WO2021129777A1 - 一种超宽带移相电路 - Google Patents
一种超宽带移相电路 Download PDFInfo
- Publication number
- WO2021129777A1 WO2021129777A1 PCT/CN2020/139209 CN2020139209W WO2021129777A1 WO 2021129777 A1 WO2021129777 A1 WO 2021129777A1 CN 2020139209 W CN2020139209 W CN 2020139209W WO 2021129777 A1 WO2021129777 A1 WO 2021129777A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor
- inductor
- phase shift
- circuit
- spiral inductor
- Prior art date
Links
- 230000010363 phase shift Effects 0.000 title claims abstract description 63
- 239000003990 capacitor Substances 0.000 claims abstract description 103
- 230000008878 coupling Effects 0.000 claims abstract description 17
- 238000010168 coupling process Methods 0.000 claims abstract description 17
- 238000005859 coupling reaction Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 abstract description 6
- 230000010354 integration Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/18—Networks for phase shifting
- H03H7/20—Two-port phase shifters providing an adjustable phase shift
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the invention relates to radio frequency microwave integrated circuit technology of microelectronics and solid-state electronics, in particular to an ultra-wideband phase shift circuit.
- the phase shifter is a key element in the modern antenna phased array and microwave communication system. It is used to control the phase change of the microwave signal, thereby controlling the beam scanning of the antenna, and realizing the search and tracking of the target.
- the size of the phase shifter, phase shift accuracy, cost, operating temperature, and mass production capacity are directly related to the performance of the entire phased array radar, and its bandwidth represents the overall bandwidth bottleneck of the transceiver system.
- monolithic integrated phase shifter circuits mainly include transmission line type and reflection type.
- Transmission line type phase shifters usually have a narrow working bandwidth.
- a multi-stage series connection is generally used. This will increase the area of the circuit and increase the loss of the circuit, and it is difficult for the bandwidth to reach 9 octaves.
- the reflective phase shifter can expand the bandwidth, but is limited by the quarter-wavelength line, and the circuit area is relatively large, which is not conducive to chip miniaturization.
- the purpose of the present invention is to provide an ultra-wideband phase shift circuit with simple circuit topology, low process difficulty, low loss, high phase shift accuracy, simple control mode, and high integration.
- an ultra-wideband phase shift circuit including a first switch tube AFs, a second switch tube AFp, a first capacitor Cp1, a second capacitor Cp2, a third capacitor Cs1, and a fourth capacitor Cs2 , A first inductor Ls1, a second inductor Ls2 and a magnetic coupling mutual inductance, wherein the magnetic coupling mutual inductance includes a first spiral inductor and a second spiral inductor;
- the first end of the first spiral inductor is connected to the input end of the circuit, the first end of the second spiral inductor is connected to the output end of the circuit, and the first end of the first spiral inductor and the first end of the second spiral inductor are connected in series in sequence.
- the first capacitor Cp1 and the second switch tube AFp are connected in series and then connected in parallel with the second capacitor Cp2; the common terminal of the first capacitor Cp1 and the second capacitor Cp2 is grounded, and the common terminal of the second switch tube AFp and the second capacitor Cp2 is connected The end of the first spiral inductor and the second spiral inductor.
- first end of the first spiral inductor is connected to one end of the first inductor Ls1, the other end of the first inductor Ls1 is connected to the source or drain of the first switching tube AFs, and the drain or source of the first switching tube AFs
- the pole is connected to one end of the second inductor Ls2, and the other end of the second inductor Ls2 is connected to the first end of the second spiral inductor.
- one end of the first capacitor Cp1 is connected to the source or drain of the second switching tube AFp, and the drain or source of the second switching tube AFp is connected to the ends of the first spiral inductor and the second spiral inductor.
- first spiral inductor and the second spiral inductor are wound with each other to form a negative mutual inductance value to expand the bandwidth.
- variable capacitor with a controllable level is formed to realize the phase shift function.
- first capacitor Cp1 and the second capacitor Cp2 are variable capacitors. By changing the sizes of the first capacitor Cp1 and the second capacitor Cp2, different phase shift amounts and matching at low frequencies are realized.
- the third capacitor Cs1 is a variable capacitor
- the first inductance Ls1 and the second inductance Ls2 are fixed inductances
- the three are connected in series between the input port and the output port of the circuit to realize the difference in high frequency. The amount of phase shift and matching.
- the fourth capacitor Cs2 is a fixed capacitor, and by increasing the adjustment range of the fourth capacitor Cs2, the phase shift amount at the high frequency of the circuit is adjusted.
- the present invention has significant advantages as follows: (1) The magnetic coupling all-pass network structure is adopted, and the phase shift amount is changed by adjusting the coupling coefficient, the inductance value, and the capacitance value of series and parallel between the coiled inductors. And bandwidth, and use the on and off of the switch to characterize the base state and phase shift state of the phase shift circuit, which can achieve high-precision phase shift in the frequency band of more than 10 octaves, realize ultra-wideband phase shift, and high precision of phase shift; (2) The circuit topology is simple, and the process difficulty is low; (3) The electrical performance index is high and the loss is small, the control method is simple, the use is convenient, the integration is high, and it is convenient for mass production.
- Fig. 1 is a schematic diagram of the structure of an ultra-wideband phase shift circuit of the present invention.
- Fig. 2 is a hardware structure diagram of an ultra-wideband phase shift circuit in an embodiment of the present invention.
- Fig. 3 is a 5.625 degree phase shift curve diagram of a phase shift circuit working at 2-20 GHz in an embodiment of the present invention.
- Fig. 4 is an 11.25 degree phase shift curve diagram of a phase shift circuit working at 2-20 GHz in an embodiment of the present invention.
- Fig. 5 is a 22.5 degree phase shift curve diagram of a phase shift circuit working at 2-20 GHz in an embodiment of the present invention.
- Fig. 6 is a graph of S-parameters corresponding to a phase shift of 5.625 degrees working in a phase shifting circuit of 2-20 GHz in an embodiment of the present invention.
- FIG. 7 is a graph of the S parameter corresponding to the 11.25 degree phase shift amount of the phase shift circuit working at 2-20 GHz in the embodiment of the present invention.
- Fig. 8 is a graph of S-parameters corresponding to a phase shift of 22.5 degrees working in a phase shift circuit of 2-20 GHz in an embodiment of the present invention.
- the ultra-wideband phase shift circuit of the present invention includes two switch tubes, three variable capacitors, one fixed capacitor, two fixed inductors and magnetic coupling mutual inductance, wherein the magnetic coupling mutual inductance includes a first spiral inductor and a second spiral inductor.
- the phase shift circuit adopts a magnetic coupling all-pass network structure to realize the phase shift of the signal in a wide frequency range.
- the phase shift amount and bandwidth are changed by adjusting the coupling coefficient, inductance and capacitance between the spiral inductors, and the two types of switching tubes are used.
- the state characterizes the ground state and phase-shifting state of the phase-shifting circuit, as follows:
- An ultra-wideband phase shift circuit including a first switch tube AFs, a second switch tube AFp, a first capacitor Cp1, a second capacitor Cp2, a third capacitor Cs1, a fourth capacitor Cs2, a first inductor Ls1, and a second inductor Ls2 And magnetic coupling mutual inductance, wherein the magnetic coupling mutual inductance includes a first spiral inductance and a second spiral inductance;
- the first end of the first spiral inductor is connected to the input end of the circuit, the first end of the second spiral inductor is connected to the output end of the circuit, and the first end of the first spiral inductor and the first end of the second spiral inductor are connected in series in sequence.
- the first capacitor Cp1 and the second switch tube AFp are connected in series and then connected in parallel with the second capacitor Cp2; the common terminal of the first capacitor Cp1 and the second capacitor Cp2 is grounded, and the common terminal of the second switch tube AFp and the second capacitor Cp2 is connected The end of the first spiral inductor and the second spiral inductor.
- first end of the first spiral inductor is connected to one end of the first inductor Ls1, the other end of the first inductor Ls1 is connected to the source or drain of the first switching tube AFs, and the drain or source of the first switching tube AFs
- the pole is connected to one end of the second inductor Ls2, and the other end of the second inductor Ls2 is connected to the first end of the second spiral inductor.
- one end of the first capacitor Cp1 is connected to the source or drain of the second switching tube AFp, and the drain or source of the second switching tube AFp is connected to the ends of the first spiral inductor and the second spiral inductor.
- first spiral inductor and the second spiral inductor are wound with each other to form a negative mutual inductance value to expand the bandwidth.
- variable capacitor with a controllable level is formed to realize the phase shift function.
- first capacitor Cp1 and the second capacitor Cp2 are variable capacitors. By changing the sizes of the first capacitor Cp1 and the second capacitor Cp2, different phase shift amounts and matching at low frequencies are realized.
- the third capacitor Cs1 is a variable capacitor
- the first inductance Ls1 and the second inductance Ls2 are fixed inductances
- the three are connected in series between the input port and the output port of the circuit to realize the difference in high frequency. The amount of phase shift and matching.
- the fourth capacitor Cs2 is a fixed capacitor, and by increasing the adjustment range of the fourth capacitor Cs2, the phase shift amount at the high frequency of the circuit is adjusted.
- the invention has the advantages of ultra-wideband, simple circuit topology, low process difficulty requirements, low loss, high phase shift accuracy, simple control mode, and high integration.
- This embodiment provides a phase-shifting circuit that works at 2-20 GHz.
- the circuit principle diagram is shown in Figure 1, and the phase-shifting circuit board hardware is shown in Figure 2.
- the layout is composed of GaAs PHEMT transistors, microstrip lines, capacitors, and ground holes. composition.
- the radio frequency signal enters from the input port 1.
- the mutually coupled spiral inductor 2 and the two switched capacitors 3 and 4 form a phase-shifting network.
- the power-on control port 5 controls the working state of the two transistors to select the signal transmission path and generate the corresponding Ground state and phase shift state, so as to achieve the purpose of phase shift.
- the 5.625°, 11.25°, and 22.5° phase shifters in this embodiment all adopt this structure design.
- the ultra-wideband phase shift circuit of this embodiment includes a first switch tube AFs, a second switch tube AFp, a first capacitor Cp1, a second capacitor Cp2, a third capacitor Cs1, a fourth capacitor Cs2, and a first inductor Ls1 ,
- the first spiral inductor and the second spiral inductor are wound with each other, the first end of the first spiral inductor is connected to the input end of the circuit and one end of the first inductor Ls1, and the other end of the first inductor Ls1 is connected to the source of the first switch tube AFs Or drain, the other pole of the first switch tube AFs is connected to one end of the second inductor Ls2, and the other end of the second inductor Ls2 is connected to the head end of the second spiral inductor and the output end of the circuit; the first spiral inductor and the second spiral inductor Connected at the end;
- One end of the first capacitor Cp1 is connected to the source or drain of the second switch tube AFp, the second capacitor Cp2 is connected in parallel to both ends of the first capacitor Cp1 and the second switch tube AFp, and one end of the first capacitor Cp1 is connected to ground , The end connected to the second switch tube AFp is connected to the ends of the first spiral inductor and the second spiral inductor.
- the first spiral inductor and the second spiral inductor are wound with each other to reduce the circuit area and form a negative mutual inductance value to expand the bandwidth.
- the first switching tube AFs and the third capacitor Cs1 are connected in series, and the second switching tube AFp and the first capacitor Cp1 are connected in series. By controlling the on and off states of the first switching tube AFs and the second switching tube AFp, an electric current is formed.
- the end of the magnetic coupling mutual inductance is connected to the ground through the first capacitor Cp1 and the second capacitor Cp2 in series.
- the first capacitor Cp1 and the second capacitor Cp2 are variable capacitors. By changing the size of the first capacitor Cp1 and the second capacitor Cp2, Achieve different phase shift amounts and matching at low frequencies.
- the third capacitor Cs1 is a variable capacitor, and the first inductance Ls1 and the second inductance Ls2 are fixed inductances, which are connected in series between the input port and the output port of the circuit, and are used to achieve different phase shift sums at high frequencies. match.
- the fourth capacitor Cs2 is a fixed capacitor, which is connected in series between the input port and the output port of the circuit. By increasing the adjustable range of the fourth capacitor Cs2, the phase shift amount at the high frequency of the circuit is adjusted.
- Figures 3 to 8 are measured curves of the 2-20GHz phase shift circuit of the present invention.
- Figure 3 is a phase shift curve of 5.625 degrees
- Figure 4 is a phase shift curve of 11.25 degrees
- Figure 5 is a phase shift curve of 22.5 degrees
- Figures 6 to 8 These are the S-parameter curves corresponding to the three phase shifting amounts. It can be seen from the figure that in the frequency band of 2 to 20 GHz, the phase shifter of this structure has very high phase shift accuracy and good flatness.
- the phase shift errors of the three phase shift amounts are all less than 0.3°, and the loss is low.
- the frequency band is basically less than 2dB, while the chip size is small, the structure is simple, and it is convenient to control.
Landscapes
- Networks Using Active Elements (AREA)
Abstract
一种超宽带移相电路,该电路包括第一~第二开关管(AFs、AFp)、第一~第四电容(Cs1、Cs2、Cp1、Cp2)、第一~第二电感(Ls1、Ls2)和磁耦合互感,其中磁耦合互感包括第一、第二螺旋电感;所述第一螺旋电感、第二螺旋电感的首端分别连接电路的输入端、输出端,第一、第二螺旋电感的首端之间顺次串联第一电感(Ls1)、第一开关管(AFs)、第三电容(Cs1)、第二电感(Ls2);所述第四电容(Cs2)串联在电路的输入、输出端口之间;第一、第二螺旋电感的末端相连;所述第一电容(Cp1)与第二开关管(AFp)串联之后与第二电容(Cp2)并联;第一、第二电容(Cp1、Cp2)的公共端接地,第二开关管(AFp)与第二电容(Cp2)的公共端接入第一、第二螺旋电感的末端。该电路具有超宽带、电路拓扑结构简单的优点,并且工艺难度要求低、损耗小、移相精度高、控制方式简单、集成度高。
Description
本发明涉及微电子与固体电子学的射频微波集成电路技术,特别是一种超宽带移相电路。
移相器是现代天线相控阵及微波通讯系统的中的关键元件,用于控制微波信号的相位变化,从而控制天线的波束扫描,实现对目标的搜索及跟踪。移相器的体积大小、移相精度、成本、工作温度、批量生产能力都直接关系到整个相控阵雷达的性能,其带宽代表了收发系统的总体带宽瓶颈。
目前单片集成移相器电路主要有传输线型、反射型。传输线型移相器通常工作带宽较窄,为了拓展带宽,一般采用多级串联的方式,这样会增大电路的面积,增加电路的损耗,而且带宽难以达到9个倍频程。反射型移相器可以拓展带宽,但受限于四分之一波长线,电路面积也比较大,不利于芯片小型化。
发明内容
本发明的目的在于提供一种超宽带、电路拓扑结构简单、工艺难度要求低、损耗小、移相精度高、控制方式简单、集成度高的超宽带移相电路。
实现本发明目的的技术解决方案为:一种超宽带移相电路,包括第一开关管AFs、第二开关管AFp、第一电容Cp1、第二电容Cp2、第三电容Cs1、第四电容Cs2、第一电感Ls1、第二电感Ls2和磁耦合互感,其中磁耦合互感包括第一螺旋电感和第二螺旋电感;
所述第一螺旋电感的首端连接电路的输入端,第二螺旋电感的首端连接电路的输出端,第一螺旋电感的首端、第二螺旋电感的首端之间顺次串联第一电感Ls1、第一开关管AFs、第三电容Cs1、第二电感Ls2;所述第四电容Cs2串联在电路的输入端口和输出端口之间;第一螺旋电感和第二螺旋电感的末端相连;
所述第一电容Cp1与第二开关管AFp串联之后与第二电容Cp2并联;第一电容Cp1与第二电容Cp2的公共端接地,第二开关管AFp与第二电容Cp2的公共端接入第一螺旋电感和第二螺旋电感的末端。
进一步地,所述第一螺旋电感的首端连接第一电感Ls1的一端,第一电感Ls1的另一端连接第一开关管AFs的源极或漏极,第一开关管AFs的漏极或源极连接第二电感Ls2的一端,第二电感Ls2的另一端连接第二螺旋电感首端。
进一步地,所述第一电容Cp1的一端连接第二开关管AFp的源极或漏极,第二开关管AFp的漏极或源极连接第一螺旋电感和第二螺旋电感的末端。
进一步地,所述第一螺旋电感和第二螺旋电感相互缠绕,形成负的互感值以拓展带宽。
进一步地,通过控制第一开关管AFs和第二开关管AFp的导通和截止状态,形成电平可控的可变电容,以实现移相功能。
进一步地,所述第一电容Cp1和第二电容Cp2为可变电容,通过改变第一电容Cp1和第二电容Cp2的大小,实现低频处不同的相移量和匹配。
进一步地,所述第三电容Cs1为可变电容,所述第一电感Ls1和第二电感Ls2为固定电感,三者串联在电路的输入端口和输出端口之间,用于实现高频处不同的相移量和匹配。
进一步地,所述第四电容Cs2为固定电容,通过增大第四电容Cs2的调节范围,调节电路高频处的相移量。
本发明与现有技术相比,其显著优点为:(1)采用磁耦合全通网络结构,通过调整相互缠绕的电感间的耦合系数、电感值及串联和并联的电容值来改变相移量与带宽,并利用开关的导通和截止表征移相电路的基态和移相态,可以在超过10个倍频程的频带范围实现高精度移相,实现超宽带移相,移相精度高;(2)电路拓扑结构简单,对工艺难度要求较低;(3)电性能指标高且损耗小,控制方式简单,使用方便,集成度高,方便大批量生产。
图1是本发明一种超宽带移相电路的结构示意图。
图2是本发明实施例中超宽带移相电路的硬件结构图。
图3是本发明实施例中工作于2~20GHz移相电路的5.625度移相曲线图。
图4是本发明实施例中工作于2~20GHz移相电路的11.25度移相曲线图。
图5是本发明实施例中工作于2~20GHz移相电路的22.5度移相曲线图。
图6是本发明实施例中工作于2~20GHz移相电路的5.625度移相量对应的S参数曲线图。
图7是本发明实施例中工作于2~20GHz移相电路的11.25度移相量对应的S参数曲线图。
图8是本发明实施例中工作于2~20GHz移相电路的22.5度移相量对应的S参数曲线图。
本发明超宽带移相电路,包括两个开关管、三个可变电容、一个固定电容、两个固定电感和磁耦合互感,其中磁耦合互感包括第一螺旋电感和第二螺旋电感。该移相电路采用磁耦合全通网络结构,实现信号在宽频带范围内的相移,通过调整螺旋电感间的耦合系数、电感量及电容值改变相移量与带宽,利用开关管的两种状态表征移相电路的基态和移相态,具体如下:
一种超宽带移相电路,包括第一开关管AFs、第二开关管AFp、第一电容Cp1、第二电容Cp2、第三电容Cs1、第四电容Cs2、第一电感Ls1、第二电感Ls2和磁耦合互感,其中磁耦合互感包括第一螺旋电感和第二螺旋电感;
所述第一螺旋电感的首端连接电路的输入端,第二螺旋电感的首端连接电路的输出端,第一螺旋电感的首端、第二螺旋电感的首端之间顺次串联第一电感Ls1、第一开关管AFs、第三电容Cs1、第二电感Ls2;所述第四电容Cs2串联在电路的输入端口和输出端口之间;第一螺旋电感和第二螺旋电感的末端相连;
所述第一电容Cp1与第二开关管AFp串联之后与第二电容Cp2并联;第一电容Cp1与 第二电容Cp2的公共端接地,第二开关管AFp与第二电容Cp2的公共端接入第一螺旋电感和第二螺旋电感的末端。
进一步地,所述第一螺旋电感的首端连接第一电感Ls1的一端,第一电感Ls1的另一端连接第一开关管AFs的源极或漏极,第一开关管AFs的漏极或源极连接第二电感Ls2的一端,第二电感Ls2的另一端连接第二螺旋电感首端。
进一步地,所述第一电容Cp1的一端连接第二开关管AFp的源极或漏极,第二开关管AFp的漏极或源极连接第一螺旋电感和第二螺旋电感的末端。
进一步地,所述第一螺旋电感和第二螺旋电感相互缠绕,形成负的互感值以拓展带宽。
进一步地,通过控制第一开关管AFs和第二开关管AFp的导通和截止状态,形成电平可控的可变电容,以实现移相功能。
进一步地,所述第一电容Cp1和第二电容Cp2为可变电容,通过改变第一电容Cp1和第二电容Cp2的大小,实现低频处不同的相移量和匹配。
进一步地,所述第三电容Cs1为可变电容,所述第一电感Ls1和第二电感Ls2为固定电感,三者串联在电路的输入端口和输出端口之间,用于实现高频处不同的相移量和匹配。
进一步地,所述第四电容Cs2为固定电容,通过增大第四电容Cs2的调节范围,调节电路高频处的相移量。
本发明具有超宽带、电路拓扑结构简单、工艺难度要求低、损耗小、移相精度高、控制方式简单、集成度高的优点。
下面结合附图和具体实施例对本发明作进一步详细描述。
实施例1
本实施例提供一种工作于2~20GHz移相电路,其电路原理图如图1所示,移相电路版硬件如图2所示,版图由GaAs PHEMT晶体管、微带线、电容、地孔组成。射频信号由输入端口1进入,相互耦合的螺旋电感2和两个开关电容器3、4共同构成移相网络,由加电控制端口5控制两个晶体管的工作状态以选择信号传输路径,产生对应的基态和移相态,从而达到移相的目的。本实施例中的5.625°、11.25°以及22.5°移相器均采用这种结构设计。
结合图1,本实施例超宽带移相电路,包括第一开关管AFs、第二开关管AFp、第一电容Cp1、第二电容Cp2、第三电容Cs1、第四电容Cs2、第一电感Ls1、第二电感Ls2和磁耦合互感,其中磁耦合互感包括第一螺旋电感和第二螺旋电感;
所述第一螺旋电感和第二螺旋电感相互缠绕,第一螺旋电感的首端连接电路的输入端和第一电感Ls1的一端,第一电感Ls1的另一端连接第一开关管AFs的源极或漏极,第一开关管AFs的另一极连接第二电感Ls2的一端,第二电感Ls2的另一端连接第二螺旋电感首端和电路的输出端;第一螺旋电感和第二螺旋电感的末端相连;
所述第一电容Cp1的一端连接第二开关管AFp的源极或漏极,第二电容Cp2并联在第一电容Cp1和第二开关管AFp的两端,其中连接第一电容Cp1的一端接地,连接第二开关管AFp的一端连接第一螺旋电感和第二螺旋电感的末端。
所述第一螺旋电感和第二螺旋电感相互缠绕,以减小电路面积,并形成负的互感值以拓展带宽。所述第一开关管AFs和第三电容Cs1串联,所述第二开关管AFp和第一电容Cp1串联,通过控制第一开关管AFs和第二开关管AFp的导通和截止状态,形成电平可控的可 变电容,以实现移相功能。
所述磁耦合互感的末端通过串联第一电容Cp1和第二电容Cp2到地,第一电容Cp1和第二电容Cp2为可变电容,通过改变第一电容Cp1和第二电容Cp2的大小,可以实现低频处不同的相移量和匹配。所述第三电容Cs1为可变电容,所述第一电感Ls1和第二电感Ls2为固定电感,串联在电路的输入端口和输出端口之间,用于实现高频处不同的相移量和匹配。所述第四电容Cs2为固定电容,串联在电路的输入端口和输出端口之间,通过增大第四电容Cs2的可调节范围,从而调节电路高频处的相移量。
图3~图8为本发明2~20GHz移相电路的实测曲线,图3为5.625度相移曲线,图4为11.25度相移曲线,图5为22.5度相移曲线,图6~图8分别为三种移相量对应的S参数曲线。从图中可以看出,在2~20GHz频带内,该款结构相移器的移相精度非常高,平坦度好,三种移相量的移相误差均小于0.3°,且损耗低,在频带内基本小于2dB,同时芯片尺寸小,结构简单,方便控制。
Claims (8)
- 一种超宽带移相电路,其特征在于,包括第一开关管AFs、第二开关管AFp、第一电容Cp1、第二电容Cp2、第三电容Cs1、第四电容Cs2、第一电感Ls1、第二电感Ls2和磁耦合互感,其中磁耦合互感包括第一螺旋电感和第二螺旋电感;所述第一螺旋电感的首端连接电路的输入端,第二螺旋电感的首端连接电路的输出端,第一螺旋电感的首端、第二螺旋电感的首端之间顺次串联第一电感Ls1、第一开关管AFs、第三电容Cs1、第二电感Ls2;所述第四电容Cs2串联在电路的输入端口和输出端口之间;第一螺旋电感和第二螺旋电感的末端相连;所述第一电容Cp1与第二开关管AFp串联之后与第二电容Cp2并联;第一电容Cp1与第二电容Cp2的公共端接地,第二开关管AFp与第二电容Cp2的公共端接入第一螺旋电感和第二螺旋电感的末端。
- 根据权利要求1所述的超宽带移相电路,其特征在于,所述第一螺旋电感的首端连接第一电感Ls1的一端,第一电感Ls1的另一端连接第一开关管AFs的源极或漏极,第一开关管AFs的漏极或源极连接第二电感Ls2的一端,第二电感Ls2的另一端连接第二螺旋电感首端。
- 根据权利要求1所述的超宽带移相电路,其特征在于,所述第一电容Cp1的一端连接第二开关管AFp的源极或漏极,第二开关管AFp的漏极或源极连接第一螺旋电感和第二螺旋电感的末端。
- 根据权利要求1、2或3所述的超宽带移相电路,其特征在于,所述第一螺旋电感和第二螺旋电感相互缠绕,形成负的互感值以拓展带宽。
- 根据权利要求4所述的超宽带移相电路,其特征在于,通过控制第一开关管AFs和第二开关管AFp的导通和截止状态,形成电平可控的可变电容,以实现移相功能。
- 根据权利要求4所述的超宽带移相电路,其特征在于,所述第一电容Cp1和第二电容Cp2为可变电容,通过改变第一电容Cp1和第二电容Cp2的大小,实现低频处不同的相移量和匹配。
- 根据权利要求4所述的超宽带移相电路,其特征在于,所述第三电容Cs1为可变电容,所述第一电感Ls1和第二电感Ls2为固定电感,三者串联在电路的输入端口和输出端口之间,用于实现高频处不同的相移量和匹配。
- 根据权利要求4所述的超宽带移相电路,其特征在于,所述第四电容Cs2为固定电容,通过增大第四电容Cs2的调节范围,调节电路高频处的相移量。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911380839.1A CN111130488B (zh) | 2019-12-27 | 2019-12-27 | 一种超宽带移相电路 |
CN201911380839.1 | 2019-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021129777A1 true WO2021129777A1 (zh) | 2021-07-01 |
Family
ID=70504534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/139209 WO2021129777A1 (zh) | 2019-12-27 | 2020-12-25 | 一种超宽带移相电路 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111130488B (zh) |
WO (1) | WO2021129777A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111130488B (zh) * | 2019-12-27 | 2023-11-03 | 中电国基南方集团有限公司 | 一种超宽带移相电路 |
CN116248074B (zh) * | 2023-03-22 | 2024-01-12 | 南京米乐为微电子科技有限公司 | 一种超宽带小度数移相器及其控制方法以及波束控制系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1274199A (zh) * | 1999-05-12 | 2000-11-22 | 石应华 | 正斜率可调宽带移相器及其用途 |
US20030137284A1 (en) * | 2002-01-23 | 2003-07-24 | Tyco Electronics Corporation | Switched reactance phase shifters |
CN110098818A (zh) * | 2019-05-29 | 2019-08-06 | 中电国基南方有限公司 | 一种数字移相器 |
CN110190830A (zh) * | 2019-07-04 | 2019-08-30 | 电子科技大学 | 一种双频带小型化数字移相器 |
CN111130488A (zh) * | 2019-12-27 | 2020-05-08 | 中电国基南方集团有限公司 | 一种超宽带移相电路 |
-
2019
- 2019-12-27 CN CN201911380839.1A patent/CN111130488B/zh active Active
-
2020
- 2020-12-25 WO PCT/CN2020/139209 patent/WO2021129777A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1274199A (zh) * | 1999-05-12 | 2000-11-22 | 石应华 | 正斜率可调宽带移相器及其用途 |
US20030137284A1 (en) * | 2002-01-23 | 2003-07-24 | Tyco Electronics Corporation | Switched reactance phase shifters |
CN110098818A (zh) * | 2019-05-29 | 2019-08-06 | 中电国基南方有限公司 | 一种数字移相器 |
CN110190830A (zh) * | 2019-07-04 | 2019-08-30 | 电子科技大学 | 一种双频带小型化数字移相器 |
CN111130488A (zh) * | 2019-12-27 | 2020-05-08 | 中电国基南方集团有限公司 | 一种超宽带移相电路 |
Also Published As
Publication number | Publication date |
---|---|
CN111130488A (zh) | 2020-05-08 |
CN111130488B (zh) | 2023-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109616723B (zh) | 一种应用于5g毫米波基站的高精度移相器 | |
CN110190830B (zh) | 一种双频带小型化数字移相器 | |
CN108566175B (zh) | 可调负群时延电路 | |
WO2021129777A1 (zh) | 一种超宽带移相电路 | |
US10270146B2 (en) | Ultra wide band digital phase shifter | |
WO2021129646A1 (zh) | 一种超宽带两位移相器 | |
Gu et al. | Ka-band CMOS 360° reflective-type phase shifter with±0.2 dB insertion loss variation using triple-resonating load and dual-voltage control techniques | |
WO2017128678A1 (zh) | 基于容性负载的超宽带定值移相器 | |
CN107453727B (zh) | 一种低插入损耗的负群时延微波电路 | |
CN106785251A (zh) | 传输型超宽带数字移相器 | |
Letavin | Compact directional coupler with different input/output wave resistances line of transmission lines | |
CN205376694U (zh) | 基于容性负载的超宽带定值移相器 | |
WO2020134419A1 (zh) | 一种连续可调模拟移相器 | |
CN112271419B (zh) | 全通滤波器结构超宽带数字移相器 | |
CN113541641B (zh) | 一种小型宽带全360°反射型移相器 | |
CN114499454A (zh) | 一种结构新颖的硅基毫米波差分反射型移相器 | |
CN113949361A (zh) | 一种超宽带移相电路 | |
CN210489802U (zh) | 一种损耗补偿型电调有源谐振器 | |
KR100366299B1 (ko) | 초고주파 아날로그 위상 변위기 | |
CN219514053U (zh) | 一种低通π型移相器 | |
CN117081545B (zh) | 一种超宽带数字移相器 | |
CN115149234B (zh) | 传输线结构及传输线设计方法 | |
Zhu et al. | A Compact Broadband 180-Degree Phase Shifter Based On Coupled Transformer Structure | |
Komaru et al. | Study on Broadband All-Pass Networks Phase Shifter MMIC | |
Zhan et al. | Design of 2.5-3.3 GHz high-precision compact digital phase shifter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20905697 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20905697 Country of ref document: EP Kind code of ref document: A1 |