WO2021135622A1 - 介质滤波器和无线电收发设备 - Google Patents

介质滤波器和无线电收发设备 Download PDF

Info

Publication number
WO2021135622A1
WO2021135622A1 PCT/CN2020/126109 CN2020126109W WO2021135622A1 WO 2021135622 A1 WO2021135622 A1 WO 2021135622A1 CN 2020126109 W CN2020126109 W CN 2020126109W WO 2021135622 A1 WO2021135622 A1 WO 2021135622A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
hole
dielectric resonator
debugging
dielectric filter
Prior art date
Application number
PCT/CN2020/126109
Other languages
English (en)
French (fr)
Inventor
朱琦
周鑫童
Original Assignee
江苏灿勤科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏灿勤科技股份有限公司 filed Critical 江苏灿勤科技股份有限公司
Publication of WO2021135622A1 publication Critical patent/WO2021135622A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2002Dielectric waveguide filters

Definitions

  • This application relates to the field of communication technology, in particular to dielectric filters and radio transceiver equipment.
  • dielectric filters have replaced the traditional large-volume cavity filters and become the first choice for 5G base stations due to their small size, high performance, high reliability, low cost, and easy mass production. Filter scheme. At the same time, due to the shortage of spectrum resources, the requirement for out-of-band suppression of the filter is getting higher and higher. Since the dielectric filter is filled with dielectric materials, it is impossible to process a fly rod similar to the traditional cavity filter to achieve negative coupling, which has an adverse effect on the filter design, especially the zero point design.
  • blind hole requires precise control of the hole depth, which makes the performance of the dielectric filter unstable and requires a large amount of debugging; in addition, this kind of blind hole
  • the negative coupling needs to be designed very deep, and its bottom thickness is small, which reduces the overall structural strength of the filter.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a dielectric filter with simple structure and stable performance.
  • a dielectric filter includes a dielectric filter body.
  • the dielectric filter includes at least two dielectric resonators.
  • Each dielectric resonator includes a dielectric resonator body made of ceramic material.
  • the resonator bodies together constitute the dielectric filter body, wherein the at least two dielectric resonators include a first dielectric resonator and a second dielectric resonator,
  • the first dielectric resonator includes a first dielectric resonator body, a first debugging hole located on the first dielectric resonator body and used for adjusting the resonance frequency of the first dielectric resonator, the first debugging The hole is a blind hole, and the opening of the first debugging hole is located on the upper surface of the first dielectric resonator body;
  • the second dielectric resonator includes a second dielectric resonator body, a second debugging hole located on the second dielectric resonator body and used to adjust the resonant frequency of the second dielectric resonator, the second debugging The hole is a blind hole, and the opening of the second debugging hole is located on the upper surface or the lower surface of the second dielectric resonator body;
  • the dielectric filter further includes:
  • a negative coupling hole is a straight hole, the negative coupling hole is opened in the dielectric filter body and extends obliquely downward from the upper surface of the first dielectric resonator and penetrates to the second The lower surface of the dielectric resonator, the upper orifice of the negative coupling hole is located on the upper surface of the first dielectric resonator body, and the lower orifice of the negative coupling hole is located on the lower surface of the second dielectric resonator body ,
  • the negative coupling hole connects the first dielectric resonator and the second dielectric resonator, and is used to realize the capacitive coupling between the first dielectric resonator and the second dielectric resonator;
  • the upper orifice portion of the upper orifice of the negative coupling hole is connected to the orifice portion of the first debugging hole, so that the inner cavity of the negative coupling hole is the same as the inner cavity of the first debugging hole. Connect with each other.
  • the opening of the second debugging hole is located on the lower surface of the second dielectric resonator body, and the lower opening of the lower opening of the negative coupling hole is opposite to the opening of the second debugging hole.
  • the through connection makes the inner cavity of the negative coupling hole and the inner cavity of the second debugging hole communicate with each other.
  • the axis of the first debugging hole and the axis of the second debugging hole form a virtual plane, and the axis of the negative coupling hole is located on the virtual plane.
  • the cross section of the negative coupling hole is any one of a circle, an ellipse or a polygon.
  • the dielectric filter further includes a coupling groove which is opened on the dielectric filter body and extends downward from the upper surface of the dielectric filter body and penetrates to the dielectric filter body.
  • the coupling groove On the lower surface, the coupling groove has openings on both the upper surface and the lower surface of the dielectric filter body, the coupling groove also has openings on the front or rear surface of the dielectric filter body, and the coupling groove is located at Where the first dielectric resonator body and the second dielectric resonator body meet, the inner wall surface of the coupling groove is covered with the conductive layer, and the coupling groove and the negative coupling hole work together to achieve Capacitive coupling between the first dielectric resonator and the second dielectric resonator.
  • the two coupling grooves are symmetrically distributed on both sides of a virtual plane formed by the axis line of the first debugging hole and the axis line of the second debugging hole.
  • all the dielectric resonator bodies are integrated to form the dielectric filter body.
  • a dielectric filter including a dielectric filter body, the dielectric filter includes at least two dielectric resonators, each of the dielectric resonators includes A dielectric resonator body made of ceramic material, all of the dielectric resonator bodies together constitute the dielectric filter body, wherein the at least two dielectric resonators include a first dielectric resonator and a second dielectric resonator Device,
  • the first dielectric resonator includes a first dielectric resonator body, a first debugging hole located on the first dielectric resonator body and used for adjusting the resonance frequency of the first dielectric resonator, the first debugging The hole is a blind hole, and the opening of the first debugging hole is located on the upper surface of the first dielectric resonator body;
  • the second dielectric resonator includes a second dielectric resonator body, a second debugging hole located on the second dielectric resonator body and used to adjust the resonant frequency of the second dielectric resonator, the second debugging The hole is a blind hole, and the opening of the second debugging hole is located on the lower surface of the second dielectric resonator body;
  • the dielectric filter further includes:
  • a negative coupling hole is a straight hole, the negative coupling hole is opened in the dielectric filter body and extends obliquely downward from the upper surface of the second dielectric resonator and penetrates to the first The lower surface of the dielectric resonator, the upper orifice of the negative coupling hole is located on the upper surface of the second dielectric resonator body, and the lower orifice of the negative coupling hole is located on the lower surface of the first dielectric resonator body ,
  • the negative coupling hole connects the first dielectric resonator and the second dielectric resonator, and is used to realize the capacitive coupling between the first dielectric resonator and the second dielectric resonator;
  • the upper orifice portion of the upper orifice of the negative coupling hole is connected to the orifice portion of the second debugging hole, so that the inner cavity of the negative coupling hole is the same as the inner cavity of the second debugging hole. Connect with each other.
  • the lower orifice portion of the lower orifice of the negative coupling hole is connected to the orifice portion of the first debugging hole, so that the inner cavity of the negative coupling hole is the same as the inner cavity of the first debugging hole. Connect with each other.
  • the cross section of the negative coupling hole is any one of a circle, an ellipse or a polygon.
  • the dielectric filter further includes a coupling groove which is opened on the dielectric filter body and extends downward from the upper surface of the dielectric filter body and penetrates to the dielectric filter body.
  • the coupling groove On the lower surface, the coupling groove has openings on both the upper surface and the lower surface of the dielectric filter body, the coupling groove also has openings on the front or rear surface of the dielectric filter body, and the coupling groove is located at Where the first dielectric resonator body and the second dielectric resonator body meet, the inner wall surface of the coupling groove is covered with the conductive layer, and the coupling groove and the negative coupling hole work together to achieve Capacitive coupling between the first dielectric resonator and the second dielectric resonator.
  • the two coupling grooves are symmetrically distributed on both sides of a virtual plane formed by the axis line of the first debugging hole and the axis line of the second debugging hole.
  • all the dielectric resonator bodies are integrated to form the dielectric filter body.
  • Another object of the present invention is to provide a radio transceiver device.
  • the present invention has the following advantages compared with the prior art:
  • the dielectric filter provided by the present invention includes at least two dielectric resonators.
  • the dielectric resonator includes a dielectric resonator body made of ceramic material and a debugging hole on the surface of the dielectric resonator body.
  • the upper surface of the upper surface is provided with a negative coupling hole that extends downward and extends until it penetrates the lower surface of the other dielectric resonator body, so that the upper hole of the negative coupling hole is located on the upper surface of one of the dielectric resonator bodies, and the negative coupling hole is lower
  • the hole is located on the lower surface of the other dielectric resonator body, so that the negative coupling hole connects the two dielectric resonators, and the capacitive coupling between the two dielectric resonators can be realized through the negative coupling hole, and the isolation ring is omitted, and the structure is more Simple, fewer processing procedures, no need to precisely control the hole depth, more stable performance, and higher structural strength; the present invention also provides
  • FIG. 1 is a perspective schematic diagram of Embodiment 1 of a dielectric filter in the present invention.
  • Fig. 2 is a schematic top view of Fig. 1.
  • Fig. 3 is a cross-sectional view in the direction of A-A in Fig. 2.
  • Embodiment 2 is a perspective schematic diagram of Embodiment 2 of the dielectric filter of the present invention.
  • FIG. 5 is a perspective schematic diagram of Embodiment 3 of the dielectric filter of the present invention.
  • FIG. 6 is a perspective schematic diagram of Embodiment 4 of the dielectric filter of the present invention.
  • FIG. 7 is a perspective schematic diagram of Embodiment 5 of the dielectric filter of the present invention.
  • FIG. 8 is a perspective schematic diagram of Embodiment 6 of the dielectric filter of the present invention.
  • FIG. 9 is a perspective schematic diagram of Embodiment 7 of the dielectric filter of the present invention.
  • FIG. 10 is a three-dimensional perspective schematic diagram of Embodiment 8 of the dielectric filter of the present invention.
  • Fig. 12 is a schematic top view of Fig. 11.
  • Fig. 13 is a cross-sectional view in the direction of B-B in Fig. 12.
  • Embodiment 10 is a perspective schematic diagram of Embodiment 10 of the dielectric filter of the present invention.
  • Fig. 15 is a schematic top view of Fig. 14.
  • Fig. 16 is a cross-sectional view in the direction of C-C in Fig. 15.
  • FIG. 17 is a perspective schematic diagram of Embodiment 11 of the dielectric filter of the present invention.
  • FIG. 18 is a schematic top view of FIG. 17.
  • Fig. 19 is a cross-sectional view in the direction D-D in Fig. 18.
  • Embodiment 12 is a perspective schematic diagram of Embodiment 12 of the dielectric filter of the present invention.
  • FIG. 21 is a schematic top view of FIG. 20.
  • Fig. 22 is a cross-sectional view in the direction of E-E in Fig. 21.
  • Fig. 23 is an electrical performance diagram of the dielectric filter embodiment 1 of the present invention.
  • the dielectric filter 100 provided by the present invention includes a first dielectric resonator 200 and a second dielectric resonator 300, and the first dielectric resonator 200 and the second dielectric resonator 300 are arranged adjacently in structure.
  • the first dielectric resonator 200 includes a first dielectric resonator body 201 made of ceramic material and a first debugging hole 202 located on the first dielectric resonator body 201.
  • the first debugging hole 202 is a blind hole.
  • the opening of the hole 202 is located on the upper surface of the first dielectric resonator body 201; the first adjustment hole 202 is used to adjust the resonant frequency of the first dielectric resonator 200; the second dielectric resonator 300 includes a second dielectric resonator made of ceramic material.
  • the second debugging hole 302 is used to adjust the resonant frequency of the second dielectric resonator 300; the first dielectric resonator body 201 and the second dielectric resonator body 301 are connected to form the dielectric filter body 101.
  • the first dielectric resonator body 201 and the second dielectric resonator body 301 are integrated.
  • the first debugging hole 202 and the second debugging hole 302 are located on both sides of the interface of the first dielectric resonator 200 and the second dielectric resonator 300, and the distance between the two debugging holes and the interface is equal.
  • the dielectric filter 100 further includes a negative coupling hole 400.
  • the negative coupling hole 400 is a straight hole.
  • the negative coupling hole 400 is opened on the dielectric filter body 101 and extends obliquely downward from the upper surface of the first dielectric resonator body 201 until it penetrates
  • the upper orifices of the negative coupling hole 400 are all located on the upper surface of the first dielectric resonator body 201
  • the lower orifices of the negative coupling hole 400 are all located on the second dielectric resonator.
  • the lower surface of the body 301; the negative coupling hole 400 has an upper orifice portion 401 on the upper surface of the first dielectric resonator body 201 and a lower orifice portion 402 on the lower surface of the second dielectric resonator body 301, the negative coupling hole 400
  • the cross section is any one of a circle, an ellipse or a polygon.
  • the cross section of the negative coupling hole 400 is a circle, and the negative coupling hole 400 connects the first dielectric resonator 200 and the second dielectric resonator 300 ,
  • the negative coupling hole 400 is used to realize the capacitive coupling between the first dielectric resonator 200 and the second dielectric resonator 300.
  • the dielectric filter 100 also includes a conductive layer 500 covering the surface of the dielectric filter body 101, the inner wall surface of the first debugging hole 202, the inner wall surface of the second debugging hole 302, and the inner wall surface of the negative coupling hole 400.
  • the material is silver.
  • the axis line of the first debugging hole 202 is parallel to the axis line of the second debugging hole 302, the axis line of the first debugging hole 202 and the axis line of the second debugging hole 302 form a virtual plane, the negative coupling hole 400
  • the axis line is located on the virtual plane, and the extension line of the axis line of the negative coupling hole 400 intersects the extension line of the axis line of the first adjustment hole 202/the second adjustment hole 302.
  • the dielectric filter 100 generates a transmission zero point A in the low frequency band of the pass band B of the dielectric filter 100 through the negative coupling hole 400; by adjusting the axis line of the negative coupling hole 400 and the lower surface of the dielectric filter body 101
  • the included angle between the negative coupling hole 400 and the cross-sectional area of the negative coupling hole 400 adjust the intensity of the transmission zero point A; the smaller the included angle between the axis line of the negative coupling hole 400 and the lower surface of the dielectric filter body 101, the strength of the transmission zero point A
  • the difference between embodiment 3 and embodiment 1 lies in the upper orifice portion 401 of the negative coupling hole 400 in the embodiment 3 and the orifice of the first debugging hole 202 on the first dielectric resonator 200
  • the portion 2021 is connected through each other, so that the inner cavity of the negative coupling hole 400 is connected with the inner cavity of the first debugging hole 202, and the lower opening portion 402 of the negative coupling hole 400 is connected to the second debugging hole 302 on the second dielectric resonator 300
  • the orifice 3021 is connected to make the inner cavity of the negative coupling hole 400 communicate with the inner cavity of the second debugging hole 302.
  • Embodiment 4 As shown in FIG. 6, the difference between Embodiment 4 and Embodiment 3 is that the cross section of the negative coupling hole 400 in Embodiment 4 is rectangular.
  • Embodiment 6 As shown in FIG. 8, the difference between Embodiment 6 and Embodiment 5 is that the cross section of the negative coupling hole 400 in Embodiment 6 is rectangular.
  • the difference between the embodiment 7 and the embodiment 5 is that the upper orifice portion 401 of the negative coupling hole 400 in the embodiment 7 and the hole of the first debugging hole 202 on the first dielectric resonator 200
  • the mouth 2021 is connected to connect the inner cavity of the negative coupling hole 400 with the inner cavity of the first debugging hole 202.
  • Embodiment 8 As shown in FIG. 10, the difference between Embodiment 8 and Embodiment 7 is that the cross section of the negative coupling hole 400 in Embodiment 8 is rectangular.
  • Example 9 As shown in Figures 11-13, there are two differences between Example 9 and Example 1, specifically:
  • the dielectric filter 100 in Embodiment 9 further includes a first coupling slot 601 and a second coupling slot 602.
  • the first coupling slot 601 is opened on the dielectric filter body 101 and is removed from the dielectric filter body.
  • the upper surface of the dielectric filter body 101 extends vertically downward and penetrates to the lower surface of the dielectric filter body 101.
  • the first coupling groove 601 has openings on both the upper surface and the lower surface of the dielectric filter body 101.
  • the rear surface of the main body 101 has an opening
  • the first coupling groove 601 is located at the position where the first dielectric resonator body 201 and the second dielectric resonator body 202 meet
  • the inner wall surface of the first coupling groove 601 is covered with a conductive layer 500
  • the second coupling groove 602 is opened on the dielectric filter body 101 and extends vertically downward from the upper surface of the dielectric filter body 101 through the lower surface of the dielectric filter body 101, the second coupling groove 602 is in the dielectric filter body 101 Both the upper surface and the lower surface have openings.
  • the second coupling groove 602 also has an opening on the front surface of the dielectric filter body 101.
  • the adjustment method of the first coupling slot 601 and the second coupling slot 602 is that the deeper the slot depth of the first coupling slot 601 and the second coupling slot 602 in the front-to-rear direction, the stronger the transmission zero point A.
  • Embodiment 10 As shown in Figures 14-16, there are two differences between Embodiment 10 and Embodiment 1, specifically:
  • the first difference is that the upper orifice portion 401 of the negative coupling hole 400 and the orifice portion 2021 of the first adjustment hole 202 on the first dielectric resonator 200 in Embodiment 10 are connected through each other, so that the negative coupling hole
  • the inner cavity of 400 is communicated with the inner cavity of the first debugging hole 202, and the lower orifice portion 402 of the negative coupling hole 400 is connected with the orifice portion 3021 of the second debugging hole 302 on the second dielectric resonator 300, so that the negative
  • the inner cavity of the coupling hole 400 communicates with the inner cavity of the second debugging hole 302.
  • the back surface of the body 101 has an opening, the first coupling groove 601 is located at the position where the first dielectric resonator body 201 and the second dielectric resonator body 202 meet, and the inner wall surface of the first coupling groove 601 is covered with a conductive layer 500;
  • the second coupling groove 602 is opened on the dielectric filter body 101 and extends vertically downward from the upper surface of the dielectric filter body 101 and penetrates the lower surface of the dielectric filter body 101.
  • the second coupling groove 602 is in the dielectric filter body 101. Both the upper surface and the lower surface have openings.
  • the second coupling groove 602 also has an opening on the front surface of the dielectric filter body 101.
  • the second coupling groove 602 is located between the first dielectric resonator body 201 and the second dielectric resonator body 202. At the connecting position, the inner wall surface of the second coupling groove 602 is covered with a conductive layer 500; the first coupling groove 601 and the second coupling groove 602 are symmetrically distributed on the axis of the first debugging hole 202 and the axis of the second debugging hole 302 Both sides of the virtual plane formed by the heart line.
  • Embodiment 10 is different from the electrical performance of Embodiment 1 in that, in Embodiment 10, the first coupling groove 601, the second coupling groove 602, and the negative coupling hole 400 work together to realize the first dielectric resonator 200 and the negative coupling hole 400.
  • the negative coupling hole 400 is used for main adjustment of the capacitive coupling, and the first coupling slot 601 and the second coupling slot 602 are used for fine adjustment of the capacitive coupling.
  • the adjustment method of the negative coupling hole 400 is the same as in Example 1.
  • the adjustment method of the first coupling groove 601 and the second coupling groove 602 is that the deeper the groove depth of the first coupling groove 601 and the second coupling groove 602 in the front-to-rear direction, the stronger the transmission zero point A is.
  • Embodiment 11 differs from Embodiment 1 in three points, specifically:
  • the first difference is that the negative coupling hole 400 in the embodiment 11 is opened on the dielectric filter body 101 and extends obliquely downward from the upper surface of the second dielectric resonator body 301 until it penetrates the first dielectric resonator.
  • On the lower surface of the body 201 all the upper orifices of the negative coupling hole 400 are located on the upper surface of the second dielectric resonator body 301, and the lower orifices of the negative coupling hole 400 are all located on the lower surface of the first dielectric resonator body 201
  • the negative coupling hole 400 has an upper orifice portion 401 located on the upper surface of the second dielectric resonator 301 and a lower orifice portion 402 located on the lower surface of the first dielectric resonator 201.
  • the second difference is that the cross section of the negative coupling hole 400 in Embodiment 11 is rectangular.
  • the back surface of the body 101 has an opening, the first coupling groove 601 is located at the position where the first dielectric resonator body 201 and the second dielectric resonator body 202 meet, and the inner wall surface of the first coupling groove 601 is covered with a conductive layer 500;
  • the second coupling groove 602 is opened on the dielectric filter body 101 and extends vertically downward from the upper surface of the dielectric filter body 101 and penetrates the lower surface of the dielectric filter body 101.
  • the second coupling groove 602 is in the dielectric filter body 101. Both the upper surface and the lower surface have openings.
  • the second coupling groove 602 also has an opening on the front surface of the dielectric filter body 101.
  • the second coupling groove 602 is located between the first dielectric resonator body 201 and the second dielectric resonator body 202. At the connecting position, the inner wall surface of the second coupling groove 602 is covered with a conductive layer 500; the first coupling groove 601 and the second coupling groove 602 are symmetrically distributed on the axis of the first debugging hole 202 and the axis of the second debugging hole 302 Both sides of the virtual plane formed by the heart line.
  • the electrical performance of the embodiment 11 is different from the electrical performance of the embodiment 1 in that the first coupling groove 601, the second coupling groove 602 and the negative coupling hole 400 are used in the embodiment 11 to realize the first dielectric resonator 200 and the negative coupling hole 400.
  • the negative coupling hole 400 is used for main adjustment of the capacitive coupling
  • the first coupling slot 601 and the second coupling slot 602 are used for fine adjustment of the capacitive coupling.
  • the adjustment method of the negative coupling hole 400 is the same as in Example 1.
  • the adjustment method of the first coupling slot 601 and the second coupling slot 602 is that the deeper the slot depth of the first coupling slot 601 and the second coupling slot 602 in the front-to-rear direction, the stronger the transmission zero point A.
  • Embodiment 12 is basically the same as Embodiment 11, except that the cross section of the negative coupling hole 400 in Embodiment 12 is circular.
  • the dielectric filter provided by the present invention includes at least two dielectric resonators.
  • the dielectric resonator includes a dielectric resonator body made of ceramic material and a debugging hole located on the surface of the dielectric resonator body.
  • the upper surface of one dielectric resonator body is provided with a negative coupling hole that extends downwardly and obliquely to penetrate the lower surface of the other dielectric resonator body, so that all the upper holes of the negative coupling hole are located on the upper surface of one of the dielectric resonator bodies, and All the lower openings of the negative coupling hole are located on the lower surface of the other dielectric resonator body, so that the negative coupling hole connects the two dielectric resonators, and the capacitive coupling between the two dielectric resonators can be realized through the negative coupling hole.
  • the partition ring is omitted, the structure is simpler, the processing procedures are fewer, the hole depth does not need to be precisely controlled, the performance is more stable, and the structure strength is higher.
  • the present invention also provides a transceiving device, which includes any one of the dielectric filters in the foregoing embodiments, and the dielectric filter in the transceiving device can be used to filter radio frequency signals.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明提供的介质滤波器,包括至少两个介质谐振器,该介质谐振器包括由陶瓷材料制成的介质谐振器本体和位于介质谐振器本体表面的调试孔,通过在其中一个介质谐振器本体的上表面开设向下倾斜延伸直至贯穿另一个介质谐振器本体的下表面的负耦合孔,使负耦合孔的上孔口位于其中一个介质谐振器本体的上表面,并使负耦合孔的下孔口位于另一个介质谐振器本体的下表面,使得负耦合孔连接这两个介质谐振器,能够通过负耦合孔实现这两个介质谐振器之间的电容耦合,省略了隔断环,结构更加简单,无需精准控制孔深,性能更加稳定;本发明还提供一种包括上述介质滤波器的无线电收发设备。

Description

介质滤波器和无线电收发设备 技术领域
本申请涉及通信技术领域,具体涉及介质滤波器和无线电收发设备。
背景技术
随着5G基站Massive MIMO架构的推广,介质滤波器凭借小体积、高性能、高可靠性、低成本、易于大批量生产等特性,取代了传统的大体积腔体滤波器成为了5G基站的首选滤波器方案。同时由于频谱资源的紧缺,使得滤波器的带外抑制要求越来越高。而介质滤波器由于其内部被介质材料填充,无法加工类似于传统腔体滤波器所采用的飞杆来实现负耦合,给滤波器设计特别是零点设计带来了不利影响。
当前,市场上出现了一些介质滤波器负耦合的设计加工方法,如国际专利申请WO2018148905A1就公开了一种通过在介质块上设置负耦合孔和导电隔断层实现谐振腔之间电容耦合的介质滤波器,但该种滤波器的加工工艺复杂,需采用表面印刷或激光蚀刻等工艺额外设置导电隔断层;又如中国发明专利CN104604022B就公开了一种通过在由固态介电材料制成的本体上打盲孔的方式实现盲孔两侧谐振器之间电容耦合的介质滤波器,但该盲孔需要精准控制孔深,使得介质滤波器的性能不稳定,调试量大;此外,这种盲孔负耦合需要设计得很深,其底部厚度很小,减小了滤波器整体的结构强度。
发明内容
本发明的目的在于克服现有技术的缺点,提供一种结构简单、性能稳定的介质滤波器。
为达到上述目的,本发明采用的技术方案是:
一种介质滤波器,包括介质滤波器本体,所述介质滤波器包括至少两个介质谐振器,每个所述介质谐振器均包括由陶瓷材料制成的介质谐振器本体,所有的所述介质谐振器本体共同构成所述的介质滤波器本体,其中,所述的至少两个介质谐振器包括第一介质谐振器和第二介质谐振器,
所述第一介质谐振器包括第一介质谐振器本体、位于所述第一介质谐振器本体上且用于调整所述第一介质谐振器的谐振频率的第一调试孔,所述第一调试孔为盲孔,所述第一调试孔的孔口位于所述第一介质谐振器本体的上表面;
所述第二介质谐振器包括第二介质谐振器本体、位于所述第二介质谐振器本体上且用于调整所述第二介质谐振器的谐振频率的第二调试孔,所述第二调试孔为盲孔,所述第二调试 孔的孔口位于所述第二介质谐振器本体的上表面或下表面;
所述介质滤波器还包括:
负耦合孔,所述负耦合孔为直孔,所述负耦合孔开设在所述介质滤波器本体并自所述第一介质谐振器的上表面向下倾斜地延伸并贯穿至所述第二介质谐振器的下表面,所述负耦合孔的上孔口位于所述第一介质谐振器本体的上表面,所述负耦合孔的下孔口位于所述第二介质谐振器本体的下表面,所述负耦合孔连接所述第一介质谐振器和所述第二介质谐振器,并用于实现所述第一介质谐振器和所述第二介质谐振器之间的电容耦合;
导电层,所述导电层覆盖所述介质滤波器本体的表面、所述第一调试孔的内壁表面和所述负耦合孔的内壁表面。
优选地,所述负耦合孔上孔口的上孔口部与所述第一调试孔的孔口部相贯穿连接,使得所述负耦合孔的内腔与所述第一调试孔的内腔相互连通。
优选地,所述第二调试孔的孔口位于所述第二介质谐振器本体的下表面,所述负耦合孔下孔口的下孔口部与所述第二调试孔的孔口部相贯穿连接,使得所述负耦合孔的内腔与所述第二调试孔的内腔相互连通。
优选地,所述第一调试孔的轴心线和所述第二调试孔的轴心线构成一虚拟平面,所述负耦合孔的轴心线位于所述虚拟平面上。
优选地,所述负耦合孔的横截面为圆形、椭圆形或多边形中的任意一种。
优选地,所述介质滤波器还包括耦合槽,所述耦合槽开设在所述介质滤波器本体上且自所述介质滤波器本体的上表面向下延伸并贯穿至所述介质滤波器本体的下表面,所述耦合槽在所述介质滤波器本体的上表面和下表面均具有开口,所述耦合槽还在所述介质滤波器本体的前表面或后表面具有开口,所述耦合槽位于所述第一介质谐振器本体和所述第二介质谐振器本体相接的位置处,所述耦合槽的内壁表面覆盖有所述导电层,所述耦合槽和所述负耦合孔共同作用实现所述第一介质谐振器和所述第二介质谐振器之间的电容耦合。
进一步地,所述耦合槽有两个,两个所述的耦合槽对称分布于所述第一调试孔的轴心线和所述第二调试孔的轴心线形成的虚拟平面的两侧。
优选地,所有的所述介质谐振器本体一体设置而共同构成所述的介质滤波器本体。
为达到上述目的,本发明采用的另一技术方案是:一种介质滤波器,包括介质滤波器本体,所述介质滤波器包括至少两个介质谐振器,每个所述介质谐振器均包括由陶瓷材料制成的介质谐振器本体,所有的所述介质谐振器本体共同构成所述的介质滤波器本体,其中,所述的至少两个介质谐振器包括第一介质谐振器和第二介质谐振器,
所述第一介质谐振器包括第一介质谐振器本体、位于所述第一介质谐振器本体上且用于调整所述第一介质谐振器的谐振频率的第一调试孔,所述第一调试孔为盲孔,所述第一调试 孔的孔口位于所述第一介质谐振器本体的上表面;
所述第二介质谐振器包括第二介质谐振器本体、位于所述第二介质谐振器本体上且用于调整所述第二介质谐振器的谐振频率的第二调试孔,所述第二调试孔为盲孔,所述第二调试孔的孔口位于所述第二介质谐振器本体的下表面;
所述介质滤波器还包括:
负耦合孔,所述负耦合孔为直孔,所述负耦合孔开设在所述介质滤波器本体并自所述第二介质谐振器的上表面向下倾斜地延伸并贯穿至所述第一介质谐振器的下表面,所述负耦合孔的上孔口位于所述第二介质谐振器本体的上表面,所述负耦合孔的下孔口位于所述第一介质谐振器本体的下表面,所述负耦合孔连接所述第一介质谐振器和所述第二介质谐振器,并用于实现所述第一介质谐振器和所述第二介质谐振器之间的电容耦合;
导电层,所述导电层覆盖所述介质滤波器本体的表面、所述第一调试孔的内壁表面和所述负耦合孔的内壁表面。
优选地,所述负耦合孔上孔口的上孔口部与所述第二调试孔的孔口部相贯穿连接,使得所述负耦合孔的内腔与所述第二调试孔的内腔相互连通。
优选地,所述负耦合孔下孔口的下孔口部与所述第一调试孔的孔口部相贯穿连接,使得所述负耦合孔的内腔与所述第一调试孔的内腔相互连通。
优选地,所述第一调试孔的轴心线和所述第二调试孔的轴心线构成一虚拟平面,所述负耦合孔的轴心线位于所述虚拟平面上。
优选地,所述负耦合孔的横截面为圆形、椭圆形或多边形中的任意一种。
优选地,所述介质滤波器还包括耦合槽,所述耦合槽开设在所述介质滤波器本体上且自所述介质滤波器本体的上表面向下延伸并贯穿至所述介质滤波器本体的下表面,所述耦合槽在所述介质滤波器本体的上表面和下表面均具有开口,所述耦合槽还在所述介质滤波器本体的前表面或后表面具有开口,所述耦合槽位于所述第一介质谐振器本体和所述第二介质谐振器本体相接的位置处,所述耦合槽的内壁表面覆盖有所述导电层,所述耦合槽和所述负耦合孔共同作用实现所述第一介质谐振器和所述第二介质谐振器之间的电容耦合。
进一步地,所述耦合槽有两个,两个所述的耦合槽对称分布于所述第一调试孔的轴心线和所述第二调试孔的轴心线形成的虚拟平面的两侧。
优选地,所有的所述介质谐振器本体一体设置而共同构成所述的介质滤波器本体。
本发明的另一目的是提供一种无线电收发设备。
为达到上述目的,本发明采用的技术方案是,一种无线电收发设备,包括上述任意一项所述的介质滤波器。
由于上述技术方案的运用,本发明与现有技术相比具有下列优点:
本发明提供的介质滤波器,包括至少两个介质谐振器,该介质谐振器包括由陶瓷材料制成的介质谐振器本体和位于介质谐振器本体表面的调试孔,通过在其中一个介质谐振器本体的上表面开设向下倾斜延伸直至贯穿另一个介质谐振器本体的下表面的负耦合孔,使负耦合孔的上孔口位于其中一个介质谐振器本体的上表面,并使负耦合孔的下孔口位于另一个介质谐振器本体的下表面,使得负耦合孔连接这两个介质谐振器,能够通过负耦合孔实现这两个介质谐振器之间的电容耦合,省略了隔断环,结构更加简单,加工工序更少,无需精准控制孔深,性能更加稳定,结构强度更高;本发明还提供一种包括上述介质滤波器的无线电收发设备。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中介质滤波器实施例1立体透视示意图。
图2为图1的俯视示意图。
图3为图2中A-A方向的剖视图。
图4为本发明中介质滤波器实施例2立体透视示意图。
图5为本发明中介质滤波器实施例3立体透视示意图。
图6为本发明中介质滤波器实施例4立体透视示意图。
图7为本发明中介质滤波器实施例5立体透视示意图。
图8为本发明中介质滤波器实施例6立体透视示意图。
图9为本发明中介质滤波器实施例7立体透视示意图。
图10为本发明中介质滤波器实施例8立体透视示意图。
图11为本发明中介质滤波器实施例9立体透视示意图。
图12为图11的俯视示意图。
图13为图12中B-B方向的剖视图。
图14为本发明中介质滤波器实施例10立体透视示意图。
图15为图14的俯视示意图。
图16为图15中C-C方向的剖视图。
图17为本发明中介质滤波器实施例11立体透视示意图。
图18为图17的俯视示意图。
图19为图18中D-D方向的剖视图。
图20为本发明中介质滤波器实施例12立体透视示意图。
图21为图20的俯视示意图。
图22为图21中E-E方向的剖视图。
图23为本发明中介质滤波器实施例1的电气性能图。
其中:100.介质滤波器;101.介质滤波器本体;200.第一介质谐振器;201.第一介质谐振器本体;202.第一调试孔;2021.第一调试孔孔口部;300.第二介质谐振器;301.第二介质谐振器本体;302.第二调试孔;3021.第二调试孔孔口部;400.负耦合孔;401.上孔口部;402.下孔口部;500.导电层;601.第一耦合槽;602.第二耦合槽。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图1所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1
如图1-3所示,本发明提供的介质滤波器100,包括第一介质谐振器200和第二介质谐振器300,第一介质谐振器200和第二介质谐振器300结构相邻地设置,第一介质谐振器200包括由陶瓷材料制成的第一介质谐振器本体201和位于第一介质谐振器本体201上的第一调试孔202,第一调试孔202为盲孔,第一调试孔202的孔口位于第一介质谐振器本体201的上表面;第一调试孔202用于调试第一介质谐振器200的谐振频率;第二介质谐振器300包括由陶瓷材料制成的第二介质谐振器本体301和位于第二介质谐振器本体301上的第 二调试孔302,第二调试孔302为盲孔,第二调试孔302的孔口位于第二介质谐振器本体301的下表面,第二调试孔302用于调试第二介质谐振器300的谐振频率;第一介质谐振器本体201和第二介质谐振器本体301相连接并共同构成介质滤波器本体101,本实施例中,第一介质谐振器本体201和第二介质谐振器本体301采用的为一体设置。
第一调试孔202和第二调试孔302位于第一介质谐振器200和第二介质谐振器300分界面的两侧,且这两个调试孔距该分界面之间的距离相等。
介质滤波器100还包括负耦合孔400,负耦合孔400为直孔,负耦合孔400开设于介质滤波器本体101上并自第一介质谐振器本体201的上表面向下倾斜地延伸直至贯穿第二介质谐振器本体301的下表面,使负耦合孔400的上孔口全部位于第一介质谐振器本体201的上表面,并使负耦合孔400的下孔口全部位于第二介质谐振器本体301的下表面;负耦合孔400具有位于第一介质谐振器本体201上表面的上孔口部401和位于第二介质谐振器本体301下表面的下孔口部402,负耦合孔400的横截面为圆形、椭圆形或多边形中的任意一种,本实施例中,负耦合孔400的横截面为圆形,负耦合孔400连接第一介质谐振器200和第二介质谐振器300,负耦合孔400用于实现第一介质谐振器200和第二介质谐振器300之间的电容耦合。
介质滤波器100还包括覆盖在介质滤波器本体101的表面、第一调试孔202的内壁表面、第二调试孔302的内壁表面和负耦合孔400的内壁表面的导电层500,导电层500的材质为银。
第一调试孔202的轴心线平行于第二调试孔302的轴心线,第一调试孔202的轴心线和第二调试孔302的轴心线形成一个虚拟平面,负耦合孔400的轴心线位于该虚拟平面上,负耦合孔400的轴心线的延长线与第一调试孔202/第二调试孔302的轴心线的延长线相交。
如图23所示,介质滤波器100通过负耦合孔400在介质滤波器100通带B的低频段产生传输零点A;通过调整负耦合孔400的轴心线与介质滤波器本体101下表面之间的夹角和负耦合孔400的横截面积来调节传输零点A的强度;负耦合孔400的轴心线与介质滤波器本体101下表面之间的夹角越小,传输零点A的强度越强;负耦合孔400的横截面积越大,传输零点A的强度越强。
实施例2
如图4所示,实施例2与实施例1的不同之处在于实施例2中的负耦合孔400的横截面为矩形。
实施例3
如图5所示,实施例3与实施例1的不同之处在于实施例3中的负耦合孔400的上孔口部401与第一介质谐振器200上的第一调试孔202的孔口部2021相贯通连接,使负耦合孔 400的内腔与第一调试孔202的内腔相连通,负耦合孔400的下孔口部402与第二介质谐振器300上的第二调试孔302的孔口部3021相连接,使负耦合孔400的内腔与第二调试孔302的内腔相连通。
实施例4
如图6所示,实施例4与实施例3的不同之处在于,实施例4中的负耦合孔400的横截面为矩形。
实施例5
如图7所示,实施例5与实施例1的不同之处在于,实施例5中的第二介质谐振器300上的第二调试孔302的孔口位于第二介质谐振器301的上表面。
实施例6
如图8所示,实施例6与实施例5的不同之处在于,实施例6中的负耦合孔400的横截面为矩形。
实施例7
如图9所示,实施例7与实施例5的不同之处在于,实施例7中的负耦合孔400的上孔口部401与第一介质谐振器200上的第一调试孔202的孔口部2021相连接,使负耦合孔400的内腔与第一调试孔202的内腔相连通。
实施例8
如图10所示,实施例8与实施例7的不同之处在于,实施例8中的负耦合孔400的横截面为矩形。
实施例9
如图11-13所示,实施例9与实施例1的不同之处有两点,具体为:
第一点不同之处在于,实施例9中的第二介质谐振器300上的第二调试孔302的孔口位于第二介质谐振器301的上表面。
第二点不同之处在于,实施例9中的介质滤波器100还包括第一耦合槽601和第二耦合槽602,第一耦合槽601开设于介质滤波器本体101上并自介质滤波器本体101的上表面并向下垂直延伸贯穿至介质滤波器本体101的下表面,第一耦合槽601在介质滤波器本体101的上表面和下表面均具有开口,第一耦合槽601还在介质滤波器本体101的后表面具有开口,第一耦合槽601位于第一介质谐振器本体201和第二介质谐振器本体202的相接的位置处,第一耦合槽601的内壁表面覆盖有导电层500;第二耦合槽602开设于介质滤波器本体101上并自介质滤波器本体101的上表面并向下垂直延伸贯穿介质滤波器本体101的下表面,第二耦合槽602在介质滤波器本体101的上表面和下表面均具有开口,第二耦合槽602还在介质滤波器本体101的前表面具有开口,第二耦合槽602位于第一介质谐振器本体201 和第二介质谐振器本体202的相接的位置处,第二耦合槽602的内壁表面覆盖有导电层500;第一耦合槽601和第二耦合槽602对称分布于第一调试孔202的轴心线和第二调试孔302的轴心线形成的虚拟平面的两侧。
实施例9的电气性能与实施例1的电气性能的不同之处在于,实施例9中通过第一耦合槽601、第二耦合槽602和负耦合孔400的共同作用实现第一介质谐振器200和第二介质谐振器300之间的电容耦合。其中,负耦合孔400用于对所述电容耦合进行主调节,第一耦合槽601和第二耦合槽602用于对所述电容耦合进行细微调节,负耦合孔400的调节方式和实施例1完全相同,第一耦合槽601和第二耦合槽602的调节方式为,第一耦合槽601和第二耦合槽602在前后方向上的槽深越深,传输零点A越强。
实施例10
如图14-16所示,实施例10与实施例1的不同之处有两点,具体为:
第一点不同之处在于,实施例10中的负耦合孔400的上孔口部401与第一介质谐振器200上的第一调试孔202的孔口部2021相贯通连接,使负耦合孔400的内腔与第一调试孔202的内腔相连通,负耦合孔400的下孔口部402与第二介质谐振器300上的第二调试孔302的孔口部3021相连接,使负耦合孔400的内腔与第二调试孔302的内腔相连通。
第二点不同之处在于,实施例10中的介质滤波器100还包括第一耦合槽601和第二耦合槽602,第一耦合槽601开设于介质滤波器本体101上并自介质滤波器本体101的上表面并向下垂直延伸贯穿介质滤波器本体101的下表面,第一耦合槽601在介质滤波器本体101的上表面和下表面均具有开口,第一耦合槽601还在介质滤波器本体101的后表面具有开口,第一耦合槽601位于第一介质谐振器本体201和第二介质谐振器本体202的相接的位置处,第一耦合槽601的内壁表面覆盖有导电层500;第二耦合槽602开设于介质滤波器本体101上并自介质滤波器本体101的上表面并向下垂直延伸贯穿介质滤波器本体101的下表面,第二耦合槽602在介质滤波器本体101的上表面和下表面均具有开口,第二耦合槽602还在介质滤波器本体101的前表面具有开口,第二耦合槽602位于第一介质谐振器本体201和第二介质谐振器本体202的相接的位置处,第二耦合槽602的内壁表面覆盖有导电层500;第一耦合槽601和第二耦合槽602对称分布于第一调试孔202的轴心线和第二调试孔302的轴心线形成的虚拟平面的两侧。
实施例10的电气性能与实施例1的电气性能的不同之处在于,实施例10中通过第一耦合槽601、第二耦合槽602和负耦合孔400共同作用实现第一介质谐振器200和第二介质谐振器300之间的电容耦合。其中,负耦合孔400用于对所述电容耦合进行主调节,第一耦合槽601和第二耦合槽602用于对所述电容耦合进行细微调节,负耦合孔400的调节方式和实施例1完全相同,第一耦合槽601和第二耦合槽602的调节方式为,第一耦合槽601和第二 耦合槽602在前后方向上的槽深越深,传输零点A的强度越强。
实施例11
如图17-19所示,实施例11与实施例1的不同之处有三点,具体为:
第一点不同之处在于,实施例11中的负耦合孔400开设于介质滤波器本体101上并自第二介质谐振器本体301的上表面并向下倾斜地延伸直至贯穿第一介质谐振器本体201的下表面,使负耦合孔400的上孔口全部位于第二介质谐振器本体301的上表面,并使负耦合孔400的下孔口全部位于第一介质谐振器本体201的下表面;负耦合孔400具有位于第二介质谐振器301上表面的上孔口部401和位于第一介质谐振器201下表面的下孔口部402。
第二点不同之处在于,实施例11中负耦合孔400的横截面为长方形。
第三点不同之处在于,实施例11中的介质滤波器100还包括第一耦合槽601和第二耦合槽602,第一耦合槽601开设于介质滤波器本体101上并自介质滤波器本体101的上表面并向下垂直延伸贯穿介质滤波器本体101的下表面,第一耦合槽601在介质滤波器本体101的上表面和下表面均具有开口,第一耦合槽601还在介质滤波器本体101的后表面具有开口,第一耦合槽601位于第一介质谐振器本体201和第二介质谐振器本体202的相接的位置处,第一耦合槽601的内壁表面覆盖有导电层500;第二耦合槽602开设于介质滤波器本体101上并自介质滤波器本体101的上表面并向下垂直延伸贯穿介质滤波器本体101的下表面,第二耦合槽602在介质滤波器本体101的上表面和下表面均具有开口,第二耦合槽602还在介质滤波器本体101的前表面具有开口,第二耦合槽602位于第一介质谐振器本体201和第二介质谐振器本体202的相接的位置处,第二耦合槽602的内壁表面覆盖有导电层500;第一耦合槽601和第二耦合槽602对称分布于第一调试孔202的轴心线和第二调试孔302的轴心线形成的虚拟平面的两侧。
实施例11的电气性能与实施例1的电气性能的不同之处在于,实施例11中通过第一耦合槽601、第二耦合槽602和负耦合孔400共同作用实现第一介质谐振器200和第二介质谐振器300之间的电容耦合。其中,负耦合孔400用于对所述电容耦合进行主调节,第一耦合槽601和第二耦合槽602用于对所述电容耦合进行细微调节,负耦合孔400的调节方式和实施例1完全相同,第一耦合槽601和第二耦合槽602的调节方式为,第一耦合槽601和第二耦合槽602在前后方向上的槽深越深,传输零点A越强。
实施例12
如图20-22所示,实施例12与实施例11基本相同,不同之处在于,实施例12中负耦合孔400的横截面为圆形。
综上所述,本发明提供的介质滤波器,包括至少两个介质谐振器,该介质谐振器包括由陶瓷材料制成的介质谐振器本体和位于介质谐振器本体表面的调试孔,通过在其中一个介质 谐振器本体的上表面开设向下倾斜延伸直至贯穿另一个介质谐振器本体的下表面的负耦合孔,使负耦合孔的上孔口全部位于其中一个介质谐振器本体的上表面,并使负耦合孔的下孔口全部位于另一个介质谐振器本体的下表面,使得负耦合孔连接这两个介质谐振器,能够通过负耦合孔实现这两个介质谐振器之间的电容耦合,省略了隔断环,结构更加简单,加工工序更少,无需精准控制孔深,性能更加稳定,结构强度更高。
本发明还提供一种收发设备,该收发设备包括上述实施例中任意一种介质滤波器,该收发设备中的介质滤波器可以用于对射频信号进行滤波。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (21)

  1. 一种介质滤波器,包括介质滤波器本体,其特征在于:所述介质滤波器包括至少两个介质谐振器,每个所述介质谐振器均包括由陶瓷材料制成的介质谐振器本体,所有的所述介质谐振器本体一体设置并共同构成所述的介质滤波器本体,其中,所述的至少两个介质谐振器包括第一介质谐振器和第二介质谐振器,
    所述第一介质谐振器包括第一介质谐振器本体、位于所述第一介质谐振器本体上且用于调整所述第一介质谐振器的谐振频率的第一调试孔,所述第一调试孔为盲孔,所述第一调试孔的孔口位于所述第一介质谐振器本体的上表面;
    所述第二介质谐振器包括第二介质谐振器本体、位于所述第二介质谐振器本体上且用于调整所述第二介质谐振器的谐振频率的第二调试孔,所述第二调试孔为盲孔,所述第二调试孔的孔口位于所述第二介质谐振器本体的下表面;
    所述介质滤波器还包括:
    负耦合孔,所述负耦合孔为直孔,所述负耦合孔的横截面为圆形、椭圆形或多边形中的任意一种,所述负耦合孔开设在所述介质滤波器本体并自所述第一介质谐振器的上表面向下倾斜地延伸并贯穿至所述第二介质谐振器的下表面,所述负耦合孔的上孔口全部位于所述第一介质谐振器本体的上表面,所述负耦合孔的下孔口全部位于所述第二介质谐振器本体的下表面,所述第一调试孔的轴心线和所述第二调试孔的轴心线构成一虚拟平面,所述负耦合孔的轴心线位于所述虚拟平面上;
    耦合槽,所述耦合槽开设在所述介质滤波器本体上且自所述介质滤波器本体的上表面向下延伸并贯穿至所述介质滤波器本体的下表面,所述耦合槽在所述介质滤波器本体的上表面和下表面均具有开口,所述耦合槽还在所述介质滤波器本体的前表面或后表面具有开口,所述耦合槽位于所述第一介质谐振器本体和所述第二介质谐振器本体相接的位置处,所述耦合槽有两个,两个所述的耦合槽对称分布于所述第一调试孔的轴心线和所述第二调试孔的轴心线形成的虚拟平面的两侧,所述耦合槽和所述负耦合孔共同作用实现所述第一介质谐振器和所述第二介质谐振器之间的电容耦合;
    导电层,所述导电层覆盖所述介质滤波器本体的表面、所述第一调试孔的内壁表面、所述负耦合孔的内壁表面,以及所述耦合槽的内壁表面。
  2. 一种介质滤波器,包括介质滤波器本体,其特征在于:所述介质滤波器包括至少两个介质谐振器,每个所述介质谐振器均包括由陶瓷材料制成的介质谐振器本体,所有的所述介质谐振器本体一体设置并共同构成所述的介质滤波器本体,其中,所述的至少两个介质谐振器包括第一介质谐振器和第二介质谐振器,
    所述第一介质谐振器包括第一介质谐振器本体、位于所述第一介质谐振器本体上且用于调整所述第一介质谐振器的谐振频率的第一调试孔,所述第一调试孔为盲孔,所述第一调试孔的孔口位于所述第一介质谐振器本体的上表面;
    所述第二介质谐振器包括第二介质谐振器本体、位于所述第二介质谐振器本体上且用于调整所述第二介质谐振器的谐振频率的第二调试孔,所述第二调试孔为盲孔,所述第二调试孔的孔口位于所述第二介质谐振器本体的下表面;
    所述介质滤波器还包括:
    负耦合孔,所述负耦合孔为直孔,所述负耦合孔的横截面为圆形、椭圆形或多边形中的任意一种,所述负耦合孔开设在所述介质滤波器本体并自所述第二介质谐振器的上表面向下倾斜地延伸并贯穿至所述第一介质谐振器的下表面,所述负耦合孔的上孔口全部位于所述第二介质谐振器本体的上表面,所述负耦合孔的下孔口全部位于所述第一介质谐振器本体的下表面,所述第一调试孔的轴心线和所述第二调试孔的轴心线构成一虚拟平面,所述负耦合孔的轴心线位于所述虚拟平面上;
    耦合槽,所述耦合槽开设在所述介质滤波器本体上且自所述介质滤波器本体的上表面向下延伸并贯穿至所述介质滤波器本体的下表面,所述耦合槽在所述介质滤波器本体的上表面和下表面均具有开口,所述耦合槽还在所述介质滤波器本体的前表面或后表面具有开口,所述耦合槽位于所述第一介质谐振器本体和所述第二介质谐振器本体相接的位置处,所述耦合槽有两个,两个所述的耦合槽对称分布于所述第一调试孔的轴心线和所述第二调试孔的轴心线形成的虚拟平面的两侧,所述耦合槽和所述负耦合孔共同作用实现所述第一介质谐振器和所述第二介质谐振器之间的电容耦合;
    导电层,所述导电层覆盖所述介质滤波器本体的表面、所述第一调试孔的内壁表面、所述负耦合孔的内壁表面,以及所述耦合槽的内壁表面。
  3. 一种介质滤波器,包括介质滤波器本体,其特征在于:所述介质滤波器包括至少两个介质谐振器,每个所述介质谐振器均包括由陶瓷材料制成的介质谐振器本体,所有的所述介质谐振器本体共同构成所述的介质滤波器本体,其中,所述的至少两个介质谐振器包括第一介质谐振器和第二介质谐振器,
    所述第一介质谐振器包括第一介质谐振器本体、位于所述第一介质谐振器本体上且用于调整所述第一介质谐振器的谐振频率的第一调试孔,所述第一调试孔为盲孔,所述第一调试孔的孔口位于所述第一介质谐振器本体的上表面;
    所述第二介质谐振器包括第二介质谐振器本体、位于所述第二介质谐振器本体上且用于调整所述第二介质谐振器的谐振频率的第二调试孔,所述第二调试孔为盲孔,所述第二调试 孔的孔口位于所述第二介质谐振器本体的上表面或下表面;
    所述介质滤波器还包括:
    负耦合孔,所述负耦合孔为直孔,所述负耦合孔开设在所述介质滤波器本体并自所述第一介质谐振器的上表面向下倾斜地延伸并贯穿至所述第二介质谐振器的下表面,所述负耦合孔的上孔口位于所述第一介质谐振器本体的上表面,所述负耦合孔的下孔口位于所述第二介质谐振器本体的下表面,所述负耦合孔连接所述第一介质谐振器和所述第二介质谐振器,并用于实现所述第一介质谐振器和所述第二介质谐振器之间的电容耦合;
    导电层,所述导电层覆盖所述介质滤波器本体的表面、所述第一调试孔的内壁表面和所述负耦合孔的内壁表面。
  4. 根据权利要求3所述的介质滤波器,其特征在于:所述负耦合孔的上孔口全部位于所述第一介质谐振器本体的上表面,所述负耦合孔的下孔口全部位于所述第二介质谐振器本体的下表面。
  5. 根据权利要求3所述的介质滤波器,其特征在于:所述负耦合孔上孔口的上孔口部与所述第一调试孔的孔口部相贯穿连接,使得所述负耦合孔的内腔与所述第一调试孔的内腔相互连通。
  6. 根据权利要求3所述的介质滤波器,其特征在于:所述第二调试孔的孔口位于所述第二介质谐振器本体的下表面,所述负耦合孔下孔口的下孔口部与所述第二调试孔的孔口部相贯穿连接,使得所述负耦合孔的内腔与所述第二调试孔的内腔相互连通。
  7. 根据权利要求3所述的介质滤波器,其特征在于:所述第一调试孔的轴心线和所述第二调试孔的轴心线构成一虚拟平面,所述负耦合孔的轴心线位于所述虚拟平面上。
  8. 根据权利要求3所述的介质滤波器,其特征在于:所述负耦合孔的横截面为圆形、椭圆形或多边形中的任意一种。
  9. 根据权利要求3所述的介质滤波器,其特征在于:所述介质滤波器还包括耦合槽,所述耦合槽开设在所述介质滤波器本体上且自所述介质滤波器本体的上表面向下延伸并贯穿至所述介质滤波器本体的下表面,所述耦合槽在所述介质滤波器本体的上表面和下表面均具有开口,所述耦合槽还在所述介质滤波器本体的前表面或后表面具有开口,所述耦合槽位于所述第一介质谐振器本体和所述第二介质谐振器本体相接的位置处,所述耦合槽的内壁表面覆盖有所述导电层,所述耦合槽和所述负耦合孔共同作用实现所述第一介质谐振器和所述第二介质谐振器之间的电容耦合。
  10. 根据权利要求9所述的介质滤波器,其特征在于:所述耦合槽有两个,两个所述的耦合槽对称分布于所述第一调试孔的轴心线和所述第二调试孔的轴心线形成的虚拟平面的两 侧。
  11. 根据权利要求3至10任一项所述的介质滤波器,其特征在于:所有的所述介质谐振器本体一体设置而共同构成所述的介质滤波器本体。
  12. 一种介质滤波器,包括介质滤波器本体,其特征在于:所述介质滤波器包括至少两个介质谐振器,每个所述介质谐振器均包括由陶瓷材料制成的介质谐振器本体,所有的所述介质谐振器本体共同构成所述的介质滤波器本体,其中,所述的至少两个介质谐振器包括第一介质谐振器和第二介质谐振器,
    所述第一介质谐振器包括第一介质谐振器本体、位于所述第一介质谐振器本体上且用于调整所述第一介质谐振器的谐振频率的第一调试孔,所述第一调试孔为盲孔,所述第一调试孔的孔口位于所述第一介质谐振器本体的上表面;
    所述第二介质谐振器包括第二介质谐振器本体、位于所述第二介质谐振器本体上且用于调整所述第二介质谐振器的谐振频率的第二调试孔,所述第二调试孔为盲孔,所述第二调试孔的孔口位于所述第二介质谐振器本体的下表面;
    所述介质滤波器还包括:
    负耦合孔,所述负耦合孔为直孔,所述负耦合孔开设在所述介质滤波器本体并自所述第二介质谐振器的上表面向下倾斜地延伸并贯穿至所述第一介质谐振器的下表面,所述负耦合孔的上孔口位于所述第二介质谐振器本体的上表面,所述负耦合孔的下孔口位于所述第一介质谐振器本体的下表面,所述负耦合孔连接所述第一介质谐振器和所述第二介质谐振器,并用于实现所述第一介质谐振器和所述第二介质谐振器之间的电容耦合;
    导电层,所述导电层覆盖所述介质滤波器本体的表面、所述第一调试孔的内壁表面和所述负耦合孔的内壁表面。
  13. 根据权利要求12所述的介质滤波器,其特征在于:所述负耦合孔的上孔口全部位于所述第一介质谐振器本体的上表面,所述负耦合孔的下孔口全部位于所述第二介质谐振器本体的下表面。
  14. 根据权利要求12所述的介质滤波器,其特征在于:所述负耦合孔上孔口的上孔口部与所述第二调试孔的孔口部相贯穿连接,使得所述负耦合孔的内腔与所述第二调试孔的内腔相互连通。
  15. 根据权利要求12所述的介质滤波器,其特征在于:所述负耦合孔下孔口的下孔口部与所述第一调试孔的孔口部相贯穿连接,使得所述负耦合孔的内腔与所述第一调试孔的内腔相互连通。
  16. 根据权利要求12所述的介质滤波器,其特征在于:所述第一调试孔的轴心线和所 述第二调试孔的轴心线构成一虚拟平面,所述负耦合孔的轴心线位于所述虚拟平面上。
  17. 根据权利要求12所述的介质滤波器,其特征在于,所述负耦合孔的横截面为圆形、椭圆形或多边形中的任意一种。
  18. 根据权利要求12所述的介质滤波器,其特征在于:所述介质滤波器还包括耦合槽,所述耦合槽开设在所述介质滤波器本体上且自所述介质滤波器本体的上表面向下延伸并贯穿至所述介质滤波器本体的下表面,所述耦合槽在所述介质滤波器本体的上表面和下表面均具有开口,所述耦合槽还在所述介质滤波器本体的前表面或后表面具有开口,所述耦合槽位于所述第一介质谐振器本体和所述第二介质谐振器本体相接的位置处,所述耦合槽的内壁表面覆盖有所述导电层,所述耦合槽和所述负耦合孔共同作用实现所述第一介质谐振器和所述第二介质谐振器之间的电容耦合。
  19. 根据权利要求18所述的介质滤波器,其特征在于:所述耦合槽有两个,两个所述的耦合槽对称分布于所述第一调试孔的轴心线和所述第二调试孔的轴心线形成的虚拟平面的两侧。
  20. 根据权利要求12至19任一项所述的介质滤波器,其特征在于:所有的所述介质谐振器本体一体设置而共同构成所述的介质滤波器本体。
  21. 一种无线电收发设备,其特征在于,包括根据权利要求1至20中任意一项所述的介质滤波器。
PCT/CN2020/126109 2019-12-31 2020-11-03 介质滤波器和无线电收发设备 WO2021135622A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911404561.7 2019-12-31
CN201911404561 2019-12-31
CN202010210707.0 2020-03-24
CN202010210707.0A CN111244590A (zh) 2019-12-31 2020-03-24 介质滤波器和无线电收发设备

Publications (1)

Publication Number Publication Date
WO2021135622A1 true WO2021135622A1 (zh) 2021-07-08

Family

ID=70877337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126109 WO2021135622A1 (zh) 2019-12-31 2020-11-03 介质滤波器和无线电收发设备

Country Status (2)

Country Link
CN (2) CN211265679U (zh)
WO (1) WO2021135622A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211265679U (zh) * 2019-12-31 2020-08-14 江苏灿勤科技股份有限公司 介质滤波器和无线电收发设备
CN112038738B (zh) * 2020-08-26 2024-04-26 江苏灿勤科技股份有限公司 一种滤波器及其制作方法
CN114583430B (zh) * 2020-11-30 2023-06-06 华为技术有限公司 谐振器、介质滤波器、通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085905A (ja) * 1999-09-17 2001-03-30 Tokin Corp 誘電体フィルタ
CN110137638A (zh) * 2019-04-26 2019-08-16 摩比科技(深圳)有限公司 陶瓷波导滤波器
CN110534851A (zh) * 2019-09-28 2019-12-03 江西一创新材料有限公司 一种用于实现对称传输零点的介质滤波器耦合结构
CN111129667A (zh) * 2019-11-25 2020-05-08 江苏希奥飞尔微电子科技有限公司 一种应用于介质波导滤波器中的负耦合结构及介质波导滤波器
CN111244590A (zh) * 2019-12-31 2020-06-05 江苏灿勤科技股份有限公司 介质滤波器和无线电收发设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085905A (ja) * 1999-09-17 2001-03-30 Tokin Corp 誘電体フィルタ
CN110137638A (zh) * 2019-04-26 2019-08-16 摩比科技(深圳)有限公司 陶瓷波导滤波器
CN110534851A (zh) * 2019-09-28 2019-12-03 江西一创新材料有限公司 一种用于实现对称传输零点的介质滤波器耦合结构
CN111129667A (zh) * 2019-11-25 2020-05-08 江苏希奥飞尔微电子科技有限公司 一种应用于介质波导滤波器中的负耦合结构及介质波导滤波器
CN111244590A (zh) * 2019-12-31 2020-06-05 江苏灿勤科技股份有限公司 介质滤波器和无线电收发设备

Also Published As

Publication number Publication date
CN111244590A (zh) 2020-06-05
CN211265679U (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
WO2021135622A1 (zh) 介质滤波器和无线电收发设备
WO2021135643A1 (zh) 介质滤波器、无线电收发设备及具有其的基站
WO2021135621A1 (zh) 介质滤波器及包括该介质滤波器的无线电收发设备
CN107534197B (zh) 介质滤波器,收发信机及基站
WO2021135644A1 (zh) 一种介质滤波器、无线电收发设备及基站
WO2021169220A1 (zh) 一种介质滤波器和无线电收发设备
WO2020211287A1 (zh) 介质滤波器及5g通信设备
CN108475836A (zh) 一种滤波器及无线网络设备
TWI748732B (zh) 具有電容耦合金屬圖案的混合異波長諧振帶通濾波器
CN106252797A (zh) 一种双模介质带通滤波器
WO2014187055A1 (zh) 波导滤波器、其制备方法及通信设备
CN205960171U (zh) 双层腔合路器及其共用端口耦合装置
WO2021134997A1 (zh) 一种滤波器及其制作方法
US10950918B1 (en) Dual-mode monoblock dielectric filter
WO2021135904A1 (zh) 一种介质滤波器、具有其的无线电收发设备及基站
CN111146534A (zh) 一种介质滤波器及通信装置
CN112968278A (zh) 一种全双工滤波天线阵列
US11081769B2 (en) RF dielectric waveguide duplexer filter module
CN111066198B (zh) 陶瓷介质滤波器
CN210379367U (zh) 陶瓷介质滤波器
WO2023005399A1 (zh) 利用吸波材料和介质的超宽带天线
CN210403987U (zh) 一种包含负耦合结构的叠层介质滤波器
WO2022110987A1 (en) Dielectric filter
CN212967975U (zh) 一种层叠结构的陶瓷介质滤波器
CN112038738B (zh) 一种滤波器及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909049

Country of ref document: EP

Kind code of ref document: A1