WO2021135266A1 - 阵列天线 - Google Patents

阵列天线 Download PDF

Info

Publication number
WO2021135266A1
WO2021135266A1 PCT/CN2020/110270 CN2020110270W WO2021135266A1 WO 2021135266 A1 WO2021135266 A1 WO 2021135266A1 CN 2020110270 W CN2020110270 W CN 2020110270W WO 2021135266 A1 WO2021135266 A1 WO 2021135266A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
substrate
array antenna
dielectric filter
feeding
Prior art date
Application number
PCT/CN2020/110270
Other languages
English (en)
French (fr)
Inventor
刘培涛
李明超
陈礼涛
王钦源
游建军
Original Assignee
京信通信技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司 filed Critical 京信通信技术(广州)有限公司
Priority to EP20909313.7A priority Critical patent/EP4087057A4/en
Publication of WO2021135266A1 publication Critical patent/WO2021135266A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays

Definitions

  • the present invention relates to the field of mobile communication technology, in particular to an array antenna.
  • 5G mobile communication technology has accumulated a certain amount of technology.
  • 5G antennas generally use large-scale array antennas with multiple signal connections, so the number of corresponding components, such as radio frequency components and radiation units, has also increased.
  • the current mainstream 5G large-scale array antennas mainly use sheet metal, die-casting or PCB vibrators as radiating units, and are supplemented by PCB boards for power feeding.
  • additional filters and other radio frequency components are welded and installed on the back of the antenna to achieve the corresponding antenna indicators.
  • An array antenna including:
  • the antenna element module includes a dielectric substrate, a feed network circuit layer formed on the surface of the dielectric substrate, and a plurality of radiation units arranged on one side of the dielectric substrate and fed by the feed network circuit layer;
  • a shielding cavity is formed on the side of the dielectric substrate facing away from the radiation unit;
  • a plurality of dielectric filter modules are arranged in the shielding cavity, and each of the shielding cavity houses at least two of the dielectric filter modules, and the output end of each of the dielectric filter modules is connected to the The feeder network is electrically connected at the line level.
  • the dielectric substrate includes a feeding substrate and a radiating substrate located on one side of the feeding substrate and integrally formed with the feeding substrate, and the feeding network circuit layer is formed on the feeding substrate.
  • the surface of the electric substrate, and the surface of the radiation substrate is covered with a metal layer to form the radiation unit.
  • the feeder network circuit layer is located on the surface of the feeder substrate facing away from the radiation unit;
  • the feeder network circuit layer is located on the surface of the feeder substrate facing the radiation unit.
  • it further includes a circuit board, a plurality of the dielectric filter modules are integrated on the circuit board, and the output ends of the plurality of dielectric filter modules pass through the circuit board and the feeder network
  • the circuit layer is electrically connected.
  • the opposite sides of the circuit board are respectively provided with radio frequency connectors and feed pins corresponding to a plurality of the dielectric filter modules one-to-one, and the feed network line layer is formed with a feed hole , The feeding pin is inserted into the feeding hole to electrically connect the plurality of the dielectric filter modules with the circuit layer of the feeding network.
  • a reflective plate is further included, and the reflective plate is attached to the side of the medium base material that faces away from the radiation unit.
  • a convex rib is formed on the surface of the dielectric substrate facing the reflector, and the rib abuts against the reflector.
  • it further includes a shielding cover with an opening on one side, the shielding cover is arranged on the surface of the reflector plate facing away from the antenna element module, and cooperates with the reflector plate to form the shielding cavity .
  • the end surface of the opening of the shielding cover is covered with conductive glue.
  • the inner wall of the shielding cover is provided with conductive foam abutting against the dielectric filter module.
  • the feeder network circuit layer can be formed on the surface of the dielectric substrate by means of coating or the like. Therefore, it is equivalent to integrating the feed network and the radiation unit in the traditional antenna on the dielectric substrate.
  • the shielding cavity provides a shielding effect on the dielectric filter modules contained therein, so the cooperation of multiple dielectric filter modules and the shielding cavity can be functionally equivalent to traditional multiple dielectric filters.
  • each shielding cavity contains at least two dielectric filter modules, so the number of shielding cavities can be far less than the number of dielectric filter modules. Compared with the traditional direct installation of the dielectric filter, more metal shielded cavities can be omitted. Therefore, the above-mentioned array antenna can be reduced in weight.
  • FIG. 1 is a schematic diagram of the structure of an array antenna in a preferred embodiment of the present invention
  • Fig. 2 is an exploded view of one angle of the array antenna shown in Fig. 1;
  • Fig. 3 is an exploded view of the array antenna shown in Fig. 1 from another angle;
  • FIG. 4 is a schematic diagram of the structure of one surface of the antenna element module in an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another surface of the antenna element module shown in FIG. 4;
  • FIG. 6 is a schematic diagram of the structure of one surface of the antenna element module in another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the structure of the shield cover in the array antenna shown in FIG. 1.
  • the array antenna 10 in the preferred embodiment of the present invention includes an antenna element module 100, a shielding cavity 200 and a dielectric filter module 300.
  • the antenna element module 100 includes a dielectric substrate 110, a feed network circuit layer 120 and a radiation unit 130.
  • the antenna element module 100 generally has multiple signal channels. For example, 32 channels and 64 channels are common. At least one radiation unit 130 is included in each signal channel. As shown in FIGS. 2 and 3, in this embodiment, the number of radiation units 130 is 96, and each signal channel includes 3 radiation units 130. Therefore, the array antenna 10 is a 32-channel antenna.
  • the media substrate 110 is an integrally formed structure, and its material can be plastic, resin, or the like.
  • the dielectric substrate 110 is integrally formed by injection molding.
  • the feeding network circuit layer 120 is formed on the surface of the dielectric substrate 110.
  • the feeder network circuit layer 120 can integrate functional circuits such as sub-circuits and filter circuits, which can be used to feed the radiating unit 120, so it is equivalent to a traditional feeder network.
  • the feed network circuit layer 120 can be formed on the surface of the dielectric substrate 110 by selective electroplating, LDS (laser direct structuring) and other surface metal forming methods, and its material can be a good conductor such as copper and silver.
  • the radiation unit 130 is used to receive and radiate electromagnetic wave signals, and a dual-polarization radiation unit is generally used.
  • the radiation unit 130 is arranged on the side of the dielectric substrate 110 and is fed by the feeding network circuit layer 120.
  • the feeding network line layer 120 can directly feed the radiation unit 130, or can be coupled to feed.
  • the feeder structure circuit layer 140 can also be formed on the dielectric substrate 110 at the same time.
  • the feeder structure circuit layer 140 is supported by the dielectric substrate 110, which is equivalent to the traditional feeder Balun and feed column.
  • Each array antenna 10 may include only one antenna element module 100, that is, multiple radiating elements 130 are arranged on the same dielectric substrate 110; it may also include multiple antenna element modules 100, that is, multiple radiating elements 130 are arranged on different Splicing on the medium substrate 110 again. As shown in Figures 2 and 3, specifically in this embodiment, each array antenna 10 includes 8 antenna element modules 100, and each dielectric substrate 110 is provided with 12 radiating units 130. 8 dielectric substrates 110 are spliced with each other to form an antenna element module 100 with 96 radiating units 130.
  • the radiation unit 130 may be in the form of a metal vibrator structure, a PCB vibrator structure, a plastic metalized vibrator, a metal layered structure, and the like. Please refer to FIGS. 4 and 5 again.
  • the dielectric substrate 110 includes a feeding substrate 111 and a radiating substrate 113 located on a side of the feeding substrate 111 and integrally formed with the feeding substrate 111.
  • the feeding network circuit layer 120 is formed on the surface of the feeding substrate 111, and the surface of the radiating substrate 113 is covered with a metal layer (not shown in the figure) to form the radiating unit 130.
  • the metal layer can also be formed by selective electroplating, LDS (Laser Direct Forming Technology) and other surface metal forming methods.
  • the radiation substrate 113 supports the metal layer and forms the radiation unit 130 together with the metal layer.
  • the radiation unit 130 and the medium substrate 110 form an integrated structure.
  • the traditional radiating unit and the feeding network can be integrated on the dielectric substrate 110 at the same time, so the structure of the antenna element module 100 can be simplified, and its volume and mass can be significantly reduced.
  • the radiation substrate 113 may be partially recessed by the feeding substrate 111 to form hollow columnar protrusions.
  • the metal layer forming the radiation unit 130 is attached to the outer surface of the columnar protrusion.
  • the hollow columnar protrusion may be cubic or cylindrical, that is, its cross-section is rectangular or circular.
  • the feed structure circuit layer 140 may be supported by the inner wall of the columnar protrusion and extend toward the radiation unit 130 along the inner wall.
  • the feeder network circuit layer 120 and the radiating unit 130 may be located on the same side of the dielectric substrate 110, or may be located on different sides. As shown in FIGS. 4 and 5, in one embodiment, the feeding network circuit layer 120 is located on the surface of the feeding substrate 111 facing away from the radiation unit 130. At this time, the feeder network circuit layer 120 and the feeder structure circuit layer 140 can be integrally formed.
  • the feeding network circuit layer 120 is located on the surface of the feeding substrate 111 facing the radiation unit 130. At this time, the feeder network circuit layer 120 and the feeder structure circuit layer 140 can be electrically connected by opening metallized vias.
  • the shielding cavity 200 is formed on the side of the dielectric substrate 110 facing away from the radiation unit 130.
  • the shielding cavity 200 can be a closed cavity structure mounted on the side of the dielectric substrate 110 by welding, screwing, etc.; it can also be a cavity with a shielding function that is formed integrally with the dielectric substrate 110 and obtained by surface metallization. Structure; It can also be a closed cavity structure formed by a semi-closed structure matched with the dielectric substrate 110.
  • the shielding cavity 200 can function as an electrostatic shield, which is equivalent to a metal shielding cavity of a traditional dielectric filter.
  • the array antenna 10 further includes a reflector 500, and the reflector 500 is attached to the side of the dielectric substrate 110 facing away from the radiation unit 130.
  • the reflector 500 is generally a metal reflector, which can reflect electromagnetic wave signals multiple times, thereby enhancing the efficiency of signal transmission and reception of the radiation unit 130.
  • the surface profile of the reflector 500 is generally substantially the same as the surface profile of the dielectric substrate 110, and the surfaces of the two are arranged opposite to each other.
  • the reflector 500 can be installed with the dielectric substrate 110 by screwing, welding, or the like.
  • a convex rib 1112 is formed on the surface of the dielectric substrate 110 facing the reflector 500, and the rib 1112 abuts against the reflector 500.
  • the rib 1112 is formed on the feeding substrate 111.
  • the ribs 1112 may be distributed in a ring shape on the surface of the feeding substrate 111, or may extend linearly on the surface of the feeding substrate 111.
  • the ribs 1112 can play a role in strengthening the mechanical strength of the feeding substrate 111.
  • the ribs 1112 can support the reflector 500 so as to maintain a stable gap between the reflector 500 and the feeding substrate 111.
  • the array antenna 10 further includes a shielding cover 600 with an opening on one side.
  • the shielding cover 600 is provided on the surface of the reflector 500 facing away from the antenna element module 100, and cooperates with the reflector 500 to form a shielding cavity. 200.
  • the shielding cover 600 may have a cubic shape, a hemispherical shape, or a hemi-cylindrical shape with one side open.
  • the shielding cover 600 can be directly formed from a metal material; it can also be formed by a dielectric material first, and then the surface of the dielectric material is metalized.
  • the shielding cover 600 is generally fastened to the reflector 500 by screws.
  • the reflective plate 500 serves as a side wall of the shielding cavity 200. Therefore, compared with the traditional metal shielding cavity, the shielding cover 600 can also omit one side wall, so the weight can be further reduced.
  • the end surface of the opening of the shielding cover 600 is covered with a conductive glue 610.
  • the conductive glue 610 can make the edge of the opening of the shielding cover 600 contact well, thereby ensuring the shielding effect of the shielding cavity 200.
  • the dielectric filter module 300 is equivalent to the filter body structure of the traditional dielectric filter with the metal shielded cavity omitted. There are multiple dielectric filter modules 300, and the output end of each dielectric filter module 300 is electrically connected to the feeder network circuit layer 120.
  • the dielectric filter module 300 is used to filter the electromagnetic wave signal received or radiated by each radiation unit 130. Therefore, the dielectric filter module 300 corresponds to the number of signal channels of the array antenna 10. For example, if the array antenna 10 shown in FIG. 1 has 32 signal channels, the number of dielectric filter modules 300 is 32.
  • each array antenna 10 may include one or more shielding cavities 200.
  • the array antenna 10 shown in FIG. 1 includes two shielding cavities 200, and each shielding cavity 200 contains 16 filter modules 300.
  • one shielding cavity 200 can provide electrostatic shielding for multiple dielectric filter modules 300, so the number of shielding cavities 200 can be far less than the number of dielectric filter modules 300.
  • 32 filters need to be installed, and each filter has a metal shielded cavity.
  • 32-channel array antenna 10 only two shielding cavities 200 are required. Therefore, compared with the conventional method, the array antenna 100 can omit more metal shielding cavities, thereby simplifying the installation operation and reducing the quality.
  • the inner wall of the shielding cover 600 is provided with a conductive foam 620 that abuts against the dielectric filter module 300.
  • the conductive foam 620 may extend along the length of the shielding cover 600 so as to cover all the dielectric filter modules 300 in the shielding cavity 200. Therefore, the conductive foam 620 can connect the shield 600 to the surface of each dielectric filter module 300, so that each dielectric filter module 300 is well grounded, thereby suppressing high-frequency clutter caused by surface current radiation.
  • the array antenna 10 further includes a circuit board 400, a plurality of dielectric filter modules 300 are integrated on the circuit board 400, and the output ends of the plurality of dielectric filter modules 300 pass through the circuit board 400 and the feeder network circuit layer 120 Electric connection.
  • the multiple dielectric filter modules 300 can be positioned and soldered on the circuit board 400 first, and then the entire circuit board 400 integrated with the dielectric filter module 300 is connected to the feeder network circuit layer 120. Therefore, it is only necessary to align the entire circuit board 400 with the feeder network circuit layer 12, and there is no need to repeatedly position each dielectric filter module 300, so assembling is more convenient.
  • the number of circuit boards 400 can be the same as the number of shielding cavities 200, or all the dielectric filter modules 300 can be integrated on the same circuit board 400.
  • the array antenna 10 shown in FIGS. 1 to 3 is provided with two circuit boards 400, and 16 dielectric filter modules 300 are integrated on each circuit board 400.
  • the shielding cavity 200 presses the corresponding circuit board 400 on the reflector 500.
  • the opposite sides of the circuit board 400 are respectively provided with a radio frequency connector 410 and a feed pin 420, and the radio frequency connector 410 and the feed pin 420 correspond to the plurality of dielectric filter modules 300 one-to-one.
  • the feeding network circuit layer 120 is formed with a feeding hole (not shown), and the feeding pin 420 is inserted into the feeding hole to electrically connect the plurality of dielectric filter modules 300 and the feeding network circuit layer 120.
  • the radio frequency connector 410 and the feed pin 420 are respectively connected to the input end and the output end of the corresponding dielectric filter module 300.
  • the feeding holes on the feeding network circuit layer 120 may be metallized vias, which are conductive.
  • the position of the power feeding hole corresponds to the position of the power feeding pin 420.
  • the reflecting plate 500 is provided with an avoiding hole (not shown in the figure) for avoiding the feeding needle 420.
  • the radio frequency connector 410 can be matched with the plug-in interface of the coaxial feeder to facilitate the actual connection of the dielectric filter module 300 with the signal transceiving device of the base station.
  • the radio frequency connector 410 generally protrudes outside the shielding cavity 200, and the side wall of the shielding cavity 200 is provided with a through hole 210 for the radio frequency connector 410 to pass through.
  • the feeding network circuit layer 120 may be formed on the surface of the dielectric substrate 110 by means of coating or the like. Therefore, it is equivalent to integrating the feeding network and the radiation unit 130 in the traditional antenna on the dielectric substrate 110.
  • the shielding cavity 200 provides a shielding effect to the dielectric filter module 300 housed inside, so the multiple dielectric filter modules 300 and the shielding cavity 200 can be functionally equivalent to traditional multiple dielectric filters.
  • each shielding cavity 200 contains at least two dielectric filter modules 300, so the number of shielding cavities 200 can be far less than the number of dielectric filter modules 300. Compared with the traditional direct installation of the dielectric filter, more metal shielded cavities can be omitted. Therefore, the aforementioned array antenna 10 can be reduced in weight.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明涉及一种阵列天线,包括天线振子模块、屏蔽腔体及介质滤波器模块。馈电网络线路层可通过镀膜等方式形成于介质基材的表面。因此,相当于将传统天线中的馈电网络及辐射单元集成于介质基材上。组装时,无需再进行馈电网络焊接及螺接等操作,有利于简化结构。进一步的,屏蔽腔体对收容于内部的介质滤波器模块提供屏蔽作用,故多个介质滤波器模块与屏蔽腔体配合可在功能上相当于传统的多个介质滤波器。而且,每个屏蔽腔体内收容有至少两个介质滤波器模块,故屏蔽腔体的数量可远少于介质滤波器模块的数量。与传统的直接安装介质滤波器的方式相比,可省略较多的金属屏蔽腔体。因此,上述阵列天线能实现轻量化。

Description

阵列天线 技术领域
本发明涉及移动通信技术领域,特别涉及一种阵列天线。
背景技术
5G移动通信技术经过几年的发展已经有一定的技术积累。5G天线一般采用大规模阵列天线,具有多个信号通,故对应的部件,如射频组件、辐射单元的数量也进一步增加。当前主流5G大规模阵列天线主要使用钣金、压铸或者PCB振子作为辐射单元,并辅以PCB板进行馈电。此外,附加的滤波器等射频组件焊安装于天线背面,以实现相应的天线指标。
现有天线的几个必要部件一般分别单独装配,最后通过螺钉、铆钉拼装成整机。由于阵列天线的元件众多,故现有的天线组装方式不仅装配复杂,且会导致天线整机的体积大、重量大。
发明内容
基于此,有必要提供一种能实现轻量化的阵列天线。
一种阵列天线,包括:
天线振子模块,包括介质基材、形成于所述介质基材表面的馈电网络线路层及设于所述介质基材一侧并由所述馈电网络线路层馈电的多个辐射单元;
屏蔽腔体,形成于所述介质基材背向所述辐射单元一侧;及
多个介质滤波器模块,设于所述屏蔽腔体内,且每个所述屏蔽腔体内收容有至少两个所述介质滤波器模块,每个所述介质滤波器模块的输出端均与所述 馈电网络线路层电连接。
在其中一个实施例中,所述介质基材包括馈电基板及位于所述馈电基板一侧并与所述馈电基板一体成型的辐射基板,所述馈电网络线路层形成于所述馈电基板的表面,所述辐射基板的表面覆设有金属层,以形成所述辐射单元。
在其中一个实施例中,所述馈电网络线路层位于所述馈电基板背向所述辐射单元的表面;
或者,所述馈电网络线路层位于所述馈电基板朝向所述辐射单元的表面。
在其中一个实施例中,还包括电路板,多个所述介质滤波器模块集成于所述电路板,且多个所述介质滤波器模块的输出端通过所述电路板与所述馈电网络线路层电连接。
在其中一个实施例中,所述电路板相对的两侧分别设置有与多个所述介质滤波器模块一一对应的射频接头及馈电针,所述馈电网络线路层形成有馈电孔,所述馈电针插设于所述馈电孔内,以将多个所述介质滤波器模块与所述馈电网络线路层电连接。
在其中一个实施例中,还包括反射板,所述反射板贴设于所述介质基材背向所述辐射单元的一侧。
在其中一个实施例中,所述介质基材朝向所述反射板的表面形成有凸起的筋条,且所述筋条与所述反射板抵接。
在其中一个实施例中,还包括一侧开口的屏蔽罩,所述屏蔽罩盖设于所述反射板背向所述天线振子模块的表面,并与所述反射板配合形成所述屏蔽腔体。
在其中一个实施例中,所述屏蔽罩开口的端面覆设有导电胶。
在其中一个实施例中,所述屏蔽罩的内壁设置有与所述介质滤波器模块抵接的导电泡棉。
上述阵列天线,馈电网络线路层可通过镀膜等方式形成于介质基材的表面。因此,相当于将传统天线中的馈电网络及辐射单元集成于介质基材上。组装时,无需再进行馈电网络焊接及螺接等操作,有利于简化结构。进一步的,屏蔽腔体对收容于内部的介质滤波器模块提供屏蔽作用,故多个介质滤波器模块与屏蔽腔体配合可在功能上相当于传统的多个介质滤波器。而且,每个屏蔽腔体内收容有至少两个介质滤波器模块,故屏蔽腔体的数量可远少于介质滤波器模块的数量。与传统的直接安装介质滤波器的方式相比,可省略较多的金属屏蔽腔体。因此,上述阵列天线能实现轻量化。
附图说明
图1为本发明较佳实施例中阵列天线的结构示意图;
图2为图1所示阵列天线其中一个角度的爆炸图;
图3为图1所示阵列天线另一个角度的爆炸图;
图4为本发明一个实施例中天线振子模块的其中一个表面的结构示意图;
图5为图4所示天线振子模块另一个表面的结构示意图;
图6为本发明另一个实施例中天线振子模块的其中一个表面的结构示意图;
图7为图1所示阵列天线中屏蔽罩的结构示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1、图2及图3,本发明较佳实施例中的阵列天线10包括天线振子模块100、屏蔽腔体200及介质滤波器模块300。
请一并参阅图4及图5,天线振子模块100包括介质基材110、馈电网络线路层120及辐射单元130。天线振子模块100一般具有多个信号通道。譬如,常见的有32通道、64通道。每个信号通道内至少包含一个辐射单元130。如图2及图3所示,本实施例中,辐射单元130的数量为96个,且每个信号通道内包含3个辐射单元130。因此,阵列天线10为32通道的天线。
介质基材110为一体成型的结构,其材质可以是塑料、树脂等。通常,介质基材110采用注塑的方式一体成型。馈电网络线路层120形成于介质基材110的表面。馈电网络线路层120中可集成功分电路、滤波电路等功能电路,可用于对辐射单元120馈电,故相当于传统的馈电网络。具体的,馈电网络线路层120可通过选择性电镀、LDS(激光直接成型技术)等表面金属成型的方式形成于介质基材110的表面,其材质可以是铜、银等良导体。
辐射单元130用于接收及向外辐射电磁波信号,一般采用的是双极化辐射单元。辐射单元130设于介质基材110一侧,并由馈电网络线路层120馈电。 其中,馈电网络线路层120可对辐射单元130直接馈电,也可耦合馈电。具体的,在馈电网络线路层120成型时,也可同时在介质基材110上成型馈电结构线路层140,馈电结构线路层140以介质基材110作为支撑,相当于传统的馈电巴伦及馈电柱。
每个阵列天线10可仅包括一个天线振子模块100,即多个辐射单元130设置于同一个介质基材110上;也可包括多个天线振子模块100,即多个辐射单元130设置于不同的介质基材110上再拼接。如图2及图3所示,具体在本实施例中,每个阵列天线10包括8个天线振子模块100,且每个介质基材110上设有12个辐射单元130。8个介质基材110相互拼接,组成具有96个辐射单元130的天线振子模块100。
辐射单元130可以是金属振子结构、PCB振子结构、塑料金属化振子以及金属层状结构等形式。请再次参阅图4及图5,在一个实施例中,介质基材110包括馈电基板111及位于馈电基板111一侧并与馈电基板111一体成型的辐射基板113。馈电网络线路层120形成于馈电基板111的表面,辐射基板113的表面覆设有金属层(图未标),以形成辐射单元130。
具体的,金属层同样可选择性电镀、LDS(激光直接成型技术)等表面金属成型的方式成型。辐射基板113对金属层起支撑作用,并与金属层一起构成辐射单元130。此时,辐射单元130与介质基材110构成一体式的结构。也就是说,介质基材110上可同时集成传统的辐射单元及馈电网络,故天线振子模块100的结构可得到简化,其体积及质量可显著减小。
辐射基板113可以是由馈电基板111的局部凹陷,形成中空的柱状凸起。形成辐射单元130的金属层附着于柱状凸起的外表面。具体的,中空的柱状凸起可以呈立方体形或圆柱形,即其横截面呈矩形或圆形。其中,馈电结构线路层 140可以以柱状凸起的内壁为支撑,并沿内壁向辐射单元130延伸。通过在馈电基板111上做局部凹陷的方式形成辐射单元130的支撑结构,可使介质基材110的结构更合理,注塑的良品率更好。
进一步的,馈电网络线路层120既可与辐射单元130位于介质基材110同侧,也可位于不同的两侧。如图4及图5所示,在一个实施例中,馈电网络线路层120位于馈电基板111背向辐射单元130的表面。此时,馈电网络线路层120可与馈电结构线路层140一体成型。
如图6所示,在另一个实施例中,馈电网络线路层120位于馈电基板111朝向辐射单元130的表面。此时,可通过开设金属化过孔的方式将馈电网络线路层120与馈电结构线路层140电连接。
请再次参阅图1至图3,屏蔽腔体200形成于介质基材110背向辐射单元130一侧。屏蔽腔体200可以是通过焊接、螺接等方式安装于介质基材110一侧的封闭腔体结构;也可是与介质基材110一体成型,并通过表面金属化得到的具有屏蔽功能的腔体结构;还可是半封闭结构通过与介质基材110配合,形成的封闭腔体结构。屏蔽腔体200可起到静电屏蔽的作用,相当于传统介质滤波器的金属屏蔽腔体。
在本实施例中,阵列天线10还包括反射板500,反射板500贴设于介质基材110背向辐射单元130的一侧。
具体的,反射板500一般为金属反射板,可对电磁波信号进行多次反射,从而增强辐射单元130信号收发的效率。反射板500的表面轮廓一般与介质基材110的表面轮廓大致相同,且两者的表面相对设置。反射板500可通过螺接、焊接等方式与介质基材110实现安装。
请再次参阅图6,在一个实施例中,介质基材110朝向反射板500的表面形 成有凸起的筋条1112,且筋条1112与反射板500抵接。
具体的,筋条1112形成于馈电基板111上。筋条1112可在馈电基板111的表面呈环状分布,也可在馈电基板111的表面直线延伸。一方面,筋条1112可起到加强馈电基板111机械强度的作用。另一方面,筋条1112可支撑反射板500,从而使反射板500与馈电基板111之间保持稳定的间隙。当馈电网络线路层120位于馈电基板111背向辐射单元130一侧时,能保证将馈电网络线路层120与反射板500隔离。
进一步的,在本实施例中,阵列天线10还包括一侧开口的屏蔽罩600,屏蔽罩600盖设于反射板500背向天线振子模块100的表面,并与反射板500配合形成屏蔽腔体200。
具体的,屏蔽罩600可以呈一侧开口的立方体形、半球形或半圆柱形等。屏蔽罩600可以由金属材料直接成型;也可先通过介质材料成型,再对介质材料的表面进行金属化。屏蔽罩600一般通过螺钉与反射板500紧固。此时,反射板500作为屏蔽腔体200的一个侧壁。因此,屏蔽罩600与传统的金属屏蔽腔体相比,还可省略一个侧壁,故重量可进一步减轻。
请一并参阅图7,具体在本实施例中,屏蔽罩600开口的端面覆设有导电胶610。导电胶610可使屏蔽罩600开口的边缘接触良好,从而保证屏蔽腔体200的屏蔽效果。
介质滤波器模块300相当于传统的介质滤波器省略金属屏蔽腔体后的滤波主体结构。介质滤波器模块300为多个,每个介质滤波器模块300的输出端均与馈电网络线路层120电连接。介质滤波器模块300用于对每个辐射单元130接收或辐射的电磁波信号进行滤波。因此,介质滤波器模块300与阵列天线10的信号通道的数量对应。譬如,图1所示的阵列天线10中具有32个信号通道, 则介质滤波器模块300的数量为32个。
进一步的,多个介质滤波器模块300设于屏蔽腔体200内,且每个屏蔽腔体200内收容有至少两个介质滤波器模块300。根据天线的不同规模,每个阵列天线10中可包括一个或多个屏蔽腔体200。譬如,图1所示的阵列天线10包括两个屏蔽腔体200,且每个屏蔽腔体200内收容有16个滤波器模块300。
也就是说,一个屏蔽腔体200可对多个介质滤波器模块300提供静电屏蔽作用,故屏蔽腔体200的数量可远少于介质滤波器模块300的数量。在传统技术中,针对32通道的天线,则需要安装32个滤波器,且每个滤波器均具有一金属屏蔽腔体。而在本方案中,对于32通道的阵列天线10,只需设置两个屏蔽腔体200即可。因此,与传统方式相比,阵列天线100可省略较多的金属屏蔽腔体,从而简化安装操作并减轻质量。
请再次参阅图7,具体在本实施例中,屏蔽罩600的内壁设置有与介质滤波器模块300抵接的导电泡棉620。
导电泡棉620可沿屏蔽罩600的长度方向延伸,从而覆盖屏蔽腔体200内的所有介质滤波器模块300。因此,导电泡棉620可将屏蔽罩600与每个介质滤波器模块300的表面连接,使每个介质滤波器模块300均良好接地,从而抑制表面电流辐射造成的高频杂波。
在本实施例中,阵列天线10还包括电路板400,多个介质滤波器模块300集成于电路板400,且多个介质滤波器模块300的输出端通过电路板400与馈电网络线路层120电连接。
多个介质滤波器模块300可先在电路板400上进行定位、焊接,再将集成有介质滤波器模块300的电路板400整体与馈电网络线路层120进行连接。因此,只需将电路板400整体与馈电网络线路层12进行对位即可,而无需重复对 每个介质滤波器模块300进复定位,故可使组装更方便。其中,电路板400的数量可以与屏蔽腔体200的数量相同,也可将所有介质滤波器模块300集成于同一个电路板400上。
图1至图3所示的阵列天线10设置有2个电路板400,且每个电路板400上集成16个介质滤波器模块300。屏蔽腔体200将对应的电路板400压持于反射板500上。
进一步的,在本实施例中,电路板400相对的两侧分别设置有射频接头410及馈电针420,且射频接头410及馈电针420与多个介质滤波器模块300一一对应。馈电网络线路层120形成有馈电孔(图未示),馈电针420插设于馈电孔内,以将多个介质滤波器模块300与馈电网络线路层120电连接。
具体的,射频接头410及馈电针420分别与对应的介质滤波器模块300的输入端及输出端连接。馈电网络线路层120上的馈电孔可以是金属化过孔,可导电。而且,馈电孔的位置与馈电针420的位置对应。反射板500上开设有对馈电针420避位的避位孔(图未示)。组装时,将馈电针420插入对应的馈电孔内,便可可快速实现电路板400的定位及安装,故组装更方便。
射频接头410可与同轴馈线的插接口配合,便于介质滤波器模块300与基站的信号收发装置实连接。其中,射频接头410一般伸出于屏蔽腔体200的外侧,屏蔽腔体200的侧壁开设有供射频接头410穿过的通孔210。
上述阵列天线10,馈电网络线路层120可通过镀膜等方式形成于介质基材110的表面。因此,相当于将传统天线中的馈电网络及辐射单元130集成于介质基材110上。组装时,无需再进行馈电网络焊接及螺接等操作,有利于简化结构。进一步的,屏蔽腔体200对收容于内部的介质滤波器模块300提供屏蔽作用,故多个介质滤波器模块300与屏蔽腔体200配合可在功能上相当于传统的 多个介质滤波器。而且,每个屏蔽腔体200内收容有至少两个介质滤波器模块300,故屏蔽腔体200的数量可远少于介质滤波器模块300的数量。与传统的直接安装介质滤波器的方式相比,可省略较多的金属屏蔽腔体。因此,上述阵列天线10能实现轻量化。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种阵列天线,其特征在于,包括:
    天线振子模块,包括介质基材、形成于所述介质基材表面的馈电网络线路层及设于所述介质基材一侧并由所述馈电网络线路层馈电的多个辐射单元;
    屏蔽腔体,形成于所述介质基材背向所述辐射单元一侧;及
    多个介质滤波器模块,设于所述屏蔽腔体内,且每个所述屏蔽腔体内收容有至少两个所述介质滤波器模块,每个所述介质滤波器模块的输出端均与所述馈电网络线路层电连接。
  2. 根据权利要求1所述的阵列天线,其特征在于,所述介质基材包括馈电基板及位于所述馈电基板一侧并与所述馈电基板一体成型的辐射基板,所述馈电网络线路层形成于所述馈电基板的表面,所述辐射基板的表面覆设有金属层,以形成所述辐射单元。
  3. 根据权利要求2所述的阵列天线,其特征在于,所述馈电网络线路层位于所述馈电基板背向所述辐射单元的表面;
    或者,所述馈电网络线路层位于所述馈电基板朝向所述辐射单元的表面。
  4. 根据权利要求1所述的阵列天线,其特征在于,还包括电路板,多个所述介质滤波器模块集成于所述电路板,且多个所述介质滤波器模块的输出端通过所述电路板与所述馈电网络线路层电连接。
  5. 根据权利要求4所述的阵列天线,其特征在于,所述电路板相对的两侧分别设置有与多个所述介质滤波器模块一一对应的射频接头及馈电针,所述馈电网络线路层形成有馈电孔,所述馈电针插设于所述馈电孔内,以将多个所述介质滤波器模块与所述馈电网络线路层电连接。
  6. 根据权利要求1所述的阵列天线,其特征在于,还包括反射板,所述反 射板贴设于所述介质基材背向所述辐射单元的一侧。
  7. 根据权利要求6所述的阵列天线,其特征在于,所述介质基材朝向所述反射板的表面形成有凸起的筋条,且所述筋条与所述反射板抵接。
  8. 根据权利要求6所述的阵列天线,其特征在于,还包括一侧开口的屏蔽罩,所述屏蔽罩盖设于所述反射板背向所述天线振子模块的表面,并与所述反射板配合形成所述屏蔽腔体。
  9. 根据权利要求8所述的阵列天线,其特征在于,所述屏蔽罩开口的端面覆设有导电胶。
  10. 根据权利要求8所述的阵列天线,其特征在于,所述屏蔽罩的内壁设置有与所述介质滤波器模块抵接的导电泡棉。
PCT/CN2020/110270 2019-12-31 2020-08-20 阵列天线 WO2021135266A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20909313.7A EP4087057A4 (en) 2019-12-31 2020-08-20 GROUP ANTENNA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911417972.XA CN111063997A (zh) 2019-12-31 2019-12-31 阵列天线
CN201911417972.X 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021135266A1 true WO2021135266A1 (zh) 2021-07-08

Family

ID=70305874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110270 WO2021135266A1 (zh) 2019-12-31 2020-08-20 阵列天线

Country Status (3)

Country Link
EP (1) EP4087057A4 (zh)
CN (1) CN111063997A (zh)
WO (1) WO2021135266A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490646B (zh) 2019-09-12 2023-12-15 华为技术有限公司 一种天线和天线的加工方法
CN111063997A (zh) * 2019-12-31 2020-04-24 京信通信技术(广州)有限公司 阵列天线
CN111585007B (zh) * 2020-05-08 2022-04-15 武汉虹信科技发展有限责任公司 高集成mimo天线
CN111668605B (zh) * 2020-07-02 2021-07-09 中信科移动通信技术股份有限公司 用于高铁沿线的电调天线
US20240154319A1 (en) * 2021-12-31 2024-05-09 Beijing Boe Sensor Technology Co., Ltd. Transparent oscillator unit, transparent antenna and antenna system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1893179A (zh) * 2005-07-08 2007-01-10 福讯通讯股份有限公司 手持装置天线
CN109713432A (zh) * 2019-01-14 2019-05-03 深圳市信维通信股份有限公司 5g mimo天线系统及手持设备
CN110011072A (zh) * 2019-02-22 2019-07-12 广东通宇通讯股份有限公司 一种集成化Massive MIMO天线
CN110323565A (zh) * 2019-04-30 2019-10-11 深圳市大富科技股份有限公司 一种基站天线以及用于基站的有源天线单元
CN111063997A (zh) * 2019-12-31 2020-04-24 京信通信技术(广州)有限公司 阵列天线

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107706544B (zh) * 2017-09-07 2021-01-26 广东通宇通讯股份有限公司 基站天线及其天线阵列模块
CN109616759B (zh) * 2018-12-06 2020-08-25 西南电子技术研究所(中国电子科技集团公司第十研究所) 全双工有源相控阵滤波天线阵面
CN110323556A (zh) * 2019-05-08 2019-10-11 深圳市大富科技股份有限公司 一种用于基站的有源天线单元及天线单元
CN211126065U (zh) * 2019-12-31 2020-07-28 京信通信技术(广州)有限公司 阵列天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1893179A (zh) * 2005-07-08 2007-01-10 福讯通讯股份有限公司 手持装置天线
CN109713432A (zh) * 2019-01-14 2019-05-03 深圳市信维通信股份有限公司 5g mimo天线系统及手持设备
CN110011072A (zh) * 2019-02-22 2019-07-12 广东通宇通讯股份有限公司 一种集成化Massive MIMO天线
CN110323565A (zh) * 2019-04-30 2019-10-11 深圳市大富科技股份有限公司 一种基站天线以及用于基站的有源天线单元
CN111063997A (zh) * 2019-12-31 2020-04-24 京信通信技术(广州)有限公司 阵列天线

Also Published As

Publication number Publication date
EP4087057A4 (en) 2023-01-18
EP4087057A1 (en) 2022-11-09
CN111063997A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
WO2021135266A1 (zh) 阵列天线
WO2021135267A1 (zh) 天线单元及阵列天线
JP6946466B2 (ja) 通信デバイス
CN113540759B (zh) 天线模组、射频装置和基站
KR101974303B1 (ko) Mimo 안테나 디바이스 및 이동 통신 디바이스
JP7246490B2 (ja) アンテナ構造及び高周波多周波数帯無線通信端末
KR20170083949A (ko) 누설파 위상 어레이 안테나를 포함하는 무선 통신 장치
WO2021135274A1 (zh) 大规模阵列天线及天线模块
CN110574228A (zh) 用于显示面板的框架中的天线
CN116349089A (zh) 天线装置
KR102168317B1 (ko) 이동 단말 및 이동 단말의 안테나 방사 방법
CN210957014U (zh) 移相馈电装置、天线单元及阵列天线
WO2024139652A1 (zh) 天线装置与馈电网络组件
CN211126065U (zh) 阵列天线
CN212412206U (zh) 馈电网络、天线系统及基站
CN211126054U (zh) 天线单元及阵列天线
CN111987410A (zh) 一种模块化afu结构
KR102528198B1 (ko) 안테나 장치
CN218182468U (zh) 天线装置及移动终端
WO2022042239A1 (zh) 按键、卡托、摄像头装饰件及移动终端
JP4955428B2 (ja) アンテナ装置
CN210926349U (zh) 大规模阵列天线及天线模块
WO2021047229A1 (zh) 一种天线和天线的加工方法
KR20130104003A (ko) 스피커 일체형 내장형 안테나
CN110048219B (zh) 一种集成超宽带5g天线的电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020909313

Country of ref document: EP

Effective date: 20220801