WO2021135460A1 - 射频消融导管及射频消融系统 - Google Patents

射频消融导管及射频消融系统 Download PDF

Info

Publication number
WO2021135460A1
WO2021135460A1 PCT/CN2020/118645 CN2020118645W WO2021135460A1 WO 2021135460 A1 WO2021135460 A1 WO 2021135460A1 CN 2020118645 W CN2020118645 W CN 2020118645W WO 2021135460 A1 WO2021135460 A1 WO 2021135460A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
needles
ablation catheter
radio frequency
tube
Prior art date
Application number
PCT/CN2020/118645
Other languages
English (en)
French (fr)
Inventor
王礼明
徐宏
周华珍
Original Assignee
杭州堃博生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州堃博生物科技有限公司 filed Critical 杭州堃博生物科技有限公司
Priority to KR1020227026514A priority Critical patent/KR20220156520A/ko
Priority to EP20910007.2A priority patent/EP4085861A4/en
Priority to JP2022540623A priority patent/JP7490063B2/ja
Priority to US17/756,974 priority patent/US20230017640A1/en
Publication of WO2021135460A1 publication Critical patent/WO2021135460A1/zh
Priority to US17/658,941 priority patent/US20220241001A1/en
Priority to US17/853,357 priority patent/US20220331007A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00083Electrical conductivity low, i.e. electrically insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00541Lung or bronchi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/0072Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00797Temperature measured by multiple temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00815Temperature measured by a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/0091Handpieces of the surgical instrument or device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • A61B2018/143Needle multiple needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • A61B2018/1432Needle curved

Definitions

  • the embodiment of the present invention relates to the field of medical equipment, and in particular to a radio frequency ablation catheter and a radio frequency ablation system.
  • Radio frequency ablation technology is widely used in lung surgery. Radio frequency refers to radio frequency, but it does not belong to the division of bands in radio communications. The main effect on living organisms is thermal effect. When the frequency of the radio frequency current reaches a certain value (>100kHz), it causes the movement of charged ions in the tissue, that is, friction and heat generation (60°C ⁇ 100°C). The commonly used frequency of radiofrequency ablation equipment is 200 ⁇ 500kHz, and the output power is 100 ⁇ 400kHz.
  • the ablation electrode is the core component of the radiofrequency ablation system, because it directly affects the size and shape of coagulation necrosis. The ideal solidification zone shape should be spherical or oblate.
  • the multi-needle electrode Under the guidance of B-ultrasound or CT, the multi-needle electrode is directly pierced into the diseased tissue mass.
  • the radio frequency electrode needle can make the temperature in the tissue exceed 60 °C, cell death, and produce necrotic areas; if the local tissue temperature exceeds 100 °C, the tumor tissue Coagulation and necrosis occur in the surrounding organs.
  • a large spherical coagulation necrosis area can be produced. Outside the coagulation necrosis area, there is also a 43-60 °C hyperthermia area. In this area, cancer cells can be killed. The normal cells can be restored.
  • the radio frequency electrode In the treatment process, the radio frequency electrode is extended into the human tissue, and the current is introduced into the lesion through the radio frequency electrode, and a large amount of heat is generated at the radio frequency electrode. For example, when the temperature of the lesion reaches 40 °C -60 °C and maintained After a period of time, the ablation operation of the lesion is completed.
  • the radio frequency ablation system in the prior art cannot determine the working status information of the radio frequency electrode, for example, it cannot determine the temperature near the radio frequency electrode. Therefore, the operation process can only rely on the doctor's experience to judge the progress of the ablation operation and perform adjustment operations, which increases the number of operations. Difficulty and precision. Therefore, how to provide a radio frequency ablation system so that it can accurately determine whether the ablation is completed is an urgent problem in this field.
  • the purpose of the present invention is to provide a radio frequency ablation catheter, which is applied to a radio frequency ablation system.
  • the multiple temperature sensors on the signal catheter are used to detect the temperature near the multiple sub-needles and transmit the temperature change range to the radio frequency ablation system. Achieve a specific range of local temperature of the tissue during the operation.
  • the embodiment of the present invention provides a radio frequency ablation catheter, which is applied to a radio frequency ablation system, and includes: a needle tube part and a handle part;
  • the handle includes: a sleeve and a booster, the sleeve is sleeved on the booster, the booster is slidably arranged at one end of the sleeve, and the booster is provided with a conductive Connector, the conductive connector is used to connect an external radio frequency ablation system;
  • the needle tube part includes: a puncture tube, an electrode tube, and a signal catheter;
  • the puncture tube is fixed at the other end of the sleeve, the electrode tube is slidably arranged in the puncture tube, one end of the electrode tube is fixed on the conductive joint, and the other end of the electrode tube is provided with A plurality of sub-needles, the plurality of sub-needles are used to transmit the current provided by the conductive joint, the signal catheter is slidably arranged in the puncture tube, the signal catheter is located on one side of the electrode tube, and the signal One end of the pipe is fixed on the conductive joint;
  • the signal conduit includes: a plurality of brackets and a plurality of temperature sensors;
  • the other end of the signal catheter is provided with the multiple stents, and the multiple stents are located on one side of the multiple sub-needles;
  • the plurality of temperature sensors are arranged on the plurality of brackets, and the temperature sensors are electrically connected to the plurality of brackets.
  • the plurality of temperature sensors are used to detect the temperature near the plurality of sub-needles and transmit them to the On the radiofrequency ablation system.
  • the multiple temperature sensors of the radiofrequency ablation catheter are located at the ends of the multiple stents.
  • the temperature sensor of the radio frequency ablation catheter is a capacitance thermometer.
  • the number of the multiple stents and the multiple sub-needles of the radiofrequency ablation catheter are the same, and they are alternately arranged.
  • the multiple stents are arranged beside the multiple sub-needles of the radiofrequency ablation catheter, and the spacing between the multiple sub-needles and the multiple stents is the same.
  • the electrode tube of the radiofrequency ablation catheter further includes: a plurality of metal balls, and the plurality of metal balls are arranged at the ends of the plurality of sub-needles;
  • the ratio of the outer diameter of the metal ball to the diameter of the sub-needle is 1.05:1.01, and the plurality of metal balls are electrically connected to the plurality of sub-needles.
  • the radiofrequency ablation catheter includes: a fixing ring;
  • the fixing ring is located in the puncture tube, and the fixing ring is used to fix the plurality of stents and the plurality of sub-needles.
  • the fixing ring of the radiofrequency ablation catheter is provided with a plurality of through holes, and the number of the plurality of through holes is equal to the sum of the number of the plurality of stents and the plurality of sub-needles, The plurality of brackets and the plurality of sub-needles pass through the plurality of through holes.
  • the electrode tube of the radiofrequency ablation catheter and the surface of the signal catheter are both provided with an insulating layer, and the insulating layer is used for signal shielding.
  • the temperature sensor of the radiofrequency ablation catheter may be a thermistor.
  • the plurality of sub-needles of the radiofrequency ablation catheter are in a radial shape of flowers, and the plurality of stents are in a radial shape of flowers.
  • the length of the plurality of sub-needles of the radiofrequency ablation catheter is the longest in the middle part, the outermost end is the shortest, and the length is gradually shortened from the middle part to the two ends.
  • the plurality of sub-needles of the radiofrequency ablation catheter are symmetrically distributed around the central axis of the electrode tube, and the lengths of the corresponding sub-needles corresponding to the central axis of the electrode tube are the same.
  • the length of the plurality of stents of the radiofrequency ablation catheter is the longest at the middle part, and the outermost end is the shortest, and the length is gradually shortened from the middle part to the two ends.
  • the plurality of stents of the radiofrequency ablation catheter are symmetrically distributed about the central axis of the signal catheter, and the symmetrical stents corresponding to the central axis of the signal catheter have the same length.
  • the plurality of sub-needles of the radiofrequency ablation catheter are circumferentially distributed in a spherical space, and the plurality of stents are circumferentially distributed in a spherical space.
  • each of the metal balls of the radiofrequency ablation catheter is opposite to the spherical
  • the latitude of the space is the same.
  • each temperature sensor of the radiofrequency ablation catheter has the same latitude relative to the spherical space.
  • each of the temperature sensors of the radiofrequency ablation catheter and the metal ball have the same latitude.
  • the present invention also provides a radio frequency ablation system, including the radio frequency ablation catheter in any one of the above feasible solutions.
  • the radiofrequency ablation catheter of the present invention includes a needle tube part and a handle part.
  • the barrel sleeve on the handle part is sleeved on the booster of the handle part, and a conductive joint is arranged at one end of the booster, and the conductive joint is used to connect the radio frequency ablation system.
  • the puncture tube on the needle tube part is fixed at one end of the sleeve, the electrode tube and the signal tube of the needle tube part are fixed on the conductive joint, and the signal tube is located on one side of the electrode tube.
  • each bracket is correspondingly equipped with a capacitance thermometer.
  • the signal catheter and the electrode tube are fixed on the conductive joint, and multiple brackets are fixed on one side of the multiple sub-needles.
  • the multiple brackets are provided with corresponding capacitance thermometers, which can be used to detect the sub-needles. Temperature changes near the needle. The radio frequency ablation system releases the current into the human tissue through the electrode tube and the sub-needle.
  • the capacitance thermometer on the stent senses the temperature near the corresponding sub-needle, and transmits the temperature to the radio frequency ablation system through the signal catheter.
  • the temperature change in the human tissue can be visually displayed on the radio frequency ablation system. According to the temperature change range measured by the capacitance thermometer, the output current of the radio frequency ablation system can be controlled, so that the controllability of the current during the operation can be realized.
  • Fig. 1 is a schematic structural diagram of a radiofrequency ablation catheter in the first embodiment of the present invention
  • Figure 2 is a partial enlarged schematic view of the needle tube portion in the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the structure of the radiofrequency ablation catheter in the third embodiment of the present invention.
  • FIG. 4 is a partial enlarged schematic view of the needle tube part in the third embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the structure of the radiofrequency ablation catheter in the fourth embodiment of the present invention.
  • FIG. 6 is a partial enlarged schematic view of the needle tube part in the fourth embodiment of the present invention.
  • FIG. 7 is a diagram of the push-out state of the booster in the first embodiment of the present invention.
  • Figure 8 is a perspective view of a sub-needle and a support in the fourth embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the structure of the sub-needle and the support at the same latitude in Embodiment 5 of the present invention.
  • Needle tube part 11, puncture tube; 12, electrode tube; 121, sub-needle; 122, metal ball; 13, signal catheter; 131, stent; 132, temperature sensor; 2. Handle part; 21, sleeve; 22 , Booster; 221, conductive joint; 3. Fixed ring; 31, through hole; 4. Insulation layer.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. It can also be integrated; it can be a mechanical connection, an electrical connection, or a communication connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be a connection between two components or two components
  • the interaction relationship unless otherwise clearly defined.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • the technical solutions of the present invention will be described in detail below with specific embodiments. The following specific embodiments can be combined with each other, and the same or similar concepts or processes may not be repeated in some embodiments.
  • FIG. 1 is a schematic diagram of the structure of a radiofrequency ablation catheter in Embodiment 1 of the present invention.
  • the radio frequency ablation catheter in this embodiment is applied to a radio frequency ablation system.
  • the radiofrequency ablation catheter includes a needle tube portion 1 and a handle portion 2.
  • the handle 2 includes: a sleeve 21 and a booster 22, the sleeve 21 is sleeved on one end of the booster 22, the booster 22 can slide inside the sleeve 21, and the other end of the booster 22 has
  • the conductive connector 221 in this embodiment, there are four electrode sockets (not shown in the figure) on the conductive connector 221, and the four electrode sockets are used to insert the four electrode pins on the socket of the radio frequency ablation system.
  • the needle tube portion 1 includes a puncture tube 11, an electrode tube 12 and a signal tube 13.
  • the electrode tube 12 and the signal tube 13 are both arranged inside the puncture tube 11, and the signal tube 13 is located on one side of the puncture tube 11 and can move in the puncture tube 11.
  • One end of the puncture tube 11 is fixed to the end of the sleeve 21, one end of the electrode tube 12 and the signal tube 13 are both fixed on the conductive joint 221, and the electrode tube 12 and the signal tube 13 pass through the inside of the sleeve 21.
  • the booster 22 is pushed into the inside of the sleeve 21
  • the electrode tube 12 and the signal catheter 13 can be pushed out of the puncture tube 11 through the action of the booster 22 (as shown in Figure 7, the electrode tube and the signal catheter are pushed out of the puncture tube State diagram).
  • the electrode tube 12 is provided with a plurality of sub-needles 121
  • the signal tube 13 is provided with a plurality of stents 131, wherein the number of the stents 131 is equal to the number of the sub-needles 121.
  • the sub-needles 121 on the electrode tube 12 are opened in an umbrella shape (see FIG. 2), and the support 131 is also released in an umbrella shape.
  • the current on the radio frequency ablation system is transmitted to the human tissue through the conductive joint 221, the electrode tube 12 and the sub-needle 121.
  • a temperature sensor 132 is fixed at the end of each bracket 131.
  • the temperature sensor 132 can be a capacitance thermometer.
  • a capacitor is used as a sensing element to convert the measured temperature into a conversion device that changes in capacitance. Parameter capacitor. As the temperature increases, the capacitance characteristics gradually decrease, and the changes in capacitance characteristics are fed back to the radio frequency ablation system, and the range of temperature changes can be seen intuitively. Under the action of the high-frequency vibrating radio frequency current transmitted from the sub-needle 121, a large number of dielectrics such as ions, water and colloidal particles in human body fluids move at high speed with the current.
  • each capacitance thermometer transmits the detected temperature value to the radio frequency ablation system through the signal conduit 13, and converts the sensed temperature into a displayable output signal, which intuitively shows the temperature range.
  • the radiofrequency ablation catheter of the present invention includes: a needle tube portion 1 and a handle portion 2.
  • the sleeve 21 on the handle portion 2 is sleeved on the booster 22 of the handle portion 2, and a conductive connector 221 is provided at one end of the booster 22, and the conductive connector 221 is used to connect the radio frequency ablation system.
  • the puncture tube 11 on the needle tube portion 1 is fixed to one end of the sleeve 21, the electrode tube 12 and the signal tube 13 of the needle tube portion 1 are both fixed on the conductive joint 221, and the signal tube 13 is located on one side of the electrode tube 12.
  • each bracket 131 is correspondingly equipped with a capacitance thermometer.
  • the signal tube, the bracket and the capacitance thermometer are electrically connected.
  • the signal catheter 13 and the electrode tube 12 are fixed on the conductive joint 221
  • the multiple brackets 131 are fixed on one side of the multiple sub-needles 121
  • the multiple brackets 131 are provided with corresponding capacitance thermometers.
  • the capacitance thermometer can be used to detect the temperature change near the sub-needle 121.
  • the radio frequency ablation system releases the current into the human tissue through the electrode tube 12 and the sub-needle 121.
  • a large number of dielectric media such as ions, water and colloidal particles in the human body fluid move at high speed with the current.
  • the size, mass charge, and moving speed of each ion are different, and the ions are rubbed to cause the tissue to produce biothermal effect, which makes the local tissue heat up.
  • the capacitance thermometer on the stent 131 senses the temperature near the corresponding sub-needle 121, and transmits the temperature to the radio frequency ablation system through the signal conduit 13, so that the temperature in the human tissue can be visually displayed on the radio frequency ablation system. According to the temperature change range measured by the capacitance thermometer, the output current of the radio frequency ablation system can be controlled, so that the controllability of the current during the operation can be realized.
  • each sub-needle 121 is provided with a bracket 131 beside each sub-needle 121, and the distance and angle between each sub-needle 121 and the bracket 131 are the same.
  • Each sub needle 121 has a corresponding support 131, and the sub needle a
  • the distance from the end of the support a1 is 0.2cm
  • the distance between the end of the sub-needle b and the end of the support b1 is 0.2cm
  • the distance between the end of the sub-needle c and the end of the support c1 is 0.2cm
  • the distances between the sub-needle a and the sub-needle b, and the sub-needle b and the sub-needle c are all 0.4 cm
  • the distance between the support a1 and the support b1, and the distance between the support b1 and the support c1 is also 0.4 cm.
  • the distance between each sub-needle 121 is constant, and the distance between each bracket 131 is also constant.
  • a metal ball 122 is welded to the end of each sub-needle 121, and the ratio of the outer diameter of each metal ball 122 to the diameter of the sub-needle 121 is 1.05:1.01.
  • the outer diameter of the metal ball 122 is slightly larger than the diameter of the sub-needle 121, and the metal balls are staggered and distributed in the puncture tube, so that the metal ball can be well received in the puncture tube.
  • the metal ball, sub-needle and electrode tube are electrically connected.
  • the surface area of a spherical shape is larger than the interface area between the sub-needle 121 and the human tissue, so the current release area can be increased, so that more tissue cells can contact the current, and the working efficiency of the radiofrequency ablation catheter can be improved.
  • the radiofrequency ablation catheter further includes: a fixing ring 3.
  • the fixing ring 3 is clamped at a position not far from the opening of the puncture tube 11.
  • the fixing ring 3 is in a circular ring shape, and there are a plurality of through holes 31 on the circular ring.
  • the number of these through holes 31 is equal to the number of the sub-needles 121 The sum of the number of brackets 131.
  • the diameter of the through hole 31 should be larger than the diameter of the sub-needle 121 and the support 131.
  • a plurality of sub-needles 121 and the support 131 pass through the through hole 31, and the diameter of the metal ball 122 and the capacitance thermometer should be larger than the diameter of the through hole 31, which is convenient for electrodes.
  • the extension of the tube 12 and the signal conduit 13 can fix the positions of the plurality of brackets 131 and the plurality of sub-needles 121.
  • the outer walls of the electrode tube 12 and the signal tube 13 are both wrapped with an insulating layer 4, and the insulating layer 4 is made of plastic. Since the electrode tube 12 will pass current, the signal tube 13 is used to control the temperature It is converted into an output signal, so in order to prevent interference between the electrode tube 12 and the signal tube 13, the plastic on the outer wall of the electrode tube 12 and the signal tube 13 can prevent the signal interference between them, and achieve the effect of signal shielding.
  • the second embodiment is an alternative to the first embodiment.
  • the difference is that the capacitance thermometer in the first embodiment is replaced with a thermistor.
  • the thermistor is sensitive to temperature and exhibits different resistance values at different temperatures. The higher the temperature, the lower the resistance value. Under the action of electric current, the ions and media in human tissues run at a high speed and generate heat locally. When the temperature gets higher and higher, the resistance of the thermistor in the local range will decrease with the increase in temperature. .
  • the thermistor, bracket and signal conduit are electrically connected.
  • the resistance value of the thermistor changes, the resistance value change is transmitted to the radiofrequency ablation system through the signal conduit 13, and the local temperature variation range of the resistance value is calculated according to the resistance value change on the radiofrequency ablation system, thereby further
  • the temperature can be controlled by controlling the output current of the radiofrequency ablation system.
  • Fig. 3 is a schematic diagram of the structure of the radiofrequency ablation catheter in the third embodiment of the present invention.
  • the third embodiment is an improved solution of the first embodiment.
  • the improvement lies in that the shapes of the plurality of sub-needles 121 and the plurality of brackets 131 are radial flowers (see FIG. 4).
  • the lengths of the multiple sub-needles 121 are different, and the positions of the multiple sub-needles 121 are symmetrically distributed about the central axis of the electrode tube 12.
  • the names of each sub-needle 121 are a1, a2, a3, a4, a5, and a6, respectively, where a1 and a6 are symmetrical about the central axis of the electrode tube 12, and a2 and a5 are about the electrode.
  • the central axis of the tube 12 is symmetrical, and a3 and a4 are symmetrical about the central axis of the electrode tube 12.
  • the lengths of a1 and a6 are the same, the lengths of a2 and a5 are the same, and the lengths of a3 and a4 are the same.
  • a1 and a6 are located on the outermost side of all sub-needles 121 and have the shortest length, followed by a2 and a5, and the length is greater than a1
  • the length of a6, the longest is a3 and a4, and a3 and a4 are located in the middle position.
  • each sub-needle 121 is different so that the current flows through different positions, which can increase the current flow range and promote more human tissues to generate heat.
  • the lengths of the multiple stents 131 are different, and the positions of the multiple stents 131 are symmetrically distributed about the central axis of the signal tube 13. Assume that there are a total of 6 stents 131 on the signal tube 13, and the names of each stent 131 are b1, b2, b3, b4, b5, and b6 respectively.
  • b1 and b6 are symmetrical about the central axis of the signal tube 13, and b2 and b5 are about the signal
  • the central axis of the pipe 13 is symmetrical, and b3 and b4 are symmetrical with respect to the central axis of the signal pipe 13.
  • b1 and b6 have the same length
  • b2 and b5 have the same length
  • b3 and b4 have the same length
  • b1 and b6 are located on the outermost side of all stents 131, and have the shortest length, followed by b2 and b5, and the length is greater than b1 and b1
  • the length of b6, the longest is b3 and b4, and b3 and b4 are located in the middle position.
  • the capacitance thermometer on the support 131 can be used to specifically measure the temperature value generated near the corresponding sub-needle 121.
  • the heat generated by the needle 121 is different, so the temperature measured by the capacitance thermometer is also different, the obtained temperature is also more targeted, and the feedback data obtained will also be different.
  • These temperature values are transmitted to the radiofrequency ablation system through the signal catheter 13, and a specific temperature range can be obtained.
  • Fig. 5 is a schematic diagram of the structure of the radiofrequency ablation catheter in the fourth embodiment of the present invention.
  • the fourth embodiment shown in FIG. 5 is an improved solution of the first embodiment.
  • the improvement lies in that the plurality of sub-needles 121 and the plurality of brackets 131 are all distributed in a spherical space.
  • a plurality of sub-needles 121 can be named c1, c2, c3, c4, c5, and c6, respectively, where c1, c2, c3, c4, c5, and c6 are arranged in sequence from left to right, and c1, The lengths of c2, c3, c4, c5, and c6 are equal.
  • the metal balls 122 on c1, c2, c3, c4, c5, and c6 are in different horizontal positions, but according to the spherical space.
  • the corresponding metal balls 122 on the six sub-needles 121 are on the same latitude, and the current radiation range from left to right is wider, and the lateral distribution area is larger, which is beneficial to contact more lateral tissue cells.
  • brackets 131 can be named d1, d2, d3, d4, d5, and d6, where d1, d2, d3, d4, d5, and d6 are arranged from left to right, and each bracket 131 corresponds to a sub-needle 121
  • the capacitance thermometer on each bracket 131 is used to detect the temperature near the corresponding metal ball 122, and the lengths of d1, d2, d3, d4, d5, and d6 are equal. From the spherical spatial distribution diagram shown in Fig.
  • the capacitance thermometers on d1, d2, d3, d4, d5, and d6 are in different horizontal positions although they are in different horizontal positions.
  • the corresponding capacitance thermometers on the six brackets 131 are on the same latitude, and each capacitance thermometer transmits the detected temperature near the corresponding metal ball 122 to the radio frequency ablation system through the signal conduit 13.
  • the corresponding temperature change range can be seen intuitively from the radiofrequency ablation system.
  • the output current of the radiofrequency ablation system can be adjusted according to the temperature change.
  • Fig. 9 is a schematic diagram of the structure of the sub-needle and the support at the same latitude in the fifth embodiment of the present invention.
  • the fifth embodiment shown in FIG. 9 is an improved solution of the first embodiment.
  • the improvement is that the multiple sub-needles 121 and the multiple brackets 131 are all distributed in a spherical shape.
  • Multiple sub-needles can be named e1, e2, and e3, respectively, where the lengths of e1, e2, and e3 are equal. Since the three sub-needles 121 are distributed in a spherical space, the metal balls 122 on e1, e2, and e3 are in different horizontal positions, but according to the spherical space, the three sub-needles 121 are in different horizontal positions. The corresponding metal balls 122 are on the same latitude.
  • brackets 131 can be named f1, f2, and f3, and each bracket 131 corresponds to a sub-needle 121.
  • the capacitance thermometer on each bracket 131 is used to detect the temperature near the corresponding metal ball 122, and f1, The lengths of f2 and f3 are equal. From the spherical spatial distribution shown in Fig. 9, since the three brackets 131 are spherical spatially distributed, the capacitance thermometers on f1, f2, and f3 are in different horizontal positions, but according to the spherical space , The corresponding capacitance thermometers on the three brackets 131 are on the same latitude. For this embodiment, the metal ball and the capacitance thermometer are at the same latitude in the spherical space.
  • the first feature "on" or “under” the second feature may be in direct contact with the first feature and the second feature, or the first feature and the second feature may pass through between the first feature and the second feature. Indirect media contact.
  • “above”, “above” and “above” the second feature of the first feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “beneath” the first feature of the second feature may be that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is lower than the second feature.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Surgical Instruments (AREA)

Abstract

一种射频消融导管及射频消融系统。射频消融导管包括:针管部(1)和手柄部(2)。手柄部(2)的筒套(21)套接在手柄部(2)的助推器(22)上,针管部(1)的穿刺管(11)固定在筒套(21)的末端,针管部(1)的电极管(12)和信号导管(13)穿设在穿刺管(11)内。在电极管(12)上有多个子针(121),在信号导管(13)上有多个支架(131),多个支架(131)分别对应多个子针(121)。在多个支架(131)的末端设有多个温度传感器(132),温度传感器(132)用于检测子针(121)附近的温度,并把温度通过信号导管(13)传送至射频消融系统上,使温度的范围能够直观的体现在射频消融系统上。

Description

射频消融导管及射频消融系统 技术领域
本发明实施例涉及医疗器械领域,尤其涉及一种射频消融导管及射频消融系统。
背景技术
射频消融技术被广泛应用于肺部治疗手术中。射频是指无线电频率,但它不属于无线电通信中波段的划分。面对生物体的作用主要是热效应。当射频的电流频率高到一定值时(>100kHz),引起组织内带电荷的离子运动即摩擦生热(60℃~100℃)。射频消融设备常用的频率为200~500kHz,输出功率100~400kHz。消融电极是射频消融系统的核心部件,因为它直接影响凝固坏死的大小和形状。理想的凝固区形状应为球形或扁球形。在B超或CT的引导下将多针电极直接刺人病变组织肿块内,射频电极针可使组织内温度超过60℃,细胞死亡,产生坏死区域;如局部的组织温度超过100℃,肿瘤组织和围绕器官的实质发生凝固坏死,治疗时可产生一个很大的球形凝固坏死区,凝固坏死区之外还有43-60℃的热疗区,在此区域内,癌细胞可被杀死,而正常细胞可恢复。
在治疗过程中,将射频电极伸入人体组织内,通过射频电极将电流进入到病灶处,在射频电极处产生大量的热,举例来说,当病灶处的温度达到40℃-60℃并维持一段时间后,即完成对该病灶处的消融手术。但现有技术中的射频消融系统无法判断射频电极的工作状态信息,例如无法判断射频电极附近的温度,因此造成手术过程只能凭借医生的经验判断消融手术的进展并进行调整操作,增加了手术难度和精度。所以如何提供一种射频消融系统,使其能准确判断是否完成消融是本领域亟待解决的问题。
技术问题
本发明的目的在于提供一种射频消融导管,应用于射频消融系统上,信号导管上的多个温度传感器用于检测多个子针附近的温度,并将温度变化范围传送至射频消融系统上,以实现获取在手术过程中组织的局部温度的具体范围。
技术解决方案
本发明实施例提供一种射频消融导管,应用于射频消融系统上,包括:针管部和手柄部;
所述手柄部包括:筒套和助推器,所述筒套套接在所述助推器上,所述助推器滑动地设置在所述筒套的一端,所述助推器设有导电接头,所述导电接头用于外接射频消融系统;
所述针管部包括:穿刺管、电极管和信号导管;
所述穿刺管固定在所述筒套的另一端,所述电极管可滑动设置在所述穿刺管内,所述电极管的一端固定在所述导电接头上,所述电极管的另一端设有多个子针,所述多个子针用于传送由所述导电接头提供的电流,所述信号导管滑动设置在所述穿刺管中,所述信号导管位于所述电极管的一侧,所述信号导管的一端固定在所述导电接头上;
所述信号导管包括:多个支架和多个温度传感器;
所述信号导管的另一端设有所述多个支架,所述多个支架位于所述多个子针的一侧;
所述多个温度传感器设置在所述多个支架上,所述温度传感器与所述多个支架电性导通所述多个温度传感器用以检测多个子针附近的温度并通过信号导管传送至射频消融系统上。
在一种可行的方案中,该射频消融导管的所述多个温度传感器位于所述多个支架的末端。
在一种可行的方案中,该射频消融导管的所述温度传感器为电容温度计。
在一种可行的方案中,该射频消融导管的所述多个支架与所述多个子针的数量相同,呈交替设置。
在一种可行的方案中,该射频消融导管的所述多个子针旁设置所述多个支架,所述多个子针和所述多个支架之间的间距相同。
在一种可行的方案中,该射频消融导管的所述电极管还包括:多个金属球,所述多个金属球设置在所述多个子针的末端;
所述金属球的外径与子针直径的比值为 1.05:1.01,所述多个金属球与所述多个子针电性导通。
在一种可行的方案中,该射频消融导管包括:固定环;
所述固定环位于所述穿刺管内,所述固定环用以固定所述多个支架和所述多个子针。
在一种可行的方案中,该射频消融导管的所述固定环上设有多个通孔,所述多个通孔的数量等于所述多个支架和所述多个子针的数量之和,所述多个支架和所述多个子针穿设在所述多个通孔上。
在一种可行的方案中,该射频消融导管的所述电极管和所述信号导管的表面均设有绝缘层,所述绝缘层用以信号屏蔽。
在一种可行的方案中,该射频消融导管的所述温度传感器可为热敏电阻。
在一种可行的方案中,该射频消融导管的所述多个子针呈花朵放射状,所述多个支架呈花朵放射状。
在一种可行的方案中,该射频消融导管的所述多个子针的长度中间部位最长,最外端最短,长度从中间部位向两端逐渐缩短。
在一种可行的方案中,该射频消融导管的所述多个子针以电极管的中轴线对称分布,以所述电极管中轴线相对称的对应所述子针的长度相同。
在一种可行的方案中,该射频消融导管的所述多个支架的长度中间部位最长,最外端最短,长度从中间部位向两端逐渐缩短。
在一种可行的方案中,该射频消融导管的所述多个支架以信号导管的中轴线对称分布,以所述信号导管中轴线相对称的对应所述支架的长度相同。
在一种可行的方案中,该射频消融导管的所述多个子针环绕呈球形空间分布,所述多个支架环绕呈球形空间分布。
在一种可行方案中,该射频消融导管的各所述金属球相对所述球形
空间的纬度相同。
在一种可行的方案中,该射频消融导管的各所述温度传感器相对所述球形空间的纬度相同。
在一种可行的方案中,该射频消融导管的各所述温度感应器和所述金属球的纬度相同。
本发明还提供了一种射频消融系统,包括上述任意一种可行方案中的射频消融导管。
有益效果
基于上述方案可知,本发明的射频消融导管包括:针管部和手柄部。手柄部上的筒套套接在手柄部的助推器上,在助推器的一端设有导电接头,导电接头用于外接射频消融系统。针管部上的穿刺管固定在筒套的一端,针管部的电极管和信号导管均固定在导电接头上,信号导管位于电极管的一侧。在电极管的末端有多个子针,在信号导管的末端设有多个支架,每个支架上对应装有电容温度计。本发明的射频消融导管,通过将信号导管和电极管固定在导电接头上,多个支架固定在多个子针的一侧,多个支架上的设有对应的电容温度计,电容温度计可用来检测子针附近的温度变化。射频消融系统将电流通过电极管和子针释放到人体组织内,在高频振动的射频电流的作用下,使得人体体液中的离子、水和胶体微粒等大量电介质随电流发生高速运动,由于各离子的大小、质量电荷及移动速度不同,离子发生摩擦而使组织产生生物热作用,使局部的组织升温。支架上的电容温度计则感应相对应的子针附近的温度,将温度通过信号导管又传送至射频消融系统上,人体组织内的温度变化就可直观的呈现在射频消融系统上。根据电容温度计测到的温度变化范围,来控制射频消融系统输出电流的大小,从而可实现手术中电流的可控制性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1本发明实施例一中的射频消融导管结构示意图;
图2为本发明实施例一中的针管部局部放大示意图;
图3为本发明实施例三中的射频消融导管结构示意图;
图4为本发明实施例三中的针管部局部放大示意图;
图5为本发明实施例四中的射频消融导管结构示意图;
图6为本发明实施例四中的针管部局部放大示意图;
图7为本发明实施例一中的助推器推出状态图;
图8为本发明实施例四的子针和支架的立体图;
图9为本发明实施例五同一纬度的子针和支架的结构示意图。
图中标号:
1、针管部;11、穿刺管;12、电极管;121、子针;122、金属球;13、信号导管;131、支架;132、温度传感器;2、手柄部;21、筒套;22、助推器;221、导电接头;3、固定环;31、通孔;4、绝缘层。
本发明的实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,也可以是成一体;可以是机械连接,也可以是电连接,也可以是通讯连接;可以是直接连接,也可以通过中间媒介的间接连接,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1为本发明实施例一中的射频消融导管结构示意图。
本实施例中的射频消融导管应用于射频消融系统上。射频消融导管包括:针管部1和手柄部2。其中,手柄部2包括:筒套21和助推器22,筒套21套接在助推器22的一端,助推器22可在筒套21内部滑动,在助推器22的另一端有导电接头221,在本实施例中,在导电接头221上有四个电极插孔(图中未示),这四个电极插孔用来插入射频消融系统插座上的四个电极插针。针管部1包括:穿刺管11、电极管12和信号导管13。电极管12和信号导管13均设在穿刺管11的内部,信号导管13位于穿刺管11的一侧,并在可在穿刺管11中移动。穿刺管11的一端固定在筒套21的末端,电极管12和信号导管13的一端均固定在导电接头221上,电极管12和信号导管13穿设在筒套21的内部。将助推器22推入筒套21内部时,通过助推器22的作用,电极管12和信号导管13可以从穿刺管11中推出(如图7为电极管和信号导管从穿刺管中推出状态图),当电极管和信号导管从穿刺管中推出时,金属球和温度传感器分散交错布置,可以减少金属球和温度传感器在收起状态时的摩擦。电极管12上又设有多个子针121,信号导管13上又设有多个支架131,其中支架131的数量等于子针121的数量。电极管12上的子针121呈伞状开来(见附图2),支架131也呈伞状释放开来。射频消融系统上的电流通过导电接头221、电极管12和子针121从而传递到人体组织内。在每个支架131的末端固定有温度传感器132,此温度传感器132可为电容温度计,以电容器为传感元件,将被测的温度转化成为电容量变化的一种转换装置,形成一个具有可变参数的电容器。随着温度的升高,电容特性逐渐降低,将电容特性的变化反馈到射频消融系统上,可直观看出温度的变化范围。从子针121上传递的高频振动的射频电流的作用下,使得人体体液中的离子、水和胶体微粒等大量电介质随电流发生高速运动,由于各离子的大小、质量电荷及移动速度不同,离子发生摩擦而使组织产生生物热作用,使局部的组织升温,而在子针121旁的支架131上的电容温度计则可以用来检测组织内部的温度。每个电容温度计将检测到的温度数值通过信号导管13传送至射频消融系统上,将感受温度转换成可显示的输出信号,直观的表现出了温度范围。
通过上述内容不难发现,本发明的射频消融导管包括:针管部1和手柄部2。手柄部2上的筒套21套接在手柄部2的助推器22上,在助推器22的一端设有导电接头221,导电接头221用于外接射频消融系统。针管部1上的穿刺管11固定在筒套21的一端,针管部1的电极管12和信号导管13均固定在导电接头221上,信号导管13位于电极管12的一侧。在电极管12的末端有多个子针121,在信号导管13的末端设有多个支架131,每个支架131上对应装有电容温度计,信号导管、支架和电容温度计为电性导通。本发明的射频消融导管,通过将信号导管13和电极管12固定在导电接头221上,多个支架131固定在多个子针121的一侧,多个支架131上的设有对应的电容温度计,电容温度计可用来检测子针121附近的温度变化。射频消融系统将电流通过电极管12和子针121释放到人体组织内,在高频振动的射频电流的作用下,使得人体体液中的离子、水和胶体微粒等大量电介质随电流发生高速运动,由于各离子的大小、质量电荷及移动速度不同,离子发生摩擦而使组织产生生物热作用,使局部的组织升温。支架131上的电容温度计则感应相对应的子针121附近的温度,将温度通过信号导管13又传送至射频消融系统上,人体组织内的温度情况就可直观的呈现在射频消融系统上。根据电容温度计测到的温度变化范围,来控制射频消融系统输出电流的大小,从而可实现手术中电流的可控制性。
如图2所示,可选地,在本实施例中,电极管12上有多个子针121,信号导管13上有多个支架131,信号导管13固定在电极管12的一侧。子针121的数量等于支架131的数量,每个子针121的旁边均设置有一个支架131,并且每个子针121和支架131之间的距离和角度是相同的。例如子针a旁边设有对应的支架a1,子针b的旁边设有对应的支架b1,子针c的旁边设有对应的支架c1,每个子针121都有对应的支架131,子针a与支架a1的末端之间的距离为0.2cm,子针b的末端与支架b1的末端之间的距离为0.2cm,子针c的末端与支架c1的末端之间的距离为0.2cm,而子针a与子针b,子针b与子针c之间的距离均为0.4cm,支架a1与支架b1,支架b1与支架c1之间的距离也为0.4cm。每个子针121之间的距离是一定的,每个支架131之间的距离也是一定的。
可选地,在本实施例中,每个子针121的末端焊接有金属球122,每个金属球122的外径与子针121直径的比值为1.05:1.01。金属球122的外直径要比子针121的直径略微大一些,并且金属球在穿刺管内错开分布,使金属球能够很好的收进穿刺管内。金属球、子针和电极管为电性导通。表面积为球形要比子针121与人体组织的界面面积要大,所以可增加电流的释放面积,使更多的组织细胞接触电流,提高射频消融导管的工作效率。
可选地,在本实施例中,射频消融导管还包括:固定环3。固定环3卡接在距离穿刺管11的开口处不远的位置,固定环3为圆环状,在圆环上,有多个通孔31,这些通孔31的数量等于子针121的数量与支架131数量之和。通孔31的直径要大于子针121和支架131的直径,多个子针121和支架131穿设在通孔31上,且金属球122和电容温度计的直径要大于通孔31的直径,方便电极管12和信号导管13的伸出并且可固定多个支架131和多个子针121的位置。
可选地,在本实施例中,电极管12和信号导管13的外壁上均包裹有绝缘层4,此绝缘层4为塑料材质,由于电极管12中会通过电流,信号导管13是将温度转换为可输出信号,所以为了防止电极管12和信号导管13之间形成干扰所以电极管12和信号导管13外壁上的塑料可防止之间的信号干扰,达到信号屏蔽的作用。
本实施例二为实施例一的替换方案,其区别之处在于,将实施例一中的电容温度计更换成热敏电阻,热敏电阻对温度敏感,不同的温度下表现出不同的电阻值,温度越高时电阻值越低。在电流的作用下,人体组织内的离子和介质产生高速的运转并且会局部发热,当温度越来越高时,在局部范围内的热敏电阻的阻值便会随着温度的增高而降低。热敏电阻、支架和信号导管为电性导通。在热敏电阻的阻值发生变化时,通过信号导管13将阻值的变化传送至射频消融系统上,根据射频消融系统上阻值的变化来推算出阻值的局部温度的变化范围,从而进一步可通过控制射频消融系统输出电流的大小来达到控制温度的作用。
图3为本发明实施例三中的射频消融导管结构示意图。
如图3所述的,本实施例三为实施例一的改进方案,其改进之处在于,多个子针121和多个支架131的形状呈花朵放射状(见附图4)。多个子针121的长度不同,多个子针121的位置以电极管12的中轴线对称分布。假设电极管12上一共有6个子针121,每个子针121的名称分别为a1、a2、a3、a4、a5和a6,其中a1和a6关于电极管12的中轴线对称,a2和a5关于电极管12的中轴线对称,a3和a4关于电极管12的中轴线对称。且a1和a6的长度相同,a2和a5的长度相同,a3和a4的长度相同,其中a1和a6位于所有子针121的最外侧,且长度最短,其次是a2和a5,且长度要大于a1和a6的长度,最长的为a3和a4,并且a3和a4位于最中间的位置。按照此位置排列,每个子针121的位置不同使电流流经的位置也不同,可以增大电流流经的范围,促使更多的人体组织产热。多个支架131的长度不同,多个支架131的位置以信号导管13的中轴线对称分布。假设信号导管13上一共有6个支架131,每个支架131的名称分别为b1、b2、b3、b4、b5和b6,其中b1和b6关于信号导管13的中轴线对称,b2和b5关于信号导管13的中轴线对称,b3和b4关于信号导管13的中轴线对称。且b1和b6的长度相同,b2和b5的长度相同,b3和b4的长度相同,其中b1和b6位于所有支架131的最外侧,且长度最短,其次是b2和b5,且长度要大于b1和b6的长度,最长的为b3和b4,并且b3和b4位于最中间的位置。根据子针121的位置设置支架131的位置,每一个支架131均对应一个子针121,这样可以用支架131上的电容温度计具体测出相对应的子针121附近产生的温度值,根据每个子针121产生的热度不一样,所以电容温度计测出来的温度也不一样,所得到温度也更具有针对性,得到反馈数据也会不同。这些温度值通过信号导管13传送至射频消融系统上,可以得到具体的温度范围。
图5为本发明实施例四中的射频消融导管结构示意图。
如图5所示的本实施例四为实施例一的改进方案,其改进之处在于,多个子针121和多个支架131的均呈球形空间分布。如图6所示的,可将多个子针121分别命名为c1、c2、c3、c4、c5和c6,其中c1、c2、c3、c4、c5和c6从左往右依次排列,且c1、c2、c3、c4、c5和c6的长度是相等的。由于这六个子针121为球形空间分布,所以c1、c2、c3、c4、c5和c6上的金属球122尽管在水平位置上这六个子针121处于不同的水平位置,但是按照球形空间来说,这六个子针121上对应的金属球122在同一纬度上,从左往右的电流放射范围更加的广,横向分布面积更大,有利于接触更侧边的组织细胞。可将多个支架131分别命名为d1、d2、d3、d4、d5和d6,其中d1、d2、d3、d4、d5和d6从左往右依次排列,每个支架131相对应一个子针121,每个支架131上的电容温度计用于检测相对应的金属球122附近的温度,且d1、d2、d3、d4、d5和d6的长度是相等的。由图8所示的球形空间分布图来说,由于这六个支架131为球形空间分布,所以d1、d2、d3、d4、d5和d6上的电容温度计尽管在水平位置上处于不同的水平位置,但是按照球形空间来说,这六个支架131上对应的电容温度计在同一纬度上,每个电容温度计将检测到的对应金属球122附近的温度通过信号导管13传送到射频消融系统上,可从射频消融系统上直观的看到相应的温度变化范围。进而可以根据温度的变化来调节射频消融系统输出电流的大小。
图9为本发明实施例五同一纬度的子针和支架的结构示意图。
如图9所示的本实施例五为本实施例一的改进方案,其改进之处在于吧,多个子针121和多个支架131均呈球形分布。可将多个子针分别命名为e1、e2和e3,其中e1、e2和e3的长度是相等的。由着三个子针121呈球形空间分布所以e1、e2和e3上的金属球122尽管在水平位置上这三个子针121处于不同的水平位置,但是按照球形空间来说,这三个子针121上对应的金属球122在同一纬度上。可将多个支架131分别命名为f1、f2和f3,每个支架131相对应一个子针121,每个支架131上的电容温度计用于检测相对应的金属球122附近的温度,且f1、f2和f3的长度是相等的。由图9所示的球形空间分布来说,由于这三个支架131为球形空间分布,所以f1、f2和f3上的电容温度计尽管在水平位置上处于不同的水平位置,但是按照球形空间来说,这三个支架131上对应的电容温度计在同一纬度上。对于此实施例来说,金属球和电容温度计在球形空间来说处于同一纬度上。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一特征和第二特征直接接触,或第一特征和第二特征通过中间媒介间接接触。
而且,第一特征在第二特征“之上”、“上方”和“上面”可以是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度低于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述,意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任意一个或者多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (20)

  1. 一种射频消融导管,应用于射频消融系统上,其特征在于,包括:针管部和手柄部;
    所述手柄部包括:筒套和助推器,所述筒套套接在所述助推器上,所述助推器滑动地设置在所述筒套的一端,所述助推器设有导电接头,所述导电接头用于外接射频消融系统;
    所述针管部包括:穿刺管、电极管和信号导管;
    所述穿刺管固定在所述筒套的另一端,所述电极管可滑动设置在所述穿刺管内,所述电极管的一端固定在所述导电接头上,所述电极管的另一端设有多个子针,所述多个子针用于传送由所述导电接头提供的电流,所述信号导管滑动设置在所述穿刺管中,所述信号导管位于所述电极管的一侧,所述信号导管的一端固定在所述导电接头上;
    所述信号导管包括:多个支架和多个温度传感器;
    所述信号导管的另一端设有所述多个支架,所述多个支架位于所述多个子针的一侧;
    所述多个温度传感器设置在所述多个支架上,所述温度传感器与所述多个支架电性导通,所述多个温度传感器用以检测多个子针附近的温度并通过信号导管传送至射频消融系统上。
  2. 如权利要求1所述的射频消融导管,其特征在于,所述多个温度传感器位于所述多个支架的末端。
  3. 如权利要求1所述的射频消融导管,其特征在于,所述温度传感器为电容温度计。
  4. 如权利要求1所述的射频消融导管,其特征在于,所述多个支架与所述多个子针的数量相同,呈交替设置。
  5. 如权利要求4所述的射频消融导管,其特征在于,所述多个子针旁设置所述多个支架,所述多个子针和所述多个支架之间的间距相同。
  6. 如权利要求1所述的射频消融导管,其特征在于,所述电极管还包括:多个金属球,所述多个金属球设置在所述多个子针的末端;
    所述金属球的外径与子针直径的比值为1.05:1.01,所述多个金属球与所述多个子针电性导通。
  7. 如权利要求1所述的射频消融导管,其特征在于,包括:固定环;所述固定环位于所述穿刺管内,所述固定环用以固定所述多个支架和所述多个子针。
  8. 如权利要求7所述的射频消融导管,其特征在于,所述固定环上设有多个通孔,所述多个通孔的数量等于所述多个支架和所述多个子针的数量之和,所述多个支架和所述多个子针穿设在所述多个通孔上。
  9. 如权利要求1所述的射频消融导管,其特征在于,所述电极管和所述信号导管的表面均设有绝缘层,所述绝缘层用以信号屏蔽。
  10. 如权利要求1或2所述的射频消融导管,其特征在于,所述温度传感器可为热敏电阻。
  11. 如权利要求1所述的射频消融导管,其特征在于,所述多个子针呈花朵放射状,所述多个支架呈花朵放射状。
  12. 如权利要求11所述的射频消融导管,其特征在于,所述多个子针的长度中间部位最长,最外端最短,长度从中间部位向两端逐渐缩短。
  13. 如权利要求12所述的射频消融导管,其特征在于,所述多个子针以电极管的中轴线对称分布,以所述电极管中轴线相对称的对应所述子针的长度相同。
  14. 如权利要求11所述的射频消融导管,其特征在于,所述多个支架的长度中间部位最长,最外端最短,长度从中间部位向两端逐渐缩短。
  15. 如权利要求14所述的射频消融导管,其特征在于,所述多个支架以信号导管的中轴线对称分布,以所述信号导管中轴线相对称的对应所述支架的长度相同。
  16. 如权利要求6所述的射频消融导管,其特征在于,所述多个子针环绕呈球形空间分布,所述多个支架环绕呈球形空间分布。
  17. 如权利要求16所述的射频消融导管,其特征在于,各所述金属球相对所述球形空间的纬度相同。
  18. 如权利要求16所述的射频消融导管,其特征在于,各所述温度传感器相对所述球形空间的纬度相同。
  19. 如权利要求16所述的射频消融导管,其特征在于,所述温度感应器和所述金属球的纬度相同。
  20. 一种射频消融系统,其特征在于,包括权利要求1至19中任意一项所述的射频消融导管。
PCT/CN2020/118645 2019-12-31 2020-09-29 射频消融导管及射频消融系统 WO2021135460A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227026514A KR20220156520A (ko) 2019-12-31 2020-09-29 무선 주파수 절제 카테터 및 무선 주파수 절제 시스템
EP20910007.2A EP4085861A4 (en) 2019-12-31 2020-09-29 HIGH FREQUENCY ABLATION CATHETER AND HIGH FREQUENCY ABLATION SYSTEM
JP2022540623A JP7490063B2 (ja) 2019-12-31 2020-09-29 ラジオ波焼灼カテーテルおよびラジオ波焼灼システム
US17/756,974 US20230017640A1 (en) 2019-12-31 2020-09-29 Radio-frequency ablation catheter and radio-frequency ablation system
US17/658,941 US20220241001A1 (en) 2019-12-31 2022-04-12 Lung tumor ablation method
US17/853,357 US20220331007A1 (en) 2019-12-31 2022-06-29 Radio-frequency ablation catheter and radio-frequency ablation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911403420.3A CN111012481B (zh) 2019-12-31 2019-12-31 射频消融导管及射频消融系统
CN201911403420.3 2019-12-31

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118646 Continuation-In-Part WO2021135461A1 (zh) 2019-12-31 2020-09-29 检测机构、射频消融导管及射频消融系统

Related Child Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/140380 Continuation-In-Part WO2022121017A1 (zh) 2019-12-31 2020-12-28 注射泵灌注控制方法、装置、系统及计算机可读存储介质
US17/853,357 Continuation US20220331007A1 (en) 2019-12-31 2022-06-29 Radio-frequency ablation catheter and radio-frequency ablation system

Publications (1)

Publication Number Publication Date
WO2021135460A1 true WO2021135460A1 (zh) 2021-07-08

Family

ID=70196343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118645 WO2021135460A1 (zh) 2019-12-31 2020-09-29 射频消融导管及射频消融系统

Country Status (6)

Country Link
US (2) US20230017640A1 (zh)
EP (1) EP4085861A4 (zh)
JP (1) JP7490063B2 (zh)
KR (1) KR20220156520A (zh)
CN (1) CN111012481B (zh)
WO (1) WO2021135460A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111012481B (zh) * 2019-12-31 2023-12-01 杭州堃博生物科技有限公司 射频消融导管及射频消融系统
WO2022141769A1 (zh) * 2020-12-31 2022-07-07 杭州堃博生物科技有限公司 射频消融导管及射频消融系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2925405Y (zh) * 2005-12-06 2007-07-25 王洪奎 肿瘤多针射频消融电极
US20080039793A1 (en) * 1997-09-11 2008-02-14 Goldman Mitchel P Method and apparatus for applying energy to biological tissue including the use of tumescent tissue compression
CN101888874A (zh) * 2007-10-11 2010-11-17 京畿州海莱乌医院 用于改进的电场控制的电穿孔装置
US20110125147A1 (en) * 2003-05-06 2011-05-26 Boston Scientific Scimed, Inc. Systems and methods for ablation of tissue
CN105434040A (zh) * 2016-01-11 2016-03-30 王洪奎 内窥镜用伞形射频消融电极针
CN106308927A (zh) * 2016-08-22 2017-01-11 北京市肿瘤防治研究所 多针尖扩展射频消融电极针
US20190209229A1 (en) * 2018-01-10 2019-07-11 Adagio Medical, Inc. Device for monitoring temperatures within and adjacent to body lumens
CN111012481A (zh) * 2019-12-31 2020-04-17 杭州堃博生物科技有限公司 射频消融导管及射频消融系统
CN111166465A (zh) * 2019-12-31 2020-05-19 上海市胸科医院 射频消融导管
CN111166466A (zh) * 2019-12-31 2020-05-19 上海市胸科医院 射频消融系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6530922B2 (en) * 1993-12-15 2003-03-11 Sherwood Services Ag Cluster ablation electrode system
US6059780A (en) * 1995-08-15 2000-05-09 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method with cooling element
US6770070B1 (en) * 2000-03-17 2004-08-03 Rita Medical Systems, Inc. Lung treatment apparatus and method
CN100518685C (zh) * 2001-05-10 2009-07-29 脉管动力股份有限公司 组织消融设备
EP2101668B1 (en) 2006-12-06 2012-09-05 Boston Scientific Limited Tissue ablation using pulse modulated radio frequency energy
CN107260300A (zh) 2017-07-20 2017-10-20 常州朗合医疗器械有限公司 射频消融导管及系统
CN209136860U (zh) * 2018-07-16 2019-07-23 富宏 一种可注水式射频消融电极

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080039793A1 (en) * 1997-09-11 2008-02-14 Goldman Mitchel P Method and apparatus for applying energy to biological tissue including the use of tumescent tissue compression
US20110125147A1 (en) * 2003-05-06 2011-05-26 Boston Scientific Scimed, Inc. Systems and methods for ablation of tissue
CN2925405Y (zh) * 2005-12-06 2007-07-25 王洪奎 肿瘤多针射频消融电极
CN101888874A (zh) * 2007-10-11 2010-11-17 京畿州海莱乌医院 用于改进的电场控制的电穿孔装置
CN105434040A (zh) * 2016-01-11 2016-03-30 王洪奎 内窥镜用伞形射频消融电极针
CN106308927A (zh) * 2016-08-22 2017-01-11 北京市肿瘤防治研究所 多针尖扩展射频消融电极针
US20190209229A1 (en) * 2018-01-10 2019-07-11 Adagio Medical, Inc. Device for monitoring temperatures within and adjacent to body lumens
CN111012481A (zh) * 2019-12-31 2020-04-17 杭州堃博生物科技有限公司 射频消融导管及射频消融系统
CN111166465A (zh) * 2019-12-31 2020-05-19 上海市胸科医院 射频消融导管
CN111166466A (zh) * 2019-12-31 2020-05-19 上海市胸科医院 射频消融系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4085861A4 *

Also Published As

Publication number Publication date
JP2023509659A (ja) 2023-03-09
EP4085861A4 (en) 2024-01-10
JP7490063B2 (ja) 2024-05-24
EP4085861A1 (en) 2022-11-09
US20230017640A1 (en) 2023-01-19
CN111012481B (zh) 2023-12-01
KR20220156520A (ko) 2022-11-25
US20220331007A1 (en) 2022-10-20
CN111012481A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
CN103431906B (zh) 能够检测探针过量弯曲和警告用户的电外科组织摘除系统
CN103315805B (zh) 具有力传感器和多个冲洗电极的导管
WO2021135460A1 (zh) 射频消融导管及射频消融系统
JP5399753B2 (ja) 切除のための再水和アンテナ
JP7416959B2 (ja) 検出機構、ラジオ波焼灼カテーテルおよびラジオ波焼灼システム
EP2644145B1 (en) Microwave-shielded tissue sensor probe
CN103006318B (zh) 包括定位于器械手柄的微波放大器单元的手持式医疗器械
JP6376718B2 (ja) 電極を用いた焼灼処置の監視システムおよび方法
EP2363088B1 (en) Sensors on patient side for a microwave generator
CN105615995A (zh) 具有多个传感器的灌注消融导管
JP2016511025A5 (zh)
JP2011067633A (ja) 円錐プローブを使用するマイクロ波表面熱灼
CN103202728A (zh) 一种单针多作用位点微波治疗针
CN107157571A (zh) 一种极间放电消融装置
JP2021533925A (ja) 高周波インピーダンス検知を伴うマイクロ波アブレーションプローブ
CN103519889A (zh) 一种双层伞形探针的射频消融电极装置
CN100998500A (zh) 前列腺消融用尿道温度多点监控导管
CN111166465A (zh) 射频消融导管
CN111166466A (zh) 射频消融系统
CN108882962B (zh) 具有减少的导线数目的多点式热电偶组件
JP7319719B2 (ja) マイクロ波アブレーションおよびアブレーション中の温度を測定するためのシステムおよび方法
CN211723409U (zh) 一种射频消融导管及射频消融系统
CN211750034U (zh) 一种射频消融导管
CN115089291A (zh) 射频消融电极针、消融系统及射频消融电极针的使用方法
CN203493738U (zh) 一种双层伞形探针的射频消融电极装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540623

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020910007

Country of ref document: EP

Effective date: 20220801