WO2021137604A1 - 차량 군집주행 횡방향 제어 작동 모드 결정 방법 - Google Patents

차량 군집주행 횡방향 제어 작동 모드 결정 방법 Download PDF

Info

Publication number
WO2021137604A1
WO2021137604A1 PCT/KR2020/019352 KR2020019352W WO2021137604A1 WO 2021137604 A1 WO2021137604 A1 WO 2021137604A1 KR 2020019352 W KR2020019352 W KR 2020019352W WO 2021137604 A1 WO2021137604 A1 WO 2021137604A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane
following
platooning
mode
Prior art date
Application number
PCT/KR2020/019352
Other languages
English (en)
French (fr)
Inventor
박기홍
이용기
Original Assignee
국민대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국민대학교산학협력단 filed Critical 국민대학교산학협력단
Publication of WO2021137604A1 publication Critical patent/WO2021137604A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/181Preparing for stopping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/12Trucks; Load vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/04Vehicle stop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • B60Y2200/145Haulage vehicles, trailing trucks

Definitions

  • the present invention relates to a method for determining a vehicle platooning lateral control operation mode, and more particularly, to a control method for transversely controlling a group of autonomous vehicles performing platooning, such as a lorry or heavy truck, according to the operation mode.
  • Autonomous vehicle technology has been developed to drive only in specific spaces such as parking lots, residences, factories, and companies.
  • autonomous driving technology has been applied to public roads as well.
  • autonomous vehicle technology maintains a close distance to the vehicle in front through sensors attached to the front and rear of the vehicle.
  • it is being developed by focusing on the technology capable of unmanned driving of a single vehicle, such as recognizing the road and driving so as not to deviate from the road, recognizing obstacles, etc.
  • the conventional Korean Patent Application Laid-Open No. 10-2019-0096864 (control method of platooning in an autonomous driving system) is a leader vehicle and a follower vehicle that receives a control signal from a communicator of the leader vehicle and drives in a group.
  • a method for controlling platooning comprising: monitoring and quantifying a communication state of the platooning; checking a communication blind spot between the leader vehicle and the following vehicle when the digitized communication state is less than a preset threshold; when the following vehicle is located in the communication blind spot, checking whether a relative position change of the following vehicle is possible within the platooning; and changing the relative position of the following vehicle within the platooning when the relative position of the following vehicle can be changed.
  • the prior art has a problem in that it cannot cope with various other events because it determines only a blind spot that may occur when platooning is performed.
  • the present invention supports the smooth transition of control rights when joining/leaving platooning, maintaining, cutting-in other vehicles, and following the preceding vehicle or maintaining the lane by situation according to the situation in the lane change situation, following the preceding vehicle and
  • An object of the present invention is to provide a method for determining a lateral control operation mode for determining a lane keeping simultaneous execution mode and transferring control to a driver when lateral control is impossible.
  • the present invention provides a Platooning Control Unit (PCU) and a Platooning Lateral Control (PLCS) mounted on the following vehicle when the following vehicle joins the platooning rank.
  • System receiving driving information of the preceding vehicle and controlling the steering of the following vehicle in a following mode; detecting an event by monitoring an operating state of the following vehicle in the Platooning Lateral Control System (PLCS); and when the event occurs, performing at least one of releasing the following mode, leaving the group, or transferring control to a driver.
  • PCU Platooning Control Unit
  • PLCS Platooning Lateral Control
  • the controlling of the steering of the following vehicle in the following mode may include checking a vehicle to vehicle (V2V) communication state of the following vehicle with the preceding vehicle or a state of a lane detection sensor. .
  • V2V vehicle to vehicle
  • the method may include generating a route for performing a function of following the preceding vehicle and maintaining a lane.
  • the process of monitoring the operating state of the following vehicle may include determining whether a Platooning Lateral Control System (PLCS) of the following vehicle operates normally.
  • PLCS Platooning Lateral Control System
  • the event may include a decrease in reliability of lane information of the preceding vehicle or the following vehicle, reception of a lane change request, occurrence of an emergency braking situation, and a stop from the Platooning Lateral Control System (PLCS) It may be at least one of signal reception and cut-in occurrence of another vehicle.
  • PLCS Platooning Lateral Control System
  • the method may include controlling the steering until the following vehicle stops.
  • the process of maintaining the existing lane for a predetermined time may be included.
  • PLCS Platooning Lateral Control System
  • the method may include maintaining the existing steering as it is when the other vehicle departs, and maintaining the existing lane for a predetermined time when the other vehicle does not depart.
  • PCU Platooning Control Unit
  • PLCS Platooning Lateral Control System
  • FIG. 2 is a flowchart of a method for determining a vehicle platooning lateral control operation mode according to the present invention.
  • PCU Platooning Control Unit
  • PLCS Platooning Lateral Control System
  • each vehicle such as a preceding vehicle or a following vehicle, includes a Platooning Control Unit (PCU) and a Platooning Lateral Control System (PLCS).
  • PCU Platooning Control Unit
  • PLCS Platooning Lateral Control System
  • the following vehicle checks the V2V communication status and sensor operation status for controller operation.
  • PLCS Platooning Lateral Control System
  • PCU Platooning Control Unit
  • PLCS Platooning Lateral Control System
  • FIG. 2 is a flowchart of a method for determining a vehicle platooning lateral control operation mode according to the present invention.
  • the method of determining the control operation mode for the following vehicle described below may be performed by at least one processor that controls the operation of the following vehicle.
  • the present invention includes controlling the steering of the following vehicle in the following mode ( S10 ), detecting an event ( S20 ), and responding to the event ( S30 ).
  • the step (S10) of controlling the steering of the following vehicle in the following mode may include: when the following vehicle joins the platooning rank, the platooning control unit (PCU) mounted on the following vehicle and the platooning control unit (PCU) and the platooning lateral direction
  • the driving information of the preceding vehicle may be received and proceeded through a controller (PLCS: Platooning Lateral Control System).
  • the step of controlling the steering of the following vehicle in the following mode may include checking a vehicle to vehicle (V2V) communication state of the following vehicle with the preceding vehicle or a state of a lane detection sensor.
  • V2V communication is essential for stable control, unlike general self-driving vehicles, and it is necessary to variably change the control mode according to the V2V communication status with the preceding vehicle.
  • the vehicle may operate as the preceding vehicle following and lane keeping control.
  • the control mode when only one of the V2V communication state and the lane detection sensor is normal will be described in more detail below.
  • a vehicle network system may refer to a system for providing a safe driving information service, a location information service, a navigation service, an infotainment service, and the like to a moving vehicle.
  • the vehicle network system includes vehicle-to-vehicle (V2V) communication or between vehicle and infrastructure (V2V).
  • V2I Vehicle to Infra) communication method may be used.
  • the method may include generating a route for performing the function of following the preceding vehicle and maintaining a lane ( S20 ).
  • the Platooning Lateral Control System (PLCS) When the Platooning Lateral Control System (PLCS) is activated, the following vehicle checks the V2V communication status and sensor operation status for controller operation. After creation, the ready signal can be transmitted to the PCU (PLCS stand-by).
  • PLCS Platooning Lateral Control System
  • V2V communication can communicate with other autonomous vehicles and can be set to enable data communication with a control server in a preceding or following vehicle, and the communication method may include various types of short-distance and long-distance communication methods.
  • a network control system may be provided according to an embodiment of the present invention, and in the case of a vehicle running on the same route over a certain distance between a plurality of autonomous vehicles located within a set distance on the current location, the control server By grouping the group (G) may be configured to be driven.
  • the steering control through the Platooning Lateral Control System may be started (S20) (PLCS active).
  • Platooning Lateral Control System can cancel the lane keeping function and perform steering control only in the preceding vehicle following mode when the reliability of lane information decreases or lane change occurs in a normal operation situation.
  • the following vehicle performs V2V communication with the preceding vehicle to control the steering of the following vehicle using steering information of the preceding vehicle, but unless the preceding vehicle changes lanes, the following vehicle drives through lane maintenance control It may be a mode for controlling the steering of the following vehicle to maintain the lane in which it was traveling.
  • the center point coordinates and lane information of the rear of the preceding vehicle recognized by the following vehicle are fused to generate a route and follow control may be performed.
  • the following vehicle determines whether the vehicle is intentionally changing lanes by judging the distance between the vehicle ahead and the lane collected through sensors such as the vehicle's camera and steering information of the preceding vehicle collected through V2V communication (error) It can be determined whether the vehicle is out of the lane, and accordingly, 1) lane keeping in addition to following or 2) mode switching for only following can be performed.
  • the preceding vehicle In the standard of the first following vehicle immediately behind the leading vehicle, it can be judged as an operation error by the driver because the preceding (leading) vehicle is being driven by the driver, and in the second or more following vehicle standard, the preceding vehicle is driving in autonomous driving mode. It may be judged as a steering control error.
  • the leading vehicle can transmit a lane change request signal to all following vehicles when a lane change is required through V2V communication.
  • the reference value for the lane departure distance may be arbitrarily determined by a designer, and may be designed to be adjusted according to the width of the vehicle and the width of the lane.
  • it is a lane change direction when driving in the following mode when there is no lane change signal from the preceding vehicle through V2V communication, but when the lane departure distance is less than or equal to the reference value, the following mode and the lane keeping mode may be maintained.
  • whether the preceding vehicle faces the lane change direction may be determined depending on whether an angle between the steering direction of the preceding vehicle (a direction in which the steering wheel of the vehicle faces) and the direction of the lane is equal to or greater than a predetermined angle.
  • the predetermined angle may be an angle predetermined by a designer, or may be designed to be adjusted according to the curvature of the road.
  • the following vehicle may determine the direction of the lane at the position where the preceding vehicle moves through a sensor such as a camera, and may determine the steering direction of the wheels of the preceding vehicle through V2V communication.
  • the processor of the following vehicle may determine that the preceding vehicle is facing the direction of changing the lane.
  • the processor of the following vehicle enters the lane keeping mode while maintaining the following mode. can be released
  • the lane departure distance may be measured as a distance from a middle portion of a lane from which the preceding vehicle departs to a middle portion of a tire of a front wheel of the vehicle crossing the lane.
  • the lane departure distance may be measured as a distance from the end of the lane from which the preceding vehicle departs to the end of the tire (or the front wheel in the lane change direction) of the front wheel of the vehicle crossing the lane.
  • a sensor such as a camera mounted on the following vehicle.
  • the steering information is the lane keeping direction
  • the lane keeping mode is selected in addition to the following mode.
  • the steering information is the lane keeping direction
  • the lane keeping mode is selected in addition to the following mode can keep
  • the vehicle when there is no lane change signal from the preceding vehicle through V2V communication, if the steering information is the lane change direction and the lane departure distance is equal to or greater than the reference value, the vehicle drives only in the following mode, and in other conditions, it follows and maintains the lane You can switch to simultaneous mode.
  • the steering for lane change is controlled in the preceding vehicle following mode (lane keeping mode is released), and after the lane change is completed, simultaneous control of following vehicle and lane keeping can be performed.
  • the determination of completion of lane change may be set when the vehicle crosses the lane to the next lane, the following vehicle is located within a predetermined distance from the center of the lane, and the difference between the direction the vehicle is facing and the direction of the lane is less than or equal to a predetermined reference value.
  • the reliability of lane information is low due to driving at a close inter-vehicle distance (for example, the distance between the preceding vehicle and the following vehicle is 10 to 15 m), so the vehicle using only the lane keeping function It may be impossible to control the follow-up operation of
  • the three control modes may be 1) preceding vehicle following and lane keeping control, 2) preceding vehicle following control, and 3) lane keeping control.
  • the step of detecting the event ( S30 ) may be performed by monitoring an operating state of the following vehicle in the Platooning Lateral Control System (PLCS).
  • PLCS Platooning Lateral Control System
  • the process of monitoring the operating state of the following vehicle may further include a process of determining whether a Platooning Lateral Control System (PLCS) of the following vehicle operates normally.
  • PLCS Platooning Lateral Control System
  • the event may include a decrease in the reliability of lane information of the preceding vehicle or the following vehicle, reception of a lane change request, occurrence of an emergency braking situation, reception of a stop signal from the Platooning Lateral Control System (PLCS), and other vehicles. It may be at least any one of cut-in occurrences.
  • PLCS Platooning Lateral Control System
  • the event is not limited thereto, and includes enforcement events for enforcement violations such as speeding or lane change in a lane-changing restricted area, deployment of airbags, collision or collision accidents, and unexpected situations (e.g., animal appearance, falling rocks, obstacles, surrounding vehicles, etc.)
  • Enforcement events such as sudden braking or traffic accident
  • the occurrence situation of these events may be applied according to the settings.
  • the detecting of the event includes detecting that a distance between the following vehicle and the preceding vehicle becomes less than a threshold value, and the performing the corresponding response according to the event includes: a distance between the following vehicle and the preceding vehicle is less than the threshold value
  • the method may include canceling the lane keeping control function and controlling the lateral steering of the following vehicle only according to steering information of the preceding vehicle. This is because, in platooning, when the following vehicle is closely connected to the preceding vehicle by less than a predetermined distance, the following vehicle is obscured by the preceding vehicle and it may be difficult to detect a lane. Therefore, it may be preferable to steer the following vehicle by giving priority to steering information of a preceding vehicle rather than lane information in such group driving.
  • the threshold value may be arbitrarily set in advance by a designer, and may be designed to be adjusted according to the speeds of the preceding vehicle and the following vehicle.
  • the step of responding to the event is a process of performing at least one of releasing the following mode, leaving the queue, or transferring control to the driver when the event occurs.
  • V2V communication may not be possible, and if V2V communication is not possible, the platooning is canceled, and the following vehicle maintains lateral control in lane keeping mode, and the driver may request a change of control.
  • the processor of the following vehicle releases the following mode to change to the lane keeping mode, and requests the driver to switch the control right. steps can be performed.
  • the processor of the following vehicle maintains the following mode and may include the step of requesting the driver to switch the control right.
  • an abnormality in the sensing of the lane detection sensor means not only an abnormality in the sensor itself, but also when the sensor has no problem but there is a problem in the lane, when the lane is obscured by other obstacles, when the lane is detected well depending on weather conditions It may include a case where there is a problem in detecting a lane, such as
  • the predetermined time may be arbitrarily determined by a system designer, and may be designed to be adjusted according to the speed of the vehicle.
  • platooning maintains a very narrow inter-vehicle distance, platooning may not be possible without prior vehicle information through V2V communication. Therefore, it may be necessary to switch to the ACC mode (exclusive longitudinal control) in the longitudinal direction and the lane keeping mode in the lateral direction.
  • lateral control is performed only in the preceding vehicle following mode. In this case, it is not possible to confirm/guarantee that the vehicle is within the lane, so if lane information is not continuously detected for a certain period of time, request the driver to switch the lateral control right.
  • the platoon vehicle is operated in the autonomous mode only in the longitudinal direction, and the driver directly drives the lateral direction.
  • the method may include maintaining the steering angle until the following vehicle stops.
  • the Platooning Control Unit determines the driving situation and transmits a control stop signal to the Platooning Lateral Control System (PLCS), it shifts the driving mode to the lane keeping mode and waits for a certain period of time After transferring control to the driver, the Platooning Lateral Control System (PLCS) can be stopped.
  • PCU Platooning Control Unit
  • PLCS Platooning Lateral Control System
  • the Platooning Lateral Control System (PLCS) function may be stopped when the vehicle stops after maintaining the recent steering angle state.
  • PLCS Platooning Lateral Control System
  • the type of accident may be a vehicle-to-vehicle collision accident or a sudden breakdown of the vehicle, whether the vehicle is in a stationary state, or a driver's sudden convulsions or seizures, drowsiness or drunk driving, making normal and stable driving difficult. It may also include a process of classifying whether the vehicle is in a driving state.
  • the process of maintaining the existing lane for a predetermined time may be included.
  • PLCS Platooning Lateral Control System
  • the process of maintaining an existing lane for a predetermined time; and determining whether the other vehicle departs for the predetermined time period when a cut-in of the other vehicle occurs, the process of maintaining an existing lane for a predetermined time; and determining whether the other vehicle departs for the predetermined time period.
  • the lateral control mode is switched to lane keeping mode, and if the cut-in vehicle departs from the rank within a certain period of time, it performs the function of following the preceding vehicle and maintaining the lane at the same time can do.
  • the predetermined time may be adjusted according to the speed of the vehicle. For example, if the speed of the following vehicle is 30 km/h, 6 seconds may be determined, and if the speed of the following vehicle is 60 km/h, 3 seconds may be determined.
  • the method may include maintaining the existing steering as it is when the other vehicle departs, and maintaining the existing lane for a predetermined time when the other vehicle does not depart.
  • the present invention may be applied to a heavy truck according to an embodiment, and provides a method for determining a lateral control operation mode for supporting automatic steering control when heavy trucks platoon. Supports smooth transition of control when joining/leaving platooning, and determines the following vehicle following or lane keeping mode, and simultaneous following vehicle following and lane keeping mode by situation in maintenance, cut-in of other vehicles, and lane change situations, When lateral control is impossible, control can be transferred to the driver.
  • the method for determining the lateral control operation mode of the following vehicle in vehicle platooning as described above may be used by the apparatus for determining the lateral control operation mode of the following vehicle.
  • the apparatus for determining the lateral control mode of operation of such a following vehicle may include at least one processor and a memory operatively coupled to the processor and storing at least one code executed by the processor.
  • the memory when executed through the processor, causes the processor to, when the following vehicle joins the platooning rank, a platooning control unit (PCU) mounted on the following vehicle and a platooning lateral controller (PLCS: Platooning Lateral Control System) receives driving information of the preceding vehicle, controls the steering of the following vehicle in the following mode, monitors the operating state of the following vehicle through sensors mounted on the following vehicle, and detects an event, When the event occurs, a code for causing at least one of a change of the following mode, a departure from the queue, or a transfer of control to the driver may be stored.
  • PCU platooning control unit
  • PLCS platooning lateral controller
  • the method for determining the lateral control operation mode of the following vehicle in the vehicle platooning as described above may be implemented by a computer program for executing using a computer, and a computer-readable recording medium storing such a computer program
  • the disclosure of the present invention can be implemented by
  • the present invention it is possible to variously control merging/maintenance/departure/cut-in of platooning by presenting an effective lateral control mode determination method when driving a group of vehicles performing platooning, such as a large truck. There is an advantage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

본 발명은, 차량 군집주행 횡방향 제어 작동 모드 결정 방법에 관한 것으로서, 특히 대형 트럭과 같이 군집주행을 하는 자율 차량 그룹을 작동 모드에 따라 횡방향으로 제어하기 위한 제어 방법에 관한 것이다. 본 발명은, 추종 차량이 군집주행 대열에 합류하는 경우, 추종 차량에 장착된 군집주행 제어 유닛과 군집주행 횡방향 제어기를 통해 선행 차량의 주행 정보를 수신 받아 추종 차량의 조향을 추종 모드로 제어하는 단계; 군집주행 횡방향 제어기에서 추종 차량의 작동 상태를 모니터링하여 이벤트를 감지하는 단계; 및 이벤트가 발생하는 경우, 추종 모드의 해제, 대열에서의 이탈 또는 운전자에게 제어권 전환 중 적어도 어느 하나를 수행하는 단계를 포함하는 방법을 제공한다. 본 발명에 따르면, 군집주행 시 이벤트 발생에 따른 효과적인 횡방향 제어 모드 결정 방안을 제시할 수 있는 이점이 있다

Description

차량 군집주행 횡방향 제어 작동 모드 결정 방법
본 발명은 차량 군집주행 횡방향 제어 작동 모드 결정 방법에 관한 것으로서, 특히 화물차 또는 대형 트럭과 같이 군집주행을 하는 자율 차량 그룹을 작동 모드에 따라 횡방향으로 제어하기 위한 제어 방법에 관한 것이다.
자율주행차량 기술은 주차장, 주거지, 공장 및 회사와 같은 특정한 공간에서만 주행이 이루어지도록 개발되어 왔다. 그러나, 최근에는 일반도로에서도 자율주행 기술이 적용되고 있다. 일반적으로 자율주행차량 기술은 차량의 전후방에 부착된 센서 등을 통하여 앞 차량과의 근접거리를 유지한다. 또한, 도로를 인식하여 도로 위를 벗어나지 않도록 주행하며, 장애물 등을 인식하여 사고 방지하는 등 단일 차량의 무인주행 가능 기술에 초점을 두어 발전되고 있다.
이와 관련, 종래의 한국공개특허 제10-2019-0096864호(자율주행시스템에서 군집주행의 제어방법)는 리더 차량 및 상기 리더 차량의 통신기로부터 제어신호를 제공받아서 주행하는 추종 차량이 군집을 이루어 주행하는 군집주행을 제어하기 위한 방법에 있어서, 상기 군집주행의 통신 상태를 모니터링하여 수치화하는 단계; 수치화 된 상기 통신 상태가 미리 설정된 임계치 미만인 경우, 상기 리더 차량과 상기 추종 차량 간의 통신 사각지대를 확인하는 단계; 상기 추종 차량이 상기 통신 사각지대에 위치할 경우, 상기 군집주행 내에서 상기 추종 차량의 상대적인 위치 변경이 가능한지 확인하는 단계; 및 상기 추종 차량의 상대적인 위치변경이 가능할 경우, 상기 군집주행 내에서 상기 추종 차량의 상대적인 위치를 변경하는 단계;를 포함하는 것을 특징으로 하는 군집주행의 제어방법을 개시하고 있다.
다만, 종래 기술은 군집주행을 하는 경우 발생할 수 있는 사각 지대만을 판단하기 때문에, 이 외의 발생하는 다양한 이벤트에는 대처할 수 없는 문제점이 있다.
선행기술문헌: 한국공개특허 제10-2019-0096864호
본 발명은 상기 문제점을 해결하기 위해 군집주행 합류/이탈 시 제어권의 원활한 전환을 지원하고, 유지 및 타 차량 Cut-in, 그리고 차선 변경 상황에서 상황 별 선행차량 추종 또는 차선 유지 모드, 선행차량 추종과 차선 유지 동시 수행 모드를 판단하고, 횡방향 제어 불가 시 제어권을 운전자에게 전환시키기 위한 횡방향 제어 작동 모드 결정 방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여 본 발명은, 추종 차량이 군집주행 대열에 합류하는 경우, 상기 추종 차량에 장착된 군집주행 제어 유닛(PCU: Platooning Control Unit)과 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)를 통해 선행 차량의 주행 정보를 수신 받아 상기 추종 차량의 조향을 추종 모드로 제어하는 단계; 상기 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)에서 상기 추종 차량의 작동 상태를 모니터링하여 이벤트를 감지하는 단계; 및 상기 이벤트가 발생하는 경우, 상기 추종 모드의 해제, 상기 대열에서의 이탈 또는 운전자에게 제어권 전환 중 적어도 어느 하나를 수행하는 단계를 포함하는 차량 군집주행 횡방향 제어 작동 모드 결정 방법을 제공한다.
실시 예에 따라, 상기 추종 차량의 조향을 추종 모드로 제어하는 단계는, 상기 추종 차량의 상기 선행 차량과의 V2V(Vehicle to Vehicle) 통신 상태 또는 차선 감지 센서 상태를 점검하는 단계를 포함할 수 있다.
실시 에에 따라, 상기 통신 상태 또는 차선 감지 센서 상태가 적상 작동하면 상기 선행 차량의 추종 및 차선 유지 기능을 수행하기 위한 경로를 생성하는 단계를 포함할 수 있다.
실시 예에 따라, 상기 추종 차량의 작동 상태를 모니터링하는 과정은, 상기 추종 차량의 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)가 정상적으로 작동하는지 판단하는 과정을 포함할 수 있다.
실시 예에 따라, 상기 이벤트는, 상기 선행 차량 또는 상기 추종 차량의 차선 정보의 신뢰성 저하, 차선 변경 요청 수신, 긴급 제동 상황 발생, 상기 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)로부터의 정지 신호 수신, 타 차량의 컷인(cut-in) 발생 중 적어도 어느 하나일 수 있다.
실시 예에 따라, 상기 차선 정보의 신뢰성 저하 또는 차선 변경 요청을 수신하는 경우, 상기 선행 차량의 주행 정보를 재확인하는 과정; 및 상기 신뢰성이 회복되거나 차선 변경이 완료되었는지 확인하는 과정을 포함할 수 있다.
실시 예에 따라, 상기 긴급 제동 상황이 발생한 경우, 상기 추종 차량이 정지하기까지 상기 조향을 제어하는 과정을 포함할 수 있다.
실시 예에 따라, 상기 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)로부터의 정지 신호 수신이 되는 경우 소정의 시간 동안 기존 차선을 유지하는 과정을 포함할 수 있다.
실시 예에 따라, 상기 타 차량의 컷인(cut-in) 발생이 되는 경우 소정의 시간 동안 기존 차선을 유지하는 과정; 및 상기 소정의 시간 동안 상기 타 차량이 이탈하는지 판단하는 과정을 포함할 수 있다.
실시 예에 따라 상기 타 차량이 이탈하는 경우 기존 조향을 그대로 유지하고, 상기 타 차량이 이탈하지 않는 경우 소정의 시간 동안 기존 차선을 유지하는 과정을 포함할 수 있다.
전술한 바와 같은 구성을 갖는 본 발명에 따르면, 군집주행 시 이벤트 발생에 따른 효과적인 횡방향 제어 모드 결정 방안을 제시할 수 있는 이점이 있다.
도 1은 본 발명의 군집주행 제어 유닛(PCU: Platooning Control Unit)과 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)의 제어 과정을 나타낸다.
도 2는 본 발명의 차량 군집주행 횡방향 제어 작동 모드 결정 방법의 순서도를 나타낸다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 본 발명에 대해 구체적으로 설명하기로 한다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 명세서에 기재된 "...부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다. 또한, 명세서 전체에서 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, "그 중간에 다른 구성을 사이에 두고" 연결되어 있는 경우도 포함한다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
도 1은 본 발명의 군집주행 제어 유닛(PCU: Platooning Control Unit)과 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)의 제어 과정을 나타낸다.
도 1을 참조하면, 선행 차량 또는 추종 차량 등 각 차량에는 군집주행 제어 유닛(PCU: Platooning Control Unit)과 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)를 포함하는데, 평상시 대로 운행을 하는 중간에 군집주행의 대열에 합류하게 되면 제어 유닛과 제어기의 작동이 활성화될 수 있다.
군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)가 작동되면 추종 차량은 제어기 동작을 위한 V2V 통신 상태 및 센서 작동 상태를 점검하고, 모두 정상 작동하는 경우 선행 차량 추종 및 차선 유지 기능을 동시에 수행할 수 있다.
또한, V2V 통신 상태 및 센서 작동 상태가 모두 정상 작동하면, 선행 차량 추종 및 차선 유지 기능을 동시에 수행하며, 수행을 위한 경로를 생성시킨 후 준비 완료 신호를 PCU로 전달한다(PLCS stand-by).
이 경우, 군집주행 제어 유닛(PCU: Platooning Control Unit)로부터 제어기 동작 신호를 전달받으면, 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)를 통한 조향 제어를 시작할 수 있다(PLCS active).
도 2는 본 발명의 차량 군집주행 횡방향 제어 작동 모드 결정 방법의 순서도를 나타낸다.
이하에서 설명되는 추종 차량에 대한 제어 작동 모드 결정 방법은 추종 차량의 동작을 제어하는 적어도 하나 이상의 프로세서에 의해 수행될 수 있다.
도 2를 참조하면, 본 발명은 상기 추종 차량의 조향을 추종 모드로 제어하는 단계(S10), 이벤트를 감지하는 단계(S20) 및 이벤트에 대응하는 단계(S30)를 포함한다.
상기 추종 차량의 조향을 추종 모드로 제어하는 단계(S10)는, 추종 차량이 군집주행 대열에 합류하는 경우, 상기 추종 차량에 장착된 군집주행 제어 유닛(PCU: Platooning Control Unit)과 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)를 통해 선행 차량의 주행 정보를 수신 받아 진행될 수 있다.
추종 차량의 조향을 추종 모드로 제어하는 단계(S10)는, 상기 추종 차량의 상기 선행 차량과의 V2V(Vehicle to Vehicle) 통신 상태 또는 차선 감지 센서 상태를 점검하는 단계를 포함할 수 있다. 군집주행 횡방향 제어시에는 일반 단독 자율주행 차량과 달리 안정적인 제어를 위해서 V2V 통신이 필수적이며, 선행 차량과의 V2V 통신 상태에 따라 제어 모드를 가변화할 필요가 있다. V2V 통신 상태 및 차선 감지 센서가 모두 정상인 경우에는 선행차량 추종 및 차선 유지 제어로 동작할 수 있다. 다만, V2V 통신 상태 및 차선 감지 센서 중 하나만 정상인 경우의 제어 모드는 이하에서 보다 상세히 설명한다.
일반적으로 차량용 네트워크 시스템은 이동 차량에 안전 운전 정보 서비스, 위치 정보 서비스, 내비게이션(Navigation) 서비스 및 인포테인먼트(Infotainment) 서비스 등을 제공하기 위한 시스템을 의미할 수 있다.
이 차량용 네트워크 시스템의 발전으로 인해 상기 서비스들을 제공하기 위한 각종 통신 규격과 기술 개발이 활발하게 진행되고 있으며, 일례로 차량용 네트워크 시스템에는 차량 간(V2V: Vehicle to Vehicle) 통신이나, 차량과 인프라 간(V2I: Vehicle to Infra) 통신 방식이 사용될 수 있다.
또한, 실시 예에 따라, 상기 통신 상태 또는 차선 감지 센서 상태가 정상 작동하면 상기 선행 차량의 추종 및 차선 유지 기능을 수행하기 위한 경로를 생성하는 단계(S20)를 포함할 수 있다.
군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)가 작동되면 추종차량은 제어기 동작을 위한 V2V 통신 상태 및 센서 작동 상태를 점검하고 모두 정상 작동하면 선행 차량 추종 및 차선 유지 기능 동시 수행을 위한 경로를 생성시킨 후 준비 완료 신호를 PCU로 전달할 수 있다(PLCS stand-by).
V2V 통신은 다른 자율주행 자동차와의 통신이 가능하며, 선행 또는 후행 차량에 있는 제어 서버와 데이터 통신이 가능하도록 설정될 수 있으며, 통신방식에는 다양한 형태의 근거리, 원거리 통신방식이 모두 포함될 수 있다.
또한 본 발명의 실시 예에 따라 네트워크 제어시스템을 구비할 수도 있으며, 네트워크 제어시스템에는 현재 위치 상에서 설정 거리 내 위치한 복수개의 자율주행 자동차 간에 일정 거리 이상 동일 경로로 주행하는 자동차의 경우 제어서버에서 이들 간을 그룹핑하여 그룹(G) 주행이 이루어지도록 구성될 수 있다.
군집주행 제어 유닛(PCU: Platooning Control Unit)으로부터 제어기 동작 신호를 전달받으면, 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)를 통한 조향 제어를 시작할 수 있다(S20) (PLCS active).
군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)가 정상 작동 상황에서 차선 정보의 신뢰성이 낮아지거나 차선 변경 상황에서는 차선 유지 기능을 해제하고 선행 차량 추종 모드만으로 조향 제어를 수행할 수 있다.
추종 모드는, 추종 차량이 선행 차량과 V2V 통신을 수행하여 선행 차량의 조향 정보를 이용하여 추종 차량의 조향을 제어하되, 선행 차량이 차선을 변경하지 않는 이상, 차선 유지 제어를 통해 추종 차량이 주행 중이던 차로를 유지하도록 추종 차량의 조향을 제어하는 모드일 수 있다.
보다 구체적으로, 추종 모드는 V2V 통신을 통해 수신되는 선행 차량의 조향 정보에 더하여 추종차량이 인지한 선행 차량의 후방의 중심점 좌표와 차선 정보를 융합하여 경로를 생성하고 추종 제어를 수행하는 것일 수 있다.
추종 차량은 V2V 통신을 통해 수집한 선행 차량의 조향 정보 및 추종 차량의 카메라 등의 센서를 통해 수집한 선행 차량과 차선과의 거리를 복합적으로 판단하여 의도적으로 차선을 변경하는 것인지 조작 실수(오류)로 차선을 벗어나고 있는 것인지 판단할 수 있고, 이에 따라 1) 추종에 더한 차선유지 또는 2) 추종만 하는 모드 전환이 이루어질 수 있다.
선두 차량 바로 뒤의 첫번째 추종 차량 기준에서는 선행(선두) 차량이 운전자에 의해 주행되고 있기 때문에 운전자의 조작 실수로 판단할 수 있고, 두번째 이상 추종 차량 기준에서는 선행 차량이 자율주행 모드로 주행하고 있기 때문에 조향 제어 오류로 판단될 수 있다.
군집주행에서는 V2V 통신을 통해 선두 차량(Leading vehicle)이 차선 변경 필요 시 모든 추종 차량에게 차선 변경 요청 신호를 전달할 수 있다.
V2V 통신을 통해 선행 차량으로부터 차선 변경 신호가 없는 경우에 추종 모드로 주행할 때 조향 정보가 차선 변경 방향이고 차선 이탈 거리가 기준 값 이상인 경우에는 추종만 하는 모드(차선 유지 해제, 선행 차량을 추종하면 자연스럽게 차선변경이 가능)를 통해 차선 변경 모드로 자체 판단 및 전환이 가능할 수 있다. 여기서 차선 이탈 거리에 대한 기준 값은 설계자에 의해 임의로 결정될 수 있으며, 차량의 폭 및 차로 폭에 따라 조정되도록 설계될 수도 있다.
다른 실시 예에서, V2V 통신을 통해 선행 차량으로부터 차선 변경 신호가 없는 경우에 추종 모드로 주행할 때 차선 변경 방향이지만, 차선 이탈 거리가 기준 값 이하인 경우에는 추종 모드 및 차선 유지 모드를 유지할 수 있다.
여기서, 선행 차량이 차선 변경 방향을 향하는지는 선행 차량의 조향 방향(차량의 조향 바퀴가 향하는 방향)과 차선의 방향 사이의 각도가 일정 각도 이상이 되는지에 따라 결정될 수 있다. 여기서, 일정 각도는 설계자에 의해 미리 정해진 각도일 수 있고, 도로의 곡률에 따라 조절되도록 설계될 수도 있다. 추종 차량은 카메라 등의 센서를 통해 선행 차량이 이동하는 위치에서의 차선의 방향을 판단할 수 있고, V2V 통신을 통해 선행 차량의 바퀴의 조향 방향을 판단할 수 있다.
예를 들어, 선행 차량의 조향 바퀴가 향하는 방향이 차선과 이루는 각도가 차선을 변경하는 방향으로 10도 이상이라면 선행 차량이 차선 변경 방향을 향한다고 추종 차량의 프로세서가 판단할 수 있다.
또한, 예를 들어, 선행 차량에서 차선을 넘어간 바퀴의 중심이 차선의 중심에서부터 10cm 이상의 거리만큼 떨어진다면 차선 이탈 거리가 기준값 이상이라고 판단되어, 추종 차량의 프로세서는 추종 모드를 유지하면서 차선 유지 모드를 해제할 수 있다.
차선 이탈 거리는 선행 차량이 이탈한 차선의 중간 부분에서부터 차선을 넘어간 차량의 앞 바퀴의 타이어의 중간 부분까지의 거리로 측정될 수 있다. 물론, 차선 이탈 거리는 선행 차량이 이탈한 차선의 끝부분에서부터 차선을 넘어간 차량의 앞 바퀴의 타이어(또는 차선 변경 방향의 앞 바퀴)의 끝 부분까지의 거리로 측정될 수도 있다. 이러한 거리는 추종 차량에 장착된 카메라 등의 센서를 이용하여 측정될 수 있다.
또 다른 실시 예에서, V2V 통신을 통해 선행 차량으로부터 차선 변경 신호가 없는 경우에 선행 차량을 추종할 때 조향 정보는 차선 유지 방향이고 차선 이탈 거리가 기준 값 이상인 경우에는 추종 모드에 더하여 차선 유지 모드를 유지할 수 있다.
또 다른 실시 예에서, V2V 통신을 통해 선행 차량으로부터 차선 변경 신호가 없는 경우에 선행 차량을 추종할 때 조향 정보는 차선 유지 방향이고 차선 이탈 거리가 기준 값 이하인 경우에는 추종 모드에 더하여 차선 유지 모드를 유지할 수 있다.
위의 실시 예들 중 V2V 통신을 통해 선행 차량으로부터 차선 변경 신호가 없는 경우에 조향 정보가 차선 변경 방향이고 차선 이탈 거리가 기준 값 이상인 조건을 만족하면 추종 모드로만 주행하고 다른 조건들에서는 추종 및 차선 유지 동시 모드로 전환할 수 있다.
V2V 통신을 통해 로부터 차선 변경 신호가 있는 경우 선행 차량 추종 모드로 차선 변경을 위한 조향을 제어(차선 유지 모드는 해제)하고, 차선 변경 완료 후 선행 차량 추종 및 차선 유지 동시 제어를 수행할 수 있다.
차선 변경 완료 판단은 차량이 옆 차선으로 차선을 넘어가고, 추종 차량이 차선의 중심으로부터 일정 거리 내 위치하고 차량이 향하고 있는 방향과 차선의 방향의 차이가 일정 기준 값 이하일 때로 설정될 수 있다.
군집주행은 차선 유지 기능을 사용하는 일반 단독주행 자율기능과 달리 근접 차간 거리(예를 들어, 선행 차량과 추종 차량 사이의 거리가 10~15m) 주행으로 인해 차선 정보 신뢰성이 낮아 차선 유지 기능만으로는 차량의 추종 운행을 제어하는 것이 불가능할 수 있다.
따라서, 군집주행에서는 선행 차량 추종을 위한 보다 고도의 제어 기술이 필요하다. 이에 따라, 군집주행에서는 다음의 3가지 제어 모드 중 하나를 작동 조건에 따라 판단하여 적용한다. 3가지 제어 모드는 1) 선행차량 추종 및 차선 유지 제어 2) 선행 차량 추종 제어 3) 차선 유지 제어일 수 있다.
이후 차선 정보의 신뢰성이 회복되거나 차선변경이 완료되면 다시 선행 차량 추종 및 차선 유지 기능을 동시에 수행할 수 있다.
이벤트를 감지하는 단계(S30)는, 상기 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)에서 상기 추종 차량의 작동 상태를 모니터링하여 진행될 수 있다.
실시 예에 따라, 추종 차량의 작동 상태를 모니터링하는 과정은, 상기 추종 차량의 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)가 정상적으로 작동하는지 판단하는 과정을 더 포함할 수 있다.
상기 이벤트는, 상기 선행 차량 또는 상기 추종 차량의 차선 정보의 신뢰성 저하, 차선 변경 요청 수신, 긴급 제동 상황 발생, 상기 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)로부터의 정지 신호 수신, 타 차량의 컷인(cut-in) 발생 중 적어도 어느 하나일 수 있다.
이벤트는 이에 한정되지 않으며, 과속이나 차선 변경 제한 구역에서의 차선 변경 등의 단속 위반 사항에 대한 단속이벤트와 에어백 전개, 충돌 또는 추돌 사고, 돌발상황(예컨대, 동물 출현, 낙석, 장애물 출현, 주변차량의 급제동 또는 교통사고 등) 등의 사고이벤트가 해당될 수 있으며 이러한 이벤트 발생상황은 설정에 따라 적용될 수 있다.
이벤트를 감지하는 단계는, 추종 차량과 선행 차량 사이의 거리가 임계값 미만이 됨을 감지하는 단계를 포함하고, 이벤트에 따른 대응을 수행하는 단계는, 추종 차량과 선행 차량 사이의 거리가 임계값 미만이 됨에 따라, 차선 유지 제어 기능을 해지하고, 선행 차량의 조향 정보에 따라서만 추종 차량의 횡방향 조향을 제어하는 단계를 포함할 수 있다. 이러한 구성은 군집주행에서 추종 차량이 선행 차량과 일정 거리 미만으로 가깝게 붙어서 주행하는 경우 후행 차량은 선행 차량에 의해 가려져서 차선을 감지하기 어려워질 수 있기 때문이다. 따라서, 이러한 군집주행에서는 차선 정보보다는 선행 차량의 조향 정보에 보다 우위를 두어 후행 차량을 조향하는 것이 바람직할 수 있다.
여기서, 임계값은 설계자에 의해 임의로 사전에 설정될 수 있으며, 선행 차량과 추종 차량의 속도에 따라 조정되도록 설계될 수도 있다.
이벤트에 대응하는 단계는, 상기 이벤트가 발생하는 경우, 상기 추종 모드의 해제, 상기 대열에서의 이탈 또는 운전자에게 제어권 전환 중 적어도 어느 하나를 수행하는 과정이다.
차선 정보의 신뢰성 저하 또는 차선 변경 요청을 수신하는 경우, 상기 선행 차량의 주행 정보를 재확인하는 과정; 및 상기 신뢰성이 회복되거나 차선 변경이 완료되었는지 확인하는 과정을 포함할 수 있다.
이벤트 중에는 V2V 통신이 불가할 경우가 있을 수 있고, V2V 통신이 불가능할 경우에는 군집주행 대열을 해제하며, 추종 차량은 차선 유지 모드로 횡방향 제어를 유지하며 운전자에게 제어권 전환을 요청할 수 있다.
추종 차량의 프로세서는, 추종 차량과 선행 차량 사이에 V2V 통신 상태에 이상이 있고, 차선 감지 센서가 정상으로 감지되는 경우, 추종 모드를 해제하여 차선 유지 모드로 변경하고, 운전자에게 제어권 전환을 요청하는 단계를 수행할 수 있다.
한편, V2V 통신 상태가 정상이고, 차선 감지 센서의 센싱에 이상이 있는 것으로 일정 시간 이상 감지되는 경우, 추종 차량의 프로세서는 추종 모드를 유지하며 운전자에게 제어권 전환을 요청하는 단계를 포함할 수 있다. 여기서, 차선 감지 센서의 센싱에 이상이 있다는 것은 센서 자체의 이상 뿐만이 아니라 센서는 문제가 없지만 차선에 문제가 있는 경우, 차선이 다른 장애물에 의해 가려지는 경우, 기상 조건에 따라 차선이 잘 감지되는 경우와 같이 차선이 센싱되는데 문제가 있는 경우를 포함할 수 있다. 또한, 일정 시간은 시스템 설계자에 의해 임의로 정해질 수 있으며, 차량의 속도에 따라 조정되도록 설계될 수도 있다.
군집주행은 매우 좁은 차간 거리를 유지하기 때문에 V2V 통신을 통한 선행 차량 정보가 없으면 군집주행이 불가능할 수 있다. 따라서, 종방향은 ACC 모드(단독 종방향 제어), 횡방향은 차선 유지 모드로 전환이 필요할 수 있다.
차선 감지 센서 오류 발생 또는 감지된 차선 정보의 신뢰성이 저하된 경우(차선이 지워지거나 차선이 없는 도로), only 선행 차량 추종 모드로 횡방향 제어 수행. 이때는 차량이 차선 내에 있다는 것을 확인/보장할 수 없기 때문에 일정 시간이상 차선 정보가 지속적으로 감지되지 않을 경우 운전자에게 횡방향 제어권 전환 요청.
이렇게 되면, 군집차량은 종방향만 자율 모드 횡방향은 운전자가 직접 운행하게 됨.
긴급 제동 상황이 발생한 경우, 상기 추종 차량이 정지하기까지 상기 조향각을 유지하는 과정을 포함할 수 있다.
군집주행 제어 유닛(PCU: Platooning Control Unit)가 주행 상황을 판단하여 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)로 제어 중지 신호를 전달할 경우, 차선 유지 모드로 주행 모드를 천이시키고 일정 시간 대기 후 운전자에게 제어권을 전환 후 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)를 중지할 수 있다.
긴급 제동 상황이 발생할 경우, 최근 조향각 상태를 유지 후 차량이 정차하면 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System) 기능을 중지할 수 있다.
다른 실시 예에 따라 사고의 형태는 자동차 간 충돌사고나 차량의 돌발적인 고장 등으로 차량이 주행하지 않는 정지상황인지 혹은 운전자의 갑작스러운 경련이나 발작상황, 졸음 또는 음주운행으로 정상적이고 안정적인 주행이 어려운 상태로 차량이 주행하고 있는 상황인지로 분류하는 과정도 포함할 수 있다.
상기 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)로부터의 정지 신호 수신이 되는 경우 소정의 시간 동안 기존 차선을 유지하는 과정을 포함할 수 있다.
또한, 실시 예에 따라 상기 타 차량의 컷인(cut-in) 발생이 되는 경우 소정의 시간 동안 기존 차선을 유지하는 과정; 및 상기 소정의 시간 동안 상기 타 차량이 이탈하는지 판단하는 과정을 포함할 수 있다.
타 차량(OV: Other Vehicle)이 Cut-in을 수행하면 횡방향 제어 모드를 차선 유지 모드로 전환 후 Cut-in 차량이 일정 시간 내 대열 내에서 이탈하면 다시 선행차량 추종 및 차선 유지 기능을 동시 수행할 수 있다.
위 과정에서 일정 시간이 지나도 OV가 이탈하지 않으면 운전자에게 제어권을 전환하고, 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System) 기능을 중지할 수 있다. 여기서 일정 시간은 차량의 속도에 따라 조절될 수 있다. 예를 들어, 추종 차량의 속도가 30km/h라면 6초, 60km/h라면 3초로 결정될 수도 있다.
즉, 상기 타 차량이 이탈하는 경우 기존 조향을 그대로 유지하고, 상기 타 차량이 이탈하지 않는 경우 소정의 시간 동안 기존 차선을 유지하는 과정을 포함할 수 있다.
본 발명은, 실시 예에 따라 대형 트럭에 적용될 수 있으며, 대형 트럭들이 군집주행 시 자동 조향 제어 지원을 위한 횡방향 제어 작동 모드를 결정하는 방법을 제시한다. 군집주행 합류/이탈 시 제어권의 원활한 전환을 지원하고, 유지 및 타 차량 Cut-in, 그리고 차선 변경 상황에서 상황 별 선행차량 추종 또는 차선 유지 모드, 선행차량 추종과 차선 유지 동시 수행 모드를 판단하고, 횡방향 제어 불가 시 제어권을 운전자에게 전환시킬 수 있다.
상술된 바와 같은 차량 군집주행에서 추종 차량의 횡방향 제어 작동 모드를 결정하는 방법은 추종 차량의 횡방향 제어 작동 모드를 결정하기 위한 장치에 의해 사용될 수 있다.
이러한 추종 차량의 횡방향 제어 작동 모드를 결정하기 위한 장치는, 적어도 하나의 프로세서 및 프로세서와 동작 가능하게 연결되고 프로세서에서 수행되는 적어도 하나의 코드를 저장하는 메모리를 포함할 수 있다.
여기서, 메모리는 프로세서를 통해 실행될 때 프로세서로 하여금, 추종 차량이 군집주행 대열에 합류하는 경우, 상기 추종 차량에 장착된 군집주행 제어 유닛(PCU: Platooning Control Unit)과 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)를 통해 선행 차량의 주행 정보를 수신 받아 상기 추종 차량의 조향을 추종 모드로 제어하고, 상기 추종 차량에 장착된 센서들을 통해 상기 추종 차량의 작동 상태를 모니터링하여 이벤트를 감지하고, 상기 이벤트가 발생하는 경우, 상기 추종 모드의 변경, 상기 대열에서의 이탈 또는 운전자에게 제어권 전환 중 적어도 어느 하나를 수행하도록 야기하는 코드를 저장할 수 있다.
또한, 상술된 바와 같은 차량 군집주행에서 추종 차량의 횡방향 제어 작동 모드를 결정하는 방법은 컴퓨터를 이용하여 실행시키기 위한 컴퓨터 프로그램에 의해 구현될 수 있으며, 이러한 컴퓨터 프로그램이 저장된 컴퓨터로 판독 가능한 기록매체에 의해 본 발명의 개시가 구현될 수 있다.
본 발명에 의하면, 대형 트럭 등과 같이 군집주행을 수행하는 차량의 그룹 주행시, 효과적인 횡방향 제어 모드 결정 방안을 제시하여, 군집주행의 합류/유지/이탈/Cut-in 등을 다양하게 제어할 수 있는 이점이 있다.
이상에서 대표적인 실시예를 통하여 본 발명을 상세하게 설명하였으나, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리 범위는 설명한 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태에 의하여 정해져야 한다.

Claims (15)

  1. 추종 차량이 군집주행 대열에 합류하는 경우, 상기 추종 차량에 장착된 군집주행 제어 유닛(PCU: Platooning Control Unit)과 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)를 통해 선행 차량의 주행 정보를 수신 받아 상기 추종 차량의 조향을 추종 모드로 제어하는 단계;
    상기 추종 차량에 장착된 센서들을 통해 상기 추종 차량의 작동 상태를 모니터링하여 이벤트를 감지하는 단계; 및
    상기 이벤트가 발생하는 경우, 상기 추종 모드의 변경, 상기 대열에서의 이탈 또는 운전자에게 제어권 전환 중 적어도 어느 하나를 수행하는 단계를 포함하는,
    차량 군집주행 횡방향 제어 작동 모드 결정 방법.
  2. 제 1 항에 있어서,
    상기 추종 차량의 조향을 추종 모드로 제어하는 단계는,
    상기 추종 차량의 상기 선행 차량과의 V2V(Vehicle to Vehicle) 통신 상태 및 차선 감지 센서 상태를 점검하는 단계를 포함하는,
    차량 군집주행 횡방향 제어 작동 모드 결정 방법.
  3. 제 2 항에 있어서,
    상기 추종 차량의 조향을 추종 모드로 제어하는 단계는,
    상기 통신 상태 및 차선 감지 센서 상태가 모두 정상 작동하면 상기 선행 차량의 추종 및 차선 유지 기능 동시 수행을 위한 경로를 생성하는 단계를 더 포함하고,
    상기 수행하는 단계는,
    상기 V2V 통신 상태에 이상이 있고, 상기 차선 감지 센서가 정상으로 감지되는 경우, 상기 추종 모드를 해제하여 차선 유지 모드로 변경하고, 상기 운전자에게 제어권 전환을 요청하는 단계; 및
    상기 V2V 통신 상태가 정상이고, 상기 차선 감지 센서의 센싱에 이상이 있는 것으로 일정 시간 이상 감지되는 경우, 상기 추종 모드를 유지하며 상기 운전자에게 제어권 전환을 요청하는 단계를 포함하는,
    차량 군집주행 횡방향 제어 작동 모드 결정 방법.
  4. 제 1 항에 있어서,
    상기 추종 모드는,
    상기 추종 차량이 상기 선행 차량과 V2V 통신을 수행하여 상기 선행 차량의 조향 정보를 이용하여 상기 추종 차량의 조향을 제어하되, 상기 선행 차량이 차선을 변경하지 않는 이상, 차선 유지 제어를 통해 상기 추종 차량이 주행 중이던 차로를 유지하도록 상기 추종 차량의 조향을 제어하는 모드인,
    차량 군집주행 횡방향 제어 작동 모드 결정 방법.
  5. 제 1 항에 있어서,
    상기 이벤트는,
    상기 선행 차량 또는 상기 추종 차량의 차선 정보의 신뢰성 저하, 차선 변경 요청 수신, 긴급 제동 상황 발생, 상기 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)로부터의 정지 신호 수신, 타 차량의 컷인(cut-in) 발생 중 적어도 어느 하나인 것을 특징으로 하는,
    차량 군집주행 횡방향 제어 작동 모드 결정 방법.
  6. 제 5 항에 있어서,
    상기 차선 정보의 신뢰성 저하 또는 차선 변경 요청을 수신하는 경우,
    상기 선행 차량의 주행 정보를 재확인하는 단계; 및
    상기 신뢰성이 회복되거나 차선 변경이 완료되었는지 확인하는 단계를 더 포함하는,
    차량 군집주행 횡방향 제어 작동 모드 결정 방법.
  7. 제 5 항에 있어서,
    상기 긴급 제동 상황이 발생한 경우,
    상기 추종 모드를 해제하고, 상기 추종 차량이 정지하기까지 상기 조향각을 유지하는 단계를 더 포함하는,
    차량 군집주행 횡방향 제어 작동 모드 결정 방법.
  8. 제 5 항에 있어서,
    상기 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)로부터의 정지 신호 수신이 되는 경우, 상기 추종 모드를 해제하고 소정의 시간 동안 기존 차선을 유지하는 단계를 더 포함하는,
    차량 군집주행 횡방향 제어 작동 모드 결정 방법.
  9. 제 5 항에 있어서,
    상기 타 차량의 컷인(cut-in)이 발생하는 경우 소정의 시간 동안 상기 추종 모드를 보류하고 기존 차선을 유지하는 단계; 및
    상기 소정의 시간 동안 상기 타 차량이 이탈하는지 판단하는 단계를 더 포함하는,
    차량 군집주행 횡방향 제어 작동 모드 결정 방법.
  10. 제 9 항에 있어서,
    상기 소정의 시간 동안 상기 타 차량이 이탈하는 경우 기존 추종 모드를 복구하고,
    상기 소정의 시간 동안 상기 타 차량이 이탈하지 않는 경우 기존 차선을 유지하는 단계를 더 포함하는,
    차량 군집주행 횡방향 제어 작동 모드 결정 방법.
  11. 제 4 항에 있어서,
    상기 이벤트를 감지하는 단계는, 상기 추종 차량과 상기 선행 차량 사이의 거리가 임계값 미만이 됨을 감지하는 단계를 포함하고,
    상기 수행하는 단계는, 상기 추종 차량과 상기 선행 차량 사이의 거리가 임계값 미만이 됨에 따라, 상기 차선 유지 제어 기능을 해지하고, 상기 선행 차량의 조향 정보에 따라서만 상기 추종 차량의 조향을 제어하는 단계를 포함하는,
    차량 군집주행 횡방향 제어 작동 모드 결정 방법.
  12. 제 1 항에 있어서,
    상기 이벤트는 선행 차량으로부터의 차선 변경 요청 수신 없이 차선을 변경하는 경우이고,
    상기 이벤트를 감지하는 단계는,
    상기 선행 차량으로부터의 차선 변경 요청 없이 상기 선행 차량의 조향 정보가 차선 변경 방향이며, 상기 선행 차량의 차선 이탈 거리가 기준 값 이상인 것을 감지하는 단계를 포함하고,
    상기 수행하는 단계는, 차선 유지 제어 기능을 해지하고, 상기 선행 차량의 조향 정보에 따라서 상기 추종 차량의 조향을 제어하는 단계를 포함하는,
    차량 군집주행 횡방향 제어 작동 모드 결정 방법.
  13. 제 12 항에 있어서,
    상기 선행 차량의 조향 정보가 차선 변경 방향인지는 상기 선행 차량의 조향 방향과 상기 선행 차량이 위치한 도로의 차선 방향 사이의 각도에 따라 결정되고,
    상기 선행 차량의 차선 이탈 거리는 상기 선행 차량이 이탈한 차선에서부터 상기 선행 차량의 차선 변경 방향의 앞 바퀴까지의 거리로 결정되며,
    상기 선행 차량의 조향 방향은 상기 선행 차량과의 V2V 통신을 통해 획득되고, 상기 차선 방향은 상기 추종 차량에 장착된 카메라에 의해 획득되는,
    차량 군집주행 횡방향 제어 작동 모드 결정 방법.
  14. 컴퓨터를 이용하여 제 1 항 내지 제 13 항의 방법 중 어느 한 항의 방법을 실행시키기 위한 컴퓨터 프로그램이 저장된 컴퓨터로 판독 가능한 기록매체.
  15. 차량 군집주행에서 추종 차량의 횡방향 제어 작동 모드를 결정하기 위한 장치로서,
    적어도 하나의 프로세서; 및
    상기 프로세서와 동작 가능하게 연결되고 상기 프로세서에서 수행되는 적어도 하나의 코드를 저장하는 메모리를 포함하고,
    상기 메모리는 상기 프로세서를 통해 실행될 때 상기 프로세서로 하여금,
    추종 차량이 군집주행 대열에 합류하는 경우, 상기 추종 차량에 장착된 군집주행 제어 유닛(PCU: Platooning Control Unit)과 군집주행 횡방향 제어기(PLCS: Platooning Lateral Control System)를 통해 선행 차량의 주행 정보를 수신 받아 상기 추종 차량의 조향을 추종 모드로 제어하고, 상기 추종 차량에 장착된 센서들을 통해 상기 추종 차량의 작동 상태를 모니터링하여 이벤트를 감지하고, 상기 이벤트가 발생하는 경우, 상기 추종 모드의 변경, 상기 대열에서의 이탈 또는 운전자에게 제어권 전환 중 적어도 어느 하나를 수행하도록 야기하는 코드를 저장하는,
    차량 군집주행에서 추종 차량의 횡방향 제어 작동 모드를 결정하기 위한 장치.
PCT/KR2020/019352 2019-12-30 2020-12-29 차량 군집주행 횡방향 제어 작동 모드 결정 방법 WO2021137604A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0178026 2019-12-30
KR1020190178026A KR20210086783A (ko) 2019-12-30 2019-12-30 화물차 군집주행 횡방향 제어 작동 모드 결정 방법

Publications (1)

Publication Number Publication Date
WO2021137604A1 true WO2021137604A1 (ko) 2021-07-08

Family

ID=76686665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/019352 WO2021137604A1 (ko) 2019-12-30 2020-12-29 차량 군집주행 횡방향 제어 작동 모드 결정 방법

Country Status (2)

Country Link
KR (1) KR20210086783A (ko)
WO (1) WO2021137604A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115798186A (zh) * 2022-11-01 2023-03-14 清华大学 面向高速公路的可拓展式车辆队列行为管理框架

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162282A (ja) * 1996-11-27 1998-06-19 Honda Motor Co Ltd 車群走行制御システム
JPH10307997A (ja) * 1997-05-01 1998-11-17 Fujitsu Ten Ltd 隊列走行用制御装置および方法
JP5071560B2 (ja) * 2009-01-28 2012-11-14 トヨタ自動車株式会社 車群制御方法及び車群制御装置
JP2018036809A (ja) * 2016-08-31 2018-03-08 先進モビリティ株式会社 隊列走行制御システム及び隊列走行制御方法
WO2018043520A1 (ja) * 2016-08-30 2018-03-08 ナブテスコオートモーティブ株式会社 車両および隊列走行車両群

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102262232B1 (ko) 2019-07-30 2021-06-08 엘지전자 주식회사 자율주행시스템에서 군집주행의 제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162282A (ja) * 1996-11-27 1998-06-19 Honda Motor Co Ltd 車群走行制御システム
JPH10307997A (ja) * 1997-05-01 1998-11-17 Fujitsu Ten Ltd 隊列走行用制御装置および方法
JP5071560B2 (ja) * 2009-01-28 2012-11-14 トヨタ自動車株式会社 車群制御方法及び車群制御装置
WO2018043520A1 (ja) * 2016-08-30 2018-03-08 ナブテスコオートモーティブ株式会社 車両および隊列走行車両群
JP2018036809A (ja) * 2016-08-31 2018-03-08 先進モビリティ株式会社 隊列走行制御システム及び隊列走行制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115798186A (zh) * 2022-11-01 2023-03-14 清华大学 面向高速公路的可拓展式车辆队列行为管理框架
CN115798186B (zh) * 2022-11-01 2024-04-19 清华大学 面向高速公路的可拓展式车辆队列行为管理系统

Also Published As

Publication number Publication date
KR20210086783A (ko) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2020241955A1 (ko) 차량용 전자 장치 및 차량용 전자 장치의 동작 방법
KR101470190B1 (ko) 자율주행 시스템의 고장 처리 장치 및 그 방법
JP3984523B2 (ja) 車車間通信方法
KR20190105150A (ko) 군집 주행 제어 장치 및 방법
WO2020105759A1 (ko) 통신 장치, 그것의 제어 방법 및 그것을 포함하는 통신 시스템
WO2021002503A1 (ko) 차량용 전자 장치 및 그 동작 방법
CN111308998A (zh) 车辆的控制装置以及自动驾驶系统
CN112660156A (zh) 车辆控制系统
JP2002163799A (ja) 自動運転の解除装置
WO2021137604A1 (ko) 차량 군집주행 횡방향 제어 작동 모드 결정 방법
WO2020241971A1 (ko) 교통 사고 처리 장치 및 교통 사고 처리 방법
JP4924409B2 (ja) 走行支援装置
JP2008021011A (ja) 車両用走行支援装置
WO2005006275A1 (ja) 移動体の識別方法
JP5359510B2 (ja) 運転支援システム
WO2021191682A1 (ja) 情報提供方法、車両システム及び管理装置
WO2014038915A1 (ko) 노변 장치 및 그 노변 장치를 이용한 교통신호 제어 방법
JP5471936B2 (ja) 他車認識システム
WO2020004886A1 (ko) 통신용 ecu
WO2021199345A1 (ja) 車両管制システム、装置、方法、及びコンピュータ可読媒体
WO2021040058A1 (ko) 차량용 전자 장치 및 차량용 전자 장치의 동작 방법
JP3754571B2 (ja) 車両走行制御装置
JP2002163789A (ja) 出合い頭衝突防止支援システム
CN111258321A (zh) 车辆失控情况下的辅助安全驾驶系统及辅助安全驾驶方法
JP2020129336A (ja) 車車間通信装置および車車間通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908616

Country of ref document: EP

Kind code of ref document: A1