WO2021136525A1 - 通信链路的调整方法及装置、电子设备、可读介质 - Google Patents

通信链路的调整方法及装置、电子设备、可读介质 Download PDF

Info

Publication number
WO2021136525A1
WO2021136525A1 PCT/CN2020/142374 CN2020142374W WO2021136525A1 WO 2021136525 A1 WO2021136525 A1 WO 2021136525A1 CN 2020142374 W CN2020142374 W CN 2020142374W WO 2021136525 A1 WO2021136525 A1 WO 2021136525A1
Authority
WO
WIPO (PCT)
Prior art keywords
isolation
communication link
interference
value
adjustment
Prior art date
Application number
PCT/CN2020/142374
Other languages
English (en)
French (fr)
Inventor
沈少武
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to MX2022008244A priority Critical patent/MX2022008244A/es
Priority to US17/789,560 priority patent/US20230035731A1/en
Priority to EP20909653.6A priority patent/EP4087144A4/en
Publication of WO2021136525A1 publication Critical patent/WO2021136525A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to a method and device for adjusting a communication link, electronic equipment, and a readable medium.
  • the mobile terminal With the development and evolution of 5G terminals, there are more and more communication standards and communication frequency bands that mobile terminals can support. In order to meet the needs of users, the same mobile terminal is required to be compatible with multiple communication frequency bands such as low, medium, and high frequency at the same time. In order to pursue a higher data transmission rate, the mobile terminal needs to support simultaneous operation of various communication standards, and the mobile terminal also needs to work on different communication frequency bands.
  • An embodiment of the present disclosure provides a communication link adjustment method, the method includes: obtaining interference information of a current multi-connected communication link; judging whether the isolation value of the communication link exceeds the range of a preset isolation threshold according to the interference information; If yes, adjust the mapping table according to the isolation value and isolation degree, and adaptively adjust the communication link until the isolation value meets the requirements of the wireless performance index; wherein the isolation adjustment mapping table includes the mapping between the isolation value and the path parameter relationship.
  • the embodiment of the present disclosure provides a communication link adjustment device, which includes: an acquisition module for acquiring interference information of a current multi-connected communication link; a judgment module for judging the isolation of the communication link according to the interference information Whether the isolation value exceeds the range of the isolation preset threshold; the adjustment module is used to adjust the mapping table according to the isolation value and isolation when it is determined that the isolation value of the communication link exceeds the range of the isolation preset threshold, and adaptively Adjust the communication link until the isolation value meets the requirements of the wireless performance index; wherein the isolation adjustment mapping table includes the mapping relationship between the isolation value and the path parameter.
  • the embodiments of the present disclosure provide an electronic device, which includes: one or more processors; a storage device, on which one or more programs are stored. When one or more programs are executed by one or more processors, one Or multiple processors implement the method described in the first aspect.
  • the embodiments of the present disclosure provide a computer-readable medium on which a computer program is stored, and when the program is executed by a processor, the method described in the first aspect is implemented.
  • Fig. 1 is a schematic diagram of an antenna structure of a commonly used terminal at present.
  • Fig. 2 is a flowchart of a method for adjusting a communication link in the first embodiment of this application.
  • Fig. 3 is a flowchart of a method for adjusting a communication link in the second embodiment of this application.
  • FIG. 4 is a flowchart of a method for adjusting a communication link in the third embodiment of this application.
  • Fig. 5 is a flowchart of a method for adjusting a communication link in the fourth embodiment of this application.
  • FIG. 6 is a block diagram of a communication link adjustment apparatus in the fifth embodiment of this application.
  • FIG. 7 is a structural block diagram of a terminal in the sixth implementation manner in this application.
  • FIG. 8 is a block diagram of the structure when there is interference between the millimeter wave communication link and the LTE communication link in the sixth embodiment of this application.
  • FIG. 9 is a block diagram of the parameter structure when the interference self-scanning module scans the communication link in the sixth embodiment of this application.
  • FIG. 10 is a block diagram of the structure of the conductive isolation adjustment sub-module in the sixth embodiment of the application for adjusting the conductive path in the communication link.
  • FIG. 11 is a block diagram of the antenna layout structure when the radiation isolation adjustment sub-module in the sixth embodiment of the application adjusts the radiation path in the communication link.
  • Fig. 12a is a structural block diagram of a radiation path in an LTE communication link in the sixth embodiment of this application.
  • FIG. 12b is a block diagram of the structure of the radiation path in the NR communication link in the sixth embodiment of this application.
  • LTE Long Term Evolution
  • 5G The 5th Generation Mobile Communication Technology
  • WLAN Wireless LAN
  • Bluetooth Bluetooth
  • each frequency band (for example, frequency band B1) is divided into main set and diversity, and multi-input multiple output (MIMO) is also divided into main MIMO channel and sub-MIMO channel.
  • Figure 1 is a schematic diagram of the antenna structure of a commonly used terminal. As shown in Figure 1, the terminal includes a variety of different antennas, such as a main antenna 106, a diversity antenna 1011, and a diversity antenna that can support 2G/3G/4G communication standards.
  • each channel passes through different physical devices, it will be divided into many different branch transmission paths.
  • the routing and layout of each channel have a certain degree of small isolation on a limited PCB board.
  • the harmony between the Long Term Evolution (LTE) frequency band and the New Radio (NR) frequency band Wave interference and intermodulation interference have a great impact on communication quality. If the transmission path is incorrectly selected, resulting in poor isolation from the adjacent path, the sensitivity of the LTE communication link and NR communication link will deteriorate, and then Affect the user's communication performance, directly affect the throughput and user experience.
  • LTE Long Term Evolution
  • NR New Radio
  • E-UTRA represents the radio access network in the fourth generation mobile communication technology (The 4th Generation Mobile Communication Technology, 4G), that is, the evolved UMTS terrestrial radio access network (Evolved-UMTS Terrestrial Radio Access), of which UMTS It is the Universal Mobile Telecommunication System (UMTS).
  • 4G The 4th Generation Mobile Communication Technology
  • UMTS Terrestrial Radio Access the evolved UMTS terrestrial radio access network
  • UMTS It is the Universal Mobile Telecommunication System (UMTS).
  • the first embodiment of the present application relates to a method for adjusting a communication link.
  • Fig. 2 is a flowchart showing a communication link adjustment method according to an embodiment of the present application, and the method can be applied to a communication link adjustment device. As shown in Figure 2, the method may include the following steps.
  • step 201 the interference information of the current multi-connection communication link is obtained.
  • the interference information includes any one or more of the channel, path, and power of the communication link.
  • the channel may include the channel used by the communication link during communication. When the communication link receives a signal on this channel, it may be affected by the interference frequency band.
  • the wireless performance index when the wireless performance index drops, the operating frequency band and received signal strength of the communication link are obtained according to the frequency band and channel opened in the communication link; if the received signal strength is not within the range of the signal preset threshold And, if the working frequency band falls on the intermodulation frequency band or the harmonic frequency band, it is determined that the working frequency band is the interference frequency band in the interference information.
  • the wireless performance index includes at least any one of data throughput and call audio quality.
  • the wireless performance index drops.
  • the specific manifestation may be that the data transmission throughput of the communication link is detected to be lower than the data transmission throughput when there is no interference; it may also be that the user finds that there is an obvious signal during a voice call. Stuttering; It may also be that the signal strength of the main diversity of the communication system adopted by the communication link is weakened, and the number of signal grids displayed in the user interface is less than 3 grids, etc.
  • step 202 it is determined whether the isolation value of the communication link exceeds the range of the isolation threshold value according to the interference information.
  • step 203 is executed; otherwise, the process ends.
  • step 203 according to the isolation value and the isolation adjustment mapping table, the communication link is adaptively adjusted until the isolation value meets the requirements of the wireless performance index.
  • the isolation adjustment mapping table includes the mapping relationship between isolation values and path parameters.
  • isolation adjustment mapping table is only examples, and can be set according to actual conditions. Other unexplained parameters are also within the protection scope of this application and will not be repeated here. .
  • the mapping table is adjusted according to the isolation value and isolation, and the communication link is adaptively adjusted. Make adjustments until the adjusted isolation meets the requirements of wireless performance indicators, which reduces the mutual interference between multi-connected communication links, improves data throughput, and at the same time improves the user's voice call quality and user experience .
  • the second embodiment of the present application relates to a method for adjusting a communication link.
  • the second embodiment is roughly the same as the first embodiment.
  • the main difference is that the communication link is detected according to the interference information to obtain the interference detection parameters; and then the communication link and the current interference link are calculated based on the interference detection parameters. Isolation value between.
  • Fig. 3 is a flowchart of a method for adjusting a communication link in this embodiment.
  • the adjustment of the communication link is implemented through the following steps, which specifically include step 301 to step 305.
  • step 301 the interference information of the current multi-connection communication link is obtained.
  • step 301 in this embodiment is the same as that of step 201 in the first embodiment, and will not be repeated here.
  • step 302 the communication link is detected according to the interference information to obtain interference detection parameters.
  • the communication link is detected based on the interference information through a test method of spontaneous transmission and reception, and the interference detection parameters are obtained.
  • the interference detection parameters are obtained by testing any one or more of the channel, path, and power in the NR communication link.
  • the interference detection parameters include at least any one of Signal Noise Ratio (SNR), Reference Signal Receiving Power (RSRP), and Received Signal Strength Indication (RSSI).
  • step 303 the isolation value between the communication link and the current interference link is calculated according to the interference detection parameters.
  • the interference detection parameters include RSRP
  • a smart terminal has four antennas S1, S2, S3, S4, then S21 represents the isolation of antenna S2 relative to antenna S1, and S31 represents the isolation of antenna S3 relative to antenna S1 , S41 represents the isolation of antenna S4 relative to antenna S1.
  • the collected RSRP value is recorded as R1; when antenna S1 and antenna S2 are turned on at the same time, the collected RSRP value is recorded as R2, and the isolation between antenna S1 and antenna S2 is as follows
  • step 304 it is determined whether the isolation degree value exceeds the range of the isolation degree preset threshold value.
  • step 305 is executed; otherwise, the process ends.
  • step 305 when the isolation value of the communication link exceeds the range of the isolation preset threshold, the mapping table is adjusted according to the isolation value and the isolation, and the communication link is adaptively adjusted until the isolation value meets the wireless performance index The request.
  • steps 304 to 305 in this embodiment are the same as those of steps 202 to 203 in the first embodiment, and will not be repeated here.
  • the interference detection parameter is obtained by scanning and testing the communication link by using the interference frequency band, and then the isolation value is calculated according to the interference detection parameter, so that it can be judged whether the communication link needs to be connected according to the isolation value.
  • the adjustment can adjust the communication link in response to the interference, quickly eliminate the influence of the interference on the communication, and ensure the communication quality.
  • the third embodiment of the present application relates to a communication link adjustment method.
  • the third embodiment is roughly the same as the second embodiment.
  • the main difference is that after the isolation is calculated, it is necessary to determine whether the interference is caused by the isolation. If it is, the isolation adjustment mapping table is established to facilitate the follow-up Look up the isolation adjustment mapping table to obtain the corresponding path parameters that need to be adjusted.
  • the communication link adjustment method includes:
  • step 401 the interference information of the current multi-connection communication link is obtained.
  • step 402 the communication link is detected according to the interference information to obtain interference detection parameters.
  • step 403 the isolation value between the communication link and the current interference link is calculated according to the interference detection parameters.
  • steps 401 to 403 in this embodiment are the same as those of steps 301 to 303 in the second embodiment, and will not be repeated here.
  • step 404 it is determined whether the interference is caused by isolation.
  • step 405 is executed; otherwise, the process is ended.
  • the preset threshold of isolation is -20DB.
  • the isolation of the communication link obtained by the test is less than -20DB, it indicates that the isolation between the communication links is good, and there is no need to adjust the communication link; otherwise, when When the isolation of the communication link obtained by the test is greater than or equal to -20DB, it indicates that the isolation between the communication links is poor, and the communication link needs to be adjusted, then step 405 is performed to improve the isolation between the communication links .
  • step 405 an isolation adjustment mapping table is established.
  • the isolation adjustment mapping table may include the mapping relationship between isolation values and path parameters, and may also include the operating frequency band, operating frequency, and related configuration parameters of the communication link. According to the above parameters and related mapping relationships, The path to be adjusted can be quickly obtained by searching the isolation adjustment mapping table, and the adjustment efficiency of the communication link can be improved.
  • step 406 it is determined whether the isolation degree value exceeds the range of the isolation degree preset threshold value.
  • step 407 If the isolation value of the communication link exceeds the range of the preset isolation threshold, step 407 is executed; otherwise, the process ends.
  • step 407 when the isolation value of the communication link exceeds the range of the isolation preset threshold, the mapping table is adjusted according to the isolation value and the isolation, and the communication link is adaptively adjusted until the isolation value meets the wireless performance index The request.
  • steps 406 to 407 in this embodiment are the same as those of steps 304 to 305 in the second embodiment, and will not be repeated here.
  • the method further includes: if a new wireless configuration parameter is detected, updating the isolation adjustment mapping table; wherein the wireless configuration parameter includes working frequency band, bandwidth, number of resource blocks, and time slot At least one of the number and modulation method.
  • the adjustment method update the isolation adjustment mapping table.
  • the isolation adjustment mapping table is established, so that when the communication link is adjusted, the path parameter of the communication link that needs to be adjusted can be quickly found, and then the communication link can be adjusted along with the path parameter. , Improve the speed of adjustment, improve the quality of communication, to meet the needs of users, and improve user experience.
  • the fourth embodiment of the present application relates to a communication link adjustment method.
  • the fourth embodiment is substantially the same as the first embodiment, and the main difference is that the communication link is classified and adaptively adjusted through the isolation type and the corresponding isolation value.
  • the communication link adjustment method includes:
  • step 501 the interference information of the current multi-connection communication link is obtained.
  • step 501 in this embodiment is the same as that of step 201 in the first embodiment, and will not be repeated here.
  • step 502 the communication link is detected according to the interference information, and the isolation type is determined.
  • the types of isolation include conductive isolation and radiation isolation.
  • Isolation is an interference suppression measure taken to minimize the impact of various interferences on the communication link
  • the conductive isolation refers to the isolation between two or more conductive paths on the conductive path; for example, The generated signal can be conducted to the receiver through both channel A and channel B, then the isolation between channel A and channel B is called conduction isolation;
  • radiation isolation refers to the signal in different transmitting antennas or receiving antennas The degree of isolation between transmissions.
  • step 503 the isolation value corresponding to the isolation type is calculated according to the isolation type, and the calculation result is obtained.
  • the calculation result includes the range of the conductive isolation value exceeding the preset threshold of the conductive isolation, and/or the radiation isolation value exceeding the range of the preset threshold of the radiation isolation.
  • the conduction isolation degree and the conduction isolation degree preset threshold value are made difference, and then the obtained difference value is compared with the preset threshold value, or the conduction isolation degree and the conduction isolation degree preset threshold value are directly compared to obtain the calculation result;
  • the calculation process of radiation isolation is the same as the calculation process of conduction isolation.
  • step 504 if it is determined that the conducted isolation value exceeds the preset threshold of the conducted isolation, then the communication link is adjusted adaptively according to the conducted isolation value and the isolation adjustment mapping table until the conducted isolation value Meet the requirements of wireless performance indicators.
  • adaptively adjusting the communication link can solve the isolation problem of the PCB board level, such as the isolation between radio frequency lines and the isolation of vias. Refer to Ground wire isolation, etc.
  • conduction path A For example, if the conduction isolation of conduction path A is obtained by the test of -40DB, which exceeds the preset threshold of conduction isolation (for example, the preset threshold of conduction isolation is set to -30DB), then conduction path A will be switched to high isolation, On conduction path B with low interference, if the adjusted conduction isolation is less than -30DB after testing, the conduction path adjustment will be ended; otherwise, the conduction path switching adjustment will continue until the conduction isolation value meets the requirements of the wireless performance index until.
  • the preset threshold of conduction isolation for example, the preset threshold of conduction isolation is set to -30DB
  • step 505 if it is determined that the radiation isolation value exceeds the preset threshold of radiation isolation, then adjust the mapping table according to the radiation isolation value and the isolation adjustment to adaptively adjust the communication link until the radiation isolation value Meet the requirements of wireless performance indicators.
  • adaptively adjusting the communication link can solve the isolation problem of space radiation, such as the isolation of spatial coupling, the isolation between radio frequency antennas, and so on.
  • the radiation isolation degree of radiation path M is obtained by the test of -25DB, which exceeds the preset threshold value of radiation isolation degree (for example, the preset threshold value of radiation isolation degree is set to -35DB), then the radiation path M is switched to a high isolation degree.
  • the preset threshold value of radiation isolation degree for example, the preset threshold value of radiation isolation degree is set to -35DB
  • the radiation path M is switched to a high isolation degree.
  • the radiation path N with low interference if the adjusted radiation isolation is less than -35DB after testing, then the radiation path adjustment will be ended; otherwise, continue to switch and adjust the radiation path until the radiation isolation value meets the requirements of the wireless performance index until.
  • step 506 if it is determined that the calculation result is that the radiation isolation value exceeds the preset threshold of radiation isolation and the conduction isolation value exceeds the preset threshold of conduction isolation, then it is based on the conduction isolation value, radiation isolation value and Isolation adjustment mapping table, adaptively adjust the communication link until the radiation isolation value meets the requirements of wireless performance indicators.
  • the path parameter and the isolation value can also be displayed in real time. For example, real-time display of the isolation value of the current communication link and related conduction paths and other information to facilitate testing and adjustment.
  • the multi-connection communication link includes at least a communication link based on the fourth-generation mobile communication technology, a communication link based on the fifth-generation mobile communication technology, a communication link based on the global positioning system, and a communication link based on Bluetooth. Any two of the technical communication link and the communication link based on WIFI communication technology.
  • the multi-connection communication link may include any two of the following communication links: an LTE communication link, an NR communication link, a GPS communication link, a WIFI communication link, and many other links supporting different communication protocol types.
  • the communication link is scanned and tested by using the interference frequency band to determine the isolation type; then according to different isolation types, the isolation value corresponding to the isolation type is calculated, and the calculation result is obtained.
  • the calculation results are in several different situations, adjust the mapping table according to the isolation degree, and adjust the communication link adaptively, so that the adjustment of the communication link can be completed more accurately, and different types of interference can be reduced until the interference is eliminated. , Improve the communication quality and further enhance the user experience.
  • the fifth embodiment of the present application relates to a communication link adjustment device.
  • the device refer to the related description of the first embodiment, and the repetitive parts will not be repeated. It is worth noting that the specific implementation of the device in this embodiment can also refer to the related descriptions of the second to fourth embodiments, but it is not limited to the above embodiments, and other unexplained embodiments are also within the protection scope of this device. Inside.
  • Fig. 6 is a block diagram of a communication link adjustment device in this embodiment.
  • the communication link adjustment device mainly includes: an obtaining module 601 is used to obtain interference information of a current multi-connected communication link; a judgment module 602 is used to determine whether the isolation value of the communication link is based on the interference information Exceeding the range of the isolation preset threshold; the adjustment module 603 is used to adjust the communication link adaptively according to the isolation value and the isolation adjustment mapping table when it is determined that the isolation value of the communication link exceeds the range of the isolation preset threshold Until the isolation value meets the requirements of the wireless performance index; wherein, the isolation adjustment mapping table includes the mapping relationship between the isolation value and the path parameter.
  • the interference information is acquired through the acquisition module, and then the judgment module is used to determine whether the isolation value of the communication link exceeds the range of the isolation preset threshold according to the interference information. If it exceeds, the adjustment module is used to determine the isolation according to the isolation level. Value and isolation adjustment mapping table, adaptively adjust the communication link until the adjusted isolation meets the requirements of wireless performance indicators, reducing the mutual interference between multi-connected communication links and improving data throughput the amount.
  • this embodiment is an example of a device corresponding to the first or second embodiment, and this embodiment can be implemented in cooperation with the first or second embodiment.
  • the related technical details mentioned in the first or second embodiment are still valid in this embodiment, and in order to reduce repetition, they will not be repeated here.
  • the related technical details mentioned in this embodiment can also be applied in the first or second embodiment.
  • modules involved in this embodiment are all logical modules.
  • a logical unit can be a physical unit, a part of a physical unit, or multiple physical units. The combination of units is realized.
  • this embodiment does not introduce units that are not closely related to solving the technical problems proposed by this application, but this does not mean that there are no other units in this embodiment.
  • the sixth embodiment of the present application relates to a terminal.
  • the terminal includes the communication link adjustment device in the fifth embodiment.
  • Fig. 7 is a schematic structural diagram of a terminal including a communication link adjustment device.
  • the terminal includes a control chip 701 and a communication link adjustment device 702.
  • the communication link adjustment device 702 may specifically include: EN-DC interference detection module 7031, interference self-scanning module 7032, interference judgment module 7033, isolation test module 7034, EN-DC scanning parameter storage module 7035, adaptive anti-interference The control module 7036, the isolation display module 7037, the isolation adjustment module 7038, the conduction isolation adjustment sub-module 70381, and the radiation isolation adjustment sub-module 70382.
  • the EN-DC represents the EN-DC scenario of evolving universal radio access network and next-generation network.
  • UE User Equipment
  • the communication of the road is respectively the LTE communication link and the NR communication link.
  • EN-DC interference may be generated, and the adjustment device of the communication link can play a role in resisting the interference.
  • the effect of interference thereby eliminating harmonic interference or intermodulation interference, improving the data throughput of the terminal, and improving the user's voice call quality.
  • the MMW communication link 8010 includes a filter 801, a multiplier 802, a low noise amplifier 803, an intermediate frequency transmission signal 804, a low noise amplifier 805, a multiplier 806, a low noise amplifier 807, and an antenna array 808 connected in sequence.
  • the LTE communication link 8020 includes a secondary low noise amplifier 813, a low noise amplifier 812, a filter 811, a multi-frequency braider 810, and a receiving/transmitting antenna 809.
  • the transmission noise of the LTE communication link 8020 will fall within the IF frequency range of the MMW communication link 8010.
  • the multiple harmonics in the communication link 8020 will cause the intermediate frequency signal (Intermediate Frequency, IF) in the MMW communication link 8010 to deteriorate, resulting in the deterioration of the received signal of the MMW communication link 8010, and it will also cause the MMW communication link 8010 to fail.
  • the Error Vector Magnitude (EVM) or SNR equivalent of the receiving end is degraded.
  • the intermediate frequency transmission signal 804 in the MMW communication link 8010 will affect the low noise amplifier in the LTE communication link 8020.
  • the Low Noise Amplifier (LNA) 812, the filter 811, the multi-frequency weaver 810, etc. cause an impact, which causes the reception deterioration of the LTE communication link 8020.
  • the communication link adjustment device 703 When the EN-DC interference detection module 7031 in the communication link adjustment device 703 detects that the current communication signal quality is not up to standard, or the user using the terminal feels that the current communication signal quality is poor, the communication link adjustment device 703 will First, detect the MMW communication link 8010 and the LTE communication link 8020 to determine which is the main transmitting end (i.e., the interference end) and which is the main receiving end (i.e., the interfered end).
  • the adaptive anti-interference control module 7036 needs to be activated to adjust the communication link so that its isolation can meet the requirements of wireless performance indicators, for example, the isolation between communication links can meet the requirement of 60dB.
  • the EN-DC interference detection module 7031 is used to obtain the current EN-DC interference situation of the terminal. As shown in FIG. 7, the EN-DC interference detection module 7031 is connected to the control chip 701, the interference self-scanning module 7032, and the interference judgment module 7033.
  • the control chip may be a radio frequency chip or a baseband chip.
  • the working frequency band and received signal strength of the communication link will be obtained according to the frequency band and channel opened in the communication link; if the received signal strength is not within the range of the signal preset threshold, and the communication If the working frequency band of the link falls on the intermodulation frequency band or the harmonic frequency band, it is determined that the working frequency band is an interference frequency band.
  • LTE communication links and NR communication links there are both LTE communication links and NR communication links in the terminal, where the LTE communication link uses the B3 frequency band, while the NR communication link uses the N78 frequency band and the interference caused; or, the LTE communication link uses the B41 frequency band, while the NR
  • the communication link uses the interference caused by the N41 frequency band; or, the terminal has both a WIFI communication link and an NR communication link, and the NR communication link uses the N79 frequency band to cause interference; or, the terminal also has an MMW communication link Interference caused by the communication link with GPS, etc.
  • the control chip When the control chip detects the deterioration of wireless performance indicators, it will send an activation signal to the EN-DC interference detection module, so that the EN-DC interference detection module can determine the interference frequency band and the interference location based on the opened frequency band and channel in the communication link.
  • the corresponding basic wireless configuration information determines whether there is interference by detecting any one or more of the signal level, RSSI, or SNR of the cellular communication link and the NR communication link. If the received signal strength is not within the range of the signal preset threshold, and the working frequency band falls on the intermodulation frequency band or the harmonic frequency band, the working frequency band is determined to be the interference frequency band, that is, the working frequency band of the communication link is EN-DC interference point.
  • the interference self-scanning module 7032 is used to scan the communication link using the interference frequency band to obtain interference detection parameters. As shown in FIG. 7, the interference self-scanning module 7032 is connected with the EN-DC interference detection module 7031 and the interference judgment module 7033. In some cases, the interference self-scanning module 7032 is also connected to the built-in antenna unit and radio frequency transceiver of the terminal. Through the self-transmitting and self-receiving test method, the interference frequency band is used to affect any of the channel, path, and power of the communication link. Or several tests to obtain interference detection parameters. Wherein, the interference detection parameter includes at least any one of SNR, RSRP and RSSI.
  • the EN-DC harmonic detection algorithm is used to detect LTE communication links and NR communication links to obtain interference detection parameters, such as any one of RSSI, RSRP, or SNR Then compare the change value with the corresponding reference value to obtain the comparison result, and the comparison result to determine the type of interference between the LTE communication link and the NR communication link.
  • interference detection parameters such as any one of RSSI, RSRP, or SNR
  • the LTE communication link and the NR communication link are tested separately, and the corresponding reference value of the input signal level is -85DB; when the LTE communication link is set as the sending end, the NR communication link When the channel is used as the receiving end, the signal level value of the NR communication link obtained by the test is -87DB, and the change value of the input signal level is 2DB, which indicates that there is 2DB harmonic interference between the current two links; When setting the NR communication link as the sending end and the LTE communication link as the receiving end, the signal level value of the LTE communication link obtained by the test is -90DB, and the input signal level change value is 5DB, indicating that the current two There is 5DB intermodulation interference between the links.
  • the interference self-scanning module 7032 scans the communication link to obtain interference detection parameters.
  • the wireless configuration parameters include multiple parameters such as the frequency band used by the communication link, frequency point, bandwidth, number of RBs, number of time slots, modulation mode, and multi-stream rank rate.
  • the interference detection parameters include parameters such as reference signal received power, received signal strength indication, and signal-to-noise ratio.
  • the interference self-scanning module 7032 scans the communication link to obtain interference detection parameters.
  • the isolation test module 7034 can detect the interference based on the interference Parameters, calculate the isolation value between the communication link and the current interference link.
  • the isolation test module 7034 is used to calculate the isolation value between the communication link and the current interference link according to the interference detection parameters. By controlling each switch in the communication link or the current interference link (for example, the switch between the radio frequency chip and the intermediate LNA, etc.), certain channels or antennas are turned on or off, and the interference detection parameters when interference exists are tested. Then, according to the interference detection parameter, the isolation value between the communication link and the interference link is calculated.
  • a smart terminal has four antennas, S1, S2, S3, and S4, then S21 represents the isolation of antenna S2 with respect to antenna S1, S31 represents the isolation of antenna S3 with respect to antenna S1, and S41 represents the isolation of antenna S4 with respect to antenna S1.
  • the terminal is controlled to enter different transmission and reception modes, and the radiation isolation value in the corresponding mode is calculated.
  • the interference determination module 7033 is used to determine whether the interference between the communication links is caused by isolation. If the isolation of the communication links exceeds the range of the isolation threshold, the adaptive anti-interference control module 7036 needs to be called.
  • the preset threshold of isolation is -20DB. When the isolation of the communication link obtained by the test is less than -20DB, it indicates that the isolation between the communication links is good, and there is no need to adjust the communication link; otherwise, when When the isolation of the communication link obtained by the test is greater than or equal to -20DB, it indicates that the isolation between the communication links is poor, and the communication link needs to be adjusted to improve the isolation between the communication links and eliminate interference.
  • the EN-DC scanning parameter storage module 7035 is used to store the interference detection parameters obtained by the interference self-scanning module 7032 scanning and the reference values of the interference detection parameters of each communication link when there is no interference.
  • the EN-DC scan parameter storage module 7035 is connected to the interference self-scanning module 7032 and the adaptive anti-interference control module 7036.
  • the reference value of the interference detection parameter is the value of each signal parameter obtained by the terminal in the case of no EN-DC dual-connection interference, so as to facilitate the adaptive anti-interference in different test environments Called by the control module 7036. If in the current network environment, the test learns that there are new wireless configuration parameters, the isolation adjustment mapping table needs to be updated for subsequent reference and call.
  • the isolation display module 7037 is used to display the current isolation between each channel and the antenna in real time. As shown in Figure 7, the isolation display module 7037 is connected to the adaptive anti-interference control module 7036.
  • the isolation display module 7037 can see the change of the isolation value in the communication link, and then actively adjust or switch the communication link dynamically , choose a path with large isolation and low interference as the current working path to improve voice quality and data throughput.
  • the LTE communication link uses the B3 frequency band
  • the NR communication link uses the N78 frequency band
  • the test shows that the two links are The isolation value of NR is lower than -10DB, and the current downlink throughput rate is lower than the preset threshold.
  • the user sees the situation through the isolation display module 7037, he can actively switch the working frequency band of the current NR communication link to N41, to reduce EN-DC interference caused by isolation problems, and improve downlink throughput.
  • the adaptive anti-interference control module 7036 is used to compare and judge wireless performance and adjust and control the interference existing in the communication link. As shown in FIG. 7, the adaptive anti-interference control module 7036 is connected with the EN-DC scanning parameter storage module 7035, the isolation display module 7037, and the isolation adjustment module 7038. When the interference judgment module 7033 determines that there is interference based on the results of scanning and testing, the isolation adjustment module 7038 is called to adjust the communication link. After the adjustment of the communication link is completed, it will be judged whether the adjusted wireless performance index is the best, if so, the link adjustment will be ended, if not, the isolation adjustment module 7038 will continue to be called to adjust the communication link .
  • the isolation adjustment module 7038 is used to adjust and optimize the isolation. Because each radio frequency band can be divided into 5 channels, namely TX, PRX, DRX, PRX-MIMO and DRX-MIMO channels. Because each RF channel passes through different levels of RF front-end active components, different RF paths (for example, 4 to 20 branch RF paths) are formed, that is, there may be more than 20 RF paths in each frequency band. A. After the combination of different EN-DC frequency bands (for example, there are both LTE communication link and NR communication link in the terminal, where the LTE communication link uses the B3 frequency band, and the NR communication link uses the N78 frequency band), a lot of radio frequencies will be formed Path and conduction path.
  • EN-DC frequency bands for example, there are both LTE communication link and NR communication link in the terminal, where the LTE communication link uses the B3 frequency band, and the NR communication link uses the N78 frequency band
  • the isolation adjustment module 7038 controls the multi-level switch circuit through software to select and switch the radio frequency path or the conduction path, so that the communication link interfered by EN-DC can switch the working path from the channel with low isolation to high isolation In the channel, improve the communication quality. As shown in Figure 7, the isolation adjustment module 7038 is connected to the adaptive anti-interference control module 7036.
  • the isolation adjustment module 7038 may include an isolation conduction adjustment sub-module 70381 and an isolation radiation adjustment sub-module 70382.
  • the isolation conduction adjustment sub-module 70381 is used to solve EN-DC board-level isolation problems, such as isolation between radio frequency lines, isolation of vias, isolation of reference ground lines, and so on.
  • the isolation radiation adjustment sub-module 70382 is used to solve the isolation problem of space radiation, such as the isolation of spatial coupling, the isolation problem between radio frequency antennas, and so on.
  • the NR communication link 1020 when used as the transmitting end, if you want to transmit the signal generated by the VCO in the radio frequency chip 10201 in the NR communication link 1020 to the antenna array 10206, it needs to pass through the front-end switch 10202 and the intermediate switch mode. Group 10203, back-end switch 10204, antenna switch 10205 and other devices.
  • the above conduction paths can be arranged and combined to obtain 8 different conduction paths, namely the conduction path LP11 composed of B3PATH1 and L11, the conduction path LP12 composed of B3PATH2 and L12, and the conduction path LP21 composed of B3PATH1 and L12 , Conduction path LP22 composed of B3PATH2 and L12, conduction path LP31 composed of B3PATH1 and L13, conduction path LP32 composed of B3PATH2 and L13, conduction path LP41 composed of B3PATH1 and L14, and conduction path LP42 composed of B3PATH2 and L14 .
  • conduction path NP11 composed of N78PATH1 and N21
  • conduction path NP12 composed of N78PATH2 and N21
  • conduction path NP21 composed of N78PATH1 and N22
  • Conduction path NP22 composed of N78PATH2 and N22
  • conduction path NP31 composed of N78PATH1 and N23
  • conduction path NP32 composed of N78PATH2 and N23
  • conduction path NP41 composed of N78PATH1 and N24
  • conduction path NP42 composed of N78PATH2 and N24 .
  • the conduction isolation adjustment sub-module 70381 determines which conduction path is specifically selected to transmit the signal by controlling the switches of the above different conduction paths, as shown by the dotted line in FIG. 10.
  • the working process of the conductive isolation adjustment sub-module 70381 is as follows; if the conductive path LP11 in the LTE communication link 1010 and the conductive path NP11 from the NR communication link 1020 to the NR communication link 1020 are used in dual connection, and the LTE communication link 1010 is used as the transmitting end
  • the NR communication link 1020 is used as the receiving end and scans the two communication links through the interference self-scanning module 7032, and knows that there is ENDC coexistence interference in the frequency band combination, then the adaptive anti-interference control module 7036 will call the isolation adjustment module 7038
  • the conduction isolation adjustment module 70381 in the LTE communication link switches the conduction path LP11 in the LTE communication link to the other seven conduction paths.
  • the isolation value between the conductive paths is calculated, and then the adjusted isolation value is compared with the preset isolation threshold. If it is determined that the adjusted isolation value exceeds the range of the preset isolation threshold, Then continue to switch the conduction path in the LTE communication link to other conduction paths until the adjusted isolation value meets the requirements of the wireless performance index.
  • the conduction path in the NR communication link can also be switched, for example, the conduction path NR11 may be switched to another conduction path with high isolation and low interference (for example, the conduction path NR31, etc.).
  • the isolation display module 7037 will display the isolation value of the current communication link and related conduction paths in real time to facilitate testing and adjustment.
  • the above-mentioned switching path instruction can be completed by controlling the switch array through the drive configuration program.
  • the adjustment principle of the conduction path follows the following principles: select a conduction path with low interference and high isolation as the adjustment conduction path.
  • FIG. 11 is a block diagram of the antenna layout structure when the radiation isolation adjustment sub-module adjusts the radiation path in the communication link.
  • the antenna controlled by the 4G radio frequency chip includes: 4G antenna 1, 4G Antenna 2, 4G antenna 3 and 4G antenna 4; 5G RF chip controlled antennas include: NR1 antenna 1, NR1 antenna 2, NR1 antenna 3 and NR1 antenna 4; and NR2 antenna 1, NR2 antenna 2, NR2 antenna 3 and NR2 antenna 4; Among them, in the self-transmitting and self-receiving test mode, the antenna controlled by the 4G radio frequency chip is used as the transmitting antenna, and the antenna controlled by the 5G radio frequency chip is used as the receiving antenna.
  • the working process of the radiation isolation adjustment sub-module 70382 is as follows: If it is detected that the isolation value between the 4G antenna 1 and the NR1 antenna 4 exceeds the preset isolation threshold range, and the interference self-scanning module 7031 also scans this frequency band combination. If ENDC coexists interference, the adaptive anti-interference control module 7036 will call the isolation adjustment module 7038 to switch the 4G antenna 1 antenna to other transmitting antennas controlled by the 4G RF chip (for example, 4G antenna 3), and calculate the isolation value after switching , And then compare the isolation value after switching with the preset isolation threshold. If it is determined that the adjusted isolation value still exceeds the preset isolation threshold range, then continue to switch the antenna until it meets the requirements of the wireless performance index .
  • the adjustment of each antenna follows the following principles: choose an antenna with high isolation, high correlation, and low coupling as the adjustment antenna.
  • FIG. 12a is a structural block diagram of a radiation path in an LTE communication link
  • FIG. 12b is a structural block diagram of a radiation path in an NR communication link.
  • the radiation path in the LTE communication link can be adjusted, and the radiation path in the NR communication link can also be adjusted.
  • the radiation path between the antenna 4 and the antenna A in the radiation path switch module 1205 is adjusted to the radiation path between the antenna 3 and the antenna B, so that The signal is transmitted to the antenna 1203 through the adjusted radiation path, which changes the transmitting antenna of the LTE communication link; or, through the control of the radiation isolation adjustment sub-module in the NR communication link, the radiation path switch module 1210
  • the radiation path between the antenna 2 and the antenna C is adjusted to the radiation path between the antenna 1 and the antenna D, so that the signal is transmitted to the antenna 1206 through the adjusted radiation path, and the transmitting antenna of the NR communication link is changed.
  • the adjusted radiation isolation degree is less than the preset threshold value of the radiation isolation degree, and the communication quality is improved.
  • the activation signal input by the control chip enables the EN-DC interference detection module to detect and determine whether there is interference and the type and frequency band combination of interference; the interference self-scanning module uses the interference frequency band to scan the communication link , To obtain the interference detection parameters, and provide an important basis for the isolation test module to calculate the isolation value between the communication link and the current interference link; after the interference determination module obtains the isolation value, determine the communication link Is the interference caused by isolation? If the isolation of the communication link exceeds the preset threshold of isolation, it means that the interference is caused by the isolation.
  • the adaptive anti-interference control module is called to adjust the communication link. Until the requirements of wireless performance indicators are met, the communication quality of the communication link is improved, and the data throughput of the terminal is provided.
  • the seventh embodiment of the present application relates to an electronic device, which includes:
  • One or more processors are One or more processors;
  • the storage device has one or more programs stored thereon, and when the one or more programs are executed by one or more processors, the one or more processors implement any one of the communication link adjustment methods described above.
  • the eighth embodiment of the present application relates to a computer-readable medium on which a computer program is stored, and when the program is executed by a processor, any one of the communication link adjustment methods described above is realized.
  • Such software may be distributed on a computer-readable medium, and the computer-readable medium may include a computer storage medium (or a non-transitory medium) and a communication medium (or a transitory medium).
  • the term computer storage medium includes volatile and non-volatile memory implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data). Sexual, removable and non-removable media.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassette, tape, magnetic disk storage or other magnetic storage device, or Any other medium used to store desired information and that can be accessed by a computer.
  • a communication medium usually contains computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)

Abstract

本申请公开了一种通信链路的调整方法及装置、电子设备、可读介质,该方法包括:获取当前多连接的通信链路的干扰信息;依据干扰信息判断通信链路的隔离度值是否超出隔离度预设阈值的范围;若是,则依据隔离度值和隔离度调整映射表,自适应地调整通信链路,直至隔离度值满足无线性能指标的要求为止;其中,隔离度调整映射表包括隔离度值与路径参数的映射关系。

Description

通信链路的调整方法及装置、电子设备、可读介质
相关申请的交叉引用
本申请基于申请号为201911422406.8、申请日为2019年12月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本公开实施例涉及通信技术领域,特别涉及一种通信链路的调整方法及装置、电子设备、可读介质。
背景技术
随着5G终端的发展和演进,移动终端能够支持的通信制式和通信频段越来越多。为了满足用户的需求,同一个移动终端要求同时兼容低、中、高频等多个通信频段。为了追求更高的数据传输数率,移动终端需要支持各通信制式同时工作,并且该移动终端还需要工作在不同的通信频段上。
发明内容
本公开实施例提供一种通信链路的调整方法,方法包括:获取当前多连接的通信链路的干扰信息;依据干扰信息判断通信链路的隔离度值是否超出隔离度预设阈值的范围;若是,则依据隔离度值和隔离度调整映射表,自适应地调整通信链路,直至隔离度值满足无线性能指标的要求为止;其中,隔离度调整映射表包括隔离度值与路径参数的映射关系。
本公开实施例提供一种通信链路的调整装置,其包括:获取模块,用于获取当前多连接的通信链路的干扰信息;判断模块,用于依据所述干扰信息判断通信链路的隔离度值是否超出隔离度预设阈值的范围;调整模块,用于在确定 通信链路的隔离度值超出隔离度预设阈值的范围时,依据隔离度值和隔离度调整映射表,自适应地调整通信链路,直至隔离度值满足无线性能指标的要求为止;其中,隔离度调整映射表包括隔离度值与路径参数的映射关系。
本公开实施例提供一种电子设备,其包括:一个或多个处理器;存储装置,其上存储有一个或多个程序,当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现第一方面所描述的方法。
本公开实施例提供一种计算机可读介质,其上存储有计算机程序,程序被处理器执行时实现第一方面所描述的方法。
附图说明
附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开,并不构成对本公开的限制。通过参考附图对详细示例实施例进行描述,以上和其它特征和优点对本领域技术人员将变得更加显而易见,在附图中:
图1为目前常用的一种终端的天线结构的示意图。
图2为本申请中的第一实施方式中的一种通信链路的调整方法流程图。
图3为本申请中的第二实施方式中的一种通信链路的调整方法流程图。
图4为本申请中的第三实施方式中的一种通信链路的调整方法流程图。
图5为本申请中的第四实施方式中的一种通信链路的调整方法流程图。
图6为本申请中的第五实施方式中的一种通信链路的调整装置方框图。
图7为本申请中的第六实施方式中的一种终端的结构方框图。
图8为本申请中的第六实施方式中的毫米波通信链路和LTE通信链路之间存在干扰时的结构方框图。
图9为本申请中的第六实施方式中的干扰自扫描模块对通信链路进行扫描时的参数结构方框图。
图10为本申请中的第六实施方式中的传导隔离度调整子模块对通信链路中的传导路径进行调整的结构方框图。
图11为本申请中的第六实施方式中的辐射隔离度调整子模块对通信链路中的辐射路径进行调整时的天线布局结构方框图。
图12a为本申请中的第六实施方式中的LTE通信链路中的辐射路径的结构 方框图。
图12b为本申请中的第六实施方式中的NR通信链路中的辐射路径的结构方框图。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
发明人发现:在一个设备内同时支持两种以上的无线技术,例如,长期演进(Long Term Evolution,LTE)、第五代移动通信技术(The 5th Generation Mobile Communication Technology,5G)、无线局域网(Wireless Local Area Networks,WLAN)和蓝牙(Blue tooth,BT)等时,由于在移动终端内部,采用两组不同的射频处理单元和链路来分别处理两个不同的通信信号,例如LTE信号和5G信号,而从芯片收发器发出的信号,传输到天线前端的过程中,以上两组链路是需要同时工作的,即LTE在发射信号时,5G可能在接收信号;5G在发射信号时,LTE可能在接收信号。此时,终端存在谐波干扰和互调干扰的问题,由于射频路径比较多,在移动终端内部存在LTE和5G两种通信连接时,如果LTE的路径和5G的路径靠得比较近,两者之间的空间的隔离度就会很差,容易引起谐波干扰或互调干扰,影响5G的灵敏度,进而影响通信性能,导致客户体验度差。
因为智能终端可支持的频段很多,每个频段(例如:频段B1)又分为主集和分集,多输入多输出通道(Multi Input Multi Output,MIMO)还分为主MIMO 通道和分MIMO通道。图1是一种目前常用的终端的天线结构示意图,如图1所示,该终端包括多种不同的天线,例如可支持2G/3G/4G通信制式的主天线106、分集天线1011和分集天线1012;支持毫米波通信制式的阵列天线1021和阵列天线1022;支持WIFI/第五代移动通信技术(The 5th Generation Mobile Communication Technology,5G)通信制式的天线103;支持MIMO通信制式的天线1031、天线1032、天线1033和天线1034;支持WIFI/2.4G/蓝牙通信制式的天线104;支持SUB 6G通信制式的主天线105和分集天线107;支持全球定位系统(Global Positioning System,GPS)通信制式的天线108等。
由于每个通道所经过的物理器件不同,又会分成很多不同的分支传输路径。而由于射频通道和路径的增多,各通道走线及布局在有限的PCB板卡上存在一定的隔离度小的问题。尤其在双连接通信(E-UTRAN-NR Dual Connectivity,EN-DC)场景中,长期演进(Long Term Evolution,简称为LTE)的频段和新空口(New Radio,简称为NR)频段之间的谐波干扰和互调干扰,对通信质量的影响都非常大,如果传输路径选择不对,导致与相邻路径的隔离度差,则LTE通信链路和NR通信链路的灵敏度就会产生恶化,进而影响用户的通信性能,直接影响吞吐量和用户感受。其中,E-UTRA表示第四代移动通信技术(The 4th Generation Mobile Communication Technology,4G)中的无线接入网,即进化的UMTS陆地无线接入网(Evolved-UMTS Terrestrial Radio Access),其中的UMTS为通用移动通信系统(Universal Mobile Telecommunication System,UMTS)。
鉴于目前技术现状的短板,因此需要一种通信链路的调整方法,能够在检测到存在谐波干扰或互调干扰时,可以及时对通信链路进行调整,以消除谐波干扰或互调干扰,提升数据吞吐量,并改善用户的语音通话质量。
为了更好地理解本申请,下面将结合附图,详细描述根据本申请实施例的内存耗尽诊断方法、装置、系统和存储介质,应注意,这些实施例并不是用来限制本申请公开的范围。
本申请的第一实施方式涉及一种通信链路的调整方法。图2是示出根据本申请实施例的通信链路的调整方法的流程图,该方法可应用于通信链路调整装置。如图2所示,该方法可包括如下步骤。
在步骤201中,获取当前多连接的通信链路的干扰信息。
其中,干扰信息包括通信链路的信道、路径、功率中的任意一种或几种。 其中的信道可以包括通信链路在进行通信时所使用的信道,当通信链路在该信道上接收信号时,可能会受到干扰频段的影响。
在一个具体实现中,在无线性能指标下降时,依据通信链路中被打开的频段和信道,获取通信链路的工作频段和接收信号强度;若接收信号强度不在信号预设阈值的范围之内,且,工作频段落在互调频段或谐波频段上,则确定工作频段是干扰信息中的干扰频段。其中,无线性能指标至少包括数据吞吐量和通话音频质量中的任意一项。
需要说明的是,在被打开的频段和信道中,可能存在产生干扰的频段。其中的无线性能指标下降,具体的表象可能是检测到通信链路的数据传输吞吐量相较于无干扰时的数据传输吞吐量降低了;也可能是用户在进行语音通话时,发现有明显的卡顿;还可能是通信链路所采用的通讯制式主分集的信号强度变弱了,用户界面中所显示的信号格数小于3格等等。
以上对于无线性能指标下降的说明,仅是举例说明,可依据实际情况具体判定,其他未说明的无线性能指标下降情况也在本申请的保护范围之内,在此不再赘述。
在步骤202中,依据干扰信息判断通信链路的隔离度值是否超出隔离度预设阈值的范围。
需要说明的是,若确定通信链路的隔离度值超出隔离度预设阈值的范围,则执行步骤203;否则,结束该流程。
在步骤203中,依据隔离度值和隔离度调整映射表,自适应地调整通信链路,直至隔离度值满足无线性能指标的要求为止。
其中,隔离度调整映射表包括隔离度值与路径参数的映射关系。
需要说明的是,以上对于隔离度调整映射表中所包含的参数仅是举例说明,可依据实际情况具体设定,其他未说明的参数也在本申请的保护范围之内,在此不再赘述。
在本实施方式中,通过依据干扰信息判断通信链路的隔离度值是否超出隔离度预设阈值的范围,若超出,则依据隔离度值和隔离度调整映射表,自适应地对通信链路进行调整,直至调整后的隔离度满足无线性能指标的要求为止,减少了多连接的通信链路之间的相互干扰,提升了数据吞吐量,同时改善了用户的语音通话质量,提高用户体验度。
本申请的第二实施方式涉及一种通信链路的调整方法。第二实施方式与第一实施方式大致相同,主要区别之处在于:依据干扰信息对通信链路进行检测,获得干扰检测参数;再根据该干扰检测参数计算获得通信链路和当前干扰链路之间的隔离度值。
图3是本实施方式中的通信链路的调整方法流程图。通过以下步骤来实现通信链路的调整,具体包括步骤301-步骤305。
在步骤301中,获取当前多连接的通信链路的干扰信息。
需要说明的是,本实施例中的步骤301与第一实施方式中的步骤201的内容相同,在此不再赘述。
在步骤302中,依据干扰信息对通信链路进行检测,获得干扰检测参数。
在一个具体实现中,通过自发自收的测试方式,依据干扰信息对通信链路进行检测,获得干扰检测参数。
例如,采用LTE通信链路作为发送端,采用NR通信链路作为接收端,则通过对NR通信链路中的信道、路径、功率中的任意一种或几种进行测试,获得干扰检测参数。其中,干扰检测参数至少包括信噪比(Signal Noise Ratio,SNR)、参考信号接收功率(Reference Signal Receiving Power,RSRP)和接收的信号强度指示(Received Signal Strength Indication,RSSI)中的任意一种。
在步骤303中,依据干扰检测参数,计算获得通信链路和当前干扰链路之间的隔离度值。
例如,当干扰检测参数包括RSRP时,某个智能终端有S1、S2、S3、S4四根天线,则S21表示天线S2相对于天线S1的隔离度,S31表示天线S3相对于天线S1的隔离度,S41表示天线S4相对于天线S1的隔离度。通过软件控制,只打开天线S1时,采集到的RSRP值记为R1;同时打开天线S1和天线S2时,采集到的RSRP值记为R2,则天线S1和天线S2之间的隔离度通过以下公式计算获得,即隔离度S21=(R2-R1)T,其中的T表示RSRP和隔离度之间的相关系数。
在步骤304中,判断隔离度值是否超出隔离度预设阈值的范围。
若通信链路的隔离度值超出隔离度预设阈值的范围,则执行步骤305;否则,结束该流程。
在步骤305中,在通信链路的隔离度值超出隔离度预设阈值的范围时,依 据隔离度值和隔离度调整映射表,自适应地调整通信链路,直至隔离度值满足无线性能指标的要求为止。
需要说明的是,本实施例中的步骤304~305,与第一实施方式中的步骤202~203的内容相同,在此不再赘述。
在本实施方式中,通过采用干扰频段对通信链路进行扫描和测试,获得干扰检测参数,进而根据该干扰检测参数计算获得隔离度值,使得能够依据该隔离度值判断是否需要对通信链路进行调整,能够针对干扰,对通信链路进行调整,快速消除干扰对通信的影响,保证了通信质量。
本申请的第三实施方式涉及一种通信链路的调整方法。第三实施方式与第二实施方式大致相同,主要区别之处在于:在计算获得隔离度之后,还需要判断干扰是否是由隔离度引起的,若是,则建立隔离度调整映射表,以方便后续查找隔离度调整映射表,获得相应的需要进行调整的路径参数。
如图4所示,通信链路的调整方法包括:
在步骤401中,获取当前多连接的通信链路的干扰信息。
在步骤402中,依据干扰信息对通信链路进行检测,获得干扰检测参数。
在步骤403中,依据干扰检测参数,计算获得通信链路和当前干扰链路之间的隔离度值。
需要说明的是,本实施例中的步骤401~403,与第二实施方式中的步骤301~303的内容相同,在此不再赘述。
在步骤404中,判断干扰是否是由隔离度引起。
若确定干扰是由隔离度引起的,则执行步骤405,否则,结束该流程。
例如,设定隔离度预设阈值是-20DB,当测试获得的通信链路的隔离度小于-20DB时,表明通信链路之间的隔离度良好,无需进行通信链路的调整;否则,当测试获得的通信链路的隔离度大或等于-20DB时,表明通信链路之间的隔离度差,需要进行通信链路的调整,则执行步骤405,以提升通信链路之间的隔离度。
在步骤405中,建立隔离度调整映射表。
在一些情形中,隔离度调整映射表可以包括隔离度值与路径参数的映射关系,还可以包括通信链路的工作频段、工作频点、相关配置参数等,根据以上参数和相关的映射关系,可以通过查找该隔离度调整映射表,快速获得需要调 整的路径,提升通信链路的调整效率。
在步骤406中,判断隔离度值是否超出隔离度预设阈值的范围。
若通信链路的隔离度值超出隔离度预设阈值的范围,则执行步骤407;否则,结束该流程。
在步骤407中,在通信链路的隔离度值超出隔离度预设阈值的范围时,依据隔离度值和隔离度调整映射表,自适应地调整通信链路,直至隔离度值满足无线性能指标的要求为止。
需要说明的是,本实施例中的步骤406~407,与第二实施方式中的步骤304~305的内容相同,在此不再赘述。
在一些实施例中,在执行完步骤407之后,还包括:若检测到新的无线配置参数,则更新隔离度调整映射表;其中,无线配置参数包括工作频段、带宽、资源块数、时隙数和调制方式中的至少一种。
例如,若检测到当前调整后的通信链路所使用的工作频段和调整方式在隔离度调整映射表中没有,或对应的路径参数不是最新的,则使用测试获得的最新的路径参数、工作频段和调整方式,更新该隔离度调整映射表。
本实施方式中,通过建立隔离度调整映射表,使得在对通信链路进行调整时,能够快速的查找到需要调整的通信链路的路径参数,进而以及该路径参数,对通信链路进行调整,提升调整速度,提高通信质量,以满足用户的需求,提升用户体验度。
本申请的第四实施方式涉及一种通信链路的调整方法。第四实施方式与第一实施方式大致相同,主要区别之处在于:通过隔离度类型和对应的隔离度值,对通信链路进行分类自适应地调整。
如图5所示,通信链路的调整方法包括:
在步骤501中,获取当前多连接的通信链路的干扰信息。
需要说明的是,本实施例中的步骤501与第一实施方式中的步骤201的内容相同,在此不再赘述。
在步骤502中,依据干扰信息对通信链路进行检测,确定隔离度类型。
其中,隔离度类型包括传导隔离度和辐射隔离度。隔离度是为了尽量减少各种干扰对通信链路的影响所采取的抑制干扰措施,而其中的传导隔离度是 指在传导路径上,两条或多条传导路径之间的隔离度;例如,通过通路A和通路B都能够将产生的信号传导给接收机,则通路A和通路B之间的隔离度就被称为传导隔离度;辐射隔离度是指信号在不同的发送天线或接收天线之间进行传输所产生的隔离度。
在步骤503中,依据隔离度类型,对隔离度类型对应的隔离度值进行计算,获得计算结果。
其中,计算结果包括传导隔离度值超出传导隔离度预设阈值的范围,和/或,辐射隔离度值超出辐射隔离度预设阈值的范围。
例如,将传导隔离度和传导隔离度预设阈值做差值,然后将获得的差值与预设阈值做比较,或者直接比较传导隔离度和传导隔离度预设阈值的大小,获得计算结果;同样地,对于辐射隔离度的计算过程,与传导隔离度的计算过程一样。
在步骤504中,若确定计算结果是传导隔离度值超出传导隔离度预设阈值的范围,则依据传导隔离度值和隔离度调整映射表,自适应地调整通信链路,直至传导隔离度值满足无线性能指标的要求为止。
需要说明的是,依据传导隔离度值和隔离度调整映射表,自适应地调整通信链路,可以解决PCB板卡级别的隔离度问题,例如射频线之间的隔离,过孔的隔离,参考地线的隔离等。
例如,测试获得传导路径A的传导隔离度-40DB,超出了传导隔离度预设阈值(例如,设置传导隔离度预设阈值为-30DB)的范围,则将传导路径A切换到隔离度大、干扰小的传导路径B上,若经过测试,调整后的传导隔离度小于-30DB,则结束传导路径的调整;否则,继续进行传导路径的切换调整,直至传导隔离度值满足无线性能指标的要求为止。
在步骤505中,若确定计算结果是辐射隔离度值超出辐射隔离度预设阈值的范围,则依据辐射隔离度值和隔离度调整映射表,自适应地调整通信链路,直至辐射隔离度值满足无线性能指标的要求为止。
需要说明的是,依据辐射隔离度值和隔离度调整映射表,自适应地调整通信链路,可以解决空间辐射的隔离度问题,例如空间耦合的隔离,射频天线之间的隔离度问题等。
例如,测试获得辐射路径M的辐射隔离度-25DB,超出了辐射隔离度预设阈 值(例如,设置辐射隔离度预设阈值为-35DB)的范围,则将辐射路径M切换到隔离度大、干扰小的辐射路径N上,若经过测试,调整后的辐射隔离度小于-35DB,则结束辐射路径的调整;否则,继续进行辐射路径的切换调整,直至辐射隔离度值满足无线性能指标的要求为止。
在步骤506中,若确定计算结果是辐射隔离度值超出辐射隔离度预设阈值的范围和传导隔离度值超出传导隔离度预设阈值的范围,则依据传导隔离度值、辐射隔离度值和隔离度调整映射表,自适应地调整通信链路,直至辐射隔离度值满足无线性能指标的要求为止。
因同时满足辐射隔离度值超出辐射隔离度预设阈值的范围和传导隔离度值超出传导隔离度预设阈值的范围,这两个条件,则需对通信链路中的传导路径和辐射路径同时进行调整,直至辐射隔离度值满足无线性能指标的要求为止。
需要说明的是,在一些实施例中,对通信链路进行调整时,还可以实时显示路径参数和隔离度值。例如,实时显示当前通信链路的隔离度值和相关传导路径等信息,以方便测试调整。
在一些实施例中,多连接的通信链路至少包括基于第四代移动通信技术的通信链路、基于第五代移动通信技术的通信链路、基于全球定位系统的通信链路、基于蓝牙通信技术的通信链路和基于WIFI通信技术的通信链路中的任意两种。
例如,多连接通信链路可以包括以下任意两种通信链路:LTE通信链路、NR通信链路、GPS通信链路、WIFI通信链路等等多种支持不同通信协议类型的链路。
在本实施方式中,通过采用干扰频段对通信链路进行扫描和测试,确定隔离度类型;然后依据不同的隔离度类型,对隔离度类型对应的隔离度值进行计算,获得计算结果,在该计算结果是几种不同的情况时,依据隔离度调整映射表,自适应的对通信链路进行调整,使得可以更精确的完成对通信链路的调整,降低不同类型的干扰,直至干扰被消除,提升了通信质量,进一步提升用户体验度。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无 关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请的第五实施方式涉及一种通信链路的调整装置,该装置的具体实施可参见第一实施方式的相关描述,重复之处不再赘述。值得说明的是,本实施方式中的装置的具体实施也可参见第二至第四实施方式的相关描述,但不局限于以上实施例,其他未说明的实施例也在本装置的保护范围之内。
图6为本实施方式中的通信链路的调整装置的方框图。如图6所示,该通信链路的调整装置主要包括:获取模块601用于获取当前多连接的通信链路的干扰信息;判断模块602用于依据干扰信息判断通信链路的隔离度值是否超出隔离度预设阈值的范围;调整模块603用于在确定通信链路的隔离度值超出隔离度预设阈值的范围时,依据隔离度值和隔离度调整映射表,自适应地调整通信链路,直至隔离度值满足无线性能指标的要求为止;其中,隔离度调整映射表包括隔离度值与路径参数的映射关系。
在本实施方式中,通过获取模块获取到干扰信息,再使用判断模块依据该干扰信息判断通信链路的隔离度值是否超出隔离度预设阈值的范围,若超出,则使用调整模块依据隔离度值和隔离度调整映射表,自适应地对通信链路进行调整,直至调整后的隔离度满足无线性能指标的要求为止,减少了多连接的通信链路之间的相互干扰,提升了数据吞吐量。
不难发现,本实施方式为与第一或第二实施方式相对应的装置实施例,本实施方式可与第一或第二实施方式互相配合实施。第一或第二实施方式中提到的相关技术细节在本实施方式中依然有效,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在第一或第二实施方式中。
值得一提的是,本实施方式中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施方式中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施方式中不存在其它的单元。
本申请的第六实施方式涉及一种终端。该终端包括第五实施方式中的通信链路的调整装置。
图7是一种包括通信链路的调整装置的终端的结构示意图。如图7所示,终端包括控制芯片701和通信链路调整装置702。其中,通信链路调整装置702具体可包括:EN-DC干扰检测模块7031、干扰自扫描模块7032、干扰判断模块7033、隔离度测试模块7034、EN-DC扫描参数存储模块7035、自适应抗干扰控制模块7036、隔离度显示模块7037、隔离度调整模块7038、传导隔离度调整子模块70381和辐射隔离度调整子模块70382。
需要说明的是,其中的EN-DC表示的是演进通用无线接入网络和下一代网络的EN-DC场景,在EN-DC场景中,用户设备(User Equipment,UE)同时支持两条通信链路的通信,分别为LTE通信链路和NR通信链路。
由于在该终端中,包括两种不同通信制式的通信链路,即LTE通信链路和NR通信链路,由此可能产生EN-DC干扰,通过其中的通信链路的调整装置可以起到抗干扰的作用,进而消除谐波干扰或互调干扰,提升终端的数据吞吐量,同时改善用户的语音通话质量。
例如,如图8所示,存在LTE通信链路8020和毫米波(Millimeter Wave,MMW)通信链路8010两种不同通信制式的链路在同时工作。如图8所示,MMW通信链路8010包括依次连接的滤波器801、乘法器802、低噪声放大器803、中频发射信号804、低噪声放大器805、乘法器806、低噪声放大器807和天线阵列808。LTE通信链路8020包括次级低噪声放大器813、低噪声放大器812、滤波器811、多频编织器810和接收/发射天线809。
当LTE通信链路作为发送端以大功率进行发射,且MMW通信链路8010作为接收端进行接收时,LTE通信链路8020的发射噪声会落到MMW通信链路8010的中频频率范围内,LTE通信链路8020中的多次谐波会导致MMW通信链路8010中的中频信号(Intermediate Frequency,IF)变差,造成MMW通信链路8010的接收信号恶化,也会让MMW通信链路8010的接收端的误差向量幅度(Error Vector Magnitude,EVM)或SNR等值产生恶化。而当MMW通信链路8010作为发送端进行发射,且,LTE通信链路8020作为接收端进行接收时,MMW通信链路8010中的中频发射信号804会对LTE通信链路8020中的低噪声放大器(Low Noise Amplifier,LNA)812、滤波器811以及多频编织器810等造成影响,使得LTE通信链路8020产生接收恶化。当通信链路调整装置703中的EN-DC干扰检测模块7031检测到当前通信的信号质量不达标,或,使用该终端的用户觉得 当前的通信信号质量较差时,通信链路调整装置703会先检测MMW通信链路8010和LTE通信链路8020,确定哪个是主发射端(即干扰端),哪个是主接收端(即受干扰端)。当MMW通信链路8010和LTE通信链路8020的工作频段落在互调频段或谐波频段上时,即MMW通信链路8010和LTE通信链路8020之间存在谐波干扰或互调干扰时,需要启动自适应抗干扰控制模块7036,来对通信链路进行调整,使其隔离度能够满足无线性能指标的要求,例如,使通信链路之间的隔离度满足60dB的要求。
EN-DC干扰检测模块7031,用于获取终端当前的EN-DC干扰情况。如图7所示,其中,EN-DC干扰检测模块7031和控制芯片701、干扰自扫描模块7032以及干扰判断模块7033相连接,其中的控制芯片可以是射频芯片,也可以是基带芯片。当终端工作于EN-DC双连接场景时,首先检测是否存在干扰,若存在干扰,确定该干扰的类型及频段组合情况。例如,在检测到无线性能指标下降时,即检测到通信链路的数据传输吞吐量相较于无干扰时的数据传输吞吐量降低时,或发现用户在通话的过程中有明显的卡顿时,或通信链路所采用的通讯制式主分集的信号强度变差时(例如,将获取到的信号强度与无干扰情况下的信号强度参考值做比较,若该信号强度小于信号强度参考值,则表示信号强度变差了),会依据通信链路中被打开的频段和信道,获取通信链路的工作频段和接收信号强度;若接收信号强度不在信号预设阈值的范围之内,且,通信链路的工作频段落在互调频段或谐波频段上,则确定该工作频段是干扰频段。
例如,终端中同时存在LTE通信链路和NR通信链路,其中LTE通信链路采用B3频段,而NR通信链路采用N78频段而造成的干扰;或,LTE通信链路采用B41频段,而NR通信链路采用N41频段而造成的干扰;或,终端中同时存在WIFI通信链路和NR通信链路,其中NR通信链路采用N79频段而造成的干扰;或,终端中同时存在MMW通信链路和GPS通信链路而造成的干扰等。控制芯片在检测到无线性能指标恶化时,会发送激活信号给EN-DC干扰检测模块,使得EN-DC干扰检测模块可以依据通信链路中被打开的频段和信道,确定干扰频段以及该干扰所对应的基本无线配置信息,例如,通过检测蜂窝通信链路和NR通信链路的信号电平、RSSI或SNR中的任意一项或几项信息来确定是否存在干扰。若接收信号强度不在信号预设阈值的范围之内,且,工作频段落在互调频段或谐波频段上,则确定工作频段是干扰频段,即该通信链路的工作频段是EN-DC干扰 点。
干扰自扫描模块7032,用于采用干扰频段对通信链路进行扫描,获得干扰检测参数。如图7所示,干扰自扫描模块7032与EN-DC干扰检测模块7031和干扰判断模块7033相连接。在一些情形中,干扰自扫描模块7032还与终端内置的天线单元和射频收发机相连接,通过自发自收的测试方式,采用干扰频段对通信链路的信道、路径、功率中的任意一种或几种测试,获得干扰检测参数。其中,干扰检测参数至少包括SNR、RSRP和RSSI中的任意一种。例如,基于智能终端的自发自收测试模式,采用EN-DC谐波检测算法,对LTE通信链路和NR通信链路进行检测,获得干扰检测参数,例如RSSI、RSRP或SNR中的任意一项的变化值,再将该变化值和对应参考值进行比较,获得比较结果,以及该比较结果,判断LTE通信链路和NR通信链路之间的干扰类型。例如,在无干扰时,分别对LTE通信链路和NR通信链路进行测试,对应获得输入的信号电平的参考值都是为-85DB;当设置LTE通信链路作为发送端、NR通信链路作为接收端时,测试获得NR通信链路的信号电平值是-87DB,则输入的信号电平的变化值是2DB,则表明当前两个链路之间存在2DB的谐波干扰;当设置NR通信链路作为发送端、LTE通信链路作为接收端时,测试获得LTE通信链路的信号电平值是-90DB,则输入的信号电平的变化值是5DB,则表明当前两个链路之间存在5DB的互调干扰。
如图9所示,依据通信链路的无线配置参数,干扰自扫描模块7032对通信链路进行扫描,获得干扰检测参数。其中,无线配置参数包括通信链路所使用的频段、频点、带宽、RB数、时隙数、调制方式和多流秩数率等多个参数。干扰检测参数包括参考信号接收功率、接收的信号强度指示以及信噪比等参数。依据通信链路的无线配置参数,结合干扰类型(互调干扰或谐波干扰),使得干扰自扫描模块7032对通信链路进行扫描,获得干扰检测参数,隔离度测试模块7034能够依据该干扰检测参数,计算获得通信链路和当前干扰链路之间的隔离度值。
隔离度测试模块7034,用于依据干扰检测参数,计算获得通信链路和当前干扰链路之间的隔离度值。通过控制通信链路或当前干扰链路中的各个开关(例如,射频芯片与中间级LNA之间的开关等),将某些通路或天线打开或关闭,测试获得存在干扰时的干扰检测参数,进而根据该干扰检测参数,计算获得通信链路和干扰链路之间的隔离度值。
例如,某个智能终端有S1、S2、S3、S4四根天线,则S21表示天线S2相对于天线S1的隔离度,S31表示天线S3相对于天线S1的隔离度,S41表示天线S4相对于天线S1的隔离度。通过软件控制,只打开天线S1时,采集到的RSRP值记为R1;同时打开天线S1和天线S2时,采集到的RSRP值记为R2,则天线S1和天线S2之间的隔离度通过以下公式计算获得,即隔离度S21=(R2-R1)T,其中的T表示RSRP和隔离度之间的相关系数。
同样地,当四根天线同时工作时,由于天线之间的距离各不一样,则天线之间的相关性和耦合性也不一样。天线S2、天线S3和天线S4都会对天线S1产生影响。在测试时,通过软件控制,先将四根天线的开关同时打开,测试获得RSRP值,表示为R1_234。然后,使用以下公式计算获得存在四根天线时,S1的隔离度值,即使用公式S1-234=(R1_234-R1)T,其中,R1表示只打开天线S1时采集到的RSRP值,S1-234表示天线S2、天线S3和天线S4相对于天线S1的隔离度。通过控制射频链路中的多组天线的打开或关闭,控制终端进入不同的发射和接收模式,计算获得对应模式下的辐射隔离度值。
干扰判断模块7033,用于判断通信链路之间的干扰是否由隔离度引起,若通信链路的隔离度超出隔离度预设阈值的范围,则需要调用自适应抗干扰控制模块7036。例如,设定隔离度预设阈值是-20DB,当测试获得的通信链路的隔离度小于-20DB时,表明通信链路之间的隔离度良好,无需进行通信链路的调整;否则,当测试获得的通信链路的隔离度大或等于-20DB时,表明通信链路之间的隔离度差,需要进行通信链路的调整,以提升通信链路之间的隔离度,消除干扰。
EN-DC扫描参数存储模块7035,用于存储通过干扰自扫描模块7032扫描获得的干扰检测参数和无干扰时各个通信链路的干扰检测参数的参考值。EN-DC扫描参数存储模块7035与干扰自扫描模块7032和自适应抗干扰控制模块7036相连接。
需要说明的是,其中的干扰检测参数的参考值,是终端在无EN-DC双连接干扰的情况下,测试获得的各信号参数值,以方便在不同的测试环境中,被自适应抗干扰控制模块7036调用。如果在当前的网络环境下,测试获知有新的无线配置参数,则需要更新隔离度调整映射表,以供后续查找参考和调用。
隔离度显示模块7037,用于实时显示当前各通道和天线之间的隔离度情 况,如图7所示,隔离度显示模块7037与自适应抗干扰控制模块7036相连接。
例如,显示通信链路中的路径参数和隔离度值等。当用户选择不同的工作模式时,或研发人员进行调试时,通过该隔离度显示模块7037可看到通信链路中的隔离度值的变化情况,进而对通信链路进行主动的动态调整或切换,选择隔离度大,干扰小的路径作为当前的工作路径,以提升语音质量和数据吞吐率。例如,终端中同时存在LTE通信链路和NR通信链路,其中LTE通信链路采用B3频段,而NR通信链路采用N78频段时,会存在比较大的干扰,测试获得两个链路之间的隔离度值低于-10DB,并且当前的下行吞吐率低于预设门限值,当用户通过隔离度显示模块7037查看到该情况时,可以主动切换当前的NR通信链路的工作频段为N41,以降低因隔离度问题带来的EN-DC干扰,提升下行吞吐率。
自适应抗干扰控制模块7036,用于无线性能对比判断及对通信链路中存在的干扰进行调整和控制。如图7所示,该自适应抗干扰控制模块7036与EN-DC扫描参数存储模块7035、隔离度显示模块7037和隔离度调整模块7038相连接。在干扰判断模块7033依据扫描和测试的结果确定存在干扰时,会调用隔离度调整模块7038对通信链路进行调整。在对该通信链路调整完成后,会判断调整后的无线性能指标是否达到最佳,若是,则结束链路调整,若否,则继续调用隔离度调整模块7038来进行对通信链路的调整。
隔离度调整模块7038,用于隔离度的调整优化。由于每个射频频段可划分为5个通道,即TX、PRX、DRX、PRX-MIMO和DRX-MIMO通道。由于每个射频通道由于经过的各级射频前端有源器件的不同,因此,会形成不同的射频路径(例如,形成4至20个分支射频路径),即每个频段的射频路径可能有20多个。不同EN-DC频段组合之后(例如,终端中同时存在LTE通信链路和NR通信链路,其中LTE通信链路采用B3频段,而NR通信链路采用N78频段时),会形成非常多的射频路径和传导路径。由于在PCB硬件板卡上的布局不同,因此,不同的射频路径之间或传导路径之间,会存在信号串扰,导致隔离度非常小,此时,若进行双连接测试时,无线性能指标会受到很大程度上的影响。隔离度调整模块7038通过软件控制多级开关电路,对射频路径或传导路径进行选择和切换,使得受到EN-DC干扰的通信链路,能够将工作路径由隔离度小的通道切换到隔离度高的通道中,改善通信质量。如图7所示,隔离度调整模块7038与自适应抗干扰控制模块7036相连接,该隔离度调整模块7038可以包括隔离度传导调 整子模块70381和隔离度辐射调整子模块70382。
其中,隔离度传导调整子模块70381用于解决EN-DC的板级隔离度问题,例如射频线之间的隔离,过孔的隔离,参考地线的隔离等。隔离度辐射调整子模块70382用于解决空间辐射的隔离度问题,例如空间耦合的隔离,射频天线之间的隔离度问题等。
在一个具体实现中,图10是隔离度传导调整子模块对通信链路中的传导路径进行调整的结构方框图。如图10所示,当LTE通信链路1010作为发送端时,若想将LTE通信链路1010中的射频芯片10101中的压控振荡电路(Voltage-Controlled Oscillator,VCO)所产生的信号传输给天线阵列10106,需要经过前端开关10102、中间级开关模组10103、后端开关10104和天线切换开关10105等多种器件。同样地,当NR通信链路1020作为发送端时,若想将NR通信链路1020中的射频芯片10201中的VCO所产生的信号传输给天线阵列10206,需要经过前端开关10202、中间级开关模组10203、后端开关10204和天线切换开关10205等多种器件。
其中,射频芯片10101和前端开关10102之间存在两条传导路径,分别是B3PATH1和B3PATH2;而前端开关10102和中间级开关模组10103之间存在四条不同的传导路径,分别是L11、L12、L13和L14;将以上传导路径进行排列组合,可获得8条不同的传导路径,即由B3PATH1和L11组成的传导路径LP11、由B3PATH2和L12组成的传导路径LP12、由B3PATH1和L12组成的传导路径LP21、由B3PATH2和L12组成的传导路径LP22、由B3PATH1和L13组成的传导路径LP31、由B3PATH2和L13组成的传导路径LP32、由B3PATH1和L14组成的传导路径LP41和由B3PATH2和L14组成的传导路径LP42。同样的,NR通信链路1020中也存在对应的8条不同的传导路径,即由N78PATH1和N21组成的传导路径NP11、由N78PATH2和N21组成的传导路径NP12、由N78PATH1和N22组成的传导路径NP21、由N78PATH2和N22组成的传导路径NP22、由N78PATH1和N23组成的传导路径NP31、由N78PATH2和N23组成的传导路径NP32、由N78PATH1和N24组成的传导路径NP41和由N78PATH2和N24组成的传导路径NP42。相应的,中间级开关模块和后端开关10204以及天线切换开关10205和天线阵列10206之间,都存在不同的传导路径,如图10所示,因此,信号在传导的过程中,可以选择多种不同的传导路径来传输信号。传导隔离度调整子 模块70381通过控制以上不同的传导路径的开关,来确定具体选择哪条传导路径来传输信号,具体如图10中的虚线所示。
传导隔离度调整子模块70381的工作过程如下;若采用LTE通信链路1010中的传导路径LP11和NR通信链路1020至的传导路径NP11一起双连接工作,并且LTE通信链路1010作为发送端,NR通信链路1020作为接收端,通过干扰自扫描模块7032对这两个通信链路进行扫描,获知该频段组合中存在ENDC共存干扰,则自适应抗干扰控制模块7036会调用隔离度调整模块7038中的传导隔离度调整模块70381,将LTE通信链路中的传导路径LP11切换到其他7条传导路径上。调整后计算获得传导路径之间的隔离度值,然后,再将调整后的隔离度值和隔离度预设阈值相比较,若确定调整后的隔离度值超出了隔离度预设阈值的范围,再继续将LTE通信链路中的传导路径切换到其他传导路径上,直至调整后的隔离度值满足无线性能指标的要求为止。同样地,也可以对NR通信链路中的传导路径进行切换,例如,将传导路径NR11切换到其他隔离度大、干扰小的传导路径上(例如传导路径NR31等)。同时,隔离度显示模块7037会实时显示当前通信链路的隔离度值和相关传导路径等信息,以方便测试调整。具体实现时,上述切换路径的指令可通过驱动配置程序控制开关阵列完成。传导路径的调整原则遵循以下原则:选择干扰小,隔离度高的传导路径作为调整传导路径。
在一个具体实现中,图11是辐射隔离度调整子模块对通信链路中的辐射路径进行调整时的天线布局结构方框图,在图11中,4G射频芯片控制的天线包括:4G天线1、4G天线2、4G天线3和4G天线4;5G射频芯片控制的天线包括:NR1天线1、NR1天线2、NR1天线3和NR1天线4;以及NR2天线1、NR2天线2、NR2天线3和NR2天线4;其中,在自发自收测试模式下,采用4G射频芯片控制的天线作为发射天线,采用5G射频芯片控制的天线作为接收天线。
辐射隔离度调整子模块70382的工作过程如下:如果检测到4G天线1和NR1天线4之间的隔离度值超过隔离度预设阈值范围,并且干扰自扫描模块7031也扫描到此频段组合存在有ENDC共存干扰,则自适应抗干扰控制模块7036会调用隔离度调整模块7038,将4G天线1天线切换至4G射频芯片控制的其他发射天线(例如4G天线3),计算获得切换后的隔离度值,然后将切换后的隔离度值和隔离度预设阈值相比较,若确定调整后的隔离度值仍然超过隔离度预设 阈值范围,则继续进行天线的切换,直到满足无线性能指标的要求为止。对于各个天线的调整遵循以下原则:选择隔离度大,相关性大,耦合性小的天线作为调整天线。
在一些情形中,如图12a和图12b所示,图12a是LTE通信链路中的辐射路径的结构方框图;图12b是NR通信链路中的辐射路径的结构方框图。在存在干扰时,可以调整LTE通信链路中的辐射路径,也可以调整NR通信链路中的辐射路径。例如,通过LTE通信链路中的辐射隔离度调整子模块的控制,将辐射路径开关模块1205中的天线4和天线A之间的辐射路径调整到天线3和天线B之间的辐射路径,使得信号经过调整后的辐射路径,传输到天线1203上去,改变了LTE通信链路的发射天线;或者,通过NR通信链路中的辐射隔离度调整子模块的控制,将辐射路径开关模块1210中的天线2和天线C之间的辐射路径调整到天线1和天线D之间的辐射路径,使得信号经过调整后的辐射路径,传输到天线1206上去,改变了NR通信链路的发射天线。使得调整后的辐射隔离度小于辐射隔离度预设阈值,提升通信质量。
在本实施方式中,通过控制芯片输入的激活信号,使得EN-DC干扰检测模块能够检测确定是否存在干扰以及干扰的类型和频段组合情况;通过干扰自扫描模块采用干扰频段对通信链路进行扫描,获得干扰检测参数,为隔离度测试模块计算通信链路和当前干扰链路之间的隔离度值,提供了重要的依据;在干扰判断模块获取到隔离度值后,判断通信链路之间的干扰是否由隔离度引起,若通信链路的隔离度超出隔离度预设阈值的范围,则表示该干扰时由隔离度引起的,调用自适应抗干扰控制模块,对通信链路进行调整,直至满足无线性能指标的要求为止,使得通信链路的通信质量得到提升,提供了终端的数据吞吐量。
本申请的第七实施方式涉及一种电子设备,其包括:
一个或多个处理器;
存储装置,其上存储有一个或多个程序,当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现上述任意一种通信链路的调整方法。
本申请的第八实施方式涉及一种计算机可读介质,其上存储有计算机程序,程序被处理器执行时实现上述任意一种通信链路的调整方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其它数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其它存储器技术、CD-ROM、数字多功能盘(DVD)或其它光盘存储、磁盒、磁带、磁盘存储或其它磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其它的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其它传输机制之类的调制数据信号中的其它数据,并且可包括任何信息递送介质。
本文已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施例相结合描述的特征、特性和/或元素,或可与其它实施例相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。

Claims (15)

  1. 一种通信链路的调整方法,包括:
    获取当前多连接的通信链路的干扰信息;
    依据所述干扰信息判断所述通信链路的隔离度值是否超出隔离度预设阈值的范围;
    如果所述通信链路的隔离度值超出隔离度预设阈值的范围,则依据所述隔离度值和隔离度调整映射表,自适应地调整通信链路,直至所述隔离度值满足无线性能指标的要求为止;其中,所述隔离度调整映射表包括所述隔离度值与路径参数的映射关系。
  2. 根据权利要求1所述的方法,其中,所述依据所述干扰信息判断所述通信链路的隔离度值是否超出隔离度预设阈值的范围,包括:
    依据所述干扰信息对所述通信链路进行检测,获得干扰检测参数;
    依据所述干扰检测参数,计算获得所述通信链路和当前干扰链路之间的隔离度值;
    判断所述隔离度值是否超出隔离度预设阈值的范围。
  3. 根据权利要求2所述的方法,其中,所述依据所述干扰信息对所述通信链路进行检测,获得干扰检测参数,包括:
    通过自发自收的测试方式,依据所述干扰信息对所述通信链路进行检测,获得所述干扰检测参数。
  4. 根据权利要求2所述的方法,其中,所述干扰信息包括所述通信链路的信道、路径、功率中的任意一种或几种。
  5. 根据权利要求2所述的方法,其中,所述干扰检测参数至少包括信噪比、参考信号接收功率和接收的信号强度指示中的任意一种。
  6. 根据权利要求2所述的方法,其中,在所述依据所述干扰检测参数,计 算获得所述通信链路和当前干扰链路之间的隔离度值之后,所述判断所述隔离度值是否超出隔离度预设阈值的范围之前,还包括:
    判断干扰是否是由隔离度引起;
    如果干扰是由隔离度引起,则建立述所述隔离度调整映射表。
  7. 根据权利要求6所述的方法,其中,所述依据所述隔离度值和隔离度调整映射表,自适应地调整通信链路,直至所述隔离度值满足无线性能指标的要求为止之后,还包括:
    若检测到新的无线配置参数,则更新所述隔离度调整映射表;
    其中,所述无线配置参数包括工作频段、带宽、资源块数、时隙数和调制方式中的至少一种。
  8. 根据权利要求1所述的方法,其中,所述依据所述干扰信息判断所述通信链路的隔离度值是否超出隔离度预设阈值的范围,包括:
    依据所述干扰信息对所述通信链路进行检测,确定隔离度类型;其中,所述隔离度类型包括传导隔离度和辐射隔离度;
    依据所述隔离度类型,对所述隔离度类型对应的隔离度值进行计算,获得计算结果,所述计算结果包括传导隔离度值超出传导隔离度预设阈值的范围,和/或,辐射隔离度值超出辐射隔离度预设阈值的范围。
  9. 根据权利要求1所述的方法,其中,所述获取当前多连接的通信链路的干扰信息,包括:
    在所述无线性能指标下降时,依据所述通信链路中被打开的频段和信道,获取所述通信链路的工作频段和接收信号强度;
    若所述接收信号强度不在信号预设阈值的范围之内,且,所述工作频段落在互调频段或谐波频段上,则确定所述工作频段是所述干扰信息中的干扰频段。
  10. 根据权利要求9所述的方法,其中,所述无线性能指标至少包括数据吞吐量和通话音频质量中的任意一项。
  11. 根据权利要求1至10中任一项所述的方法,其中,所述多连接的通信链路至少包括基于第四代移动通信技术的通信链路、基于第五代移动通信技术的通信链路、基于全球定位系统的通信链路、基于蓝牙通信技术的通信链路和基于WIFI通信技术的通信链路中的任意两种。
  12. 根据权利要求1至10中任一项所述的方法,其中,所述方法还包括:
    实时显示所述路径参数和所述隔离度值。
  13. 一种通信链路的调整装置,其包括:
    获取模块,用于获取多连接的通信链路的干扰信息;
    判断模块,用于依据所述干扰信息判断所述通信链路的隔离度值是否超出隔离度预设阈值的范围;
    调整模块,用于在确定所述通信链路的隔离度值超出隔离度预设阈值的范围时,依据所述隔离度值和隔离度调整映射表,自适应地调整通信链路,直至所述隔离度值满足无线性能指标的要求为止;其中,所述隔离度调整映射表包括所述隔离度值与路径参数的映射关系。
  14. 一种电子设备,其包括:
    一个或多个处理器;
    存储装置,其上存储有一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现根据权利要求1至12任意一项所述的方法。
  15. 一种计算机可读介质,其上存储有计算机程序,所述程序被处理器执行时实现根据权利要求1至12任意一项所述的方法。
PCT/CN2020/142374 2019-12-31 2020-12-31 通信链路的调整方法及装置、电子设备、可读介质 WO2021136525A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2022008244A MX2022008244A (es) 2019-12-31 2020-12-31 Procedimiento y aparato de ajuste de enlace de comunicacion, dispositivo electronico y medio legible.
US17/789,560 US20230035731A1 (en) 2019-12-31 2020-12-31 Communication Link Adjustment Method and Apparatus, Electronic Device, and Readable Medium
EP20909653.6A EP4087144A4 (en) 2019-12-31 2020-12-31 Communication link adjustment method and apparatus, electronic device, and readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911422406.8A CN112118024B (zh) 2019-12-31 2019-12-31 通信链路的调整方法及装置、电子设备、可读介质
CN201911422406.8 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021136525A1 true WO2021136525A1 (zh) 2021-07-08

Family

ID=73795465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142374 WO2021136525A1 (zh) 2019-12-31 2020-12-31 通信链路的调整方法及装置、电子设备、可读介质

Country Status (5)

Country Link
US (1) US20230035731A1 (zh)
EP (1) EP4087144A4 (zh)
CN (1) CN112118024B (zh)
MX (1) MX2022008244A (zh)
WO (1) WO2021136525A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113595567A (zh) * 2021-07-23 2021-11-02 华中科技大学 一种抗干扰通信方法及系统
CN117852487A (zh) * 2024-03-07 2024-04-09 西安军捷新创电子科技有限公司 基于通道隔离的数据采集电路的设计方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112118024B (zh) * 2019-12-31 2021-10-19 中兴通讯股份有限公司 通信链路的调整方法及装置、电子设备、可读介质
CN113078922B (zh) * 2021-03-23 2022-08-09 维沃移动通信有限公司 射频电路、射频电路的控制方法和装置、电子设备
CN113038558B (zh) * 2021-03-23 2023-03-14 上海移远通信技术股份有限公司 连接状态切换方法、电子设备和计算机可读存储介质
CN114205857B (zh) * 2021-12-10 2024-01-09 深圳创维数字技术有限公司 5G与WiFi兼容的调试方法、设备及存储介质
CN115441919B (zh) * 2022-11-08 2023-03-24 成都方昇科技有限公司 一种基于通信抗干扰的方法及相关装置
CN117155844B (zh) * 2023-10-27 2024-01-09 北京华翔联信科技股份有限公司 一种通信链路选择方法、系统、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130315116A1 (en) * 2012-05-23 2013-11-28 Wistron Neweb Corp. Rf circuit system and method of increasing the isolation between two wireless communications standards within an rf circuit system
CN106025548A (zh) * 2015-03-25 2016-10-12 英特尔Ip公司 用于控制和调谐天线隔离以支持载波聚合的天线卡
CN106656283A (zh) * 2016-12-21 2017-05-10 三维通信股份有限公司 一种智能化分布式天线的实现方法
CN108183725A (zh) * 2018-01-17 2018-06-19 广东欧珀移动通信有限公司 天线共存互扰处理方法、装置、存储介质及电子设备
CN108963424A (zh) * 2018-07-13 2018-12-07 Oppo广东移动通信有限公司 天线匹配控制方法和终端设备
CN112118024A (zh) * 2019-12-31 2020-12-22 中兴通讯股份有限公司 通信链路的调整方法及装置、电子设备、可读介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8693950B2 (en) * 2006-03-23 2014-04-08 Broadcom Corporation Method and system for transmit power control techniques to reduce mutual interference between coexistent wireless networks device
US8072896B2 (en) * 2008-04-18 2011-12-06 Telefonaktiebolaget L M Ericsson (Publ) Adaptive coexistence between different wireless communication systems
US8340578B2 (en) * 2009-10-05 2012-12-25 Apple Inc. Methods and apparatus for enhanced coexistence algorithms in wireless systems
US8599709B2 (en) * 2011-02-10 2013-12-03 Apple Inc. Methods and apparatus for wireless coexistence based on transceiver chain emphasis
CN109039397B (zh) * 2018-08-01 2021-03-19 维沃移动通信有限公司 一种移动终端的天线电路、控制方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130315116A1 (en) * 2012-05-23 2013-11-28 Wistron Neweb Corp. Rf circuit system and method of increasing the isolation between two wireless communications standards within an rf circuit system
CN106025548A (zh) * 2015-03-25 2016-10-12 英特尔Ip公司 用于控制和调谐天线隔离以支持载波聚合的天线卡
CN106656283A (zh) * 2016-12-21 2017-05-10 三维通信股份有限公司 一种智能化分布式天线的实现方法
CN108183725A (zh) * 2018-01-17 2018-06-19 广东欧珀移动通信有限公司 天线共存互扰处理方法、装置、存储介质及电子设备
CN108963424A (zh) * 2018-07-13 2018-12-07 Oppo广东移动通信有限公司 天线匹配控制方法和终端设备
CN112118024A (zh) * 2019-12-31 2020-12-22 中兴通讯股份有限公司 通信链路的调整方法及装置、电子设备、可读介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113595567A (zh) * 2021-07-23 2021-11-02 华中科技大学 一种抗干扰通信方法及系统
CN117852487A (zh) * 2024-03-07 2024-04-09 西安军捷新创电子科技有限公司 基于通道隔离的数据采集电路的设计方法及系统
CN117852487B (zh) * 2024-03-07 2024-05-28 西安军捷新创电子科技有限公司 基于通道隔离的数据采集电路的设计方法及系统

Also Published As

Publication number Publication date
CN112118024A (zh) 2020-12-22
CN112118024B (zh) 2021-10-19
EP4087144A1 (en) 2022-11-09
US20230035731A1 (en) 2023-02-02
MX2022008244A (es) 2022-08-08
EP4087144A4 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
WO2021136525A1 (zh) 通信链路的调整方法及装置、电子设备、可读介质
US10917159B2 (en) Beam information feedback method and apparatus, and configuration information feedback method and apparatus
US11895054B2 (en) Information transmission method, apparatus, and device
US10200168B2 (en) Systems and methods for adaptation in a wireless network
JP5467158B2 (ja) 無線通信システムと複数の無線通信モジュールの共存方法
WO2021057215A1 (zh) 传输路径选择方法、装置及存储介质
CN103582047B (zh) 无线电通信设备和用于控制无线电通信设备的方法
US9277508B2 (en) Method, control apparatus and communication system for dynamically adjusting transmit power
JP4921590B2 (ja) アップリンク−ダウンリンク間の不平衡を示すパラメータに基づく無線リソース管理
US11483868B2 (en) Access method, network device, and mobile communication terminal
EP2824976B1 (en) Uplink signal sending and receiving method and device in a wireless communication system
WO2017137058A1 (en) Communication device and method therein for selecting cell and radio access technology in wireless communication network
KR20120011467A (ko) 무선 통신 시스템에서 상향링크 전력 제어 방법 및 장치
KR20120094222A (ko) 재구성 가능한 안테나를 사용하는 기지국에서 인접 기지국 사이의 하향링크 간섭을 제거하기 위한 방법 및 장치
US11765605B2 (en) Radio control based on operational performance feedback
US20230283428A1 (en) Srs transmission method, terminal, and storage medium
US20200091988A1 (en) Communication device and method for selecting a beam direction
US9942827B2 (en) Dynamic crossband link method and wireless extender
US20100222070A1 (en) Communication system including a femto base station and a communication terminal, and a communication method thereof
RU2452093C2 (ru) Способ и сеть, подходящие для увеличения sinr канала передачи данных
CN115276908B (zh) 一种无线通信方法及设备、存储介质
CN113475151A (zh) 基于两种不同参考信号的服务小区激活的自动增益控制
US10405255B2 (en) Dynamic crossband link method and wireless extender
US20220201626A1 (en) Information reporting method and apparatus, and user equipment
CN115707059A (zh) 传输路径的控制方法、装置、终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020909653

Country of ref document: EP

Effective date: 20220801