WO2021135410A1 - 加载扇形线反射负载的超宽带可调移相单元 - Google Patents

加载扇形线反射负载的超宽带可调移相单元 Download PDF

Info

Publication number
WO2021135410A1
WO2021135410A1 PCT/CN2020/116266 CN2020116266W WO2021135410A1 WO 2021135410 A1 WO2021135410 A1 WO 2021135410A1 CN 2020116266 W CN2020116266 W CN 2020116266W WO 2021135410 A1 WO2021135410 A1 WO 2021135410A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
fan
wideband
circuit
port
Prior art date
Application number
PCT/CN2020/116266
Other languages
English (en)
French (fr)
Inventor
盖川
夏冬
Original Assignee
南京米乐为微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京米乐为微电子科技有限公司 filed Critical 南京米乐为微电子科技有限公司
Publication of WO2021135410A1 publication Critical patent/WO2021135410A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/185Phase-shifters using a diode or a gas filled discharge tube
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/18Networks for phase shifting

Definitions

  • the utility model relates to the technical field of phase shifters, in particular to an ultra-wideband adjustable phase shift unit circuit.
  • Variable phase shift circuits are widely used in radar signal simulators, signal generators, phased array systems, electronic countermeasures systems and communication systems, etc., to control the signal phase.
  • variable phase shifter circuit For ultra-wideband system applications, such as the emerging 5G millimeter wave frequency band, domestically, it is basically within the octave frequency range of 24-45GHz; for ultra-wideband applications greater than octave bands, the frequency band coverage of the variable phase shifter circuit is insufficient. The additional amplitude changes too much, which limits the application of the variable phase shift circuit in a broadband system, or increases the complexity of the application system.
  • the purpose of the utility model is to provide an ultra-wideband adjustable phase shift unit loaded with fan-shaped line reflection loads.
  • the utility model provides an ultra-wideband adjustable phase shift unit loaded with fan-shaped line reflection load, which includes: input node, output node and quadrature coupler;
  • the input node receiving the phase-shifted signal is connected to the input end of the quadrature coupler
  • the output node that outputs the phase shift signal is connected to the isolation end of the quadrature coupler
  • the through end and the coupling end of the quadrature coupler are respectively connected to a single-port variable reflection type load unit.
  • each single-port variable reflection load unit is formed by cascading a two-port first series reactance element, a two-port parallel sector line ultra-wideband matching circuit, and a single-port serially grounded tunable capacitive device.
  • the ultra-wideband matching circuit of the two-port parallel sector line is mainly formed by cascading N-level matching unit circuits in sequence, N ⁇ 1; each level of matching unit circuit is mainly composed of a parallel sector line circuit and a second series reactance The components are cascaded, and each level of matching unit circuit includes more than one parallel sector line circuit.
  • the first series reactance element is an inductance element or a transmission line adopting a series structure.
  • the tunable capacitive device is a diode or a triode connected by a source and a drain port.
  • the second series reactance element is an inductance element or a transmission line adopting a series structure.
  • the single-port variable reflection type load unit is a variable reflection type load unit loaded with fan-shaped lines.
  • first bias resistor with one end connected to the through end of the quadrature coupler, the other end connected to the external power supply, and one end connected to the coupling end of the quadrature coupler, and the other end connected to the external power supply. Two bias resistors.
  • the ultra-wideband adjustable phase shifting unit loaded with fan-shaped line reflection load provided by the present invention has the following advantages compared with the prior art:
  • Reflective phase-shifting circuit architecture with quadrature coupler can achieve good input and output standing wave characteristics in the octave range
  • phase shifter loaded with fan-shaped reflective load, and load the fan-shaped matching unit circuit load structure in the single-port variable reflective load unit, which can achieve a large dynamic range in the frequency range of the octave.
  • Phase shift with the characteristics of low insertion loss and low additional amplitude change, that is, both a larger phase shift range and lower additional amplitude change in the ultra-wideband range;
  • the load structure that loads the sector line matching unit circuit does not include lumped capacitance elements, which can greatly reduce the circuit consistency problem caused by process fluctuations in production.
  • the multi-stage ultra-wideband adjustable phase shifting unit loaded with fan-shaped line reflection load provided by the utility model can be cascaded to form an ultra-wideband phase shifter, which can realize ultra-wideband 360° phase shift, even greater than 360° shift It also has good standing wave characteristics, low additional amplitude change characteristics, reasonable and ingenious structure, and high application flexibility.
  • Figure 1 is a schematic diagram of the circuit structure of an ultra-wideband adjustable phase shifting unit loaded with fan-shaped line reflection load provided by the utility model;
  • FIG. 2 is a schematic diagram of the circuit structure of an ultra-wideband adjustable phase shifting unit provided by one of the embodiments;
  • FIG. 3 is an enlarged schematic diagram of the circuit structure of the single-port variable reflective load unit in FIG. 2;
  • phase shifter 4 is a schematic diagram of the circuit structure of a phase shifter formed by cascading two-stage ultra-wideband adjustable phase shifting units provided in FIG. 2;
  • Fig. 5 is a schematic diagram of the simulation result of the return loss of the ultra-wideband adjustable phase shifting unit circuit provided in Fig. 2;
  • Fig. 6 is a schematic diagram of simulation results of the phase shift characteristics of the ultra-wideband adjustable phase shift unit circuit provided in Fig. 2;
  • FIG. 7 is a schematic diagram of the simulation result of the additional amplitude change of the ultra-wideband adjustable phase shifting unit circuit provided in FIG. 2;
  • FIG. 8 is a schematic diagram of the simulation result of the insertion loss of the ultra-wideband adjustable phase shifting unit circuit provided in FIG. 2;
  • FIG. 9 is a schematic diagram of the simulation result of the return loss of the two-stage cascaded phase shifter circuit provided in FIG. 4;
  • FIG. 10 is a schematic diagram of the simulation results of the phase shift characteristics of the two-stage cascaded phase shifter circuit provided in FIG. 4;
  • FIG. 11 is a schematic diagram of the simulation result of the additional amplitude change of the two-stage cascaded phase shifter circuit provided in FIG. 4;
  • FIG. 12 is a schematic diagram of the simulation result of the insertion loss of the two-stage cascaded phase shifter circuit provided in FIG. 4.
  • Fig. 1 The structure diagram of the ultra-wideband adjustable phase shifting unit loaded with fan-shaped line reflection load provided by the utility model is shown in Fig. 1, which includes: input node P11, output node P12 and quadrature coupler CP1;
  • the signal input node P11 is connected to the input terminal IN of the quadrature coupler;
  • the output node P12 that outputs the phase-shifted signal is connected to the isolating end ISO of the quadrature coupler;
  • the through end THR of the quadrature coupler is connected to a single-port variable reflection type
  • the coupling end COU of the quadrature coupler is connected to a single-port variable reflection load unit VRL1'.
  • the aforementioned single-port variable reflective load unit is a variable reflective load unit loaded with fan-shaped lines.
  • each of the above-mentioned single-port variable reflective load units adopts a two-port first series reactance element, a two-port parallel sector line ultra-wideband matching circuit, and a single-port series-grounded tunable capacitive device Cascaded.
  • the single-port variable reflective load unit VRL1 connected to the through end THR of the quadrature coupler passes through a two-port first series reactance element TL1, a two-port parallel sector line ultra-wideband matching circuit and a single-port The series grounded tunable capacitive device VD1 is cascaded;
  • the single-port variable reflective load unit VRL1' connected to the coupling end COU of the quadrature coupler passes through a two-port first series reactance element TL1', a two-port The ultra-wideband matching circuit of parallel sector lines and a single-port serially grounded tunable capacitive device VD1' are cascaded.
  • the two-port parallel fan-shaped ultra-wideband matching circuit in each single-port variable reflection load unit is formed by cascading N-stage matching unit circuits in sequence, where N ⁇ 1; each stage of the matching unit circuit It is composed of a parallel sector line circuit and a second series reactance element in cascade connection, and each level of matching unit circuit includes more than one parallel sector line circuit.
  • the ultra-wideband matching circuit of the two-port parallel sector line is sequentially cascaded by the N-stage matching unit circuit MN_i. Cheng, where N ⁇ 1, 1 ⁇ i ⁇ N.
  • Each level of matching unit circuit MN_i is composed of a parallel sector line circuit RSB_1i and a second series reactance element L1i in cascade connection, and each level of matching unit circuit MN_i includes more than one parallel sector line circuit RSB_1i.
  • the ultra-wideband matching circuit of the two-port parallel sector line is formed by cascading N-stage matching unit circuits MN_i' in sequence, where N ⁇ 1, 1 ⁇ i ⁇ N.
  • Each level of matching unit circuit MN_i′ is composed of a parallel sector line circuit RSB_1i′ and a second series reactance element L1i′ in cascade connection, and each level of matching unit circuit MN_i′ includes more than one parallel sector line circuit RSB_1i′.
  • the matching unit circuit MN_i of each level given in Figure 1 includes two parallel sector line circuits, which are just examples, and can be flexibly adjusted according to actual needs.
  • the number of parallel sector lines in each level of matching unit circuit can be one or more.
  • the number of parallel sector lines of the matching unit circuits at each level can be the same or different.
  • Each series reactance element in this embodiment including a first series reactance element and a second series reactance element, can be implemented by an inductance element with a series structure or a transmission line with a series structure.
  • the tunable capacitive device in this embodiment can be realized by a diode, or a triode connected to the source and drain ports.
  • FIG. 2 The schematic diagram of the circuit structure of one of the embodiments provided by the present invention is shown in Figure 2.
  • the ultra-wideband phase-shifting unit circuit includes a 90° quadrature coupler CP1 and a single-port variable reflective load unit VRL1;
  • the quadrature coupler CP1 has an input terminal IN, a through terminal THR, a coupling terminal COU and Isolation terminal ISO; among them, the input terminal IN is used to receive the signal and is connected to the input node P11 that receives the phase-shifted signal;
  • the isolation terminal ISO is used to output the phase-shifted signal and is connected to the output node P12;
  • the through terminal THR is connected to a single port Variable reflection type load unit VRL1;
  • the coupling end COU is connected to a single-port variable reflection type load unit VRL1'.
  • the single-port variable reflective load unit VRL1 includes a variable capacitive element VD1, a 2-port matching unit circuit MN_1 and a first series reactance element TL1
  • the single-port variable reflective load unit VRL1′ includes a variable capacitive element VD1 ′, a 2-port matching unit circuit MN_1′ and a first series reactance element TL1′.
  • the tunable capacitive device described herein can also be referred to as a variable capacitive element.
  • the variable reflective load unit described herein may also be referred to as a variable reflective load unit or a variable reflective load unit.
  • the ultra-wideband adjustable phase shifting unit loaded with fan-shaped line reflection load described in the article can also be called an ultra-wideband adjustable phase-shifting circuit loaded with fan-shaped line reflection load, and it can also be called an ultra-wideband adjustable phase shifter unit or ultra-wideband Adjustable phase shifter circuit.
  • the single-port variable reflective load unit VRL1 in one of the embodiments shown in Figure 2 is taken as an example to illustrate the structure and working principle of the single-port variable reflective load unit, as shown in Figure 3 as an enlarged schematic diagram of the structure
  • the variable reflection type load unit VRL1 loaded with fan-shaped line includes: a first series reactance element TL1, a first-level matching unit circuit MN_1 composed of a two-port parallel fan-shaped line ultra-wideband matching circuit, and a tunable capacitive device VD1 grounded , The three are cascaded in sequence.
  • a series inductive element is used as the first series reactance element TL1.
  • the series inductive element is realized by a transmission line whose characteristic impedance and electrical length are (Z0_TL1, TH_TL1), respectively.
  • a variable capacitance diode is used as the variable capacitance element, that is, the capacitance device VD1 can be tuned to provide tuning of the variable capacitance value.
  • One end of the larger first bias resistor Rb1 (3000 ohm in this embodiment) is connected to the through end THR of the quadrature coupler, and the other end is connected to the external power supply Vc; Vc is used to provide the variable capacitance diode VD1 Bias voltage to control the capacitance value of VD1.
  • the variable capacitance diode VD1 as a tunable capacitive device/variable capacitive element has an index of NoF1 and a length of Len1.
  • the HBT process is adopted, and the variable capacitance diode is realized by the HBT process.
  • the capacitance variation range of a varactor diode is difficult to achieve a large-scale phase shift.
  • the technical solution provided in this embodiment adopts an ultra-wideband matching circuit with series inductive elements and parallel sector lines to jointly perform capacitance characteristics of specific varactor diodes. The matching greatly increases the phase shift range of the VRL1 circuit of the variable reflective load unit, and at the same time optimizes the fluctuation of the signal amplitude.
  • the number N of matching unit circuits in an ultra-wideband matching circuit with two-port parallel sector lines is determined by the total bandwidth of the phase shifter.
  • the larger the working bandwidth the larger the number of stages of the matching unit circuit in the ultra-wideband matching circuit of parallel sector lines (that is, the larger the N).
  • a 22-44 GHz phase-shifting circuit is implemented, and a first-level parallel sector line matching circuit can be used to greatly expand the device bandwidth and realize an octave-frequency phase-shifting device.
  • the first-level matching unit circuit MN_1 in the ultra-wideband matching circuit of parallel sector lines is composed of a parallel sector line RSB_11 and a second series reactance element L11 in cascade connection; the radius of the sector line RSB_11 is R_11, and the inner angle is A_11
  • the second series reactance element L11 adopts a series inductive element, which is realized by a transmission line, and the characteristic impedance and electrical length of the transmission line are (Z0_L11, TH_L11), respectively.
  • the sector line has the characteristics of ultra-wideband, and it will not cause the problem of device inconsistency due to the fluctuation of the production process.
  • the dimensions of the variable reflection load unit circuit VRL1 loaded with fan-shaped lines in this embodiment are shown in Table 1;
  • the fan-line variable reflection load unit VRL1′ connected to the orthogonal coupler coupling end COU includes:
  • the first series reactance element TL1' and the first-level matching unit circuit MN_1' constitute a two-port parallel sector line ultra-wideband matching circuit, and the tunable capacitive device VD1' is grounded, and the three are sequentially cascaded.
  • a symmetrical load structure is adopted, that is, the first series reactance element TL1' in VRL1' and the first-level matching unit circuit MN_1' constitute a two-port parallel sector line ultra-wideband matching circuit and a tunable capacitive device.
  • VD1′ is the same as the two-port parallel sector line ultra-wideband matching circuit and tunable capacitive device VD1 formed by the first series reactance element TL1 and the first-level matching unit circuit MN_1 in VRL1, and the second bias resistor Rb1′ It is the same as the first bias resistor Rb1, including the device size and the connection mode between the devices.
  • the relevant component numbers/marks in VRL1' are the corresponding component numbers/marks in VRL1 with the suffix "'" added. , So I won’t repeat them here.
  • One end of the second bias resistor Rb1' is connected to the coupling end COU of the quadrature coupler, and the other end is connected to the external power supply Vc.
  • an ultra-wideband phase shifter capable of realizing a phase shift greater than or equal to 360° can be constructed.
  • the ultra-wideband with each fan-shaped line reflection load can be Between the phase-shifting units, the output node of the ultra-wideband adjustable phase-shifting unit loaded with fan-shaped line reflection load is connected to the input node of the next-stage ultra-wideband adjustable phase-shifting unit loaded with fan-shaped line reflection load. , Realize multi-level cascade.
  • a schematic circuit diagram of the structure of one embodiment is shown in Fig. 4.
  • this embodiment is formed by cascading two ultra-wideband adjustable phase shifting units provided in Figure 2. That is, in order to further increase the phase shift range, in this embodiment, the fan-shaped line reflected load is loaded in two stages.
  • the ultra-wideband adjustable phase shifting unit VPS1 and VPS2 are cascaded to form an integral phase shifter to realize ultra-wideband 360° phase shift.
  • the output node P12 in the ultra-wideband adjustable phase shifting unit VPS1 loaded with fan-shaped reflection load at the first stage and the output node P12 in the ultra-wideband adjustable phase-shifting unit VPS2 loaded with fan-shaped reflection load in the next stage The input node P21 is connected to realize the two-stage cascade connection of VPS1 and VPS2.
  • the isolated end of the quadrature coupler CP1 in the ultra-wideband adjustable phase shifting unit VPS1 loaded with fan-shaped line reflection load in the first stage, and the ultra-wideband adjustable phase-shifting unit loaded with fan-shaped line reflection load in the next stage The input end of the quadrature coupler CP2 in VPS2 is connected to realize the two-stage cascade connection of VPS1 and VPS2.
  • VPS2 and VPS1 have exactly the same structure, that is, VPS2 includes the same orthogonal coupler CP2 as the orthogonal coupler CP1, input node P21, and output node P22, and the input end of the orthogonal coupler CP2 and input node P21
  • the isolation terminal of the quadrature coupler CP2 is connected to the output node P22.
  • the components in the VPS2 include the first series reactance element TL2, the tunable capacitive device VD2, the parallel sector line RSB_21 and the second series reactance element L21 in the ultra-wideband matching circuit of the two-port parallel sector line.
  • the second bias resistor Rb2' corresponds to the components in VPS1: the first series reactance element TL1, the tunable capacitive device VD1, the parallel sector line RSB_11 and the parallel sector line RSB_11 in the ultra-wideband matching circuit of the two-port parallel sector line
  • the series reactance element L11' and the second bias resistor Rb1' are the same, including the device size and the connection mode between the devices.
  • 11 is the characteristics of the amplitude change of the two-stage cascaded phase shifter in the phase adjustment process, and achieves an ultra-low additional amplitude change of ⁇ 0.1.5dB at 24-44GHz;
  • Figure 12 shows the characteristics of the two-stage cascaded phase shifter For the insertion loss characteristics

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

本实用新型公开了加载扇形线反射负载的超宽带可调移相单元,该超宽带可调移相单元包括:输入节点、输出节点和正交耦合器;其中接收待移相信号的输入节点连接正交耦合器的输入端;其中输出移相信号的输出节点连接正交耦合器的隔离端;正交耦合器的直通端和耦合端分别连接一个单端口可变反射式负载单元。本实用新型采用正交耦合器的反射式移相电路架构,可以在倍频程范围实现良好输入输出驻波特性,进一步在超宽带范围内兼具较大的移相范围和较低的附加幅度变化,大大降低生产中工艺波动引起的电路一致性问题。

Description

加载扇形线反射负载的超宽带可调移相单元 技术领域
本实用新型涉及移相器技术领域,尤其是一种超宽带可调移相单元电路。
背景技术
可变移相电路广泛应用于雷达信号模拟器、信号发生器、相控阵系统、电子对抗系统和通信系统等,实现对信号相位的控制。
对于超宽带系统应用,例如新兴的5G毫米波频段,国内基本在24-45GHz的倍频程频率范围内;针对大于倍频程的超宽带应用,可变移相器电路的频段覆盖范围不足,附加幅度变化太大,限制了可变移相电路在宽带系统中应用,或是增加了应用系统的复杂度。
因此如何使得可调移相器电路具有更好的输入输出驻波特性,进一步如何使得可调移相器电路兼具更大的移相范围和更低的移相附加幅度波动,甚至依然具有高度一致性和温度稳定性,以大幅简化甚至省去应用系统的校准工作,降低应用系统复杂度,这一问题值得进一步研究和解决。
发明内容
发明目的:为了解决现有技术中的不足,本实用新型的目的是提供一种加载扇形线反射负载的超宽带可调移相单元。
技术方案:为解决上述技术问题,本实用新型提供的一种加载扇形线反射负载的超宽带可调移相单元,其包括:输入节点、输出节点和正交耦合器;
其中接收待移相信号的输入节点连接正交耦合器的输入端;
其中输出移相信号的输出节点连接正交耦合器的隔离端;
正交耦合器的直通端和耦合端分别连接一个单端口可变反射式负载单元。
优选的,各单端口可变反射式负载单元通过一个两端口第一串联电抗元件、一个两端口并联扇形线的超宽带匹配电路、一个单端口串联接地的可调谐容性器件级联而成。
进一步优选的,所述两端口并联扇形线的超宽带匹配电路主要由N级匹配单元电路依次级联而成,N≥1;每一级匹配单元电路主要由并联扇形线电路和第二串联电抗元件级联构成,每一级匹配单元电路包括一个以上的并联扇形线电路。
优选的,所述第一串联电抗元件为采用串联结构的电感元件或传输线。优选的,所述可调谐容性器件为二极管或采用源极和漏极端口相连的三极管。
优选的,所述第二串联电抗元件为采用串联结构的电感元件或传输线。
优选的,所述单端口可变反射式负载单元为加载扇形线的可变反射式负载单元。
进一步优选的,还包括一端与正交耦合器的直通端连接,另一端与外部供电相连的第一偏置电阻,以及一端与正交耦合器的耦合端连接,另一端与外部供电相连的第二偏置电阻。
有益效果:本实用新型提供的一种加载扇形线反射负载的超宽带可调移相单元,其相对现有技术具有如下优点:
(1)采用正交耦合器的反射式移相电路架构,可以在倍频程范围实现良好输入输出驻波特性;
(2)进一步采用加载扇形线反射负载的反射式移相器,在单端口可变反射式负载单元中加载扇形线匹配单元电路的负载结构,可以在倍频程的频率范围内实现大动态范围移相,且具有低插损、低附加幅度变化的特性,即在超宽带范围内兼具较大的移相范围和较低的附加幅度变化;
(3)加载扇形线匹配单元电路的负载结构,不包含集总电容元件,能够大大降低生产中工艺波动引起的电路一致性问题。
(4)进一步的,可通过本实用新型提供的多级加载扇形线反射负载的超宽带可调移相单元级联构成超宽带移相器,实现超宽带360°移相,甚至大于360°移相,且兼具良好的驻波特性、较低的附加幅度变化特性,结构合理巧妙,应用灵活度高。
附图说明
图1为本实用新型提供的加载扇形线反射负载的超宽带可调移相单元的电路结构示意图;
图2为其中一个实施例提供的超宽带可调移相单元的电路结构示意图;
图3为图2中单端口可变反射式负载单元的电路结构放大示意图;
图4为其中一种由两级图2提供的超宽带可调移相单元级联而成的移相器的电路结构示意图;
图5为图2提供的超宽带可调移相单元电路回波损耗的仿真结果示意图;
图6为图2提供的超宽带可调移相单元电路移相特性的仿真结果示意图;
图7为图2提供的超宽带可调移相单元电路附加幅度变化的仿真结果示意图;
图8为图2提供的超宽带可调移相单元电路插入损耗的仿真结果示意图;
图9为图4提供的两级级联的移相器电路回波损耗的仿真结果示意图;
图10为图4提供的两级级联的移相器电路移相特性的仿真结果示意图;
图11为图4提供的两级级联的移相器电路附加幅度变化的仿真结果示意图;
图12为图4提供的两级级联的移相器电路插入损耗的仿真结果示意图。
具体实施方式
下面结合实施例和附图对本实用新型做进一步的详细说明,以下实施列对本实用新型不构成限定。
本实用新型所提供的加载扇形线反射负载的超宽带可调移相单元的结构示意图如图1所示,其包括:输入节点P11、输出节点P12和正交耦合器CP1;其中接收待移相信号的输入节点P11连接正交耦合器的输入端IN;其中输出移相信号的输出节点P12连接正交耦合器的隔离端ISO;正交耦合器的直通端THR连接一个单端口可变反射式负载单元VRL1,正交耦合器的耦合端COU连接一个单端口可变反射式负载单元VRL1′。
在某些实施例中,上述单端口可变反射式负载单元为加载扇形线的可变反射式负载单元。
在某些实施例中,上述各单端口可变反射式负载单元通过一个两端口第一串联电 抗元件、一个两端口并联扇形线的超宽带匹配电路、一个单端口串联接地的可调谐容性器件级联而成。具体来说,与正交耦合器的直通端THR连接的单端口可变反射式负载单元VRL1通过一个两端口第一串联电抗元件TL1、一个两端口并联扇形线的超宽带匹配电路和一个单端口串联接地的可调谐容性器件VD1级联而成;与正交耦合器的耦合端COU连接的单端口可变反射式负载单元VRL1′通过一个两端口第一串联电抗元件TL1′、一个两端口并联扇形线的超宽带匹配电路和一个单端口串联接地的可调谐容性器件VD1′级联而成。
如图1所示,各单端口可变反射式负载单元中的两端口并联扇形线的超宽带匹配电路由N级匹配单元电路依次级联而成,其中N≥1;每一级匹配单元电路由并联扇形线电路和第二串联电抗元件级联构成,每一级匹配单元电路包括一个以上的并联扇形线电路。
如图1所示,在与正交耦合器的直通端THR连接的单端口可变反射式负载单元VRL1中,两端口并联扇形线的超宽带匹配电路由N级匹配单元电路MN_i依次级联而成,其中N≥1,1≤i≤N。各级匹配单元电路MN_i均由并联扇形线电路RSB_1i和第二串联电抗元件L1i级联构成,各级匹配单元电路MN_i均包括一个以上的并联扇形线电路RSB_1i。在与正交耦合器的耦合端COU连接的单端口可变反射式负载单元VRL1′中,两端口并联扇形线的超宽带匹配电路由N级匹配单元电路MN_i′依次级联而成,其中N≥1,1≤i≤N。各级匹配单元电路MN_i′均由并联扇形线电路RSB_1i′和第二串联电抗元件L1i′级联构成,各级匹配单元电路MN_i′均包括一个以上的并联扇形线电路RSB_1i′。图1中给出的各级匹配单元电路MN_i均包括2个并联扇形线电路仅为示例,实际可根据需要灵活调整,各级匹配单元电路并联扇形线的数量可以为一个,也可以为多个,各级匹配单元电路的并联扇形线的数量可以相同,也可以不同。
本实施例中的各串联电抗元件,包括第一串联电抗元件和第二串联电抗元件,可以采用串联结构的电感元件,也可以采用串联结构的传输线实现。
本实施例中的可调谐容性器件可以采用二极管实现,也可以采用源极和漏极端口相连的三极管。
本实用新型提供的其中一个实施例的电路结构示意图如图2所示,在该实施例中,M=1,也即各单端口可变反射式负载单元通过一个两端口第一串联电抗元件、一个两端口并联扇形线的超宽带匹配电路和一个单端口串联接地的可调谐容性器件级联而成;其中各单端口可变反射式负载单元中的两端口并联扇形线的超宽带匹配电路只包括1级匹配单元电路;且该级匹配单元电路由1个并联扇形线电路和1个第二串联电抗元件级联构成。具体在该实施例中,超宽带移相单元电路包含90°正交耦合器CP1和单端口可变反射式负载单元VRL1;正交耦合器CP1具有输入端IN、直通端THR、耦合端COU及隔离端ISO;其中,输入端IN用于接收信号,与接收待移相信号的输入节点P11相连接;隔离端ISO用于输出移相信号,与输出节点P12相连接;直通端THR连接单端口可变反射式负载单元VRL1;耦合端COU连接单端口可变反射式负载单元VRL1′。单端口可变反射式负载单元VRL1包括可变容性元件VD1、1个2端口匹配单元电路MN_1和第一串联电抗元件TL1,单端口可变反射式负载单元VRL1′包括可变容性元件VD1′、1个2端口匹配单元电路MN_1′和第一串联电抗元件TL1′。
文中所述可调谐容性器件也可称为可变容性元件。文中所述可变反射式负载单元也可称为可变式反射负载单元、或可变反射负载单元。文中所述加载扇形线反射负载的超宽带可调移相单元,也可称为加载扇形线反射负载的超宽带可调移相电路,亦可称为超宽 带可调移相器单元或超宽带可调移相器电路。
此处以图2中给出的其中一个实施例中的单端口可变反射式负载单元VRL1为例来阐述单端口可变反射式负载单元的结构和工作原理,如图3给出的结构放大示意图可见,该加载扇形线的可变反射式负载单元VRL1,包括:第一串联电抗元件TL1、一级匹配单元电路MN_1构成的两端口并联扇形线的超宽带匹配电路、可调谐容性器件VD1接地,三者顺序级联。本实施例中采用串联感性元件作为第一串联电抗元件TL1,该串联感性元件由传输线实现,该传输线的特征阻抗和电长度分别为(Z0_TL1,TH_TL1)。本实施例中采用可变电容二极管作为可变容性元件,即可调谐容性器件VD1,提供可变电容值的调谐。较大阻值的第一偏置电阻Rb1(本实施例中为3000欧姆)一端与正交耦合器的直通端THR连接,另一端与外部供电Vc相连;Vc用于为可变电容二极管VD1提供偏置电压,从而控制VD1的电容值。此实施例中作为可调谐容性器件/可变容性元件的可变电容二极管VD1的指数为NoF1,长度为Len1,本实施例中采用HBT工艺,变容二极管由HBT工艺实现。一般地,变容二极管的电容变化范围难以实现大范围移相,而本实施例提供的技术方案中采用串联感性元件和并联扇形线的超宽带匹配电路,共同对特定变容二极管的电容特性进行匹配,大幅增大了可变反射式负载单元VRL1电路的移相范围,同时优化信号幅度的波动。
在实际应用中,两端口并联扇形线的超宽带匹配电路中匹配单元电路的级数N,由移相器总的带宽决定。一般地,越大的工作带宽需要并联扇形线的超宽带匹配电路中匹配单元电路的级数越大(即N越大)。本实施例中实现22-44GHz的移相电路,采用一级并联扇形线的匹配电路,即可大幅度拓展器件带宽,实现倍频程移相器件。本实施例中,并联扇形线的超宽带匹配电路中的一级匹配单元电路MN_1,由一个并联扇形线RSB_11与第二串联电抗元件L11级联构成;扇形线RSB_11的半径为R_11,内角为A_11,此处第二串联电抗元件L11采用串联感性元件,该串联感性元件由传输线实现,该传输线的特征阻抗和电长度分别为(Z0_L11,TH_L11)。不同于集总电容器件,扇形线拥有超宽带的特性,同时不会因为生产工艺的波动,带来器件不一致性的问题。本实施例中加载扇形线的可变反射式负载单元电路VRL1的尺寸详见表1;
表1可变反射式负载单元VRL1尺寸
Figure PCTCN2020116266-appb-000001
和与正交耦合器直通端THR连接的加载扇形线的可变反射式负载单元VRL1相似 的,与正交耦合器耦合端COU连接的加载扇形线的可变反射式负载单元VRL1′,包括:第一串联电抗元件TL1′、一级匹配单元电路MN_1′构成的两端口并联扇形线的超宽带匹配电路、可调谐容性器件VD1′接地,三者顺序级联。在本实施例中,采用对称的负载结构,即VRL1′中的第一串联电抗元件TL1′、一级匹配单元电路MN_1′构成的两端口并联扇形线的超宽带匹配电路和可调谐容性器件VD1′,分别与VRL1中的第一串联电抗元件TL1、一级匹配单元电路MN_1构成的两端口并联扇形线的超宽带匹配电路和可调谐容性器件VD1相同,同时第二偏置电阻Rb1′和第一偏置电阻Rb1相同,包括器件尺寸和器件之间的连接方式均相同,VRL1′中的相关元器件标号/标记均为VRL1中对应元器件标号/标记的基础上附加后缀“′”,故而此处不再一一赘述。其中第二偏置电阻Rb1′一端与正交耦合器的耦合端COU连接,另一端与外部供电Vc相连。
对本实施例提供的如图2所示的加载扇形线反射负载的超宽带可调移相单元进行仿真实验,图5为该移相单元在Vc=0V时的回波损耗特性。由于采用正交耦合器的反射式移相电路架构,该实施例能够实现从20GHz-50GHz的范围,好于-17dB的良好匹配;图6为该移相单元的移相特性,以偏置电压Vc=0V时的相位作为参考相位,增大Vc可以实现相位移动;当偏置电压Vc>6V时可见频率在20-45GHz内可以实现大于180°移相;图7为该移相单元在相位调节过程中幅度变化的特性,在24-44GHz实现±0.7dB的超低附加幅度变化;通过图8给出的该移相单元在偏置电压Vc=0V时的插入损耗特性仿真结果可见,损耗较小。
通过如上各实施例所提供的加载扇形线反射负载的超宽带可调移相单元依次级联可构成实现大于等于360°移相的超宽带移相器,各加载扇形线反射负载的超宽带可调移相单元之间,通过加载扇形线反射负载的超宽带可调移相单元的输出节点和与之相邻的下一级加载扇形线反射负载的超宽带可调移相单元的输入节点相连,实现多级级联。也可以说是各加载扇形线反射负载的超宽带可调移相单元之间,通过加载扇形线反射负载的超宽带可调移相单元中正交耦合器的隔离端和与之相邻的下一级加载扇形线反射负载的超宽带可调移相单元中正交耦合器的输入端相连,实现多级级联。本实施例中,各级加载扇形线反射负载的超宽带可调移相单元的输出节点通过传输线和与之相邻的下一级加载扇形线反射负载的超宽带可调移相单元的输入节点相连。
上述移相器,其中一个实施例的结构示意电路图如图4所示,该实施例中90°混合正交耦合器CP1采用耦合传输线实现,其奇偶模特征阻抗和电长度分别为;Zo1=15Ω,Ze1=100Ω,PHI_1=90°@34GHz。如图4所示,本实施例由两个图2提供的超宽带可调移相单元级联而成,也即为了进一步提高移相范围,本实施例中由两级加载扇形线反射负载的超宽带可调移相单元VPS1和VPS2级联组成一整体移相器,实现超宽带360°移相。具体在本实施例中,通过第一级加载扇形线反射负载的超宽带可调移相单元VPS1中的输出节点P12,与下一级加载扇形线反射负载的超宽带可调移相单元VPS2中的输入节点P21相连,实现VPS1和VPS2两级级联。也可以说是,通过第一级加载扇形线反射负载的超宽带可调移相单元VPS1中正交耦合器CP1的隔离端,与下一级加载扇形线反射负载的超宽带可调移相单元VPS2中正交耦合器CP2的输入端相连,实现VPS1和VPS2两级级联。
本实施例中VPS2和VPS1结构完全相同,也即VPS2中包括与正交耦合器CP1相同的正交耦合器CP2、输入节点P21和输出节点P22,正交耦合器CP2的输入端与输入节点P21相连接,正交耦合器CP2的隔离端与输出节点P22相连接。
本实施例中,VPS2中的各元器件:包括第一串联电抗元件TL2、可调谐容性器件VD2、两端口并联扇形线的超宽带匹配电路中的并联扇形线RSB_21与第二串联电抗元件L21、第一偏置电阻Rb2、第一串联电抗元件TL2′、可调谐容性器件VD2′、两端口并联扇形线的超宽带匹配电路中的并联扇形线RSB_21′与第二串联电抗元件L21′、第二偏置电阻Rb2′,与VPS1中与之对应的各元器件:第一串联电抗元件TL1、可调谐容性器件VD1、两端口并联扇形线的超宽带匹配电路中的并联扇形线RSB_11与第二串联电抗元件L11、第一偏置电阻Rb1、第一串联电抗元件TL1′、可调谐容性器件VD1′、两端口并联扇形线的超宽带匹配电路中的并联扇形线RSB_11′与第二串联电抗元件L11′、第二偏置电阻Rb1′相同,包括器件尺寸和器件之间的连接方式均相同。
如图4所示,本实施例中是将两级完全相同的加载扇形线反射负载的超宽带可调移相单元,通过特征阻抗Z0_12=50Ω的传输线TL12进行连接,电长度TH_12可以由版图位置自由调节,本实施例中选取电长度TH_12=30°@34GHz。
对该实施例提供的如图4所示的由VPS1和VPS2两级级联而成的移相器进行仿真实验,图9为该移相器在Vc=0V时的回波损耗特性。两级加载扇形线反射负载的超宽带可调移相单元级联后,仍然能够实现从20GHz-50GHz的范围,好于-12dB的良好匹配;图10为该两级级联的移相器的移相特性,以偏置电压Vc=0V时的相位作为参考相位,增大Vc可以实现相位移动;当偏置电压Vc>6V时可见频率在20-45GHz内可以实现大于360°移相;图11为该两级级联的移相器在相位调节过程中幅度变化的特性,在24-44GHz实现±0.1.5dB的超低附加幅度变化;图12为该两级级联的移相器在偏置电压Vc=0V时的插入损耗特性,由该仿真结果可见,本实施例提供的该两级级联的移相器损耗较小。
以上仅是本实用新型的优选实施方式,应当指出以上实施列对本实用新型不构成限定,相关工作人员在不偏离本实用新型技术思想的范围内,所进行的多样变化和修改,均落在本实用新型的保护范围内。

Claims (7)

  1. 一种加载扇形线反射负载的超宽带可调移相单元,其特征在于,包括:输入节点、输出节点和正交耦合器;
    其中接收待移相信号的输入节点连接正交耦合器的输入端;
    其中输出移相信号的输出节点连接正交耦合器的隔离端;
    正交耦合器的直通端和耦合端分别连接一个单端口可变反射式负载单元。
  2. 如权利要求1所述的加载扇形线反射负载的超宽带可调移相单元,其特征在于:各单端口可变反射式负载单元通过一个两端口第一串联电抗元件、一个两端口并联扇形线的超宽带匹配电路、一个单端口串联接地的可调谐容性器件级联而成。
  3. 如权利要求2所述的加载扇形线反射负载的超宽带可调移相单元,其特征在于:所述两端口并联扇形线的超宽带匹配电路主要由N级匹配单元电路依次级联而成,N≥1;每一级匹配单元电路主要由并联扇形线电路和第二串联电抗元件级联构成,每一级匹配单元电路包括一个以上的并联扇形线电路。
  4. 如权利要求2所述的加载扇形线反射负载的超宽带可调移相单元,其特征在于:所述第一串联电抗元件为采用串联结构的电感元件或传输线;所述可调谐容性器件为二极管或采用源极和漏极端口相连的三极管。
  5. 如权利要求3所述的加载扇形线反射负载的超宽带可调移相单元,其特征在于:所述第二串联电抗元件为采用串联结构的电感元件或传输线。
  6. 如权利要求1所述的加载扇形线反射负载的超宽带可调移相单元,其特征在于:所述单端口可变反射式负载单元为加载扇形线的可变反射式负载单元。
  7. 如权利要求1所述的加载扇形线反射负载的超宽带可调移相单元,其特征在于:还包括一端与正交耦合器的直通端连接,另一端与外部供电相连的第一偏置电阻,以及一端与正交耦合器的耦合端连接,另一端与外部供电相连的第二偏置电阻。
PCT/CN2020/116266 2019-12-29 2020-09-18 加载扇形线反射负载的超宽带可调移相单元 WO2021135410A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201922442221.5U CN210839500U (zh) 2019-12-29 2019-12-29 加载扇形线反射负载的超宽带可调移相单元
CN201922442221.5 2019-12-29

Publications (1)

Publication Number Publication Date
WO2021135410A1 true WO2021135410A1 (zh) 2021-07-08

Family

ID=71260929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116266 WO2021135410A1 (zh) 2019-12-29 2020-09-18 加载扇形线反射负载的超宽带可调移相单元

Country Status (2)

Country Link
CN (1) CN210839500U (zh)
WO (1) WO2021135410A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909452B (zh) * 2021-01-13 2022-06-14 宁波大学 一种基于铁电材料的可调谐反射式移相器
CN116232308A (zh) * 2023-05-05 2023-06-06 隔空(上海)智能科技有限公司 一种相位温度补偿电路及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050040874A1 (en) * 2003-04-02 2005-02-24 Allison Robert C. Micro electro-mechanical system (mems) phase shifter
CN101582527A (zh) * 2008-05-12 2009-11-18 联发科技股份有限公司 反射式移相器、相位阵列接收器和相位阵列发射器
CN106537768A (zh) * 2014-05-19 2017-03-22 华为技术有限公司 调相负载装置和方法
CN110011640A (zh) * 2018-09-05 2019-07-12 浙江铖昌科技有限公司 小型化Lange型数控单片集成移相器
CN110957987A (zh) * 2019-12-29 2020-04-03 南京米乐为微电子科技有限公司 加载扇形线反射负载的超宽带可调移相单元及移相器
CN211063583U (zh) * 2019-12-29 2020-07-21 南京米乐为微电子科技有限公司 加载扇形线反射负载的超宽带可调移相器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050040874A1 (en) * 2003-04-02 2005-02-24 Allison Robert C. Micro electro-mechanical system (mems) phase shifter
CN101582527A (zh) * 2008-05-12 2009-11-18 联发科技股份有限公司 反射式移相器、相位阵列接收器和相位阵列发射器
CN106537768A (zh) * 2014-05-19 2017-03-22 华为技术有限公司 调相负载装置和方法
CN110011640A (zh) * 2018-09-05 2019-07-12 浙江铖昌科技有限公司 小型化Lange型数控单片集成移相器
CN110957987A (zh) * 2019-12-29 2020-04-03 南京米乐为微电子科技有限公司 加载扇形线反射负载的超宽带可调移相单元及移相器
CN211063583U (zh) * 2019-12-29 2020-07-21 南京米乐为微电子科技有限公司 加载扇形线反射负载的超宽带可调移相器

Also Published As

Publication number Publication date
CN210839500U (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
WO2021135410A1 (zh) 加载扇形线反射负载的超宽带可调移相单元
WO2021135409A1 (zh) 加载扇形线反射负载的超宽带可调移相器
US10270146B2 (en) Ultra wide band digital phase shifter
CN109616723A (zh) 一种应用于5g毫米波基站的高精度移相器
CN110957987A (zh) 加载扇形线反射负载的超宽带可调移相单元及移相器
WO2021129646A1 (zh) 一种超宽带两位移相器
CN110190830B (zh) 一种双频带小型化数字移相器
CN110752429A (zh) 一种超宽带奇等功分电路及设计方法
WO2017128678A1 (zh) 基于容性负载的超宽带定值移相器
CN100555860C (zh) 微波毫米波宽频带低损耗数字模拟兼容移相器
KR102670636B1 (ko) 전력 분배기, 조절 방법, 전력 분배 방법, 저장 매체 및 전자 장치
CN110768642B (zh) 一种具有平坦群时延特性的宽带负群时延微波电路
US2018320A (en) Radio frequency transmission line
CN112688664A (zh) 一种宽带六位mmic数控移相器
US20220029597A1 (en) Continuously adjustable analog phase shifter
CN111130488A (zh) 一种超宽带移相电路
CN110994102A (zh) 一种分配路数和分配比可重构功分器
CN113783550B (zh) 一种用于k波段的高精度数控移相器及其移相方法
CN111277280B (zh) 一种基于毫米波压控振荡器的相控阵列发射芯片
CN108767408B (zh) 一种超小型化威尔金森功分器
KR100366299B1 (ko) 초고주파 아날로그 위상 변위기
CN102176523A (zh) 微波毫米波1-22GHz小型化超宽带低损耗0-90°移相器
CN110545080A (zh) 一种基于微带的微波宽带功率均衡器
CN116488983B (zh) 一种i-q矢量调制器及其应用的射频信号调制方法
Ivanov et al. Comparative analysis of RC-and RLC-complex filters for microwave microelectronic phaseshifters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909366

Country of ref document: EP

Kind code of ref document: A1