WO2018032755A1 - 基于DSC的全数字SiC逆变式多功能氩弧焊电源 - Google Patents

基于DSC的全数字SiC逆变式多功能氩弧焊电源 Download PDF

Info

Publication number
WO2018032755A1
WO2018032755A1 PCT/CN2017/076415 CN2017076415W WO2018032755A1 WO 2018032755 A1 WO2018032755 A1 WO 2018032755A1 CN 2017076415 W CN2017076415 W CN 2017076415W WO 2018032755 A1 WO2018032755 A1 WO 2018032755A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
module
diode
capacitor
resistor
Prior art date
Application number
PCT/CN2017/076415
Other languages
English (en)
French (fr)
Inventor
王振民
范文艳
蒋春
汪倩
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2018032755A1 publication Critical patent/WO2018032755A1/zh
Priority to US16/049,956 priority Critical patent/US11298771B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • B23K9/1043Power supply characterised by the electric circuit
    • B23K9/1056Power supply characterised by the electric circuit by using digital means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/067Starting the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to the field of high frequency arc welding inverter technology, and more particularly to a DSC based all digital SiC inverter type multifunctional argon arc welding power source.
  • Argon arc welding has been widely used in the welding production of stainless steel, titanium alloy, aluminum-magnesium alloy and other materials.
  • argon arc welding power supply generally adopts IGBT or MOSFET high frequency inverter technology, and this technology has developed into a mature technical means, which can meet the welding requirements of most metal materials.
  • IGBT or MOSFET high frequency inverter technology In the development of science and technology, in the marine engineering, nuclear power, aerospace, automotive, wind power, thermal power, shipbuilding, rail transit, petrochemical and other equipment manufacturing industries, the equipment is becoming larger and larger, the structure is increasingly complicated, and the materials tend to be diversified.
  • the object of the present invention is to overcome the shortcomings and deficiencies in the prior art, and to provide a DSC based, simple structure, high control precision, fast response speed, compact size, high efficiency and energy saving, excellent process adaptability, and improved welding process quality.
  • a DSC-based all-digital SiC inverter type multifunctional argon arc welding power source comprising: a main circuit and a DSC control circuit;
  • the main circuit comprises a common mode noise suppression module, a power frequency rectification filtering module, an SiC inverse conversion flow module, a power transformer, an SiC rectification and smoothing module and a non-contact arcing module connected in sequence;
  • the common mode noise suppression module is connected to the external AC input power source;
  • the SiC rectification and smoothing module and the non-contact arcing module are respectively connected to the external arc load;
  • the DSC control circuit includes a DSC minimum system, and a human-machine interaction module, a fault diagnosis protection module, a SiC high-frequency drive module, and a load electrical signal detection module respectively connected to the DSC minimum system; wherein the fault diagnosis protection module is also separately exchanged
  • the input power source is connected to the SiC inverse conversion stream module; the SiC high frequency drive module is also connected to the SiC inverse conversion stream module; the load electrical signal detection module is also connected to the arc load; and the non-contact arc pilot module is connected to the DSC minimum system.
  • the invention is an inverter DC and pulse argon arc welding power source;
  • the AC input power source can be a three-phase AC input power source or a single-phase AC input power source, depending on the actual output power.
  • the required digital PWM signal is directly generated by the DSC minimum system, and the SiC inverse conversion stream module is directly driven by the SiC high-frequency driving module after isolation, amplification, and shaping, so that the SiC power tube is quickly turned on and off according to a preset timing.
  • High-frequency DC-AC conversion detecting the load current and voltage at the output end of the argon-arc welding power source, inputting it to the DSC minimum system after signal conditioning, and comparing with the preset value of the human-machine interaction module, changing the conduction and shutdown of the SiC power tube Time, achieve duty cycle adjustment, obtain the desired waveform output, and complete closed-loop control.
  • the argon arc welding power source of the invention adopts a new generation of power electronic power device based on SiC, which greatly increases the inverter frequency, so that the volume and quality of the power transformer are greatly reduced; meanwhile, the switching loss is short due to the short switching time of the SiC power device.
  • the use of magnetic core material with minimal iron loss can further reduce the volume and weight of magnetic devices such as power transformers, high power conversion efficiency.
  • the value of the filter inductance in the main circuit can be small, so that the time constant of the argon arc welding power source is also greatly reduced, and it is easier to obtain excellent dynamic characteristics; in addition, the high frequency fast rectifier circuit also adopts SiC fast
  • the power diode has no reverse recovery effect, which greatly reduces the peak voltage generated by the argon arc welding power source and improves the safety.
  • the thermal resistance of the SiC power device far exceeds the existing MOSFET power device and IGBT power. The device further improves the reliability of the argon arc welding power source.
  • the high-speed and precise DSC minimum system can realize the digitization, high-speed and precise control of the output current and voltage, and the output characteristics can be adjusted and switched arbitrarily, which is easy to realize based on welding. Optimization of the welding process for arc design.
  • the SiC inverse conversion stream module comprises a capacitor C4, a capacitor C5, a capacitor C6, a capacitor C7, a SiC power switch tube Q1, a SiC power switch tube Q2, a capacitor R6, a capacitor R7, and a diode D4. And diode D5;
  • the circuit formed in series with the SiC power switch tube Q1 and the SiC power switch tube Q2 is connected in parallel to the power frequency rectification filter module; the capacitor C6 and the resistor R6 are connected in series and then connected in parallel to the SiC power switch tube Q1.
  • the SiC power switch tube Q1 is also connected in parallel with the diode D4; the capacitor C7 and the resistor R7 are connected in series and then connected in parallel to the SiC power switch tube Q2, and the SiC power switch tube Q2 is also connected in parallel with the diode D5; the connection between the capacitor C4 and the capacitor C5 and the power
  • the primary first input end of the transformer is connected; the connection between the SiC power switch tube Q1 and the SiC power switch tube Q2 is connected to the primary second input end of the power transformer; the SiC power switch tube Q1 and the SiC power switch tube Q2 are respectively coupled with the SiC high frequency
  • the drive module is connected.
  • the SiC rectification and smoothing module comprises a diode D6A, a diode D6B, a resistor R5, a resistor R9, a resistor R11, a capacitor C9, a capacitor C10, a capacitor C11, a capacitor C12, a capacitor C17, a varistor YM1, and a varistor YM2.
  • the secondary first output end of the power transformer is sequentially connected to the secondary second output end of the power transformer through a diode D6A, a resistor R9, and an inductor L2; the resistor R5 and the capacitor C9 are connected in series and then connected in parallel to the diode D6A, and the diode D6A is also
  • the varistor YM1 is connected in parallel; the capacitor C11 and the capacitor C12 are connected in series and then connected in parallel to the resistor R9, the resistor R9 is also connected in parallel with the capacitor C10; the connection of the capacitor C11 and the capacitor C12 is grounded;
  • connection between the diode D6A and the resistor R9 is connected to the secondary third output of the power transformer through the diode D6B; the capacitor C17 is connected in series with the resistor R11 in parallel with the diode D6B, and the diode D6B is also connected in parallel with the varistor YM2; both ends of the resistor R9 Connected to the arc load separately.
  • the AC input power supply is first connected to the common mode noise suppression module, and then connected to the power frequency rectification filter module to be converted into smooth DC power and then input to the half bridge SiC inverse conversion flow module, through the SiC power switch tube Q1 and SiC.
  • the power switch tube Q2 is alternately turned on and off, and converted into a high-voltage square wave pulse; after that, the power transformer is used for electrical isolation, voltage transformation and power transmission; and the SiC rectification and smoothing module is converted into a low-voltage smooth DC output.
  • diode D6A and diode D6B are SiC fast/ultra fast rectification power diodes; capacitor C10, capacitor C11, capacitor C12 and resistor R9 not only play the role of dead load, but also realize the side of non-contact high frequency arcing signal. Road function to improve system reliability and stability.
  • the SiC high frequency drive module comprises a power supply circuit, a push-pull output circuit, a magnetic isolation circuit and a signal shaping circuit.
  • the power supply circuit is composed of a switching voltage regulator of the type LM2596s and its peripheral circuits.
  • the push-pull output circuit comprises a switching amplifier U1 of the type IXDN609PI and its peripheral circuit, and a switching amplifier U2 of the type IXDN609PI and its peripheral circuit; the input terminals of the switching amplifier U1 and the switching amplifier U2 are respectively inversely transformed with SiC
  • the flow modules are connected, and the output ends are respectively connected to the magnetic isolation circuit.
  • the magnetic isolation circuit is composed of a pulse transformer T101; the signal shaping circuit comprises two sets of signal shaping units 1 and a signal shaping unit 2 having the same structure; the signal shaping unit 1 and the signal shaping unit 2 are respectively pulsed in opposite directions The two coils of the secondary of transformer T101 are connected.
  • the signal shaping unit includes a diode D113, a diode D117, a Zener diode D122, a Zener diode D125, a Zener diode D126, a dual diode group DQ101, a resistor R105, a resistor R109, a resistor R117, a resistor R121, and a switch tube.
  • One end of the secondary first coil of the pulse transformer T101 is connected to the diode D113 through the diode D117, the Zener diode D122, the Zener diode D126, the Zener diode D125, and the diode D113 and the other end of the secondary first coil of the magnetic isolation circuit. Connecting; one end of the secondary first coil of the magnetic isolation circuit is also connected to the diode D113 through the resistor 109; the Zener diode D122 is connected to the diode D113 through the resistor R113 and the dual diode group DQ101; the Zener diode D122 is also connected through the resistor R121 and the resistor R117.
  • the diode D113 is connected; the connection of the diode D117 and the Zener diode D122 is connected to the diode D113 through the switch Q101, the connection of the resistor R109 and the diode D117 is connected to the switch Q101; the resistor 105 is connected in parallel across the diode D113; the capacitor C115 is connected in parallel Press diode D122 at both ends.
  • the load electrical signal detecting module comprises a Hall current voltage sensor, an integrated differential amplifying circuit composed of a precision differential amplifier of the type AD629 and its peripheral circuit, a chip of the type OP177 and a peripheral circuit thereof.
  • a second-order active low-pass filter circuit and an absolute value circuit composed of a chip of the type LF353 and its peripheral circuits; the Hall current voltage sensor, an integrated differential amplifier circuit, a second-order active low-pass filter circuit, and an absolute value The circuits are connected in sequence.
  • the non-contact arc-trigger module comprises a step-up transformer T1, a discharger FD, a high-voltage charging capacitor C, an output coupling transformer T2, a SiC power switch tube Q10 and a switch K; a primary of the step-up transformer T1, a SiC power switch tube Q10 and switch K are connected in series with the power supply module of the non-contact pilot arc module; the secondary of the step-up transformer T1 is connected to the primary of the output coupling transformer T2 through the discharger FD; The secondary of the output coupling transformer T2 is connected to the arc load; the capacitor C is connected in parallel to the secondary of the step-up transformer T1; the DSC minimum system is connected to the SiC power switch tube Q10 and the switch K, respectively.
  • the present invention has the following advantages and benefits:
  • the power switching device of the argon arc welding power source of the invention adopts the new generation power electronic device SiC power tube, the switching frequency is higher, the volume is reduced by more than 1/3, and the comprehensive manufacturing cost is low 25 More than %, energy saving is about 10%, and the comprehensive performance is greatly improved;
  • the argon arc welding power source of the invention adopts the high-speed and high-precision full digital control technology based on DSC, has higher control precision, faster response speed, realizes closed-loop control, and is more convenient to realize refined design and control of welding arc and improve Welding process quality;
  • the SiC power device used in the argon arc welding power source of the present invention has better thermal resistance, and has almost no conductivity modulation effect, and there is almost no reverse recovery time, which greatly improves the switching stress of the device, further improves the overall Machine reliability.
  • FIG. 1 is a system block diagram of a argon arc welding power source of the present invention
  • FIG. 2 is a circuit diagram of a main circuit in a argon arc welding power source of the present invention
  • 3(A) to 3(C) are circuit diagrams of the SiC high frequency drive module in the argon arc welding power source;
  • FIG. 4 is a circuit diagram of a non-contact arc striking module in a argon arc welding power source of the present invention
  • FIG. 5 is a circuit diagram of a load electrical signal detecting module in the argon arc welding power source of the present invention.
  • Figure 6 is a circuit diagram of a DCS minimum system in a argon arc welding power source of the present invention.
  • This embodiment is based on DSC's all-digital SiC inverter type multi-function argon arc welding power source, and its structure is shown in FIG. 1 to FIG. 6; and includes a main circuit and a DSC control circuit.
  • the main circuit comprises a common mode noise suppression module, a power frequency rectification filtering module, an SiC inverse conversion flow module, a power transformer, an SiC rectification and smoothing module and a non-contact arcing module connected in sequence; wherein the common mode noise suppression module communicates with the external The input power connection; the SiC rectification and smoothing module and the non-contact arcing module are respectively connected to the external arc load.
  • the DSC control circuit includes a DSC minimum system, and a human-machine interaction module, a fault diagnosis protection module, a SiC high-frequency drive module, and a load electrical signal detection module respectively connected to the DSC minimum system; wherein the fault diagnosis protection module is also separately connected with the AC input power source.
  • the SiC high frequency drive module is also connected to the SiC inverse conversion flow module; the load electrical signal detection module is also connected to the arc load; the non-contact arc ignition module is connected to the DSC minimum system.
  • the SiC inverse conversion flow module includes a capacitor C4, a capacitor C5, a capacitor C6, a capacitor C7, a SiC power switch tube Q1, a SiC power switch tube Q2, a capacitor R6, a capacitor R7, a diode D4, and a diode D5.
  • the circuit formed in series with the SiC power switch tube Q1 and the SiC power switch tube Q2 is connected in parallel to the power frequency rectification filter module; the capacitor C6 and the resistor R6 are connected in series and then connected in parallel to the SiC power switch tube Q1.
  • the SiC power switch tube Q1 is also connected in parallel with the diode D4; the capacitor C7 and the resistor R7 are connected in series and then connected in parallel to the SiC power switch tube Q2, the SiC power switch tube Q2 is also connected in parallel with the diode D5; the connection between the capacitor C4 and the capacitor C5 and the power transformer The primary first input terminal is connected; the connection between the SiC power switch tube Q1 and the SiC power switch tube Q2 is connected to the primary second input end of the power transformer; the SiC power switch tube Q1 and the SiC power switch tube Q2 are respectively connected with the SiC high frequency drive module connection.
  • the SiC rectification and smoothing module includes a diode D6A, a diode D6B, a resistor R5, a resistor R9, a resistor R11, a capacitor C9, a capacitor C10, a capacitor C11, a capacitor C12, a capacitor C17, a varistor YM1, a varistor YM2, and an inductor L2.
  • the secondary first output of the power transformer is sequentially connected to the secondary second output of the power transformer through a diode D6A, a resistor R9, and an inductor L2; the resistor R5 and the capacitor C9 are connected in series and connected in parallel to the diode D6A, and the diode D6A is also pressure sensitive.
  • the resistor YM1 is connected in parallel; the capacitor C11 is connected in series with the capacitor C12 and connected in parallel to the resistor R9, and the resistor R9 is also connected in parallel with the capacitor C10; the connection of the capacitor C11 and the capacitor C12 is grounded.
  • connection between the diode D6A and the resistor R9 is connected to the secondary third output of the power transformer through the diode D6B; the capacitor C17 is connected in series with the resistor R11 in parallel with the diode D6B, and the diode D6B is also connected in parallel with the varistor YM2; both ends of the resistor R9 Connected to the arc load separately.
  • the invention is an inverter DC and pulse argon arc welding power source;
  • the AC input power source can be a three-phase AC input power source or a single-phase AC input power source, depending on the actual output power.
  • the main circuit can adopt a half-bridge topology or a full-bridge inverter topology;
  • the human-machine interaction module has a communication interface such as UART or CAN or ETHERNET, which can be a digital panel of digital button mode or an industrial touch. Touch screen interactive interface.
  • the required digital PWM signal is directly generated by the DSC minimum system, and the SiC inverse conversion stream module is directly driven by the SiC high-frequency driving module after isolation, amplification, and shaping, so that the SiC power tube is quickly turned on and off according to a preset timing.
  • High-frequency DC-AC conversion detecting the load current and voltage at the output end of the argon-arc welding power source, inputting it to the DSC minimum system after signal conditioning, and comparing with the preset value of the human-machine interaction module, changing the conduction and shutdown of the SiC power tube Time, achieve duty cycle adjustment, obtain the desired waveform output, and complete closed-loop control.
  • the argon arc welding power source of the invention adopts a new generation of power electronic power device based on SiC, which greatly increases the inverter frequency, so that the volume and quality of the power transformer are greatly reduced; meanwhile, the switching loss is short due to the short switching time of the SiC power device.
  • the use of magnetic core material with minimal iron loss can further reduce the volume and weight of magnetic devices such as power transformers, high power conversion efficiency.
  • the value of the filter inductance in the main circuit can be small, so that the time constant of the argon arc welding power source is also greatly reduced, and it is easier to obtain excellent dynamic characteristics; in addition, the high frequency fast rectifier circuit also adopts SiC fast
  • the power diode has no reverse recovery effect, which greatly reduces the peak voltage generated by the argon arc welding power source and improves the safety.
  • the thermal resistance of the SiC power device far exceeds the existing MOSFET power device and IGBT power. The device further improves the reliability of the argon arc welding power source.
  • the high-speed and precise DSC minimum system can realize the digitization, high-speed and precise control of the output current and voltage, and the output characteristics can be adjusted and switched arbitrarily, which is easy to realize based on welding. Optimization of the welding process for arc design.
  • the AC input power supply is first connected to the common mode noise suppression module, and then connected to the power frequency rectification filter module to be converted into smooth DC power and then input to the half bridge SiC inverse conversion flow module, through the SiC power switch tube Q1 and SiC.
  • the power switch tube Q2 is alternately turned on and off, and converted into a high-voltage square wave pulse; after that, the power transformer is used for electrical isolation, voltage transformation and power transmission; and the SiC rectification and smoothing module is converted into a low-voltage smooth DC output.
  • diode D6A and diode D6B are SiC fast/ultra fast rectification power diodes; capacitor C10, capacitor C11, capacitor C12 and resistor R9 not only play the role of dead load, but also realize the side of non-contact high frequency arcing signal. Road function to improve system reliability and stability.
  • the DSC minimum system includes a DSC microprocessor, a precision 3.3V power supply module, an external clock oscillation module, a reset module, a JTAG debug interface, and other auxiliary peripheral circuits.
  • the DSC microprocessor is embedded with the FREERTOS system, which can complete the real-time scheduling of multi-control tasks in the argon arc welding power source;
  • the input of the detection module is connected to the ADC port of the DSC microprocessor; the output of the diagnostic module is connected to the interrupt port of the DSC microprocessor.
  • the SiC high frequency drive module includes a power supply circuit, a push-pull output circuit, a magnetic isolation circuit, and a signal shaping circuit.
  • the power supply circuit consists of a switching voltage regulator of the type LM2596s and its peripheral circuits.
  • the input voltage of the power supply circuit can be up to 40V, the adjustable voltage of 1.2V ⁇ 37V is output, the output current can reach 3A, and the function of overheat protection and current limiting protection is provided.
  • the set output voltage is 24V DC.
  • the push-pull output circuit includes a switching amplifier U1 of the type IXDN609PI and its peripheral circuit, and a switching amplifier U2 of the type IXDN609PI and its peripheral circuits; the input terminals of the switching amplifier U1 and the switching amplifier U2 are respectively connected with the SiC inverse conversion stream module, and the output The terminals are respectively connected to the magnetic isolation circuit.
  • the digital PWM signal A/B generated by the DSC controller is subjected to pre-isolation processing, and then directly drives a push-pull output circuit composed of IXDN609PI to obtain driving pulse driving signals OUT-A1 and OUT-B1 of two push-pull outputs.
  • the magnetic isolation circuit is composed of a pulse transformer T101; the signal shaping circuit comprises two sets of signal shaping unit 1 and a signal shaping unit 2; the signal shaping unit 1 and the signal shaping unit 2 are respectively opposite to the pulse transformer T101 in the opposite direction. Coil connection.
  • the signal shaping unit comprises a diode D113, a diode D117, a Zener diode D122, a Zener diode D125, a Zener diode D126, a dual diode group DQ101, a resistor R105, a resistor R109, a resistor R117, a resistor R121 and a switch transistor Q101;
  • One end of the secondary first coil of the pulse transformer T101 is sequentially connected to the diode D113 through a diode D117, a Zener diode D122, a Zener diode D126, a Zener diode D125, and a diode D113 connected to the other end of the secondary first coil of the magnetic isolation circuit;
  • One end of the secondary first coil of the magnetic isolation circuit is also connected to the diode D113 through the resistor 109;
  • the Zener diode D122 is connected to the diode D113 through the resistor R113 and the dual diode group DQ101; the Zener diode D122 also passes through the resistor R121 and the resistor R117 and the diode D113.
  • connection the connection of the diode D117 and the Zener diode D122 is connected to the diode D113 through the switch Q101, the connection of the resistor R109 and the diode D117 is connected to the switch Q101; the resistor 105 is connected in parallel across the diode D113; the capacitor C115 is connected in parallel to the Zener diode Both ends of D122.
  • the signal shaping circuit generates a positive 20V, negative 5.1V SiC power switch drive voltage signal to increase the turn-on and turn-off speed of the power switch.
  • the non-contact arc ignition module includes a step-up transformer T1, a discharger FD, a high-voltage charging capacitor C, and an output.
  • the GPIO port output of the DSC microprocessor controls the turn-on and turn-off of the SiC power switch Q10 and the switch K respectively.
  • the torch switch is closed, one of the GPIO ports of the DSC microprocessor outputs a high level, first the switch K is closed, and then another GPIO port of the DSC microprocessor outputs a driving signal of the SiC power switch tube Q10, so that the SiC power switch tube Q10 fast switch, the input terminal DC voltage U0 is boosted by the step-up transformer T1 and then the capacitor C is charged.
  • the DSC microprocessor determines whether the arc striking is successful based on the detected output current and voltage value. If the arc striking is successful, the DSC microprocessor will turn off the output of the GPIO, causing the switch K to open and the non-contact arc striking module to stop working.
  • the non-contact arc-trimming module has an extremely simple structure, strong arc-ignition capability, small electromagnetic interference, and high success rate of arc-ignition.
  • the load electrical signal detection module includes a Hall current voltage sensor, an integrated differential amplifier circuit composed of a precision differential amplifier of the type AD629 and its peripheral circuits, a second-order active low composed of a chip of the type OP177 and its peripheral circuits.
  • the pass filter circuit and the absolute value circuit formed by the chip of the model LF353 and its peripheral circuits; the Hall current voltage sensor, the integrated differential amplifier circuit, the second-order active low-pass filter circuit and the absolute value circuit are sequentially connected.
  • the Hall current and voltage sensor When sampling the load current, the Hall current and voltage sensor uses the sensor model HAS600-S; when sampling the load voltage, the Hall current voltage sensor uses the sensor model LV25-P.
  • the current and voltage signals sampled by the Hall current-voltage sensor and converted are subjected to common mode suppression by an integrated differential amplifier circuit, and then filtered by a second-order active low-pass filter circuit, and then the measurement signal is adjusted by an absolute value circuit. Finally, the ADC module input to the DSC microprocessor is converted into a digital signal that can be recognized by the DSC microprocessor.
  • the diode D250 and the diode D251 are added before the input pin to clamp, so that the input feedback signal is kept between 0 and 3.3V, and the DSC micro is protected.
  • the chip pin of the processor In order to prevent the voltage input to the DSC microprocessor from being too large or input negative voltage, the diode D250 and the diode D251 are added before the input pin to clamp, so that the input feedback signal is kept between 0 and 3.3V, and the DSC micro is protected.
  • the AC input power source enters the power frequency after passing through the common mode noise suppression module.
  • the flow filtering module converts the commercial frequency alternating current into a smooth direct current; and then enters the SiC inverse transform stream module, and the DSC minimum system compares the preset value sent from the human-machine interaction module with the actual current voltage value input by the load electrical signal detecting module, and According to the embedded algorithm operation, a corresponding digital PWM signal is generated; after being isolated, amplified and shaped by the SiC high frequency driving module, the SiC power switching tube of the SiC inverse conversion stream module is driven to follow a preset duty ratio and Frequency high-speed switching, which can obtain high-frequency high-voltage AC square wave pulse up to 400kHz; then converted into low-voltage high-frequency square wave pulse by power transformer, and then converted into DC power required for argon arc welding by SiC rectification and smoothing module, thereby completing Complete closed loop control process.
  • the DSC microprocessor can determine whether and when the non-contact pilot arc module is enabled according to the torch opening and closing state; the fault diagnosis protection module detects the real-time voltage of the AC input power source and the temperature of the power device heat sink to determine whether there is an overvoltage, Undervoltage or overheating, if there is overvoltage/undervoltage/overheat/overcurrent, etc., the output of the fault diagnosis protection module will trigger the interrupt of the DSC microprocessor, call the fault protection task; the DSC microprocessor will load the load. The average current value detected by the signal detection module is compared with the preset current value to determine whether the current is overcurrent. Once the overcurrent phenomenon occurs, the fault protection task is immediately called, the output of the digital PWM is blocked, and the SiC power switch tube is turned off to ensure the main The safety of the circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Generation Of Surge Voltage And Current (AREA)
  • Arc Welding Control (AREA)
  • Inverter Devices (AREA)

Abstract

一种基于DSC的全数字SiC逆变式多功能氩弧焊电源,包括主电路和DSC控制电路;主电路包括依次连接的共模噪声抑制模块、工频整流滤波模块、SiC逆变换流模块、功率变压器、SiC整流与平滑模块和非接触引弧模块组成;SiC整流与平滑模块和非接触引弧模块分别与外部电弧负载连接;DSC控制电路包括DSC最小系统、人机交互模块、故障诊断保护模块、SiC高频驱动模块和负载电信号检测模块;SiC高频驱动模块还与SiC逆变换流模块连接;负载电信号检测模块还与电弧负载连接。该氩弧焊电源结构简单,控制精度高,响应速度快,体积小巧,高效节能,具有优异工艺适应性,可提升焊接工艺质量。

Description

基于DSC的全数字SiC逆变式多功能氩弧焊电源 技术领域
本发明涉及高频弧焊逆变技术领域,更具体地说,涉及一种基于DSC的全数字SiC逆变式多功能氩弧焊电源。
背景技术
氩弧焊在不锈钢、钛合金、铝镁合金等材料的焊接生产中得到了广泛的应用。目前,氩弧焊电源普遍采用IGBT或者MOSFET高频逆变技术,该技术已经发展为成熟的技术手段,能满足大部分金属材料的焊接要求。但是随着科技发展,在海洋工程、核电、航空航天、汽车、风电、火电、船舶、轨道交通、石油化工等装备制造业,其设备日趋大型化、结构日益复杂化以及材料趋于多元化,多种更高性能的不锈钢、铝等黑色、有色金属及其合金不断出现,迫切需要更高性能的多功能氩弧焊电源设备。然而,限于功率器件的开关速度和开关损耗,现有的氩弧焊电源的逆变频率还不够高,导致动态响应速度难以进一步提高;同时,目前普遍采用模拟控制或者基于普通微处理器的简单数字控制,难以实现基于焊接电弧设计的氩弧焊接过程精细化控制,影响了焊接质量的进一步提高。
发明内容
本发明的目的在于克服现有技术中的缺点与不足,提供一种基于DSC、结构简单、控制精度高、响应速度快、体积小巧、高效节能、具有优异工艺适应性、可提升焊接工艺质量的全数字SiC逆变式多功能氩弧焊电源。
为了达到上述目的,本发明通过下述技术方案予以实现:一种基于DSC的全数字SiC逆变式多功能氩弧焊电源,其特征在于:包括主电路和DSC控制电路;
所述主电路包括依次连接的共模噪声抑制模块、工频整流滤波模块、SiC逆变换流模块、功率变压器、SiC整流与平滑模块和非接触引弧模块组成;其 中,共模噪声抑制模块与外部交流输入电源连接;SiC整流与平滑模块和非接触引弧模块分别与外部电弧负载连接;
所述DSC控制电路包括DSC最小系统,以及分别与DSC最小系统连接的人机交互模块、故障诊断保护模块、SiC高频驱动模块和负载电信号检测模块;其中,故障诊断保护模块还分别与交流输入电源和SiC逆变换流模块连接;SiC高频驱动模块还与SiC逆变换流模块连接;负载电信号检测模块还与电弧负载连接;非接触引弧模块与DSC最小系统连接。
本发明为逆变式直流、脉冲氩弧焊电源;交流输入电源既可以是三相交流输入电源,也可以为单相交流输入电源,视实际输出功率而定。由DSC最小系统直接产生所需的数字PWM信号,经过SiC高频驱动模块隔离、放大、整形之后直接驱动SiC逆变换流模块,使其SiC功率管按照预设的时序快速导通与关闭,实现高频直流交流转变;在氩弧焊电源输出端检测负载电流电压,经信号调理后输入到DSC最小系统,与人机交互模块预设值进行比较之后,改变SiC功率管的导通与关断时间,实现占空比调节,获得所需的波形输出,完成闭环控制。
本发明氩弧焊电源采用基于SiC的新一代电力电子功率器件,大幅度地提高逆变频率,使得功率变压器的体积和质量得到大幅减小;同时,由于SiC功率器件开关时间短,开关损耗极低,实现超高频开关状态工作,采用铁损极小的磁芯材料即可,可进一步缩小功率变压器等磁性器件的体积和重量,电能转换效率高。由于工作频率提升,使得主电路中的滤波电感值可以很小,从而氩弧焊电源的时间常数也大幅度降低,更易于获得优异的动特性;此外,高频快速整流电路也采用了SiC快速功率二极管,基本不存在反向恢复效应,使得氩弧焊电源产生的尖峰电压大幅度降低,提高了安全性;SiC功率器件的热耐受性远远超过了现有的MOSFET功率器件和IGBT功率器件,使得氩弧焊电源的可靠性进一步提高。另一方面,由于逆变频率提高,回路时间变小,采用高速精密的DSC最小系统能够实现对输出电流电压的数字化、高速化、精密化调控,输出特性可以任意调节和切换,易于实现基于焊接电弧设计的焊接工艺优化。
优选地,所述SiC逆变换流模块包括电容C4、电容C5、电容C6、电容C7、SiC功率开关管Q1、SiC功率开关管Q2、电容R6、电容R7、二极管D4 和二极管D5;
电容C4和电容C5串联后,与SiC功率开关管Q1和SiC功率开关管Q2串联形成的电路一起并联到工频整流滤波模块上;电容C6和电阻R6串联后并联到SiC功率开关管Q1上,SiC功率开关管Q1还与二极管D4并联;电容C7和电阻R7串联后并联到SiC功率开关管Q2上,SiC功率开关管Q2还与二极管D5并联;所述电容C4与电容C5的连接处与功率变压器的初级第一输入端连接;SiC功率开关管Q1与SiC功率开关管Q2的连接处与功率变压器的初级第二输入端连接;SiC功率开关管Q1和SiC功率开关管Q2分别与SiC高频驱动模块连接。
优选地,所述SiC整流与平滑模块包括二极管D6A、二极管D6B、电阻R5、电阻R9、电阻R11、电容C9、电容C10、电容C11、电容C12、电容C17、压敏电阻YM1、压敏电阻YM2和电感L2;
所述功率变压器的次级第一输出端依次通过二极管D6A、电阻R9、电感L2与功率变压器的次级第二输出端连接;电阻R5和电容C9串联后并联在二极管D6A上,二极管D6A还与压敏电阻YM1并联;电容C11与电容C12串联后并联在电阻R9上,电阻R9还与电容C10并联;电容C11与电容C12的连接处接地;
二极管D6A与电阻R9的连接处通过二极管D6B与功率变压器的次级第三输出端连接;电容C17与电阻R11串联后与二极管D6B并联,二极管D6B还与压敏电阻YM2并联;电阻R9的两端分别与电弧负载连接。
在主电路中,交流输入电源首先接入共模噪声抑制模块,然后接入工频整流滤波模块转换成平滑的直流电后输入到半桥式SiC逆变换流模块,通过SiC功率开关管Q1和SiC功率开关管Q2的交替导通与关断,转换成高压方波脉冲;之后经过功率变压器进行电气隔离、变压和功率传递;经过SiC整流与平滑模块转变成低压平滑的直流电输出。其中,二极管D6A和二极管D6B均为SiC快速/超快速整流功率二极管;电容C10、电容C11、电容C12和电阻R9不仅起到死负载的作用,还能实现对非接触高频引弧信号的旁路作用,提高系统的可靠性和稳定性。
优选地,所述SiC高频驱动模块包括供电电源电路、推挽输出电路、磁隔离电路和信号整形电路。
优选地,所述供电电源电路由型号为LM2596s的开关电压调节器及其外围电路组成。
优选地,所述推挽输出电路包括型号为IXDN609PI的开关放大器U1及其外围电路,以及型号为IXDN609PI的开关放大器U2及其外围电路;开关放大器U1和开关放大器U2的输入端分别与SiC逆变换流模块连接,输出端分别与所述磁隔离电路连接。
优选地,所述磁隔离电路由脉冲变压器T101组成;所述信号整形电路包括两组结构相同的信号整形单元一和信号整形单元二;信号整形单元一和信号整形单元二以相反方向分别与脉冲变压器T101次级的两个线圈连接。
优选地,所述信号整形单元一包括二极管D113、二极管D117、稳压二极管D122、稳压二极管D125、稳压二极管D126、双二极管组DQ101、电阻R105、电阻R109、电阻R117、电阻R121和开关管Q101;
所述脉冲变压器T101的次级第一线圈一端依次通过二极管D117、稳压二极管D122、稳压二极管D126、稳压二极管D125与二极管D113连接;二极管D113与磁隔离电路的次级第一线圈另一端连接;磁隔离电路的次级第一线圈一端还通过电阻109与二极管D113连接;稳压二极管D122通过电阻R113和双二极管组DQ101与二极管D113连接;稳压二极管D122还通过电阻R121和电阻R117与二极管D113连接;二极管D117与稳压二极管D122的连接处通过开关管Q101与二极管D113连接,电阻R109与二极管D117连接处与开关管Q101连接;电阻105并联在二极管D113两端;电容C115并联在稳压二极管D122两端。
优选地,所述负载电信号检测模块包括霍尔电流电压传感器、由型号为AD629的精密差动放大器及其外围电路构成的集成差动放大电路、由型号为OP177的芯片及其外围电路构成的二阶有源低通滤波电路和由型号为LF353的芯片及其外围电路构成的绝对值电路;所述霍尔电流电压传感器、集成差动放大电路、二阶有源低通滤波电路和绝对值电路依次连接。
优选地,所述非接触引弧模块包括升压变压器T1、放电器FD、高压充电电容C、输出耦合变压器T2、SiC功率开关管Q10和开关K;升压变压器T1的初级、SiC功率开关管Q10和开关K串联后与非接触引弧模块的供电模块连接;升压变压器T1的次级通过放电器FD与输出耦合变压器T2的初级连接; 输出耦合变压器T2的次级与电弧负载连接;电容C并联在升压变压器T1的次级上;DSC最小系统分别与SiC功率开关管Q10和开关K连接。
与现有技术相比,本发明具有如下优点与有益效果:
1、与传统氩弧焊电源相比,本发明氩弧焊电源的功率开关器件全部采用新一代电力电子器件SiC功率管,开关频率更高,体积减小1/3以上,综合制造成本低25%以上,节能10%左右,综合性能大幅度提高;
2、本发明氩弧焊电源采用了基于DSC的高速高精度全数字化控制技术,控制精度更高,响应速度更快,实现了闭环控制,更易于实现对焊接电弧的精细化设计与控制,提高焊接工艺质量;
3、本发明氩弧焊电源采用的SiC功率器件具有更好的热耐受性,并且几乎没有电导调制效应,几乎不存在反向恢复时间,使得器件开关应力得到极大改善,进一步提高了整机的可靠性。
附图说明
图1是本发明氩弧焊电源的系统框图;
图2是本发明氩弧焊电源中主电路的电路图;
图3(A)~图3(C)是本氩弧焊焊接电源中SiC高频驱动模块的电路图;
图4是本发明氩弧焊电源中非接触引弧模块的电路图;
图5是本发明氩弧焊电源中负载电信号检测模块的电路图;
图6是本发明氩弧焊电源中DCS最小系统的电路图。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细的描述。
实施例
本实施例基于DSC的全数字SiC逆变式多功能氩弧焊电源,其结构如图1~图6所示;包括主电路和DSC控制电路。
主电路包括依次连接的共模噪声抑制模块、工频整流滤波模块、SiC逆变换流模块、功率变压器、SiC整流与平滑模块和非接触引弧模块组成;其中,共模噪声抑制模块与外部交流输入电源连接;SiC整流与平滑模块和非接触引弧模块分别与外部电弧负载连接。
DSC控制电路包括DSC最小系统,以及分别与DSC最小系统连接的人机交互模块、故障诊断保护模块、SiC高频驱动模块和负载电信号检测模块;其中,故障诊断保护模块还分别与交流输入电源和SiC逆变换流模块连接;SiC高频驱动模块还与SiC逆变换流模块连接;负载电信号检测模块还与电弧负载连接;非接触引弧模块与DSC最小系统连接。
SiC逆变换流模块包括电容C4、电容C5、电容C6、电容C7、SiC功率开关管Q1、SiC功率开关管Q2、电容R6、电容R7、二极管D4和二极管D5。
电容C4和电容C5串联后,与SiC功率开关管Q1和SiC功率开关管Q2串联形成的电路一起并联到工频整流滤波模块上;电容C6和电阻R6串联后并联到SiC功率开关管Q1上,SiC功率开关管Q1还与二极管D4并联;电容C7和电阻R7串联后并联到SiC功率开关管Q2上,SiC功率开关管Q2还与二极管D5并联;电容C4与电容C5的连接处与功率变压器的初级第一输入端连接;SiC功率开关管Q1与SiC功率开关管Q2的连接处与功率变压器的初级第二输入端连接;SiC功率开关管Q1和SiC功率开关管Q2分别与SiC高频驱动模块连接。
SiC整流与平滑模块包括二极管D6A、二极管D6B、电阻R5、电阻R9、电阻R11、电容C9、电容C10、电容C11、电容C12、电容C17、压敏电阻YM1、压敏电阻YM2和电感L2。
功率变压器的次级第一输出端依次通过二极管D6A、电阻R9、电感L2与功率变压器的次级第二输出端连接;电阻R5和电容C9串联后并联在二极管D6A上,二极管D6A还与压敏电阻YM1并联;电容C11与电容C12串联后并联在电阻R9上,电阻R9还与电容C10并联;电容C11与电容C12的连接处接地。
二极管D6A与电阻R9的连接处通过二极管D6B与功率变压器的次级第三输出端连接;电容C17与电阻R11串联后与二极管D6B并联,二极管D6B还与压敏电阻YM2并联;电阻R9的两端分别与电弧负载连接。
本发明为逆变式直流、脉冲氩弧焊电源;交流输入电源既可以是三相交流输入电源,也可以为单相交流输入电源,视实际输出功率而定。主电路可以采用半桥式拓扑或全桥逆变式拓扑;人机交互模块具备UART或者CAN或者ETHERNET等通讯接口,既可以是数码按键模式的数字面板,也可以是工业触 摸屏交互界面。由DSC最小系统直接产生所需的数字PWM信号,经过SiC高频驱动模块隔离、放大、整形之后直接驱动SiC逆变换流模块,使其SiC功率管按照预设的时序快速导通与关闭,实现高频直流交流转变;在氩弧焊电源输出端检测负载电流电压,经信号调理后输入到DSC最小系统,与人机交互模块预设值进行比较之后,改变SiC功率管的导通与关断时间,实现占空比调节,获得所需的波形输出,完成闭环控制。
本发明氩弧焊电源采用基于SiC的新一代电力电子功率器件,大幅度地提高逆变频率,使得功率变压器的体积和质量得到大幅减小;同时,由于SiC功率器件开关时间短,开关损耗极低,实现超高频开关状态工作,采用铁损极小的磁芯材料即可,可进一步缩小功率变压器等磁性器件的体积和重量,电能转换效率高。由于工作频率提升,使得主电路中的滤波电感值可以很小,从而氩弧焊电源的时间常数也大幅度降低,更易于获得优异的动特性;此外,高频快速整流电路也采用了SiC快速功率二极管,基本不存在反向恢复效应,使得氩弧焊电源产生的尖峰电压大幅度降低,提高了安全性;SiC功率器件的热耐受性远远超过了现有的MOSFET功率器件和IGBT功率器件,使得氩弧焊电源的可靠性进一步提高。另一方面,由于逆变频率提高,回路时间变小,采用高速精密的DSC最小系统能够实现对输出电流电压的数字化、高速化、精密化调控,输出特性可以任意调节和切换,易于实现基于焊接电弧设计的焊接工艺优化。
在主电路中,交流输入电源首先接入共模噪声抑制模块,然后接入工频整流滤波模块转换成平滑的直流电后输入到半桥式SiC逆变换流模块,通过SiC功率开关管Q1和SiC功率开关管Q2的交替导通与关断,转换成高压方波脉冲;之后经过功率变压器进行电气隔离、变压和功率传递;经过SiC整流与平滑模块转变成低压平滑的直流电输出。其中,二极管D6A和二极管D6B均为SiC快速/超快速整流功率二极管;电容C10、电容C11、电容C12和电阻R9不仅起到死负载的作用,还能实现对非接触高频引弧信号的旁路作用,提高系统的可靠性和稳定性。
DSC最小系统包括DSC微处理器、精密3.3V电源模块、外部时钟振荡模块、复位模块、JTAG调试接口以及其他辅助外围电路。DSC微处理器内嵌了FREERTOS系统,能够完成氩弧焊电源内多控制任务的实时调度;负载电信号 检测模块的输入连接到DSC微处理器的ADC端口;故障诊断模块的输出连接DSC微处理器的中断端口。
SiC高频驱动模块包括供电电源电路、推挽输出电路、磁隔离电路和信号整形电路。供电电源电路由型号为LM2596s的开关电压调节器及其外围电路组成。供电电源电路的输入电压可高达40V,输出1.2V~37V的可调电压,输出电流可达到3A,具有过热保护和限流保护功能,本实施例中,设定的输出电压为直流24V。
推挽输出电路包括型号为IXDN609PI的开关放大器U1及其外围电路,以及型号为IXDN609PI的开关放大器U2及其外围电路;开关放大器U1和开关放大器U2的输入端分别与SiC逆变换流模块连接,输出端分别与磁隔离电路连接。由DSC控制器产生的数字PWM信号A/B经过前隔离处理,之后直接驱动由IXDN609PI组成的推挽输出电路,得到两路推挽输出的驱动脉冲驱动信号OUT-A1和OUT-B1。
磁隔离电路由脉冲变压器T101组成;信号整形电路包括两组结构相同的信号整形单元一和信号整形单元二;信号整形单元一和信号整形单元二以相反方向分别与脉冲变压器T101次级的两个线圈连接。
信号整形单元一包括二极管D113、二极管D117、稳压二极管D122、稳压二极管D125、稳压二极管D126、双二极管组DQ101、电阻R105、电阻R109、电阻R117、电阻R121和开关管Q101;
脉冲变压器T101的次级第一线圈一端依次通过二极管D117、稳压二极管D122、稳压二极管D126、稳压二极管D125与二极管D113连接;二极管D113与磁隔离电路的次级第一线圈另一端连接;磁隔离电路的次级第一线圈一端还通过电阻109与二极管D113连接;稳压二极管D122通过电阻R113和双二极管组DQ101与二极管D113连接;稳压二极管D122还通过电阻R121和电阻R117与二极管D113连接;二极管D117与稳压二极管D122的连接处通过开关管Q101与二极管D113连接,电阻R109与二极管D117连接处与开关管Q101连接;电阻105并联在二极管D113两端;电容C115并联在稳压二极管D122两端。信号整形电路产生正20V、负5.1V的SiC功率开关驱动电压信号,提升功率开关的开通和关断速度。
非接触引弧模块包括升压变压器T1、放电器FD、高压充电电容C、输出 耦合变压器T2、SiC功率开关管Q10和开关K;升压变压器T1的初级、SiC功率开关管Q10和开关K串联后与非接触引弧模块的供电模块连接;升压变压器T1的次级通过放电器FD与输出耦合变压器T2的初级连接;输出耦合变压器T2的次级与电弧负载连接;电容C并联在升压变压器T1的次级上;DSC最小系统分别与SiC功率开关管Q10和开关K连接。
其中,DSC微处理器的GPIO口输出高低电平分别控制SiC功率开关管Q10与开关K的开通与关断。当焊枪开关闭合,DSC微处理器的其中一个GPIO口输出高电平,首先使开关K闭合,然后DSC微处理器的另一个GPIO口输出SiC功率开关管Q10的驱动信号,使得SiC功率开关管Q10快速开关,输入端直流电压U0经升压变压器T1升压之后对电容C充电,当电容C电压达到放电器FD的击穿电压,放电器FD的空气间隙被击穿而放电;放电器FD的等效电阻R、电容C、耦合变压器T2的初级电感L形成RLC振荡,产生高频高压信号,该信号通过耦合变压器T2的次级侧加载到钨极与工件之间,击穿间隙,引燃电弧。DSC微处理器根据检测到的输出电流和电压值判断引弧是否成功,如引弧成功,则DSC微处理器会关闭GPIO的输出,使开关K打开,非接触引弧模块停止工作。该非接触引弧模块的结构极其简单,引弧能力强,电磁干扰小,引弧成功率高。
负载电信号检测模块包括霍尔电流电压传感器、由型号为AD629的精密差动放大器及其外围电路构成的集成差动放大电路、由型号为OP177的芯片及其外围电路构成的二阶有源低通滤波电路和由型号为LF353的芯片及其外围电路构成的绝对值电路;霍尔电流电压传感器、集成差动放大电路、二阶有源低通滤波电路和绝对值电路依次连接。
采样负载电流时,霍尔电流电压传感器采用型号为HAS600-S的传感器;采样负载电压时,霍尔电流电压传感器采用型号为LV25-P的传感器。由霍尔电流电压传感器采样并经过转换后的电流电压信号经集成差动放大电路进行共模抑制,再通过二阶有源低通滤波电路进行滤波,再经过绝对值电路对测量信号进行整定,最后输入到DSC微处理器的ADC模块,转换成DSC微处理器所能识别处理的数字信号。为防止输入到DSC微处理器的电压过大或者输入负压,在输入管脚之前增加了二极管D250和二极管D251进行钳位,使输入的反馈信号保持在0~3.3V之间,保护DSC微处理器的芯片管脚。
本实施例氩弧焊电源,交流输入电源经过共模噪声抑制模块后进入工频整 流滤波模块使工频交流电转换成平滑直流电;然后进入SiC逆变换流模块,DSC最小系统将从人机交互模块发送的预设值与负载电信号检测模块输入的实际电流电压值进行比较,并按照内嵌的算法运算,产生相应的数字PWM信号;经过SiC高频驱动模块进行隔离、放大和整形之后,驱动SiC逆变换流模块的SiC功率开关管,使之按照预设的占空比和频率高速开关,从而可得到高达400kHz的高频高压交流方波脉冲;然后经过功率变压器转换成低压高频方波脉冲,再经过SiC整流与平滑模块转变成氩弧焊接所需的直流电,从而完成完整的闭环控制过程。
DSC微处理器可根据焊枪开合状态来确定是否以及何时使能非接触引弧模块;故障诊断保护模块检测交流输入电源的实时电压和功率器件散热器的温度,以确定是否存在过压、欠压或者过热等情况,一旦出现过压/欠压/过热/过流等情况,则故障诊断保护模块的输出会触发DSC微处理器的中断,调用故障保护任务;DSC微处理器对负载电信号检测模块检测的平均电流值与预设的电流值进行比较,判断是否过流,一旦发生过流现象,也会立即调用故障保护任务,封锁数字PWM的输出,关闭SiC功率开关管,确保主电路的安全。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于DSC的全数字SiC逆变式多功能氩弧焊电源,其特征在于:包括主电路和DSC控制电路;
    所述主电路包括依次连接的共模噪声抑制模块、工频整流滤波模块、SiC逆变换流模块、功率变压器、SiC整流与平滑模块和非接触引弧模块组成;其中,共模噪声抑制模块与外部交流输入电源连接;SiC整流与平滑模块和非接触引弧模块分别与外部电弧负载连接;
    所述DSC控制电路包括DSC最小系统,以及分别与DSC最小系统连接的人机交互模块、故障诊断保护模块、SiC高频驱动模块和负载电信号检测模块;其中,故障诊断保护模块还分别与交流输入电源和SiC逆变换流模块连接;SiC高频驱动模块还与SiC逆变换流模块连接;负载电信号检测模块还与电弧负载连接;非接触引弧模块与DSC最小系统连接。
  2. 根据权利要求1所述的基于DSC的全数字SiC逆变式多功能氩弧焊电源,其特征在于:所述SiC逆变换流模块包括电容C4、电容C5、电容C6、电容C7、SiC功率开关管Q1、SiC功率开关管Q2、电容R6、电容R7、二极管D4和二极管D5;
    电容C4和电容C5串联后,与SiC功率开关管Q1和SiC功率开关管Q2串联形成的电路一起并联到工频整流滤波模块上;电容C6和电阻R6串联后并联到SiC功率开关管Q1上,SiC功率开关管Q1还与二极管D4并联;电容C7和电阻R7串联后并联到SiC功率开关管Q2上,SiC功率开关管Q2还与二极管D5并联;所述电容C4与电容C5的连接处与功率变压器的初级第一输入端连接;SiC功率开关管Q1与SiC功率开关管Q2的连接处与功率变压器的初级第二输入端连接;SiC功率开关管Q1和SiC功率开关管Q2分别与SiC高频驱动模块连接。
  3. 根据权利要求1所述的基于DSC的全数字SiC逆变式多功能氩弧焊电源,其特征在于:所述SiC整流与平滑模块包括二极管D6A、二极管D6B、电阻R5、电阻R9、电阻R11、电容C9、电容C10、电容C11、电容C12、电容C17、压敏电阻YM1、压敏电阻YM2和电感L2;
    所述功率变压器的次级第一输出端依次通过二极管D6A、电阻R9、电感 L2与功率变压器的次级第二输出端连接;电阻R5和电容C9串联后并联在二极管D6A上,二极管D6A还与压敏电阻YM1并联;电容C11与电容C12串联后并联在电阻R9上,电阻R9还与电容C10并联;电容C11与电容C12的连接处接地;
    二极管D6A与电阻R9的连接处通过二极管D6B与功率变压器的次级第三输出端连接;电容C17与电阻R11串联后与二极管D6B并联,二极管D6B还与压敏电阻YM2并联;电阻R9的两端分别与电弧负载连接。
  4. 根据权利要求1所述的基于DSC的全数字SiC逆变式多功能氩弧焊电源,其特征在于:所述SiC高频驱动模块包括供电电源电路、推挽输出电路、磁隔离电路和信号整形电路。
  5. 根据权利要求4所述的基于DSC的全数字SiC逆变式多功能氩弧焊电源,其特征在于:所述供电电源电路由型号为LM2596s的开关电压调节器及其外围电路组成。
  6. 根据权利要求4所述的基于DSC的全数字SiC逆变式多功能氩弧焊电源,其特征在于:所述推挽输出电路包括型号为IXDN609PI的开关放大器U1及其外围电路,以及型号为IXDN609PI的开关放大器U2及其外围电路;开关放大器U1和开关放大器U2的输入端分别与SiC逆变换流模块连接,输出端分别与所述磁隔离电路连接。
  7. 根据权利要求4所述的基于DSC的全数字SiC逆变式多功能氩弧焊电源,其特征在于:所述磁隔离电路由脉冲变压器T101组成;所述信号整形电路包括两组结构相同的信号整形单元一和信号整形单元二;信号整形单元一和信号整形单元二以相反方向分别与脉冲变压器T101次级的两个线圈连接。
  8. 根据权利要求7所述的基于DSC的全数字SiC逆变式多功能氩弧焊电源,其特征在于:所述信号整形单元一包括二极管D113、二极管D117、稳压二极管D122、稳压二极管D125、稳压二极管D126、双二极管组DQ101、电阻R105、电阻R109、电阻R117、电阻R121和开关管Q101;
    所述脉冲变压器T101的次级第一线圈一端依次通过二极管D117、稳压二极管D122、稳压二极管D126、稳压二极管D125与二极管D113连接;二极管D113与磁隔离电路的次级第一线圈另一端连接;磁隔离电路的次级第一线圈一端还通过电阻109与二极管D113连接;稳压二极管D122通过电阻R113和双 二极管组DQ101与二极管D113连接;稳压二极管D122还通过电阻R121和电阻R117与二极管D113连接;二极管D117与稳压二极管D122的连接处通过开关管Q101与二极管D113连接,电阻R109与二极管D117连接处与开关管Q101连接;电阻105并联在二极管D113两端;电容C115并联在稳压二极管D122两端。
  9. 根据权利要求1所述的基于DSC的全数字SiC逆变式多功能氩弧焊电源,其特征在于:所述负载电信号检测模块包括霍尔电流电压传感器、由型号为AD629的精密差动放大器及其外围电路构成的集成差动放大电路、由型号为OP177的芯片及其外围电路构成的二阶有源低通滤波电路和由型号为LF353的芯片及其外围电路构成的绝对值电路;所述霍尔电流电压传感器、集成差动放大电路、二阶有源低通滤波电路和绝对值电路依次连接。
  10. 根据权利要求1所述的基于DSC的全数字SiC逆变式多功能氩弧焊电源,其特征在于:所述非接触引弧模块包括升压变压器T1、放电器FD、高压充电电容C、输出耦合变压器T2、SiC功率开关管Q10和开关K;升压变压器T1的初级、SiC功率开关管Q10和开关K串联后与非接触引弧模块的供电模块连接;升压变压器T1的次级通过放电器FD与输出耦合变压器T2的初级连接;输出耦合变压器T2的次级与电弧负载连接;电容C并联在升压变压器T1的次级上;DSC最小系统分别与SiC功率开关管Q10和开关K连接。
PCT/CN2017/076415 2016-08-15 2017-03-13 基于DSC的全数字SiC逆变式多功能氩弧焊电源 WO2018032755A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/049,956 US11298771B2 (en) 2016-08-15 2018-07-31 DSC-based all-digital SiC inversion type multi-function argon arc welding power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610667906.8 2016-08-15
CN201610667906.8A CN106392262B (zh) 2016-08-15 2016-08-15 基于DSC的全数字SiC逆变式多功能氩弧焊电源

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/049,956 Continuation US11298771B2 (en) 2016-08-15 2018-07-31 DSC-based all-digital SiC inversion type multi-function argon arc welding power supply

Publications (1)

Publication Number Publication Date
WO2018032755A1 true WO2018032755A1 (zh) 2018-02-22

Family

ID=58004868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076415 WO2018032755A1 (zh) 2016-08-15 2017-03-13 基于DSC的全数字SiC逆变式多功能氩弧焊电源

Country Status (3)

Country Link
US (1) US11298771B2 (zh)
CN (1) CN106392262B (zh)
WO (1) WO2018032755A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109702315A (zh) * 2018-12-27 2019-05-03 东莞市鸿振超声波设备有限公司 一种利用位置与压力触发的超声波控制电路及焊接方法
CN110605477A (zh) * 2019-08-28 2019-12-24 华南理工大学 复杂工况水陆两用原位激光增材制造系统及方法
CN113381636A (zh) * 2021-06-03 2021-09-10 北京航空航天大学 一种高频脉冲电子束偏压电源
US20220118542A1 (en) * 2019-04-30 2022-04-21 South China University Of Technology A Dual-Pulse MIG Welding Power Source Based on SiC Power Devices
US11962252B2 (en) 2020-10-28 2024-04-16 Nxp Usa, Inc. Advance supply to insure safe behavior of an inverter application
CN109702315B (zh) * 2018-12-27 2024-05-03 东莞市鸿振超声波设备有限公司 一种利用位置与压力触发的超声波控制电路及焊接方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106392262B (zh) 2016-08-15 2018-06-29 华南理工大学 基于DSC的全数字SiC逆变式多功能氩弧焊电源
CN106513956B (zh) * 2016-12-12 2018-09-14 华南理工大学 SiC逆变式等离子切割电源
CN107150160B (zh) * 2017-06-22 2022-07-26 华南理工大学 宽适应多功能近零飞溅焊接机器人系统
CN107565821B (zh) * 2017-09-30 2023-12-19 安徽中科海奥电气股份有限公司 基于相位差错控制减小纹波的数字超导电源及其控制方法
CN107745174B (zh) * 2017-11-30 2023-08-18 华南理工大学 基于SiC IGBT的数字化变极性焊接电源
CN110064822B (zh) * 2019-05-29 2024-02-20 华南理工大学 一种快频脉冲tig焊接系统
CN110076421A (zh) * 2019-05-29 2019-08-02 华南理工大学 基于SiC的快频脉冲TIG焊接电源数字化控制电路
CN110827746A (zh) * 2019-11-05 2020-02-21 天津市英贝特航天科技有限公司 一种基于数据采集及监控的cpci电源
CN111711435B (zh) * 2020-07-15 2023-03-28 上海南芯半导体科技股份有限公司 一种提高限流控制系统中功率开关管安全性的方法
CN113579420B (zh) * 2021-06-15 2023-12-12 宁波欧罗巴科技有限公司 一种通过igbt逆变的氩弧焊机控制电路
CN114448036B (zh) * 2022-01-17 2022-08-23 贵州大学 一种电阻-mosfet调控的焊接电源电容快速充电方法
CN114744997B (zh) * 2022-06-08 2022-09-09 深圳芯能半导体技术有限公司 一种电平位移电路及集成电路
CN117066651B (zh) * 2023-10-13 2023-12-12 深圳比斯特自动化设备有限公司 一种锂电池点焊机的安全防护电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040045942A1 (en) * 2002-09-05 2004-03-11 Norris Stephen W. Plasma ARC torch system with pilot re-attach circuit and method
CN1709628A (zh) * 2004-06-18 2005-12-21 上海威特力焊接设备制造有限公司 全数字化智能焊接逆变焊机
CN101502908A (zh) * 2009-03-16 2009-08-12 深圳市佳士科技发展有限公司 全数字逆变式方波交流氩弧焊机
CN103658933A (zh) * 2013-12-18 2014-03-26 华南理工大学 全数字变极性多功能方波脉冲焊接电源
CN106392262A (zh) * 2016-08-15 2017-02-15 华南理工大学 基于DSC的全数字SiC逆变式多功能氩弧焊电源
CN205967754U (zh) * 2016-08-15 2017-02-22 华南理工大学 基于DSC的全数字SiC逆变式多功能氩弧焊电源

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248976B1 (en) * 2000-03-14 2001-06-19 Lincoln Global, Inc. Method of controlling arc welding processes and welder using same
CN201002164Y (zh) * 2006-12-08 2008-01-09 华南理工大学 一种igbt逆变式直流脉冲氩弧焊电源
CN201102120Y (zh) * 2007-11-15 2008-08-20 华南理工大学 基于arm的嵌入式数字化多功能逆变式软开关弧焊电源

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040045942A1 (en) * 2002-09-05 2004-03-11 Norris Stephen W. Plasma ARC torch system with pilot re-attach circuit and method
CN1709628A (zh) * 2004-06-18 2005-12-21 上海威特力焊接设备制造有限公司 全数字化智能焊接逆变焊机
CN101502908A (zh) * 2009-03-16 2009-08-12 深圳市佳士科技发展有限公司 全数字逆变式方波交流氩弧焊机
CN103658933A (zh) * 2013-12-18 2014-03-26 华南理工大学 全数字变极性多功能方波脉冲焊接电源
CN106392262A (zh) * 2016-08-15 2017-02-15 华南理工大学 基于DSC的全数字SiC逆变式多功能氩弧焊电源
CN205967754U (zh) * 2016-08-15 2017-02-22 华南理工大学 基于DSC的全数字SiC逆变式多功能氩弧焊电源

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109702315A (zh) * 2018-12-27 2019-05-03 东莞市鸿振超声波设备有限公司 一种利用位置与压力触发的超声波控制电路及焊接方法
CN109702315B (zh) * 2018-12-27 2024-05-03 东莞市鸿振超声波设备有限公司 一种利用位置与压力触发的超声波控制电路及焊接方法
US20220118542A1 (en) * 2019-04-30 2022-04-21 South China University Of Technology A Dual-Pulse MIG Welding Power Source Based on SiC Power Devices
CN110605477A (zh) * 2019-08-28 2019-12-24 华南理工大学 复杂工况水陆两用原位激光增材制造系统及方法
CN110605477B (zh) * 2019-08-28 2023-09-22 华南理工大学 复杂工况水陆两用原位激光增材制造系统及方法
US11962252B2 (en) 2020-10-28 2024-04-16 Nxp Usa, Inc. Advance supply to insure safe behavior of an inverter application
CN113381636A (zh) * 2021-06-03 2021-09-10 北京航空航天大学 一种高频脉冲电子束偏压电源
CN113381636B (zh) * 2021-06-03 2022-07-22 北京航空航天大学 一种高频脉冲电子束偏压电源

Also Published As

Publication number Publication date
CN106392262A (zh) 2017-02-15
US11298771B2 (en) 2022-04-12
US20180345400A1 (en) 2018-12-06
CN106392262B (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2018032755A1 (zh) 基于DSC的全数字SiC逆变式多功能氩弧焊电源
US10807184B2 (en) SiC inverted plasma cutting power supply
CN205967754U (zh) 基于DSC的全数字SiC逆变式多功能氩弧焊电源
US20220152719A1 (en) Digitized Variable-Polarity Welding Power Source Based on SiC IGBT
CN100496849C (zh) 一种高频逆变直流点焊电源装置及其应用
CN107276388B (zh) Pfc电路及变频空调器
CN110421237B (zh) 一种基于llc的双丝脉冲mig焊电源系统及控制方法
CN107052527B (zh) 一种大功率SiC埋弧焊接电源
WO2021135494A1 (zh) 柔性过渡高低频双脉冲mig焊接波形调制方法及系统
CN104052326A (zh) 一种大功率单逆变螺柱焊机
CN105811785A (zh) 基于变压器分布参数的lcc谐振式静电除尘高频高压电源
CN102570853A (zh) 一种恒功率输出磁控溅射镀膜电源
CN207508489U (zh) 基于SiC IGBT的数字化变极性焊接电源
CN206415753U (zh) 一种大功率SiC埋弧焊接电源
CN103418892B (zh) 一种具有能量保持回路的焊接电源装置及控制方法
CN113765358A (zh) 单级交错并联ac-dc谐振变换电路及其控制方法
CN106972768A (zh) 电源转换模块
CN204171514U (zh) 一种高性能高频逆变tig焊机
CN203933438U (zh) 一种大功率单逆变螺柱焊机
CN109194136A (zh) 一种减小双向llc变换器变压器偏磁控制方法
TW201535953A (zh) 具短路保護的橋式電路及其方法
CN105245107B (zh) 一种电流型交流功率变换器
CN113691148A (zh) 电流方向切换电路、焊机驱动电路和焊机设备
CN203003287U (zh) 用于电切削的直流电源装置
CN207910691U (zh) 一种新型大功率半桥式输出可调开关电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17840732

Country of ref document: EP

Kind code of ref document: A1