructed more simply.
  • the sampling tube is integrally formed and has a partition, and the partition isolates the sampling tube into the air inlet channel and the air outlet channel.
  • the air inlet channel and the air outlet channel can be closer to each other.
  • the structure or installation of the sampling tube and the housing can be simplified, thereby facilitating the design and installation of the air inlet channel and the air outlet channel.
  • the partition can be constructed integrally with the sampling tube or constructed as a separate component, as long as it is ensured that the air inlet channel and the air outlet channel are sealed relative to each other.
  • the sampling pipe can be composed of a separate air inlet pipe and a separate air outlet pipe.
  • the air inlet and the air outlet are aligned along the longitudinal direction of the sampling tube. This can simplify the arrangement of the air inlet and the air outlet when the sampling tube is separated into the air inlet channel and the air outlet channel by a partition.
  • the sensor module has an inlet and an outlet
  • the air inlet passage is in sealed connection with the inlet of the sensor module
  • the outlet of the sensor is in gas communication with the inner space of the housing
  • the outlet The channel is sealed into the housing.
  • the sensor module is a PM2.5 sensor.
  • Fig. 1 is an external schematic diagram of a detection device capable of detecting gas flowing in a pipeline according to the present invention
  • Fig. 2 is a partially cutaway schematic diagram of a detection device capable of detecting gas flowing in a pipeline according to the present invention
  • FIG. 3 is a detailed cross-sectional view of the entrance of the sensor module of the detection device capable of detecting the gas flowing in the pipeline according to the present invention
  • Fig. 5 is the arrangement of the air inlet and the air outlet of the sampling pipe of the detection device capable of detecting the gas flowing in the pipeline according to the present invention
  • Figure 6 is another arrangement of the air inlet and outlet of the sampling tube
  • Fig. 7 is a test result of a sample model according to the prior art and a sample model according to the present invention under different wind speeds in the pipeline.
  • the inventor of the present invention found that: in the traditional way, the sampling pipe is placed in the ventilation duct, and the air inlet of the air inlet channel is usually placed on the windward side of the sampling pipe, that is, it is set facing the airflow in the pipe , And the air outlet of the air outlet channel is usually placed on the lee side of the sampling pipe, that is, it is set back to the airflow in the pipe.
  • the high-speed airflow or unstable airflow in the pipeline will cause the pressure imbalance at the air inlet and the air outlet caused by the airflow in the pipeline. This will cause eddy currents to be generated between the inlet and the outlet of the sensor module, which in turn causes the detection accuracy of the sensor module to decrease.
  • the inventor of the present invention proposes that the air inlet and the air outlet of the sampling tube are placed on the same side of the sampling tube, rather than on opposite sides.
  • Fig. 1 shows an external schematic diagram of a detection device 100 capable of detecting gas flowing in a pipeline according to an embodiment of the present invention.
  • FIG. 2 shows a schematic diagram of the detection device 100 in FIG. 1 partially broken away.
  • the detection device 100 can detect the dust concentration, especially the mass concentration and the particle number concentration of the gas flowing in the pipeline 1.
  • the duct 1 schematically shows a ventilation duct in an air conditioning system (HVAC). There is gas flow in the duct 1, for example, an air duct is formed, and the wind flows at a high wind speed, for example, in the gas flow direction A.
  • HVAC air conditioning system
  • the detection device 100 for detecting gas in the pipeline 1 includes a housing 4, a sensor module 2 and a sampling pipe 3 arranged in the housing.
  • the sensor module 2 can be configured here as a dust sensor, a PM2.5 sensor, and other suitable gas sensors, for example.
  • the sensor module 2 is arranged in the housing 4 here.
  • the sensor module 2 includes an inlet 9 and an outlet 10, and the gas to be detected flows into the sensor module 2 from the sensor inlet 9 and flows out from the outlet 10, so that the sensor module 2 detects the gas flowing therethrough.
  • the sampling pipe 3 includes an air inlet channel 5 and an air outlet channel 6, wherein one end of the air inlet channel 5 and the air outlet channel 6 are respectively sealed into the pipe 1 with respect to the surrounding environment, and the other end is respectively sealed with the sensor module with respect to the surrounding environment.
  • the inlet 9 and outlet 10 of 2 are in gas communication.
  • the sampling tube and the housing 4 can also be constructed integrally.
  • the air inlet passage 5 in the sampling pipe 3 has an air inlet 51 on the side wall of the part that leads into the pipe 1.
  • the air outlet channel 6 has an air outlet 61 on the side wall of the part that opens into the pipe 1. It can be seen from FIG. 2 that the air inlet 51 of the air inlet channel 5 and the air outlet 61 of the air outlet channel 6 both face the windward side of the gas flow direction A in the pipe, and the gas at the air inlet 51 of the air inlet channel 5 The flow area is equal to the gas flow area of the gas outlet 61 of the gas outlet channel 6.
  • both the air inlet 51 and the air outlet 61 face the windward side of the gas flow direction A, it is ensured that the pressure at the air inlet 51 caused by the airflow in the pipe and the pressure at the air outlet 61 caused by the airflow in the pipe are substantially equal.
  • the high-speed wind flows in the gas flow direction A in the duct duct 1.
  • a fan 14 is provided in the sensor module 2.
  • the fan 14 is integrated in the sensor module 2 here.
  • the gas to be detected flows into the intake passage 5 through the intake port 51 of the intake passage 5 and into the housing 4 in which the sensor module 2 is installed. After the gas to be detected reaches the housing 4, it enters the sensor module 2 through the inlet 9 of the sensor module 2.
  • the detection gas is guided from the inlet 9 of the sensor module 2 to the outlet 10 of the sensor module 2 by the fan 14.
  • the gas flowing in the sensor module 2 is thus detected to determine the concentration of dust in the detected gas and the like.
  • the detected gas discharged from the outlet 10 of the sensor module 2 flows back into the pipe 1 through the gas outlet 61 through the gas outlet channel 6.
  • the flow rate of the airflow flowing through the sensor module in the housing is stabilized, thereby increasing The measurement accuracy is such that the gas flow velocity in the sampling tube 3 is very low, and can even be kept in a static state. In this case, the flow of the detection gas can only be driven by the fan 14 provided in the sensor module. Therefore, the sensor module 2 will not be affected by the air flow in the pipeline, thereby ensuring the accuracy of the measurement of the gas in the pipeline.
  • a separate air pump is usually used in combination with two rubber or plastic pipes to draw air from the pipe to the sensor module.
  • an air pump to provide the air pressure difference between the air inlet passage and the air outlet passage, the air in the pipe will be sucked into the housing where the sensor module is installed.
  • the installation of the air pump adds additional components, which leads to occupying more space and incurring higher costs.
  • the service life of the air pump is generally shorter than the service life of the sensor module and the sampling tube, and the use of the air pump will result in a reduction in the service life of the entire device for detecting dust in the pipeline.
  • the air pump will produce a lot of noise.
  • the air pump usually needs to be used in conjunction with a hose such as a rubber tube or a plastic tube, which will also affect the stability of the entire device.
  • the air inlet 51 of the air inlet channel 5 and the air outlet 61 of the air outlet channel 6 are arranged on the same side with respect to the gas flow direction A in the pipe, it can be ensured that the airflow at the air inlet 51 is caused by the airflow in the pipe.
  • the pressure is equal to the pressure at the outlet 61 caused by the airflow in the pipe.
  • only the fan 14 provided in the sensor module can make the gas to be detected flow into the intake passage 5 through the intake port 51 of the intake passage 5 and into the housing 4 where the sensor module 2 is installed. Therefore, the arrangement of the above-mentioned air pump is omitted, so that the detection device according to the present invention is more stable, has low noise, low cost, and improves the service life of the detection device.
  • the air inlet 51 of the air inlet channel 5 and the air outlet 61 of the air outlet channel 6 may both be arranged on the windward side facing the gas flow direction A in the pipe.
  • the air inlet 51 of the air inlet channel 5 and the air outlet 61 of the air outlet channel 6 are both arranged on the leeward side of the gas flow direction A.
  • the air inlet 51 of the air inlet channel 5 and the air outlet 61 of the air outlet channel 6 may not be provided on the side wall of the sampling tube, but on the end side of the sampling tube that opens into the pipeline 1.
  • the sampling tube 3 is constructed as a whole, wherein the sampling tube is divided into an air inlet channel 5 and an air outlet channel 6 by a partition 7 substantially along the longitudinal direction of the sampling tube, so that the air inlet channel 5 And the gas outlet channel 6 can guide gas independently of each other.
  • the partition 7 may be in the form of a middle rib, for example.
  • the sampling tube 3 can be made of any suitable tube, for example, a hose or a hard tube.
  • the sampling tube 3 may have a cross-section of any shape, such as a circular cross-section, a square cross-section, an irregular-shaped cross-section, and the like.
  • the sampling pipe 3 is composed of a separate inlet pipe and an outlet pipe that are arranged separately from each other.
  • the inlet pipe and the outlet pipe are arranged close to each other, preferably by bonding, welding, etc.
  • the air pipe and the air outlet pipe are connected together along the side wall.
  • An air inlet passage 5 is formed in the air inlet pipe and an air outlet passage 6 is formed in the air outlet pipe.
  • the plurality of air inlet pipes and the plurality of air outlet pipes are arranged close to each other.
  • the air inlet pipe and the air outlet pipe can be connected together along the side wall by bonding, welding, or the like.
  • the air inlet pipe and the air outlet pipe close to each other, it can be ensured that the air inlet 51 of the air inlet channel 5 and the air outlet 61 of the air outlet channel 6 are arranged in close proximity, thereby ensuring that the airflow at the air inlet 51 is caused by the airflow in the pipe.
  • the gas pressure is substantially equal to the gas pressure at the gas outlet 61 caused by the gas flow in the pipe 1.
  • the gas pressure at the air inlet 51 caused by the airflow in the pipe differs from the gas pressure at the air outlet 61 caused by the airflow in the pipe 1 by ⁇ 10% to ⁇ 1%, and more preferably, the difference between ⁇ 9% and ⁇ 1%, more preferably ⁇ 8% to ⁇ 1%, more preferably ⁇ 7% to ⁇ 1%, more preferably ⁇ 6% to ⁇ 1%, more preferably ⁇ 5% to ⁇ 1% , More preferably, the difference is ⁇ 4% to ⁇ 1%, more preferably is ⁇ 3% to ⁇ 1%, and more preferably is ⁇ 2% to ⁇ 1%.
  • the gas pressure at the air inlet 51 caused by the air flow in the pipe is equal to the gas pressure at the air outlet 61 caused by the air flow in the pipe 1.
  • the air inlet 51 of the air inlet passage 5 is arranged adjacent to the air outlet 61 of the air outlet passage 6.
  • the air inlet 51 is set higher than the air outlet 61, and the sampling tube 3 is divided into an air inlet channel 5 and an air outlet channel by a partition 7 substantially along the longitudinal direction of the sampling tube.
  • the case of 6 is particularly suitable, so that the partition 7 can be easily provided.
  • the air inlet 51 of the air inlet channel 5 and the air outlet 61 of the air outlet channel 6 are aligned along the longitudinal direction of the sampling tube.
  • the preferred arrangement of the air inlet and the air outlet of the sampling pipe of the detection device capable of detecting the gas flowing in the pipeline of the present invention.
  • the interface 52 at the end of the inlet passage 5 far away from the pipe 1 is in gas communication with the inlet 9 of the sensor module 2 and is sealed from the environment, while in the outlet passage 6
  • the interface 62 at the end far away from the pipe 1 communicates with the gas of the housing 4 and is sealed from the environment. Therefore, the detected gas is directly discharged from the outlet 10 of the sensor module 2 into the housing, and the housing is equivalent to a buffer space for gas discharge, which can reduce the influence of the pipeline airflow pressure on the sensor module to a certain extent.
  • the gas to be detected in the intake passage 5 is consistent with the gas actually detected in the sensor module, and there is no partial loss of gas due to leakage , Thereby further ensuring the accuracy of the test results.
  • the sealing arrangement also prevents the detection gas from the outlet 10 of the sensor module 2 from partially flowing back into the sensor module 2 from the inlet 9 of the sensor module 2 again, thereby avoiding the detection gas from the inlet 9 and the outlet 10 of the sensor module 2
  • the eddy current generated in the prior art is formed, which also improves the accuracy of the detection result.
  • FIG. 3 and 4 show the details of the entrance 9 of the sensor module 2 of the detection device 100 capable of detecting the gas flowing in the pipeline 1 and the internal details of the sensor module according to an embodiment of the present invention.
  • the interface 52 of the intake passage 5 and the inlet 9 of the sensor module 2 are sealed.
  • the sealing connection between the interface 52 of the air intake passage 5 and the inlet 9 of the sensor module 2 can be achieved by any conceivable suitable sealing method.
  • direct sealing or indirect sealing can be used.
  • a sealing ring can be used, preferably using foam for sealing.
  • the interface 62 of the air outlet channel 6 is not in sealed communication with the outlet 10 of the sensor module 2, but in sealed communication with the housing 4.
  • multiple air inlets 51 and/or multiple air outlets 61 may be provided.
  • the total gas flow area of the inlet air 51 is equal to the total gas flow area of the air outlet 61, as shown in FIG. 6 Shown.
  • FIG. 4 shows the details of the sensor module 2 of the detection device 100 capable of detecting the gas flowing in the pipeline 1 according to the present invention. It can be clearly seen from FIGS. 3 and 4 that the inlet 9 of the sensor module 2 and the outlet 10 of the sensor module 2 are preferably arranged on the same side, and other layouts may also be adopted. In addition, it can be seen that the photodiode 15 as well as the laser source 16 and the fan 14 are arranged in the sensor module 2. The arrangement of these components is only exemplary, and is not limited to the arrangement shown. Therefore, referring to Fig.
  • the gas to be detected enters the sensor module 2 from the inlet 9 of the sensor module 2 through the fan 14, passes through the photodiode 15 and the laser 16 to detect the dust concentration in the gas, and then the gas passes through the sensor module 2 by the fan 14 The outlet 10 is discharged.
  • the accuracy of detection by the sensor module 2 is related to the speed of the gas flowing through. Since the wind speed in the pipeline is relatively high, the greater the speed of the gas flowing through the sensor module, the more inaccurate the sensor module detection will be.
  • the applicant has tested the traditional sampling mode and the sampling mode proposed by the present invention. The tests are all carried out under the condition of the same wind speed of the pipes and both are 12m/s.
  • the sampling method is the first traditional mode, that is, the air inlet of the air inlet channel faces the windward side of the gas flow direction in the pipe 1, and the air outlet of the air outlet channel faces the leeward side of the gas flow direction of the pipe 1
  • the flow velocity measured at the junction of the intake channel and the sensor module is 6.232m/s.
  • the sampling method is the second traditional mode, that is, the outlet of the outlet channel faces the windward side of the gas flow direction in the pipe 1, and the air inlet of the inlet channel faces the leeward side of the gas flow direction in the pipe 1.
  • the flow velocity measured at the connection between the intake channel and the sensor module is 3.358m/s.
  • the second sampling method according to another embodiment of the present invention that is, the air inlet 51 of the air inlet channel 5 and the air outlet 61 of the air outlet channel 6 are both in relation to the gas flow direction in the pipe 1.
  • the flow velocity measured at the connection between the intake passage 5 and the sensor module is also approximately 0.1 m/s.
  • the experimental result shows that the airflow velocity of the sampling airflow in the sampling mode according to the embodiment of the present invention is significantly lower than the sampling airflow velocity measured under the traditional sampling mode, and is even almost in a static state. Therefore, even in the presence of high wind speed, low wind speed, or even unstable airflow in the HVAC pipe, the device for detecting dust in the pipe according to the present invention can apply strong external wind to the pressure in the sampling pipe and the sensor module.
  • the eddy currents in the prior art are eliminated and avoided between the inlet and the outlet of the sensor module, so that the gas flow velocity in the sampling tube is very low and can even be kept in a static state, thereby ensuring the detection accuracy of the sensor module.
  • Figure 7 shows that the sample model P1 according to the existing sampling method and the sample model P2 according to the sampling method proposed by the present invention are used when the wind speed in the pipeline is 0m/s, 5m/s, and 10m/s. Comparison of dust test. Among them, two almost identical sensor modules were selected, and two sample models were used in the PM2.5 pipeline testing device in the laboratory to detect the concentration of PM2.5. In Figure 7, the test results are arranged in two rows and three columns. Each column corresponds to the test results when the wind speed is 0m/s, 5m/s, and 10m/s from left to right.
  • the first row on the top of the two rows corresponds to the traditional sampling mode, that is, the air inlet and outlet on the sampling tube are arranged in two sides opposite to the sampling tube, and the interface of the air inlet channel is not sealed to the inlet 9 of the sensor module.
  • the dust test result when connected; and the second row below is according to an embodiment of the present invention, the air inlet 51 and the air outlet 61 are arranged in the same side, and the interface 52 of the air inlet channel is in sealed communication with the inlet 9 of the sensor module Time dust test results.
  • the X axis shows the concentration of PM2.5 (unit: ⁇ g/m 3 ); the Y axis shows the difference between the test result and the ideal situation (unit %), the ideal situation here means that the sensor module works under the same PM2.5 concentration in a static environment.
  • the solid line in Fig. 7 represents the measurement deviation ⁇ caused by the sample model, and the dashed line represents the tolerance range of ⁇ 10%.
  • the use of an air pump is first omitted, thereby reducing component costs and saving required installation space.
  • the arrangement of the air inlet 51 of the air inlet channel 5 and the air outlet 61 of the air outlet channel 6 is improved, the pressure balance between the air inlet and the air outlet caused by the airflow in the pipe is realized, thereby making The flow rate of the airflow flowing through the sensor module in the housing is stabilized, thereby improving the measurement accuracy, thereby improving the accuracy of the dust concentration detection and the installation direction can be flexibly selected.

Abstract

一种能够对管道(1)内流动的气体进行检测的检测装置(100),检测装置(100)包括:一壳体(4);采样管(3),其从壳体(4)延伸出且适于放置至管道(1)中,其中采样管(3)具有彼此隔离的进气通道(5)和出气通道(6),进气通道(5)的进气口(51)与出气通道(6)的出气口(61)设置在采样管(3)通入管道(1)的部分中且置于采样管(3)的同侧,进气口(51)和出气口(61)具有相同的气体流通面积;一传感器模块(2),其设置于壳体(4)内且气体连通地连接到进气通道(5),以对从进气通道(5)采样到的气体进行检测。

Description

对管道内流动气体进行检测的检测装置 技术领域
本发明涉及一种能够对管道内流动的气体进行检测的检测装置,尤其涉及一种在通风系统中检测通风管道中空气质量的检测装置。
背景技术
当今商业建筑和民用住宅建筑中通常布置有通风管道,例如用于实现室内的新风换气,即常见的新风系统。一般还需要对这种通风管道中的气体的洁净度,例如粉尘浓度,特别是PM2.5浓度等进行观测。
目前市场上存在各种装置以及方法用于测量其中有气体流动的管道、尤其空气调节系统(HVAC)中管道内的粉尘浓度。对此备受关注的两个方面是粉尘传感器和对气体的采样方式。
目前已知的对在管道内流动的气体中粉尘浓度进行检测的装置包括壳体、设置在壳体中的传感器模块和从壳体伸出的采样管。传感器模块例如为普通的粉尘传感器模块。采样管包括进气通道和出气通道,其中,进气通道和出气通道的一端分别相对于周围环境密封地置入管道中,并且另一端分别密封地与壳体连通。进气通道在通入管道的部分处的侧壁上具有进气口,相应地,出气通道在通入管道的部分处的侧壁上具有出气口,其中,进气口朝向管道中的气体流动方向的迎风侧,而出气口朝向管道中的气体流动方向的背风侧。传感器模块包括入口和出口,待检测的气体经由进气通道从传感器入口流入并且从出口流出并经由出气通道排出到管道中,从而通过传感器模块对流过气体中的粉尘进行检测。
在这种设置方式中,传感器模块在测量时会受到在管道中的高风速、低风速以及不稳定气流的影响,特别是PM2.5传感器因其灵敏度高而更易受到影响。因此,在这种传统的风道空气采样方法中,传感器模块将会直接导致所进行的测量不准确。
另外,在这种传统的风道空气采样方法中,通常使用单独的气泵并结合两个橡胶或塑料管将空气从管道抽到传感器模块中。在这种情况下,通过使用气泵提供进气通道和出气通道之间的气压差,由此管道中的空气就会被吸入装有传感器模块的壳体里面。气泵的设置增加了额外的构件,其导致占用更大空间以及产生更高的成本。气泵的使用寿命通常低于传感器模块以及采 样管的使用寿命,由此气泵的使用会导致整个用于检测管道中的粉尘的装置的使用寿命降低。此外气泵会产生较大的噪音。再者,气泵通常需要结合橡胶管或塑料管等软管一起使用,这也会影响整个装置的稳定性。
发明内容
本发明的一个目的在于提供一种能够对管道内流动的气体进行检测的检测装置,借助该装置能够更准确地对管道中流动的气体进行采样,使得能够提供更精确的测量结果。本发明的另一个目的在于使得这种检测装置无需独立气泵即可实现采用空气导入。本发明再一个目的在于该检测装置的安装方向比传统采样装置更加灵活,提高了使用方便性。
根据本发明的能够对管道内流动的气体进行检测的检测装置,所述检测装置包括一壳体;采样管,采样管从所述壳体延伸出且适于放置至所述管道中,其中所述采样管具有彼此隔离的进气通道和出气通道,所述进气通道的进气口与所述出气通道的出气口设置在所述采样管通入所述管道的部分中且置于所述采样管的同侧,所述进气口和所述出气口具有相同的气体流通面积;以及一传感器模块,传感器模块设置于所述壳体内且气体连通地连接到所述进气通道,以对从进气通道采样到的气体进行检测。
通过使所述进气通道的进气口与所述出气通道的出气口设置在所述采样管的同侧并且使进气口和出气口具有相同的气体流通面积,实现了进气口处与出气口处的由管道内气流引起的压力基本平衡,由此使得壳体内流经传感器模块的气流流速得以稳定,进而提高了测量精度。此外,由于进气通道的进气口与出气通道的出气口设置在所述采样管的同侧,从而能够简化对采样管的定向,使采样管能够更灵活的安装。
根据本发明的优选的实施方式,所述进气口处的由管道内气流导致的气体压力大体等于所述出气口处的由管道内气流导致的气体压力。优选地,进气口处的由管道内气流导致的气体压力与出气口处的由管道内气流导致的气体压力相差±10%至±1%,更为优选相差±9%至±1%、更为优选相差±8%至±1%、更为优选相差±7%至±1%、更为优选相差±6%至±1%、更为优选相差±5%至±1%、更为优选相差±4%至±1%、更为优选相差±3%至±1%、更为优选相差±2%至±1%。最优选地,进气口处的由管道内气流导致的气体压力等于出气口处的由管道内气流导致的气体压力。由此使得壳体内流经传 感器模块的气流流速得以稳定,进而提高了测量精度。在这种情况下,传感器模块可在最佳的环境下工作。
根据本发明的优选的实施方式,所述传感器模块具有一入口和一出口,且所述传感器模块还配置有一风扇,风扇引导气流从所述入口导入且从所述出口导出。由于上述的进气口处与出气口处的压力基本平衡,在此仅需风扇就可将管道中的气体引入到进气通道并进而引入到传感器模块中。因此相较于传统采样装置中设置的气泵,采用本发明实施例中的检测装置无需设置独立气泵,因此更加节省空间并进而降低成本并且也避免了由于气泵产生的噪音以及无需一定使用为气泵设置的橡胶管或塑料管来提供进气通道和出气通道。
根据本发明的优选的实施方式,所述进气口和所述出气口都朝向所述管道中的气体流动的上游方向。由此有利于管道中的气体流入进气通道中。
根据本发明的优选的实施方式,所述进气口和所述出气口彼此相邻设置,优选地,所述进气口和/或所述出气口具有多个气孔。由于进气口和出气口彼此相邻设置,可使得进气口处的压力与出气口处的压力更加平衡。此外,进气口和/或出气口具有多个气孔使得采样管的设计更为灵活。
根据本发明的优选的实施方式,所述进气口和所述出气口均设置在所述采样管相对于所述管道中的气体流动方向的迎风侧。由此能够更轻松地通过风扇将检测气体引入到进气通道以及传感器模块中。
根据本发明的优选的实施方式,所述进气口和所述出气口均设置成在所述采样管相对于所述管道中的气体流动方向的背风侧。通过这种设置实现了采样管的更为灵活的定向设计。
根据本发明的优选的实施方式,所述进气口和所述出气口都设置在所述采样管伸入所述管道的一端的端面上。从而可更简单地构造采样管。
根据本发明的优选的实施方式,所述采样管为一体成型且具有分隔部,所述分隔部将采样管隔离成所述进气通道和所述出气通道。由此可使进气通道与出气通道更加邻近。此外,以这种方式可简化采样管与壳体的构造或安装,从而方便进气通道与出气通道的设计和安装。其中,分隔件可与采样管构造成一体或构造为单独的构件,只要保证进气通道与出气通道相对彼此是密封的。但是采样管也可由单独的进气管和出气管构成也是可能的。
根据本发明的优选的实施方式,所述进气口和所述出气口沿所述采样管 的纵向方向对齐设置。这在通过分隔部将采样管隔离成所述进气通道和所述出气通道的情况下能够简化进气口与出气口的设置。
根据本发明的优选的实施方式,所述传感器模块具有一入口和一出口,所述进气通道与所述传感器模块的入口密封连接,所述传感器的出口与壳体内空间气体连通,所述出气通道密封接入所述壳体。通过该密封设置,使得从传感器模块中出来的经检测的气体不会再次流入到传感器模块的入口中,从而避免在传感器模块的入口和出口之间形成涡流,确保粉尘浓度检测的精确性。
根据本发明的优选的实施方式,所述传感器模块为PM2.5传感器。
附图说明
以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中,
图1是根据本发明的能够对管道内流动的气体进行检测的检测装置的外部示意图;
图2是根据本发明的能够对管道内流动的气体进行检测的检测装置的部分剖开的示意图;
图3是根据本发明的能够对管道内流动的气体进行检测的检测装置的传感器模块的入口处的细节剖面图;
图4是根据本发明的能够对管道内流动的气体进行检测的检测装置的传感器模块的内部细节;
图5是根据本发明的能够对管道内流动的气体进行检测的检测装置的采样管的进气口和出气口的设置;
图6是采样管的进气口和出气口的另一设置方式;
图7是使用根据现有技术的样品模型和根据本发明的样品模型分别在管道中的不同风速下所进行测试的结果。
附图标记列表:
1管道
2传感器模块
3采样管
4壳体
5进气通道
51进气口
52进气通道5的接口
6出气通道
61出气口
62出气通道6的接口
7分隔部
9入口
10出口
14风扇
15光电二极管
16激光源
100检测装置
A气体流动方向
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式。
本发明的发明人发现:在传统方式中,采样管置于通风管道中,其进气通道的进气口通常置于采样管的迎风侧(windward side),即其迎向管道中气流而设置,而其出气通道的出气口通常置于采样管的背风侧(lee side),即其背对管道中的气流而设置。管道中出现的高速流动的气流或不稳定的气流会导致在进气口处和出气口处的由管道内气流引起的压力不平衡。这将造成在传感器模块的入口和出口之间产生涡流,进而导致传感器模块检测准确度下降。鉴于上述发现,本发明的发明人提出采样管的进气口和出气口置于采样管的同侧,而非相对侧。
图1示出了根据本发明一个实施例的能够对管道内流动的气体进行检测的检测装置100的外部示意图。图2示出了图1中检测装置100部分剖开后的示意图。该检测装置100能够检测管道1内流动的气体的粉尘浓度、尤其是质量浓度和粒子数量浓度。管道1示意性示出一个空气调节系统(HVAC)中的通风管道。在管道1中有气体流动,例如形成风道,风以高风速例如沿 气体流动方向A流动。参见图2,用于对管道1中气体进行检测的检测装置100包括壳体4、布置在壳体内的传感器模块2和采样管3。传感器模块2在此例如可设置成粉尘传感器、PM2.5传感器,以及其他适合的气体传感器。传感器模块2在此布置在壳体4中。传感器模块2包括入口9和出口10,待检测的气体从传感器入口9流入传感器模块2并且从出口10流出,从而通过传感器模块2对流过其中的气体进行检测。采样管3包括进气通道5和出气通道6,其中进气通道5和出气通道6的一端分别相对于周围环境密封地置入管道1中,并且另一端分别相对于周围环境密封地与传感器模块2的入口9和出口10气体连通。可替代地,也可使采样管与壳体4构造成一体。
采样管3中的进气通道5在通入管道1的部分处的侧壁上具有进气口51。相应地,出气通道6在通入管道1的部分处的侧壁上具有出气口61。从图2中可看出,进气通道5的进气口51与出气通道6的出气口61均朝向管道中的气体流动方向A的迎风侧,并且进气通道5的进气口51的气体流通面积等于出气通道6的出气口61的气体流通面积。通过使进气口51与出气口61均朝向气体流动方向A的迎风侧,从而确保了进气口51处的由管道内气流引起的压力与出气口61处的由管道内气流引起的压力大体相等。
在此,高速的风在管道风道1内沿气体流动方向A流动。在传感器模块2中设有风扇14。在此风扇14集成在传感器模块2中。但是也可想到的是,将风扇作为单独的部件设置在传感器模块中。借助风扇14使得待检测的气体经由进气通道5的进气口51流入进气通道5中并流入装有传感器模块2的壳体4中。待检测的气体到达壳体4中之后,经由传感器模块2的入口9进入传感器模块2中。在此,通过风扇14使检测气体从传感器模块2的入口9引导至传感器模块2的出口10。在传感器模块2之内流过的气体由此被检测,以确定检测气体中的粉尘的浓度等。而从传感器模块2的出口10排出的经检测的气体通过出气通道6经由出气口61又流回到管道1中。
由于保证了进气口51处的由管道内气流引起的压力与出气口61处的由管道内气流引起的压力大体相等,由此使得壳体内流经传感器模块的气流流速得以稳定,进而提高了测量精度,由此使得采样管3内的气体流动速度非常小、甚至可保持静止的状态。在这种情况下,检测气体的流动仅通过设置在传感器模块中的风扇14来驱动即可。由此,传感器模块2不会受到管道内气流的影响,从而确保对管道中气体的测量准确性。
而在传统的风道空气采样方法中,通常使用单独的气泵并结合两个橡胶或塑料管将空气从管道抽到传感器模块中。在这种情况下,通过使用气泵提供进气通道和出气通道之间的气压差,由此管道中的空气就会被吸入装有传感器模块的壳体里面。在传统的采样方法中,气泵的设置增加了额外的构件,其导致占用更大空间以及产生更高的成本。气泵的使用寿命通常低于传感器模块以及采样管的使用寿命,由此气泵的使用会导致整个用于检测管道中的粉尘的装置的使用寿命降低。此外气泵会产生较大的噪音。再者,气泵通常需要结合橡胶管或塑料管等软管一起使用,这也会影响整个装置的稳定性。
原则上,只要使进气通道5的进气口51与出气通道6的出气口61关于沿管道中气体流动方向A设置在同侧,就可确保进气口51处的由管道内气流引起的压力与出气口61处的由管道内气流引起的压力相等。在此基础上,仅通过传感器模块中设置的风扇14就可实现使得待检测的气体经由进气通道5的进气口51流入进气通道5中并流入装有传感器模块2的壳体4中,从而省去了上述气泵的设置,使得根据本发明的检测装置更加稳定、噪音低、成本低并且提高了检测装置的使用寿命。
优选地,进气通道5的进气口51与出气通道6的出气口61可都设置在朝向管道中气体流动方向A的迎风侧。当然也可想到,进气通道5的进气口51与出气通道6的出气口61都设置在气体流动方向A的背风侧。替代地,也可使进气通道5的进气口51与出气通道6的出气口61不是设置采样管的侧壁上,而是设置在采样管的通入管道1内的端侧上。
在图2示出的实施方式中,采样管3构造成一个整体,其中,通过基本沿采样管纵向方向的分隔部7将采样管分割成进气通道5和出气通道6,使得进气通道5和出气通道6可彼此独立地引导气体。分隔部7例如可为中间肋的形式。采样管3在此可采用任意的合适的管制成,例如由软管或硬管制成。此外,采样管3可具有任意形状的横截面,例如圆形横截面、方形横截面、不规则形状的横截面等。
但是也可想到,采样管3由单独的彼此分开布置的进气管和出气管组成,在这种情况下,例如进气管与出气管紧挨地设置,优选可通过粘结、焊接等方式将进气管和出气管沿侧壁连接在一起。在进气管中形成进气通道5并且在出气管中形成出气通道6。此外,也可想到,设置多个进气管和/或多个出气管,其共同构成采样管3。优选地,多个进气管与多个出气管紧挨地设置, 优选可通过粘结、焊接等方式将进气管和出气管沿侧壁连接在一起。通过使进气管和出气管紧挨地设置,由此可保证进气通道5的进气口51与出气通道6的出气口61紧邻设置,从而确保进气口51处的由管道内气流导致的气体压力大体等于出气口61处的由管道1内气流导致的气体压力。优选地,进气口51处的由管道内气流导致的气体压力与出气口61处的由管道1内气流导致的气体压力相差±10%至±1%,更为优选相差±9%至±1%、更为优选相差±8%至±1%、更为优选相差±7%至±1%、更为优选相差±6%至±1%、更为优选相差±5%至±1%、更为优选相差±4%至±1%、更为优选相差±3%至±1%、更为优选相差±2%至±1%。最优选地,进气口51处的由管道内气流导致的气体压力等于出气口61处的由管道1内气流导致的气体压力。
优选地,进气通道5的进气口51与出气通道6的出气口61相邻设置。优选地,沿采样管的纵向方向,进气口51设置得高于出气口61,这在采样管3通过基本沿采样管纵向方向的分隔部7将采样管分割成进气通道5和出气通道6的情况下特别适用,由此可简单地设置分隔部7。更为优选地,进气通道5的进气口51与出气通道6的出气口61沿采样管纵向方向对齐设置,这如在图5和图6中看出的那样,图5示出了根据本发明的能够对管道内流动的气体进行检测的检测装置的采样管的进气口和出气口的该优选的设置方式。
此外,从图2和图3中还可看出,在进气通道5的远离管道1的端部处的接口52与传感器模块2的入口9气体连通且相对于环境密封,而在出气通道6的远离管道1的端部处的接口62与壳体4的气体连通且相对于环境密封。由此检测气体从传感器模块2的出口10直接排放到壳体内,壳体相当于气体排放的缓冲空间,这可在一定程度上降低管道气流压力对传感器模块的影响。
通过使进气通道5的接口52与传感器模块2的入口9密封接通,使得进气通道5中的待检测气体与传感器模块中实际检测的气体一致,其中没有由于不密封而造成部分气体损失,由此进一步确保检测结果的准确性。此外,该密封设置也使得从传感器模块2的出口10出来的检测气体不会再次部分地从传感器模块2的入口9流回到传感器模块2中,从而避免在传感器模块2的入口9和出口10之间形成现有技术中产生的涡流,这也提高了检测结果的准确性。
图3和图4示出了根据本发明一个实施例的能够对管道1内流动的气体进行检测的检测装置100的传感器模块2的入口9处的细节以及传感器模块 的内部细节。从图3中可清楚看出,进气通道5的接口52与传感器模块2的入口9的密封设置。对于进气通道5的接口52与传感器模块2的入口9的密封连接可通过任意的可想到的合适密封方式实现。例如可采用直接密封或间接密封的方式,例如可采用密封圈,优选地通过泡棉进行密封。优选地,出气通道6的接口62没有与传感器模块2的出口10密封接通,而是与壳体4密封连通。
此外,优选地,可设置多个进气口51和/或多个出气口61,在这种情况下,使进口气51的总气体流通面积等于出气口61的总气体流通面积,如图6所示。
图4示出了根据本发明的能够对管道1内流动的气体进行检测的检测装置100的传感器模块2的细节。从图3和图4中可清楚看出,传感器模块2的入口9和传感器模块2的出口10优选布置在同一侧上,也可以采用其他布局。此外,可看出,光电二极管15以及激光源16和风扇14在传感器模块2的布置方式。这些构件的布置仅为示例性的,并不限制于所示的布置方式。由此参见图2,通过风扇14,待检测的气体从传感器模块2的入口9进入传感器模块2,经过光电二极管15以及激光器16以检测气体中的粉尘浓度,然后气体借助风扇14经由传感器模块2的出口10排出。
此外,传感器模块2检测的准确性与流过气体的速度相关。由于在管道中的风速比较高,由此气体流过传感器模块的速度越大导致传感器模块检测越不准确。对此,申请人对传统的采样模式和本发明提出的采样模式进行了测试。测试均在管道风速相同且均为12m/s的情况下进行。第一种情况,采样方式为第一传统模式,即进气通道的进气口朝向管道1中的气体流动方向的迎风侧,而出气通道的出气口朝向管道1中的气体流动方向的背风侧布置时,在进气通道与传感器模块连接处测得的流速为6.232m/s。第二种情况下,采样方式为第二传统模式,即出气通道的出气口朝向管道1中的气体流动方向的迎风侧,而进气通道的进气口朝向管道1中的气体流动方向的背风侧布置时,在进气通道与传感器模块连通处测得的流速为3.358m/s。第三种情况,根据本发明一个实施例的第一采样方式,即进气通道5的进气口51和出气通道6的出气口61都朝向管道1中的气体流动方向的迎风侧设置时,在进气通道5与传感器模块2连通处测得的流速为0.1m/s。第四种情况,根据本发明另一个实施例的第二采样方式,即在进气通道5的进气口51和出气通道6的 出气口61都在相对于管道1中的气体流动方向而言的背风侧设置时,在进气通道5与传感器模块连通处测得的流速也大致为0.1m/s。
该实验结果表明,在根据本发明实施例的采样方式下采样气流的气流速度明显低于传统采样方式下测得的采样气流速度,甚至几乎为静止的状态。因此,即便在HVAC管道中存在高风速、低风速、甚至不稳定气流的情况下,根据本发明的用于检测管道中的粉尘的装置都可将外部强风作用于采样管和传感器模块内的压力抵消掉且避免在传感器模块的入口和出口之间形成现有技术中的涡流,由此使得采样管内的气体流动速度非常小、甚至可保持静止的状态,进而确保传感器模块的检测精确性。
图7示出了使用根据现有采样方式的样品模型P1和根据本发明提出的采样方式的样品模型P2分别在管道中的风速为0m/s、5m/s、10m/s的情况下所进行粉尘测试的对比。其中,选择出两个几乎相同的传感器模块,在实验室的PM2.5管道式测试装置中使用两个样品模型来检测PM2.5的浓度。图7中将测试结果排布成两行三列。每一列从左到右依次对应于风速为的0m/s、5m/s、10m/s的情况下的测试结果。两行中上面第一行对应于传统采样模式,即采样管上的进气口和出气口设置在采样管相背的两个侧面中并且进气通道的接口未与传感器模块的入口9密封地连通时的粉尘测试结果;而下面的第二行是根据本发明一个实施例将进气口51和出气口61设置在同一侧中并且进气通道的接口52与传感器模块的入口9密封地连通时的粉尘测试结果。
如图7所示,每个测试曲线图中,X轴示出了PM2.5的浓度(单位μg/m 3);Y轴示出了测试结果与在理想情况下相比的差值(单位%),这里理想情况是指传感器模块在静态环境中的相同PM2.5浓度下工作。图7中实线表示样品模型带来的测量偏差Δ,而虚线表示可容忍的偏差范围±10%。
从图7中可看出,实线越接近X轴说明越接近理想情况,即,检测结果越准确。从图7中可看出,使用根据本发明的样品模型P2所得到结果均优于使用根据现有技术的样品模型P1所得到的结果,实线偏离X轴不大于10%,而使用根据现有技术的样品模型P1在风速为5m/s、10m/s的情况下所得到的实线偏离X轴过大。
通过根据本发明的用于对在管道1中流动的气体的粉尘浓度进行检测的装置,首先省去了气泵的使用,由此降低了构件成本、节省了所需的安装空间。其次,由于改进了进气通道5的进气口51与出气通道6的出气口61的 设置,实现了在进气口处与出气口处的由管道内气流引起的压力的平衡,由此使得壳体内流经传感器模块的气流流速得以稳定,进而提高了测量精度,从而提高了粉尘浓度检测的准确性并且在安装方向方面可灵活地选择。最后,由于使所述进气通道5的远离管道1的接口52与入口9相对于周围环境密封地直接连接,使得从传感器模块的出口中出来的经检测的气体不会再次流入到传感器模块的入口中,由此在传感器模块的入口和出口之间没有形成涡流,从而更进一步确保粉尘浓度检测的精确性。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
以上所述仅为本发明示意性的具体实施方式,并非用以限定本发明的范围。任何本领域的技术人员,在不脱离本发明的构思和原则的前提下所作的等同变化、修改与结合,均应属于本发明保护的范围。

Claims (12)

  1. 一种能够对管道(1)内流动的气体进行检测的检测装置,包括:
    一壳体(4);
    采样管(3),其从所述壳体(4)延伸出且适于放置至所述管道(1)中,其中所述采样管(3)具有彼此隔离的进气通道(5)和出气通道(6),所述进气通道(5)的进气口(51)与所述出气通道(6)的出气口(61)设置在所述采样管(3)通入所述管道(1)的部分中且置于所述采样管(3)的同侧,所述进气口(51)和所述出气口(61)具有相同的气体流通面积;
    一传感器模块(2),其设置于所述壳体(4)内且气体连通地连接到所述进气通道(5),以对从进气通道(5)采样到的气体进行检测。
  2. 根据权利要求1所述的检测装置,其特征在于,所述进气口(51)处的由管道(1)内气流导致的气体压力大体等于所述出气口(61)处的由管道(1)内气流导致的气体压力。
  3. 根据权利要求1-2中任一所述的检测装置,其特征在于,所述进气口(51)和所述出气口(61)彼此相邻设置。
  4. 根据权利要求1-3中任一所述的检测装置,其特征在于,所述传感器模块(2)具有一入口(9)和一出口(10),且所述传感器模块(2)还配置有一风扇(14),其引导气流从所述入口(9)导入且从所述出口(10)导出。
  5. 根据权利要求1-4中任一所述的检测装置,其特征在于,所述进气口(51)和所述出气口(61)均设置在所述采样管(3)相对于所述管道(1)中的气体流动方向的迎风侧。
  6. 根据权利要求1-4中任一所述的检测装置,其特征在于,所述进气口(51)和所述出气口(61)均设置成在所述采样管相对于所述管道(1)中的气体流动方向的背风侧。
  7. 根据权利要求1-4中任一所述的检测装置,其特征在于,所述进气口(51)和所述出气口(61)都设置在所述采样管(3)伸入所述管道(1)的一端的端面上。
  8. 根据权利要求1-7中任一所述的检测装置,其特征在于,所述采样管(3)为一体成型且具有分隔部(7),所述分隔部(7)将采样管(3)隔离成所述进气通道(5)和所述出气通道(6)。
  9. 根据权利要求8所述的检测装置,其特征在于,所述进气口(51)和 所述出气口(61)沿所述采样管(3)的纵向方向对齐设置。
  10. 根据权利要求1所述的检测装置,其特征在于,所述进气口(51)和/或所述出气口(61)具有多个气孔。
  11. 根据权利要求1所述的检测装置,其特征在于,所述传感器模块(2)具有一入口(9)和一出口(10),所述进气通道(5)与所述传感器模块(2)的入口(9)密封连接,所述传感器的出口(10)与壳体(4)内空间气体连通,所述出气通道(5)密封接入所述壳体(4)。
  12. 根据权利要求1所述的检测装置,其特征在于,所述传感器模块(2)为PM2.5传感器。
PCT/CN2020/071079 2020-01-09 2020-01-09 对管道内流动气体进行检测的检测装置 WO2021138863A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/071079 WO2021138863A1 (zh) 2020-01-09 2020-01-09 对管道内流动气体进行检测的检测装置
EP20913009.5A EP4089391A4 (en) 2020-01-09 2020-01-09 MEASURING DEVICE FOR MEASURING AN AIR FLOW INSIDE A PIPE
CN202080073550.XA CN114585896B (zh) 2020-01-09 2020-01-09 对管道内流动气体进行检测的检测装置
US17/791,668 US20230032582A1 (en) 2020-01-09 2020-01-09 Measurement Apparatus f or Measuring Air Flowing Inside Pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/071079 WO2021138863A1 (zh) 2020-01-09 2020-01-09 对管道内流动气体进行检测的检测装置

Publications (1)

Publication Number Publication Date
WO2021138863A1 true WO2021138863A1 (zh) 2021-07-15

Family

ID=76787683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071079 WO2021138863A1 (zh) 2020-01-09 2020-01-09 对管道内流动气体进行检测的检测装置

Country Status (4)

Country Link
US (1) US20230032582A1 (zh)
EP (1) EP4089391A4 (zh)
CN (1) CN114585896B (zh)
WO (1) WO2021138863A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115420561B (zh) * 2022-11-04 2023-01-24 四川瑞吉绿能科技有限公司 一种含碳气体捕捉器及含碳浓度测量装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004015785U1 (de) * 2004-10-11 2004-12-16 Ecoma Emissionsmesstechnik Und Consult Mannebek Gmbh Gasprobennehmer und Vorverdünnungsvorrichtung
CN201210123Y (zh) * 2008-06-17 2009-03-18 王健 一种应用在硫磺比值测量中的采样探头
KR20120021108A (ko) * 2010-08-31 2012-03-08 한국전력공사 배기가스 시료 채취 장치
EP2216638B1 (en) * 2009-02-10 2015-08-26 General Electric Company Probe for removal of particulates from gas sampling stream
CN105651562A (zh) * 2015-12-23 2016-06-08 中煤科工集团重庆研究院有限公司 管路用气体采样装置
CN205643314U (zh) * 2016-05-27 2016-10-12 重庆川然节能技术有限公司 一种集成式气体成份传感器探头及检测结构
CN107271227A (zh) * 2017-07-20 2017-10-20 江苏舒茨测控设备股份有限公司 一种非等长的采样回流双管式采样探头
CN107843529A (zh) * 2017-10-16 2018-03-27 佛山市旭烎安全防爆系统科技有限公司 一种粉尘环境浓度监测系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE528151C2 (sv) * 2005-01-24 2006-09-12 Calectro Ab Anordning för avkänning av fluid
EP3546955B1 (en) * 2019-05-24 2021-12-08 Sensirion AG Duct sensor with duct probe for sampling a fluid from a duct and method of operation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004015785U1 (de) * 2004-10-11 2004-12-16 Ecoma Emissionsmesstechnik Und Consult Mannebek Gmbh Gasprobennehmer und Vorverdünnungsvorrichtung
CN201210123Y (zh) * 2008-06-17 2009-03-18 王健 一种应用在硫磺比值测量中的采样探头
EP2216638B1 (en) * 2009-02-10 2015-08-26 General Electric Company Probe for removal of particulates from gas sampling stream
KR20120021108A (ko) * 2010-08-31 2012-03-08 한국전력공사 배기가스 시료 채취 장치
CN105651562A (zh) * 2015-12-23 2016-06-08 中煤科工集团重庆研究院有限公司 管路用气体采样装置
CN205643314U (zh) * 2016-05-27 2016-10-12 重庆川然节能技术有限公司 一种集成式气体成份传感器探头及检测结构
CN107271227A (zh) * 2017-07-20 2017-10-20 江苏舒茨测控设备股份有限公司 一种非等长的采样回流双管式采样探头
CN107843529A (zh) * 2017-10-16 2018-03-27 佛山市旭烎安全防爆系统科技有限公司 一种粉尘环境浓度监测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4089391A4 *

Also Published As

Publication number Publication date
CN114585896A (zh) 2022-06-03
CN114585896B (zh) 2024-01-26
US20230032582A1 (en) 2023-02-02
EP4089391A4 (en) 2023-10-11
EP4089391A1 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
JP5425902B2 (ja) 複合式気体流量測定方法及びその装置
KR101918420B1 (ko) 입자 샘플링 프로브 및 미세먼지 측정 장치
US8171773B2 (en) Sniffing leak detector
US20160115850A1 (en) Exhaust gas analyzing system and pumping device
US6487918B1 (en) Airflow sensor for averaging total pressure
CN108700495A (zh) 开放型排放分析的泄漏检测方法及开放型排放分析装置
WO2021138863A1 (zh) 对管道内流动气体进行检测的检测装置
FI78177B (fi) Anordning foer maetning av volymstroemmen av en gas i en kanal.
JP2022084957A (ja) 物理量計測装置
CN208534819U (zh) 用于风扇气动性能测试的装置
CN102221519A (zh) 直读式粉尘浓度检测仪
CN207065092U (zh) 流量可控型气路集成装置
KR101237684B1 (ko) 덕트 기밀 및 환기 성능 시험장치 및 이를 이용한 덕트 성능 시험방법
JPS6113112A (ja) 風量測定装置
CN105784292A (zh) 一种基于平衡流量计的活塞漏气量测量系统
CN219178639U (zh) 变风量测量器
JPH11351651A (ja) 空気調和機
CN108678985A (zh) 一种多功能风机性能试验装置
JP3685870B2 (ja) 抽出器、排出ガス希釈装置及び排出ガス測定システム
JP4176308B2 (ja) 混合システム
CN104964721B (zh) 空气流量计的气体流道结构
CN213515819U (zh) 一种基于mems质量流量传感器的流量测量装置
CN219064879U (zh) 一种试车台流场测量装置
CN220751254U (zh) 风量测试装置
US20220120594A1 (en) Flow measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020913009

Country of ref document: EP

Effective date: 20220809