WO2021135494A1 - 柔性过渡高低频双脉冲mig焊接波形调制方法及系统 - Google Patents

柔性过渡高低频双脉冲mig焊接波形调制方法及系统 Download PDF

Info

Publication number
WO2021135494A1
WO2021135494A1 PCT/CN2020/120599 CN2020120599W WO2021135494A1 WO 2021135494 A1 WO2021135494 A1 WO 2021135494A1 CN 2020120599 W CN2020120599 W CN 2020120599W WO 2021135494 A1 WO2021135494 A1 WO 2021135494A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
current
pulse
low
waveform
Prior art date
Application number
PCT/CN2020/120599
Other languages
English (en)
French (fr)
Inventor
王振民
陈浩宇
吴健文
徐孟嘉
张芩
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to AU2020418894A priority Critical patent/AU2020418894B2/en
Publication of WO2021135494A1 publication Critical patent/WO2021135494A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode

Definitions

  • the invention relates to the technical field of welding equipment, and more specifically to a method and system for modulating flexible transition high and low frequency double-pulse MIG welding waveforms.
  • Double-pulsed Metal Insert Gas Welding has the advantages of low spatter, high welding quality, wide welding range, and easy automation. Compared with single pulse, double pulse welding introduces a low-energy pulse group, which reduces the input of line energy, and can realize the transition of one pulse to one drop of jet to form a regular fish-scale weld, but at the same time, the double pulse current output is also used for the welding power source. The dynamic characteristics have higher requirements.
  • Using the third-generation wide-bandgap semiconductor device SiC power switch can break through the dynamic performance limit of traditional Si-based devices, increase the inverter frequency to 200kHz, and output high-frequency double-pulse current waveforms with a frequency above 1kHz, and the resulting high-frequency
  • the compression effect and electromagnetic stirring effect can increase the instantaneous power density and arc stiffness, refine the weld grains and reduce the incidence of porosity, and further improve the double pulse welding process.
  • SiC power switch tubes are often accompanied by strong electromagnetic interference and oscillation spikes in high-frequency and high-voltage applications, which are not conducive to the flexible modulation and fine control of the double pulse waveform.
  • the traditional dual-pulse MIG welding is limited by analog control or simple digital control, and still uses the vertical transition method to achieve the alternation of strong and weak pulse groups.
  • This traditional waveform has large energy mutations, easy top wires in cold conditions, and easy breaks. Defects such as arcs are not conducive to the further improvement of welding stability and welding quality.
  • an object of the present invention is to provide a flexible transition high and low frequency double pulse MIG welding waveform modulation method; the modulation method can realize trapezoidal wave high and low frequency double pulse waveform and sine wave high and low frequency double pulse waveform
  • the precise output control can improve the energy transition form of the double pulse strong and weak pulse group, can effectively reduce the arc interruption and cold plate top wire phenomenon in the double pulse MIG welding process, and improve the stability of the welding process.
  • Another object of the present invention is to provide a modulation system that implements the above modulation method, which has the advantage of high control accuracy and can realize flexible modulation of complex double pulse waveforms.
  • a flexible transition high and low frequency double pulse MIG welding waveform modulation method characterized in that: the flexible transition high and low frequency double pulse MIG welding waveform is set to trapezoidal wave high and low frequency double pulse Current waveform or sine wave high and low frequency double pulse current waveform;
  • the invention adopts a flexible transition modulation method, adds an adjustable transition pulse group on the basis of the traditional double pulse waveform, and realizes the fine output control of the trapezoidal wave high and low frequency double pulse waveform and the sine wave high and low frequency double pulse waveform.
  • the modulation waveform improves the energy transition form of the double pulse strong and weak pulse group, can effectively reduce the arc breaking and cold plate top wire phenomenon in the double pulse MIG welding process, and improve the stability of the welding process.
  • the trapezoidal wave high and low frequency double pulse current waveform means that the low frequency envelope of the double pulse is an isosceles trapezoid and the alternating phase of the strong and weak pulse group is a ramp pulse group with an adjustable slope; in the trapezoidal wave high and low frequency double pulse current waveform Among them, the high-frequency pulse time sequence includes a high-frequency peak phase and a high-frequency base value phase; the low-frequency pulse time sequence includes a ramp-up phase, a high plateau phase, a ramp-down phase, and a low plateau phase; the current setting is updated according to the current waveform change law Value refers to: the current set value is updated to the peak of the ramp-up pulse group when in the high-frequency peak stage and the ramp-up stage, and the current set value is updated to the high-platform pulse group peak when it is in the high-frequency peak stage and the high plateau stage.
  • the current setting value is updated to the peak value of the ramp-down pulse group during the peak frequency phase and the ramp-down phase.
  • the current setting value is updated to the peak value of the low platform pulse group when in the high frequency peak phase and the low plateau phase, and the current setting is in the high frequency base value phase.
  • the value is updated to the base current value;
  • the sine wave high and low frequency double pulse current waveform means that the low frequency envelope of the double pulse is sinusoidal and the alternating phase of the strong and weak pulse group conforms to the sine change characteristic; in the sine wave high and low frequency double pulse current waveform, the high frequency pulse time sequence includes High-frequency peak stage and high-frequency base value stage; low-frequency pulse time sequence includes low-frequency sine cycle; the update of current set value according to the current waveform change rule refers to: the current set value is updated when in the high-frequency peak stage and in the low-frequency sine cycle It is the peak value of the sine pulse group, and the current setting value is updated to the base current value when it is in the high-frequency base value stage.
  • the peak value of the high plateau pulse group is I p1 ; the peak value of the low plateau pulse group is I p2 ; the base current value is I b ;
  • K is the number of high-frequency pulses
  • T 1 is the high-frequency period
  • T 2 is the low-frequency period
  • Dr is the proportion of time in the ramp-up phase
  • D d is the proportion of time in the ramp-down phase
  • I 'p1 is the peak of the peak sinusoidal current, I' p2 valley of the peak sinusoidal current.
  • a modulation system for realizing the above-mentioned flexible transition high and low frequency double pulse MIG welding waveform modulation method which is characterized in that it includes a control system, a SiC high frequency drive module, a current sampling modulation module, and a man-machine interactive communication module; wherein, SiC high frequency drive
  • the input end of the module is connected to the control system, and the output end is connected to the power switch tube in the welding power supply circuit;
  • the input end of the current sampling modulation module is connected to the output loop of the welding power supply circuit, and the output end is connected to the control system;
  • the man-machine interactive communication module is connected to Two-way connection of the control system.
  • the modulation system of the present invention can be used to modulate the high-frequency and low-double-pulse MIG welding current waveform with a flexible transition stage in the SiC welding power supply and the traditional Si-based inverter welding power supply.
  • the current sampling modulation module includes a Hall sensor, a differential amplifier circuit, a low-pass filter circuit, and a clamp circuit connected in sequence.
  • the differential amplifier circuit includes a differential amplifier A1; the non-inverting end of the differential amplifier A1 is connected to the Hall sensor, and the inverting end of the differential amplifier A1 is grounded;
  • the low-pass filter circuit includes a high-voltage operational amplifier A2; the output terminal of the differential amplifier A1 is connected to the non-inverting terminal of the high-voltage operational amplifier A2 through a resistor R9, and is connected to the inverting terminal of the high-voltage operational amplifier A2 through a capacitor C1; The inverting terminal of A2 is connected to the output terminal of the high-voltage operational amplifier A2;
  • the clamp circuit includes a diode D1 and a diode D2 connected in series; the connection between the diode D1 and the diode D2 is connected to the output terminal of the high-voltage operational amplifier A2, and is connected to the control system through a resistor R11; the diode D2 is connected in parallel with a resistor R10.
  • the advantages of the current sampling modulation module are: the use of differential signals for communication to enhance the anti-interference ability of the high-frequency waveform modulation method; a clamping circuit is provided to prevent damage to the chip.
  • the SiC high-frequency drive module includes a DC chopper power supply module and a magnetically isolated gate drive integrated circuit with an isolated drive chip.
  • the invention adopts an integrated protection driving mode, can eliminate the hidden danger of breakdown and electromagnetic interference caused by the fast switching speed and large surge voltage of the power switch tube in the ultra-high frequency work occasion, and improves the reliability of the digital modulation of the high and low frequency double pulse waveform.
  • the isolation drive chip refers to an isolation drive chip with a model of ISO5451; the pin CLAMP of the isolation drive chip is connected to the gate of the power switch tube; the gate of the power switch tube is grounded through a parallel resistor R313 and a capacitor C305; the isolation drive The pin OUT of the chip is connected to the gate of the power switch through a resistor R312; the resistor R312 is connected in parallel with a series diode D303 and a resistor R311; the pin OUT of the isolation drive chip is connected to the drain of the power switch through a series resistor R310 and a diode D302 The pin OUT of the isolation driver chip is also grounded through the parallel capacitor C304 and the Zener diode ZD301; the pin DESAT of the isolation driver chip is connected to the pin OUT of the isolation driver chip.
  • control system includes a DSC control chip; the PWM port of the DSC control chip is connected to the input end of the SiC high-frequency drive module; the ADC port of the DSC control chip is connected to the output end of the current sampling modulation module; the UART of the DSC control chip The port is connected with the man-machine interactive communication module.
  • the control system includes a main control chip based on the Cortex M4 core, a 3.3V regulated power supply module, an HSE crystal oscillator module, a manual reset module, a JTAG interface and an auxiliary filter circuit.
  • the DSC main control chip is embedded with the FreeRTOS system, which can flexibly schedule a variety of double-pulse MIG welding waveform modulation tasks
  • the human-computer interaction communication module is connected to the control system through a differential signal line.
  • the present invention has the following advantages and beneficial effects:
  • the present invention adopts a flexible transition modulation method, adds an adjustable transition pulse group on the basis of the traditional double pulse waveform, and can realize the fine output control of trapezoidal wave high and low frequency double pulse waveform or sine wave high and low frequency double pulse waveform;
  • the modulation waveform improves the energy transition form of the double pulse strong and weak pulse group, can effectively reduce the arc interruption and cold plate top wire phenomenon in the double pulse MIG welding process, and improve the stability of the welding process;
  • the present invention adopts an integrated protection driving mode, which improves the reliability of high and low frequency double pulse waveform digital modulation; measures such as magnetic isolation for each module, and uses differential signals for communication to enhance the resistance of the high frequency waveform modulation method Interference capability
  • the present invention adopts the fully digital modulation technology with the DSC control system as the core, and has the advantages of high control accuracy, fast response speed and good stability. It can accurately complete the exchange of a large number of interface information required for the flexible waveform modulation process, and the operation is more complicated.
  • the present invention is not only applicable to welding power sources of traditional Si-based power devices, but also to welding power sources of SiC power devices; the digital modulation of the double-pulse welding waveform of the welding power sources based on SiC power devices can give full play to its The advantages of high dynamic performance, shorten the output response time of the welding power supply, increase the pulse frequency of the flexible modulation double pulse waveform, introduce high-frequency compression and electromagnetic stirring effects for the arc, improve the stability of the welding process and improve the performance of the joint.
  • Figure 1 is a schematic diagram of the topology of a high and low frequency double pulse MIG welding power supply circuit based on SiC power devices;
  • FIG. 2 is the overall hardware block diagram of the flexible transition high and low frequency double pulse MIG welding waveform modulation system of the present invention
  • Fig. 3 is a circuit diagram of a SiC high frequency drive module in the flexible transition high and low frequency double pulse MIG welding waveform modulation system of the present invention
  • FIG. 4 is a circuit diagram of the current sampling modulation module in the flexible transition high and low frequency double pulse MIG welding waveform modulation system of the present invention
  • FIG. 5 is a waveform diagram of the trapezoidal wave high and low frequency double pulse current waveform modulated by the flexible transition high and low frequency double pulse MIG welding waveform modulation method of the present invention
  • FIG. 6 is a waveform diagram of a sine wave high and low frequency double pulse current waveform modulated by the flexible transition high and low frequency double pulse MIG welding waveform modulation method of the present invention
  • Fig. 7 is a flow chart of the waveform modulation method of the flexible transition high and low frequency double-pulse MIG welding of the present invention.
  • This embodiment is a flexible transition high and low frequency dual pulse MIG welding waveform modulation method and modulation system. This embodiment is described by taking a high and low frequency dual pulse MIG welding power circuit applied to a SiC power device as an example.
  • the working principle of the high and low frequency dual-pulse MIG welding power supply circuit based on SiC power devices is as follows: firstly, the three-phase AC power is converted into the DC bus voltage by the three-phase filter rectifier circuit; the switch tube in the full-bridge inverter circuit M1 ⁇ M4 are SiC power switch tubes. M1, M3, M2, and M4 are alternately driven and turned on by independent gate drive circuits. The switching frequency is 200kHz to realize the reverse conversion flow of direct current, and the energy is transferred through the high-frequency transformer T1.
  • the secondary AC power is output DC through full-wave rectification and reactance filtering of VD1 and VD2; the arc load current is sampled and fed back to the DSC chip, and the duty cycle is controlled by the closed loop of the PWM modulation link, thereby outputting a double pulse waveform Corresponding base value and peak welding current.
  • the modulation system of the present invention includes a control system, a SiC high-frequency drive module, a current sampling modulation module, and a human-computer interaction communication module; wherein the input end of the SiC high-frequency drive module is connected to the control system, and the output end is connected to welding The SiC power switch tube in the power supply circuit; the input end of the current sampling modulation module is connected with the output loop of the welding power supply circuit, and the output end is connected with the control system; the man-machine interactive communication module is connected with the control system in both directions.
  • the control system includes the DSC control chip; the PWM port of the DSC control chip is connected to the input end of the SiC high-frequency drive module; the ADC port of the DSC control chip is connected to the output end of the current sampling modulation module; the UART port of the DSC control chip is connected to the man-machine interaction Communication module connection.
  • the SiC high-frequency drive module includes a DC chopper power supply module and a magnetically isolated gate drive integrated circuit with an isolated drive chip.
  • the DC chopper power module converts the input DC voltage into positive and negative two-way isolated power supplies, which are used to reliably turn on and turn off the SiC power switch.
  • the isolation drive chip refers to the isolation drive chip with the model of ISO5451; the pin CLAMP of the isolation drive chip is connected to the gate of the SiC power switch; the gate of the SiC power switch is connected to the ground through the parallel resistor R313 and the capacitor C305; the lead of the isolation drive chip
  • the pin OUT is connected to the gate of the SiC power switch through a resistor R312; the resistor R312 is connected in parallel with a diode D303 and a resistor R311 in series; the pin OUT of the isolation drive chip is connected to the drain of the SiC power switch through a resistor R310 and a diode D302 in series;
  • the pin OUT of the isolation driver chip is also grounded through the parallel capacitor C304 and the Zener diode ZD301; the pin DESAT of the isolation driver chip is connected to the pin OUT of the isolation driver chip.
  • the magnetically isolated gate drive integrated circuit debounces and magnetically isolates the PWM signal output by the control system by hardware, and then is amplified by the totem pole circuit of the field effect tube, and finally drives the gate of the SiC power switch tube.
  • the magnetically isolated gate drive integrated circuit integrates protection functions such as short-circuit detection, under-voltage protection, and Miller active clamping.
  • the short-circuit detection DESAT collects the source and drain voltage of the SiC power switch and compares it with the 9V reference voltage to generate a short circuit.
  • Undervoltage lockout UVLO detects the input and output of the power supply module separately, and when the voltage is too low, it can trigger the logic circuit to pull down the gate voltage in time; Miller's active clamp CLAMP obtains the gate voltage, and releases the clamp at 2V The parasitic capacitance charge of the gate and source of the field tube reduces the influence of the Miller platform.
  • the current sampling modulation module includes a Hall sensor, a differential amplifier circuit, a low-pass filter circuit, and a clamp circuit connected in sequence.
  • the differential amplifier circuit includes a differential amplifier A1; the non-inverting end of the differential amplifier A1 is connected to the Hall sensor, and the inverting end of the differential amplifier A1 is grounded; the low-pass filter circuit includes a high-voltage operational amplifier A2; the output terminal of the differential amplifier A1 passes The resistor R9 is connected to the non-inverting terminal of the high-voltage operational amplifier A2, and is connected to the inverting terminal of the high-voltage operational amplifier A2 through the capacitor C1; the inverting terminal of the high-voltage operational amplifier A2 is connected to the output terminal of the high-voltage operational amplifier A2; the clamp circuit includes a series connection The diode D1 and the diode D2 are connected; the connection between the diode D1 and the diode D2 is connected to the output terminal of the high-voltage operational amplifier A2, and is connected to the control system through the resistor R11; the diode D2 is connected in parallel with the resistor R10.
  • the Hall sensor model is HAS 600-P; the differential amplifier A1 model is AD629; the high voltage operational amplifier A2 model is OP177.
  • the working principle of the current sampling modulation module is: the Hall sensor converts a large current into a small voltage signal V in , divides the voltage by R1 and R2, inputs the non-inverting terminal of the differential amplifier A1, and combines the peripheral circuit composed of R3 ⁇ R8, and the output is Mode-suppressed voltage signal V out1 ; V out1 passes through a Butterworth second-order low-pass filter composed of high-voltage operational amplifier A2 and its peripheral circuits, and outputs V out2 with attenuated high-frequency components. Finally, clamp diodes D1 and D2 divide the voltage Limited to 0-3.3V to prevent damage to the chip.
  • the DSC control chip preferably adopts the DSC control chip based on the Cortex M4 core; the control system also includes a 3.3V stabilized power supply module, HSE crystal oscillator module, manual reset module, JTAG interface and auxiliary filter circuit.
  • the connection relationship of these circuits can adopt existing technology .
  • the DSC main control chip is embedded with the FreeRTOS system to alternately schedule waveform digital modulation tasks, and coordinate the realization of communication, sampling, PID control, TIM timing, PWM drive and other necessary functions. Among them, its built-in waveform modulation algorithm can be used in high and low frequency pulse time series. Perform real-time processing and generate a given current value;
  • the human-computer interaction communication module is connected to the control system through the differential signal line; the full-duplex differential signal communication protocol is used to connect the asynchronous transceiver pins of the DSC control chip, which can accurately transmit the waveform characteristic parameters under high-frequency interference.
  • This characteristic parameter is used Generate the high and low frequency pulse time sequence required by the waveform modulation algorithm; the current sampling modulation module converts the load current signal into an analog signal within the pin voltage threshold of the DSC control chip, and then sums the current after the analog-to-digital conversion and digital filtering in the DSC control chip The given value is compared, and the PWM adjustment is obtained by the built-in PID algorithm of the DSC control chip; the SiC high-frequency drive module is powered by the DC chopper power module, which isolates and amplifies the complementary PWM output by the DSC control chip, and drives the SiC power according to the PWM adjustment.
  • the switching tube grid makes the welding power supply adjust the corresponding output energy, and finally realizes the digital modulation of the flexible transition high and low frequency double pulse MIG welding waveform, including the trapezoidal wave high and low frequency double pulse current waveform and the sine wave high and low frequency double pulse current waveform. form.
  • the flexible transition high and low frequency double pulse MIG welding waveform modulation method of the present invention sets the flexible transition high and low frequency double pulse MIG welding waveform to a trapezoidal wave high and low frequency double pulse current waveform or a sine wave high and low frequency double pulse current waveform through a human-computer interaction communication module;
  • the human-computer interaction communication module generates characteristic parameters according to trapezoidal high and low frequency double pulse current waveforms or sine wave high and low frequency double pulse current waveforms, and sends them to the control system; the control system generates high-frequency pulse time series and low-frequency pulse time series according to the characteristic parameters, and Create dual pulse waveform control subtasks; according to the high-frequency pulse time sequence and low-frequency pulse time sequence, the current given value is updated according to the current waveform change law, and the current sampling modulation module obtains the real-time feedback value of the welding power output current by the built-in control system
  • the PID algorithm processes the current given value and the current feedback value to obtain the adjustment value, and controls the SiC high-frequency drive module to drive the welding power supply according to the adjustment value.
  • the invention adopts a flexible transition modulation method, adds an adjustable transition pulse group on the basis of the traditional double pulse waveform, and realizes the fine output control of the trapezoidal wave high and low frequency double pulse waveform and the sine wave high and low frequency double pulse waveform.
  • the modulation waveform improves the energy transition form of the double pulse strong and weak pulse group, can effectively reduce the arc breaking and cold plate top wire phenomenon in the double pulse MIG welding process, and improve the stability of the welding process.
  • the PID algorithm can use the existing PID algorithm.
  • the trapezoidal wave high and low frequency double pulse current waveform is shown in Figure 5, which means: the low frequency envelope is isosceles trapezoid and the alternating phase of the strong and weak pulse groups is the slope pulse group with adjustable slope.
  • I p1 is the peak value of the high plateau pulse group
  • I p2 is the peak value of the low plateau pulse group
  • I b is the base current value.
  • the high-frequency pulse time sequence includes a high-frequency peak phase and a high-frequency base value phase
  • the low-frequency pulse time sequence includes a ramp-up phase, a high plateau phase, a ramp-down phase, and a low plateau phase.
  • the times are respectively T r , T p1 , T d and T p2 ;
  • the update of the current given value according to the current waveform change rule refers to: the current given value is updated to the ramp-up pulse group peak value during the high-frequency peak phase and the ramp-up phase, and the current given value is in the high-frequency peak phase and the high plateau phase.
  • the setting value is updated to the peak of the high plateau pulse group, and the current setting value is updated to the ramp-down pulse group peak value in the high-frequency peak phase and the ramp-down phase, and the current setting value is updated to the low plateau when the high-frequency peak phase is in the low plateau phase.
  • the peak value of the pulse group, when in the high-frequency base phase the current set value is updated to the base current value.
  • Low-frequency period T 2 the high frequency period T 1, the low-frequency period T 2; rising phase of the ramp time accounting D r, ramp down phase time accounting for D d.
  • the rising and falling pulse groups realize the flexible transition of the strong and weak pulse groups in the way of trapezoidal slope, which is beneficial to the further control of the heat input and can effectively reduce the phenomenon of wire jacking and arc breaking in the welding process.
  • the sine wave high and low frequency double pulse current waveform is shown in Figure 6, which means: the low frequency envelope is a sine curve, the low frequency period is T 2 , the high frequency period is T 1 , I'p1 is the peak current of the sine peak, I' p2 is the peak current of the sinusoidal peak and valley.
  • the high-frequency pulse time sequence includes the high-frequency peak phase and the high-frequency base value phase; the low-frequency pulse time sequence includes the low-frequency sinusoidal period;
  • the update of the current set value according to the current waveform change rule means the current set value is updated to the peak value of the sinusoidal pulse group when in the high-frequency peak stage and the low-frequency sinusoidal period, and the current set value is updated to the base when in the high-frequency base value stage.
  • I 'p [(I' p1 -I 'p2) / 2] [sin (2 ⁇ KT 1 / T 2) +1] + I' p2, where K is a radio-frequency pulses The number of.
  • the output energy change of sine wave high and low frequency double pulse is smoother, and the strong and weak pulse group alternately conforms to the sine change characteristic, which is beneficial to further control of the heat input and can effectively reduce the phenomenon of wire jacking and arc breaking in the welding process.
  • the realization flow chart of flexible transition high and low frequency double pulse MIG welding waveform modulation method is shown in Figure 7.
  • the human-computer interaction communication module generates characteristic parameters according to trapezoidal high and low frequency double pulse current waveforms or sine wave high and low frequency double pulse current waveforms, and sends them to the control system;
  • the control system generates high-frequency pulse time series and low-frequency pulse time series according to the characteristic parameters, and Create dual pulse waveform control subtasks;
  • the process is as follows: A1, the low-frequency pulse time sequence is judged, and the judgment sequence is the ramp-up phase, the high platform phase, the ramp-down phase, and the low platform phase; A2, according to the low frequency The peak current calculation formula of the pulse time sequence is given; A3.
  • the high-frequency pulse time sequence is continuously judged during the peak current output process. When the high-frequency pulse time sequence is no longer in the high-frequency peak phase, switch to the high-frequency pulse The base value stage and the base value current value is given; A4.
  • the high-frequency pulse time sequence is continuously judged during the base value current output process.
  • step A1 When the high-frequency pulse time sequence is no longer in the high-frequency base value stage, the output of a high-frequency pulse is completed; A5. Repeat steps A1 to A4. When it is determined in step A1 that the low-frequency pulse time sequence has been completed, reset the low-frequency pulse time sequence and re-judgment to complete the output of a flexible low-frequency pulse;
  • the process is as follows: B1. Judge the low frequency pulse time sequence. Since the low frequency time sequence of the sine wave high and low frequency double pulse current waveform is the entire low frequency sine cycle, only the low frequency sine cycle is judged Whether it is over, if it is over, reset the low-frequency pulse time sequence and judge again to complete the output of a low-frequency pulse period; B2, the following process is consistent with the task of trapezoidal wave high and low frequency double pulse current waveform modulation, and will not be repeated here.
  • This embodiment is a flexible transition high and low frequency double pulse MIG welding waveform modulation method and modulation system. This embodiment is applied to a welding power source based on Si-based power devices; the output end of the SiC high-frequency drive module is connected to the Si-based welding power supply circuit. Power switch tube. The rest of the structure of this embodiment is the same as that of the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)

Abstract

一种柔性过渡高低频双脉冲MIG焊接波形调制方法,设定柔性过渡高低频双脉冲MIG焊接波形为梯形波高低频双脉冲电流波形或正弦波高低频双脉冲电流波形;生成特征参数,生成高频脉冲时间序列和低频脉冲时间序列,并创建双脉冲波形控制子任务;按照电流波形变化规律更新电流给定值,实时获取焊接电源输出电流反馈值,采用PID算法对电流给定值和电流反馈值进行处理得到调节量,按调节量驱动焊接电源。该调制方法可实现波形精细输出控制,可改善双脉冲强弱脉冲群的能量过渡形式,能有效减少焊接过程断弧和冷板顶丝现象,提高焊稳定性。还提供一种实现上述调制方法的调制系统。

Description

柔性过渡高低频双脉冲MIG焊接波形调制方法及系统 技术领域
本发明涉及焊接设备技术领域,更具体地说,涉及一种柔性过渡高低频双脉冲MIG焊接波形调制方法及系统。
背景技术
双脉冲熔化极惰性气体保护焊(Double-pulsed Metal Inert Gas Welding,简称DPMIG),具有低飞溅、焊接质量高、可焊范围广、易于实现自动化等优点。和单脉冲相比,双脉冲焊接引入了低能量脉冲群,使得线能量输入降低,并可以实现一脉一滴射流过渡,形成规整的鱼鳞纹焊缝,但同时采用双脉冲电流输出也对焊接电源的动特性有着更高的要求。
采用第三代宽禁带半导体器件SiC功率开关管可以突破传统Si基器件的动态性能极限,提高逆变频率至200kHz,可输出频率1kHz以上的高频双脉冲电流波形,并且所产生的高频压缩效应和电磁搅拌效应可以提高瞬时功率密度和电弧挺度,细化焊缝晶粒并减小气孔发生率,进一步改善双脉冲焊接工艺。
然而SiC功率开关管在高频高压的应用场合,常伴随强烈的电磁干扰以及振荡尖峰问题,不利于双脉冲波形的柔性化调制和精细化控制。此外,传统的双脉冲MIG焊接受限于模拟控制或简单数字控制,仍然采用垂直过渡的方式来实现强弱脉冲群的交替,该传统波形具有能量突变大、冷态下易顶丝和易断弧等缺陷,不利于焊接稳定性和焊接质量的进一步提高。因此,亟需开发一套可用于高性能焊接电源的双脉冲MIG焊接波形数字化调制系统,充分发挥其优越的动特性,并为强弱脉冲群交替引入能量的柔性过渡。
发明内容
为克服现有技术中的缺点与不足,本发明的一个目的在于提供一种柔性过渡高低频双脉冲MIG焊接波形调制方法;该调制方法可实现梯形波高低频双脉冲波形和正弦波高低频双脉冲波形的精细输出控制,可改善双脉冲强弱脉冲群 的能量过渡形式,能有效减少双脉冲MIG焊接过程的断弧和冷板顶丝现象,提高焊接过程的稳定性。本发明的另一个目的在于提供一种实现上述调制方法的调制系统,具有控制精度高的优点,能实现复杂双脉冲波形的柔性调制。
为了达到上述目的,本发明通过下述技术方案予以实现:一种柔性过渡高低频双脉冲MIG焊接波形调制方法,其特征在于:设定柔性过渡高低频双脉冲MIG焊接波形为梯形波高低频双脉冲电流波形或正弦波高低频双脉冲电流波形;
根据梯形波高低频双脉冲电流波形或正弦波高低频双脉冲电流波形,生成特征参数;根据特征参数生成高频脉冲时间序列和低频脉冲时间序列,并创建双脉冲波形控制子任务;根据高频脉冲时间序列和低频脉冲时间序列,按照电流波形变化规律更新电流给定值,实时获取焊接电源输出电流反馈值,采用PID算法对电流给定值和电流反馈值进行处理得到调节量,控制SiC高频驱动模块按调节量驱动焊接电源。
本发明采用了柔性过渡的调制方法,在传统双脉冲波形的基础上加入了可调节的过渡脉冲群,实现梯形波高低频双脉冲波形和正弦波高低频双脉冲波形的精细输出控制。该调制波形改善了双脉冲强弱脉冲群的能量过渡形式,能有效减少双脉冲MIG焊接过程的断弧和冷板顶丝现象,提高焊接过程的稳定性。
优选地,所述梯形波高低频双脉冲电流波形是指双脉冲的低频包络线为等腰梯形且其强弱脉冲群交替阶段为斜率可调节的斜坡脉冲群;在梯形波高低频双脉冲电流波形中,高频脉冲时间序列包括高频峰值阶段和高频基值阶段;低频脉冲时间序列包括斜坡上升阶段、高平台阶段、斜坡下降阶段和低平台阶段;所述的按照电流波形变化规律更新电流给定值是指:处于高频峰值阶段且斜坡上升阶段时电流给定值更新为斜坡上升脉冲群峰值,处于高频峰值阶段且高平台阶段时电流给定值更新为高平台脉冲群峰值,处于高频峰值阶段且斜坡下降阶段时电流给定值更新为斜坡下降脉冲群峰值,处于高频峰值阶段且低平台阶段时电流给定值更新为低平台脉冲群峰值,处于高频基值阶段时电流给定值更新为基值电流值;
所述正弦波高低频双脉冲电流波形是指双脉冲的低频包络线为正弦曲线且其强弱脉冲群交替阶段符合正弦变化特性;在正弦波高低频双脉冲电流波形中,高频脉冲时间序列包括高频峰值阶段和高频基值阶段;低频脉冲时间序列包括低频正弦周期;所述的按照电流波形变化规律更新电流给定值是指:处于高频 峰值阶段且处于低频正弦周期时电流给定值更新为正弦脉冲群峰值,处于高频基值阶段时电流给定值更新为基值电流值。
所述高平台脉冲群峰值为I p1;低平台脉冲群峰值为I p2;基值电流值为I b
斜坡上升脉冲群峰值为:I p=KT 1(I p1-I p2)/(D rT 2)+I p2
斜坡下降脉冲群峰值为:I p=-KT 1(I p1-I p2)/(D dT 2)+I p1
其中,K为高频脉冲个数,T 1为高频周期,T 2为低频周期;D r为斜坡上升阶段时间占比,D d为斜坡下降阶段时间占比;
正弦脉冲群峰值为:I’ p=[(I’ p1-I’ p2)/2][sin(2πKT 1/T 2)+1]+I’ p2
其中,I’ p1为正弦峰顶的峰值电流,I’ p2为正弦峰谷的峰值电流。
一种实现上述柔性过渡高低频双脉冲MIG焊接波形调制方法的调制系统,其特征在于:包括控制系统、SiC高频驱动模块、电流采样调制模块和人机交互通信模块;其中,SiC高频驱动模块的输入端与控制系统连接,输出端连接焊接电源电路中的功率开关管;电流采样调制模块的输入端与焊接电源电路的输出回路连接,输出端与控制系统连接;人机交互通信模块与控制系统双向连接。
本发明调制系统可用于在SiC焊接电源和传统Si基逆变焊接电源中调制具有柔性过渡阶段的高频低双脉冲MIG焊接电流波形。
优选地,所述电流采样调制模块包括依次连接的霍尔传感器、差分放大电路、低通滤波电路和钳位电路。
优选地,所述差分放大电路包括差动放大器A1;差动放大器A1的同相端与霍尔传感器连接,差动放大器A1的反相端接地;
所述低通滤波电路包括高压运算放大器A2;差动放大器A1的输出端通过电阻R9与高压运算放大器A2的同相端连接,并通过电容C1与高压运算放大器A2的反相端连接;高压运算放大器A2的反相端与高压运算放大器A2的输出端连接;
所述钳位电路包括串联的二极管D1和二极管D2;二极管D1与二极管D2的连接处与高压运算放大器A2的输出端连接,并通过电阻R11与控制系统连接;二极管D2并联有电阻R10。该电流采样调制模块的好处是:采用差分信号进行通信,增强该高频波形调制方法的抗干扰能力;设有钳位电路,可防止损坏芯片。
优选地,所述SiC高频驱动模块包括DC斩波电源模块,以及带有隔离驱动 芯片的磁隔离栅极驱动集成电路。本发明采用集成保护的驱动方式,可消除超高频工作场合功率开关管开关速率快、浪涌电压大所产生的击穿隐患和电磁干扰,提高了高低频双脉冲波形数字化调制的可靠性。
优选地,所述隔离驱动芯片是指型号为ISO5451的隔离驱动芯片;隔离驱动芯片的引脚CLAMP与功率开关管栅极连接;功率开关管栅极通过并联的电阻R313和电容C305接地;隔离驱动芯片的引脚OUT通过电阻R312与功率开关管栅极连接;电阻R312并联有串联的二极管D303和电阻R311;隔离驱动芯片的引脚OUT通过串联的电阻R310和二极管D302与功率开关管漏极连接;隔离驱动芯片的引脚OUT还通过并联的电容C304和稳压二极管ZD301接地;隔离驱动芯片的引脚DESAT与隔离驱动芯片的引脚OUT连接。
优选地,所述控制系统包括DSC控制芯片;DSC控制芯片的PWM端口与SiC高频驱动模块的输入端连接;DSC控制芯片的ADC端口与电流采样调制模块的输出端连接;DSC控制芯片的UART端口与人机交互通信模块连接。
控制系统包括基于Cortex M4内核的主控芯片、3.3V稳压电源模块、HSE晶振模块、手动复位模块、JTAG接口以及辅助滤波电路。该DSC主控芯片内嵌FreeRTOS系统,能灵活调度多种双脉冲MIG焊接波形调制任务
优选地,所述人机交互通信模块通过差分信号线与控制系统连接。
与现有技术相比,本发明具有如下优点与有益效果:
1、本发明采用了柔性过渡的调制方法,在传统双脉冲波形的基础上加入了可调节的过渡脉冲群,可实现梯形波高低频双脉冲波形或正弦波高低频双脉冲波形的精细输出控制;该调制波形改善了双脉冲强弱脉冲群的能量过渡形式,能有效减少双脉冲MIG焊接过程的断弧和冷板顶丝现象,提高焊接过程的稳定性;
2、本发明采用集成保护的驱动方式,提高了高低频双脉冲波形数字化调制的可靠性;对各模块采取了磁隔离等措施,并采用差分信号进行通信,增强该高频波形调制方法的抗干扰能力;
3、本发明采用以DSC控制系统为核心的全数字化调制技术,具备控制精度高、响应速度快以及稳定性好等优势,可以准确完成柔性波形调制过程所需的大量接口信息交换,运行更加复杂的波形调制输出闭环控制算法,实时调度和处理各波形调制子任务,利于柔性高低频双脉冲MIG焊接波形的数字化调制 和精细化控制;
4、本发明既适用于传统Si基功率器件的焊接电源,也可应用于SiC功率器件的焊接电源;对基于SiC功率器件的焊接电源进行双脉冲焊接波形的数字化调制,可以更充分地发挥其高动态性能的优势,缩短焊接电源输出响应时间,提高柔性调制双脉冲波形的脉冲频率,为电弧引入高频压缩效应和电磁搅拌效应,提高焊接过程的稳定性以及改善接头性能。
附图说明
图1是基于SiC功率器件的高低频双脉冲MIG焊接电源电路的拓扑示意图;
图2是本发明柔性过渡高低频双脉冲MIG焊接波形调制系统的硬件总体框图;
图3是本发明柔性过渡高低频双脉冲MIG焊接波形调制系统中SiC高频驱动模块的电路图;
图4是本发明柔性过渡高低频双脉冲MIG焊接波形调制系统中电流采样调制模块的电路图;
图5是本发明柔性过渡高低频双脉冲MIG焊接波形调制方法所调制的梯形波高低频双脉冲电流波形的波形图;
图6是本发明柔性过渡高低频双脉冲MIG焊接波形调制方法所调制的正弦波高低频双脉冲电流波形的波形图;
图7是本发明柔性过渡高低频双脉冲MIG焊接波形调制方法的流程图。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细的描述。
实施例一
本实施例一种柔性过渡高低频双脉冲MIG焊接波形调制方法及调制系统,本实施例以应用于基于SiC功率器件的高低频双脉冲MIG焊接电源电路为例进行说明。
如图1所示,基于SiC功率器件的高低频双脉冲MIG焊接电源电路的工作原理是:首先由三相滤波整流电路将三相交流电转换为直流母线电压;全桥逆变电路中的开关管M1~M4为SiC功率开关管,M1、M3和M2、M4分由独立 的栅极驱动电路交替驱动导通,其开关频率为200kHz,实现直流电的逆变换流,并通过高频变压器T1将能量传递到次级,次级交流电经过VD1和VD2的全波整流和电抗滤波,输出直流电;电弧负载电流经采样反馈输入给DSC芯片,利用PWM调制环节闭环控制其占空比,从而输出双脉冲波形相应的基值和峰值焊接电流。
如图2所示,本发明调制系统包括控制系统、SiC高频驱动模块、电流采样调制模块和人机交互通信模块;其中,SiC高频驱动模块的输入端与控制系统连接,输出端连接焊接电源电路中的SiC功率开关管;电流采样调制模块的输入端与焊接电源电路的输出回路连接,输出端与控制系统连接;人机交互通信模块与控制系统双向连接。
控制系统包括DSC控制芯片;DSC控制芯片的PWM端口与SiC高频驱动模块的输入端连接;DSC控制芯片的ADC端口与电流采样调制模块的输出端连接;DSC控制芯片的UART端口与人机交互通信模块连接。
如图3所示,SiC高频驱动模块包括DC斩波电源模块,以及带有隔离驱动芯片的磁隔离栅极驱动集成电路。DC斩波电源模块将输入直流电压转化为正、负两路隔离电源,用于可靠导通和关断SiC功率开关管。
隔离驱动芯片是指型号为ISO5451的隔离驱动芯片;隔离驱动芯片的引脚CLAMP与SiC功率开关管栅极连接;SiC功率开关管栅极通过并联的电阻R313和电容C305接地;隔离驱动芯片的引脚OUT通过电阻R312与SiC功率开关管栅极连接;电阻R312并联有串联的二极管D303和电阻R311;隔离驱动芯片的引脚OUT通过串联的电阻R310和二极管D302与SiC功率开关管漏极连接;隔离驱动芯片的引脚OUT还通过并联的电容C304和稳压二极管ZD301接地;隔离驱动芯片的引脚DESAT与隔离驱动芯片的引脚OUT连接。磁隔离栅极驱动集成电路将控制系统输出的PWM信号经硬件去抖和磁隔离,再由场效应管图腾柱电路放大,最终驱动SiC功率开关管栅极。磁隔离栅极驱动集成电路集成了短路检测、欠压保护以及米勒有源钳位等保护功能,其中短路检测DESAT采集SiC功率开关管的源漏极电压,与9V参考电压进行比较,产生短路保护信号;欠压锁定UVLO分别检测供电模块的输入和输出,当电压过低时可及时触发逻辑电路拉低栅极电压;米勒有源钳位CLAMP获取栅极电压,在2V时释放钳位场管的栅源极寄生电容电荷,减小米勒平台的影响。
如图4所示,电流采样调制模块包括依次连接的霍尔传感器、差分放大电路、低通滤波电路和钳位电路。
差分放大电路包括差动放大器A1;差动放大器A1的同相端与霍尔传感器连接,差动放大器A1的反相端接地;低通滤波电路包括高压运算放大器A2;差动放大器A1的输出端通过电阻R9与高压运算放大器A2的同相端连接,并通过电容C1与高压运算放大器A2的反相端连接;高压运算放大器A2的反相端与高压运算放大器A2的输出端连接;钳位电路包括串联的二极管D1和二极管D2;二极管D1与二极管D2的连接处与高压运算放大器A2的输出端连接,并通过电阻R11与控制系统连接;二极管D2并联有电阻R10。
霍尔传感器型号为HAS 600-P;差动放大器A1型号为AD629;高压运算放大器A2型号为OP177。
电流采样调制模块的工作原理是:霍尔传感器将大电流转化为小电压信号V in,经R1和R2分压,输入差动放大器A1同相端,结合R3~R8组成的外围电路,输出经共模抑制的电压信号V out1;V out1经过高压运算放大器A2及其外围电路组成的巴特沃兹二阶低通滤波器,输出高频分量衰减的V out2,最后由钳位二极管D1、D2将电压限制在0-3.3V,防止损坏芯片。
DSC控制芯片优选采用基于Cortex M4内核的DSC控制芯片;控制系统还包括3.3V稳压电源模块、HSE晶振模块、手动复位模块、JTAG接口以及辅助滤波电路,这些电路的连接关系可采用现有技术。该DSC主控芯片内嵌FreeRTOS系统轮换调度波形数字化调制任务,协调实现通信、采样、PID控制、TIM定时、PWM驱动等多个必要功能,其中,其内置波形调制算法能在高低频脉冲时间序列下进行实时处理并生成电流给定值;
人机交互通信模块通过差分信号线与控制系统连接;利用全双工差分信号通讯协议,连接DSC控制芯片异步收发器引脚,能在高频干扰下准确传输波形特征参数,该特征参数用于生成波形调制算法所需的高低频脉冲时间序列;电流采样调制模块将负载电流信号转化为DSC控制芯片管脚电压阈值内的模拟信号,再经DSC控制芯片内模数转换和数字滤波后和电流给定值进行比较,由DSC控制芯片内置PID算法得到PWM调节量;SiC高频驱动模块由DC斩波电源模块供能,将DSC控制芯片输出的互补PWM隔离放大,根据PWM调节量驱动SiC功率开关管栅极,使焊接电源做出相应的输出能量调节,最终实现柔性过渡 高低频双脉冲MIG焊接波形的数字化调制,包括梯形波高低频双脉冲电流波形和正弦波高低频双脉冲电流波形两种表现形式。
本发明柔性过渡高低频双脉冲MIG焊接波形调制方法,通过人机交互通信模块设定柔性过渡高低频双脉冲MIG焊接波形为梯形波高低频双脉冲电流波形或正弦波高低频双脉冲电流波形;
人机交互通信模块根据梯形波高低频双脉冲电流波形或正弦波高低频双脉冲电流波形,生成特征参数,并发送至控制系统;控制系统根据特征参数生成高频脉冲时间序列和低频脉冲时间序列,并创建双脉冲波形控制子任务;根据高频脉冲时间序列和低频脉冲时间序列,按照电流波形变化规律更新电流给定值,由电流采样调制模块实时获取焊接电源输出电流反馈值,由控制系统的内置PID算法对电流给定值和电流反馈值进行处理得到调节量,控制SiC高频驱动模块按调节量驱动焊接电源。
本发明采用了柔性过渡的调制方法,在传统双脉冲波形的基础上加入了可调节的过渡脉冲群,实现梯形波高低频双脉冲波形和正弦波高低频双脉冲波形的精细输出控制。该调制波形改善了双脉冲强弱脉冲群的能量过渡形式,能有效减少双脉冲MIG焊接过程的断弧和冷板顶丝现象,提高焊接过程的稳定性。PID算法可采用现有PID算法。
梯形波高低频双脉冲电流波形如图5所示,是指:低频包络线为等腰梯形且强弱脉冲群交替阶段为斜率可调节的斜坡脉冲群。I p1为高平台脉冲群峰值,I p2为低平台脉冲群峰值,I b为基值电流值。高频脉冲时间序列包括高频峰值阶段和高频基值阶段;低频脉冲时间序列包括斜坡上升阶段、高平台阶段、斜坡下降阶段和低平台阶段,其时间分别为T r、T p1、T d和T p2
所述的按照电流波形变化规律更新电流给定值是指:处于高频峰值阶段且斜坡上升阶段时电流给定值更新为斜坡上升脉冲群峰值,处于高频峰值阶段且高平台阶段时电流给定值更新为高平台脉冲群峰值,处于高频峰值阶段且斜坡下降阶段时电流给定值更新为斜坡下降脉冲群峰值,处于高频峰值阶段且低平台阶段时电流给定值更新为低平台脉冲群峰值,处于高频基值阶段时电流给定值更新为基值电流值。
低频周期为T 2,高频周期为T 1,低频周期为T 2;斜坡上升阶段时间占比为D r,斜坡下降阶段时间占比为D d。斜坡上升脉冲群峰值为 I p=KT 1(I p1-I p2)/(D rT 2)+I p2,其中K为高频脉冲个数;高平台脉冲群峰值为I p=I p1;斜坡下降脉冲群峰值为I p=-KT 1(I p1-I p2)/(D dT 2)+I p1;低平台脉冲群峰值为I p=I p2。上升和下降脉冲群以梯形斜坡的方式实现了强弱脉冲群的柔性过渡,利于热输入量的进一步调控,能有效减少焊接过程中顶丝、断弧的现象。
正弦波高低频双脉冲电流波形如图6所示,是指:低频包络线为正弦曲线,低频周期为T 2,高频周期为T 1,I’ p1为正弦峰顶的峰值电流,I’ p2为正弦峰谷的峰值电流。高频脉冲时间序列包括高频峰值阶段和高频基值阶段;低频脉冲时间序列包括低频正弦周期;
所述的按照电流波形变化规律更新电流给定值是指:处于高频峰值阶段且处于低频正弦周期时电流给定值更新为正弦脉冲群峰值,处于高频基值阶段时电流给定值更新为基值电流值。在低频正弦周期中正弦脉冲群峰值为I’ p=[(I’ p1-I’ p2)/2][sin(2πKT 1/T 2)+1]+I’ p2,其中K为高频脉冲的个数。正弦波高低频双脉冲的输出能量变化更为平滑,强弱脉冲群交替符合正弦变化特性,利于热输入量的进一步调控,能有效减少焊接过程中顶丝、断弧的现象。
柔性过渡高低频双脉冲MIG焊接波形调制方法的实现流程图如图7所示。人机交互通信模块根据梯形波高低频双脉冲电流波形或正弦波高低频双脉冲电流波形,生成特征参数,并发送至控制系统;控制系统根据特征参数生成高频脉冲时间序列和低频脉冲时间序列,并创建双脉冲波形控制子任务;
若创建梯形波高低频双脉冲电流波形调制任务,则流程如下:A1、进行低频脉冲时间序列的判断,判断次序依次为斜坡上升阶段、高平台阶段、斜坡下降阶段和低平台阶段;A2、按照低频脉冲时间序列的峰值电流计算公式进行给定;A3、峰值电流输出过程中不断进行高频脉冲时间序列的判断,当高频脉冲时间序列不再处于高频峰值阶段时,则切换到高频脉冲基值阶段并给定基值电流值;A4、基值电流输出过程中不断进行高频脉冲时间序列的判断,当高频脉冲时间序列不再处于高频基值阶段时,完成一个高频脉冲的输出;A5、重复步骤A1~A4,当在步骤A1判断低频脉冲时间序列已经走完时,重置低频脉冲时间序列并重新进行判断,完成一个柔性低频脉冲的输出;
若创建正弦波高低频双脉冲电流波形调制任务,则流程如下:B1、进行低频脉冲时间序列的判断,由于正弦波高低频双脉冲电流波形的低频时间序列为整个低频正弦周期,因此只判断低频正弦周期是否结束,若结束则重置低频脉 冲时间序列并重新判断,完成一个低频脉冲周期的输出;B2、接下来的流程与梯形波高低频双脉冲电流波形调制任务的一致,此处不再赘述。
实施例二
本实施例一种柔性过渡高低频双脉冲MIG焊接波形调制方法及调制系统,本实施例应用于基于Si基功率器件的焊接电源;SiC高频驱动模块的输出端连接焊接电源电路中的Si基功率开关管。本实施例的其余结构与实施例一相同。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种柔性过渡高低频双脉冲MIG焊接波形调制方法,其特征在于:设定柔性过渡高低频双脉冲MIG焊接波形为梯形波高低频双脉冲电流波形或正弦波高低频双脉冲电流波形;
    根据梯形波高低频双脉冲电流波形或正弦波高低频双脉冲电流波形,生成特征参数;根据特征参数生成高频脉冲时间序列和低频脉冲时间序列,并创建双脉冲波形控制子任务;根据高频脉冲时间序列和低频脉冲时间序列,按照电流波形变化规律更新电流给定值,实时获取焊接电源输出电流反馈值,采用PID算法对电流给定值和电流反馈值进行处理得到调节量,控制SiC高频驱动模块按调节量驱动焊接电源。
  2. 根据权利要求1所述的柔性过渡高低频双脉冲MIG焊接波形调制方法,其特征在于:所述梯形波高低频双脉冲电流波形是指双脉冲的低频包络线为等腰梯形且其强弱脉冲群交替阶段为斜率可调节的斜坡脉冲群;在梯形波高低频双脉冲电流波形中,高频脉冲时间序列包括高频峰值阶段和高频基值阶段;低频脉冲时间序列包括斜坡上升阶段、高平台阶段、斜坡下降阶段和低平台阶段;所述的按照电流波形变化规律更新电流给定值是指:处于高频峰值阶段且斜坡上升阶段时电流给定值更新为斜坡上升脉冲群峰值,处于高频峰值阶段且高平台阶段时电流给定值更新为高平台脉冲群峰值,处于高频峰值阶段且斜坡下降阶段时电流给定值更新为斜坡下降脉冲群峰值,处于高频峰值阶段且低平台阶段时电流给定值更新为低平台脉冲群峰值,处于高频基值阶段时电流给定值更新为基值电流值;
    所述正弦波高低频双脉冲电流波形是指双脉冲的低频包络线为正弦曲线且其强弱脉冲群交替阶段符合正弦变化特性;在正弦波高低频双脉冲电流波形中,高频脉冲时间序列包括高频峰值阶段和高频基值阶段;低频脉冲时间序列包括低频正弦周期;所述的按照电流波形变化规律更新电流给定值是指:处于高频峰值阶段且处于低频正弦周期时电流给定值更新为正弦脉冲群峰值,处于高频基值阶段时电流给定值更新为基值电流值。
  3. 根据权利要求2所述的柔性过渡高低频双脉冲MIG焊接波形调制方法,其特征在于:所述高平台脉冲群峰值为I p1;低平台脉冲群峰值为I p2;基值电流 值为I b
    斜坡上升脉冲群峰值为:I p=KT 1(I p1-I p2)/(D rT 2)+I p2
    斜坡下降脉冲群峰值为:I p=-KT 1(I p1-I p2)/(D dT 2)+I p1
    其中,K为高频脉冲个数,T 1为高频周期,T 2为低频周期;D r为斜坡上升阶段时间占比,D d为斜坡下降阶段时间占比;
    正弦脉冲群峰值为:I’ p=[(I’ p1-I’ p2)/2][sin(2πKT 1/T 2)+1]+I’ p2
    其中,I’ p1为正弦峰顶的峰值电流,I’ p2为正弦峰谷的峰值电流。
  4. 一种实现权利要求1至3中任一项所述的柔性过渡高低频双脉冲MIG焊接波形调制方法的调制系统,其特征在于:包括控制系统、SiC高频驱动模块、电流采样调制模块和人机交互通信模块;其中,SiC高频驱动模块的输入端与控制系统连接,输出端连接焊接电源电路中的功率开关管;电流采样调制模块的输入端与焊接电源电路的输出回路连接,输出端与控制系统连接;人机交互通信模块与控制系统双向连接。
  5. 根据权利要求4所述的调制系统,其特征在于:所述电流采样调制模块包括依次连接的霍尔传感器、差分放大电路、低通滤波电路和钳位电路。
  6. 根据权利要求5所述的调制系统,其特征在于:所述差分放大电路包括差动放大器A1;差动放大器A1的同相端与霍尔传感器连接,差动放大器A1的反相端接地;
    所述低通滤波电路包括高压运算放大器A2;差动放大器A1的输出端通过电阻R9与高压运算放大器A2的同相端连接,并通过电容C1与高压运算放大器A2的反相端连接;高压运算放大器A2的反相端与高压运算放大器A2的输出端连接;
    所述钳位电路包括串联的二极管D1和二极管D2;二极管D1与二极管D2的连接处与高压运算放大器A2的输出端连接,并通过电阻R11与控制系统连接;二极管D2并联有电阻R10。
  7. 根据权利要求4所述的调制系统,其特征在于:所述SiC高频驱动模块包括DC斩波电源模块,以及带有隔离驱动芯片的磁隔离栅极驱动集成电路。
  8. 根据权利要求7所述的调制系统,其特征在于:所述隔离驱动芯片是指型号为ISO5451的隔离驱动芯片;隔离驱动芯片的引脚CLAMP与功率开关管栅极连接;功率开关管栅极通过并联的电阻R313和电容C305接地;隔离驱动芯 片的引脚OUT通过电阻R312与功率开关管栅极连接;电阻R312并联有串联的二极管D303和电阻R311;隔离驱动芯片的引脚OUT通过串联的电阻R310和二极管D302与功率开关管漏极连接;隔离驱动芯片的引脚OUT还通过并联的电容C304和稳压二极管ZD301接地;隔离驱动芯片的引脚DESAT与隔离驱动芯片的引脚OUT连接。
  9. 根据权利要求4所述的调制系统,其特征在于:所述控制系统包括DSC控制芯片;DSC控制芯片的PWM端口与SiC高频驱动模块的输入端连接;DSC控制芯片的ADC端口与电流采样调制模块的输出端连接;DSC控制芯片的UART端口与人机交互通信模块连接。
  10. 根据权利要求4所述的调制系统,其特征在于:所述人机交互通信模块通过差分信号线与控制系统连接。
PCT/CN2020/120599 2019-12-31 2020-10-13 柔性过渡高低频双脉冲mig焊接波形调制方法及系统 WO2021135494A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2020418894A AU2020418894B2 (en) 2019-12-31 2020-10-13 Method and system for modulating high-low frequency double-pulsed mig welding waveform having flexible transition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911417016.1A CN110919143B (zh) 2019-12-31 2019-12-31 柔性过渡高低频双脉冲mig焊接波形调制方法及系统
CN201911417016.1 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021135494A1 true WO2021135494A1 (zh) 2021-07-08

Family

ID=69854561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120599 WO2021135494A1 (zh) 2019-12-31 2020-10-13 柔性过渡高低频双脉冲mig焊接波形调制方法及系统

Country Status (3)

Country Link
CN (1) CN110919143B (zh)
AU (1) AU2020418894B2 (zh)
WO (1) WO2021135494A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110919143B (zh) * 2019-12-31 2024-03-26 华南理工大学 柔性过渡高低频双脉冲mig焊接波形调制方法及系统
CN111552325B (zh) * 2020-04-28 2023-07-25 深圳易能电气技术股份有限公司 位置指令同步方法、装置和计算机可读存储介质
CN111642055B (zh) * 2020-06-04 2021-08-13 中国科学院近代物理研究所 离子同步加速器数字脉冲电源的电流波形控制系统及方法
CN112858445B (zh) * 2021-01-15 2023-03-17 重庆大学 一种基于摩擦起电效应的变压器油老化程度与水分含量自驱动传感系统及检测方法
CN113231714B (zh) * 2021-04-21 2023-05-02 广东开放大学(广东理工职业学院) 铝合金材料混合脉冲群焊接方法、系统、装置及存储介质
CN113977044B (zh) * 2021-10-21 2023-01-06 华南理工大学 一体化双丝中值脉冲mig焊电源系统及多相位控制方法
CN116021122B (zh) * 2023-01-30 2024-04-26 华南理工大学 基于SiC功率器件的局部干法水下快频MIG焊接方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644011A1 (de) * 1993-09-15 1995-03-22 Fronius Schweissmaschinen Kg Austria Schweissgerät und Verfahren zur Herstellung eines vorbestimmbaren Stromverlaufes für ein Schweissgerät
CN101791733A (zh) * 2009-10-31 2010-08-04 华南理工大学 一种铝合金双丝双脉冲焊接方法及其焊接电源
CN102626815A (zh) * 2012-04-18 2012-08-08 上海交通大学 用于铁、铝异种金属焊接的交流双脉冲mig焊接方法
CN103394795A (zh) * 2013-07-30 2013-11-20 广州中医药大学 双脉冲焊电流波形周期阶段的自适应检测方法
CN103909323A (zh) * 2014-03-24 2014-07-09 华南理工大学 一种基于正弦波调制脉冲的双丝弧焊电源系统
CN105436666A (zh) * 2015-12-30 2016-03-30 华南理工大学 梯形波调制焊接电流波形
CN110000449A (zh) * 2019-04-30 2019-07-12 华南理工大学 基于SiC功率器件的双脉冲MIG焊接电源
CN110919143A (zh) * 2019-12-31 2020-03-27 华南理工大学 柔性过渡高低频双脉冲mig焊接波形调制方法及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515259B1 (en) * 2001-05-29 2003-02-04 Lincoln Global, Inc. Electric arc welder using high frequency pulses
JP5234042B2 (ja) * 2010-04-07 2013-07-10 株式会社デンソー アーク溶接方法およびその装置
CN102091850B (zh) * 2010-12-31 2014-02-26 广东易事特电源股份有限公司 具有平滑过渡双脉冲参数的铝合金数字化焊机
US10213861B2 (en) * 2013-03-11 2019-02-26 Illinois Tool Works Inc. Automated system for machine set-up of welding power sources and welding systems
CN205967754U (zh) * 2016-08-15 2017-02-22 华南理工大学 基于DSC的全数字SiC逆变式多功能氩弧焊电源
CN110064822B (zh) * 2019-05-29 2024-02-20 华南理工大学 一种快频脉冲tig焊接系统
CN110076421A (zh) * 2019-05-29 2019-08-02 华南理工大学 基于SiC的快频脉冲TIG焊接电源数字化控制电路
CN211759097U (zh) * 2019-12-31 2020-10-27 华南理工大学 一种柔性过渡高低频双脉冲mig焊接波形调制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644011A1 (de) * 1993-09-15 1995-03-22 Fronius Schweissmaschinen Kg Austria Schweissgerät und Verfahren zur Herstellung eines vorbestimmbaren Stromverlaufes für ein Schweissgerät
CN101791733A (zh) * 2009-10-31 2010-08-04 华南理工大学 一种铝合金双丝双脉冲焊接方法及其焊接电源
CN102626815A (zh) * 2012-04-18 2012-08-08 上海交通大学 用于铁、铝异种金属焊接的交流双脉冲mig焊接方法
CN103394795A (zh) * 2013-07-30 2013-11-20 广州中医药大学 双脉冲焊电流波形周期阶段的自适应检测方法
CN103909323A (zh) * 2014-03-24 2014-07-09 华南理工大学 一种基于正弦波调制脉冲的双丝弧焊电源系统
CN105436666A (zh) * 2015-12-30 2016-03-30 华南理工大学 梯形波调制焊接电流波形
CN110000449A (zh) * 2019-04-30 2019-07-12 华南理工大学 基于SiC功率器件的双脉冲MIG焊接电源
CN110919143A (zh) * 2019-12-31 2020-03-27 华南理工大学 柔性过渡高低频双脉冲mig焊接波形调制方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIAO TIANFA: "Double Pluse MIG Waveform Modulation Method in Aluminum Alloy and Mechansim Research", SCIENCE-ENGINEERING (A), CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 28 February 2017 (2017-02-28), XP055828224 *

Also Published As

Publication number Publication date
CN110919143B (zh) 2024-03-26
CN110919143A (zh) 2020-03-27
AU2020418894B2 (en) 2023-08-03
AU2020418894A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
WO2021135494A1 (zh) 柔性过渡高低频双脉冲mig焊接波形调制方法及系统
WO2018032755A1 (zh) 基于DSC的全数字SiC逆变式多功能氩弧焊电源
CN201856022U (zh) 一种软开关igbt双逆变式方波交直流钨极氩弧焊电源
CN102781152B (zh) 一种脉冲x射线的产生方法及脉冲x射线发生装置
TW201946357A (zh) 弦波調製方法及三相逆變器
CN205967754U (zh) 基于DSC的全数字SiC逆变式多功能氩弧焊电源
CN107745174B (zh) 基于SiC IGBT的数字化变极性焊接电源
US20190084073A1 (en) Sic inverted plasma cutting power supply
CN103692056B (zh) 多功能数字波控弧焊逆变电源
WO2016015329A1 (zh) 一种dc-ac双向功率变换器拓扑结构
CN104393766B (zh) 一种除尘用叠加式电源控制系统
CN107834853A (zh) 以抖动频率进行斜坡时间调制的开关式功率转换器控制器
CN108422065B (zh) 基于can现场总线和llc谐振变换器的脉冲mig焊电源系统及其控制方法
CN110429817B (zh) 一种用于双向直流变换器的双环控制电路和方法
CN102684518B (zh) 基于瞬时电流前馈控制的高频冗余pwm整流装置及方法
CN102136804A (zh) 一种新型z源焊接电源系统
CN104539157A (zh) 峰值电流控制模式逆变焊接电源斜率补偿控制方法及电路
CN107052527B (zh) 一种大功率SiC埋弧焊接电源
CN201856023U (zh) 一种双逆变式大功率igbt方波交直流氩弧焊电源
WO2020220610A1 (zh) 基于 SiC 功率器件的双脉冲 MIG 焊接电源
CN107150160A (zh) 宽适应多功能近零飞溅焊接机器人系统
CN207508489U (zh) 基于SiC IGBT的数字化变极性焊接电源
CN206922659U (zh) 电源转换模块
CN202721888U (zh) 一种脉冲x射线发生装置
CN211759097U (zh) 一种柔性过渡高低频双脉冲mig焊接波形调制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020418894

Country of ref document: AU

Date of ref document: 20201013

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (08.11.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20909748

Country of ref document: EP

Kind code of ref document: A1