WO2021138771A1 - 一种大批量制备高质量氮化铝模板的加热装置及制备方法 - Google Patents

一种大批量制备高质量氮化铝模板的加热装置及制备方法 Download PDF

Info

Publication number
WO2021138771A1
WO2021138771A1 PCT/CN2020/070506 CN2020070506W WO2021138771A1 WO 2021138771 A1 WO2021138771 A1 WO 2021138771A1 CN 2020070506 W CN2020070506 W CN 2020070506W WO 2021138771 A1 WO2021138771 A1 WO 2021138771A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum nitride
template
quality
thermal insulation
temperature
Prior art date
Application number
PCT/CN2020/070506
Other languages
English (en)
French (fr)
Inventor
吴亮
王琦琨
刘欢
雷丹
黄嘉丽
龚建超
朱如忠
黄毅
Original Assignee
奥趋光电技术(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥趋光电技术(杭州)有限公司 filed Critical 奥趋光电技术(杭州)有限公司
Priority to PCT/CN2020/070506 priority Critical patent/WO2021138771A1/zh
Publication of WO2021138771A1 publication Critical patent/WO2021138771A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the invention relates to the field of semiconductors, in particular to a heating device and a preparation method for mass preparation of high-quality aluminum nitride templates.
  • Aluminum nitride As a typical representative of the third/fourth generation semiconductor materials, has excellent physical and chemical properties such as ultra-wide band gap, high thermal conductivity, high breakdown field strength, high electron mobility, corrosion resistance, and radiation resistance. Performance, especially suitable for manufacturing optoelectronic devices, radio frequency communication devices, high power/high frequency power electronic devices, etc. It is the best choice for UV LED, UV detector, UV laser, 5G high power/high frequency radio frequency, 5G communication SAW/BAW devices, etc.
  • UV purification/sterilization sewage treatment, drinking water disinfection, air sterilization, surface sterilization, deodorization, etc.
  • UV curing UV catalysis, anti-counterfeiting detection, high-density storage, medical light therapy, drug research and development, mobile communication and confidential communication, UV space detection and other fields.
  • AlxGa1-xN has a wide direct band gap of 3.4 to 6.0 eV and excellent thermal and chemical stability, so it has great potential for optoelectronic devices in the deep ultraviolet (DUV) field.
  • LEDs ultraviolet light-emitting diodes
  • LDs ultraviolet laser diodes
  • high-quality AlN thin film layers are prepared on cheap sapphire substrates.
  • high-performance ultraviolet light-emitting devices can be prepared, which has huge market potential.
  • AlN films grown on sapphire substrates have high density TD, which is mainly due to the large lattice and thermal coefficient mismatch between AlN and sapphire and different growth modes/methods.
  • the TD density of the AlN film grown by MOCVD is >109cm-2
  • the TD of the film grown by sputtering is >1010cm-2. Therefore, controlling the growth of the interface between AlN and the sapphire substrate and preparing low-defect AlN templates is one of the key means to obtain high-efficiency ultraviolet optoelectronic devices.
  • HT-FFA high-temperature face-to-face annealing
  • the purpose of the embodiments of the present invention is to provide a heating device for mass production of high-quality aluminum nitride templates to solve the above-mentioned background art problems.
  • a heating device for preparing high-quality aluminum nitride templates in large quantities comprising a heat preservation screen, a support platform and installation parts.
  • the support platform and the installation parts are all installed inside the heat preservation screen.
  • the lower end of the support platform is fixed and installed with a lifting motor
  • the components are fixed on the upper end of the support platform, the upper heater and the upper temperature monitor are installed above the installation components, the lower heater and the lower temperature monitor are installed below the installation components, the upper heater and the lower heater can adjust their respective output power
  • the upper temperature monitor and the lower temperature monitor are used to monitor the upper temperature and lower temperature of the installation parts, and the aluminum nitride template is formed into a combination, placed in the installation part, and the installation part is placed in the support
  • the support platform is placed in the thermal insulation screen
  • the upper heater and the lower heater are used to heat the whole
  • the upper temperature monitor and the lower temperature monitor are used to measure and control the temperature
  • the numerical simulation method is used for the overall and large
  • the test and production assembly under the optimal simulation result can be determined by selecting the axial position of the multi-heater and moving the installed parts. Obtain the optimal temperature field distribution. Calculate the global and local temperature field distribution of the installed components through numerical simulation methods, evaluate the temperature uniformity of the installed components, and optimize and transform all components and the thermal field structure.
  • the thermal insulation screen includes an upper thermal insulation screen, a lower thermal insulation screen and two side thermal insulation screens.
  • the upper end of each side thermal insulation screen is connected to the upper thermal insulation screen, and the lower end of each side thermal insulation screen is connected to the lower thermal insulation screen.
  • the thermal insulation screens are connected, and the upper thermal insulation screen, the lower thermal insulation screen and the two side thermal insulation screens form a closed structure, which has a good thermal insulation effect.
  • the upper heater and the lower heater both adopt resistance heaters
  • the upper temperature monitor and the lower temperature monitor both adopt infrared temperature monitors, which are easily available in the market and have good use effects.
  • a cooling wall is also provided on one side of the heat preservation screen, which can be cooled to ensure the use effect.
  • the installation components include a container, a cover sheet and a support frame
  • the container is fixed inside the support frame
  • the upper end of the container for loading the aluminum nitride template is covered with a cover sheet to avoid large amounts of volatilization at high temperatures and other Due to the influence of impurities, the support frame realizes the loading function of batch aluminum nitride templates.
  • the shape of the container can be any shape such as round or square.
  • the support frame can be built by supporting structures of any shape such as pillars, cylinders, etc., and can accommodate multiple containers. .
  • the support frame includes an upper base, a lower base, a first support column, a second support column, and a third support column.
  • the upper ends of the first support column, the second support column, and the third support column and The lower end is respectively connected with the lower end of the upper base and the upper end of the lower base.
  • This structure matches the design of the heating device for mass production of high-quality aluminum nitride templates to obtain uniform temperature distribution, creating favorable conditions for mass production of high-quality aluminum nitride templates
  • the first support column and the second support column are mainly to balance the container in a horizontal state and limit the moving space in the horizontal direction.
  • the third support column can also help the container rotate Orientation in the direction.
  • the container includes a groove with a certain depth, an inner positioning surface and an outer positioning surface, the inner positioning surface and the outer positioning surface are parallel to each other, the groove is used to accommodate the aluminum nitride template and the inner diameter is slightly larger than the nitrogen
  • the recommended difference of aluminum template is 0.1-1mm, and the depth is slightly larger than the total thickness of aluminum nitride template and other parts. It is recommended that the difference is 0.1-1mm.
  • the cover sheet also has a positioning surface, and its size is almost close to that of aluminum nitride template. It can be contacted. Cover the aluminum nitride template.
  • a method for preparing high-quality aluminum nitride templates in large quantities is divided into a method for preparing thin-film aluminum nitride templates (0 ⁇ film thickness ⁇ 1500nm) and a method for preparing thick-film aluminum nitride templates (1000nm ⁇ film thickness), Specific steps are as follows:
  • Step 1 Prepare a substrate, and form an aluminum nitride precursor on the substrate;
  • Step 2 Load the initial aluminum nitride template combination into the heating device for mass production of high-quality aluminum nitride template in batches, and use simulation methods to calculate the axial temperature and diameter of the heating device for mass production of high-quality aluminum nitride template. To optimize and control temperature uniformity;
  • Step 3 Put the aluminum nitride precursor in a mixed atmosphere of N2 and H2 for purification and correct the twist orientation.
  • the Al and N2 gases are then used to fully suppress the nitrogen on the template.
  • the unevenness of the template film interface is adjusted to become flat, thereby improving the flatness of the interface, and finally forming a micro High-quality aluminum nitride film template with holes and low dislocation density;
  • Step 4 for the low-quality thick-film aluminum nitride template, chemical mechanical polishing is performed on the aluminum nitride layer on the aluminum nitride template to improve the surface flatness of the aluminum nitride layer;
  • Step 5 for the low-quality thick-film aluminum nitride template, using the polished aluminum nitride template as the substrate, repeat steps one to four until the aluminum nitride template reaches the high-quality level.
  • the substrate may be a bulk substrate material or a template material with a III nitride semiconductor film epitaxially.
  • the aluminum nitride precursor can adopt magnetron sputtering method (Sputter), metal organic compound vapor phase epitaxy (MOCVD), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE) ) Is obtained by superimposing one or more of them.
  • Sputter magnetron sputtering method
  • MOCVD metal organic compound vapor phase epitaxy
  • MBE molecular beam epitaxy
  • HVPE hydride vapor phase epitaxy
  • the initial aluminum nitride template can be a combination of two or more pieces, and the aluminum nitride layer on the initial aluminum nitride template can be the same as the aluminum nitride on the adjacent initial aluminum nitride template.
  • the back surface of the layer or the substrate is opposite, and the aluminum nitride templates can cover each other or form a distance greater than 0.01 mm, and the optimal distance is within 0.2 mm.
  • step three the aluminum nitride precursor is placed in N2 gas or a mixed gas of N2 and H2 between 900-1300°C, and the surface of the aluminum nitride precursor is purified, mainly Removal of residual particulate impurities on the surface.
  • N2 gas or a mixed gas of N2 and H2 between 900-1300°C
  • the surface of the aluminum nitride precursor is purified, mainly Removal of residual particulate impurities on the surface.
  • a certain proportion of H2 (0.01 ⁇ H2/N2 atomic content ratio) is introduced to combine with the residual oxygen on the surface of the aluminum nitride precursor to remove oxygen impurities.
  • H2 a certain proportion of H2 (0.01 ⁇ H2/N2 atomic content ratio
  • Step 3 is carried out in a mixed atmosphere of Al and N2 at 1450-1850°C, the total pressure is less than 5 bar, and the mixed gas of Al and N2 is used to fully inhibit the dissociation of the aluminum nitride layer on the template and Supplement the materials needed for grain reconstruction and regrowth.
  • Step 3 is carried out in a N2 atmosphere at 1200-1400°C, and the pressure is greater than 1 bar.
  • the unevenness of the template film interface is adjusted to be flat, thereby improving the flatness of the interface.
  • the high N2 pressure is for Reduce the Al and N2 vapor phase ratio to reduce the increase in surface curvature of the aluminum nitride layer, which tends to be stable.
  • the present invention uses aluminum nitride material as the sublimation source of Al and N2 atmosphere to form Al and N2 atmosphere environment between the templates for high temperature modification.
  • the Al and N2 mixed atmosphere is used to inhibit the dissociation of the aluminum nitride precursor surface at high temperature, and at the same time promote nitrogen During the reconstruction and regrowth process of the aluminum oxide layer, the regrowth is prone to radial expansion in a low supersaturated atmosphere, annihilating dislocations and enriching the surface microvoids caused by the reconstruction, and can achieve the formation of a flat surface and high-quality nitrogen
  • breakthrough thick film template (film thickness>1000nm) can form a flat and high-quality aluminum nitride film layer at higher temperature without surface dissociation, which is feasible for the preparation of high-quality thick film aluminum nitride template Sex provides effective technical means.
  • Figure 1 is a schematic diagram of the aluminum nitride template preparation process.
  • Figure 2 is a schematic diagram of the preparation process of the aluminum nitride template.
  • Fig. 3 is a schematic diagram of a heating device for mass preparation of high-quality aluminum nitride templates.
  • Fig. 4 is a schematic diagram of the structure of the mounting parts in the heating device for mass preparation of high-quality aluminum nitride templates.
  • Figure 5 is a schematic diagram of the container and assembly process in the heating device for mass production of high-quality aluminum nitride templates.
  • Fig. 6 is a schematic diagram of a first connection method of the container and the third support column of the support frame.
  • Fig. 7 is a schematic diagram of a second connection method of the container and the third support column of the support frame.
  • Fig. 8 is a schematic diagram of the first assembly method of the aluminum nitride template and the aluminum nitride wafer material inside the container.
  • Figure 9 is a schematic diagram of the second assembly method of aluminum nitride template and aluminum nitride wafer material inside the container
  • Fig. 10 is a schematic diagram of the first assembly method of aluminum nitride template and aluminum nitride powder material inside the container.
  • Fig. 11 is a schematic diagram of a third method of assembling the aluminum nitride template and the aluminum nitride wafer material inside the container.
  • Fig. 12 is a schematic diagram of a fourth method of assembling the aluminum nitride template and the aluminum nitride wafer material inside the container.
  • Fig. 13 is a schematic diagram of a second method of assembling the aluminum nitride template and the aluminum nitride powder material inside the container.
  • FIG. 14 is a schematic diagram of the first multilayer assembly method of aluminum nitride template and aluminum nitride wafer material inside the container.
  • 15 is a schematic diagram of a second multilayer assembly method of aluminum nitride template and aluminum nitride wafer material inside the container.
  • 16 is a schematic diagram of the first multilayer assembly method of aluminum nitride template and aluminum nitride powder material inside the container.
  • Figure 17 is a graph showing the variation of the maximum temperature difference inside the support frame with the axial position of the single resistance heater.
  • Fig. 18 is a graph showing the variation of the maximum temperature difference inside the support frame with the axial position during the preparation process of the high-temperature aluminum nitride template under the dual resistance heater.
  • Figure 19 is a process curve diagram of the preparation procedure of high-quality aluminum nitride template.
  • Figure 20 is a graph showing the relationship between the FWHM of the X-ray diffraction rocking curve of aluminum nitride templates with different film thicknesses and the temperature at which they are exposed.
  • Figure 21 is a diagram showing the relationship between the FWHM of the X-ray diffraction rocking curve of a 200nm aluminum nitride template and the layer number of the axial container where it is located.
  • Fig. 22 is a diagram showing the relationship between the half width of the X-ray diffraction rocking curve and the position of the 200nm aluminum nitride template surface.
  • Figure 23 is a diagram showing the relationship between surface roughness and position of a 200nm aluminum nitride template.
  • Figure 24 is the surface FWHM change diagram and atomic force microscope topography diagram before and after high temperature modification during the preparation of 400nm aluminum nitride template.
  • FIG. 25 is an X-ray diffraction rocking curve diagram of the 200 nm aluminum nitride template at the position shown in FIG. 22.
  • FIG. 26 is an atomic force microscope topography diagram of the 200nm aluminum nitride template at the schematic position in FIG. 23.
  • FIG. 26 is an atomic force microscope topography diagram of the 200nm aluminum nitride template at the schematic position in FIG. 23.
  • Figure 27 is a schematic diagram of the preparation process of an aluminum nitride template (film thickness>1000nm).
  • Figure 28 is a schematic diagram of the preparation process of an aluminum nitride template (film thickness>1000nm).
  • Figure 29 is a diagram of the global temperature distribution during the preparation process of a high-temperature aluminum nitride template under a single resistance heater.
  • Figure 30 is a diagram of the global temperature distribution during the preparation process of the high-temperature aluminum nitride template under the dual resistance heater.
  • Figure 31 is a diagram of the internal temperature distribution of the partial support frame during the preparation process of the high-temperature aluminum nitride template under the single resistance heater.
  • Figure 32 is a diagram showing the internal temperature distribution of the partial support frame during the preparation process of the high-temperature aluminum nitride template under the dual resistance heater.
  • a method for preparing high-quality aluminum nitride templates in large quantities mainly includes the preparation of the substrate 1, the preparation of the aluminum nitride precursor 4, and the transformation of the aluminum nitride template 3.
  • sapphire is used as the substrate 1, but the substrate 1 is not limited to sapphire, and may be a substrate 1 composed of at least one of sapphire, silicon carbide (SiC), and aluminum nitride (AlN).
  • the preparation method of aluminum nitride precursor 4 is sputtered in this embodiment, but the preparation method is not limited to sputtering, sputtering, metal organic compound vapor phase epitaxy (MOCVD), molecular beam epitaxy One or more of (MBE) and hydride vapor phase epitaxy (HVPE) can be superimposed.
  • the modification of the aluminum nitride template 3 is to use high-temperature thermal drive and material transfer under the created Al and N 2 mixed atmosphere to fully inhibit the dissociation of the aluminum nitride layer 5 on the aluminum nitride template 3 and promote regrowth. Improve the surface morphology and quality of the aluminum nitride layer 5.
  • the whole process of preparing the bulk aluminum nitride template 3 in this embodiment mainly contains the aluminum nitride precursor 4 forming procedure S1, the bulk initial aluminum nitride template 2 loading procedure S2, and high-quality nitrogen.
  • the aluminum nitride precursor 4 formation procedure S1 begins with the preparation of a large-scale substrate 1 step S11, the substrate 1 cleaning, low-temperature pretreatment step S12, and the sputtering formation of the aluminum nitride precursor 4 on the substrate 1 (formation of initial nitrogen Aluminum nitride template 2); high-quality aluminum nitride template 3 transformation procedure S3 is divided into low temperature heat treatment step S31, high temperature transformation step S32, interface adjustment step S33, the initial aluminum nitride template 2 is performed at a predetermined temperature and atmospheric pressure Prepare and form high-quality aluminum nitride template 3.
  • the heating device 10 for mass production of high-quality aluminum nitride templates is provided by a dual resistance heater, but it is not limited to a dual resistance heating method. Both single resistance or multi-stage resistance heating methods can achieve similar functions.
  • This embodiment The example is just taking this as an example.
  • the heating device 10 for mass preparation of high-quality aluminum nitride templates prepared by batch aluminum nitride templates 3 specifically consists of the following components: cooling wall 11, upper thermal insulation screen 12, lower thermal insulation screen 20, and side thermal insulation screen 18.
  • the upper heater 13 and the lower heater 16 can obtain the expected temperature control by adjusting their respective output powers.
  • the installation part 15 is placed on the movable support platform 19, and the upper temperature monitor 14 and the lower temperature monitor 17 are used to monitor the installation The upper and lower temperature of the part 15.
  • the installation components 15 designed in batches are described, specifically including the combination of the container 26 and the cover sheet 27 and the support frame (including the upper base 21, the lower base 22, the first support column 23, the second support column 24, and the second support column).
  • the material of all the above components can be at least one of group III nitride materials, boron oxide, aluminum oxide, ceramics, silicon carbide, high melting point metals (tungsten, molybdenum and other alloys), zirconium oxide, and tantalum carbide.
  • the container 26 is used to load the untreated/treated aluminum nitride template 3, which is finally covered by the cover sheet 27 to avoid the influence of large amounts of volatilization and other impurities at high temperatures.
  • the design of the support frame realizes the loading function of the batch aluminum nitride template 3, and the structure matches the design of the heating device 10 for mass production of high-quality aluminum nitride template to obtain a uniform temperature distribution, which is for the mass production of high-quality aluminum nitride.
  • Template 3 creates favorable conditions.
  • the first support column 23 and the second support column 24 are mainly for balancing the container 26 in a horizontal state and restricting the moving space in the horizontal direction.
  • the third support column 25 also has a function of helping the container 26 to be positioned in the rotation direction.
  • the more detailed appearance design of the container 26 can be seen in Figure 5. It contains a certain depth of groove, an internal positioning surface and an external positioning surface.
  • the internal positioning surface and the external positioning surface are parallel to each other.
  • the groove is used to accommodate the aluminum nitride template 3, the diameter of which is slightly It is 0.1-1mm larger than the aluminum nitride template 3, and the depth is slightly larger than the total thickness of the aluminum nitride template 3 and other parts 0.1-1mm.
  • the cover sheet 27 also has a positioning surface, and its size is almost close to that of the aluminum nitride template 3. It can be contacted Cover the aluminum nitride template 3.
  • the assembled container 26 can be connected to the third support column 25 in a variety of ways. This embodiment shows two connection methods shown in Figures 6 and 7, but they are not limited to these two.
  • the main purpose is to fix all assembly to The container 26, the initial aluminum nitride template 2 and the initial aluminum nitride template 202 on the support frame all have a certain orientation, so as to achieve the mass consistency and uniformity of the aluminum nitride template 3 in batches.
  • This form leads to a gap between the aluminum nitride wafer material 206a and the aluminum nitride precursor 4
  • the spacing is very small, depending on the roughness of the two. In this assembly mode, the very small spacing is more effective in preparing high-quality aluminum nitride template 3 than material transport.
  • FIG. 9 shows the small spacing formed by the spacer ring 28. Compared with FIG. 9, the material transmission distance in this form has a more significant effect on the preparation of the high-quality aluminum nitride template 3.
  • this embodiment is another single-assembly assembly mode, which makes full use of the upper and lower surfaces of the aluminum nitride wafer material 206a (the surfaces can be ground or polished), and the initial aluminum nitride template 2
  • the aluminum nitride precursor 4 is facing the lower surface of the aluminum nitride wafer material 206a
  • the aluminum nitride precursor 201 of the initial aluminum nitride template 202 is facing the upper surface of the aluminum nitride wafer material 206a, so that the two initial nitrides Both the aluminum template 2 and the initial aluminum nitride template 202 undergo a high-quality aluminum nitride template 3 transformation procedure through the same piece of aluminum nitride wafer material 206a.
  • another form of assembly mode in this embodiment uses aluminum nitride powder material 206 b, which is placed around the initial aluminum nitride template 2.
  • the above assembly and use of the aluminum nitride wafer material 206a and the aluminum nitride powder material 206b are to provide a mixed gas of Al and N 2 in the aluminum nitride high-temperature transformation program S32.
  • the above three assembly modes can be assembled in a multi-layer stacking manner in this embodiment.
  • the assembly combination of the three assembly modes in Figures 11-13 is called unit combination.
  • the assembly quantity of the best unit combination is 2-5, and the best total
  • the assembly quantity of the aluminum nitride template 3 is 4-10 pieces.
  • the consistency and uniformity of the temperature environment in which each aluminum nitride template 3 is located is extremely elegant, from the perspective of optimizing the global and local temperature environment, and at the same time, in order to save expensive
  • the application of numerical simulation technology is indispensable for the high test cost, so that the feasibility of the design scheme and batch results can be expected and fully obtained.
  • the well-known crystal growth simulation software FEMAGSoft is used to perform extremely optimized calculation of the internal temperature field of the aluminum nitride template preparation device.
  • the simulation analysis of the global temperature field of the heating equipment prepared by the aluminum nitride template 3 is carried out specifically for the two heaters using single and double resistance heaters, so as to obtain the optimal heating assembly design and location.
  • the simulation calculation in this embodiment uses 35-layer containers 26, and each container 26 contains 3 unit combinations 31a with a diameter of 2 inches, that is, the number of aluminum nitride templates 3 totals 210 pieces. Control the bottom temperature of the support frame in the single heater scheme to 1650°C, and control the temperature of the bottom and top of the support frame in the dual heater scheme to 1650°C.
  • the height of the single resistance heater is 600 mm
  • the upper heater of the double resistance heater is 100 mm
  • the lower heater is 200 mm.
  • the minimum and maximum temperature difference under a single heater appears at 240 mm in the axial position, and the maximum temperature difference is 13.5°C, indicating that the maximum temperature deviation of the aluminum nitride template 3 inside the container 26 on the support frame is 13.5°C.
  • the minimum and maximum temperature difference appears at the axial position at -90mm, and the maximum temperature difference is 16.0°C.
  • the radial temperature difference of each aluminum nitride template 3 is less than 0.5°C.
  • the review shows that the heating device 10 for the mass production of high-quality aluminum nitride templates can achieve almost the same temperature at which the mass of aluminum nitride templates 3 (>200 sheets) are exposed, and such a maximum temperature difference is necessary for the preparation Within the allowable range of process optimization.
  • Step 1 Prepare a large batch of substrate 1 (S11).
  • Substrate 1 is a production polished substrate sheet with characterization specifications.
  • the surface is an EPI polished surface with a roughness of less than 0.3nm, and the back is a grinding grade with a roughness of 1 ⁇ 0.2um.
  • the number of substrates 1 required for the preparation of a batch of aluminum nitride templates 3 is 10-400, and the optimal number is related to the mounting components 15 and the heating device 10 for mass production of high-quality aluminum nitride templates.
  • Step 2 Substrate 1 cleaning and low temperature pretreatment (S12).
  • the substrate 1 is cleaned by shaking the surface with deionized water to remove surface particles. Put the substrate 1 into the precursor preparation furnace, and heat it to a low temperature of 600-1000°C for low-temperature pretreatment, mainly to remove impurities on the surface of the substrate 1, clean the surface, and provide no impurities for the subsequent growth of the aluminum nitride precursor 4 , High-quality substrate environment.
  • Step 3 Sputtering forming an aluminum nitride precursor 4 that is an initial aluminum nitride template 2 on the substrate 1 (S13).
  • the magnetron sputtering method is used to grow the aluminum nitride precursor 4 on the EPI surface of the substrate 1.
  • the sputtering method uses polycrystalline aluminum nitride as the raw material target; the vacuum pressure before sputtering is lower than 6.0 ⁇ 10 -5 Pa; N 2 gas is provided as the sputtering gas, and the supply gas flow rate is 10-30 sccm; A series of aluminum nitride films with a thickness of 50-1000nm are prepared under a sputtering pressure of 0.03-0.4pa; during the aluminum nitride deposition process, the substrate temperature is 400-800°C and the electromagnetic induction power is 500-1000W.
  • the half-width of the X-ray rocking curve of the aluminum nitride precursor 4 on the (0002) plane is 300-1000arcsec
  • the half-width of the X-ray rocking curve on the (10-12) plane is 1000-3000arcsec
  • the roughness Ra is 2-5 nm.
  • the half-width of X-ray rocking curve (FWHM-XRC) and atomic force microscope (AFM) spectrum of aluminum nitride precursor 4 with film thicknesses of 400 nm and 800 nm can be seen in Figure 24.
  • Step 1 Load all the initial aluminum nitride templates of the expected amount into the container 26 according to the multilayer assembly pattern of FIG. 14 or FIG. 15.
  • Step 2 Cover all the assembled containers 26 with covering sheets 27, insert them into the support frame as a whole, and connect the positioning surface on the container 26 with the third support column 25 of the support frame.
  • the assembled support frame is placed on the support platform 19 of the heating device 10 for mass preparation of high-quality aluminum nitride templates.
  • Step 3 Adjust the support platform 19 to adjust the mounting part 15 to the optimal axial position.
  • Step 1 Low-temperature pretreatment of the initial aluminum nitride template 2 (S31).
  • the temperature TC of the initial aluminum nitride template 2 is between 900-1300°C, the treatment time is 0.1-2h, and the aluminum nitride precursor 4 is placed in a mixed atmosphere of N 2 and H 2, H:N
  • the atomic ratio is less than 0.2 and greater than 0.05.
  • the main purpose is to perform purification treatment on the surface of the aluminum nitride precursor 4 to remove residual impurities on the surface, and adding H 2 to combine with the residual oxygen on the surface of the aluminum nitride precursor 4 to remove oxygen impurities.
  • the low-temperature pretreatment can also correct the twist orientation of the crystal grains in the aluminum nitride precursor 4 in advance.
  • Step 2 High temperature modification of aluminum nitride template 3 (S32).
  • the temperature TA of the aluminum nitride template 3 is between 1450-1750°C, and the transformation time is 0.1-10h in a low-pressure pure N 2 atmosphere of less than 0.5 bar.
  • the aluminum nitride wafer material 206a and the aluminum nitride precursor 4 on the initial aluminum nitride template 2 form a small distance 29, which is less than 0.5 mm.
  • the driving force for the transformation comes from the high-temperature thermal drive, and the aluminum nitride wafer material 206a is sublimated as a material raw material to form a mixed atmosphere of Al and N 2 in a small pitch can inhibit the self-dissociation of the aluminum nitride precursor 4.
  • the best spacing is 0.2mm.
  • Step 3 Adjust the interface of aluminum nitride template 3 (S33).
  • the temperature TB at which the aluminum nitride template 3 is located is between 1200-1400°C, under a high-pressure pure N 2 atmosphere of 1-1.5 bar, and the duration is 0.2-2 h.
  • This step is mainly to adjust the unevenness of the film interface of the aluminum nitride template 3 to become flat, so as to improve the flatness of the interface.
  • the high N 2 gas pressure is to reduce the Al:N atomic ratio to slow down the increase of the surface curvature of the aluminum nitride layer 5 and tend to be flat.
  • the (0002) plane is in the range of 73-87arcsec, ( 10-12)
  • the surface is in the range of 270-350arcsec.
  • the quality and roughness uniformity of the radial surface of the 200nm template were tested and analyzed (as shown in Figure 22 and Figure 23), and it was found that the best quality and morphology appeared in the internal range of the template. The overall uniformity was high.
  • the corresponding XRC and AFM spectra were visible Figure 25, Figure 26.
  • the above test results show that the preparation method of the batch aluminum nitride template 3 and the heating device for mass production of high-quality aluminum nitride templates of the present invention have the ability to mass-produce high-quality, high-uniformity aluminum nitride templates at low cost.
  • FIG. 27 is a schematic diagram of a method for preparing an aluminum nitride film template of this embodiment.
  • Fig. 28 is a flow chart of the batch implementation process of Fig. 27.
  • the batch preparation of aluminum nitride template 3 with an aluminum nitride film thickness of less than 1000 nm adds an aluminum nitride film.
  • CMP Layer chemical mechanical polishing
  • the principle is that the aluminum nitride template 3 with a film thickness of less than 1000nm can be prepared with high quality through the S1-S3 process.
  • the surface roughness of the aluminum nitride layer 5 will be too large in the preparation of a thicker aluminum nitride film template The phenomenon of coarse particle morphology, so that high-quality thick aluminum nitride template 3 cannot be obtained.
  • CMP chemical mechanical polishing
  • the present invention uses a thin film template (the film thickness is less than 1000nm). ) The process procedure is combined with the CMP procedure, and then the high-quality thick-film aluminum nitride template is obtained by repeated preparation.
  • Step 2 Chemical mechanical polishing of aluminum nitride film layer by CMP (S4).
  • the surface of the rough aluminum nitride layer 5 of 407a is polished using the CMP technology to form the aluminum nitride layer 408 with an atomic level flat surface.
  • CMP equipment includes polishing disk, polishing pad, polishing liquid, polishing abrasive, down force, polishing head, pressure disk, paraffin wax and aluminum nitride template.
  • the polishing method adopts single-sided (aluminum nitride film surface) polishing.
  • the aluminum nitride template 3 is pasted on the pressure plate through paraffin wax, and the pressure plate is fixed on the polishing head and maintained at a constant pressure, and the polishing pad is fixed on the polishing plate.
  • the polishing head and polishing disc are driven by their respective servo motors with adjustable speed.
  • the polishing liquid continuously flows between the aluminum nitride template 3 and the polishing pad and takes away the reactants, thereby obtaining an ultra-smooth surface.
  • KOH potassium hydroxide
  • H 2 O 2 hydrogen peroxide
  • the adjusted PH 10-12.
  • 1um Al 2 O 3 and 50nm SiO 2 polishing abrasives first use Al 2 O 3 polishing abrasives to polish for 5-30 minutes, and then use SiO 2 polishing abrasives to polish for 15-60 minutes.
  • the program it will be judged whether the thickness has reached the expected thickness (S5), and if it has reached the expected thickness, it will exit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种大批量制备高质量氮化铝模板的加热装置及制备方法,所述装置包括保温屏、支撑平台(19)和安装部件(15),所述支撑平台(19)和安装部件(15)均安装在保温屏的内部,支撑平台(19)的下端固定有升降电机并且安装部件(15)固定在支撑平台(19)上端,安装部件(15)的上方安装有上加热器(13)和上温度监控仪(14),安装部件(15)的下方安装有下加热器(16)和下温度监控仪(17)。通过批量大批量制备高质量氮化铝模板的加热装置的设计、精确地均匀温度控制及氮化铝模板优化工艺,结合数值模拟仿真技术对系统热场设计进行优化,实现批量制备高品质的氮化铝模板。

Description

一种大批量制备高质量氮化铝模板的加热装置及制备方法 技术领域
本发明涉及半导体领域,具体是一种大批量制备高质量氮化铝模板的加热装置及制备方法。
背景技术
在传统硅基等半导体材料已经无法满足当前电子器件的发展要求。氮化铝(AlN)作为第三代/第四代半导体材料的典型代表,具有超宽禁带、高热导率、高击穿场强、高电子迁移率、耐腐蚀、耐辐射等优越物理化学性能,特别适合于制造光电子器件、射频通信器件、高功率/高频电力电子器件等,是紫外LED、紫外探测器、紫外激光、5G高功率/高频射频、5G通信 SAW/BAW器件等最佳衬底材料,广泛应用于环保、电子、无线通讯、印刷、生物、医疗、军事等领域,如紫外净化/灭菌(污水处理、饮用水消毒、空气杀菌、表面杀菌、除臭等)、紫外固化、紫外催化、防伪检测、高密度存储、医学光照治疗、药物研发、移动通信及保密通信、紫外空间探测等领域。
AlxGa1-xN具有3.4至6.0 eV的宽直接带隙和出色的热稳定性和化学稳定性,因此其在深紫外(DUV)领域的光电器件具有很大的潜力。然而,由于缺少理想的商业衬底,基于AlxGa1-xN的光电器件,例如紫外发光二极管(LEDs)和紫外激光二极管(LDs),尚未得到大规模应用。
通过物理气相传输法(PVT)技术可以获得具有极低穿型位错(TD)密度(<105cm-2)的高晶体质量的AlN体块衬底,并且这些衬底适用于制备紫外LEDs和LDs器件。然而,PVT制备的AlN衬底仍然含有高杂质浓度,并且比在蓝宝石衬底上生长的AlN薄膜成本更高、尺寸更小,因此作为紫外光发光元件的衬底材料具有极大的困难之处。
目前,在价格便宜的蓝宝石衬底上制备高质量的AlN薄膜层。继续在该氮化铝模板上外延生长AlGaN,可以制备出高性能的紫外光发光器件,具有巨大的市场潜力。
技术问题
在然而,在蓝宝石衬底上生长的AlN薄膜具有高密度TD,这主要是由于AlN和蓝宝石之间的大晶格和热系数失配以及不同的生长模式/方法导致。例如,金属有机化合物气相外延(MOCVD)生长的AlN薄膜中TD密度>109cm-2,以及通过溅射(sputter)生长的薄膜TD>1010cm-2。因此,控制AlN与蓝宝石衬底的界面生长、制备低缺陷的AlN模板是获得高效紫外光电子器件的关键手段之一。
最近,在蓝宝石衬底上sputter/MOCVD生长的AlN薄膜进行高温面对面退火(HT-FFA)工艺,获取高质量AlN模板(例如国际公开WO 2017/043628 A1、中国公开CN 108950477 A的技术),AlN薄膜中的TD密度降低至4.7×108cm-2,并且这些薄膜可用于制造传统的LED。HT-FFA工艺可导致AlN晶体晶格的重排使得TD密度降低超过一个数量级。这种极具前景的方法可以应用于溅射生长后的AlN薄膜,避免了MOCVD中敏感的成核过程。面对面的覆盖一定程度上可以更好地稳定表面形貌,减轻表面解离。国际公开WO 2017/043628 A1的制备方法中,退火高温(>1500℃)更有利于获得高水平结晶度,然而在温度大于1700℃极易发生氮化铝层的解离,破坏表面形貌,出现凹凸不平的界面;甚至出现薄膜与蓝宝石的交界面处的氧扩散至薄膜表面而影响外延生长,难以获取低厚度、高厚度氮化铝模板的更高结晶质量而受限。中国公开CN 108950477 A的制备方法中,单片或是较少数量氮化铝模板的制备无法满足低成本、高品质、高均匀性以及大批量生产需求,热处理设备及大批量制备高质量氮化铝模板的加热装置的设计无法满足质量均匀性与批量制备的能力。因此,合理且高效的批量制备高质量氮化铝模板所需工艺结合批量大批量制备高质量氮化铝模板的加热装置的设计是技术难点。
技术解决方案
在本发明实施例的目的在于提供一种大批量制备高质量氮化铝模板的加热装置,以解决上述背景技术中提出的问题。
为实现上述目的,本发明实施例提供如下技术方案:
一种大批量制备高质量氮化铝模板的加热装置,包括保温屏、支撑平台和安装部件,所述支撑平台和安装部件均安装在保温屏的内部,支撑平台的下端固定有升降电机并且安装部件固定在支撑平台上端,安装部件的上方安装有上加热器和上温度监控仪,安装部件的下方安装有下加热器和下温度监控仪,上加热器和下加热器能通过调节各自输出功率来获取预期的温度控制,通过上温度监控仪和下温度监控仪来监控安装部件的上部温度和下部温度,将氮化铝模板之间形成组合,放入安装部件中,将安装部件放入支撑平台中,将支撑平台放入保温屏内,通过上加热器和下加热器对整体进行加热,通过上温度监控仪和下温度监控仪对温度进行测量与控制,采用数值模拟手段对全局及大批量制备高质量氮化铝模板的加热装置局部温度场进行计算、分析、优化及改造,在最优模拟结果下的试验及生产装配,可通过选择多加热器以及移动安装部件的轴向位置来获取最优的温度场分布。通过数值模拟手段计算全局及安装部件局部的温度场分布,评估安装部件的温度均匀性,从而对所有部件及热场结构进行优化及改造。
作为本发明实施例进一步的方案:保温屏包括上保温屏、下保温屏和两个侧保温屏,每个侧保温屏的上端均与上保温屏相连,每个侧保温屏的下端均与下保温屏相连,上保温屏、下保温屏和两个侧保温屏形成一个封闭结构,具有良好的保温作用。
作为本发明实施例进一步的方案:上加热器和下加热器均采用电阻加热器,上温度监控仪和下温度监控仪均采用红外温度监控仪,市场易购得,使用效果好。
作为本发明实施例进一步的方案:保温屏的一侧还设置有冷却壁,可以进行冷却,保证使用效果。
作为本发明实施例进一步的方案:安装部件包括容器、覆盖片和支撑架,容器固定在支撑架内部,用于装载氮化铝模板的容器上端覆盖有覆盖片,避免高温下发生大量挥发以及其他杂质的影响,支撑架实现了批量氮化铝模板的装载功能,容器的外形可以是圆形、方形等任意形状,支撑架可以通过支柱、圆柱等任何外形的支撑结构搭建,可容纳多个容器。
作为本发明实施例进一步的方案:支撑架包括上部底座、下部底座、第一支撑柱、第二支撑柱和第三支撑柱,第一支撑柱、第二支撑柱和第三支撑柱的上端和下端分别与上部底座的下端和下部底座的上端相连,该结构匹配大批量制备高质量氮化铝模板的加热装置的设计能获取均匀的温度分布,为批量生产高品质氮化铝模板创造有利条件,第一支撑柱和第二支撑柱主要是为了平衡容器处于水平状态以及限制水平方向的活动空间,第三支撑柱除了具有第一支撑柱和第二支撑柱的功能,还可以帮助容器在旋转方向上定位。
作为本发明实施例进一步的方案:容器包括含有一定深度的凹槽、内部定位面和外部定位面,内部定位面和外部定位面相互平行,凹槽用来容纳氮化铝模板并且内径略大于氮化铝模板,建议相差0.1-1mm,深度略大于氮化铝模板和其他部件的总厚度,建议相差0.1-1mm,覆盖片也存在定位面,其尺寸与氮化铝模板几乎接近,能接触式覆盖住氮化铝模板。
一种大批量制备高质量氮化铝模板的制备方法,分为制备薄膜氮化铝模板的方法(0<膜厚<1500nm)和制备厚膜氮化铝模板的方法(1000nm<膜厚),具体步骤如下:
步骤一,准备基材,在基材上形成氮化铝前驱体;
步骤二,以初始氮化铝模板组合批量装入大批量制备高质量氮化铝模板的加热装置中,并用仿真模拟手段对大批量制备高质量氮化铝模板的加热装置的轴向温度和径向温度进行均匀性优化及控制;
步骤三,先将氮化铝前驱体置于N2与H2的混合气氛中,进行净化处理及扭转取向纠正,在Al和N2的混合气氛中,然后将Al、N2气体用以充分抑制模板上氮化铝层的解离且补充晶粒重构与再生长所需物质,最后在低温高氮气压环境下,调整模板薄膜界面的凹凸性趋于平坦,从而提高界面的平整度,最终形成无微孔、低位错密度的高质量氮化铝薄膜模板;
步骤四(针对低质量的厚膜氮化铝模板),对氮化铝模板上的氮化铝层进行化学机械抛光,提高所述氮化铝层表面平整度;
步骤五(针对低质量的厚膜氮化铝模板),以抛光后的氮化铝模板作为基材,重复步骤一至步骤四,直至氮化铝模板达到高质量水平。
作为本发明实施例进一步的方案:基材可以是块状衬底材料或是外延有III族氮化物半导体薄膜的模板材料。
作为本发明实施例进一步的方案:氮化铝前驱体可采用磁控溅射法(Sputter)、金属有机化合物气相外延法(MOCVD)、分子束外延法(MBE)、氢化物气相外延法(HVPE)中的一种或几种叠加得到。
作为本发明实施例进一步的方案:初始氮化铝模板可以是两两组合或多片组合,初始氮化铝模板上的氮化铝层可以与相邻的初始氮化铝模板上的氮化铝层或基材背面相对,氮化铝模板之间可以相互覆盖或形成间距大于0.01mm,最优所述间距为0.2mm以内。
作为本发明实施例进一步的方案:步骤三中将氮化铝前驱体置于900-1300℃之间的N2气体或N2、H2的混合气体中,进行氮化铝前驱体表面的净化处理,主要去除表面残余颗粒状杂质,N2、H2的混合气体情况下,通入一定比例H2(0.01≤H2/N2原子含量比),为了与氮化铝前驱体表面残余氧结合,去除氧杂质,另一效果为在低温气氛下,纠正氮化铝前驱体晶粒的错误扭转取向。
作为本发明实施例进一步的方案:步骤三中在1450-1850℃的Al、N2混合气氛下进行,总气压小于5bar,Al、N2混合气体用以充分抑制模板上氮化铝层的解离且补充晶粒重构与再生长所需物质。
作为本发明实施例进一步的方案:步骤三在1200-1400℃的N2气氛环境下进行,气压大于1bar,调整模板薄膜界面的凹凸性趋于平坦,从而提高界面的平整度,高N2气压是为了降低Al、N2气相配比来降低氮化铝层表面曲率的增加,趋于稳定。
有益效果
在与现有技术相比,本发明实施例的有益效果是:
本产品设计合理,可以实现批量的氮化铝模板质量一致性与均匀性;
本发明以氮化铝材料作为Al、N2气氛升华来源在模板间形成Al、N2气氛环境进行高温改造,Al、N2混合气氛用以抑制氮化铝前驱体表面在高温下解离,同时促进氮化铝层的重构以及再生长过程,再生长在低过饱和气氛下容易发生径向扩展,湮灭位错以及充实重构引起的表面微空隙,而可实现形成有表面平坦且高品质的氮化铝模板,突破厚膜模板(膜厚>1000nm)能在较高温下形成平坦且高质量的氮化铝薄膜层而不发生表面解离,从而为高品质厚膜氮化铝模板的制备可行性提供了有效技术手段。
附图说明
在图1为氮化铝模板制备过程示意图。
图2为氮化铝模板制备流程示意图。
图3为大批量制备高质量氮化铝模板的加热装置的结构示意图。
图4为大批量制备高质量氮化铝模板的加热装置中安装部件的结构示意图。
图5为大批量制备高质量氮化铝模板的加热装置中容器及装配过程示意图。
图6是容器与支撑架的第三支撑柱的第一种连接方法示意图。
图7是容器与支撑架的第三支撑柱的第二种连接方法示意图。
图8是容器内部氮化铝模板及氮化铝晶片材料的第一种装配方法示意图。
图9是容器内部氮化铝模板及氮化铝晶片材料的第二种装配方法示意图
图10是容器内部氮化铝模板及氮化铝粉末材料的第一种装配方法示意图。
图11是容器内部氮化铝模板及氮化铝晶片材料的第三种装配方法示意图。
图12是容器内部氮化铝模板及氮化铝晶片材料的第四种装配方法示意图。
图13是容器内部氮化铝模板及氮化铝粉末材料的第二种装配方法示意图。
图14是容器内部氮化铝模板及氮化铝晶片材料的第一种多层式装配方法示意图。
图15是容器内部氮化铝模板及氮化铝晶片材料的第二种多层式装配方法示意图。
图16是容器内部氮化铝模板及氮化铝粉末材料的第一种多层式装配方法示意图。
图17是单电阻式加热器下支撑架内部最大温差随轴向位置的变化曲线图。
图18是双电阻式加热器下高温氮化铝模板制备过程中支撑架内部最大温差随轴向位置的变化曲线图。
图19是高品质氮化铝模板制备程序工艺曲线图。
图20是不同膜厚氮化铝模板X射线衍射摇摆曲线半峰宽(FWHM)与其所处温度的关系图。
图21是200nm氮化铝模板X射线衍射摇摆曲线半峰宽(FWHM)与其所处轴向容器层号的关系图。
图22是200nm氮化铝模板表面X射线衍射摇摆曲线半峰宽与位置的关系图。
图23是200nm氮化铝模板表面粗糙度与位置的关系图。
图24是400nm氮化铝模板制备过程中高温改造前后表面FWHM变化图与原子力显微镜形貌图。
图25是200nm氮化铝模板在图22中示意位置的X射线衍射摇摆曲线图。
图26是200nm氮化铝模板在图23中示意位置的原子力显微镜形貌图。
图27是氮化铝模板(膜厚>1000nm)制备过程示意图。
图28是氮化铝模板(膜厚>1000nm)制备流程示意图。
图29是单电阻式加热器下高温氮化铝模板制备过程中全局温度分布图。
图30是双电阻式加热器下高温氮化铝模板制备过程中全局温度分布图。
图31是单电阻式加热器下高温氮化铝模板制备过程中局部支撑架内部温度分布图。
图32是双电阻式加热器下高温氮化铝模板制备过程中局部支撑架内部温度分布图。
其中:1-基材,2-初始氮化铝模板,3-氮化铝模板,4-氮化铝前驱体,5-氮化铝层,10-大批量制备高质量氮化铝模板的加热装置,11-冷却壁,12-上保温屏,13-上加热器,14-上温度监控仪,15-安装部件,16-下加热器,17-下温度监控仪,18-侧保温屏,19-支撑平台,20-下保温屏,21-上部底座,22-下部底座,23-第一支撑柱,24-第二支撑柱,25-第三支撑柱,26-容器,27-覆盖片,28-隔离环,29-氮化铝模板与氮化铝晶片材料之间的间距,408-氮化铝模板化学机械抛光面。
本发明的实施方式
下面结合具体实施方式对本专利的技术方案作进一步详细地说明。
实施例1
一种大批量制备高质量氮化铝模板的方法:主要含有基材1的准备、氮化铝前驱体4的制备以及氮化铝模板3的改造。本实施例中采用了蓝宝石作为基材1,但基材1并不仅限于蓝宝石,由蓝宝石、碳化硅(SiC)及氮化铝(AlN)之至少一者构成的基材1即可。氮化铝前驱体4的制备方法在本实施例中采用溅射法(sputter),但制备方法并不仅限于溅射法,溅射法、金属有机化合物气相外延法(MOCVD)、分子束外延法(MBE)、氢化物气相外延法(HVPE)中的一种或几种叠加即可。氮化铝模板3的改造是通过在营造的Al、N 2混合气氛下,利用高温热驱动以及物质传输充分抑制氮化铝模板3上所述氮化铝层5的解离以及促进再生长,改善氮化铝层5表面形貌及质量。详细来讲,本实施例中批量氮化铝模板3制备全过程,如图2所示,主要含有氮化铝前驱体4形成程序S1、大批初始氮化铝模板2装载程序S2与高品质氮化铝模板3改造程序S3。其中,氮化铝前驱体4形成程序S1开始于准备大批量基材1步骤S11,基材1清洁、低温预处理步骤S12,基材1上溅射形成氮化铝前驱体4(形成初始氮化铝模板2);高品质氮化铝模板3改造程序S3分为低温热处理步骤S31,高温改造步骤S32,界面调整步骤S33,初始氮化铝模板2是在预定的温度、气氛气压条件下进行制备形成高品质氮化铝模板3。
此时的大批量制备高质量氮化铝模板的加热装置10由双电阻式加热器提供热源,但不仅限于双电阻式加热方式,单电阻或多段电阻式加热方式都可以实现类似功能,本实施例只是以此为例。如图3所示,批量氮化铝模板3制备的大批量制备高质量氮化铝模板的加热装置10具体有以下部件组成:冷却壁11,上保温屏12,下保温屏20,侧保温屏18,安装部件15,上加热器13,下加热器16,上温度监控仪14,下温度监控仪17,可移动式支撑平台19。上加热器13和下加热器16能通过调节各自输出功率来获取预期的温度控制,安装部件15放置于可移动式支撑平台19上,上温度监控仪14和下温度监控仪17用来监控安装部件15的上下温度。
参考图4,对批量设计的安装部件15进行说明,具体包括容器26与覆盖片27的组合以及支撑架(含上部底座21、下部底座22、第一支撑柱23、第二支撑柱24与第三支撑柱25)。以上所有部件的材料可以是III族氮化物材料、氧化硼、氧化铝、陶瓷、碳化硅、高熔点金属(钨、钼及其等合金)、氧化锆、碳化钽至至少一种构成。其中容器26用于装载未处理/处理的氮化铝模板3,最终由覆盖片27进行覆盖,避免高温下发生大量挥发以及其他杂质的影响。支撑架的设计实现了批量氮化铝模板3的装载功能,同时该结构匹配大批量制备高质量氮化铝模板的加热装置10的设计能获取均匀的温度分布,为批量生产高品质氮化铝模板3创造有利条件。第一支撑柱23和第二支撑柱24主要为了平衡容器26处于水平状态以及限制水平方向的活动空间。第三支撑柱25除了具有第一支撑柱23和第二支撑柱24所述的功能外还具有帮助容器26在旋转方向上的定位功能。容器26更详细的外观设计可见图5,含有一定深度的凹槽、内部定位面和外部定位面,内部定位面和外部定位面相互平行,凹槽用来容纳氮化铝模板3,其直径略大于氮化铝模板3 0.1-1mm,深度略大于氮化铝模板3和其他部件的总厚度0.1-1mm,覆盖片27也存在定位面,其尺寸与氮化铝模板3几乎接近,能接触式覆盖住氮化铝模板3。装配好后的容器26与第三支撑柱25的连接可以通过多种方式,本实施例给出了两种连接方式图6和图7,但不仅限于这两种,主要目的是固定所有装配至支撑架上的容器26、初始氮化铝模板2、初始氮化铝模板202都具有一定的方位,实现批量的氮化铝模板3质量一致性与均匀性。
关于容器26内部的初始氮化铝模板2的装配形式,这与本实施例采取的批量氮化铝模板3的制备方法紧密相关,本实施例中介绍三种单组合的装配方式,如图8-图10,装配中使用了氮化铝晶片材料206a和氮化铝粉末材料206b,也可以是III族氮化物半导体材料,或是氮化铝晶体薄片、氮化铝陶瓷片之至少一者构成。图8中展示了一种覆盖式的装配模式,通过氮化铝晶片材料206a与氮化铝前驱体4相对覆盖,这种形式导致氮化铝晶片材料206a与氮化铝前驱体4之间的间距非常小,取决于两者的粗糙程度,该装配模式下非常小的间距较物质传输对制备高品质氮化铝模板3的效果更显著。然而,图9中展示了通过隔离环28形成的小间距,较图9,该形式下的物质传输较间距对制备高品质氮化铝模板3的效果更显著。参考图12和图11,为本实施例中另一种单组合的装配模式,充分利用了氮化铝晶片材料206a的上下表面(表面可都做研磨或抛光),将初始氮化铝模板2的氮化铝前驱体4正对氮化铝晶片材料206a的下表面,初始氮化铝模板202的氮化铝前驱体201正对氮化铝晶片材料206a的上表面,使得两个初始氮化铝模板2、初始氮化铝模板202均通过同一片氮化铝晶片材料206a进行高品质氮化铝模板3改造程序。参考图10和图13,为本实施例中另一种形式的装配模式,利用了氮化铝粉末材料206b,将其置于初始氮化铝模板2的周围。以上氮化铝晶片材料206a和氮化铝粉末材料206b的装配及使用,为了在氮化铝高温改造程序S32中提供Al、N 2混合气体。
参考图14-图16,为了形成批量制备和生产氮化铝模板3,减少装置等生产成本,以上三种装配模式在本实施例中可采用多层堆叠的方式进行装配。将三种装配模式在图11-图13中的装配组合称为单位组合,在多层式的图14-图16的装配中,最佳单位组合的装配数量为2-5个,最佳总所述氮化铝模板3的装配数量为4-10片。
本实施例关于批量高品质氮化铝模板3的制备对每个氮化铝模板3所处温度环境的一致性与均匀性极其考究,从优化全局及局部温度环境的角度出发,同时为了节约昂贵的试验成本,数值模拟仿真技术的应用必不可少,从而可预期、充分地获取设计方案的可行性以及批量结果。本实施例采用著名晶体生长模拟仿真软件FEMAGSoft进行氮化铝模板制备装置的内部温度场计算极其优化。
本实施例,具体对采用单/双电阻式加热器这两种加热器,进行氮化铝模板3制备加热设备的全局温度场模拟分析,从而获取最优的加热装配设计及所处位置。本实施例中的模拟计算采用35层容器26,以及每个容器26含3个单位组合31a,直径为2英寸,即氮化铝模板3数量共计210片。控制单加热器方案中的支撑架底部温度1650℃,控制双加热器方案中的支撑架底部及顶部温度1650℃。另外,使用单电阻式加热器的高度为600mm,双电阻式加热器的上加热器100mm,下加热器200mm。
参考图29-图30,通过全局温度场模拟计算发现,无论是单加热器还是双加热器,安装部件15内部的最大温度偏差随着埚位的下降先减小后增大,表明期间存在最大温度偏差最小值,视为所有模板所处温度轴向上最高一致性。全局及支撑架的模拟结果可见图18和图19,最小最大温差随轴向位置变化的结果可见图17。由图可知,单加热器下的最小最大温差出现在轴向位置位于240mm,最大温差为13.5℃,表明支撑架上的容器26内部氮化铝模板3的所处温度最大偏差为13.5℃。双加热器情况下,最小最大温差出现在轴向位置位于-90mm,最大温差为16.0℃。另外,无论单/双加热器情况下,每个氮化铝模板3的径向温差均小于0.5℃。综述表明,该大批量制备高质量氮化铝模板的加热装置10下能做到大批量的氮化铝模板3(>200片)所处温度的几乎一致性,以及如此的最大温差是对于制备工艺最优化的可允许范围内。
下面,结合上述批量氮化铝模板制备装置的说明以及数值模拟优化,对本实施例的批量氮化铝模板制备方法进行更详细的附图说明。参考图2为氮化铝模板3制备流程图示,氮化铝模板3的批量制备需要进行三道程序,分别是氮化铝前驱体4形成程序S1、大批初始氮化铝模板2装载程序S2与高品质氮化铝模板3改造程序S3。其中,容器26中初始氮化铝模板2的装配方式以图9、12、15的方式为例。
首先,氮化铝前驱体4形成程序(S1):
第1步:准备大批基材1(S11)。基材1是表征规格的生产抛光衬底片,表面为EPI抛光面,粗糙度小于0.3nm,背面为研磨级别,粗糙度为1±0.2um。一批次氮化铝模板3的制备所需基材1数量为10-400片,最优的数量与安装部件15及大批量制备高质量氮化铝模板的加热装置10有关。
第2步:基材1清洁及低温预处理(S12)。将基材1进行表面去离子水震荡等清洗,去除表面颗粒物。将基材1放入前驱体制备炉台,加热先进入低温600-1000℃进行低温预处理,主要为了去除基材1表面的杂质,净化表面,为后续氮化铝前驱体4的生长提供无杂质、高质量的衬底环境。
第3步:基材1上溅射形成氮化铝前驱体4即初始氮化铝模板2(S13)。本实施例中采用磁控溅射法在基材1的EPI表面进行氮化铝前驱体4的生长。溅射法,使用多晶氮化铝作为原料靶材;溅射前的真空压力低于6.0×10 -5pa;提供N 2气体作为溅射气体,供应气流量为10-30sccm;在不同的溅射气压0.03-0.4pa下制备一系列厚度50-1000nm的氮化铝薄膜;在氮化铝沉积过程中,衬底温度为400-800℃和电磁感应功率为500-1000W。最终,氮化铝前驱体4在(0002)面上的X射线摇摆曲线半峰宽在300-1000arcsec, 在(10-12)面上的X射线摇摆曲线半峰宽在1000-3000arcsec,粗糙度Ra在2-5nm,相对来说,氮化铝前驱体4的膜厚越薄结晶度更高、表面质量更佳。400nm与800nm膜厚氮化铝前驱体4的X射线摇摆曲线半峰宽(FWHM-XRC)与原子力显微镜图谱(AFM)可见图24。
然后,进入大批初始氮化铝模板2装载程序(S2):
第1步:将预期数量的所有初始氮化铝模板按照图14或图15的多层装配模式装载到容器26中。
第2步:所有已装配的容器26盖上覆盖片27,整体插入支撑架,并由容器26上的定位面与支撑架的第三支撑柱25进行相互连接,连接方式参考图6和图7。将装配完成后的支撑架放置于大批量制备高质量氮化铝模板的加热装置10的支撑平台19上。
第3步:调节支撑平台19将安装部件15调至最优轴向位置。
最后,进入高品质氮化铝模板3改造程序(S3):
第1步:初始氮化铝模板2低温预处理(S31)。初始氮化铝模板2所处温度TC在900-1300℃之间,处理时长为0.1-2h,并将所述氮化铝前驱体4置于N 2与H 2的混合气氛中,H:N原子比小于0.2大于0.05。主要目的是进行所述氮化铝前驱体4表面的净化处理,去除表面残余杂质,加H 2为了与所述氮化铝前驱体4表面残余氧结合,去除氧杂质。低温预处理还能将氮化铝前驱体4中的晶粒在扭转取向上得以提前纠正。
第2步:氮化铝模板3高温改造(S32)。氮化铝模板3所处温度TA在1450-1750℃之间,小于0.5bar的低压纯N 2气氛下,改造时长为0.1-10h。氮化铝晶片材料206a与初始氮化铝模板2上的氮化铝前驱体4形成小间距29,间距小于0.5mm。其中,改造的驱动力来自于高温热驱动,以及其中氮化铝晶片材料206a作为物质原料升华而在小间距中形成Al、N 2混合气氛能抑制氮化铝前驱体4的自解离,则最佳间距为0.2mm。通过所述间距的调控以及处于低N 2气压环境,可以充分抑制氮化铝模板3上所述氮化铝层5的解离且补充晶粒重构与再生长所需物质。
第3步:氮化铝模板3界面调整(S33)。氮化铝模板3所处温度TB在1200-1400℃之间,1-1.5bar的高压纯N 2气氛下,时长为0.2-2h。该步骤主要是为了调整氮化铝模板3薄膜界面的凹凸性趋于平坦,从而提高界面的平整度。高N 2气压是为了降低Al:N原子配比来减缓所述氮化铝层5表面曲率的增加,趋于平整。最终,对比了400nm氮化铝模板3制备前后的FWHM-XRC及AFM图(如图24),同时给出了不同膜厚在不同所处温度下的FWHM-XRC变化曲线(如图20),从而发现200nm模板的改造最优温度在1700℃左右,400nm和800nm模板的改造最优温度在1730℃左右。统计了使用支撑架后每层相同位置200nm模板的FWHM-XRC轴向均匀性(如图21),发现基板结晶质量较高以及均匀性较高,(0002)面在73-87arcsec范围内,(10-12)面在270-350arcsec范围内。检测分析了200nm模板径向表面的质量及粗糙度均匀性(如图22、图23),发现最优质量及形貌出现在模板内部范围,整体均匀性较高,对应的XRC及AFM图谱可见图25、图26。以上检测结果表明,本发明的批量氮化铝模板3的制备方法和大批量制备高质量氮化铝模板的加热装置具有能低成本量产高品质、高均匀性氮化铝模板的能力。
实施例2
该实施例针对批量制备氮化铝层5膜厚大于1000nm的氮化铝模板3。首先,参考图27及图28,对制备氮化铝模板3的工艺进行说明。图27是关于本实施例的氮化铝薄膜模板制备方法的示意图。图28是关于图27批量实施过程的流程图。
相比于批量制备氮化铝膜厚小于1000nm的氮化铝模板3的工艺程序(图2),批量制备氮化铝膜厚大于1000nm的氮化铝模板3的工艺程序增加了氮化铝薄膜层化学机械抛光(CMP)程序(S4)以及未达到预期膜厚的重复制备。原理在于,通过S1-S3工艺程序能高品质的制备出膜厚小于1000nm的氮化铝模板3,然而在制备更厚氮化铝膜厚模板中会出现氮化铝层5表面粗糙度过大、颗粒形态粗大的现象,从而无法得到高品质厚膜的氮化铝模板3,然而,化学机械抛光(CMP)能解决表面粗糙度过大的问题,因此本发明利用薄膜模板(膜厚小于1000nm)的工艺程序结合CMP程序,再通过重复制备来获得高品质厚膜氮化铝模板3。
下面,介绍重复式的氮化铝厚膜模板制备过程。
第1步:执行S1-S3的氮化铝薄膜模板制备步骤(具体可参考上述说明),膜厚为h=h1(h1<1000nm),此时的氮化铝层407a存在一定的粗糙度表面。
第2步:氮化铝薄膜层化学机械抛光CMP(S4)。使用CMP技术将407a粗糙的氮化铝层5表面抛光,形成原子级平整表面的氮化铝层408。CMP设备包括抛光盘、抛光垫、抛光液、抛光磨料、下压力、抛光头、加压盘、石蜡和氮化铝模板。抛光方式采用单面(氮化铝薄膜表面)抛光。将氮化铝模板3通过石蜡粘贴在加压盘上,而加压盘被固定在抛光头上,并保持恒定的压力,抛光垫固定在抛光盘上。抛光头与抛光盘由各自伺服电机驱动,速度可调。抛光液在氮化铝模板3和抛光垫之间连续流动并带走反应物,从而得到超光滑表面。采用氢氧化钾(KOH)和质量分数1%的过氧化氢(H 2O 2)的混合抛光液,调配后的PH=10-12。采用粒径1um的Al 2O 3和粒径50nm的SiO 2的抛光磨料,先使用Al 2O 3抛光磨料抛光5-30分钟,后使用SiO 2抛光磨料抛光15-60分钟,总去除厚度为r1=1-100nm,直至出现原子级平整表面,此时,总氮化铝层5厚度h=h1-r1。
第3步:再次执行S1-S3的氮化铝薄膜模板制备步骤,新增膜厚h2(h2<1000nm),形成第二氮化铝层407b,此时,总氮化铝层5厚度h=h1+h2-r1;再次执行CMP程序,总氮化铝层5厚度h=h1+h2-r1-r2。当执行上述重复程序第n次后,总氮化铝层5厚度h=
Figure dest_path_image001
。。每次重复程序都会进行判断厚度是否达到预期厚度(S5),如若达到预期厚度则退出。
测试结果见表1。
  第一次制备后 第一次CMP后 三次重复制备后
氮化铝层厚度/nm 600 575 1750
FWHM-XRC@(0002)/arcsec 107 87 129
FWHM-XRC@(10-12)/arcsec 403 379 391
粗糙度RMS/nm 0.306 0.231 0.481
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (10)

  1. 一种大批量制备高质量氮化铝模板的加热装置,包括保温屏、支撑平台(19)和安装部件(15),所述支撑平台(19)和安装部件(15)均安装在保温屏的内部,其特征在于,支撑平台(19)的下端固定有升降电机并且安装部件(15)固定在支撑平台(19)上端,安装部件(15)的上方安装有上加热器(13)和上温度监控仪(14),安装部件(15)的下方安装有下加热器(16)和下温度监控仪(17)。
  2. 根据权利要求1所述的大批量制备高质量氮化铝模板的加热装置,其特征在于,所述保温屏包括上保温屏(12)、下保温屏(20)和两个侧保温屏(18),每个侧保温屏(18)的上端均与上保温屏(12)相连,每个侧保温屏(18)的下端均与下保温屏(20)相连,上保温屏(12)、下保温屏(20)和两个侧保温屏(18)形成一个封闭结构。
  3. 根据权利要求1所述的大批量制备高质量氮化铝模板的加热装置,其特征在于,所述上加热器(13)和下加热器(16)均采用电阻加热器。
  4. 根据权利要求1所述的大批量制备高质量氮化铝模板的加热装置,其特征在于,所述安装部件(15)包括容器(26)、覆盖片(27)和支撑架,容器(26)安插在支撑架内部,用于批量装载氮化铝模板(3)的容器(26)上端覆盖有覆盖片(27)。
  5. 根据权利要求4所述的大批量制备高质量氮化铝模板的加热装置,其特征在于,所述支撑架包括上部底座(21)、下部底座(22)、第一支撑柱(23)、第二支撑柱(24)和第三支撑柱(25),第一支撑柱(23)、第二支撑柱(24)和第三支撑柱(25)的上端和下端分别与上部底座(21)的下端和下部底座(22)的上端相连。
  6. 根据权利要求5或4所述的大批量制备高质量氮化铝模板的加热装置,其特征在于,所述容器(26)包括含有一定深度的凹槽、内部定位面和外部定位面,内部定位面和外部定位面相互平行。
  7. 一种大批量制备高质量氮化铝模板的制备方法,其特征在于,具体步骤如下:步骤一,准备基材(1),在基材(1)上形成氮化铝前驱体(4);步骤二,以初始氮化铝模板(2)组合批量装入大批量制备高质量氮化铝模板的加热装置(10)中,并用仿真模拟手段对大批量制备高质量氮化铝模板的加热装置(10)的轴向温度和径向温度进行均匀性优化及控制;步骤三,将氮化铝前驱体(4)置于N2与H2的混合气氛中,进行净化处理及扭转取向纠正,然后在Al和N2的混合气氛中充分抑制氮化铝模板(3)上氮化铝层(5)的解离且补充晶粒重构与再生长所需物质,最后在低温高氮气压环境下,调整氮化铝模板(3)的表面趋于平坦,最终形成无微孔、低位错密度的高质量氮化铝薄膜模板。
  8. 根据权利要求7所述的大批量制备高质量氮化铝模板的制备方法,其特征在于,所述步骤三中将氮化铝前驱体(4)置于900-1300℃之间的N2气体或N2、H2的混合气体中,进行氮化铝前驱体(4)表面的净化处理。
  9. 根据权利要求7所述的大批量制备高质量氮化铝模板的方法,其特征在于,所述步骤三中最后将氮化铝模板(3)置于1200-1400℃的低温纯N2气环境,N2气压等于或大于1bar,进行调整氮化铝模板(3)表面趋于平坦。
  10. 根据权利要求7所述的大批量制备高质量氮化铝模板的方法,其特征在于,所述基材(1)包括块状衬底材料或是外延有III族氮化物半导体薄膜的模板材料。
PCT/CN2020/070506 2020-01-06 2020-01-06 一种大批量制备高质量氮化铝模板的加热装置及制备方法 WO2021138771A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070506 WO2021138771A1 (zh) 2020-01-06 2020-01-06 一种大批量制备高质量氮化铝模板的加热装置及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070506 WO2021138771A1 (zh) 2020-01-06 2020-01-06 一种大批量制备高质量氮化铝模板的加热装置及制备方法

Publications (1)

Publication Number Publication Date
WO2021138771A1 true WO2021138771A1 (zh) 2021-07-15

Family

ID=76787710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070506 WO2021138771A1 (zh) 2020-01-06 2020-01-06 一种大批量制备高质量氮化铝模板的加热装置及制备方法

Country Status (1)

Country Link
WO (1) WO2021138771A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120070577A1 (en) * 2010-09-22 2012-03-22 Deura Kaori Film-forming apparatus and film-forming method
CN105810562A (zh) * 2016-05-19 2016-07-27 西安电子科技大学 基于二硫化钼和磁控溅射氮化铝的氮化镓生长方法
CN106435736A (zh) * 2016-09-14 2017-02-22 苏州奥趋光电技术有限公司 一种氮化铝晶体生长炉
CN107078030A (zh) * 2015-09-11 2017-08-18 国立大学法人三重大学 氮化物半导体衬底的制造方法、氮化物半导体衬底以及其加热装置
CN107916454A (zh) * 2016-09-14 2018-04-17 苏州奥趋光电技术有限公司 一种用于氮化铝晶体生长炉的热场
CN108950477A (zh) * 2018-07-09 2018-12-07 圆融光电科技股份有限公司 一种氮化铝膜及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120070577A1 (en) * 2010-09-22 2012-03-22 Deura Kaori Film-forming apparatus and film-forming method
CN107078030A (zh) * 2015-09-11 2017-08-18 国立大学法人三重大学 氮化物半导体衬底的制造方法、氮化物半导体衬底以及其加热装置
CN105810562A (zh) * 2016-05-19 2016-07-27 西安电子科技大学 基于二硫化钼和磁控溅射氮化铝的氮化镓生长方法
CN106435736A (zh) * 2016-09-14 2017-02-22 苏州奥趋光电技术有限公司 一种氮化铝晶体生长炉
CN107916454A (zh) * 2016-09-14 2018-04-17 苏州奥趋光电技术有限公司 一种用于氮化铝晶体生长炉的热场
CN108950477A (zh) * 2018-07-09 2018-12-07 圆融光电科技股份有限公司 一种氮化铝膜及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP7244116B2 (ja) 窒化物半導体基板
EP2196565B1 (en) Method for producing sic epitaxial substrate
CN103915537B (zh) 硅衬底上化合物半导体外延层生长方法及其器件结构
US9752255B2 (en) Base material on which single-crystal diamond is grown comprised of a base substrate, bonded single-crystal MgO layer, and heteroepitaxial film, and method for manufacturing a single-crystal diamond substrate on the base material
US20100178234A1 (en) Multilayer substrate and method for producing the same, diamond film and method for producing the same
US10829868B2 (en) Manufacturing method of SiC composite substrate
CN105655238A (zh) 基于石墨烯与磁控溅射氮化铝的硅基氮化镓生长方法
EP1703002A2 (en) Multilayer substrate, method for producing a multilayer substrate, and device
CN103849853B (zh) 缓解mocvd工艺中硅衬底与氮化镓薄膜间应力的方法
KR20130040178A (ko) 단결정 3C-SiC 기판의 제조 방법 및 이것에 의해서 얻은 단결정 3C-SiC 기판
CN101952490A (zh) 层叠体及其制造方法
WO2022004165A1 (ja) 大口径iii族窒化物系エピタキシャル成長用基板とその製造方法
JP2022552024A (ja) ScAlMgO4基板に基づく窒化ガリウム単結晶及びその製造方法
EP3026693B1 (en) Pretreatment method for base substrate, and method for manufacturing laminate using pretreated base substrate
CN111048453A (zh) 一种大批量制备高质量氮化铝模板的加热装置及制备方法
WO2020006772A1 (zh) 一种氮化镓单晶材料及其制备方法
JP3043675B2 (ja) 単結晶SiC及びその製造方法
JP7176099B2 (ja) 半導体膜
WO2021138771A1 (zh) 一种大批量制备高质量氮化铝模板的加热装置及制备方法
CN111472045A (zh) 一种基于大尺寸籽晶的氮化铝单晶制备方法
Shin et al. Effects of different annealing atmospheres on the surface and microstructural properties of ZnO thin films grown on p-Si (1 0 0) substrates
CN210722969U (zh) 一种大批量制备高质量氮化铝模板的加热装置
CN115418713B (zh) 一种降低AlN晶体生长应力的生长方法
Sumathi Common issues in the hetero-epitaxial seeding on SiC substrates in the sublimation growth of AlN crystals
JP2004103671A (ja) エピタキシャル成長によるSiC膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911446

Country of ref document: EP

Kind code of ref document: A1