WO2021057215A1 - 传输路径选择方法、装置及存储介质 - Google Patents

传输路径选择方法、装置及存储介质 Download PDF

Info

Publication number
WO2021057215A1
WO2021057215A1 PCT/CN2020/103169 CN2020103169W WO2021057215A1 WO 2021057215 A1 WO2021057215 A1 WO 2021057215A1 CN 2020103169 W CN2020103169 W CN 2020103169W WO 2021057215 A1 WO2021057215 A1 WO 2021057215A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission path
path
transmission
transmission paths
combination
Prior art date
Application number
PCT/CN2020/103169
Other languages
English (en)
French (fr)
Inventor
沈少武
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20869020.6A priority Critical patent/EP3965474A4/en
Priority to US17/624,236 priority patent/US20220386216A1/en
Publication of WO2021057215A1 publication Critical patent/WO2021057215A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/19Self-testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/123Evaluation of link metrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath

Definitions

  • This application relates to a method, device and storage medium for selecting a transmission path.
  • a terminal must be compatible with most of the functions of cellular, wireless fidelity (WIFI), Bluetooth, and global positioning system (Global Positioning System, GPS) at the same time, covering the requirements of 2G/3G/4G/5G in the frequency band ,
  • the frequency band ranges from 600M-6GHZ.
  • MIMO multiple-input multiple-output
  • CA multi-carrier aggregation
  • the terminal will have more than 30 frequency bands and more than 10 antennas.
  • Each frequency band such as the B1 frequency band, is divided into main set and diversity.
  • each channel will be divided into more than 4-20 branch paths, so there may be more than 20 RF transmission paths in each frequency band; if CA is formed between different frequency bands, such as B1-B3-B7, Coupled with 2*2MIMO or 4*4MIMO, the radio frequency transmission path of a combination of CA and MIMO frequency bands for a high-speed data transmission service will increase exponentially. For example, for 2G/3G/4G/5G projects, there may be more than 500 transmission paths. .
  • This application provides a method, device and storage medium for selecting a transmission path to realize flexible configuration of a transmission path.
  • the embodiment of the present invention provides a transmission path selection method, including:
  • An embodiment of the present invention also provides a transmission path selection device, including a memory and a processor, the memory stores a program, and when the program is read and executed by the processor, the transmission path described in any of the embodiments is implemented. Method of choosing.
  • the embodiment of the present invention also provides a computer-readable storage medium, the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to realize any The transmission path selection method described in the embodiment.
  • FIG. 1 is a schematic diagram of a radio frequency path provided by an embodiment of the present invention
  • Figure 2 is a path link diagram of a radio frequency front-end module provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a path from a terminal radio frequency chip to an antenna according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a method for selecting a transmission path according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a terminal provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a driving code call provided by an embodiment of the present invention.
  • FIG. 7 is a flowchart of another transmission path selection method provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a transmission path selection device provided by an embodiment of the present invention.
  • FIG. 9 is a block diagram of a computer-readable storage medium according to an embodiment of the present invention.
  • the sub-6G frequency band with multi-stage MIMO or high-order carrier aggregation scheme is adopted. Because the antenna of the sub-6G frequency band has the advantages of low difficulty and wide coverage, it is the mainstream solution of 5G. But because of SUB The 6G frequency band is relatively narrow, so 4*4 MIMO is necessary to achieve throughput expansion. At the same time, it also requires some radio frequency device switching and combining devices, such as 3-pole 3-throw (3 Pole 3 Throw, 3P3T), and double-pole 4-throw (Double Pole 3 Throw, 3P3T).
  • 4G and 5G have a lot of PATH (paths), and the path loss of different PATHs is different, the receiving (Receive, RX) performance is very different, and the channel equalization is poor. If the performance of the four channels of a 4*4 MIMO is unbalanced , The received Reference Signal Receiving Power (RSRP) signal level will be inconsistent. In severe cases, it will directly affect the MIMO throughput performance under dual-stream or quad-stream, that is, the modulation cannot be improved, the bit error rate is high, and the throughput rate is increased. Don't go.
  • RSRP Reference Signal Receiving Power
  • OTA Over-the-Air
  • TRP total radiated power
  • TIS total isotropic sensitivity
  • the reference ground of the terminal antenna changes, which affects the overall effect of the antenna.
  • the grip of the human hand will change the radiation pattern of the antenna, from omnidirectional radiation to abnormal radiation. Abnormal radiation will change the correlation between antennas.
  • the human hand as a large conductive medium, will also absorb electromagnetic waves in the corresponding direction, causing electromagnetic losses in the radiation direction.
  • the strongest absorption loss can be as high as 75%, which will affect the quality of communication.
  • the holding by human hands will also affect the antenna efficiency of multiple antennas, which in turn affects the transmission distance and quality of antenna signals.
  • GSM Global System for Mobile
  • the presence of a human hand will cause the terminal to receive a signal-to-noise ratio (SNR) change.
  • SNR signal-to-noise ratio
  • the signal-to-noise ratio with a hand is significantly lower than the signal-to-noise ratio without a hand.
  • the coupling resonance will increase. Due to the coupling effect, the coupling Q value will increase, the radiation efficiency of the antenna will decrease, and the antenna efficiency will also decrease. Through the metal gap, breaking the integrity of the frame can change its radiation efficiency and reduce the occasional coupling Q value.
  • the metal frame antenna realizes the antenna resonance design of the corresponding frequency point by grounding and slotting. If the human hand holds the slotted point during the holding process, or because the human body itself is a dielectric, it will also change the grounding environment of the antenna, then the metal antenna The performance will deteriorate significantly. Therefore, the performance in different postures cannot be balanced and satisfied at the same time, which is also a big problem.
  • the antenna path makes the radio frequency transmission path switch to a path that is less affected by human hands. Most terminal designs do not take this problem into consideration. In related technologies, there are mainly the following solutions: 1. A fixed single radio frequency link path cannot be selected and adjusted. 2. Antenna Switch Diversity (ASDIV) antenna switching path, only the antenna path can be switched. 3. The free combination path connected by the radio frequency switch, the better path cannot be fixedly selected. 4. The radio frequency drive configuration is also fixed, and it is not possible to adaptively adjust and select the chip port voltage controlled oscillator (VCO) and radio frequency path PATH.
  • VCO chip port voltage controlled oscillator
  • the loss of each path by calculating the path loss from the chip VCO to each test seat, the loss of each path, signal strength value, signal balance, isolation, mutual tuning wave interference, etc. can be accurately detected. Scanning and storing multiple path parameter values, so as to select and adjust the optimal path. It can also be called in real time according to the current frequency band and antenna situation and the holding posture, so that the terminal can always be in the optimal radio frequency and antenna transmission path to improve the user’s Call quality and data throughput performance.
  • an implementation of the present invention provides a transmission path selection method, including:
  • Step 401 Determine performance parameters of multiple transmission paths in a terminal
  • Step 402 Select a transmission path or a combination of transmission paths according to the performance parameters of the multiple transmission paths, current service requirements and usage scenarios; wherein, the combination of transmission paths refers to multiple transmission paths.
  • Step 403 Switch to the selected transmission path or combination of transmission paths.
  • the performance parameter of the transmission path includes at least one of the following: system loss value, harmonic value, intermodulation value, signal strength value, efficiency value of the corresponding frequency point of the transmission path, specific absorption rate ( Specific Absorption Rate, SAR) value, air download parameters in different holding postures.
  • determining the performance parameters of the multiple transmission paths in the terminal includes: scanning the transmission path, and performing a loss test, an interference test, an antenna signal strength test, an antenna efficiency test, etc. on the scanned transmission path.
  • automatic gain control (AGC) level scanning and RSRP self-scanning, or research and development signaling test scanning are used to test the system loss values of all transmission paths. Obtain harmonic value and intermodulation value through interference test.
  • AGC automatic gain control
  • switching to the selected transmission path or combination of transmission paths includes: invoking the drive configuration program corresponding to the selected transmission path or combination of transmission paths.
  • the method further includes: detecting the current signal quality status information, and when the preset signal quality requirements are not met, renewing according to the performance parameters of the multiple transmission paths, current service requirements and usage scenarios The transmission path is selected until the preset signal quality requirement is met.
  • the method further includes displaying performance parameters of the currently selected transmission path or combination of transmission paths. Display performance parameters for the user to directly view the performance parameters, so that the user can select the transmission path.
  • the method further includes: when the current signal quality does not meet the preset signal quality requirement and is related to the holding posture, prompting the user to change the holding posture. It is also possible to directly detect the holding posture in other ways, and prompt the user to change the holding posture when the holding posture is inappropriate.
  • the current signal quality that does not meet the preset signal quality requirement and is related to the holding posture includes: the current air download parameter is less than the preset air download parameter threshold.
  • the selecting a transmission path or a combination of transmission paths according to the performance parameters of the multiple transmission paths, current service requirements and usage scenarios includes:
  • the transmission path combination with the least interference is selected.
  • the selecting a transmission path or a combination of transmission paths according to the performance parameters of the multiple transmission paths, current service requirements and usage scenarios includes:
  • the solution provided in this embodiment realizes the flexible configuration of the transmission path, which can be configured according to requirements to meet business requirements.
  • Fig. 5 is a block diagram of a mobile terminal provided in an embodiment of the present invention.
  • the mobile terminal 1 includes a radio frequency path detection unit L1, a path loss test unit L2, a path interference test unit L3, an antenna path detection unit L4, a storage unit L5, an adaptive selection and switching unit L6, feedback detection and The display unit L7, the antenna unit L8, the baseband chip L9, and the radio frequency chip L10.
  • the radio frequency path detection unit L1 is configured to scan the radio frequency channel and the antenna path, and store the scanned transmission path in the storage unit L5 in the form of a list.
  • the path of radio frequency transmission starts from the VCO port of the radio frequency chip, passes through the front-level switch, the intermediate low-noise amplifier (LNA) switch module, the back-level switch, ASDIV switch, 3P3T switch, etc., to the test base and front end. antenna.
  • LNA intermediate low-noise amplifier
  • Each frequency band is divided into radio frequency transmission (Transmit, TX), primary reception (Primary RX, PRX), diversity reception (Diversity RX, DRX), primary reception-multiple input multiple output (PRX-MIMO), diversity reception-multiple Input multiple output (DRX-MIMO) 5 channels, each channel such as PRX, according to different VCO, through different multi-level switching path, the compatibility of internal and external hardware channels is different, will form different radio frequency transmission paths.
  • the path loss test unit L2 is set to test the system loss of the transmission path, and the system loss value is stored in the storage unit L5.
  • One test method is to test the system loss of all paths through AGC level scanning and RSRP self-scanning, or R&D signaling test scanning. For example, from chip port A to test point B, through path 1, system loss insertion loss is S1ab; through path 2, system loss insertion loss is S2ab; through path 3, system loss insertion loss is S3ab; through path 4, system loss The insertion loss is S4ab, and the above 4 insertion loss values are written and saved in the terminal for recall.
  • the path interference test unit L3 is set to test the interference between the transmission paths, obtain the harmonic value and the intermodulation value, and store them in the storage unit L5. For example, test the mutual winding of LTE and NR under ENDC dual connection, or the mutual winding of NR and other modules such as GPS modules.
  • LTE and NR frequency bands work in Non-Stand Alone (NSA) mode at the same time, so there are harmonics and coexistence problems.
  • the second harmonic of LTE B3 frequency band will fall into the corresponding N78 frequency band. Frequency point.
  • Intermodulation interference includes conduction and spatial coupling. If it is on-board interference, it belongs to conduction interference, and if it is interference from the whole machine, it belongs to spatial coupling interference.
  • the detected NR channel is used to calculate and select the LTE path channel with the least interference. Based on the ENDC harmonic detection algorithm sent and received by the terminal, the RSRP degradation value of the two paths in the coexistence state can be detected, and compared with the reference value to determine whether it is an interference path.
  • the spontaneous self-receiving harmonic interference algorithm can input a certain signal level in the corresponding frequency band, channel, bandwidth, resource block (RB) number, and modulation method of LTE through the radio frequency chip without the aid of a third-party instrument, such as -85DB, input a certain signal level in the corresponding frequency band, channel, bandwidth, RB number, and modulation mode of NR through the radio frequency chip, such as -85DB, at the same time, set LTE as the TX interference path, NR as the receiving interference path, and receiving scanning.
  • the NR signal level received by the terminal such as -87DB, indicates that there is currently 2DB harmonic interference; at the same time, if NR is the TX signal transmitter, LTE is the interference path of the received signal, and the LTE signal received by the scanning terminal is received.
  • Level, such as -90DB indicates that there is currently 5DB intermodulation interference.
  • the path interference test unit L3 detects the current scanning interference situation. If interference is found, the adaptive selection and switching unit L6 adjusts the transmitting and receiving paths in real time, and selects the path with low interference and high isolation as the current ENDC transmission path.
  • the antenna path detection unit L4 is set to detect the signal strength and antenna efficiency of the antenna, and store them in the storage unit L5. Detect which antenna path is used in the current frequency band. From the transmitting and receiving ports of the RF chip, the first half passes through the RF path, and the second half passes through the antenna path. Due to the ASDIV between the RF front-end circuit and multiple antennas Circuits, such as DPDT switches, 3P3T switches, etc., are compatible with other antennas, and there are SPDT switches, etc., where different antenna paths are defined as different identifiers (Identifier, ID), such as ANT1, ANT2, ANT3...
  • ANT15 by detecting the antenna transmission path of the current terminal, and judging the signal strength and antenna efficiency of each antenna, it selects the antenna path with strong signal and high efficiency. If it is a metal frame terminal, there will also be a problem of the head-hand mode. If a human hand or close to the head is detected, the antenna path can also be switched.
  • the storage unit L5 is set to store the performance parameters of the transmission path tested by the path loss test unit L2, the path interference test unit L3, and the antenna path detection unit L4, such as the system loss value of multiple paths, the harmonic value of multiple paths, Intermodulation value, signal strength value of multiple paths (such as RSRP), efficiency value of multiple antenna paths corresponding to the frequency point, specific absorption rate value and human hand influence coefficient value (in different holding postures relative to the channel strength in free space Value of a scale factor).
  • the radio frequency driver configuration program of the corresponding path is also stored, which path to choose, which path to configure, which path to restrict, and which path to coexist.
  • the radio frequency driver configuration program is completed. For example, define the driver configuration file as RFC1, RFC2, RFC3...RFC10, and call different RFC files in different scenarios, then dynamic switching and invocation of paths can be realized.
  • RFC1, RFC2, RFC3...RFC10 the procedure for calling the radio frequency driver configuration program.
  • RFCs radio frequency driver code programs
  • Each RFC represents a set of radio frequency driver configuration files, which are responsible for controlling the configuration of the radio frequency channel of the terminal.
  • each RFC is the configuration and control file of each group of transmission paths (radio frequency and antenna path), which is responsible for the mapping and work control of the radio frequency path in the terminal, and each group of radio frequency path configuration corresponds to
  • the RFC file may include one transmission path or a combination of multiple transmission paths.
  • the terminal may include N drive configuration files.
  • Each RFC control program corresponds to a set of terminal parameters, these parameters include system loss, isolation, antenna gain, harmonics and intermodulation, etc.
  • the detection module detects the current environment of the terminal, including application scenarios, interference conditions, service capability requirements and user requirements.
  • the terminal When the terminal is required to improve and optimize a service requirement, it searches for the corresponding influencing parameters, and different influencing parameters will go to Find the corresponding RFC, and then call different radio frequency path configuration and control, modify or switch the current working path of the terminal, perform characteristic configuration and selection, until the multiple parameters of the terminal can match the current business requirements, environmental requirements and users demand.
  • the storage unit L5 can also store the OTA value of the antenna in the free space of the multiple paths of the corresponding frequency band of the terminal, and then store the OTA value after adding the human hand.
  • the OTA value after adding the human hand is different from the conventional single-hand test mode, but different
  • the model value of the grip contact for example, can cover the left-hand model and the right-hand model. These modes are stored in the model storage module of the terminal through the self-test before leaving the factory, and are called by the detected different MIMO path combinations and grip postures. . If it is a new usage posture frequently used by users, it can also be established as a new parameter model for reference and call.
  • the adaptive selection and switching unit L6 is set to implement path selection and switching according to the performance parameters of the multiple transmission paths stored in the storage unit L5, current business requirements and usage scenarios.
  • the adaptive selection and switching unit L6 includes an adaptive selection module and a switching module, wherein:
  • the adaptive selection module is configured to perform a comparative search and select a transmission path or a combination of transmission paths according to the performance parameters of the transmission path, current business requirements and usage scenarios.
  • the current application scenario is a transmission scenario
  • you need to choose The RSRP of dual-stream or quad-stream channel is relatively balanced.
  • it is a channel scenario where ENDC has harmonic interference you need to choose a path with less conduction and coupling interference.
  • the switching module is configured to switch to the selected transmission path or combination of transmission paths, where it can be a general-purpose input/output (GPIO) controlled switch, or it can be a radio frequency drive code switch.
  • GPIO general-purpose input/output
  • the feedback detection and display unit L7 is set to detect the current signal quality of the terminal.
  • the performance parameters of the current transmission path are displayed , And prompt the best recommended transmission path, as well as feedback control of the grip posture.
  • the feedback detection and display unit L7 includes: a wireless performance comparison judgment module, a display unit, a feedback detection unit, and a tactile feedback control module, wherein:
  • the wireless performance comparison and judgment module is set to detect the current signal quality of the terminal and judge whether the current signal quality of the terminal meets the preset signal quality requirement.
  • the display unit is set to display the performance parameters or status information of the current transmission path, and prompt the best recommended path.
  • the display unit can also visually display the current transmission path (RF path and antenna path), and display the status of multiple transmission paths in real time.
  • Information such as loss and isolation allows R&D and debugging personnel and users to get more intuitive data and feelings, and to know the impact of the current grip posture on the signal quality, so that they can adjust to the correct grip posture.
  • the feedback detection unit is configured to start the adaptive path adjustment function according to the user's instruction to switch the transmission path, and detect the effect after adjustment until the preset signal quality requirement is reached.
  • the tactile feedback control module is respectively connected with the wireless performance comparison judgment module and the feedback display unit, and is set to feedback control of different grip postures of the terminal system.
  • the tactile feedback control module is configured to control the terminal to perform tactile feedback when it is detected that the performance in the current grip position is not optimal (for example, judged by OTA), or the signal quality does not meet the preset signal quality requirements.
  • the tactile feedback method includes one or more of the following: display feedback, vibration feedback, and voice prompt feedback, which can also be realized by using other feedback. You can use the default settings or user-defined settings.
  • the display feedback method can be used to display the display unit at the corresponding position on the side of the display screen. Appears, allowing the grip posture and signal status to be displayed to the user intuitively. If the terminal is in a call state or in a mode where the user is not directly watching the terminal display, vibration feedback or voice feedback can be used to remind the user that the current position cannot be touched, and prompt the better grip point or grip posture .
  • the antenna unit L8 is set to detect wireless signals and is also set to receive and transmit wireless signals.
  • the antenna unit L8 is connected to the radio frequency front-end module of the terminal, and is configured to receive and transmit wireless signals.
  • the baseband chip L9 is connected to the radio frequency chip L10 and is set to collect the current signal strength and display mode.
  • the baseband chip L9 is connected to the radio frequency chip L10 in the terminal, which can detect the current wireless signal strength of multiple modules in real time and feed it back to the wireless signal. Other units of signal strength, at the same time, the baseband chip L9 is also connected to multiple sensor modules and display interface modules of the terminal, and is set to detect and collect the current acceleration status and horizontal and vertical screen display status, and monitor the current user's holding posture.
  • the radio frequency chip L10 is respectively connected to the path interference test unit L3, the antenna unit L8, and the baseband chip L9, and is configured to transmit and receive multiple radio frequency paths, and is also responsible for the spontaneous transmission and reception of signals from the path interference test unit L3.
  • An embodiment of the present invention provides a transmission path selection device, including the above-mentioned radio frequency path detection unit L1, path loss test unit L2, path interference test unit L3, antenna path detection unit L4, storage unit L5, adaptive selection and switching unit L6 And feedback detection and display unit L7.
  • a transmission path selection device including the above-mentioned radio frequency path detection unit L1, path loss test unit L2, path interference test unit L3, antenna path detection unit L4, storage unit L5, adaptive selection and switching unit L6 And feedback detection and display unit L7.
  • the terminal N41 frequency band (2496MHz ⁇ 2690MHz) is 4*4MIMO, each frequency band will have 4 radio frequency transmission paths: TX, DRX, PRX-MIMO, DRX-MIMO, ID is P1, P2, P3, P4, test or actual When working, it is found that the performance of DRX-MIMO is poor, but the performance of PRX-MIMO is better. Then adaptively call P1, P2, P4, P3 path instead of P1, P2, P3, P4 path, that is, PRX-MIMO path and DRX- MIMO path exchange, to get better overall performance.
  • the terminal N41 frequency band and N78 frequency band (3300MHz ⁇ 3800MHz) are 4*4MIMO, each frequency band will have 4 radio frequency transmission paths, TX, DRX, PRX-MIMO, DRX-MIMO, N41 frequency band corresponds to four antennas A1, A2 respectively , A3, A4, and N78 frequency bands correspond to the four antennas A5, A6, A7, and A8 respectively; in circuit design, the antenna paths of the N41 frequency band and the N78 frequency band are designed to be compatible, which is realized by the antenna switch, such as SP2T, 3P3T, 4P4T and so on.
  • the antenna switch such as SP2T, 3P3T, 4P4T and so on.
  • the second harmonic of the B3 frequency band will fall on the corresponding channel frequency of the N78 frequency band, which will result in the deterioration of the receiving sensitivity of the N78 frequency band.
  • the higher the isolation between the frequency band and the LTE B3 frequency band the smaller the effect of harmonics or intermodulation as a dual connection.
  • the LTE B3 frequency band has 7 paths L1, L2, L3, L4, L5, L6, and L7.
  • the B3 frequency band TX has two G1 and G2 paths
  • the N78 frequency band PRX has NP1, NP2, NP3, and NP4. 4
  • the path interference test unit L3 will calculate all the above combinations, and then select the combined path with the least interference as the final ENDC working path.
  • the path of NR N78 has 7 paths: M1, M2, M3, M4, M5, M6, and M7, and the corresponding received signal strength RSRP or Received Signal Strength Indication (RSSI) values are R1 respectively.
  • R2, R3, R4, R5, R6, R7 if the signal strength of the original default path is R1, R2, R3, R4, respectively, unbalanced, you can switch to a more balanced path (the signal strength of the switched path They are R1, R3, R5, and R7, which are more balanced than R1, R2, R3, and R4) to improve the balance and throughput of multiple channels.
  • the transmission path is selected according to the performance parameters of the transmission path, current service requirements and usage scenarios, which can solve the current problem of inflexible radio channel configuration, reduce path loss, and improve the anti-interference between paths. It can improve the balance of multiple paths, enhance the signal strength, improve the antenna performance, and then improve the user's communication and data service performance, so as to increase the hand-held call rate and reduce the dropped call rate.
  • FIG. 7 is a flowchart of a method for selecting a transmission path according to an embodiment of the present invention. As shown in Figure 7, it includes:
  • the terminal scans and detects all transmission paths (including radio frequency channels and antenna paths), and stores the scanned transmission paths in a storage unit in the form of a list.
  • the terminal performs transmission path loss detection, transmission path interference detection, and antenna performance detection according to the foregoing transmission path list, and obtains and stores the performance parameter value of the transmission path.
  • the terminal obtains the current usage scenario and service requirements, and determines the required target performance parameters of the transmission path.
  • the user can configure the service requirements, or the terminal can detect the currently transmitted service and usage scenarios to determine the usage scenarios and service requirements.
  • the terminal performs a performance comparison search according to the target performance parameter and the stored performance parameters of multiple transmission paths, and selects one or more transmission paths.
  • the transmission path may be directly determined according to the correspondence between the pre-stored service requirements and usage scenarios and the transmission path.
  • the terminal calls the corresponding transmission path and drive configuration file according to the selected transmission path.
  • the terminal When the terminal detects that the signal quality under the current transmission path does not meet the preset signal quality requirement, it adjusts and reselects the transmission path until the signal quality meets the preset signal quality requirement or the signal quality is the best.
  • an embodiment of the present invention provides a transmission path selection device 80, which includes a memory 810 and a processor 820.
  • the memory 810 stores a program, and the program is read and executed by the processor 820. , To implement the transmission path selection method described in any one of the embodiments.
  • an embodiment of the present invention provides a computer-readable storage medium 90.
  • the computer-readable storage medium 90 stores one or more programs 910, and the one or more programs 910 can be used by one or It is executed by multiple processors to implement the transmission path selection method described in any one of the embodiments.
  • the functional modules/units in the system, and the device can be implemented as software, firmware, hardware, and appropriate combinations thereof.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, a physical component may have multiple functions, or a function or step may consist of multiple The physical components are executed cooperatively.
  • Some or all of the components may be implemented as software executed by a processor, such as a digital signal processor or a microprocessor, or as hardware, or as an integrated circuit, such as a dedicated integrated circuit.
  • Such software may be distributed on a computer-readable medium, and the computer-readable medium may include a computer storage medium (or non-transitory medium) and a communication medium (or transitory medium).
  • the term computer storage medium includes volatile and non-volatile, removable and non-removable implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data) medium.
  • Computer storage media include but are not limited to Random Access Memory (RAM), Read-Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM) , Flash memory or other memory technologies, compact disc read-only memory (CD-ROM), digital versatile disc (Digital Video Disc, DVD) or other optical disc storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic A storage device, or any other medium that can be configured to store desired information and that can be accessed by a computer.
  • Communication media generally contain computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本文公开了一种传输路径选择方法及装置、存储介质。该传输路径选择方法包括:确定终端的多个传输路径的性能参数;根据所述多个传输路径的性能参数、业务需求和使用场景,选择传输路径或传输路径组合;切换到所选择的传输路径或传输路径组合。

Description

传输路径选择方法、装置及存储介质
本申请要求在2019年09月24日提交中国专利局、申请号为201910905143.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种传输路径选择方法、装置及存储介质。
背景技术
随着第五代(5th Generation,5G)终端的发展和演进,终端制式和频段越来越多。例如一部终端要同时兼容蜂窝,无线保真(Wireless Fidelity,WIFI),蓝牙,全球定位系统(Global Positioning System,GPS)中的大部分功能,在频段上覆盖2G/3G/4G/5G的需求,频段上从600M-6GHZ不等,为了追求更高的数据传输速率,还需要多输入多输出(Multiple-Input Multiple-Output,MIMO)、多天线和多载波聚合(Carrier Aggregation,CA)技术。如图1和图2所示,终端的频段会有30多个,天线10多个,每个频段如B1频段又分为主集,分集,主MIMO和分MIMO分别有四个MIMO通道,每个通道由于物理器件的不同,又会分成4-20多个分支路径,所以每个频段的射频传输路径可能有20多个;不同频段之间,如B1-B3-B7之间如果形成CA,再加上2*2MIMO或4*4MIMO,一个高速数据传输业务的CA和MIMO频段组合的射频传输路径会成指数级增加,如2G/3G/4G/5G项目,传输路径可能多达500多条。
传输路径的增多,会导致每个频段的传输路径的不确定性,而且路径选择还都是随机和不可控的。
发明内容
本申请提供了一种传输路径选择方法、装置及存储介质,实现传输路径的灵活配置。
本发明实施例提供一种传输路径选择方法,包括:
确定终端的多个传输路径的性能参数;
根据所述多个传输路径的性能参数、业务需求和使用场景,选择传输路径或传输路径组合;
切换到所选择的传输路径或传输路径组合。
本发明实施例还提供一种传输路径选择装置,包括存储器和处理器,所述存储器存储有程序,所述程序在被所述处理器读取执行时,实现任一实施例所述的传输路径选择方法。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现任一实施例所述的传输路径选择方法。
附图说明
图1为本发明一实施例提供的一种射频路径示意图;
图2为本发明一实施例提供的一种射频前端模块路径链路图;
图3为本发明一实施例提供的一种终端射频芯片到天线路径示意图;
图4为本发明一实施例提供的一种传输路径选择方法流程图;
图5为本发明一实施例提供的一种终端示意图;
图6为本发明一实施例提供的一种驱动代码调用示意图;
图7为本发明一实施例提供的另一种传输路径选择方法流程图;
图8为本发明一实施例提供的一种传输路径选择装置示意图;
图9为本发明一实施例提供的一种计算机可读存储介质框图。
具体实施方式
下文中将结合附图对本发明实施例进行说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在一些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
为了满足5G吞吐传输要求,采用低于(SUB6G频段搭配多阶MIMO或高阶载波聚合方案,由于低于6G频段的天线具有难度低及覆盖范围广的优势,是5G的主流方案。但由于SUB 6G频带范围相对窄,所以必须要4*4MIMO才能实现吞吐率的扩展,同时还需要一些射频器件切换和合路器件,如3刀3掷(3 Pole 3 Throw,3P3T),双刀4掷(Double Pole 4 Throw,DP4T),单刀双掷(Single Pole Double Throw,SPDT)开关,双工器(DIPLEXER),三工器(TRIPLEXER)分频器等。还有一些萃取器,功分器,合路器等。而由于射频通道和路径的增多,多个通道走线及布局在有限印刷线路板(Printed Circuit Board,PCB)上已成问题,既要满足一定的兼容性要求,又要满足一定的隔离度要求。在4G无线 接入网与新无线双连接(E-UTRA NR Dual Connectivity,ENDC)下,长期演进(Long Term Evolution,LTE)和新无线(New Radio,NR)频段之间的谐波和互调影响都非常大,如果路径选择不对,隔离度就不好,LTE和NR的灵敏度就会产生恶化,进而影响用户的通信性能,直接影响吞吐量和用户感受。
如图3所示,4G和5G的PATH(路径)非常多,不同PATH的路径损耗不一样,接收(Receive,RX)性能相差大,信道均衡性差,如果一个4*4MIMO的四条通道性能不均衡,接收到的参考信号接收功率(Reference Signal Receiving Power,RSRP)信号电平将不一致,严重时直接会影响双流或四流下的MIMO吞吐性能,即调制上不去,误码率高,吞吐速率上不去。
智能终端在使用过程中,由于系统结构的复杂性,如全金属终端,金属边框终端,往往需要通过金属边框或外壳实现,而金属天线受人体效应影响较大。如低频下的空中下载(Over-the-Air,OTA)性能,在自由空间状态下,和手握状态下,可能会相差2-150DB,即手持会极大恶化终端的天线性能,进而影响到通话质量或数据传输质量。根据数据统计,即使是非金属材质终端,在人手效应下,也会有一定程度的下降(1-5DB)。即使是通过上下天线切换,仍然无法解决左右手的总辐射功率(Total Radiated Power,TRP)和总全向灵敏度(Total Isotropic sensitivity,TIS)的恶化和下降问题,原因如下:
在金属外壳或金属边框终端中,在人手持模式下,终端天线的参考地发生了变化,进而影响了天线的整体效果。
人手的握持会改变天线的辐射方向图,从全向辐射变成异型辐射。异型辐射会改变天线之间的相关性。同时,人手作为大导体介质,也会吸收对应方向上的电磁波,造成辐射方向上的电磁的损耗,当握持位置不当时,最强吸收损耗可高达75%,所以会影响通信质量。
人手的握持还会影响多个天线的天线效率,进而影响到天线信号的传输距离和质量。以全球移动通信系统(Global System for Mobile,GSM)天线为例,人手的存在会让效率下降45%。
人手握持的存在会造成终端接收信噪比(Signal to Noise Ratio,SNR)的变化,有手握持的信噪比明显低于没有手握的信噪比。
以金属边框终端为例,金属边框整体环绕终端时,其耦合谐振会增多,由于其耦合效应使耦合Q值会增大,天线的辐射效率会降低,从而天线效率也会降低。而通过其金属缺口,打破边框的完整性,可以改变其辐射效率,降低偶尔耦合Q值。金属边框天线通过接地和开槽来实现对应频点的天线谐振设计,如果人手在握持过程中,握住了开槽点,或者由于人体本身是电介质,也会改 变天线的接地环境,则金属天线的性能会发生明显的恶化。所以不同姿势下的性能不能同时兼顾和满足,也是一个很大的问题。所有的天线切换只是笼统的上下切换,而不会去检测人手的影响和天线路径的影响,所以终端的天线性能总是达不到最优,在5G终端中由于天线的增多,每个频段会用到2到4个天线,不同天线由于天线效率不一样,增益差异也很大,如果加上人手后,天线的均衡性差异更大,如何针对不同的天线效率或用手习惯,来动态调节天线路径,使得射频传输路径切换到受人手影响小的路径。大部分终端设计都没有考虑到这个问题,相关技术中,主要有以下几种方案:1.固定单一射频链路路径,无法选择和调节。2.天线开关分集(Antenna Switch Diversity,ASDIV)天线切换路径,只能切换天线路径。3.通过射频开关连接的自由组合路径,无法固定选择较优路径。4.射频驱动配置也是固定的,无法自适应匹配调整和选择芯片端口压控振荡器(Voltage Controlled Oscillator,VCO)和射频路径PATH。
本发明实施例中,计算从芯片VCO到每个测试座之间的路径损耗,可以精准地检测出每个路径的损耗,信号强度值,信号均衡性,隔离度及互调谐波干扰等,扫描存储多个路径参数值,从而进行最优路径选择和调整,还能根据当前频段和天线情况,握姿情况实时调用,使得终端可以始终处于最优的射频和天线传输路径,以提升用户的通话质量和数据吞吐性能。
如图4所示,本发明一实施提供一种传输路径选择方法,包括:
步骤401,确定终端中多个传输路径的性能参数;
步骤402,根据所述多个传输路径的性能参数、当前的业务需求和使用场景,选择传输路径或传输路径组合;其中,传输路径组合是指多个传输路径。
步骤403,切换到所选择的传输路径或传输路径组合。
在一实施例中,所述传输路径的性能参数包括以下至少之一:系统损耗值、谐波值、互调值、信号强度值、所述传输路径对应频点的效率值、比吸收率(Specific Absorption Rate,SAR)值、不同握持姿势下的空中下载参数。上述性能参数仅为示例,可以根据需要获取其他性能参数。
所述步骤401中,确定终端中多个传输路径的性能参数包括:扫描传输路径,对扫描到的传输路径进行损耗测试、干扰测试、天线信号强度测试、天线效率测试等等。在一实施例中,通过自动增益控制(Automatic Gain Control,AGC)电平扫描和RSRP自扫描,或研发信令测试扫描,测试所有传输路径的系统损耗值。通过干扰测试获得谐波值和互调值。测试方法请参考后续实施例中的描述。
在一实施例中,切换到所选择的传输路径或传输路径组合包括:调用所选 择的传输路径或传输路径组合对应的驱动配置程序。
在一实施例中,所述方法还包括:检测当前的信号质量状态信息,当不满足预设信号质量要求时,根据所述多个传输路径的性能参数、当前的业务需求和使用场景,重新选择传输路径直到满足所述预设信号质量要求。
在一实施例中,所述方法还包括,显示当前所选的传输路径或传输路径组合的性能参数。显示性能参数供用户直接查看性能参数,从而可以由用户进行传输路径的选择。
在一实施例中,所述方法还包括:当前信号质量不满足预设信号质量要求且与握持姿势有关时,提示用户改变握持姿势。也可以通过其他方式直接检测握姿,当握姿不当时,提示用户改变握持姿势。
在一实施例中,所述当前信号质量不满足预设信号质量要求且与握持姿势有关包括:当前空中下载参数小于预设空中下载参数阈值。
在一实施例中,所述根据所述多个传输路径的性能参数、当前的业务需求和使用场景,选择传输路径或传输路径组合包括:
当所述终端处于第4代无线接入网和新无线双连接(即ENDC)下时,选择干扰最小的传输路径组合。
在一实施例中,所述根据所述多个传输路径的性能参数、当前的业务需求和使用场景,选择传输路径或传输路径组合包括:
选择满足业务需求和使用场景需求的且满足损耗最小、干扰最小和信号强度最均衡中的至少之一的传输路径或传输路径组合。
本实施例提供的方案,实现了传输路径的灵活配置,可以根据需求进行配置,满足业务需求。
图5是本发明一实施例中提供的一种移动终端框图。如图5所示,该移动终端1包括射频路径检测单元L1,路径损耗测试单元L2,路径干扰测试单元L3,天线路径检测单元L4,存储单元L5,自适应选择和切换单元L6,反馈检测和显示单元L7、天线单元L8,基带芯片L9,射频芯片L10。
射频路径检测单元L1,设置为扫描射频通道和天线路径,将扫描到的传输路径以列表形式存储到存储单元L5中。
根据测试基站或仪表所连接的频段,CA和MIMO情况,扫描对应的射频通道和天线路径,也可以预先扫描好所有的传输路径,以便实时调用。射频传输的路径从射频芯片的VCO端口开始,经过前级开关,中间级低噪声放大器(Low Noise Amplifier,LNA)开关模组,后级开关,ASDIV开关,3P3T切换 开关等,直到测试座和前端天线。每个频段分为射频发射(Transmit,TX),主集接收(Primary RX,PRX),分集接收(Diversity RX,DRX),主集接收-多输入多输出(PRX-MIMO),分集接收-多输入多输出(DRX-MIMO)5个通道,每个通道如PRX,根据VCO的不同,经过的多级开关路径不同,内外部硬件通道的兼容性不同,会形成不同的射频传输路径。
路径损耗测试单元L2,设置为测试传输路径的系统损耗,将系统损耗值存储到存储单元L5。一种测试方法为:通过AGC电平扫描和RSRP自扫描,或研发信令测试扫描,测试所有的路径的系统损耗。例如,从芯片口A到测试点B,经过路径1,系统损耗插损为S1ab;经过路径2,系统损耗插损为S2ab;经过路径3,系统损耗插损为S3ab;经过路径4,系统损耗插损为S4ab,上述4个插损值写入保存在终端中以备调用。
路径干扰测试单元L3,设置为测试传输路径之间的干扰,获得谐波值和互调值,存储到存储单元L5。比如测试ENDC双连接下的LTE和NR互绕,或NR和其他模块如GPS模块的互绕等。LTE和NR频段在非独立组网(Non-Stand Alone,NSA)模式下,由于是同时工作的,所以存在谐波和共存问题,如LTE B3频段的二次谐波会落到N78频段的对应频点上。互调的干扰有传导和空间耦合两种,如果是板上的干扰,属于传导干扰,如果是整机的干扰,属于空间耦合干扰。由于射频路径比较多,在LTE和NR做双连接时,如果LTE的路径和NR的路径靠得比较近,空间的隔离度就会很差,如果LTE做发射,LTE TX的二次或多次谐波就会落入NR RX的频点范围内,影响NR的灵敏度。这里通过侦测到的NR通道,来计算和选择干扰最小的LTE路径通道。可以基于终端自发自收的ENDC谐波检测算法,检测两个路径在共存状态下的RSRP恶化值,和参考值进行比较,从而判断出是否是干扰路径。自发自收谐波干扰算法可以不借助于第三方的仪表,通过射频芯片在LTE对应频段,信道,带宽,资源块(Resource Block,RB)数,调制方式上,输入一定的信号电平,如-85DB,通过射频芯片在NR对应频段,信道,带宽,RB数,调制方式上,输入一定的信号电平,如-85DB,同时,设置LTE为TX干扰路径,NR为接收干扰路径,接收扫描终端收到的NR信号电平,如-87DB,则表明当前有2DB的谐波干扰;同时,如果NR是TX信号发射端,LTE是接收信号受干扰路径,接收扫描终端收到的LTE信号电平,如-90DB,则表明当前有5DB的互调干扰。
路径干扰测试单元L3检测当前的扫描干扰情况,如果发现干扰,自适应选择和切换单元L6实时调整发射和接收路径,选择干扰小,隔离度高的路径作为当前ENDC的传输路径。
天线路径检测单元L4,设置为检测天线的信号强度和天线效率,存储到存 储单元L5。检测当前频段的使用的是哪个天线路径,从射频芯片的发射和接收端口出来,前半部分经过的是射频路径,后半部分经过的是天线路径,由于射频前端电路到多个天线之间存在ASDIV电路,如DPDT开关,3P3T开关等,和其他天线兼容,还有存在SPDT开关等,这里不同的天线路径定义为不同的标识(Identifier,ID),如定位为ANT1,ANT2,ANT3....ANT15,通过检测当前终端的天线传输路径,并判断每个天线的信号强度,天线效率,从而选择信号强且效率高的天线路径。如果是金属边框终端,还会存在头手模式影响的问题,如果检测到人手握或靠近头部的情形,天线路径也可以切换。
存储单元L5,设置为存储路径损耗测试单元L2、路径干扰测试单元L3和天线路径检测单元L4测试所得的传输路径的性能参数,比如多个路径的系统损耗值,多个路径的谐波值,互调值,多个路径的信号强度值(比如RSRP),多个天线路径对应频点的效率值,比吸收率值和人手影响系数值(不同握持姿势下相对于自由空间下的信道强度值的一个比例系数)。同时,还存储对应路径的射频驱动配置程序,选择什么路径,配置什么路径,限制什么路径,共存哪些路径。当需要使用的频段、ENDC组合和MIMO路径组合确定后,检测当前的传输路径的性能参数是否在预设阈值范围,如果超过预设阈值范围,则需要进行自适应路径切换,切换的控制通过不同的射频驱动配置程序来完成,如定义驱动配置文件为RFC1,RFC2,RFC3...RFC10,不用的场景调用不同的RFC文件,则可以实现路径的动态切换和调用。如图6所示,为射频驱动配置程序调用过程。如图6所示,在终端内存储不同的射频驱动代码程序(Radio Frequency Driver Code Program,RFC),每个RFC代表一套射频驱动配置文件,该配置文件负责控制终端射频通道的配置,每个通道内器件及端口的打开和关闭,即每个RFC就是每组传输路径(射频及天线路径)的配置及控制文件,即负责终端内射频路径的映射和工作控制,每一组射频路径配置对应一个RFC,该RFC文件可以包含一个传输路径,也可以是多个传输路径的组合,根据N个传输路径的不同,在终端内可以包含N个该驱动配置文件。每个RFC控制程序对应一组终端参数,这些参数包括系统损耗,隔离度,天线增益,谐波和互调等。在实际应用中,检测模块检测终端当前的环境,包括应用场景,干扰情况,业务能力需求和用户需求,当需要终端提升和优化一个业务需求时,查找对应的影响参数,不同的影响参数会去查找对应的RFC,进而调用不同的射频路径配置及控制,对终端当前的工作路径进行修正或切换,进行特性化配置和选择,直到终端的多个参数能够匹配当前的业务需求,环境需求及用户需求。
存储单元L5还可以存储终端对应频段的多个路径在自由空间下的天线OTA值,然后会储存加人手后的OTA值,增加人手后的OTA值不同于常规的单一人手测试模式,而是不同握姿触点的模型值,如可以涵盖左手模型,右手 模型,这些模式都通过出厂前的自测,储存到终端的模型存储模块中,通过检测到的不同的MIMO路径组合和握姿来调用。如果是用户常用的新的使用姿态情况,也可以作为新参数模型建立起来,以供参考和调用。
自适应选择和切换单元L6,设置为根据存储单元L5存储的多个传输路径的性能参数、当前的业务需求和使用场景,实现路径的选择和切换。
在一实施例中,所述自适应选择和切换单元L6包括自适应选择模块和切换模块,其中:
所述自适应选择模块,设置为根据传输路径的性能参数、当前的业务需求和使用场景,进行对比搜索,选择传输路径或传输路径组合。
比如,当前的应用场景如是发射场景,则需要提高功率,相应地,选择系统损耗比较低的路径;如是接收场景,则需要选择干扰小且损耗小的路径;如果是高速吞吐场景,则需要选择双流或四流通道信道RSRP比较均衡的。如果是ENDC有谐波干扰的信道场景,则需要选择路径传导和耦合干扰比较小的。可以预先建立使用场景、业务需求和传输路径之间的对应关系,确定业务需求和使用场景后,选择其对应的传输路径。
所述切换模块,设置为切换到所选择的传输路径或传输路径组合,其中,可以是通用输入输出(General-purpose input/output,GPIO)控制的切换,也可以是射频驱动代码的切换。
反馈检测和显示单元L7,设置为检测终端当前的信号质量,当终端当前信号质量不满足预设信号质量要求,即当前的传输路径和当前终端无线模式不匹配时,显示当前传输路径的性能参数,并提示最佳推荐传输路径,以及,进行握姿的反馈控制。
在一实施例中,所述反馈检测和显示单元L7包括:无线性能对比判断模块、显示单元、反馈检测单元、触觉反馈控制模块,其中:
无线性能对比判断模块,设置为检测终端当前的信号质量,判断终端当前信号质量是否满足预设信号质量要求。
显示单元,设置为显示当前传输路径的性能参数或状态信息,并提示最佳推荐路径,显示单元也可以直观的显示出当前的传输路径(射频路径和天线路径),实时显示多个传输路径的损耗和隔离度等信息,让研发调试人员和用户得到更直观的数据和感受,并知道当前的握姿对信号质量的影响,以便于调整到正确的握姿。
反馈检测单元,设置为根据用户指令启动自适应路径调节功能进行传输路径的切换,检测调节后的效果,直到达到预设信号质量要求。
触觉反馈控制模块,分别与无线性能对比判断模块和反馈显示单元相连,设置为终端系统的不同握姿的反馈控制。所述触觉反馈控制模块,是设置为当检测到当前握姿下性能不是最优(比如通过OTA进行判断),或者信号质量不满足预设信号质量要求时,控制终端进行触觉反馈。其中,触觉反馈方式包括如下的一种或多种:显示反馈,振动反馈,语音提示反馈,也可以使用其他的反馈实现。可以采用默认设置,也可以用户自定义设置。
一般地,如果检测到用户是在方便可视终端屏幕界面的状态下,如非通话状态、游戏状态或上网状态下,可以采用显示反馈的方式,通过使显示单元在显示屏侧边对应位置显示出现,让握姿和信号状态很直观的展现给用户。如果终端检测在通话状态下,或者是用户非直接观看终端显示屏的模式下,可以采用振动反馈或语音反馈的提示方式,提醒用户当前位置不可触摸,并提示较优的握点或握姿方式。
天线单元L8,设置为无线信号检测,也设置为接收和发射无线信号。在本装置中,天线单元L8和终端的射频前端模块相连,设置为无线信号的接收和发射。
基带芯片L9,和射频芯片L10相连,设置为采集当前信号强度和显示模式,基带芯片L9和终端内的射频芯片L10相连,可以实时检测当前的多个模块无线信号强度,将其反馈给需要无线信号强度的其他单元,同时,基带芯片L9还和终端的多个传感器模块及显示接口模块相连,设置为检测采集当前的加速度状态和横竖屏显示状态,监测当前用户的握姿。
射频芯片L10,分别和路径干扰测试单元L3、天线单元L8、基带芯片L9相连,设置为对多个射频路径的发射和接收处理,同时负责路径干扰测试单元L3的信号的自发自收处理。
本发明一实施例提供一种传输路径选择装置,包括上述射频路径检测单元L1,路径损耗测试单元L2,路径干扰测试单元L3,天线路径检测单元L4,存储单元L5,自适应选择和切换单元L6和反馈检测和显示单元L7。每个单元的实现请参考上述实施例,不再赘述。
下面通过几个实例对本申请进行说明。
实例1:VCO路径交换
终端N41频段(2496MHz~2690MHz)是4*4MIMO,每个频段会有4个射频传输路径:TX,DRX,PRX-MIMO,DRX-MIMO,ID分别为P1,P2,P3,P4,测试或实际工作时,发现DRX-MIMO性能较差,而PRX-MIMO性能较好,则自适应调用选择P1,P2,P4,P3路径代替P1,P2,P3,P4路径,即PRX-MIMO 路径和DRX-MIMO路径交换,得到更好的整体性能。
实例2:天线路径交换
终端N41频段和N78频段(3300MHz~3800MHz)由于是4*4MIMO,每个频段会有4个射频传输路径,TX,DRX,PRX-MIMO,DRX-MIMO,N41频段分别对应四个天线A1,A2,A3,A4,N78频段分别对应四个天线A5,A6,A7,A8;在电路设计上,N41频段和N78频段的天线路径之间做兼容设计,通过天线开关来实现,如SP2T,3P3T,4P4T等。当N78频段的天线性能不好时,或当N78频段的天线受到影响时,可以切换到N41频段的对应天线路径上去。
实例3:干扰路径交换
当LTE B3频段(上行1710~1785MHz,下行1805~1880MHz)作为ENDC锚点时,B3频段的二次谐波会落到N78频段的对应信道频点上,从而导致N78频段的接收灵敏度恶化,N78频段和LTE B3频段之间的隔离度越高,作为双连接下的谐波或互调影响就越小。如LTE B3频段的路径有L1,L2,L3,L4,L5,L6,L7共7条,其中,B3频段的TX有G1,G2两条,N78频段的PRX有NP1,NP2,NP3,NP4共4条,则路径干扰测试单元L3会将上述所有的组合都计算一遍,然后选择干扰最小的组合路径作为最后的ENDC工作路径。
实例4:信道均衡路径交换
当N78频段工作在高速吞吐4*4MIMO时,四个通道的信号强度必须相对均衡,不然吞吐性能就有由于失衡而降低。如NR N78的路径有M1,M2,M3,M4,M5,M6,M7共7条路径,检测对应的接收信号强度RSRP或接收的信号强度指示(Received Signal Strength Indication,RSSI)值分别为R1,R2,R3,R4,R5,R6,R7,如果原来默认的路径的信号强度分别是R1,R2,R3,R4,不均衡,则可切换到更均衡的路径上去(切换后的路径的信号强度分别为R1,R3,R5,R7,相比R1,R2,R3,R4更为均衡),以提高多个通道的均衡性和吞吐量。
本发明实施例中,根据传输路径的性能参数、当前的业务需求和使用场景,选择传输路径,能解决当前射频通道配置不灵活的问题,能减少路径损耗,提升路径之间的抗干扰度,能提升多个路径的均衡性,增强信号强度,改善天线性能,进而改善用户的通讯和数据业务性能,以提升手持的通话率,降低掉话率。
图7为本发明一实施例提供的传输路径选择方法流程图。如图7所示,包括:
701,终端扫描检测所有的传输路径(包括射频通道和天线路径),将扫描到的传输路径以列表形式储存到存储单元中。
702,终端按照上述传输路径列表,进行传输路径的损耗探测,传输路径的干扰探测,天线性能探测,得到传输路径的性能参数值并存储。
703,终端获取当前的使用场景和业务需求,确定所需的传输路径的目标性能参数。
其中,可以由用户配置业务需求,也可以由终端检测当前传输的业务和使用场景,确定使用场景和业务需求。
704,终端根据目标性能参数和存储的多个传输路径的性能参数,进行性能对比搜索,选择一个或多个传输路径。
在其他实施例中,可以直接根据预先存储的业务需求和使用场景与传输路径的对应关系,直接确定传输路径。
705,终端根据所选择的传输路径,调用对应的传输路径及驱动配置文件。
706,终端检测到当前的传输路径下的信号质量不满足预设信号质量要求时,进行调节,重新选择传输路径直到信号质量满足预设信号质量要求或者信号质量最佳。
707,如果当前的传输路径下的信号质量满足预设信号质量要求,调节完成,可实时显示调节效果。
如图8所示,本发明一实施例提供一种传输路径选择装置80,包括存储器810和处理器820,所述存储器810存储有程序,所述程序在被所述处理器820读取执行时,实现任一实施例所述的传输路径选择方法。
如图9所示,本发明一实施例提供一种计算机可读存储介质90,所述计算机可读存储介质90存储有一个或者多个程序910,所述一个或者多个程序910可被一个或者多个处理器执行,以实现任一实施例所述的传输路径选择方法。
上文中所公开方法中的全部或一些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由多个物理组件合作执行。一些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电 路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、带电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他存储器技术、光盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Video Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以设置为存储期望的信息并且可以被计算机访问的任何其他的介质。通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (11)

  1. 一种传输路径选择方法,包括:
    确定终端中多个传输路径的性能参数;
    根据所述多个传输路径的性能参数、业务需求和使用场景,选择传输路径或传输路径组合;
    切换到所选择的传输路径或传输路径组合。
  2. 根据权利要求1所述的方法,其中,所述多个传输路径的性能参数包括以下至少之一:
    系统损耗值、谐波值、互调值、信号强度值、所述传输路径对应频点的效率值、比吸收率值、不同握持姿势下的空中下载参数。
  3. 根据权利要求1所述的方法,其中,所述切换到所选择的传输路径或传输路径组合包括:
    调用所选择的传输路径或传输路径组合对应的驱动配置程序。
  4. 根据权利要求1所述的方法,还包括:
    检测信号质量状态信息,在所述信号质量状态信息不满足预设信号质量要求的情况下,根据所述多个传输路径的性能参数、所述当前的业务需求和所述使用场景,重新选择传输路径或传输路径组合直到满足所述预设信号质量要求。
  5. 根据权利要求1所述的方法,其中,所述根据所述多个传输路径的性能参数、业务需求和使用场景,选择传输路径或传输路径组合包括:
    在所述终端处于第4代无线接入网和新无线双连接下的情况下,选择干扰最小的传输路径组合。
  6. 根据权利要求1所述的方法,还包括:
    在信号质量状态信息不满足预设信号质量要求且与握持姿势有关的情况下,提示用户改变握持姿势。
  7. 根据权利要求6所述的方法,其中,所述信号质量状态信息不满足预设信号质量要求且与握持姿势有关包括:
    空中下载参数小于预设空中下载参数阈值。
  8. 根据权利要求1至7任一所述的方法,其中,所述根据所述多个传输路径的性能参数、业务需求和使用场景,选择传输路径或传输路径组合包括:
    选择满足所述业务需求和所述使用场景需求,且满足以下至少之一的传输路径或传输路径组合:损耗最小、干扰最小、信号强度最均衡。
  9. 根据权利要求1所述的方法,其中,所述传输路径包括射频通道或天线路径;
    所述射频通道包括以下之一:射频发射通道、主集接收通道、分集接收通道、主集接收多输入多输出通道、分集接收多输入多输出通道。
  10. 一种传输路径选择装置,包括存储器和处理器,所述存储器存储有程序,所述程序在被所述处理器读取执行时,实现如权利要求1至9任一项所述的传输路径选择方法。
  11. 一种计算机可读存储介质,存储有至少一个程序,所述至少一个程序可被至少一个处理器执行,以实现如权利要求1至9任一项所述的传输路径选择方法。
PCT/CN2020/103169 2019-09-24 2020-07-21 传输路径选择方法、装置及存储介质 WO2021057215A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20869020.6A EP3965474A4 (en) 2019-09-24 2020-07-21 METHOD AND DEVICE FOR SELECTING A TRANSMISSION PATH AND STORAGE MEDIUM
US17/624,236 US20220386216A1 (en) 2019-09-24 2020-07-21 Method and apparatus for selecting transmission path and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910905143.XA CN112153716B (zh) 2019-09-24 2019-09-24 一种传输路径选择方法及装置、存储介质
CN201910905143.X 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021057215A1 true WO2021057215A1 (zh) 2021-04-01

Family

ID=73892097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103169 WO2021057215A1 (zh) 2019-09-24 2020-07-21 传输路径选择方法、装置及存储介质

Country Status (4)

Country Link
US (1) US20220386216A1 (zh)
EP (1) EP3965474A4 (zh)
CN (1) CN112153716B (zh)
WO (1) WO2021057215A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112804118B (zh) * 2020-12-31 2023-01-31 广州技象科技有限公司 一种基于智能电表数据跳传链路的数据传输方法及装置
CN112969207B (zh) * 2021-02-23 2022-12-27 Oppo广东移动通信有限公司 默认数据主卡的切换方法及装置、电子设备、存储介质
TWI776498B (zh) * 2021-05-07 2022-09-01 啓碁科技股份有限公司 天線系統
CN114257264B (zh) * 2021-12-15 2023-08-11 惠州Tcl移动通信有限公司 射频天线线路、pcb板及移动终端
CN114244764B (zh) * 2021-12-23 2023-11-03 东莞市李群自动化技术有限公司 业务报文传输方法、系统、设备及存储介质
CN114785360A (zh) * 2022-04-27 2022-07-22 Oppo广东移动通信有限公司 无线通信装置及方法
CN114866461A (zh) * 2022-04-28 2022-08-05 抖动科技(深圳)有限公司 Rtc流媒体自适应传输方法、装置、设备及存储介质
CN116437317B (zh) * 2023-04-11 2024-03-15 重庆赛力斯凤凰智创科技有限公司 一种升级刷写方法、装置及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065468A (zh) * 2014-06-26 2014-09-24 北京邮电大学 无线设备中基于多路径的数据传输、路径选择方法和装置
WO2017219516A1 (zh) * 2016-06-21 2017-12-28 中兴通讯股份有限公司 一种天线切换方法以及装置、移动终端
WO2019017932A1 (en) * 2017-07-19 2019-01-24 Hewlett-Packard Development Company, L.P. AUTOMATIC ROUTING BASED ON DOUBLE-CAPACITY WI-FI SYSTEMS
WO2019061414A1 (zh) * 2017-09-30 2019-04-04 Oppo广东移动通信有限公司 一种业务路径的切换方法、设备、存储介质及系统
CN110098857A (zh) * 2019-03-29 2019-08-06 华为技术有限公司 终端设备的天线切换方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8406806B2 (en) * 2010-09-20 2013-03-26 Smartech Worldwide Limited Mobile telephone capable of automatically switching antenna according to user's hand position
US10142007B2 (en) * 2012-07-19 2018-11-27 Intel Deutschland Gmbh Radio communication devices and methods for controlling a radio communication device
CN104683540B (zh) * 2013-11-26 2018-03-09 深圳市金立通信设备有限公司 一种改善通讯终端信号质量的方法及终端
US9444425B2 (en) * 2014-06-20 2016-09-13 Apple Inc. Electronic device with adjustable wireless circuitry
CN105517028B (zh) * 2014-10-17 2020-03-24 电信科学技术研究院 一种触发和配置传输路径的方法及设备
CN106849987A (zh) * 2017-01-20 2017-06-13 深圳市金立通信设备有限公司 一种天线切换控制方法及终端
CN107707281A (zh) * 2017-08-30 2018-02-16 努比亚技术有限公司 一种天线切换方法、通信终端及计算机可读存储介质
CN107623543A (zh) * 2017-08-30 2018-01-23 努比亚技术有限公司 一种天线切换方法、终端及计算机可读存储介质
CN108055687B (zh) * 2018-01-31 2020-01-14 Oppo广东移动通信有限公司 无线网络连接方法、装置及终端设备
CN109951218A (zh) * 2019-01-31 2019-06-28 Oppo广东移动通信有限公司 降低通信干扰的方法、装置、电子设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065468A (zh) * 2014-06-26 2014-09-24 北京邮电大学 无线设备中基于多路径的数据传输、路径选择方法和装置
WO2017219516A1 (zh) * 2016-06-21 2017-12-28 中兴通讯股份有限公司 一种天线切换方法以及装置、移动终端
WO2019017932A1 (en) * 2017-07-19 2019-01-24 Hewlett-Packard Development Company, L.P. AUTOMATIC ROUTING BASED ON DOUBLE-CAPACITY WI-FI SYSTEMS
WO2019061414A1 (zh) * 2017-09-30 2019-04-04 Oppo广东移动通信有限公司 一种业务路径的切换方法、设备、存储介质及系统
CN110098857A (zh) * 2019-03-29 2019-08-06 华为技术有限公司 终端设备的天线切换方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3965474A4 *

Also Published As

Publication number Publication date
CN112153716A (zh) 2020-12-29
EP3965474A1 (en) 2022-03-09
US20220386216A1 (en) 2022-12-01
EP3965474A4 (en) 2022-07-06
CN112153716B (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2021057215A1 (zh) 传输路径选择方法、装置及存储介质
US11057098B2 (en) Methods of antenna system control in massive MIMO systems
US9559756B2 (en) Antenna system optimized for SISO and MIMO operation
CN112118024B (zh) 通信链路的调整方法及装置、电子设备、可读介质
US8830910B2 (en) Wireless terminals including smart antenna systems having multiple antennas
US20160134349A1 (en) Antenna Swapping Methods Including Comparing Performance Characteristics of First and Second Antennas, and Related Portable Electronic Devices
US9713198B2 (en) Mobile communication method
US9007970B2 (en) Antenna swapping methods including repeatedly swapping between antennas, and related wireless electronic devices
CN107465446B (zh) 多天线装置的控制方法与模块
US10135118B2 (en) Adaptive parasitic multi-antenna system
CN112740480A (zh) 基于操作性能反馈的无线电控制
CN108134199B (zh) 一种移动终端天线及其切换方法
CN115152090A (zh) 一种无线通信装置及其天线切换方法
US20230421212A1 (en) Client Grouping for Point to Multipoint Communications
CN115801038A (zh) 射频系统及其控制方法、无线通信设备
US20220069926A1 (en) Automatic signal strength indicator and automatic antenna switch
CA3157040A1 (en) Repeater system configured to adjust settings based on user equipment communication metrics
CN211556120U (zh) 一种移动终端设备
US11343780B2 (en) Method and circuit for determining an additional maximum power reduction for dual carrier operation
TW201318356A (zh) 一種無線網卡及實現最優無線網路路徑切換之方法
WO2023016100A1 (zh) 传输路径的控制方法、装置、终端及存储介质
TWI723815B (zh) 無線延展器及相關的天線選擇方法
JP2012105124A (ja) 携帯端末装置、及びアンテナ切替方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020869020

Country of ref document: EP

Effective date: 20211203

NENP Non-entry into the national phase

Ref country code: DE