WO2022121017A1 - 注射泵灌注控制方法、装置、系统及计算机可读存储介质 - Google Patents

注射泵灌注控制方法、装置、系统及计算机可读存储介质 Download PDF

Info

Publication number
WO2022121017A1
WO2022121017A1 PCT/CN2020/140380 CN2020140380W WO2022121017A1 WO 2022121017 A1 WO2022121017 A1 WO 2022121017A1 CN 2020140380 W CN2020140380 W CN 2020140380W WO 2022121017 A1 WO2022121017 A1 WO 2022121017A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
real
syringe pump
impedance value
impedance
Prior art date
Application number
PCT/CN2020/140380
Other languages
English (en)
French (fr)
Inventor
徐宏
崔长杰
Original Assignee
杭州堃博生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州堃博生物科技有限公司 filed Critical 杭州堃博生物科技有限公司
Priority to EP20964946.6A priority Critical patent/EP4115827A1/en
Priority to US17/658,941 priority patent/US20220241001A1/en
Publication of WO2022121017A1 publication Critical patent/WO2022121017A1/zh
Priority to US17/955,903 priority patent/US20230016496A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M3/00Medical syringes, e.g. enemata; Irrigators
    • A61M3/02Enemata; Irrigators
    • A61M3/0202Enemata; Irrigators with electronic control means or interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00029Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00541Lung or bronchi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • A61B2018/00648Sensing and controlling the application of energy with feedback, i.e. closed loop control using more than one sensed parameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00744Fluid flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00982Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00988Means for storing information, e.g. calibration constants, or for preventing excessive use, e.g. usage, service life counter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1226Generators therefor powered by a battery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/16Indifferent or passive electrodes for grounding
    • A61B2018/167Passive electrodes capacitively coupled to the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/002Irrigation

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method, device, system, and non-transitory computer-readable storage medium for perfusion control of a syringe pump.
  • Lung cancer is one of the most common malignant tumors.
  • surgical resection is still the first choice for the treatment of early stage lung cancer.
  • lung cancer patients who are older, weaker, have poorer cardiopulmonary function, or have complications they are not suitable or tolerate conventional surgical resection therapy. Therefore, local treatment methods such as minimally invasive tumor ablation emerge as the times require.
  • Radiofrequency ablation is a relatively common minimally invasive ablation method for tumors.
  • the principle of radiofrequency ablation is to apply alternating high-frequency current with a frequency of less than 30MHz (megahertz) to cause high-speed oscillation of ions in tumor tissue, friction with each other, and convert radiofrequency energy into heat energy, thereby causing coagulation necrosis of tumor cells.
  • the temperature of the human body will change under the influence of the alternating high-frequency current. Once the temperature exceeds the normal value, it will cause irreversible damage to the human body. Therefore, it is necessary to perfuse the ablation site with saline during the ablation process.
  • the embodiments of the present application provide a syringe pump perfusion control method, device, system, and non-transitory computer-readable storage medium, which can realize dynamic adjustment of the syringe pump perfusion volume, and improve the timeliness and accuracy of liquid perfusion during the execution of ablation tasks. sex.
  • One aspect of the embodiments of the present application provides a method for controlling injection pump perfusion, including:
  • the perfusion volume of the syringe pump is dynamically adjusted.
  • One aspect of the embodiments of the present application also provides a syringe pump perfusion control device, including:
  • control module configured to control the syringe pump to perform a perfusion operation on the ablation object when the ablation task is triggered, and acquire the impedance value and/or the temperature value of the ablation object in real time;
  • an analysis module for analyzing the acquired impedance value and/or temperature value to obtain real-time change information of the impedance value and/or temperature value
  • the adjustment module is used for dynamically adjusting the perfusion volume of the syringe pump according to the real-time change information obtained by the analysis.
  • An aspect of the embodiments of the present application further provides an electronic device, including: a non-transitory memory and a processor;
  • the non-transitory memory stores executable program code
  • the processor is electrically coupled to the non-transitory memory, the temperature acquisition device and the impedance acquisition device;
  • the processor invokes the executable program code stored in the non-transitory memory to execute the syringe pump perfusion control method provided by the above embodiments.
  • An aspect of the embodiments of the present application further provides a syringe pump perfusion control system, including: a syringe pump, a temperature acquisition device, and an impedance acquisition device;
  • the syringe pump includes: a controller, a syringe, a push rod and a driving device;
  • the controller is electrically coupled to the drive device, the temperature acquisition device, and the impedance acquisition device, and is configured to execute each step in the syringe pump perfusion control method provided by the above embodiments;
  • the driving device is used for, according to the control command of the controller, to drive the push rod to move in the direction pointed by the control command according to the speed pointed by the control command, so as to control and adjust the perfusion volume of the syringe;
  • the temperature collection device configured to collect the temperature value of the ablation object and send it to the controller
  • the impedance acquisition device is configured to acquire the impedance value of the ablation object and send it to the controller.
  • An aspect of the embodiments of the present application further provides a radio frequency ablation system, including: a radio frequency ablation control device, a radio frequency ablation catheter, a neutral electrode, a syringe pump, a temperature acquisition device, and an impedance acquisition device;
  • the radio frequency ablation control device is configured to perform each step in the syringe pump perfusion control method provided by the above embodiment
  • the radio frequency ablation catheter is used for performing an ablation operation on the ablation object according to the control instruction of the radio frequency ablation control device.
  • the temperature acquisition device configured to acquire the temperature value of the ablation object and send it to the radio frequency ablation control device;
  • the impedance acquisition device is configured to acquire the impedance value of the ablation object and send it to the radio frequency ablation control device.
  • An aspect of the embodiments of the present application further provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is run by a processor, implements the syringe pump perfusion control method provided by the above embodiments.
  • the syringe pump When the ablation task is triggered, the syringe pump is controlled to perform the perfusion operation on the ablation object, and the impedance value and/or temperature value of the ablation object is acquired in real time, and then the acquired impedance value and/or temperature value are analyzed, and according to the analysis
  • the obtained real-time change information of the impedance value and/or temperature value dynamically adjusts the perfusion volume of the syringe pump, thereby realizing the automatic perfusion volume of the syringe pump based on the analysis of changes in the impedance value and/or temperature value of the ablation object during the execution of the ablation task. Dynamic Adjustment.
  • the operation delay and error caused by manual judgment can be reduced, and the timeliness and accuracy of liquid perfusion during the execution of the ablation task can be improved. Thereby, the damage of the ablation operation to the ablation object is reduced, and the safety of the radiofrequency ablation treatment is improved.
  • FIG. 1 is an application environment diagram of a syringe pump perfusion control method provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a syringe pump perfusion control system provided by an embodiment of the application;
  • Fig. 3 is the structural representation of the syringe pump in the syringe pump perfusion control system shown in Fig. 2;
  • FIG. 4 is a flowchart for realizing a syringe pump perfusion control method provided by an embodiment of the application
  • FIG. 5 is a flowchart for realizing a syringe pump perfusion control method provided by another embodiment of the present application.
  • Fig. 6 is the realization flow chart of the syringe pump perfusion control method provided by another embodiment of the present application.
  • FIG. 7 is a flowchart of an implementation of steps S603 to S605 in the embodiment shown in FIG. 6;
  • FIG. 8 is a flowchart of an implementation of step S604 in the embodiment shown in FIG. 6;
  • Fig. 9 is an implementation flow chart of step S605 in the embodiment shown in Fig. 6;
  • FIG. 10 is a schematic structural diagram of a syringe pump perfusion control device provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of a hardware structure of an electronic device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a radio frequency ablation system according to an embodiment of the present application.
  • the syringe pump perfusion control method can be implemented by the radio frequency ablation control device 10 or the syringe pump 20 in FIG. 1 .
  • the syringe pump perfusion control method can also be implemented by the radio frequency ablation control device 10 or other computer equipment other than the syringe pump 20, such as: a server, a desktop computer, a notebook computer, a laptop computer, a tablet computer, a personal computer, and a smart computer. mobile phone, etc.
  • FIG. 2 is a schematic structural diagram of a syringe pump perfusion control system provided by an embodiment of the application
  • FIG. 3 is shown in FIG. 2 Schematic diagram of the structure of the syringe pump in the syringe pump perfusion control system.
  • the syringe pump perfusion control system includes: a syringe pump 20 , a temperature acquisition device 30 and an impedance acquisition device 40 .
  • the temperature acquisition device 30 and the impedance acquisition device 40 are electrically coupled to the syringe pump 20 .
  • the syringe pump 20 includes a controller 21 , a syringe 22 , a push rod 23 and a driving device 24 .
  • FIG. 3 only shows the part related to the embodiment of the present application.
  • the temperature collecting device 30 and the impedance collecting device 40 are electrically coupled to the controller 21 .
  • the temperature collection device 30 is used to collect the temperature value of the ablation object and send it to the controller 21 .
  • the impedance acquisition device 40 is used to acquire the impedance value of the ablation object and send it to the controller 21 .
  • the controller 21 is configured to execute each step in the syringe pump perfusion control method provided by the following embodiments shown in FIG. 4 to FIG. 9 , so as to realize the dynamic adjustment of the syringe pump perfusion volume.
  • the driving device 24 is used to drive the push rod 23 to move in the direction pointed by the control instruction according to the control instruction sent by the controller 21 , so as to control and adjust the filling volume of the syringe 22 .
  • the syringe pump 20 also includes an extension tube 25 . As shown in FIG. 1 , one end of the extension tube 25 is connected to the needle of the syringe 22 , and the other end is inserted into the body of the ablation subject and is close to the ablation site.
  • the temperature collection device 30 and the impedance collection device 40 may be disposed at one end of the extension tube 25 close to the ablation site.
  • the temperature acquisition device 30 and the impedance acquisition device 40 may also be disposed on other devices, and inserted into the body of the ablation subject through other devices and abutted against the ablation site.
  • the radio frequency ablation catheter 60 and the extension tube 25 for generating and outputting radio frequency energy are first inserted into the body of the ablation object (eg, a lung cancer patient) and reach the ablation site.
  • the neutral electrode 50 is then brought into contact with the skin surface of the ablation subject.
  • Radiofrequency current flows through the radiofrequency ablation catheter 60, the patient tissue, and the neutral electrode 50, thereby forming a circuit.
  • the radio frequency ablation control device 10 controls the radio frequency ablation catheter 60 to output radio frequency energy to the ablation site by means of unipolar discharge, so as to perform an ablation operation on the ablation site.
  • the controller 21 of the syringe pump 20 controls the syringe pump 20 to perform a perfusion operation on the ablation object, perfuses the ablation site with physiological saline, and acquires the impedance value of the ablation site through the temperature acquisition device 30 and the impedance acquisition device 40 in real time and/or temperature values.
  • the controller 21 obtains real-time change information of the impedance value and/or temperature value by analyzing the acquired impedance value and/or temperature value, and then according to the real-time change information obtained by the analysis, instructs the drive device 24 to drive the push rod 23 as specified.
  • the speed of the pump moves in the specified direction to dynamically adjust the perfusion volume of the syringe pump 20 .
  • FIG. 4 an implementation flowchart of a syringe pump perfusion control method provided by an embodiment of the present application.
  • the method can be implemented by the syringe pump 20 in FIG. 1 , or can also be implemented by the radio frequency ablation control device 10 in FIG. 1 , or can also be implemented by other computer equipment electrically coupled to the syringe pump.
  • the method specifically includes:
  • Step S401 when the ablation task is triggered, control the syringe pump to perform a perfusion operation on the ablation object, and acquire the impedance value and/or temperature value of the ablation object in real time;
  • the ablation task can be triggered, for example, when a preset trigger time is reached, a trigger instruction sent by the radio frequency ablation device is received, or a notification event that the user performs an operation for triggering the ablation task is detected.
  • the operation for triggering the ablation task is, for example, pressing a physical or virtual button for triggering the ablation task.
  • the perfusion parameter is set to a preset initial value.
  • the perfusion parameters may include, but are not limited to, perfusion flow rate, total perfusion volume, perfusion time, and the like.
  • the syringe pump When the ablation task is triggered, the syringe pump performs the perfusion operation on the ablation object according to the above initial value, and at the same time, through the temperature acquisition device and the impedance acquisition device, at least one of the impedance value and the temperature value of the ablation object is acquired in real time as a dynamic adjustment.
  • the impedance value and temperature value of the ablation object may be, for example, the impedance value and temperature value of the ablation site.
  • the impedance value may be, for example, a resistance value.
  • the impedance value and/or temperature value of the ablation object can also be acquired in real time in the following ways:
  • the impedance sampling value and/or the temperature sampling value of the ablation object are acquired in real time, and the acquired impedance sampling value and/or the temperature sampling value are filtered. Then, it is determined whether the filtered impedance sampling value and/or the temperature sampling value exceeds the preset warning value range. On the one hand, if the preset warning value range is exceeded, alarm information is output to prompt the user that the operation is abnormal, and to prompt the user whether the ablation operation needs to be stopped. On the other hand, if the preset warning value range is not exceeded, the minimum or average value of the filtered impedance sampling value and/or temperature sampling value within a preset period (eg, within 10 seconds) is used as the real-time acquisition. impedance value and/or temperature value.
  • a preset period eg, within 10 seconds
  • Step S402 analyze the acquired impedance value and/or temperature value to obtain real-time change information of the impedance value and/or temperature value;
  • the real-time change information may include, but is not limited to, a real-time change trend and a real-time change range.
  • the real-time change trend is the change direction, for example, the value rises or falls.
  • the real-time change range is the degree of change, which can be an absolute value or a ratio, such as an increased value, or an increased percentage.
  • real-time change trend and real-time change range refer to the overall change trend and change range.
  • Step S403 dynamically adjust the perfusion volume of the syringe pump according to the real-time change information obtained by the analysis.
  • the perfusion volume of the syringe pump is dynamically adjusted.
  • the perfusion volume of the syringe pump is dynamically adjusted according to the real-time change information of the temperature value.
  • the perfusion volume of the syringe pump is dynamically adjusted according to the real-time change information of the impedance value.
  • the perfusion volume of the syringe pump is dynamically adjusted according to the real-time change information of the temperature value and the real-time change information of the impedance value.
  • the impedance of the human body is the total impedance including human skin, blood, muscle, cell tissue and their joints including resistance and capacitance, which is mainly determined by the resistance of the human body.
  • the human body comes into contact with a charged body, the human body is regarded as a circuit element connected to the circuit.
  • the impedance of the human body will also change in addition to temperature due to the influence of radio frequency energy. Therefore, by using impedance and/or temperature as the reference value for adjusting the perfusion volume, the influence of radio frequency energy on the human body can be more accurately determined, so that the volume of liquid perfused into the ablation site is more accurate and more in line with the ablation requirements.
  • this step S403 can be specifically implemented by the following steps:
  • this step S403 can also be implemented in the following manner:
  • this step S403 can also be specifically implemented by the following steps:
  • the above adjustment conditions that is, when the perfusion volume needs to be adjusted, the conditions that the real-time change trend and real-time change range of the impedance value and temperature value must satisfy respectively, such as an upward trend or a downward trend, and whether the increase range reaches the preset range. and many more.
  • this step S403 can also be specifically implemented by the following steps:
  • the current ablation stage is determined, and the perfusion volume of the syringe pump is adjusted according to the target adjustment logic corresponding to the current ablation stage.
  • the whole ablation process is divided into multiple ablation stages according to the real-time change trend and real-time change range of the impedance value, and then according to the change characteristics of the impedance value in each ablation stage, according to the corresponding adjustment logic, the syringe pump is adjusted.
  • the perfusion volume is adjusted to make the adjustment more targeted, thereby further improving the accuracy of perfusion.
  • the current ablation stage is determined according to the real-time change trend and real-time change range of the impedance value, and the perfusion volume of the syringe pump is adjusted according to the target adjustment logic corresponding to the current ablation stage.
  • the injection is controlled.
  • the pump stops the perfusion operation and stops the ablation task, and the first preset time period is greater than or equal to 0.
  • the first preset duration is equal to 0, that is, as long as the temperature value is detected to be greater than the first abnormal value or less than the second abnormal value, the syringe pump is immediately controlled to stop the perfusion operation.
  • the injection is controlled.
  • the pump stops the perfusion operation and stops the ablation task, and the second preset time period is greater than or equal to 0.
  • the second preset duration is equal to 0, that is, as long as the impedance value is detected to be greater than the third abnormal value or less than the fourth abnormal value, the syringe pump is immediately controlled to stop the perfusion operation.
  • the syringe pump is controlled to immediately stop the perfusion operation, which can timely discover and eliminate potential safety hazards, thereby further improving the safety of the ablation operation.
  • step S402 and step S403 in this embodiment are not limited by the serial number, and may also be performed synchronously in practical applications.
  • all adjustment ranges such as the increase and decrease involved in the present application can be adjusted according to the impedance value and the temperature value.
  • the change information is determined. In this way, by synthesizing the changes of the impedance value and the temperature value to determine the adjustment range, the accuracy of the adjustment of the perfusion volume can be further improved.
  • different base values and weight values are allocated to the real-time change range of the impedance value and the real-time change range of the temperature value, and in the process of dynamically adjusting the perfusion volume of the syringe pump, the base value and the weight value are calculated and adjusted Amplitude, wherein the weight value corresponding to the real-time change range of the temperature value is smaller than the weight value corresponding to the real-time change range of the impedance value.
  • the calculation of the adjustment range according to the base value and the weight value may specifically adopt a weighted average method or a weighted method.
  • the syringe pump when the ablation task is triggered, the syringe pump is controlled to perform the perfusion operation on the ablation object, and the impedance value and/or temperature value of the ablation object is acquired in real time, and then the acquired impedance value and/or temperature value Carry out analysis, and dynamically adjust the perfusion volume of the syringe pump according to the real-time change information of the impedance value and/or temperature value obtained by the analysis, so as to realize the change analysis of the impedance value and/or temperature value of the ablation object during the execution of the ablation task.
  • the perfusion volume of the syringe pump is automatically and dynamically adjusted.
  • the operation delay and error caused by manual judgment can be reduced, and the timeliness and accuracy of liquid perfusion during the execution of the ablation task can be improved. Thereby, the damage of the ablation operation to the ablation object is reduced, and the safety of the radiofrequency ablation treatment is improved.
  • FIG. 5 another embodiment of the present application provides an implementation flow chart of a method for controlling perfusion of a syringe pump.
  • the method can be implemented by the syringe pump 20 in FIG. 1 , or can also be implemented by the radio frequency ablation control device 10 in FIG. 1 , or can also be implemented by other computer equipment electrically coupled to the syringe pump.
  • the method specifically includes:
  • Step S501 when the ablation task is triggered, control the syringe pump to perform a perfusion operation on the ablation object;
  • Step S502 Obtain the impedance sampling value and the temperature sampling value of the ablation object in real time, and filter the obtained impedance sampling value and temperature sampling value, and use the filtered impedance sampling value and temperature sampling value as the impedance value and temperature value of the ablation object. ;
  • the ablation task can be triggered, for example, when a preset trigger time is reached, a trigger instruction sent by the radio frequency ablation device is received, or a notification event that the user performs an operation for triggering the ablation task is detected.
  • the operation for triggering the ablation task is, for example, pressing a physical or virtual button for triggering the ablation task.
  • the perfusion parameter is set to a preset initial value.
  • the perfusion parameters may include, but are not limited to, perfusion flow rate, total perfusion volume, perfusion time, and the like.
  • the syringe pump When the ablation task is triggered, the syringe pump performs the perfusion operation on the ablation object according to the above-mentioned initial value, and simultaneously acquires the impedance sampling value and the temperature sampling value of the ablation object in real time through the temperature acquisition device and the impedance acquisition device, and analyzes the acquired impedance sampling value. and temperature sampled values to filter out outliers in the sampled values. Then, the filtered impedance sample value and the temperature sample value are used as the impedance value and the temperature value of the ablation object.
  • the filtering is to process the noise and invalid values in the collected data due to the interference of the sampling circuit and the bit error in the transmission of the sampled data, so as to reduce the collection error to a preset range.
  • the filtered impedance after acquiring the impedance sampling value and the temperature sampling value of the ablation object in real time, and filtering the acquired impedance sampling value and temperature sampling value, further determine the filtered impedance. Whether the sampling value and temperature sampling value exceed the preset warning value range; if it exceeds the preset warning value range, an alarm message will be output to prompt the user that the operation is abnormal and whether the user needs to stop the ablation operation; if it does not exceed the preset warning value value range, the minimum or average value of the filtered impedance sampling value and the temperature sampling value in the preset period is taken as the impedance value and temperature value acquired in real time, for example, the filtered impedance sampling value within 10 seconds The lowest value in the value is taken as the impedance value obtained in real time, and the lowest value in the filtered temperature sampling values within 10 seconds is taken as the temperature value obtained in real time.
  • the safety of the ablation operation can be further improved.
  • taking the lowest value or average value within a preset period as the impedance value and temperature value acquired in real time can also further improve the referenceability of the collected data.
  • Step S503 analyzing the acquired impedance value and temperature value to obtain real-time change information of the impedance value and the temperature value;
  • the real-time change information may include, but is not limited to, a real-time change trend and a real-time change range.
  • the real-time change trend is the change direction, for example, the value rises or falls.
  • the real-time change range is the degree of change, which can be an absolute value or a ratio, such as an increased value, or an increased percentage.
  • Step S504 when the syringe pump starts to perfuse the ablation object with liquid, it is determined to enter the first ablation stage;
  • Step S505 according to the real-time change information of the impedance value, determine whether the rise range of the impedance value reaches the first rise range;
  • step S506 is executed: according to the real-time change information of the impedance value and the temperature value, determine whether the impedance value and the temperature value are stable;
  • step S507 control the syringe pump to reduce the perfusion volume according to the preset first adjustment range, and return to step S505;
  • step S505 If it is not stable, go to step S505;
  • step S508 is executed: controlling the syringe pump to increase the perfusion volume according to the preset second adjustment range;
  • the impedance value of the ablation object acquired in real time shows an upward trend and reaches a preset first increase, for example, whether it increases by the first percentage point.
  • the increase referred to in this application represents a degree of increase, which may be an absolute value or a proportional value.
  • Trends referred to in this application may be general trends.
  • the real-time acquisition of real-time impedance value and temperature value, the analysis and judgment of real-time change information, and the adjustment of perfusion volume can be performed in parallel by multiple threads.
  • the impedance value and the temperature value are stable, that is, determine whether the impedance value and the temperature value are stable. Whether the impedance value and the temperature value are respectively within or maintained within the corresponding preset impedance value range and preset temperature value range. If the impedance value and the temperature value are respectively within or maintained within the corresponding preset impedance value range and preset temperature value range, it is determined that the impedance value and the temperature value are stable; otherwise, the impedance value and the temperature value are determined to be stable unstable.
  • the syringe pump reduces the perfusion volume according to the preset first adjustment range, and returns to step S505: according to the real-time change information of the impedance value, it is judged whether the increase range of the impedance value reaches the first increase range.
  • step S505 according to the real-time change information of the impedance value, determine whether the rise range of the impedance value reaches the first rise range .
  • the impedance value of the ablation site changes with the increase of radio frequency energy (heat), and the whole shows an upward trend.
  • heat radio frequency energy
  • the protein is denatured and carbonized, and its inherent physical impedance characteristics will change accordingly. unstable state.
  • the purpose of perfusion with normal saline is: first, to cool down, to avoid injury to the patient due to excessive temperature, and second, to reduce the impedance so that the ablation power is in the normal range.
  • the impedance value and the temperature value rising as a whole. If the actual impedance value and the temperature value are in a stable state, that is, maintained within a certain range, it means that the perfusion volume is too large to meet the needs of the current ablation.
  • the syringe pump is controlled to increase the perfusion volume according to the preset second adjustment range.
  • the perfusion volume can be increased by accelerating the perfusion flow rate of the liquid.
  • Step S509 when the impedance value shows an upward trend and reaches a preset second increase, it is determined to enter the second ablation stage, and the syringe pump is controlled to increase the perfusion volume according to the preset third adjustment range.
  • the syringe pump is controlled to increase the perfusion volume according to the preset third adjustment range.
  • Step S510 When the impedance value shows an upward trend and reaches a preset third increase, it is determined to enter the third ablation stage, and the syringe pump is controlled to increase the perfusion volume according to the preset fourth adjustment range.
  • the second ablation stage continue to analyze the real-time change trend and real-time change range of the impedance value.
  • the impedance value shows an upward trend and reaches a preset third increase (eg, increases by the 3rd percentile)
  • a preset third increase eg, increases by the 3rd percentile
  • Step S511 analyzing whether the impedance value shows an upward trend and reaches a preset fourth increase, or whether the impedance value shows a downward trend and reaches a preset first decrease;
  • Step S512 when the impedance value shows an upward trend and reaches a preset fourth increase, it is determined to enter the fourth ablation stage, and the syringe pump is controlled to increase the perfusion volume according to the preset fifth adjustment range;
  • Step S513 when the impedance value shows a decreasing trend and reaches a preset first decreasing amplitude, it is determined to enter the fourth ablation stage, and the syringe pump is controlled to reduce the perfusion volume to the initial value.
  • the third ablation stage continue to analyze the real-time variation trend and real-time variation range of the impedance value.
  • the impedance value shows an increasing trend
  • a preset fourth increase eg, increases by the 4th percentile
  • a preset first decrease eg, decreases 4th percentile
  • the processing logic differs depending on the reason for confirming that the fourth ablation stage is entered.
  • the syringe pump is controlled to increase the perfusion volume according to the preset fifth adjustment amplitude.
  • step S509 is executed :
  • the impedance value shows an upward trend and reaches the preset second increase
  • the syringe pump is controlled to increase the perfusion volume according to the preset third adjustment range until the end of the control period.
  • controlling the syringe pump to reduce the perfusion volume to the initial value can be done at one time, or it can be done step by step in stages.
  • the above-mentioned control period may refer to the completion period of the entire ablation task, or a single ablation task may be divided into multiple control periods.
  • the above-mentioned values of the preset first increase to the preset fourth increase and the preset first decrease may be the same or different in specific applications.
  • the values of the above-mentioned first adjustment range to fifth adjustment range may be the same or different in specific applications.
  • the specific value can be set and adjusted at any time according to the user's custom operation in practical application.
  • the entire ablation process is divided into multiple ablation stages according to the real-time change trend and real-time change range of the impedance value of the ablation object, and according to each ablation stage, the difference between the impedance value and the temperature value of the ablation object obtained in real time is obtained.
  • the perfusion volume of the syringe pump is dynamically adjusted according to the corresponding adjustment logic, which makes the adjustment more targeted, thereby further improving the accuracy of automatic perfusion control.
  • FIG. 6 a flowchart of the implementation of a syringe pump perfusion control method provided by another embodiment of the present application.
  • the method can be implemented by the syringe pump 20 in FIG. 1 , or can also be implemented by the radio frequency ablation control device 10 in FIG. 1 , or can also be implemented by other computer equipment electrically coupled to the syringe pump.
  • the method specifically includes:
  • Step S601 when the ablation task is triggered, control the syringe pump to perform a perfusion operation on the ablation object, and acquire the impedance value or temperature value of the ablation object in real time;
  • the ablation task can be triggered, for example, when a preset trigger time is reached, a trigger instruction sent by the radio frequency ablation device is received, or a notification event that the user performs an operation for triggering the ablation task is detected.
  • the operation for triggering the ablation task is, for example, pressing a physical or virtual button for triggering the ablation task.
  • the perfusion parameter is set to a preset initial value.
  • the perfusion parameters may include, but are not limited to, perfusion flow rate, total perfusion volume, perfusion time, and the like.
  • the syringe pump When the ablation task is triggered, the syringe pump performs the perfusion operation on the ablation object according to the above-mentioned initial value, and at the same time, the impedance value or temperature value of the ablation object is acquired in real time through the temperature acquisition device or impedance acquisition device, as a dynamic adjustment of the injection pump perfusion volume reference data.
  • the impedance value and temperature value of the ablation object may be, for example, the impedance value and temperature value of the ablation site.
  • the impedance value may be, for example, a resistance value.
  • acquiring the impedance value or temperature value of the ablation object in real time may also be implemented by the following steps:
  • the minimum or average value of the filtered impedance sampling value or temperature sampling value within a preset period (such as within 10 seconds) is used as the impedance value or temperature value obtained in real time. .
  • Step S602 analyzing the acquired impedance value or temperature value to obtain real-time change information of the impedance value or temperature value;
  • the real-time change information may include, but is not limited to, a real-time change trend and a real-time change range.
  • the real-time change trend is the change direction, for example, the value rises or falls.
  • the real-time change range is the degree of change, which can be an absolute value or a proportional value, such as an increased value, or an increased percentage.
  • the impedance value and temperature value of the ablation object may also be acquired in real time at the same time, and the acquired impedance value and temperature value may be analyzed. At this time, all the adjustment ranges such as the increase and decrease mentioned below can be determined according to the analysis results.
  • different base values and weight values are allocated to the real-time change range of the impedance value and the real-time change range of the temperature value, and in the process of dynamically adjusting the perfusion volume of the syringe pump, the base value and the weight value are calculated and adjusted Amplitude, wherein the weight value corresponding to the real-time change range of the temperature value is smaller than the weight value corresponding to the real-time change range of the impedance value.
  • the calculation of the adjustment range according to the base value and the weight value may specifically adopt a weighted average method or a weighted method.
  • Step S603 according to the real-time change information obtained by the analysis, determine whether the impedance value or the temperature value is on an upward trend or a downward trend;
  • Step S604 if the impedance value or the temperature value shows an upward trend, control the syringe pump to increase the perfusion flow rate according to the preset increase and the trend change of the impedance value or the temperature value;
  • Step S605 if the impedance value or the temperature value shows a downward trend, control the syringe pump to reduce the perfusion flow rate according to the preset decrease amplitude and the trend change of the impedance value or the temperature value.
  • steps S603 to S605 can be implemented by the following steps:
  • Step S701 According to the real-time change information of the impedance value or the temperature value obtained by the analysis, determine whether the impedance value or the temperature value increases;
  • step S702 control the syringe pump to increase the perfusion flow rate according to the preset first increase to increase the perfusion volume, and then return to step S701;
  • step S703 is performed: according to the real-time change information of the impedance value or the temperature value obtained by the analysis, determine whether the impedance value or the temperature value decreases;
  • step S704 control the syringe pump to reduce the perfusion flow rate according to the preset first reduction amplitude to reduce the perfusion volume, and return to step S703;
  • step S701. If not reduced, return to step S701. This cycle repeats until the control period ends.
  • step S604 can also be implemented by the following steps:
  • step S803 is executed: a third increase is calculated according to the second increase and the adjusted times of the perfusion flow rate, and the syringe pump is controlled to increase the perfusion flow rate of the syringe pump according to the third increase , and return to step S802: determine whether the impedance value or the temperature value continues to rise until the perfusion flow rate is increased to the preset maximum flow rate, or, until the impedance value or the temperature value is smaller than the preset first threshold value;
  • step S804 determine whether the impedance value or the temperature value is less than the preset first threshold
  • step S805 is executed: control the syringe pump to increase the perfusion flow rate of the syringe pump according to the second increase, until the perfusion flow rate is increased to the preset value the maximum flow rate, or, until the impedance value or the temperature value is less than the preset first threshold;
  • step S603 If the impedance value or the temperature value is less than the preset first threshold, return to step S603 : according to the real-time change information obtained by the analysis, determine whether the impedance value or the temperature value has an upward trend or a downward trend.
  • calculating the third increase according to the second increase and the adjusted times of the perfusion flow rate in step S803 may specifically be a value obtained by multiplying the second increase by the adjusted times as the third increase; or, The third increase may also be calculated according to a rule of proportional increase according to a preset ratio, the second increase and the adjusted times of the perfusion flow rate.
  • the adjusted times of the perfusion flow rate can also be understood as the number of times the operation of judging whether the impedance value or the temperature value continues to rise is performed.
  • a reminder message is output to remind the user that the perfusion flow rate of the syringe pump has been increased to the limit value.
  • the reminder information can be output by at least one of voice, text, image, animation, and lighting.
  • the purpose of adjusting the perfusion volume is to keep the impedance value and temperature value of the ablation object stable within a safe range.
  • the impedance value or the temperature value does not continue to rise, it means that it is effective to increase the perfusion flow rate of the syringe pump according to the previous increase. At this time, continue to increase the perfusion flow rate of the syringe pump according to the increase to avoid adjustment. Excessive, which can improve the accuracy of perfusion.
  • the impedance value or the temperature value continues to rise, it means that increasing the perfusion flow rate of the syringe pump according to the previous increase is not effective, and the increase cannot meet the ablation needs.
  • the syringe pump is controlled to a larger increase , increasing the perfusion flow rate of the syringe pump can quickly adjust the perfusion volume to the required level, thereby improving the timeliness of perfusion.
  • step S605 can also be implemented by the following steps:
  • Step S901 if the impedance value or the temperature value shows a downward trend, when the impedance value or the temperature value is less than the preset second threshold, control the syringe pump to reduce the perfusion of the syringe pump according to the preset second amplitude flow rate;
  • Step S902 judging whether the impedance value or the temperature value continues to decrease
  • step S903 is executed: a third decrease is calculated according to the second decrease and the adjusted times of the perfusion flow rate, and the syringe pump is controlled to decrease the syringe pump according to the third decrease and return to step S902: judging whether the impedance value or the temperature value continues to decrease until the perfusion flow rate is reduced to the preset minimum flow rate, or until the impedance value or the temperature value is greater than the preset first two thresholds;
  • step S904 determine whether the impedance value or the temperature value is greater than the preset second threshold
  • step S905 is executed: controlling the syringe pump to reduce the perfusion flow rate of the syringe pump according to the second amplitude reduction, and returning to execute step S904 : judging the impedance value or whether the temperature value is greater than the preset second threshold value, until the perfusion flow rate is reduced to a preset minimum flow rate, or until the impedance value or the temperature value is greater than the preset second threshold value;
  • step S603 If the impedance value or the temperature value is greater than the preset second threshold, return to step S603 : according to the real-time change information obtained by analysis, determine whether the impedance value or the temperature value has an upward trend or a downward trend.
  • the impedance value or the temperature value does not continue to decrease, it means that it is effective to reduce the perfusion flow rate of the syringe pump according to the previous decrease. Over-adjustment can be avoided, resulting in improved perfusion accuracy.
  • the impedance value or the temperature value continues to drop, it means that the previous reduction was not enough. At this time, increasing the reduction can quickly adjust the perfusion volume to the required level, thereby improving the timeliness of perfusion.
  • calculating the third increase according to the second increase and the adjusted times of the perfusion flow rate in step S903 may specifically be a value obtained by multiplying the second decrease by the adjusted times as the third decrease;
  • the third decrease may also be calculated according to a rule of proportional decreasing according to a preset ratio, the second decrease, and the adjusted times of the perfusion flow rate.
  • the adjusted times of the perfusion flow rate can also be understood as the number of times of performing the operation of judging whether the impedance value or the temperature value continues to decrease.
  • a reminder message is output to remind the user that the perfusion flow rate of the syringe pump has been reduced to a limit value.
  • the reminder information can be output by at least one of voice, text, image, animation, and lighting.
  • the above-mentioned preset first threshold is the preset maximum limit value
  • the above-mentioned preset second threshold value is the preset minimum limit value. Exceeding these two limits indicates that there is a possibility of causing damage to the ablation object. Therefore, the perfusion volume needs to be adjusted.
  • the above-mentioned preset first threshold and preset second threshold are a general term. In practical applications, their specific values and units are determined by the type of the object to which they are applied, and can be set according to user-defined operations. That is to say, when applied to impedance value judgment, and when applied to temperature value, the specific values and units of the preset first threshold value and the preset second threshold value are different. For example, when applied to impedance value judgment, the unit of the preset first threshold value is ohms, but when applied to temperature value judgment, the preset unit of the first threshold value is Celsius.
  • the syringe pump when the ablation task is triggered, the syringe pump is controlled to perform the perfusion operation on the ablation object, and the impedance value or temperature value of the ablation object is acquired in real time, and then the acquired impedance value or temperature value is analyzed, and According to the real-time change information of the impedance value or temperature value obtained by the analysis, the perfusion volume of the syringe pump is dynamically adjusted, thereby realizing the automatic dynamic adjustment of the perfusion volume of the syringe pump based on the analysis of the impedance value or temperature value change of the ablation object during the execution of the ablation task. .
  • the operation delay and error caused by manual judgment can be reduced, and the timeliness and accuracy of liquid perfusion during the execution of the ablation task can be improved, thereby reducing the The harm to the ablation object caused by the small ablation operation improves the safety of the radiofrequency ablation treatment.
  • FIG. 10 a schematic structural diagram of a syringe pump perfusion control device provided by an embodiment of the present application.
  • the device can be set in the syringe pump 20 shown in FIG. 1 , or in the radio frequency ablation control device 10 , or can also be set in other computer equipment.
  • the apparatus includes: a control module 201 , an analysis module 202 and an adjustment module 203 .
  • control module 201 configured to control the syringe pump to perform a perfusion operation on the ablation object when the ablation task is triggered, and acquire the impedance value and/or the temperature value of the ablation object in real time;
  • An analysis module 202 configured to analyze the acquired impedance value and/or temperature value to obtain real-time change information of the impedance value and/or temperature value;
  • the adjustment module 203 is configured to dynamically adjust the perfusion volume of the syringe pump according to the real-time change information obtained by the analysis.
  • the real-time change information includes: a real-time change trend and a real-time change range.
  • the adjustment module 203 is further configured to determine the current ablation stage according to the real-time change trend and real-time change range of the impedance value, and adjust the syringe pump according to the target adjustment logic corresponding to the current ablation stage. The perfusion volume is adjusted.
  • the adjustment module 203 includes:
  • the first adjustment module is used to determine that the first ablation stage is entered when the syringe pump starts to perfuse the ablation object with liquid, and according to the real-time change trend and real-time change range of the impedance value, according to the first target adjustment logic, the Adjust the perfusion volume of the syringe pump;
  • the second adjustment module is configured to, in the first ablation stage, determine to enter the second ablation stage when the impedance value exhibits the first real-time change trend and reaches the first real-time change range, and according to the second target adjustment logic, Adjust the perfusion volume of the syringe pump;
  • the third adjustment module is configured to, in the second ablation stage, determine to enter the third ablation stage when the impedance value exhibits the second real-time change trend and reaches the second real-time change range, and according to the third target adjustment logic, Adjust the perfusion volume of the syringe pump;
  • the fourth adjustment module is configured to, in the third ablation stage, determine to enter the fourth ablation stage when the impedance value exhibits a third real-time change trend and reaches a third real-time change range, and according to the fourth target adjustment logic, Adjust the perfusion volume of the syringe pump.
  • the first adjustment module is further configured to determine whether the impedance value presents an upward trend and reaches a preset first rise; if the impedance value presents an upward trend If the impedance value and the temperature value are stable, if the impedance value and the temperature value are stable, the syringe pump is controlled to reduce the perfusion according to the preset first adjustment range and return to the step of judging whether the impedance value shows an upward trend and reaches the preset first increase; if the impedance value shows an upward trend and reaches the preset first increase, then control the syringe pump according to the preset first Second, adjust the range to increase the perfusion volume.
  • the second adjustment module is further configured to, in the first ablation stage, determine to enter the second ablation stage when the impedance value exhibits an upward trend and reaches a preset second increase; and controls the syringe pump according to the preset value. Set the third adjustment range to increase the perfusion volume.
  • the third adjustment module is further configured to, in the second ablation stage, determine to enter the third ablation stage when the impedance value exhibits an upward trend and reaches a preset third increase; and controls the syringe pump according to the preset value. Set the fourth adjustment range to increase the perfusion volume.
  • the fourth adjustment module is further configured to, in the third ablation stage, determine to enter the fourth ablation stage when the impedance value shows an upward trend and reaches a preset fourth increase, and controls the syringe pump to follow
  • the preset fifth adjustment range is to increase the perfusion volume; or, when the impedance value shows a downward trend and reaches the preset first decline range, it is determined to enter the fourth ablation stage, and the syringe pump is controlled to reduce the perfusion volume to the initial value.
  • the adjustment module 203 is further configured to analyze whether the impedance value or the temperature value is on an upward trend or a downward trend; if the impedance value or the temperature value is on an upward trend, according to the preset increase and the impedance value Or the trend of the temperature value changes, control the syringe pump to increase the perfusion flow rate; if the impedance value or the temperature value shows a downward trend, control the impedance value or the temperature value according to the preset decrease amplitude and the trend change of the impedance value or the temperature value.
  • the syringe pump reduces the perfusion flow rate.
  • the adjustment module 203 is also used to determine whether the impedance value or the temperature value increases according to the real-time change information; if the impedance value or the temperature value increases, then control the syringe pump according to the preset first increase. Increase the perfusion flow rate, and return to the step of judging whether the impedance value or the temperature value increases according to the real-time change information; if the impedance value or the temperature value does not increase, judge the impedance value according to the real-time change information Or whether the temperature value decreases; if the impedance value or the temperature value decreases, control the syringe pump to reduce the perfusion flow rate according to the preset first decrease amplitude, and return to the execution of the real-time change information to determine the impedance If the impedance value or the temperature value does not decrease, return to the step of judging whether the impedance value or the temperature value increases according to the real-time change information.
  • the adjustment module 203 is further configured to control the syringe pump to increase the perfusion flow rate according to a preset second increase when the impedance value or the temperature value is greater than the preset first threshold; determine the impedance value or the temperature Whether the value continues to rise; if the impedance value or the temperature value continues to rise, calculate the third increase according to the second increase and the adjusted times of the perfusion flow rate; control the syringe pump to increase the perfusion flow rate according to the third increase, And return to the step of judging whether the impedance value or the temperature value continues to rise until the perfusion flow rate is increased to the preset maximum flow rate; if the impedance value or the temperature value does not continue to rise, then determine the impedance value or the temperature value.
  • the temperature value is less than the preset first threshold; if the impedance value or the temperature value is not less than the preset first threshold, control the syringe pump to increase the perfusion flow rate according to the second increase until the perfusion flow rate Increase to the preset maximum flow rate; if the impedance value or the temperature value is less than the preset first threshold, return to execute the real-time change information obtained according to the analysis, and determine whether the impedance value or the temperature value is on an upward trend or not. steps in a downward trend.
  • the adjustment module 203 is further configured to control the syringe pump to reduce the perfusion flow rate of the syringe pump according to the preset second amplitude when the impedance value or the temperature value is smaller than the preset second threshold; determine the impedance Whether the value or the temperature value continues to decrease; if the impedance value or the temperature value continues to decrease, the third decrease is calculated according to the second decrease and the adjusted times of the perfusion flow rate; the syringe pump is controlled according to the third decrease amplitude, reduce the perfusion flow rate, and return to the step of judging whether the impedance value or the temperature value continues to decrease until the perfusion flow rate is reduced to the preset minimum flow rate; if the impedance value or the temperature value does not continue to decrease , then determine whether the impedance value or the temperature value is greater than the preset second threshold value; if the impedance value or the temperature value is not greater than the preset second threshold value, then control the syringe pump according to the second amplitude
  • control module 201 includes:
  • a first data acquisition module configured to acquire the impedance sampling value and/or the temperature sampling value of the ablation object in real time
  • the first filtering module is configured to filter the acquired impedance sample value and/or temperature sample value, and use the filtered impedance sample value and/or temperature sample value as the impedance value and/or temperature value.
  • control module 202 further includes:
  • a second data acquisition module configured to acquire the impedance sampling value and/or the temperature sampling value of the ablation object in real time
  • a second filtering module configured to filter the acquired impedance sampling value and/or temperature sampling value
  • a judgment module used for judging whether the filtered impedance sampling value and/or the temperature sampling value exceeds the preset warning value range
  • an alarm module used for outputting alarm information if the preset warning value range is exceeded
  • the second data acquisition module is further configured to use the minimum value or average value of the filtered impedance sampling value and/or temperature sampling value within a preset period as the impedance value if the preset warning value range is not exceeded and/or temperature values.
  • the adjustment module 203 further includes:
  • the fifth adjustment module is used to analyze the real-time change trend and real-time change of the impedance value when the real-time change information includes: the real-time change trend and real-time change range of the impedance value and the real-time change trend and real-time change range of the temperature value Whether the amplitude and the real-time change trend and real-time change range of the temperature value meet the adjustment conditions; if the real-time change trend and real-time change range of the impedance value and the real-time change trend and real-time change range of the temperature value meet the adjustment conditions, then The real-time change trend and real-time change range of the impedance value can dynamically adjust the perfusion volume of the syringe pump.
  • the device further includes:
  • the calculation module is used for when the real-time change information includes: the real-time change trend and real-time change range of the impedance value and the real-time change trend and real-time change range of the temperature value, the real-time change range of the impedance value and the temperature value.
  • the real-time variation range is assigned different base values and weight values. In the process of dynamically adjusting the perfusion volume of the syringe pump, the adjustment range is calculated according to the base value and the weight value, wherein the weight value corresponding to the real-time variation range of the temperature value is less than The weight value corresponding to the real-time variation range of the impedance value.
  • the device further includes:
  • the first emergency control module is used to control the syringe pump to stop the perfusion operation when it is detected that the temperature value is greater than the first abnormal value or less than the second abnormal value and exceeds a first preset time period, and the first preset time period is greater than equal to 0.
  • the device further includes:
  • the second emergency control module is configured to control the syringe pump to stop the perfusion operation when it is detected that the impedance value is greater than the third abnormal value or less than the fourth abnormal value and exceeds a second preset time period, and the second preset time period is greater than equal to 0.
  • the syringe pump when the ablation task is triggered, the syringe pump is controlled to perform the perfusion operation on the ablation object, and the impedance value and/or temperature value of the ablation object is acquired in real time, and then the acquired impedance value and/or temperature value Carry out analysis, and dynamically adjust the perfusion volume of the syringe pump according to the real-time change information of the impedance value and/or temperature value obtained by the analysis, so as to realize the change analysis of the impedance value and/or temperature value of the ablation object during the execution of the ablation task.
  • the perfusion volume of the syringe pump is automatically and dynamically adjusted.
  • the operation delay and error caused by manual judgment can be reduced, and the timeliness and accuracy of liquid perfusion during the execution of the ablation task can be improved. Thereby, the damage of the ablation operation to the ablation object is reduced, and the safety of the radiofrequency ablation treatment is improved.
  • FIG. 11 a schematic diagram of a hardware structure of an electronic device provided by an embodiment of the present application is shown.
  • an electronic device may be any of various types of computer system devices that are non-removable or movable or portable and that perform wireless or wired communications.
  • the electronic device may be a desktop computer, a server, a mobile phone or a smart phone (eg, based on an iPhone TM, Android TM based phones), portable gaming devices such as Nintendo DSTM, PlayStation PortableTM, Gameboy AdvanceTM, iPhone TM), laptops, PDAs, portable Internet devices, music players, and data storage devices, other handheld devices and devices such as watches, earphones, pendants, earphones, etc.
  • the electronic device may also be other wearable devices (eg, such as Electronic glasses, electronic clothing, electronic bracelets, electronic necklaces, electronic tattoos, head-mounted devices (HMDs) for electronic devices or smart watches).
  • HMDs head-mounted devices
  • the electronic device may also be any of a number of electronic devices, including but not limited to cellular phones, smart phones, other wireless communication devices, personal digital assistants, audio players, other media players, music recorders, Video recorders, cameras, other media recorders, radios, medical equipment, vehicle transportation instruments, calculators, programmable remote controls, pagers, laptops, desktop computers, printers, netbooks, personal digital assistants (PDAs), portable multimedia Players (PMP), Moving Picture Experts Group (MPEG-1 or MPEG-2) Audio Layer 3 (MP3) players, portable medical devices and digital cameras and combinations thereof.
  • PDAs personal digital assistants
  • PMP portable multimedia Players
  • MPEG-1 or MPEG-2 Moving Picture Experts Group Audio Layer 3
  • electronic devices may perform multiple functions (eg, play music, display videos, store pictures, and receive and send phone calls).
  • the electronic device may be a portable device such as a cell phone, media player, other handheld device, wristwatch device, pendant device, handset device, or other compact portable device.
  • the electronic device 100 may include a control circuit, which may include a storage and processing circuit 300 .
  • the storage and processing circuit 300 may include memory, such as hard drive memory, non-transitory or non-volatile memory (such as flash memory or other electronically programmable limit erasure memory used to form solid state drives, etc.), volatile memory ( For example, static or dynamic random access memory, etc.), etc., are not limited in the embodiments of the present application.
  • Processing circuitry in storage and processing circuitry 300 may be used to control the operation of electronic device 100 .
  • the processing circuit may be implemented based on one or more microprocessors, microcontrollers, digital signal processors, baseband processors, power management units, audio codec chips, application specific integrated circuits, display driver integrated circuits, and the like.
  • Storage and processing circuit 300 may be used to run software in electronic device 100, such as Internet browsing applications, Voice over Internet Protocol (VOIP) phone calling applications, email applications, media playback applications, operating system functions Wait.
  • These software can be used to perform some control operations, for example, camera-based image acquisition, ambient light measurement based on ambient light sensor, proximity sensor measurement based on proximity sensor, information based on status indicator implementation such as status indicators for LEDs Display functions, touch sensor based touch event detection, functions associated with displaying information on multiple (eg layered) displays, operations associated with performing wireless communication functions, operations associated with collecting and generating audio signals , control operations associated with collecting and processing button press event data, and other functions in the electronic device 100, etc., are not limited in this embodiment of the present application.
  • the memory stores executable program codes
  • the processor coupled with the memory calls the executable program codes stored in the memory to execute the syringe pump perfusion described in the embodiments shown in the above-mentioned FIGS. 4 to 9 . Control Method.
  • the executable program code includes various modules in the syringe pump perfusion control device described in the embodiment shown in FIG. 10 , for example, a control module 201 , an analysis module 202 and an adjustment module 203 .
  • the electronic device 100 may also include an input/output circuit 420 .
  • the input/output circuit 420 may be used to enable the electronic device 100 to input and output data, ie, allowing the electronic device 100 to receive data from external devices and also allow the electronic device 100 to output data from the electronic device 100 to external devices.
  • Input/output circuit 420 may further include sensor 320 .
  • Sensors 320 may include ambient light sensors, light and capacitance-based proximity sensors, touch sensors (eg, light-based touch sensors and/or capacitive touch sensors, where the touch sensor may be part of a touch display, or may be a Touch sensor structure is used independently), acceleration sensor, and other sensors.
  • Input/output circuitry 420 may also include one or more displays, such as display 140 .
  • the display 140 may include one or a combination of a liquid crystal display, an organic light emitting diode display, an electronic ink display, a plasma display, and displays using other display technologies.
  • Display 140 may include an array of touch sensors (ie, display 140 may be a touch display).
  • the touch sensor can be a capacitive touch sensor formed from an array of transparent touch sensor electrodes, such as indium tin oxide (ITO) electrodes, or can be a touch sensor formed using other touch technologies, such as sonic touch, pressure-sensitive touch, resistive touch Touch, optical touch, etc., are not limited in the embodiments of the present application.
  • ITO indium tin oxide
  • the electronic device 100 may also include an audio component 360 .
  • the audio component 360 may be used to provide audio input and output functions for the electronic device 100 .
  • Audio components 360 in electronic device 100 may include speakers, microphones, buzzers, tone generators, and other components for generating and detecting sounds.
  • the communication circuit 380 may be used to provide the electronic device 100 with the ability to communicate with external devices.
  • Communication circuitry 380 may include analog and digital input/output interface circuitry, and wireless communication circuitry based on radio frequency signals and/or optical signals.
  • Wireless communication circuitry in communication circuitry 380 may include radio frequency transceiver circuitry, power amplifier circuitry, low noise amplifiers, switches, filters, and antennas.
  • wireless communication circuitry in the communication circuitry 380 may include functions for supporting near field communication (Near Field Communication) by transmitting and receiving near field coupled electromagnetic signals. Communication, NFC) circuit.
  • the communication circuit 380 may include a near field communication antenna and a near field communication transceiver.
  • Communication circuitry 380 may also include cellular telephone transceivers and antennas, wireless local area network transceiver circuits and antennas, and the like.
  • the electronic device 100 may further include a battery, power management circuits and other input/output units 400 .
  • Input/output unit 400 may include buttons, joysticks, click wheels, scroll wheels, touch pads, keypads, keyboards, cameras, light emitting diodes and other status indicators, and the like.
  • a user may input commands through the input/output circuit 420 to control the operation of the electronic device 100 , and may use the output data of the input/output circuit 420 to enable receiving status information and other outputs from the electronic device 100 .
  • an embodiment of the present application further provides a radio frequency ablation system
  • the radio frequency ablation system includes: a radio frequency ablation control device 10 , a syringe pump 20 , a temperature acquisition device 30 , an impedance acquisition device 40 , a neutral Electrodes 50 and radiofrequency ablation catheter 60 .
  • the radio frequency ablation catheter 60 , the temperature acquisition device 30 , the impedance acquisition device 40 and the neutral electrode 50 are electrically connected to the radio frequency ablation control device 10 .
  • the radiofrequency ablation control device 10 is also electrically coupled to the syringe pump 20 .
  • the radio frequency ablation control device 10 is used to execute each step in the syringe pump perfusion control method provided by the embodiments shown in FIG. 4 to FIG. 9 .
  • the radiofrequency ablation catheter 60 is used for performing an ablation operation on the ablation object according to the control instruction of the radiofrequency ablation control device 10 .
  • the temperature acquisition device 30 is used to acquire the temperature value of the ablation object and send it to the radio frequency ablation control device 10 .
  • the impedance acquisition device 40 is used to acquire the impedance value of the ablation object and send it to the radio frequency ablation control device 10 .
  • an embodiment of the present application further provides a computer-readable storage medium, which may be provided in the electronic device in the above-mentioned embodiments, and the computer-readable storage medium may be the one shown in FIG. 11 above. memory in the storage and processing circuit 300 in the illustrated embodiment.
  • the computer readable storage medium stores a computer program, and when the program is executed by the processor, implements the syringe pump perfusion control method described in the embodiments shown in FIG. 4 to FIG. 9 .
  • the computer-storable medium may also be a U disk, a removable hard disk, a read-only memory (ROM, Read-Only Memory), a RAM, a magnetic disk, or an optical disk, and other mediums that can store program codes.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a readable storage
  • the medium includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned readable storage medium includes: U disk, removable hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Surgical Instruments (AREA)

Abstract

一种注射泵灌注控制方法、装置、系统及计算机可读存储介质,其中该方法包括:当消融任务被触发时,控制注射泵对消融对象执行灌注操作,并实时获取该消融对象的阻抗值和/或温度值;对获取的阻抗值和/或温度值进行分析,以得到该阻抗值和/或温度值的实时变化信息;根据分析得到的实时变化信息,动态调整该注射泵的灌注量。上述注射泵灌注控制方法、装置、系统及计算机可读存储介质可实现注射泵灌注量的动态调整,提高消融任务执行过程中,液体灌注的及时性和准确性。

Description

注射泵灌注控制方法、装置、系统及计算机可读存储介质 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种注射泵灌注控制方法、装置、系统及非暂时性计算机可读存储介质。
背景技术
肺癌是最常见的恶性肿瘤之一。在临床治疗中,通过外科手术进行切除仍是治疗早期肺癌的首选。但是,对于年龄较大、体质偏弱、心肺功能较差或者存在并发症等情况肺癌患者,他们并不适合或者不耐受常规的手术切除疗法。因此,肿瘤微创消融这样的局部治疗方法应运而生。
射频消融(Radio Frequency Ablation,RFA)是较为常见的一种肿瘤微创消融治疗方法。射频消融的原理是应用频率小于30MHz(兆赫)的交变高频电流使肿瘤组织内离子发生高速震荡,互相摩擦,将射频能转化为热能,从而使得肿瘤细胞发生凝固性坏死。
在消融过程中,受到交变高频电流的影响,人体的温度会发生变化,一旦温度超过正常值,就会给人体造成不可逆转的损害。因此,需要在消融过程中对消融部位灌注生理盐水。
技术问题
现有技术中生理盐水的灌注操作一般是由人工控制,在什么时候需要灌注多少液体完全依赖于医生的治疗经验和反应能力,因此常常存在误判和延误操作的情况。因此,如何提高射频消融灌注设备灌注液体的及时性和准确性,是业内亟待解决的一大难题。
技术解决方案
本申请实施例提供一种注射泵灌注控制方法、装置、系统及非暂时性计算机可读存储介质,可实现注射泵灌注量的动态调整,提高消融任务执行过程中,液体灌注的及时性和准确性。
本申请实施例一方面提供了一种注射泵灌注控制方法,包括:
当消融任务被触发时,控制注射泵对消融对象执行灌注操作,并实时获取所述消融对象的阻抗值和/或温度值;
对获取的阻抗值和/或温度值进行分析,以得到所述阻抗值和/或温度值的实时变化信息;
根据分析得到的实时变化信息,动态调整所述注射泵的灌注量。
本申请实施例一方面还提供了一种注射泵灌注控制装置,包括:
控制模块,用于当消融任务被触发时,控制注射泵对消融对象执行灌注操作,并实时获取所述消融对象的阻抗值和/或温度值;
分析模块,用于对获取的阻抗值和/或温度值进行分析,以得到所述阻抗值和/或温度值的实时变化信息;
调整模块,用于根据分析得到的实时变化信息,动态调整所述注射泵的灌注量。
本申请实施例一方面还提供了一种电子装置,包括:非暂时性存储器和处理器;
所述非暂时性存储器存储有可执行程序代码;
所述处理器与所述非暂时性存储器、温度采集装置和阻抗采集装置电性耦合;
所述处理器调用所述非暂时性存储器中存储的所述可执行程序代码,执行如上述实施例提供的注射泵灌注控制方法。
本申请实施例一方面还提供一种注射泵灌注控制系统,包括:注射泵、温度采集装置以及阻抗采集装置;
其中,所述注射泵包括:控制器、注射器、推杆以及驱动装置;
所述控制器与所述驱动装置、所述温度采集装置以及所述阻抗采集装置电性耦合,用于执行如上述实施例提供的注射泵灌注控制方法中的各步骤;
所述驱动装置,用于根据所述控制器的控制指令,驱动推杆按照所述控制指令指向的速度,朝着所述控制指令指向的方向运动,以控制调整所述注射器的灌注量;
所述温度采集装置,用于采集所述消融对象的温度值并发送给所述控制器;
所述阻抗采集装置,用于采集所述消融对象的阻抗值并发送给所述控制器。
本申请实施例一方面还提供一种射频消融系统,包括:射频消融控制装置、射频消融导管、中性电极、注射泵、温度采集装置以及阻抗采集装置;
所述射频消融控制装置,用于执行上述实施例提供的注射泵灌注控制方法中的各步骤;
所述射频消融导管,用于根据所述射频消融控制装置的控制指令,对所述消融对象执行消融操作。
所述温度采集装置,用于采集所述消融对象的温度值并发送给所述射频消融控制装置;
所述阻抗采集装置,用于采集所述消融对象的阻抗值并发送给所述射频消融控制装置。
本申请实施例一方面还提供一种非暂时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序在被处理器运行时,实现如上述实施例提供的注射泵灌注控制方法。
有益效果
通过在当消融任务被触发时,控制注射泵对消融对象执行灌注操作,并实时获取消融对象的阻抗值和/或温度值,然后对获取的阻抗值和/或温度值进行分析,并根据分析得到的该阻抗值和/或温度值的实时变化信息,动态调整注射泵的灌注量,从而实现了基于消融任务执行过程中,消融对象阻抗值和/或温度值变化分析的注射泵灌注量自动动态调整。由于是随着消融对象阻抗值和/或温度值的变化,自动动态调整,因此可减小因人工判断带来的操作延迟和误差,提高消融任务执行过程中液体灌注的及时性和准确性,从而减小消融操作对消融对象的伤害,提高射频消融治疗的安全性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的注射泵灌注控制方法的应用环境图;
图2为本申请一实施例提供的注射泵灌注控制系统的结构示意图;
图3为图2所示注射泵灌注控制系统中注射泵的结构示意图;
图4为本申请一实施例提供的注射泵灌注控制方法的实现流程图;
图5为本申请另一实施例提供的注射泵灌注控制方法的实现流程图;
图6为本申请又一实施例提供的注射泵灌注控制方法的实现流程图;
图7为图6所示实施例中步骤S603至步骤S605的一实现流程图;
图8为图6所示实施例中步骤S604的一实现流程图;
图9为图6所示实施例中步骤S605的一实现流程图;
图10为本申请一实施例提供的注射泵灌注控制装置的结构示意图;
图11为本申请一实施例提供的电子装置的硬件结构示意图;
图12为本申请一实施例提供的射频消融系统的结构示意图。
本发明的实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参见图1,本申请实施例提供的注射泵灌注控制方法的应用场景示意图。该注射泵灌注控制方法可通过图1中的射频消融控制装置10或注射泵20实现。可选的,该注射泵灌注控制方法也可以通过射频消融控制装置10或注射泵20之外的其他计算机设备实现,例如:服务器、台式电脑、笔记本电脑、手提电脑、平板电脑、个人计算机以及智能手机等。
具体的,当该注射泵灌注控制方法通过注射泵20实现时,参见图2和图3,图2为本申请一实施例提供的注射泵灌注控制系统的结构示意图,图3为图2所示注射泵灌注控制系统中注射泵的结构示意图。如图2所示,该注射泵灌注控制系统包括:注射泵20、温度采集装置30以及阻抗采集装置40。温度采集装置30以及阻抗采集装置40电性耦合于注射泵20。
其中,如图3所示,注射泵20包括:控制器21、注射器22、推杆23以及驱动装置24。为了便于说明,图3仅示出了与本申请实施例相关的部分。
温度采集装置30以及阻抗采集装置40电性耦合于控制器21。温度采集装置30,用于采集消融对象的温度值并发送给控制器21。阻抗采集装置40,用于采集消融对象的阻抗值并发送给控制器21。控制器21,用于执行以下图4至图9所示实施例提供的注射泵灌注控制方法中的各步骤,以实现注射泵灌注量的动态调整。
驱动装置24,用于根据控制器21发送的控制指令,驱动推杆23按照该控制指令指向的速度,朝着该控制指令指向的方向运动,以控制调整注射器22的灌注量。
进一步的,注射泵20还包括延长管25。如图1所示,延长管25的一端连接注射器22的针头,另一端插入消融对象的体内,并靠近消融部位。
可选的,温度采集装置30以及阻抗采集装置40可设置在延长管25靠近消融部位的一端。或者,温度采集装置30以及阻抗采集装置40也可以设置在其他装置上,并通过其他装置插入消融对象的体内并贴靠在消融部位上。
结合图1至图3,在实际应用中,首先将用于产生和输出射频能量的射频消融导管60和延长管25插入消融对象(如一肺癌患者)的体内,并到达消融部位。然后将中性电极50与消融对象的皮肤表面接触。射频电流流过射频消融导管60、患者组织和中性电极50,从而形成回路。当消融任务被触发时,射频消融控制装置10控制射频消融导管60通过单极放电的方式,向消融部位输出射频能量,以对该消融部位执行消融操作。
于此同时,注射泵20的控制器21控制注射泵20对消融对象执行灌注操作,向该消融部位灌注生理盐水,并实时通过温度采集装置30和阻抗采集装置40,获取该消融部位的阻抗值和/或温度值。控制器21通过对获取的阻抗值和/或温度值进行分析,得到该阻抗值和/或温度值的实时变化信息,然后根据分析得到的实时变化信息,指令驱动装置24驱动推杆23按照指定的速度,朝着指定的方向运动,以动态调整注射泵20的灌注量。
参见图4,本申请一实施例提供的注射泵灌注控制方法的实现流程图。该方法可通过图1中的注射泵20实现,或者,也可以通过图1中的射频消融控制装置10实现,或者,也可以通过电性耦合于注射泵的其他计算机设备实现。如图4所示,该方法具体包括:
步骤S401、当消融任务被触发时,控制注射泵对消融对象执行灌注操作,并实时获取消融对象的阻抗值和/或温度值;
具体的,消融任务可在例如:到达预设的触发时间,接收到射频消融装置发送的触发指令,或者,检测到用户执行用于触发消融任务的操作的通知事件时被触发。其中用于触发消融任务的操作例如:按压用于触发消融任务的物理或虚拟按钮。
可选的,注射泵在每次启动后,将灌注参数设置为预设的初始值。其中该灌注参数可以但不限于包括:灌注流速、总灌注量、灌注时间等。
当消融任务被触发时,注射泵按照上述初始值对消融对象执行灌注操作,同时通过温度采集装置和阻抗采集装置,实时获取消融对象的阻抗值和温度值中的至少一种,以作为动态调整注射泵的灌注量的参考数据。其中,消融对象的阻抗值和温度值,例如可以是消融部位的阻抗值和温度值。该阻抗值例如可以是电阻值。
可选的,还可通过以下方式实时获取消融对象的阻抗值和/或温度值:
首先,实时获取消融对象的阻抗采样值和/或温度采样值,并对获取的阻抗采样值和/或温度采样值进行滤波。然后,判断滤波后的阻抗采样值和/或温度采样值是否超出预设预警值范围。一方面,若超过该预设预警值范围,则输出告警信息,以提示用户操作异常,并提示用户是否需要停止消融操作。另一方面,若未超过该预设预警值范围,则将预设周期内(如10秒内)的该滤波后的阻抗采样值和/或温度采样值中的最低值或均值,作为实时获取的阻抗值和/或温度值。
步骤S402、对获取的阻抗值和/或温度值进行分析,以得到该阻抗值和/或温度值的实时变化信息;
具体的,对阻抗值和温度值中的至少一种进行分析,以得到阻抗值和温度值中的至少一种的实时变化信息。可选的,该实时变化信息可以但不限于包括:实时变化趋势和实时变化幅度。其中,实时变化趋势即变化方向,例如:数值上升或下降。实时变化幅度即变化的程度,可以是绝对值也可以是比例,例如:增加的数值,或者,增加的百分比。
需要说明的是,上述实时变化趋势和实时变化幅度指的是整体变化趋势和变化幅度。
步骤S403、根据分析得到的实时变化信息,动态调整注射泵的灌注量。
具体的,根据步骤S402的分析结果,动态调整注射泵的灌注量。其中,若分析得到的是温度值的实时变化信息,则根据该温度值的实时变化信息,动态调整注射泵的灌注量。若分析得到的是阻抗值的实时变化信息,则根据该阻抗值的实时变化信息,动态调整注射泵的灌注量。若分析得到的是温度值的实时变化信息和阻抗值的实时变化信息,则同时根据该温度值的实时变化信息和该阻抗值的实时变化信息,动态调整注射泵的灌注量。
可以理解的,人体阻抗是包括人体皮肤、血液、肌肉、细胞组织及其结合部在内的含有电阻和电容的全阻抗,其主要由人体电阻决定。当人体接触到带电体时,人体就被当作一个电路元件接入回路。在癌细胞消融过程中,受到射频能量的影响,除了温度之外,人体的阻抗也会发生变化。因此,以阻抗和/或温度作为调整灌注量的参考值,可以更准确的确定出射频能量对人体的影响,从而使得灌注到到消融部位的液体的量更为准确,更符合消融需求。
可选的,本步骤S403具体可以通过以下步骤实现:
S11、根据分析得到的实时变化信息,判断该温度值是呈上升趋势还是呈下降趋势;
S12、若该温度值呈上升趋势,则根据预设的增幅和该阻抗值或该温度值的趋势变化,控制注射泵加大灌注流速;
S13、若该温度值呈下降趋势,则根据预设的减幅和该阻抗值或该温度值的趋势变化,控制注射泵减小灌注流速。
可选的,本步骤S403具体还可以通过以下方式实现:
S21、根据分析得到的实时变化信息,判断该阻抗值是呈上升趋势还是呈下降趋势;
S22、若该阻抗值呈上升趋势,则根据预设的增幅和该阻抗值或该温度值的趋势变化,控制注射泵加大灌注流速;
S23、若该阻抗值呈下降趋势,则根据预设的减幅和该阻抗值或该温度值的趋势变化,控制注射泵减小灌注流速。
可选的,本步骤S403具体还可以通过以下步骤实现:
S31、分析该阻抗值的实时变化趋势和实时变化幅度以及该温度值的实时变化趋势和实时变化幅度是否均满足各自对应的调整条件;
S32、若该阻抗值的实时变化趋势和实时变化幅度以及该温度值的实时变化趋势和实时变化幅度均满足各自对应的调整条件,则根据该阻抗值的实时变化趋势和实时变化幅度,动态调整注射泵的灌注量;
S33、否则,若阻抗值和温度值这两个参数中,只有一个参数的实时变化趋势和实时变化幅度满足对应的调整条件,则根据满足对应的调整条件的参数的实时变化趋势和实时变化幅度,动态调整注射泵的灌注量。
上述调整条件,即,需要对灌注量进行调整时,该阻抗值和温度值的实时变化趋势和实时变化幅度所要各自满足的条件,如是呈上升趋势还是呈下降趋势,上升幅度是否达到预设幅度等等。
上述步骤S31至S33中灌注量的具体调整方式,可参考上述和下述各实施例中根据该温度值或该阻抗值的实时变化信息,动态调整注射泵的灌注量的相关描述,此处不再赘述。
可选的,本步骤S403具体还可以通过以下步骤实现:
根据该阻抗值的实时变化趋势和实时变化幅度,确定当前所处的消融阶段,并按照与当前所处的消融阶段对应的目标调整逻辑,对注射泵的灌注量进行调整。
也就是说,根据该阻抗值的实时变化趋势和实时变化幅度将整个消融过程划分为多个消融阶段,然后根据每个消融阶段,该阻抗值的变化特点,按照对应的调整逻辑,对注射泵的灌注量进行调整,以使得调整更具有针对性,从而进一步提高灌注的准确性。
进一步的,根据该阻抗值的实时变化趋势和实时变化幅度,确定当前所处的消融阶段,并按照与当前所处的消融阶段对应的目标调整逻辑,对注射泵的灌注量进行调整,具体可包括以下步骤:
S41、当注射泵开始向消融对象灌注液体时,确定进入第一消融阶段,并根据分析得到的阻抗值的实时变化趋势和实时变化幅度,按照第一目标调整逻辑,对注射泵的灌注量进行调整;
S42、在该第一消融阶段,当该阻抗值呈现第一变化趋势且达到第一变化幅度时,确定进入第二消融阶段,并按照第二目标调整逻辑,对注射泵的灌注量进行调整;
S43、在该第二消融阶段,当该阻抗值呈现第二变化趋势且达到第二变化幅度时,确定进入第三消融阶段,并按照第三目标调整逻辑,对注射泵的灌注量进行调整;
S43、该第三消融阶段,当该阻抗值呈现第三变化趋势且达到第三变化幅度时,确定进入第四消融阶段,并按照第四目标调整逻辑,对注射泵的灌注量进行调整。
可选的,于本申请其他一实施方式中,在执行灌注操作的整个过程中,当检测到该温度值大于第一异常值或小于第二异常值,超过第一预设时长时,控制注射泵停止该灌注操作,并中止消融任务,该第一预设时长大于等于0。其中当该第一预设时长等于0时,也即,只要检测到该温度值大于第一异常值或小于第二异常值,即立刻控制注射泵停止灌注操作。
可选的,于本申请其他一实施方式中,在执行灌注操作的整个过程中,当检测到该阻抗值大于第三异常值或小于第四异常值,超过第二预设时长时,控制注射泵停止该灌注操作,并中止消融任务,该第二预设时长大于等于0。其中当该第二预设时长等于0时,也即,只要检测到该阻抗值大于第三异常值或小于第四异常值,即立刻控制注射泵停止灌注操作。
像这样,当检测到该温度值或该阻抗值超出预设范围超过预设时长时,控制注射泵立刻停止灌注操作,可以及时发现安全隐患并予以消除,从而进一步提高消融操作的安全性。
需要说明的是,本实施例中的步骤S402和步骤S403不受序号的限制,在实际应用中,也可以同步执行。
可选的,于本申请其他一实施方式中,当实时获取的是消融对象的阻抗值和温度值时,本申请中所涉及的所有增幅和减幅等调整幅度,可以根据阻抗值和温度值的变化信息确定。这样,通过综合阻抗值和温度值的变化来确定调整幅度,可以进一步提高灌注量调整的准确性。
具体的,为该阻抗值的实时变化幅度和该温度值的实时变化幅度分配不同的基数值和权重值,在动态调整注射泵的灌注量的过程中,根据该基数值和该权重值计算调整幅度,其中该温度值的实时变化幅度对应的权重值小于该阻抗值的实时变化幅度对应的权重值。根据该基数值和该权重值计算调整幅度具体可以采用加权平均的方式,也可以采用加权的方式。
本申请实施例中,通过在当消融任务被触发时,控制注射泵对消融对象执行灌注操作,并实时获取消融对象的阻抗值和/或温度值,然后对获取的阻抗值和/或温度值进行分析,并根据分析得到的该阻抗值和/或温度值的实时变化信息,动态调整注射泵的灌注量,从而实现了基于消融任务执行过程中,消融对象阻抗值和/或温度值变化分析的注射泵灌注量自动动态调整。由于是随着消融对象阻抗值和/或温度值的变化,自动动态调整,因此可减小因人工判断带来的操作延迟和误差,提高消融任务执行过程中液体灌注的及时性和准确性,从而减小消融操作对消融对象的伤害,提高射频消融治疗的安全性。
参见图5,本申请另一实施例提供的注射泵灌注控制方法的实现流程图。该方法可通过图1中的注射泵20实现,或者,也可以通过图1中的射频消融控制装置10实现,或者,也可以通过电性耦合于注射泵的其他计算机设备实现。如图5所示,该方法具体包括:
步骤S501,当消融任务被触发时,控制注射泵对消融对象执行灌注操作;
步骤S502、实时获取消融对象的阻抗采样值和温度采样值,并对获取的阻抗采样值和温度采样值进行滤波,将滤波后的阻抗采样值和温度采样值作为消融对象的阻抗值和温度值;
具体的,消融任务可在例如:到达预设的触发时间,接收到射频消融装置发送的触发指令,或者,检测到用户执行用于触发消融任务的操作的通知事件时被触发。其中用于触发消融任务的操作例如:按压用于触发消融任务的物理或虚拟按钮。
可选的,注射泵在每次启动后,将灌注参数设置为预设的初始值。其中该灌注参数可以但不限于包括:灌注流速、总灌注量、灌注时间等。
当消融任务被触发时,注射泵按照上述初始值对消融对象执行灌注操作,同时通过温度采集装置和阻抗采集装置,实时获取消融对象的阻抗采样值和温度采样值,并对获取的阻抗采样值和温度采样值进行滤波,以滤除采样值中的异常值。然后,将滤波后的阻抗采样值和温度采样值作为消融对象的阻抗值和温度值。
可以理解的,滤波是对采集的数据中因采样电路受干扰、采样数据传输中的误码而产生的噪声和无效值进行处理,以使得采集误差降低到预设的范围。
像这样,通过滤波滤除采样值中的异常值,可以进一步提高采集到的数据的可参考性。
可选的,于本申请一其他实施方式中,在实时获取消融对象的阻抗采样值和温度采样值,并对获取的阻抗采样值和温度采样值进行滤波之后,进一步地,判断滤波后的阻抗采样值和温度采样值是否超出预设预警值范围;若超过该预设预警值范围,则输出告警信息,以提示用户操作异常,并提示用户是否需要停止消融操作;若未超过该预设预警值范围,则将预设周期内的该滤波后的阻抗采样值和温度采样值中的最低值或均值,作为实时获取的阻抗值和温度值,例如:以10秒内滤波后的阻抗采样值中的最低值作为实时获取的阻抗值,以10秒内滤波后的温度采样值中的最低值作为实时获取的温度值。
像这样,通过在检测到滤波后的阻抗采样值和温度采样值超出预设预警值范围时进行告警,可以进一步提高消融操作的安全性。此外,以预设周期内的最低值或均值,作为实时获取的阻抗值和温度值,也可以进一步提高采集到的数据的可参考性。
步骤S503、对获取的阻抗值和温度值进行分析,以得到阻抗值和温度值的实时变化信息;
具体的,该实时变化信息可以但不限于包括:实时变化趋势和实时变化幅度。其中,实时变化趋势即变化方向,例如:数值上升或下降。实时变化幅度即变化的程度,可以是绝对值也可以是比例,例如:增加的数值,或者,增加的百分比。
步骤S504、当注射泵开始向消融对象灌注液体时,确定进入第一消融阶段;
步骤S505、根据该阻抗值的实时变化信息,判断该阻抗值的上升幅度是否达到第一升幅;
若未达到第一升幅,则执行步骤S506:根据该阻抗值和该温度值的实时变化信息,判断该阻抗值和该温度值是否稳定;
若稳定,则执行步骤S507:控制注射泵按照预设的第一调整幅度,减小灌注量,并返回执行步骤S505;
若不稳定,则执行步骤S505;
若达到第一升幅,则执行步骤S508:控制注射泵按照预设的第二调整幅度,加大灌注量;
具体的,判断实时获取的消融对象的阻抗值是否呈现上升趋势且达到预设第一升幅,例如:是否升高第1个百分点。可以理解的,本申请中所指的升幅表示一种上升程度,可以是绝对值,也可以是比例值。本申请中所指的趋势可以是总体趋势。在实际应用中,实时阻抗值和温度值的实时获取、实时变化信息的分析、判断及灌注量调整可通过多线程并行执行。
一方面,若该阻抗值呈现整体上升趋势但未达到该预设第一升幅,则根据该阻抗值和该温度值的实时变化信息,判断该阻抗值和该温度值是否稳定,也即,判断该阻抗值和该温度值是否分别在或维持在各自对应的预设阻抗值范围和预设温度值范围内。若该阻抗值和该温度值分别在或维持在各自对应的预设阻抗值范围和预设温度值范围内,则确定该阻抗值和该温度值稳定;否则,确定该阻抗值和该温度值不稳定。
若该阻抗值和该温度值稳定,说明当前的灌注量偏大,阻抗值和温度值的升幅或上升速度达不到指定的要求,为避免灌注的液体的不必要浪费以及灌注过度,则控制注射泵按照预设的第一调整幅度,减小灌注量,并返回执行步骤S505:根据该阻抗值的实时变化信息,判断该阻抗值的上升幅度是否达到第一升幅。
若该阻抗值和该温度值不稳定,说明当前的灌注量适中,不需要进行调整,则返回执行步骤S505:根据该阻抗值的实时变化信息,判断该阻抗值的上升幅度是否达到第一升幅。
可以理解的,在执行消融操作的过程中,消融部位的阻抗值随着射频能量(热量)的增加而变化,整体呈上升趋势。随着消融部位的温度增加,蛋白质随之变性、碳化,其固有的物理阻抗特性会随之变化,即,随着消融操作的不断执行,消融部位的阻抗值和温度值会发生变化,从而呈现不稳定状态。灌注生理盐水的目的在于:一是降温,避免因温度过高造成对患者的伤害,二是降低阻抗,使消融功率处于正常范围。随着消融操作的不断执行,根据消融的需要,需要使得消融部位的阻抗值和温度值呈现阶段性变化,例如在第一和第二消融阶段,需要保持阻抗值和温度值整体上升,此时如果实际阻抗值和温度值呈稳定状态,即,维持在某个范围值内,则说明灌注量过大,无法满足当前现阶段消融的需要。
另一方面,若该阻抗值呈现上升趋势且达到该预设第一升幅,则控制注射泵按照预设的第二调整幅度,加大灌注量。具体的,可以通过加快液体的灌注流速来加大灌注量。
步骤S509、当该阻抗值呈现上升趋势且达到预设第二升幅时,确定进入第二消融阶段,并控制注射泵按照预设的第三调整幅度,加大灌注量。
具体的,在该第一消融阶段,继续对该阻抗值的实时变化趋势和实时变化幅度进行分析,当该阻抗值呈现上升趋势且达到预设第二升幅(如,升高第2个百分点)时,确定进入该第二消融阶段,并控制注射泵按照预设的第三调整幅度,加大灌注量。
步骤S510、当该阻抗值呈现上升趋势且达到预设第三升幅时,确定进入第三消融阶段,并控制注射泵按照预设的第四调整幅度,加大灌注量。
具体的,在该第二消融阶段,继续对该阻抗值的实时变化趋势和实时变化幅度进行分析,当该阻抗值呈现上升趋势且达到预设第三升幅(如升高第3个百分点)时,确定进入该第三消融阶段,并控制注射泵按照预设的第四调整幅度,加大灌注量。
步骤S511、分析该阻抗值是否呈现上升趋势且达到预设第四升幅,或者,该阻抗值是否呈现下降趋势且达到预设第一降幅;
步骤S512、当该阻抗值呈现上升趋势且达到预设第四升幅时,确定进入第四消融阶段,并控制注射泵按照预设的第五调整幅度,加大灌注量;
步骤S513、当该阻抗值呈现下降趋势且达到预设第一降幅时,确定进入第四消融阶段,控制注射泵减小灌注量至初始值。
具体的,在该第三消融阶段,继续对该阻抗值的实时变化趋势和实时变化幅度进行分析。需要说明的是,在该第三消融阶段,除了分析该阻抗值是否呈上升趋势之外,还需要分析该阻抗值是否呈下降趋势。也就是说,当该阻抗值呈现上升趋势且达到预设第四升幅(如,升高第4个百分点)时,或者,当该阻抗值呈现下降趋势且达到预设第一降幅(如,降低第4个百分点)时,均确认进入第四消融阶段。
但是,根据确认进入第四消融阶段的不同理由,处理逻辑有所不同。当因该阻抗值呈现上升趋势且达到预设第四升幅而确定进入第四消融阶段时,控制注射泵按照预设的第五调整幅度,加大灌注量。当因该阻抗值呈现下降趋势且达到预设第一降幅而确定进入该第四消融阶段时,则控制注射泵减小灌注量至初始值,并确定进入该第一消融阶段,然后执行步骤S509:当该阻抗值呈现上升趋势且达到预设第二升幅时,确定进入第二消融阶段,并控制注射泵按照预设的第三调整幅度,加大灌注量,直至本控制周期结束。
可以理解的,上述控制注射泵减小灌注量至初始值可以是一次完成的,也可以是分次逐步完成的。上述控制周期可以是指整个消融任务的完成周期,或者,也可以将单个消融任务分为多个控制周期。
可以理解的,上述预设第一升幅至预设第四升幅以及预设第一降幅的数值,在具体应用中,可以相同也可以不同。类似的,上述第一调整幅度至第五调整幅度的数值,在具体应用中,可以相同也可以不同。具体数值,在实际应用中,可以根据用户的自定义操作随时设定和调整。
需要说明的是,本申请各实施例中涉及的判断,均基于对应参数的实时变化信息进行。
本申请实施例中,通过根据消融对象阻抗值的实时变化趋势和实时变化幅度将整个消融过程划分为多个消融阶段,并根据每个消融阶段,实时获取的消融对象的阻抗值和温度值的变化特征,按照对应的调整逻辑,对注射泵的灌注量进行动态调整,使得调整更具有针对性,从而进一步提高了自动灌注控制的准确性。
参见图6,本申请又一实施例提供的注射泵灌注控制方法的实现流程图。该方法可通过图1中的注射泵20实现,或者,也可以通过图1中的射频消融控制装置10实现,或者,也可以通过电性耦合于注射泵的其他计算机设备实现。如图6所示,该方法具体包括:
步骤S601、当消融任务被触发时,控制注射泵对消融对象执行灌注操作,并实时获取消融对象的阻抗值或温度值;
具体的,消融任务可在例如:到达预设的触发时间,接收到射频消融装置发送的触发指令,或者,检测到用户执行用于触发消融任务的操作的通知事件时被触发。其中用于触发消融任务的操作例如:按压用于触发消融任务的物理或虚拟按钮。
可选的,注射泵在每次启动后,将灌注参数设置为预设的初始值。其中该灌注参数可以但不限于包括:灌注流速、总灌注量、灌注时间等。
当消融任务被触发时,注射泵按照上述初始值对消融对象执行灌注操作,同时通过温度采集装置或阻抗采集装置,实时获取消融对象的阻抗值或温度值,以作为动态调整注射泵的灌注量的参考数据。其中,消融对象的阻抗值和温度值,例如可以是消融部位的阻抗值和温度值。该阻抗值例如可以是电阻值。
可选的,实时获取消融对象的阻抗值或温度值具体还可通过以下步骤实现:
实时获取消融对象的阻抗采样值或温度采样值,并对获取的阻抗采样值或温度采样值进行滤波;
判断滤波后的阻抗采样值或温度采样值是否超出预设预警值范围;
若超过该预设预警值范围,则输出告警信息,以提示用户操作异常,并提示用户是否需要停止消融操作;
若未超过该预设预警值范围,则将预设周期内(如10秒内)的该滤波后的阻抗采样值或温度采样值中的最低值或均值,作为实时获取的阻抗值或温度值。
步骤S602、对获取的阻抗值或温度值进行分析,以得到阻抗值或温度值的实时变化信息;
具体的,该实时变化信息可以但不限于包括:实时变化趋势和实时变化幅度。其中,实时变化趋势即变化方向,例如:数值上升或下降。实时变化幅度即变化的程度,可以是绝对值也可以是比例值,例如:增加的数值,或者,增加的百分比。
可选的,于本申请其他一实施方式中,也可同时实时获取消融对象的阻抗值和温度值,并对获取的阻抗值和温度值进行分析。此时,以下涉及的所有增幅和减幅等调整幅度,可以根据分析结果确定。
具体的,为该阻抗值的实时变化幅度和该温度值的实时变化幅度分配不同的基数值和权重值,在动态调整注射泵的灌注量的过程中,根据该基数值和该权重值计算调整幅度,其中该温度值的实时变化幅度对应的权重值小于该阻抗值的实时变化幅度对应的权重值。根据该基数值和该权重值计算调整幅度具体可以采用加权平均的方式,也可以采用加权的方式。
步骤S603、根据分析得到的实时变化信息,确定该阻抗值或该温度值是呈上升趋势还是呈下降趋势;
步骤S604、若该阻抗值或该温度值呈上升趋势,则根据预设的增幅和该阻抗值或该温度值的趋势变化,控制注射泵加大灌注流速;
步骤S605、若该阻抗值或该温度值呈下降趋势,则根据预设的减幅和该阻抗值或该温度值的趋势变化,控制注射泵减小灌注流速。
具体的,如图7所示,步骤S603至步骤S605可以通过以下步骤实现:
步骤S701:根据分析得到的阻抗值或温度值的实时变化信息,判断该阻抗值或该温度值是否增加;
若增加,则执行步骤S702:控制注射泵按照预设的第一增幅加大灌注流速,以增加灌注量,然后返回执行步骤S701;
若未增加,则执行步骤S703:根据分析得到的阻抗值或温度值的实时变化信息,判断该阻抗值或该温度值是否减小;
若减小,则执行步骤S704:控制注射泵按照预设的第一减幅减小灌注流速,以减小灌注量,并返回执行步骤S703;
若未减小,则返回执行步骤S701。如此循环往复,直至控制周期结束。
可选的,于本申请其他一实施方式中,如图8所示,步骤S604还可通过以下步骤实现:
S801、若该阻抗值或该温度值呈上升趋势,则当该阻抗值或该温度值大于预设第一阈值时,控制注射泵按照预设的第二增幅加大灌注流速;
S802、判断该阻抗值或该温度值是否继续上升;
若该阻抗值或该温度值继续上升,则执行步骤S803:根据该第二增幅及该灌注流速的已调整次数计算第三增幅,控制注射泵按照该第三增幅,加大注射泵的灌注流速,并返回执行步骤S802:判断该阻抗值或该温度值是否继续上升,直至将该灌注流速加大至预设最大流速,或者,直至该阻抗值或该温度值小于该预设第一阈值;
若该阻抗值或该温度值未继续上升,则执行步骤S804:判断该阻抗值或该温度值是否小于该预设第一阈值;
若该阻抗值或该温度值不小于该预设第一阈值,则执行步骤S805:控制注射泵按照该第二增幅,加大注射泵的灌注流速,直至将该灌注流速加大至该预设最大流速,或者,直至该阻抗值或该温度值小于该预设第一阈值;
若该阻抗值或该温度值小于该预设第一阈值,则返回执行步骤S603:根据分析得到的实时变化信息,判断该阻抗值或该温度值是呈上升趋势还是呈下降趋势。
如此循环往复,直至控制周期结束。
可选的,步骤S803中根据该第二增幅及该灌注流速的已调整次数计算该第三增幅具体可以是将该第二增幅乘以已调整次数后得到的值作为该第三增幅;或者,也可以根据预设的比例、该第二增幅及该灌注流速的已调整次数,按照等比递增的规则计算该第三增幅。该灌注流速的已调整次数,也可以理解为执行判断该阻抗值或该温度值是否继续上升的操作的次数。
进一步的,当该灌注流速加大至该预设最大流速时,输出提醒信息,以提醒用户注射泵的灌注流速已加至极限值。其中,该提醒信息可以通过语音、文字、图像、动画、灯光中的至少一种方式输出。
可以理解的,灌注量调整的目的是为了使得消融对象的阻抗值和温度值在安全范围值内保持稳定。一方面,若该阻抗值或该温度值未继续上升,则说明按照前一次的增幅加大注射泵的灌注流速是有效的,此时继续按照该增幅加大注射泵的灌注流速,可以避免调整过度,从而可提高灌注的准确性。
另一方面,若该阻抗值或该温度值继续上升,则说明按照前一次的增幅加大注射泵的灌注流速效果不佳,该增幅无法满足消融需求,此时控制注射泵按照更大的增幅,加大注射泵的灌注流速,可以将灌注量快速调整至所需的程度,从而提高灌注的及时性。
可选的,于本申请其他一实施方式中,如图9所示,步骤S605还可通过以下步骤实现:
步骤S901、若该阻抗值或该温度值呈下降趋势,则当该阻抗值或该温度值小于预设第二阈值时,控制注射泵按照预设的第二减幅,减小注射泵的灌注流速;
步骤S902、判断该阻抗值或该温度值是否继续下降;
若该阻抗值或该温度值继续下降,则执行步骤S903:根据该第二减幅及该灌注流速的已调整次数计算第三减幅,控制注射泵按照该第三减幅,减小注射泵的灌注流速,并返回执行步骤S902:判断该阻抗值或该温度值是否继续下降,直至将该灌注流速减小至预设最小流速,或者,直至该阻抗值或该温度值大于该预设第二阈值;
若该阻抗值或该温度值未继续下降,则执行步骤S904:判断该阻抗值或该温度值是否大于该预设第二阈值;
若该阻抗值或该温度值不大于该预设第二阈值,则执行步骤S905:控制注射泵按照该第二减幅,减小注射泵的灌注流速,并返回执行步骤S904:判断该阻抗值或该温度值是否大于该预设第二阈值,直至将该灌注流速减小至预设最小流速,或者,直至该阻抗值或该温度值大于该预设第二阈值;
若该阻抗值或该温度值大于该预设第二阈值,则返回执行步骤S603:根据分析得到的实时变化信息,判断该阻抗值或该温度值是呈上升趋势还是呈下降趋势。
可以理解的,若该阻抗值或该温度值未继续下降,则说明按照前一次的减幅减小注射泵的灌注流速是有效的,此时继续按照该减幅减小注射泵的灌注流速,可以避免调整过度,从而可提高灌注的准确性。另一方面,若该阻抗值或该温度值仍继续下降,则说明前一次减的程度不够,此时提高减幅,可以将灌注量快速调整至所需的程度,从而提高灌注的及时性。
如此循环往复,直至控制周期结束。
可选的,步骤S903中根据该第二增幅及该灌注流速的已调整次数计算该第三增幅具体可以是将该第二减幅乘以已调整次数后得到的值作为该第三减幅;或者,也可以根据预设的比例、该第二减幅及该灌注流速的已调整次数,按照等比递减的规则计算该第三减幅。该灌注流速的已调整次数,也可以理解为执行判断该阻抗值或该温度值是否继续下降的操作的次数。
进一步的,当该灌注流速减小至该预设最小流速时,输出提醒信息,以提醒用户注射泵的灌注流速已减至极限值。其中,该提醒信息可以通过语音、文字、图像、动画、灯光中的至少一种方式输出。
可以理解的,上述预设第一阈值为预设的最高限值,上述预设第二阈值为预设的最低限值,超过这两个限值,说明存在给消融对象带来伤害的可能,因此需要对灌注量进行调整。此外,上述预设第一阈值和预设第二阈值为一种统称,在实际应用中,其具体的值和单位由其应用的对象的种类确定,并可根据用户的自定义操作设置。也就是说,当应用于阻抗值判断时,和当应用于温度值时,预设第一阈值和预设第二阈值的具体的值和单位是不一样的。例如:当应用于阻抗值判断时,预设第一阈值的单位为欧姆,但应用于温度值判断时,预设第一阈值的单位则为摄氏度。
此外,本申请中涉及的所有增幅和减幅均表示一种程度,具体可以是绝对值,也可以是比例值,例如:增加的数值,或者,增加的百分比。
本申请实施例中,通过在当消融任务被触发时,控制注射泵对消融对象执行灌注操作,并实时获取消融对象的阻抗值或温度值,然后对获取的阻抗值或温度值进行分析,并根据分析得到的阻抗值或温度值的实时变化信息,动态调整注射泵的灌注量,从而实现了基于消融任务执行过程中,消融对象阻抗值或温度值变化分析的注射泵灌注量的自动动态调整。由于是随着消融对象阻抗值或温度值的变化,自动动态调整,因此可减小因人工判断带来的操作延迟和误差,提高消融任务执行过程中液体灌注的及时性和准确性,从而减小消融操作对消融对象的伤害,提高射频消融治疗的安全性。
参见图10,本申请一实施例提供的注射泵灌注控制装置的结构示意图。为了便于说明,仅示出了与本申请实施例相关的部分。该装置可设置于图1所示的注射泵20中,或者,射频消融控制装置10中,或者,也可以设置在其他计算机设备中。该装置包括:控制模块201、分析模块202以及调整模块203。
控制模块201,用于当消融任务被触发时,控制注射泵对消融对象执行灌注操作,并实时获取该消融对象的阻抗值和/或温度值;
分析模块202,用于对获取的阻抗值和/或温度值进行分析,以得到该阻抗值和/或温度值的实时变化信息;
调整模块203,用于根据分析得到的实时变化信息,动态调整该注射泵的灌注量。
可选的,该实时变化信息包括:实时变化趋势和实时变化幅度。
可选的,调整模块203还用于根据该阻抗值的实时变化趋势和实时变化幅度,确定当前所处的消融阶段,并按照与当前所处的消融阶段对应的目标调整逻辑,对该注射泵的灌注量进行调整。
可选的,调整模块203包括:
第一调整模块,用于当该注射泵开始向该消融对象灌注液体时,确定进入第一消融阶段,并根据该阻抗值的实时变化趋势和实时变化幅度,按照第一目标调整逻辑,对该注射泵的灌注量进行调整;
第二调整模块,用于在该第一消融阶段,当该阻抗值呈现第一实时变化趋势且达到第一实时变化幅度时,确定进入第二消融阶段,并按照第二目标调整逻辑,对该注射泵的灌注量进行调整;
第三调整模块,用于在该第二消融阶段,当该阻抗值呈现第二实时变化趋势且达到第二实时变化幅度时,确定进入第三消融阶段,并按照第三目标调整逻辑,对该注射泵的灌注量进行调整;
第四调整模块,用于在该第三消融阶段,当该阻抗值呈现第三实时变化趋势且达到第三实时变化幅度时,确定进入第四消融阶段,并按照第四目标调整逻辑,对该注射泵的灌注量进行调整。
可选的,当实时获取的数据包括该阻抗值和该温度值时,该第一调整模块还用于判断该阻抗值是否呈现上升趋势且达到预设第一升幅;若该阻抗值呈现上升趋势但未达到该预设第一升幅,则判断该阻抗值和该温度值是否稳定;若该阻抗值和该温度值稳定,则控制该注射泵按照预设的第一调整幅度,减小该灌注量,并返回执行该判断该阻抗值是否呈现上升趋势且达到预设第一升幅的步骤;若该阻抗值呈现上升趋势且达到该预设第一升幅,则控制该注射泵按照预设的第二调整幅度,加大该灌注量。
可选的,该第二调整模块,还用于在该第一消融阶段,当该阻抗值呈现上升趋势且达到预设第二升幅时,确定进入该第二消融阶段;控制该注射泵按照预设的第三调整幅度,加大该灌注量。
可选的,该第三调整模块,还用于在该第二消融阶段,当该阻抗值呈现上升趋势且达到预设第三升幅时,确定进入该第三消融阶段;控制该注射泵按照预设的第四调整幅度,加大该灌注量。
可选的,该第四调整模块,还用于在该第三消融阶段,当该阻抗值呈现上升趋势且达到预设第四升幅时,确定进入该第四消融阶段,并控制该注射泵按照预设的第五调整幅度,加大该灌注量;或者,当该阻抗值呈现下降趋势且达到预设第一降幅时,确定进入该第四消融阶段,并控制该注射泵减小该灌注量至初始值。
可选的,调整模块203,还用于分析该阻抗值或该温度值是呈上升趋势还是呈下降趋势;若该阻抗值或该温度值呈上升趋势,则根据预设的增幅和该阻抗值或该温度值的趋势变化,控制该注射泵加大灌注流速;若该阻抗值或该温度值呈下降趋势,则根据预设的减幅和该阻抗值或该温度值的趋势变化,控制该注射泵减小该灌注流速。
可选的,调整模块203,还用于根据该实时变化信息,判断该阻抗值或该温度值是否增加;若该阻抗值或该温度值增加,则控制该注射泵按照预设的第一增幅加大灌注流速,并返回执行该根据该实时变化信息,判断该阻抗值或该温度值是否增加的步骤;若该阻抗值或该温度值未增加,则根据该实时变化信息,判断该阻抗值或该温度值是否减小;若该阻抗值或该温度值减小,则控制该注射泵按照预设的第一减幅减小灌注流速,并返回执行该根据该实时变化信息,判断该阻抗值或该温度值是否减小的步骤;若该阻抗值或该温度值未减小,则返回执行该根据该实时变化信息,判断该阻抗值或该温度值是否增加的步骤。
可选的,调整模块203,还用于当该阻抗值或该温度值大于预设第一阈值时,控制该注射泵按照预设的第二增幅加大灌注流速;判断该阻抗值或该温度值是否继续上升;若该阻抗值或该温度值继续上升,则根据该第二增幅及该灌注流速的已调整次数计算第三增幅;控制注射泵按照该第三增幅,加大该灌注流速,并返回执行该判断该阻抗值或该温度值是否继续上升的步骤,直至将该灌注流速加大至预设最大流速;若该阻抗值或该温度值未继续上升,则判断该阻抗值或该温度值是否小于该预设第一阈值;若该阻抗值或该温度值不小于该预设第一阈值,则控制该注射泵按照该第二增幅,加大该灌注流速,直至将该灌注流速加大至该预设最大流速;若该阻抗值或该温度值小于该预设第一阈值,则返回执行该根据分析得到的实时变化信息,判断该阻抗值或该温度值是呈上升趋势还是呈下降趋势的步骤。
可选的,调整模块203,还用于当该阻抗值或该温度值小于预设第二阈值时,控制注射泵按照预设的第二减幅,减小注射泵的灌注流速;判断该阻抗值或该温度值是否继续下降;若该阻抗值或该温度值继续下降,则根据该第二减幅及该灌注流速的已调整次数计算第三减幅;控制该注射泵按照该第三减幅,减小该灌注流速,并返回执行该判断该阻抗值或该温度值是否继续下降的步骤,直至将该灌注流速减小至预设最小流速;若该阻抗值或该温度值未继续下降,则判断该阻抗值或该温度值是否大于该预设第二阈值;若该阻抗值或该温度值不大于该预设第二阈值,则控制该注射泵按照该第二减幅,减小该灌注流速,并返回执行该判断该阻抗值或该温度值是否大于该预设第二阈值的步骤,直至将该灌注流速减小至该预设最小流速;若该阻抗值或该温度值大于该预设第二阈值,则返回执行该根据分析得到的实时变化信息,判断该阻抗值或该温度值是呈上升趋势还是呈下降趋势的步骤。
可选的,控制模块201包括:
第一数据获取模块,用于实时获取该消融对象的阻抗采样值和/或温度采样值;
第一滤波模块,用于对获取的阻抗采样值和/或温度采样值进行滤波,并将滤波后的阻抗采样值和/或温度采样值作为该阻抗值和/或温度值。
可选的,控制模块202还包括:
第二数据获取模块,用于实时获取该消融对象的阻抗采样值和/或温度采样值;
第二滤波模块,用于对获取的阻抗采样值和/或温度采样值进行滤波;
判断模块,用于判断滤波后的阻抗采样值和/或温度采样值是否超出预设预警值范围;
告警模块,用于若超过该预设预警值范围,则输出告警信息;
该第二数据获取模块,还用于若未超过该预设预警值范围,则将预设周期内该滤波后的阻抗采样值和/或温度采样值中的最低值或均值,作为该阻抗值和/或温度值。
可选的,调整模块203还包括:
第五调整模块,用于当该实时变化信息包括:该阻抗值的实时变化趋势和实时变化幅度以及该温度值的实时变化趋势和实时变化幅度时,分析该阻抗值的实时变化趋势和实时变化幅度以及该温度值的实时变化趋势和实时变化幅度是否均满足调整条件;若该阻抗值的实时变化趋势和实时变化幅度以及该温度值的实时变化趋势和实时变化幅度均满足调整条件,则根据该阻抗值的实时变化趋势和实时变化幅度,动态调整该注射泵的灌注量。
可选的,该装置还包括:
计算模块,用于当该实时变化信息包括:该阻抗值的实时变化趋势和实时变化幅度以及该温度值的实时变化趋势和实时变化幅度时,为该阻抗值的实时变化幅度和该温度值的实时变化幅度分配不同的基数值和权重值,在动态调整该注射泵的灌注量的过程中,根据该基数值和该权重值计算调整幅度,其中该温度值的实时变化幅度对应的权重值小于该阻抗值的实时变化幅度对应的权重值。
可选的,该装置还包括:
第一紧急控制模块,用于当检测到该温度值大于第一异常值或小于第二异常值,超过第一预设时长时,控制该注射泵停止该灌注操作,该第一预设时长大于等于0。
可选的,该装置还包括:
第二紧急控制模块,用于当检测到该阻抗值大于第三异常值或小于第四异常值,超过第二预设时长时,控制该注射泵停止该灌注操作,该第二预设时长大于等于0。
上述各模块实现各自功能的具体过程可参考图4至图9所示实施例中的相关内容,此处不再赘述。
本申请实施例中,通过在当消融任务被触发时,控制注射泵对消融对象执行灌注操作,并实时获取消融对象的阻抗值和/或温度值,然后对获取的阻抗值和/或温度值进行分析,并根据分析得到的该阻抗值和/或温度值的实时变化信息,动态调整注射泵的灌注量,从而实现了基于消融任务执行过程中,消融对象阻抗值和/或温度值变化分析的注射泵灌注量自动动态调整。由于是随着消融对象阻抗值和/或温度值的变化,自动动态调整,因此可减小因人工判断带来的操作延迟和误差,提高消融任务执行过程中液体灌注的及时性和准确性,从而减小消融操作对消融对象的伤害,提高射频消融治疗的安全性。
参见图11,本申请一实施例提供的电子装置的硬件结构示意图。
示例性的,电子装置可以为非可移动的或可移动或便携式并执行无线或有线通信的各种类型的计算机系统设备中的任何一种。具体的,电子装置可以为台式电脑、服务器、移动电话或智能电话(例如,基于iPhone TM,基于Android TM的电话),便携式游戏设备(例如Nintendo DS TM,PlayStation Portable TM,Gameboy Advance TM,iPhone TM)、膝上型电脑、PDA、便携式互联网设备、音乐播放器以及数据存储设备,其他手持设备以及诸如手表、耳机、吊坠、耳机等,电子装置还可以为其他的可穿戴设备(例如,诸如电子眼镜、电子衣服、电子手镯、电子项链、电子纹身、电子设备或智能手表的头戴式设备(HMD))。
电子装置还可以是多个电子设备中的任何一个,多个电子设备包括但不限于蜂窝电话、智能电话、其他无线通信设备、个人数字助理、音频播放器、其他媒体播放器、音乐记录器、录像机、照相机、其他媒体记录器、收音机、医疗设备、车辆运输仪器、计算器、可编程遥控器、寻呼机、膝上型计算机、台式计算机、打印机、上网本电脑、个人数字助理(PDA)、便携式多媒体播放器(PMP)、运动图像专家组(MPEG-1或MPEG-2)音频层3(MP3)播放器,便携式医疗设备以及数码相机及其组合。
在一些情况下,电子装置可以执行多种功能(例如,播放音乐,显示视频,存储图片以及接收和发送电话呼叫)。如果需要,电子装置可以是诸如蜂窝电话、媒体播放器、其他手持设备、腕表设备、吊坠设备、听筒设备或其他紧凑型便携式设备的便携式设备。
如图11所示,电子装置100可以包括控制电路,该控制电路可以包括存储和处理电路300。该存储和处理电路300可以包括存储器,例如硬盘驱动存储器,非暂时性或非易失性存储器(例如闪存或用于形成固态驱动器的其它电子可编程限制删除的存储器等),易失性存储器(例如静态或动态随机存取存储器等)等,本申请实施例不作限制。存储和处理电路300中的处理电路可以用于控制电子装置100的运转。该处理电路可以基于一个或多个微处理器,微控制器,数字信号处理器,基带处理器,功率管理单元,音频编解码器芯片,专用集成电路,显示驱动器集成电路等来实现。
存储和处理电路300可用于运行电子装置100中的软件,例如互联网浏览应用程序,互联网协议语音(Voice over Internet Protocol,VOIP)电话呼叫应用程序,电子邮件应用程序,媒体播放应用程序,操作系统功能等。这些软件可以用于执行一些控制操作,例如,基于照相机的图像采集,基于环境光传感器的环境光测量,基于接近传感器的接近传感器测量,基于诸如发光二极管的状态指示灯等状态指示器实现的信息显示功能,基于触摸传感器的触摸事件检测,与在多个(例如分层的)显示器上显示信息相关联的功能,与执行无线通信功能相关联的操作,与收集和产生音频信号相关联的操作,与收集和处理按钮按压事件数据相关联的控制操作,以及电子装置100中的其它功能等,本申请实施例不作限制。
进一步的,该存储器存储有可执行程序代码,与该存储器耦合的处理器,调用该存储器中存储的该可执行程序代码,执行如上述图4至图9所示实施例中描述的注射泵灌注控制方法。
其中,该可执行程序代码包括如上述图10所示实施例中描述的注射泵灌注控制装置中的各个模块,例如:控制模块201、分析模块202以及调整模块203。
电子装置100还可以包括输入/输出电路420。输入/输出电路420可用于使电子装置100实现数据的输入和输出,即允许电子装置100从外部设备接收数据和也允许电子装置100将数据从电子装置100输出至外部设备。输入/输出电路420可以进一步包括传感器320。传感器320可以包括环境光传感器,基于光和电容的接近传感器,触摸传感器(例如,基于光触摸传感器和/或电容式触摸传感器,其中,触摸传感器可以是触控显示屏的一部分,也可以作为一个触摸传感器结构独立使用),加速度传感器,和其它传感器等。
输入/输出电路420还可以包括一个或多个显示器,例如显示器140。显示器140可以包括液晶显示器,有机发光二极管显示器,电子墨水显示器,等离子显示器,使用其它显示技术的显示器中一种或者几种的组合。显示器140可以包括触摸传感器阵列(即,显示器140可以是触控显示屏)。触摸传感器可以是由透明的触摸传感器电极(例如氧化铟锡(ITO)电极)阵列形成的电容式触摸传感器,或者可以是使用其它触摸技术形成的触摸传感器,例如音波触控,压敏触摸,电阻触摸,光学触摸等,本申请实施例不作限制。
电子装置100还可以包括音频组件360。音频组件360可以用于为电子装置100提供音频输入和输出功能。电子装置100中的音频组件360可以包括扬声器,麦克风,蜂鸣器,音调发生器以及其它用于产生和检测声音的组件。
通信电路380可以用于为电子装置100提供与外部设备通信的能力。通信电路380可以包括模拟和数字输入/输出接口电路,和基于射频信号和/或光信号的无线通信电路。通信电路380中的无线通信电路可以包括射频收发器电路、功率放大器电路、低噪声放大器、开关、滤波器和天线。举例来说,通信电路380中的无线通信电路可以包括用于通过发射和接收近场耦合电磁信号来支持近场通信(Near Field Communication,NFC)的电路。例如,通信电路380可以包括近场通信天线和近场通信收发器。通信电路380还可以包括蜂窝电话收发器和天线,无线局域网收发器电路和天线等。
电子装置100还可以进一步包括电池,电力管理电路和其它输入/输出单元400。输入/输出单元400可以包括按钮,操纵杆,点击轮,滚动轮,触摸板,小键盘,键盘,照相机,发光二极管和其它状态指示器等。
用户可以通过输入/输出电路420输入命令来控制电子装置100的操作,并且可以使用输入/输出电路420的输出数据以实现接收来自电子装置100的状态信息和其它输出。
进一步的,如图12所示,本申请实施例还提供了一种射频消融系统,该射频消融系统包括:射频消融控制装置10、注射泵20、温度采集装置30、阻抗采集装置40、中性电极50以及射频消融导管60。
其中,如图1所示,射频消融导管60、温度采集装置30、阻抗采集装置40以及中性电极50与射频消融控制装置10电性连接。射频消融控制装置10还与注射泵20电性耦合。
射频消融控制装置10,用于执行图4至图9所示实施例提供的注射泵灌注控制方法中的各步骤。
射频消融导管60,用于根据射频消融控制装置10的控制指令,对消融对象执行消融操作。
温度采集装置30,用于采集消融对象的温度值并发送给射频消融控制装置10。
阻抗采集装置40,用于采集消融对象的阻抗值并发送给射频消融控制装置10。
进一步的,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质可以是设置于上述各实施例中的电子装置中,该计算机可读存储介质可以是前述图11所示实施例中的存储和处理电路300中的存储器。该计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现前述图4至图9所示实施例中描述的注射泵灌注控制方法。进一步的,该计算机可存储介质还可以是U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定都是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
以上为对本申请所提供的注射泵灌注控制方法、装置、系统及计算机可读存储介质的描述,对于本领域的技术人员,依据本申请实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (23)

  1. 一种注射泵灌注控制方法,其特征在于,包括:
    当消融任务被触发时,控制注射泵对消融对象执行灌注操作,并实时获取所述消融对象的阻抗值和/或温度值;
    对获取的阻抗值和/或温度值进行分析,以得到所述阻抗值和/或温度值的实时变化信息;
    根据分析得到的实时变化信息,动态调整所述注射泵的灌注量。
  2. 如权利要求1所述的方法,其特征在于,所述实时变化信息包括:实时变化趋势和实时变化幅度。
  3. 如权利要求2所述的方法,其特征在于,所述根据分析得到的实时变化信息,动态调整所述注射泵的灌注量,包括:
    根据所述阻抗值的实时变化趋势和实时变化幅度,确定当前所处的消融阶段,并按照与当前所处的消融阶段对应的目标调整逻辑,对所述注射泵的灌注量进行调整。
  4. 如权利要求3所述的方法,其特征在于,当实时获取的数据至少包括所述阻抗值时,所述根据所述阻抗值的实时变化趋势和实时变化幅度,确定当前所处的消融阶段,并按照与当前所处的消融阶段对应的目标调整逻辑,对所述注射泵的灌注量进行调整,包括:
    当所述注射泵开始向所述消融对象灌注液体时,确定进入第一消融阶段,并根据所述阻抗值的实时变化趋势和实时变化幅度,按照第一目标调整逻辑,对所述注射泵的灌注量进行调整;
    在所述第一消融阶段,当所述阻抗值呈现第一实时变化趋势且达到第一实时变化幅度时,确定进入第二消融阶段,并按照第二目标调整逻辑,对所述注射泵的灌注量进行调整;
    在所述第二消融阶段,当所述阻抗值呈现第二实时变化趋势且达到第二实时变化幅度时,确定进入第三消融阶段,并按照第三目标调整逻辑,对所述注射泵的灌注量进行调整;
    在所述第三消融阶段,当所述阻抗值呈现第三实时变化趋势且达到第三实时变化幅度时,确定进入第四消融阶段,并按照第四目标调整逻辑,对所述注射泵的灌注量进行调整。
  5. 如权利要求4所述的方法,其特征在于,当实时获取的数据包括所述阻抗值和所述温度值时,所述根据所述阻抗值的实时变化趋势和实时变化幅度,按照第一目标调整逻辑,对所述注射泵的灌注量进行调整,包括:
    判断所述阻抗值是否呈现上升趋势且达到预设第一升幅;
    若所述阻抗值呈现上升趋势但未达到所述预设第一升幅,则判断所述阻抗值和所述温度值是否稳定;
    若所述阻抗值和所述温度值稳定,则控制所述注射泵按照预设的第一调整幅度,减小所述灌注量,并返回执行所述判断所述阻抗值是否呈现上升趋势且达到预设第一升幅的步骤;
    若所述阻抗值呈现上升趋势且达到所述预设第一升幅,则控制所述注射泵按照预设的第二调整幅度,加大所述灌注量。
  6. 如权利要求4所述的方法,其特征在于,所述在所述第一消融阶段,当所述阻抗值呈现第一实时变化趋势且达到第一实时变化幅度时,确定进入第二消融阶段,并按照第二目标调整逻辑,对所述注射泵的灌注量进行调整,包括:
    在所述第一消融阶段,当所述阻抗值呈现上升趋势且达到预设第二升幅时,确定进入所述第二消融阶段;
    控制所述注射泵按照预设的第三调整幅度,加大所述灌注量。
  7. 如权利要求4所述的方法,其特征在于,所述在所述第二消融阶段,当所述阻抗值呈现第二实时变化趋势且达到第二实时变化幅度时,确定进入第三消融阶段,并按照第三目标调整逻辑,对所述注射泵的灌注量进行调整,包括:
    在所述第二消融阶段,当所述阻抗值呈现上升趋势且达到预设第三升幅时,确定进入所述第三消融阶段;
    控制所述注射泵按照预设的第四调整幅度,加大所述灌注量。
  8. 如权利要求4所述的方法,其特征在于,所述在所述第三消融阶段,当所述阻抗值呈现第三实时变化趋势且达到第三实时变化幅度时,确定进入第四消融阶段,并按照第四目标调整逻辑,对所述注射泵的灌注量进行调整,包括:
    在所述第三消融阶段,当所述阻抗值呈现上升趋势且达到预设第四升幅时,确定进入所述第四消融阶段,并控制所述注射泵按照预设的第五调整幅度,加大所述灌注量;
    或者,当所述阻抗值呈现下降趋势且达到预设第一降幅时,确定进入所述第四消融阶段,并控制所述注射泵减小所述灌注量至初始值。
  9. 如权利要求2所述的方法,其特征在于,所述对获取的阻抗值和/或温度值进行分析,以得到所述阻抗值和/或温度值的实时变化信息;根据分析得到的实时变化信息,动态调整所述注射泵的灌注量,包括:
    分析所述阻抗值或所述温度值是呈上升趋势还是呈下降趋势;
    若所述阻抗值或所述温度值呈上升趋势,则根据预设的增幅和所述阻抗值或所述温度值的趋势变化,控制所述注射泵加大灌注流速;
    若所述阻抗值或所述温度值呈下降趋势,则根据预设的减幅和所述阻抗值或所述温度值的趋势变化,控制所述注射泵减小所述灌注流速。
  10. 如权利要求9所述的方法,其特征在于,所述分析所述阻抗值或所述温度值是呈上升趋势还是呈下降趋势;若所述阻抗值或所述温度值呈上升趋势,则根据预设的增幅和所述阻抗值或所述温度值的趋势变化,控制所述注射泵加大灌注流速;若所述阻抗值或所述温度值呈下降趋势,则根据预设的减幅和所述阻抗值或所述温度值的趋势变化,控制所述注射泵减小所述灌注流速,包括:
    根据所述实时变化信息,判断所述阻抗值或所述温度值是否增加;
    若所述阻抗值或所述温度值增加,则控制所述注射泵按照预设的第一增幅加大灌注流速,并返回执行所述根据所述实时变化信息,判断所述阻抗值或所述温度值是否增加的步骤;
    若所述阻抗值或所述温度值未增加,则根据所述实时变化信息,判断所述阻抗值或所述温度值是否减小;
    若所述阻抗值或所述温度值减小,则控制所述注射泵按照预设的第一减幅减小灌注流速,并返回执行所述根据所述实时变化信息,判断所述阻抗值或所述温度值是否减小的步骤;
    若所述阻抗值或所述温度值未减小,则返回执行所述根据所述实时变化信息,判断所述阻抗值或所述温度值是否增加的步骤。
  11. 如权利要求9所述的方法,其特征在于,所述根据预设的增幅和所述阻抗值或所述温度值的趋势变化,控制所述注射泵加大灌注流速,包括:
    当所述阻抗值或所述温度值大于预设第一阈值时,控制所述注射泵按照预设的第二增幅加大灌注流速;
    判断所述阻抗值或所述温度值是否继续上升;
    若所述阻抗值或所述温度值继续上升,则根据所述第二增幅及所述灌注流速的已调整次数计算第三增幅;
    控制注射泵按照所述第三增幅,加大所述灌注流速,并返回执行所述判断所述阻抗值或所述温度值是否继续上升的步骤,直至将所述灌注流速加大至预设最大流速;
    若所述阻抗值或所述温度值未继续上升,则判断所述阻抗值或所述温度值是否小于所述预设第一阈值;
    若所述阻抗值或所述温度值不小于所述预设第一阈值,则控制所述注射泵按照所述第二增幅,加大所述灌注流速,直至将所述灌注流速加大至所述预设最大流速;
    若所述阻抗值或所述温度值小于所述预设第一阈值,则返回执行所述根据分析得到的实时变化信息,判断所述阻抗值或所述温度值是呈上升趋势还是呈下降趋势的步骤。
  12. 如权利要求9所述的方法,其特征在于,所述根据预设的减幅和所述阻抗值或所述温度值的趋势变化,控制所述注射泵减小所述灌注流速,包括:
    当所述阻抗值或所述温度值小于预设第二阈值时,控制注射泵按照预设的第二减幅,减小注射泵的灌注流速;
    判断所述阻抗值或所述温度值是否继续下降;
    若所述阻抗值或所述温度值继续下降,则根据所述第二减幅及所述灌注流速的已调整次数计算第三减幅;
    控制所述注射泵按照所述第三减幅,减小所述灌注流速,并返回执行所述判断所述阻抗值或所述温度值是否继续下降的步骤,直至将所述灌注流速减小至预设最小流速;
    若所述阻抗值或所述温度值未继续下降,则判断所述阻抗值或所述温度值是否大于所述预设第二阈值;
    若所述阻抗值或所述温度值不大于所述预设第二阈值,则控制所述注射泵按照所述第二减幅,减小所述灌注流速,并返回执行所述判断所述阻抗值或所述温度值是否大于所述预设第二阈值的步骤,直至将所述灌注流速减小至所述预设最小流速;
    若所述阻抗值或所述温度值大于所述预设第二阈值,则返回执行所述根据分析得到的实时变化信息,判断所述阻抗值或所述温度值是呈上升趋势还是呈下降趋势的步骤。
  13. 如权利要求1至12中的任一项所述的方法,其特征在于,所述实时获取所述消融对象的阻抗值和/或温度值,包括:
    实时获取所述消融对象的阻抗采样值和/或温度采样值;
    对获取的阻抗采样值和/或温度采样值进行滤波,并将滤波后的阻抗采样值和/或温度采样值作为所述阻抗值和/或温度值。
  14. 如权利要求1至12中的任一项所述的方法,其特征在于,所述实时获取所述消融对象的阻抗值和/或温度值,包括:
    实时获取所述消融对象的阻抗采样值和/或温度采样值;
    对获取的阻抗采样值和/或温度采样值进行滤波;
    判断滤波后的阻抗采样值和/或温度采样值是否超出预设预警值范围;
    若超过所述预设预警值范围,则输出告警信息;
    若未超过所述预设预警值范围,则将预设周期内所述滤波后的阻抗采样值和/或温度采样值中的最低值或均值,作为所述阻抗值和/或温度值。
  15. 如权利要求2至12中的任一项所述的方法,其特征在于,当所述实时变化信息包括:所述阻抗值的实时变化趋势和实时变化幅度以及所述温度值的实时变化趋势和实时变化幅度时,所述根据分析得到的实时变化信息,动态调整所述注射泵的灌注量,包括:
    分析所述阻抗值的实时变化趋势和实时变化幅度以及所述温度值的实时变化趋势和实时变化幅度是否均满足调整条件;
    若所述阻抗值的实时变化趋势和实时变化幅度以及所述温度值的实时变化趋势和实时变化幅度均满足调整条件,则根据所述阻抗值的实时变化趋势和实时变化幅度,动态调整所述注射泵的灌注量。
  16. 如权利要求2至12中的任一项所述的方法,其特征在于,当所述实时变化信息包括:所述阻抗值的实时变化趋势和实时变化幅度以及所述温度值的实时变化趋势和实时变化幅度时,所述方法还包括:
    为所述阻抗值的实时变化幅度和所述温度值的实时变化幅度分配不同的基数值和权重值,在动态调整所述注射泵的灌注量的过程中,根据所述基数值和所述权重值计算调整幅度,其中所述温度值的实时变化幅度对应的权重值小于所述阻抗值的实时变化幅度对应的权重值。
  17. 如权利要求1至12中的任一项所述的方法,其特征在于,所述方法还包括:
    当检测到所述温度值大于第一异常值或小于第二异常值超过第一预设时长时,控制所述注射泵停止所述灌注操作,所述第一预设时长大于等于0。
  18. 如权利要求1至12中的任一项所述的方法,其特征在于,所述方法还包括:
    当检测到所述阻抗值大于第三异常值或小于第四异常值超过第二预设时长时,控制所述注射泵停止所述灌注操作,所述第二预设时长大于等于0。
  19. 一种注射泵灌注控制装置,其特征在于,包括:
    控制模块,用于当消融任务被触发时,控制注射泵对消融对象执行灌注操作,并实时获取所述消融对象的阻抗值和/或温度值;
    分析模块,用于对获取的阻抗值和/或温度值进行分析,以得到所述阻抗值和/或温度值的实时变化信息;
    调整模块,用于根据分析得到的实时变化信息,动态调整所述注射泵的灌注量。
  20. 一种电子装置,其特征在于,包括:
    非暂时性存储器和处理器;
    所述非暂时性存储器存储有可执行程序代码;
    所述处理器与所述非暂时性存储器、温度采集装置和阻抗采集装置电性耦合;
    所述处理器调用所述非暂时性存储器中存储的所述可执行程序代码,执行如权利要求1至19中的任一项所述的注射泵灌注控制方法。
  21. 一种注射泵灌注控制系统,其特征在于,包括:注射泵、温度采集装置以及阻抗采集装置;
    其中,所述注射泵包括:控制器、注射器、推杆以及驱动装置;
    所述控制器与所述驱动装置、所述温度采集装置以及所述阻抗采集装置电性耦合,用于执行如权利要求1至18中的任一项所述的注射泵灌注控制方法中的各步骤;
    所述驱动装置,用于根据所述控制器的控制指令,驱动推杆按照所述控制指令指向的速度,朝着所述控制指令指向的方向运动,以控制调整所述注射器的灌注量;
    所述温度采集装置,用于采集所述消融对象的温度值并发送给所述控制器;
    所述阻抗采集装置,用于采集所述消融对象的阻抗值并发送给所述控制器。
  22. 一种射频消融系统,其特征在于,包括:射频消融控制装置、射频消融导管、中性电极、注射泵、温度采集装置以及阻抗采集装置;
    所述射频消融控制装置,用于执行如权利要求1至18中的任一项所述的注射泵灌注控制方法中的各步骤;
    所述射频消融导管,用于根据所述射频消融控制装置的控制指令,对所
    述消融对象执行消融操作。
    所述温度采集装置,用于采集所述消融对象的温度值并发送给所述射频消融控制装置;
    所述阻抗采集装置,用于采集所述消融对象的阻抗值并发送给所述射频消融控制装置。
  23. 一种非暂时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现如权利要求1至18中的任一项所述的注射泵灌注控制方法。
PCT/CN2020/140380 2019-12-31 2020-12-28 注射泵灌注控制方法、装置、系统及计算机可读存储介质 WO2022121017A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20964946.6A EP4115827A1 (en) 2020-12-09 2020-12-28 Perfusion control method, apparatus and system for syringe pump, and computer-readable storage medium
US17/658,941 US20220241001A1 (en) 2019-12-31 2022-04-12 Lung tumor ablation method
US17/955,903 US20230016496A1 (en) 2020-12-09 2022-09-29 Perfusion control method, apparatus and system for syringe pump, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011433510.X 2020-12-09
CN202011433510.XA CN112641501B (zh) 2020-12-09 2020-12-09 注射泵灌注控制方法、装置、系统及计算机可读存储介质

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118645 Continuation-In-Part WO2021135460A1 (zh) 2019-12-31 2020-09-29 射频消融导管及射频消融系统

Related Child Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/072959 Continuation-In-Part WO2022141691A1 (zh) 2019-12-31 2021-01-20 射频操作提示方法、电子装置及计算机可读存储介质
US17/955,903 Continuation US20230016496A1 (en) 2020-12-09 2022-09-29 Perfusion control method, apparatus and system for syringe pump, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2022121017A1 true WO2022121017A1 (zh) 2022-06-16

Family

ID=75350782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140380 WO2022121017A1 (zh) 2019-12-31 2020-12-28 注射泵灌注控制方法、装置、系统及计算机可读存储介质

Country Status (4)

Country Link
US (1) US20230016496A1 (zh)
EP (1) EP4115827A1 (zh)
CN (1) CN112641501B (zh)
WO (1) WO2022121017A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112791262B (zh) * 2020-12-31 2023-02-03 杭州堃博生物科技有限公司 射频操作数据调控方法、装置及注射泵
CN116407247A (zh) * 2021-12-29 2023-07-11 杭州堃博生物科技有限公司 流速控制方法、电子装置及计算机可读存储介质
CN114886553A (zh) * 2022-05-23 2022-08-12 南京诺源医疗器械有限公司 一种温度控制方法、装置、电子设备和存储介质
DE102022127337B3 (de) * 2022-10-18 2023-10-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrische Vorrichtung mit einem oder mehreren Sensoren an fluidumströmten leistungsführenden und/oder leistungsschaltenden Elementen
CN116077172A (zh) * 2023-03-06 2023-05-09 杭州堃博生物科技有限公司 射频消融的测试方法、装置以及射频消融的测试系统
CN117243689B (zh) * 2023-09-15 2024-04-19 南京康友医疗科技有限公司 一种防止组织碳化的微波消融系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1596085A (zh) * 2001-09-28 2005-03-16 锐达医疗系统公司 阻抗控制的组织切除仪器和方法
CN205494439U (zh) * 2016-02-26 2016-08-24 杨冉 一种肠内营养输注与血糖控制一体机
US20170086907A1 (en) * 2015-09-28 2017-03-30 Japan Electel Inc. Radiofrequency balloon catheter system
CN110897710A (zh) * 2019-11-30 2020-03-24 杭州堃博生物科技有限公司 肺部神经消融系统的控制方法、系统以及计算机介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203970535U (zh) * 2014-04-08 2014-12-03 北京维迈康科技有限公司 新型射频消融装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1596085A (zh) * 2001-09-28 2005-03-16 锐达医疗系统公司 阻抗控制的组织切除仪器和方法
US20170086907A1 (en) * 2015-09-28 2017-03-30 Japan Electel Inc. Radiofrequency balloon catheter system
CN205494439U (zh) * 2016-02-26 2016-08-24 杨冉 一种肠内营养输注与血糖控制一体机
CN110897710A (zh) * 2019-11-30 2020-03-24 杭州堃博生物科技有限公司 肺部神经消融系统的控制方法、系统以及计算机介质

Also Published As

Publication number Publication date
EP4115827A1 (en) 2023-01-11
US20230016496A1 (en) 2023-01-19
CN112641501A (zh) 2021-04-13
CN112641501B (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2022121017A1 (zh) 注射泵灌注控制方法、装置、系统及计算机可读存储介质
US20180344160A1 (en) Multipurpose Diagnostic Examination Apparatus And System
EP4272779A1 (en) Radio frequency operation data control method, apparatus, and syringe pump
US20160147367A1 (en) Touch panel apparatus for measuring biosignals and method of measuring biosignals by using the same
JP2024502802A (ja) 多極高周波アブレーションカテーテルによるrf操作リマインダー方法、装置、システム及び記憶媒体
WO2022141688A1 (zh) 消融操作提示方法、电子装置及计算机可读存储介质
CN115866485A (zh) 基于睡眠检测的播放控制方法、装置、设备及存储介质
US20230321362A1 (en) Syringe-pump bubble emptying control method and device, syringe pump and storage medium
WO2022142643A1 (zh) 消融参数配置方法、装置、系统及计算机可读存储介质
CN116585177B (zh) 基于数据挖掘的艾灸装置控制方法、装置、设备及介质
US20230025054A1 (en) Multi-path perfusion control method and apparatus for injection pump, and injection pump and storage medium
CN110221696A (zh) 眼球追踪方法及相关产品
WO2022141691A1 (zh) 射频操作提示方法、电子装置及计算机可读存储介质
WO2019041162A1 (zh) 一种响应操作轨迹的方法及监护仪
CN113134218B (zh) 运动健身方法及相关装置
CN112826454B (zh) 信息推送方法及相关产品
KR20160070232A (ko) 헬스케어 기능을 갖는 이동통신장치용 펜
WO2023124868A1 (zh) 流速控制方法、电子装置及计算机可读存储介质
WO2023109623A1 (zh) 灌注泵的消融目标灌注方法、装置、灌注泵及存储介质
CN112859621B (zh) 智能家居设备管理方法及相关产品
WO2021103999A1 (zh) 一种触摸操作的识别方法及穿戴设备
TW201019897A (en) A multi-function electronic device and method therewith
CN112932476A (zh) 信息提示方法及相关设备
CN116414179A (zh) 射频控制方法、电子装置及计算机可读存储介质
CN114935993A (zh) 一种图形界面交互方法、穿戴设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964946

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020964946

Country of ref document: EP

Effective date: 20221005

NENP Non-entry into the national phase

Ref country code: DE