WO2022042239A1 - 按键、卡托、摄像头装饰件及移动终端 - Google Patents

按键、卡托、摄像头装饰件及移动终端 Download PDF

Info

Publication number
WO2022042239A1
WO2022042239A1 PCT/CN2021/110523 CN2021110523W WO2022042239A1 WO 2022042239 A1 WO2022042239 A1 WO 2022042239A1 CN 2021110523 W CN2021110523 W CN 2021110523W WO 2022042239 A1 WO2022042239 A1 WO 2022042239A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
circuit board
dielectric
dielectric resonant
resonant antenna
Prior art date
Application number
PCT/CN2021/110523
Other languages
English (en)
French (fr)
Inventor
王咏超
徐鑫
李建铭
缑城
陈弋凌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022042239A1 publication Critical patent/WO2022042239A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3816Mechanical arrangements for accommodating identification devices, e.g. cards or chips; with connectors for programming identification devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0277Details of the structure or mounting of specific components for a printed circuit board assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0279Improving the user comfort or ergonomics
    • H04M1/0283Improving the user comfort or ergonomics for providing a decorative aspect, e.g. customization of casings, exchangeable faceplate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/23Construction or mounting of dials or of equivalent devices; Means for facilitating the use thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/23Construction or mounting of dials or of equivalent devices; Means for facilitating the use thereof
    • H04M1/236Construction or mounting of dials or of equivalent devices; Means for facilitating the use thereof including keys on side or rear faces

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular, to a button, a card tray, a camera decoration, and a mobile terminal.
  • the current mobile terminals are integrated with fifth-generation mobile communication technology (5th generation wireless systems, 5G) antennas (such as millimeter wave antennas), wireless fidelity (Wi-Fi) antennas, global positioning system (global positioning system) , GPS) antenna, Bluetooth (bluetooth) antenna and many other antennas to meet the communication needs in different usage scenarios.
  • 5G fifth-generation mobile communication technology
  • Wi-Fi wireless fidelity
  • GPS global positioning system
  • Bluetooth bluetooth
  • a mobile terminal using a frame and a back cover generally arranges the antenna on the inner side of the frame or the inner side of the back cover, and then solves the problem of signal shielding by slitting the frame or the back cover.
  • the frame easily causes the millimeter-wave beam pointing of the millimeter-wave antenna to be shifted in the desired direction, resulting in a large beam pointing error, so the antenna performance of the millimeter-wave antenna is poor.
  • the purpose of the present application is to provide a button, a card tray, a camera decoration and a mobile terminal.
  • a dielectric resonant antenna used as a millimeter-wave antenna is integrated into structural parts such as buttons, card trays, and camera decorations. The structural parts are exposed relative to the frame or back cover of the mobile terminal, and a certain distance is formed between the dielectric resonant antenna and the housing. , so the impact of the housing on the pointing of the millimeter wave beam is small, the millimeter wave beam can cover the required direction, the beam pointing error is small, and the antenna performance of the millimeter wave antenna is improved.
  • the present application provides a button, which can be applied to a mobile terminal.
  • the key includes a circuit board, a dielectric resonant antenna, and a keycap.
  • the dielectric resonant antenna is fixed on the circuit board and is electrically connected to the circuit board.
  • the dielectric resonant antenna can be used as a millimeter-wave antenna, for example, the dielectric resonant antenna can operate in the frequency range of 24.25GHz to 29.5GHz and 37GHz to 43.5GHz.
  • the keycap is fixed on the circuit board and covers the dielectric resonant antenna.
  • the keycaps use low dielectric constant materials to allow electromagnetic waves to pass through. Wherein, the dielectric constant of the keycap is less than or equal to 6.
  • the dielectric resonant antenna is integrated in the key.
  • the radiation direction of the dielectric resonant antenna for sending and receiving electromagnetic waves points to the side away from the circuit board. best antenna performance.
  • the keycap wraps the dielectric resonant antenna, when the key is installed on other structures, the keycap can isolate the dielectric resonant antenna from other structures, especially metal structures, so as to reduce the interference of other structures on the dielectric resonant antenna.
  • the keys may pass through the key holes of the frame of the mobile terminal. Since the keycap wraps the dielectric resonant antenna, a certain distance is formed between the dielectric resonant antenna and the frame. The keycap is partially exposed relative to the frame. The dielectric resonant antenna is not blocked by the frame and forms a certain distance from the frame. The keycap allows electromagnetic waves to pass through. Therefore, the keycap and frame have little influence on the direction of the millimeter wave beam sent and received by the dielectric resonant antenna. The millimeter wave beam can cover the required direction, the beam pointing error is small, and the antenna performance of the millimeter wave antenna is improved. At the same time, the frame of the mobile terminal does not need additional slits, so the millimeter-wave antenna will not affect the product appearance design of the mobile terminal, and the appearance integrity of the mobile terminal is better.
  • the number of dielectric resonant antennas is multiple, and the multiple dielectric resonant antennas are arranged in an array.
  • Multiple dielectric resonant antennas arranged in an array form an array antenna, which can reduce the scattering problem of high-frequency electromagnetic waves when using millimeter waves, and can also strengthen and improve the directivity of the radiation field and the intensity of the radiation field.
  • the distance between two adjacent dielectric resonant antennas may be about half a wavelength.
  • the keycap is made of plastic material. In other possible implementation manners, the keycap can also be made of glass material.
  • the keycap has a top surface and a peripheral side surface, the top surface of the keycap is located on the side of the dielectric resonant antenna facing away from the circuit board, and the peripheral side surface of the keycap is connected to the peripheral edge of the top surface of the keycap.
  • the key further includes a non-metallic coating, and the non-metallic coating is fixed on the keycap and covers the top surface of the keycap and the peripheral side surface of the keycap.
  • the non-metallic plating layer can be used to protect the keycap, and at the same time, it will not affect the signal transmission and reception of the dielectric resonant antenna.
  • the non-metal plating layer may be the same or similar to the color of the appearance surface of the frame of the mobile terminal, and the two may adopt the same color system to improve the appearance consistency and aesthetics of the mobile terminal.
  • the dielectric resonant antenna includes a non-metallic dielectric block and two feed ports located on the surface of the non-metal dielectric block, the two feed ports are spaced apart from each other, the non-metal dielectric block is fixed on the circuit board, and the two The feeding ports are all electrically connected to the circuit board to form a dual-polarized dielectric resonant antenna.
  • the two polarization directions of the dual-polarized dielectric resonant antenna are orthogonal, for example, the two polarization directions are horizontal and vertical, or the two polarization directions are +45° and -45°, respectively.
  • the dual-polarized dielectric resonant antenna has a large communication capacity.
  • the dielectric resonant antenna further includes a metal column, and the metal column is embedded in the non-metal dielectric block. Among them, the metal column is not grounded.
  • the dielectric resonant antenna can form two resonant frequency bands, the low-frequency resonant frequency band in the two resonant frequency bands is mainly generated by the non-metallic dielectric block excited by the two feed ports, and the high-frequency resonant frequency band is mainly generated by the inductive loading of the metal column.
  • the setting of the metal column can increase the generation of new resonant frequency bands, increase the coverage frequency band of the dielectric resonant antenna, and thus increase the bandwidth of the dielectric resonant antenna.
  • the metal posts can also increase the isolation of the two feed ports. Among them, the two resonance frequency bands can also be combined into a wide frequency band.
  • the non-metallic dielectric block is provided with an adjustment hole, and the hole wall of the adjustment hole is provided with a metal layer.
  • the dielectric resonant antenna generates a new resonant frequency band by the inductive loading of the metal layer, which increases the coverage frequency band of the dielectric resonant antenna and expands the bandwidth.
  • the resonance frequency band produced by the loading of the metal layer is affected by the height of the metal layer.
  • the circuit board includes a circuit board antenna and an antenna feeder, and both the circuit board antenna and the dielectric resonant antenna are electrically connected to the antenna feeder.
  • the circuit board antenna and the dielectric resonant antenna together form an antenna module, both of which are connected to the same antenna feeder, and the circuit board antenna and the dielectric resonant antenna respectively form different resonant frequency bands, so that the antenna module obtains at least two resonant frequency bands, to have a larger bandwidth.
  • the two resonance frequency bands can also be combined into a wide frequency band.
  • the key further includes a radio frequency chip, the radio frequency chip is fixed on the side of the circuit board facing away from the dielectric resonant antenna, and the radio frequency chip is electrically connected to the circuit board.
  • the radio frequency chip is electrically connected between the circuit board and the feeding port of the dielectric resonant antenna, so as to send and receive radio frequency signals. At this time, the transmission path of the radio frequency signal is short, which is beneficial to improve the antenna performance of the dielectric resonant antenna.
  • the key further includes a flexible circuit board, one end of the flexible circuit board is electrically connected to the circuit board, and the other end is provided with an electrical connector.
  • External devices transmit radio frequency signals through electrical connectors, flexible circuit boards and dielectric resonant antennas.
  • the circuit board is provided with an avoidance hole
  • the keycap includes a pressing part and a triggering part
  • the pressing part is fixed on the circuit board and wraps the dielectric resonant antenna
  • one end of the triggering part is fixed on the pressing part
  • the other end of the triggering part is fixed. Protruding from the circuit board through the avoidance hole.
  • the mobile terminal may further include a key board located inside the frame and a switch fixed on the key board
  • the key board may be a circuit board
  • the switch is electrically connected to the key board.
  • the trigger part of the keycap is disposed facing the switch, and when the user presses the pressing part of the keycap outside the frame, the trigger part presses against the switch to trigger the switch.
  • the keys, the key board and the switches together form a key module.
  • the present application further provides a card tray, which can be applied to a mobile terminal.
  • a card tray includes a door panel, a tray, a circuit board and a dielectric resonance antenna.
  • the tray is fixed on one side of the door panel, and the tray is provided with a card slot.
  • the dielectric resonant antenna is fixed on the circuit board and is electrically connected to the circuit board.
  • Dielectric resonant antennas can be used as millimeter-wave antennas.
  • the dielectric resonant antenna is embedded in the door panel, and the circuit board is located on the side of the dielectric resonant antenna facing the tray.
  • the door panels are made of low dielectric constant materials to allow electromagnetic waves to pass through. Wherein, the dielectric constant of the door panel is less than or equal to 6.
  • the dielectric resonant antenna is integrated in the card tray.
  • the radiation direction of the dielectric resonant antenna for sending and receiving electromagnetic waves points to the side away from the circuit board. best antenna performance.
  • the door panel wraps the dielectric resonant antenna, when the card tray is installed on other structures, the door panel can isolate the dielectric resonant antenna from other structures, especially metal structures, so as to reduce the interference of other structures on the dielectric resonant antenna.
  • the card tray may be inserted into the card tray jack of the frame of the mobile terminal. Since the door panel wraps the dielectric resonant antenna, a certain distance is formed between the dielectric resonant antenna and the frame. The door panel is partially exposed relative to the frame. The dielectric resonant antenna is not blocked by the frame and forms a certain distance from the frame. The door panel allows electromagnetic waves to pass through. Therefore, the door panel and the frame have little influence on the direction of the millimeter wave beam sent and received by the dielectric resonant antenna, making the millimeter wave The beam can cover the required direction, and the beam pointing error is small, which improves the antenna performance of the millimeter-wave antenna. At the same time, the frame of the mobile terminal does not need additional slits, so the millimeter-wave antenna will not affect the product appearance design of the mobile terminal, and the appearance integrity of the mobile terminal is better.
  • the number of dielectric resonant antennas is multiple, and the multiple dielectric resonant antennas are arranged in an array.
  • Multiple dielectric resonant antennas arranged in an array form an array antenna, which can reduce the scattering problem of high-frequency electromagnetic waves when using millimeter waves, and can also strengthen and improve the directivity of the radiation field and the intensity of the radiation field.
  • the distance between two adjacent dielectric resonant antennas may be about half a wavelength.
  • the door panel is made of plastic material. In other possible implementation manners, the door panel can also be made of glass material.
  • the door panel has a top surface, and the top surface of the door panel is located on the side of the dielectric resonant antenna facing away from the circuit board.
  • the card tray also includes a non-metallic plating layer, and the non-metallic plating layer is fixed on the door panel and covers the top surface of the door panel.
  • the non-metallic coating can be used to protect the door panel, and at the same time, it will not affect the signal transmission and reception of the dielectric resonant antenna.
  • the non-metal plating layer may be the same or similar to the color of the appearance surface of the frame of the mobile terminal, and the two may adopt the same color system to improve the appearance consistency and aesthetics of the mobile terminal.
  • the dielectric resonant antenna includes a non-metallic dielectric block and two feed ports located on the surface of the non-metal dielectric block, the two feed ports are spaced apart from each other, the non-metal dielectric block is fixed on the circuit board, and the two The feeding ports are all electrically connected to the circuit board to form a dual-polarized dielectric resonant antenna.
  • the two polarization directions of the dual-polarized dielectric resonant antenna are orthogonal, for example, the two polarization directions are horizontal and vertical, or the two polarization directions are +45° and -45°, respectively.
  • the dual-polarized dielectric resonant antenna has a large communication capacity.
  • the dielectric resonant antenna further includes a metal column, and the metal column is embedded in the non-metal dielectric block. Among them, the metal column is not grounded.
  • the dielectric resonant antenna can form two resonant frequency bands, the low-frequency resonant frequency band in the two resonant frequency bands is mainly generated by the non-metallic dielectric block excited by the two feed ports, and the high-frequency resonant frequency band is mainly generated by the inductive loading of the metal column.
  • the setting of the metal column can increase the generation of new resonant frequency bands, increase the coverage frequency band of the dielectric resonant antenna, and thus increase the bandwidth of the dielectric resonant antenna.
  • the metal posts can also increase the isolation of the two feed ports. Among them, the two resonant frequency bands can also be combined into a wide frequency band.
  • the non-metallic dielectric block is provided with an adjustment hole, and the hole wall of the adjustment hole is provided with a metal layer.
  • the dielectric resonant antenna generates a new resonant frequency band by the inductive loading of the metal layer, which increases the coverage frequency band of the dielectric resonant antenna and expands the bandwidth.
  • the resonance frequency band produced by the loading of the metal layer is affected by the height of the metal layer.
  • the circuit board includes a circuit board antenna and an antenna feeder, and both the circuit board antenna and the dielectric resonant antenna are connected to the antenna feeder.
  • the circuit board antenna and the dielectric resonant antenna together form an antenna module, both of which are connected to the same antenna feeder, and the circuit board antenna and the dielectric resonant antenna respectively form different resonant frequency bands, so that the antenna module obtains at least two resonant frequency bands, to have a larger bandwidth.
  • the two resonance frequency bands can also be combined into a wide frequency band.
  • the present application further provides a camera decoration, which can be applied to a mobile terminal.
  • the camera decorative part includes a decorative part body, a lens, a circuit board and a dielectric resonant antenna.
  • the decoration body is provided with a light-transmitting hole, and the lens is fixed on the decoration body and covers the light-transmitting hole.
  • the dielectric resonant antenna is fixed on the circuit board and is electrically connected to the circuit board. Dielectric resonant antennas can be used as millimeter-wave antennas.
  • the dielectric resonant antenna is embedded in the decoration body and covered by the mirror, and the circuit board is located on the side of the dielectric resonant antenna away from the mirror.
  • the decoration body is made of low dielectric constant material to allow electromagnetic waves to pass through. Wherein, the dielectric constant of the decoration body is less than or equal to 6.
  • the dielectric resonant antenna is integrated in the camera decoration.
  • the radiation direction of the dielectric resonant antenna for sending and receiving electromagnetic waves points to the side away from the circuit board. Since the body of the decoration will not shield the electromagnetic waves, the dielectric resonance The antenna has better antenna performance.
  • the decoration body wraps the dielectric resonant antenna, when the camera decoration is installed on other structures, the decoration body can isolate the dielectric resonance antenna from other structures, especially metal structures, so as to reduce the interference of other structures to the dielectric resonance antenna.
  • the camera decoration piece may pass through the camera hole of the back cover of the mobile terminal. Since the body of the decorative element wraps the dielectric resonant antenna, a certain distance is formed between the dielectric resonant antenna and the back cover. The lens is partially exposed relative to the back cover, the dielectric resonant antenna is located under the lens, the dielectric resonant antenna is not blocked by the back cover and forms a certain distance from the back cover, the decoration body and the lens allow electromagnetic waves to pass through, so the decoration body, the lens and the rear cover
  • the cover has little influence on the direction of the millimeter wave beam sent and received by the dielectric resonant antenna, so that the millimeter wave beam can cover the required direction, the beam pointing error is small, and the antenna performance of the millimeter wave antenna is improved.
  • the back cover of the mobile terminal does not need additional slits, so the millimeter-wave antenna will not affect the product appearance design of the mobile terminal, and the appearance integrity of the mobile terminal is better.
  • the body of the decorative element is made of plastic material. In other possible implementation manners, the body of the decorative element can also be made of glass material.
  • the camera decoration further includes a metal ring
  • the metal ring is fixed on the decoration body and arranged around the lens
  • the dielectric resonant antenna and the metal ring are arranged at intervals from each other.
  • the metal ring can protect the lens, so as to reduce the risk of the lens being broken due to impact, collision, and the like.
  • the metal ring is arranged around the lens, the dielectric resonant antenna is located under the lens and is spaced apart from the metal ring, so the setting of the metal ring will not affect the dielectric resonant antenna to send and receive signals.
  • the metal ring can be fixed to the body of the decorative piece by means of bonding.
  • the dielectric resonant antenna includes a non-metallic dielectric block and two feed ports located on the surface of the non-metal dielectric block, the two feed ports are spaced apart from each other, the non-metal dielectric block is fixed on the circuit board, and the two The feeding ports are all electrically connected to the circuit board to form a dual-polarized dielectric resonant antenna.
  • the two polarization directions of the dual-polarized dielectric resonant antenna are orthogonal, for example, the two polarization directions are horizontal and vertical, or the two polarization directions are +45° and -45°, respectively.
  • the dual-polarized dielectric resonant antenna has a large communication capacity.
  • the dielectric resonant antenna further includes a metal column, and the metal column is embedded in the non-metal dielectric block. Among them, the metal column is not grounded.
  • the dielectric resonant antenna can form two resonant frequency bands, the low-frequency resonant frequency band in the two resonant frequency bands is mainly generated by the non-metallic dielectric block excited by the two feed ports, and the high-frequency resonant frequency band is mainly generated by the inductive loading of the metal column.
  • the setting of the metal column can increase the generation of new resonant frequency bands, increase the coverage frequency band of the dielectric resonant antenna, and thus increase the bandwidth of the dielectric resonant antenna.
  • the metal posts can also increase the isolation of the two feed ports. Among them, the two resonance frequency bands can also be combined into a wide frequency band.
  • the circuit board includes a circuit board antenna and an antenna feeder, and both the circuit board antenna and the dielectric resonant antenna are electrically connected to the antenna feeder.
  • the circuit board antenna and the dielectric resonant antenna together form an antenna module, both of which are connected to the same antenna feeder, and the circuit board antenna and the dielectric resonant antenna respectively form different resonant frequency bands, so that the antenna module obtains at least two resonant frequency bands, to have a larger bandwidth.
  • the two resonance frequency bands can also be combined into a wide frequency band.
  • the present application further provides a mobile terminal.
  • the mobile terminal includes a frame and any one of the above buttons.
  • the frame is made of metal material, and the frame is provided with a button hole.
  • the key is penetrated through the key hole, and the key cap is partially protruded relative to the appearance surface of the frame.
  • the dielectric resonant antenna can be used as a millimeter-wave antenna.
  • the dielectric resonant antenna is integrated in the key, the keycap is partially exposed relative to the frame, the dielectric resonant antenna is not blocked by the frame and forms a certain distance from the frame, and the keycap allows electromagnetic waves. Therefore, the keycap and frame have little influence on the direction of the millimeter wave beam sent and received by the dielectric resonant antenna, so that the millimeter wave beam can cover the required direction, and the beam pointing error is small, which improves the antenna performance of the millimeter wave antenna.
  • the keys can be used as power keys (or power-on keys), volume keys, camera keys and other function keys of the mobile terminal.
  • the present application further provides a mobile terminal.
  • the mobile terminal includes a frame, a card holder located inside the frame, and any one of the card trays described above.
  • the frame is made of metal material, and the frame has a card tray jack.
  • the door panel is located in the card tray jack, and the door panel is exposed relative to the frame. The tray is inserted into the deck.
  • the dielectric resonant antenna can be used as a millimeter-wave antenna.
  • the dielectric resonant antenna is integrated in the card tray, the door panel is exposed relative to the frame, the dielectric resonant antenna is not blocked by the frame and forms a certain distance from the frame, and the door panel allows electromagnetic waves to pass through. , so the door panel and frame have little influence on the direction of the millimeter wave beam sent and received by the dielectric resonant antenna, so that the millimeter wave beam can cover the required direction, the beam pointing error is small, and the antenna performance of the millimeter wave antenna is improved.
  • the tray of the card tray can be used to install one or more subscriber identity modules (SIM), and can also be used to install one or more memory cards.
  • SIM subscriber identity modules
  • the appearance surface of the door panel is flush with the appearance surface of the frame, or the appearance surface of the door panel is retracted relative to the appearance surface of the frame, but is not blocked.
  • the color of the appearance surface of the door panel is the same or similar to the color of the appearance surface of the frame, and the two may use the same color system to improve the appearance consistency and aesthetics of the mobile terminal.
  • the present application further provides a mobile terminal.
  • the mobile terminal includes a rear cover and any one of the above camera decorations, the rear cover is made of metal material, and the rear cover is provided with a camera hole, the camera decoration is penetrated through the camera hole, and the lens of the camera decoration is exposed relative to the back cover.
  • the dielectric resonant antenna can be used as a millimeter-wave antenna.
  • the dielectric resonant antenna is integrated in the camera trim, the lens is exposed relative to the back cover, and the dielectric resonant antenna is located under the lens, so the dielectric resonant antenna is not blocked by the back cover and is connected to the rear cover.
  • a certain distance is formed between the covers, and the back cover has less influence on the direction of the millimeter wave beam sent and received by the dielectric resonant antenna, so that the millimeter wave beam can cover the required direction, and the beam pointing error is small, which improves the antenna performance of the millimeter wave antenna.
  • the decorative part body and the metal ring of the camera decorative part pass through the camera hole, and the metal ring protrudes from the appearance surface of the back cover.
  • the present application further provides a mobile terminal.
  • the mobile terminal includes a housing and a structural member.
  • the shell is made of metal material, and the shell is provided with a through hole.
  • the structural member is penetrated through the through hole and is partially exposed relative to the casing.
  • the structural component includes a body and a dielectric resonant antenna embedded in the body, and a certain distance is formed between the dielectric resonant antenna and the casing.
  • the dielectric constant of the body is less than or equal to 6.
  • the dielectric resonant antenna is used to transmit electromagnetic waves to and/or receive electromagnetic waves from the outside of the casing.
  • the dielectric resonant antenna can be used as a millimeter-wave antenna.
  • the dielectric resonant antenna is integrated in a structural member, the structural member is partially exposed relative to the housing, a certain distance is formed between the dielectric resonant antenna and the housing, and the body of the structural member allows electromagnetic waves. Pass through, so that the transceiver signal of the dielectric resonant antenna is not blocked by the body and the casing, so as to solve the problem of large pointing error of the millimeter wave beam caused by the casing covering, so that the appearance of the mobile terminal is not affected. Make the millimeter-wave beam cover the desired direction, and the millimeter-wave antenna has better antenna performance.
  • the dielectric resonant antenna since the dielectric resonant antenna is integrated into structural components such as buttons, card trays, and camera decorations, the dielectric resonant antenna does not need to occupy additional internal space of the mobile terminal, and the casing of the mobile terminal does not require additional slits, so mm
  • the wave antenna will not affect the product appearance design of the mobile terminal, and the appearance integrity of the mobile terminal is better.
  • structural components such as buttons, card trays, and camera decorations are generally in positions that cannot be held by the user's hand in the mobile terminal, so the risk of "death grip" is small, which can reduce the impact of the human body on the antenna. effect, so as to achieve better radiation.
  • the dielectric resonant antenna can also be integrated in other structural components of the mobile terminal.
  • FIG. 1 is a schematic structural diagram of a mobile terminal provided by an embodiment of the present application in some embodiments;
  • FIG. 2 is a schematic structural diagram of the mobile terminal shown in FIG. 1 at another angle;
  • FIG. 3 is a schematic structural diagram of a button provided in an embodiment of the present application in some embodiments.
  • Fig. 4 is the cross-sectional schematic diagram of the button shown in Fig. 3 cut along the A-A line;
  • Fig. 5 is the partial structure schematic diagram of the keycap shown in Fig. 4;
  • FIG. 7 is a schematic diagram of the matching structure of a metal frame and a dielectric resonant antenna provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of the structure shown in FIG. 7 cut along the B-B line;
  • FIG. 10 is a schematic diagram 1 of the electric field of the dielectric resonant antenna obtained by the simulation of the structure shown in FIG. 7;
  • Fig. 11 is a schematic diagram 2 of the electric field of the dielectric resonant antenna obtained by the simulation of the structure shown in Fig. 7;
  • Fig. 12 is the 28GHz gain slice pattern of the dielectric resonant antenna obtained by the simulation of the structure shown in Fig. 7;
  • FIG. 13 is a gain pattern obtained by simulation of the dielectric resonant antenna of the 1 ⁇ 2 array shown in FIG. 4;
  • FIG. 15 is a vertical polarization pattern obtained by simulation of the dielectric resonant antenna of the 1 ⁇ 2 array shown in FIG. 4;
  • 16 is a schematic structural diagram of the dielectric resonant antenna provided by the present application in other embodiments.
  • 17 is a schematic structural diagram of a dielectric resonant antenna provided by the present application in still other embodiments.
  • FIG. 18 is a schematic structural diagram of a dielectric resonant antenna provided by the present application in still other embodiments.
  • FIG. 19 is a schematic structural diagram of a dielectric resonant antenna provided by the present application in still other embodiments.
  • 20 is a schematic structural diagram of a dielectric resonant antenna provided by the present application in still other embodiments.
  • FIG. 21 is a schematic diagram of the internal structure of the keys provided in the embodiments of the present application in other embodiments;
  • FIG. 22 is a schematic diagram of the internal structure of a button provided by an embodiment of the present application in still other embodiments.
  • FIG. 23 is a schematic diagram of the internal structure of a button provided by an embodiment of the present application in still other embodiments.
  • 24 is a schematic diagram of the internal structure of a card tray provided by an embodiment of the present application.
  • Figure 25 is a schematic diagram of the internal structure of the card tray shown in Figure 24 at another angle;
  • Fig. 26 is a partial structural schematic diagram of the mobile terminal shown in Fig. 1;
  • FIG. 27 is a schematic diagram of the internal structure of the card tray provided by the embodiments of the present application in other embodiments;
  • FIG. 28 is a schematic diagram of the internal structure of the card tray provided by the embodiments of the present application in further embodiments;
  • FIG. 29 is a schematic diagram of the internal structure of a camera decorative piece provided by an embodiment of the present application.
  • Fig. 30 is a top view of the dielectric resonant antenna of the camera decorative piece shown in Fig. 29;
  • Fig. 31 is a partial structural schematic diagram of the mobile terminal shown in Fig. 1;
  • FIG. 32 is a schematic diagram of the internal structure of the camera decorative piece provided in the embodiments of the present application in still other embodiments;
  • FIG. 33 is a schematic structural diagram of an antenna module provided by an embodiment of the present application.
  • FIG. 34 is a schematic cross-sectional view of the antenna module shown in FIG. 33 taken along line C-C;
  • FIG. 35 is a schematic diagram of the internal structure of the antenna module shown in FIG. 33 in a possible embodiment
  • Fig. 36 is the echo curve and isolation curve diagram obtained by the simulation of the antenna module shown in Fig. 35;
  • FIG. 37 is a schematic diagram 1 of the electric field obtained by the simulation of the antenna module shown in FIG. 35;
  • Fig. 38 is a schematic diagram 2 of the electric field obtained by the simulation of the antenna module shown in Fig. 35;
  • Figure 39 is a schematic diagram of the electric field shown in Figure 38 at another angle
  • Fig. 40 is the first polarization section pattern at 24.5HGz obtained by the simulation of the antenna module shown in Fig. 35;
  • Figure 41 is the second polarization section pattern at 24.5HGz obtained by the simulation of the antenna module shown in Figure 35;
  • Fig. 42 is the first polarization section pattern at 37.5HGz obtained by the simulation of the antenna module shown in Fig. 35;
  • Figure 43 is the second polarization section pattern at 37.5HGz obtained by the simulation of the antenna module shown in Figure 35;
  • Fig. 44 is the first polarization section pattern at 43.5HGz obtained by the simulation of the antenna module shown in Fig. 35;
  • FIG. 45 is a second polarization section pattern at 43.5HGz obtained by simulation of the antenna module shown in FIG. 35 .
  • the present application provides a mobile terminal, including a casing and a structural member.
  • the casing may be a part of the casing of the mobile terminal, such as a frame or a back cover of the mobile terminal.
  • the shell is made of metal material.
  • the casing may also be a casing of the mobile terminal.
  • the casing is provided with a through hole, and the structural member penetrates through the through hole and is partially exposed relative to the casing.
  • the structural component includes a body and a dielectric resonant antenna (DRA) embedded in the body.
  • the body adopts a low dielectric constant material, for example, the dielectric constant of the body is less than or equal to 6.
  • a certain distance is formed between the dielectric resonant antenna and the housing, and the dielectric resonant antenna is used to transmit electromagnetic waves to the outside of the housing and/or receive electromagnetic waves from the outside of the housing.
  • the dielectric resonant antenna can be used as a millimeter-wave antenna.
  • the dielectric resonant antenna is integrated in a structural member, the structural member is partially exposed relative to the housing, a certain distance is formed between the dielectric resonant antenna and the housing, and the body of the structural member allows electromagnetic waves. Pass through, so that the transceiver signal of the dielectric resonant antenna is not blocked by the body and the casing, so as to solve the problem of large pointing error of the millimeter wave beam caused by the casing covering, so that the appearance of the mobile terminal is not affected. Make the millimeter-wave beam cover the desired direction, and the millimeter-wave antenna has better antenna performance.
  • component A is "exposed" relative to component B, which means that component A can be seen from the outside of component B, and component A is not completely blocked by component B.
  • component B may include the case where the appearance surface of part A protrudes from the appearance surface of part B, or the case where the appearance surface of part A is flush with the appearance surface of part B, or the case where the appearance surface of part A is opposite to part B
  • the appearance of the plane is indented, but not occluded.
  • the above-mentioned structural member includes a button.
  • the key includes a key cap and a dielectric resonant antenna embedded in the key cap, and the key cap adopts a low dielectric constant material.
  • the frame of the mobile terminal is made of metal material, and the frame is provided with a button hole. The key is penetrated through the key hole, and the key cap is partially protruded relative to the appearance surface of the frame.
  • the dielectric resonant antenna can be used as a millimeter-wave antenna.
  • the dielectric resonant antenna is integrated in the key, the keycap is partially exposed relative to the frame, the dielectric resonant antenna is not blocked by the frame and forms a certain distance from the frame, and the keycap allows electromagnetic waves. Therefore, the keycap and frame have little influence on the direction of the millimeter wave beam sent and received by the dielectric resonant antenna, so that the millimeter wave beam can cover the required direction, and the beam pointing error is small, which improves the antenna performance of the millimeter wave antenna.
  • the keys can be used as power keys (or power-on keys), volume keys, camera keys and other function keys of the mobile terminal.
  • the above-mentioned structural member includes a card tray.
  • the card tray includes a door panel, a tray and a dielectric resonant antenna, the dielectric resonant antenna is embedded in the door panel, and the door panel is made of materials with low dielectric constant.
  • the frame of the mobile terminal is made of metal material, the frame is provided with a card tray jack, the card tray is inserted into the card tray jack, the door panel is located in the card tray jack, the opposite frame is exposed, and the tray is inserted into the card seat located inside the frame.
  • the dielectric resonant antenna can be used as a millimeter-wave antenna.
  • the dielectric resonant antenna is integrated in the card tray, the door panel is exposed relative to the frame, the dielectric resonant antenna is not blocked by the frame and forms a certain distance from the frame, and the door panel allows electromagnetic waves to pass through. , so the door panel and frame have little influence on the direction of the millimeter wave beam sent and received by the dielectric resonant antenna, so that the millimeter wave beam can cover the required direction, the beam pointing error is small, and the antenna performance of the millimeter wave antenna is improved.
  • the tray of the card tray can be used to install one or more subscriber identity modules (SIM), and can also be used to install one or more memory cards.
  • SIM subscriber identity modules
  • the above-mentioned structural member includes a camera decorative member.
  • the camera decoration includes a decoration body, a lens fixed on the decoration body, and a dielectric resonance antenna embedded in the decoration body.
  • the dielectric resonance antenna is located under the lens, and the decoration body adopts a low dielectric constant material.
  • the back cover of the mobile terminal is made of metal material, the back cover is provided with a camera hole, the camera decorative piece is penetrated through the camera hole, and the lens is exposed relative to the back cover.
  • the dielectric resonant antenna can be used as a millimeter-wave antenna.
  • the dielectric resonant antenna is integrated in the camera trim, the lens is exposed relative to the back cover, and the dielectric resonant antenna is located under the lens, so the dielectric resonant antenna is not blocked by the back cover and is connected to the rear cover.
  • a certain distance is formed between the covers, and the back cover has less influence on the direction of the millimeter wave beam sent and received by the dielectric resonant antenna, so that the millimeter wave beam can cover the required direction, and the beam pointing error is small, which improves the antenna performance of the millimeter wave antenna.
  • the dielectric resonant antenna since the dielectric resonant antenna is integrated into structural components such as buttons, card trays, and camera decorative parts, the dielectric resonant antenna does not need to occupy additional internal space of the mobile terminal, and the casing of the mobile terminal does not require additional slits, so mm
  • the wave antenna will not affect the product appearance design of the mobile terminal, and the appearance integrity of the mobile terminal is better.
  • structural components such as buttons, card trays, and camera decorations are generally in positions that cannot be held by the user's hand in the mobile terminal, so the risk of "death grip" is small, which can reduce the impact of the human body on the antenna. effect, so as to achieve better radiation.
  • the dielectric resonant antenna can also be integrated in other structural components of the mobile terminal.
  • FIG. 1 is a schematic structural diagram of the mobile terminal 100 according to an embodiment of the present application in some embodiments
  • FIG. 2 is a schematic structural diagram of the mobile terminal 100 shown in FIG. 1 from another angle.
  • the mobile terminal 100 may be a terminal device such as a mobile phone, a tablet, or a wearable device.
  • the embodiments of the present application are described by taking the mobile terminal 100 as a mobile phone as an example.
  • the mobile terminal 100 may include a casing 101, a display screen 102, a card tray 103, a card holder 104, a power key 105, a volume key 106, a mainboard 107, a battery 108, a speaker 109, a universal serial bus (universal serial bus) bus, USB) interface 1010, microphone 1011, headphone interface 1012, camera module 1013, camera decoration 1014, etc.
  • a universal serial bus universal serial bus
  • USB universal serial bus
  • the mobile terminal 100 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the housing 101 includes a frame 101a and a back cover 101b.
  • the back cover 101b and the display screen 102 are respectively fixed on opposite sides of the frame 101a.
  • the rear cover 101b and the frame 101a may be assembled to form an integrated structure, or may be an integrated structure of integral molding.
  • the housing 101 may further include a middle plate (not shown in the figure), the middle plate is located inside the frame 101a, and the middle plate and the frame 101a can be assembled or integrally formed to form an integrated structure, and the two together form the middle frame.
  • Other components of the mobile terminal 100 may be fixed to each other with the middle frame and/or the back cover 101b.
  • the frame 101a and/or the back cover 101b may be made of metal material.
  • the solution in which the frame 101a is made of metal material includes: the whole frame 101a is made of metal material, or most of the structure of the frame 101a is made of metal material, and a small part of the structure can be made of other materials.
  • the frame 101a may be provided with one or more antenna slots, the frame 101a may be divided into multiple independent metal segments by the multiple antenna slots, and the multiple antenna slots may be filled with non-metallic materials.
  • the solution in which the back cover 101b is made of metal material includes: the whole back cover 101b is made of metal material, or most of the structure of the back cover 101b is made of metal material, and a small part of the structure can be made of other materials.
  • the frame 101a can also be made of non-metallic materials such as plastics and ceramics.
  • the back cover 101b can also be made of non-metallic materials such as plastic, ceramic, glass, etc.
  • the frame 101a is provided with a card tray jack 101c, a power key hole 101d, a speaker hole 101e, a USB hole 101f, a microphone hole 101g, and an earphone jack 101h.
  • the frame 101a may also be provided with a volume key hole (not shown in the figure).
  • the rear cover 101b is provided with a camera hole 101i.
  • the card tray 103 , the card holder 104 , the power button 105 , the volume button 106 , the main board 107 , the battery 108 , the speaker 109 , the USB interface 1010 , the microphone 1011 , the headphone interface 1012 , the camera module 1013 , the camera decoration 1014 , etc. of the mobile terminal 100 The structure is installed inside the housing 101 .
  • a part of the structure of the card tray 103 is located in the card tray insertion hole 101c and is exposed relative to the frame 101a.
  • the part of the card holder 103 located inside the casing 101 can be inserted into the card holder 104 .
  • the card tray 103 can be used to install a memory card, a subscriber identity module (SIM), and the like.
  • SIM subscriber identity module
  • the power key 105 passes through the power key hole 101d, and a part of the structure of the power key 105 is exposed relative to the frame 101a.
  • the speaker 109 is used to convert audio electrical signals into sound signals.
  • the speaker 109 is disposed corresponding to the speaker hole 101e, so as to emit a sound signal through the speaker hole 101e.
  • the mobile terminal 100 can listen to music through the speaker 109, or listen to a hands-free call or the like.
  • the USB interface 1010 is an interface conforming to the USB standard specification, such as a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 1010 is provided corresponding to the USB hole 101f, and the external structure is inserted into the USB interface 1010 through the USB hole 101f.
  • the USB interface 1010 can be used to connect a charger to charge the mobile terminal 100, and can also be used to transmit data between the mobile terminal 100 and peripheral devices.
  • the USB interface 1010 can also be used to connect an earphone to play audio through the earphone.
  • the USB interface 1010 can also be used to connect other electronic devices, such as AR devices and the like.
  • the microphone 1011 is used to convert sound signals into electrical signals.
  • the microphone 1011 is disposed corresponding to the microphone hole 101g to receive sound signals through the microphone hole 101g.
  • the user can make a sound by approaching the microphone 1011 through a human mouth, and input the sound signal into the microphone 1011 .
  • the headphone jack 1012 is provided corresponding to the headphone jack 101h, and the external structure is plugged into the headphone jack 1012 through the headphone jack 101h.
  • the camera decoration piece 1014 penetrates through the camera hole 101i, and a part of the structure of the camera head decoration piece 1014 is exposed relative to the back cover 101b.
  • the camera module 1013 is disposed corresponding to the camera decoration piece 1014 , so as to collect light through the light-transmitting part on the camera head decoration piece 1014 to realize shooting.
  • the main board 107 may include one or more printed circuit boards (printed circuit boards, PCBs).
  • the mainboard 107 is provided with a processor (not shown in the figure).
  • the processor is coupled to each functional module of the mobile terminal 100 .
  • the processor may include one or more processing units, for example, the processor may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image processor) signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • the battery 108 is electrically connected to the main board 107 and each functional module of the mobile terminal 100 for supplying power to the mobile terminal 100 .
  • FIG. 3 is a schematic structural diagram of the button 10 provided by the embodiments of the present application in some embodiments
  • FIG. 4 is a cross-sectional diagram of the button 10 shown in FIG. 3 cut along the line A-A.
  • the button 10 shown in this embodiment can be applied to the mobile terminal 100 and used as a power button 105, a volume button 106 and other function buttons.
  • the key 10 includes a circuit board 1 , a dielectric resonant antenna 2 and a key cap 3 .
  • the dielectric resonant antenna 2 is fixed to the circuit board 1 and is electrically connected to the circuit board 1 .
  • the key cap 3 is fixed on the circuit board 1 and covers the dielectric resonant antenna 2 . That is, the dielectric resonant antenna 2 is embedded in the keycap 3 and provided.
  • the dielectric resonant antenna 2 is used for transmitting and receiving electromagnetic waves.
  • the dielectric resonant antenna 2 can be used as a millimeter-wave antenna, for example, the dielectric resonant antenna 2 can operate in the frequency bands of 24.25GHz to 29.5GHz and 37GHz to 43.5GHz.
  • the keycap 3 adopts a low dielectric constant material to allow electromagnetic waves to pass through.
  • the radiation direction of the dielectric resonant antenna 2 for sending and receiving electromagnetic waves points to the side away from the circuit board 1. Since the keycap 3 will not shield the electromagnetic waves, the dielectric resonant antenna 2 has a better antenna. performance. In addition, since the keycap 3 wraps the dielectric resonant antenna 2, when the key 10 is installed on other structures, the keycap 3 can isolate the dielectric resonant antenna 2 from other structures, especially metal structures, so as to reduce the impact of other structures on the dielectric resonant antenna 2. interference.
  • the dielectric constant of the keycap 3 is less than or equal to 6. Wherein, the dielectric constant of the key cap 3 may be between 2 and 6, and a smaller value may be used as much as possible.
  • the key cap 3 can be made of plastic, glass and other materials.
  • the key cap 3 can wrap the dielectric resonant antenna 2 and be fixed to the dielectric resonant antenna 2 by means of plastic packaging.
  • the circuit board 1 is a structural member including at least one layer of non-conductive base material and at least one layer of conductive layer.
  • the millimeter wave frequency bands in which the dielectric resonant antenna 2 can work in the embodiment of the present application may include but are not limited to: frequency band n257, 26.5GHz to 29.5GHz; frequency band n258, 24.25GHz to 27.5GHz; frequency band n259, 39.5GHz to 43.5GHz; Band n260, 37.0GHz to 40.0GHz; Band n261, 27.5GHz to 28.35GHz.
  • the circuit board 1 may be provided with avoidance holes 11 .
  • the avoidance hole 11 can be formed in the middle of the circuit board 1 and is a through hole structure with a complete hole wall; the avoidance hole 11 can also be formed on the periphery of the circuit board 1 and is a notch structure with an incomplete hole wall.
  • the keycap 3 includes a pressing part 31 and a triggering part 32 , the pressing part 31 is fixed on the circuit board 1 and wraps the dielectric resonant antenna 2 , one end of the triggering part 32 is fixed on the pressing part 31 , and the other end of the triggering part 32 is opposite to the circuit through the avoidance hole 11 .
  • Plate 1 protrudes.
  • the circuit board 1 may be a rigid circuit board or a flexible circuit board.
  • the key 10 may further include a flexible circuit board 12 .
  • One end of the flexible circuit board 12 is electrically connected to the circuit board 1 , and the other end is provided with an electrical connector 13 .
  • the electrical connector 13 is used for electrical connection with other components of the mobile terminal 100 .
  • the mobile terminal 100 may include a radio frequency chip (not shown in the figure), and the radio frequency chip is used for modulating a radio frequency signal or demodulating a radio frequency signal.
  • the radio frequency chip is fixed on the main board 107, and the radio frequency chip is electrically connected to the processor.
  • the electrical connector 13 of the keycap 3 is electrically connected to the radio frequency chip.
  • the processor includes a radio frequency processing module for processing radio frequency signals
  • the electrical connector 13 of the keycap 3 is electrically connected to the processor
  • the mobile terminal 100 may no longer be provided with a radio frequency chip.
  • the flexible circuit board 12 and the circuit board 1 may be connected by assembly, or may be an integrated structure, for example, the flexible circuit board 12 and the circuit board 1 are respectively part of a rigid-flex circuit board. This application does not strictly limit the specific structures, connection relationships, etc. of the flexible circuit board 12 and the circuit board 1 .
  • the size of the dielectric resonant antenna 2 may be less than or equal to within 2 mm in length x 2 mm in width x 4 mm in height, so as to be better embedded in the small keycap 3 .
  • the dielectric resonant antenna 2 includes a non-metallic dielectric block 21 and two feeding ports 22 located on the surface of the non-metallic dielectric block 21 , and the two feeding ports 22 are spaced apart from each other.
  • the non-metallic dielectric block 21 is made of a high dielectric constant material, and the dielectric constant of the non-metallic dielectric block 21 may be in the range of 8 to 100, for example, 10 to 30.
  • the non-metallic dielectric block 21 can be made of a ceramic material, such as a low-loss microwave dielectric ceramic (microwave dielectric ceramic), which can be, but is not limited to, a composite perovskite structure type material.
  • Microwave dielectric ceramics refer to ceramics that are used as dielectric materials in microwave frequency circuits and perform one or more functions.
  • the non-metallic dielectric block 21 is fixed on the circuit board 1 , and the two feeding ports 22 are both electrically connected to the circuit board 1 to form a dual-polarized dielectric resonant antenna.
  • the two polarization directions of the dual-polarized dielectric resonant antenna are orthogonal, for example, the two polarization directions are horizontal and vertical, or the two polarization directions are +45° and -45°, respectively.
  • the dual-polarized dielectric resonant antenna has a large communication capacity.
  • the dielectric resonant antenna 2 may further include a metal column 23 , and the metal column 23 is embedded in the non-metal dielectric block 21 . Wherein, the metal column 23 is not grounded.
  • the dielectric resonant antenna 2 can form two resonant frequency bands, the low-frequency resonant frequency band in the two resonant frequency bands is mainly generated by the non-metallic dielectric block 21 excited by the two feed ports 22 , and the high-frequency resonant frequency band is mainly generated by the metal column 23 . Inductive loading occurs.
  • the setting of the metal column 23 can generate a new resonance frequency band, increase the coverage frequency band of the dielectric resonant antenna 2 , and thus increase the bandwidth of the dielectric resonant antenna 2 .
  • the metal posts 23 can also increase the isolation of the two feeding ports 22 .
  • the two resonance frequency bands can also be combined into a wide frequency band.
  • the feed port 22 of the dielectric resonant antenna 2 can be a patch.
  • the feeding port 22 is L-shaped, the feeding port 22 includes a first part 22a and a second part 22b connected to the first part 22a, the first part 22a is fixed on the side of the non-metal dielectric block 21, and the second part 22b is opposite to A portion 22 a is bent and extends away from the non-metallic dielectric block 21 .
  • the second portion 22b is fixed to the circuit board 1 .
  • the second part 22b can be soldered to the circuit board 1 or connected to the circuit board 1 by conductive glue, so as to be electrically connected with the circuit board 1 .
  • the feeding port 22 of the dielectric resonant antenna 2 and the circuit board 1 can also be connected by a probe connection or in other ways.
  • FIG. 5 is a partial structural diagram of the keycap 3 shown in FIG. 4 .
  • FIG. 5 illustrates the connection structure of the dielectric resonant antenna 2 of the keycap 3 and the circuit board 1 .
  • the circuit board 1 may be a multi-layer board, such as a 4-layer board, that is, it has 4 conductive layers.
  • the circuit board 1 has a feeding line 1a, which is electrically connected to the feeding port 22 of the dielectric resonant antenna 2 through the conductive column 1b.
  • the circuit board 1 may also have a first ground layer 1c, and the first ground layer 1c is located on the side of the feed line 1a away from the dielectric resonant antenna 2 .
  • the circuit board 1 may further have a second ground layer 1d, and the second ground layer 1d is located on the side of the feed line 1a close to the dielectric resonant antenna 2 .
  • the circuit board 1 may also be a double-layer board, a six-layer board, etc., and the feed lines and the ground layer may also be arranged at different positions in the circuit board 1, which are not strictly limited in this application.
  • FIG. 6 is a partial structural diagram of the mobile terminal 100 shown in FIG. 1 .
  • the key 10 shown in FIG. 3 can be used as the power key 105 and applied to the mobile terminal 100 .
  • the mobile terminal 100 includes a bezel 101 a and a key 10 .
  • the frame 101a is made of metal material, and the frame 101a is provided with a key hole (ie, the power key hole 101d).
  • the key 10 is inserted through the key hole, and the key cap 3 of the key 10 is partially protruded from the appearance surface 1011 of the frame 101 a.
  • the appearance surface 1011 of the frame 101 a is the outer surface of the frame 101 a facing the outside of the mobile terminal 100 .
  • the circuit board 1 of the key 10 is located inside the frame 101a.
  • the dielectric resonant antenna 2 is integrated in the key 10, and the key cap 3 is inserted through the key hole. Since the key cap 3 wraps the dielectric resonant antenna 2, a certain distance is formed between the dielectric resonant antenna 2 and the frame 101a. The keycap 3 is partially exposed relative to the frame 101a, the dielectric resonant antenna 2 is not blocked by the frame 101a and forms a certain distance from the frame 101a, and the keycap 3 allows electromagnetic waves to pass through. The influence of the millimeter wave beam pointing is small, so that the millimeter wave beam can cover the required direction, the beam pointing error is small, and the antenna performance of the millimeter wave antenna is improved.
  • the key 10 can also be used as a volume key 106 of the mobile terminal 100, a camera key and other function keys.
  • the mobile terminal 100 may further include a key board 1015 located inside the frame 101 a and a switch 1016 fixed on the key board 1015 .
  • the key board 1015 may be a circuit board, and the switch 1016 is electrically connected to the key board 1015 .
  • the trigger portion 32 of the keycap 3 is disposed facing the switch 1016 . When the user presses the pressing portion 31 of the keycap 3 outside the frame 101 a , the trigger portion 32 presses against the switch 1016 to trigger the switch 1016 .
  • the key 10, the key board 1015 and the switch 1016 together form a key module.
  • the color of the keycap 3 may be the same as or similar to the color of the appearance surface 1011 of the frame 101a, and the two may use the same color system to improve the appearance consistency and aesthetics of the mobile terminal 100.
  • the influence of the metal frame on the dielectric resonant antenna 2 is described below through simulation.
  • FIG. 7 is a schematic diagram of the matching structure of a metal frame 200 and a dielectric resonant antenna 2 according to an embodiment of the present application
  • FIG. 8 is a schematic structural diagram of the structure shown in FIG. 7 cut along line BB .
  • the metal frame 200 has a rectangular installation space 201 with a size of 2mm*2mm, and the dielectric resonant antenna 2 is located in the installation space 201 .
  • the dielectric resonant antenna 2 includes a non-metallic dielectric block 21 , two feeding ports 22 and a metal column 23 .
  • the height of the non-metallic dielectric block 21 is 3 mm, and the non-metallic dielectric block 21 protrudes by 1 mm relative to the metal frame 200 .
  • the non-metallic dielectric block 21 is made of a ceramic material with a dielectric constant of 20.
  • the two feeding ports 22 are respectively fixed to two side surfaces of the non-metallic dielectric block 21 .
  • the metal column 23 is embedded in the middle of the non-metal dielectric block 21 , and the metal column 23 penetrates through the non-metal dielectric block 21 .
  • a gap is formed between the surface of the non-metal dielectric block 21 and the wall surface of the installation space 201 , and a gap is formed between the two feed ports 22 and the wall surface of the installation space 201 .
  • the dielectric resonant antenna 2 may be wrapped by a package (not shown in the figure), the package isolates the dielectric resonant antenna 2 from the metal frame 200 , and the package is made of a plastic material with a dielectric constant of 2.8.
  • FIG. 9 is the S-parameter curve diagram of the dielectric resonant antenna 2 obtained by the simulation of the structure shown in FIG. 7
  • FIG. 10 is the electric field of the dielectric resonant antenna 2 obtained by the simulation of the structure shown in FIG. 7 .
  • Schematic 1 FIG. 11 is a schematic diagram of the electric field of the dielectric resonant antenna 2 obtained by the simulation of the structure shown in FIG. 7, and FIG.
  • the solid line in Figure 9 represents the S11 curve, and the S11 curve is used to represent the input return loss; the dotted line represents the S22 curve, and the S22 curve is used to represent the output return loss; the dotted line represents the S21 curve, and the S21 curve is used to represent the two ports Isolation between; the abscissa is the frequency, the unit is GHz, and the ordinate is the unit of dB.
  • the dielectric resonant antenna 2 has a return loss of more than 10dB and an isolation degree of more than 15dB of the two feed ports 22, which meets the performance requirements of the antenna.
  • FIG. 9 shows that the dielectric resonant antenna 2 forms two resonant frequency bands
  • FIG. 10 corresponds to the electric field diagram of the dielectric resonant antenna 2 in the low frequency resonant frequency band
  • FIG. 10 corresponds to the electric field diagram of the dielectric resonant antenna 2 in the low frequency resonant frequency band
  • the solid line in Figure 12 represents the main polarization gain, and the dotted line represents the cross-polarization index; the unit of the abscissa is angle, and the unit of ordinate is dB. It can be seen from FIG. 12 that the minimum gain of the dielectric resonant antenna 2 at 28 GHz is 4.5 dB, and the cross-polarization is greater than 20 dB, which meets the antenna performance requirements.
  • the number of dielectric resonant antennas 2 is multiple, and the multiple dielectric resonant antennas 2 are arranged in an array.
  • a plurality of dielectric resonant antennas 2 may form a 1 ⁇ 2 array antenna.
  • a plurality of dielectric resonant antennas 2 arranged in an array form an array antenna, which can reduce the scattering problem of high-frequency electromagnetic waves when using millimeter waves, and can also strengthen and improve the directivity of the radiation field and strengthen the radiation field. Strength of.
  • the distance between two adjacent dielectric resonant antennas 2 may be about half a wavelength.
  • the working frequency band of the dielectric resonant antenna 2 includes 30 GHz, and the distance between two adjacent dielectric resonant antennas 2 is about 5 mm.
  • FIG. 13 is a gain pattern obtained by simulation of the dielectric resonant antenna 2 of the 1 ⁇ 2 array shown in FIG. 4 . It can be seen from FIG. 13 that the radiation field of the 1 ⁇ 2 array dielectric resonant antenna 2 has good directivity.
  • the dielectric resonant antenna 2 mainly radiates away from the circuit board 1 , that is, radiates above the circuit board 1 .
  • the main radiation direction radiates to the outside of the key 10, that is, to the outside of the frame 101a of the mobile terminal 100, and will not be blocked by the frame 101a.
  • the influence of the millimeter wave beam pointing is small, so that the millimeter wave beam can cover the required direction, the beam pointing error is small, and the antenna performance of the millimeter wave antenna is improved.
  • FIG. 14 is the horizontal polarization pattern obtained by the simulation of the dielectric resonant antenna 2 of the 1 ⁇ 2 array shown in FIG. 4
  • FIG. 15 is the dielectric resonance of the 1 ⁇ 2 array shown in FIG. 4
  • the vertical polarization pattern obtained by the simulation of antenna 2. 14 and 15 correspond to FIG. 13 . It can be seen from Figure 14 and Figure 15 that the radiation fields of the two polarization directions of the 1 ⁇ 2 array dielectric resonant antenna 2 have good directivity. Radiating to the outside of the frame 101 a of the mobile terminal 100 will not be blocked by the frame 101 a , and the frame 101 a has little influence on the direction of the millimeter wave beam sent and received by the dielectric resonant antenna 2 .
  • the dielectric constant material and arrangement quantity of the dielectric resonant antenna 2 may be selected according to the shape and size of the structural member (eg, the key 10 ).
  • the shape and size of the power key 105 a 1 ⁇ 2 array of dielectric resonant antennas 2 is integrated in the power key 105 .
  • a 1 ⁇ 4 array can be formed.
  • the number of dielectric resonant antennas 2 may also be 1, 8, or other numbers, which are not strictly limited in this application.
  • the dielectric resonant antenna 2 has various variants, which will be illustrated by examples below.
  • FIG. 16 is a schematic structural diagram of the dielectric resonant antenna 2 provided by the present application in other embodiments.
  • the dielectric resonant antenna 2 includes a non-metallic dielectric block 21 , a metal post 23 embedded in the non-metallic dielectric block 21 , and a feeding port 22 fixed to the non-metallic dielectric block 21 .
  • the resonance frequency band of the dielectric resonant antenna 2 generated by the loading of the metal column 23 is affected by the length of the metal column 23 .
  • the metal column 23 may penetrate the dielectric resonant antenna 2 .
  • the length of the metal pillar 23 is equal to the height of the non-metal dielectric block 21 .
  • FIG. 4 the resonance frequency band of the dielectric resonant antenna 2 generated by the loading of the metal column 23 is affected by the length of the metal column 23 .
  • the metal column 23 may penetrate the dielectric resonant antenna 2 .
  • the length of the metal pillar 23 is equal to the height of the non-metal dielectric block 21 .
  • FIG. 1 Exemplarily, as shown in FIG.
  • the metal post 23 may not penetrate the dielectric resonant antenna 2 .
  • the length of the metal pillar 23 is smaller than the height of the non-metal dielectric block 21 .
  • FIG. 17 is a schematic structural diagram of the dielectric resonant antenna 2 provided by the present application in still other embodiments
  • FIG. 18 is the structure of the dielectric resonant antenna 2 provided by the present application in further embodiments. Schematic.
  • the dielectric resonant antenna 2 includes a non-metallic dielectric block 21 and a feeding port 22 fixed to the non-metallic dielectric block 21 .
  • the non-metal dielectric block 21 is provided with an adjustment hole 24
  • the hole wall of the adjustment hole 24 is provided with a metal layer 25 .
  • the metal layer 25 is fixed to the hole wall of the adjustment hole 24 in a surrounding manner.
  • the dielectric resonant antenna 2 is inductively loaded by the metal layer 25 to generate a new resonant frequency band, which increases the coverage frequency band of the dielectric resonant antenna 2 and expands the bandwidth.
  • the resonance frequency band generated by the loading of the metal layer 25 is affected by the height of the metal layer 25 .
  • the adjustment hole 24 is a through hole passing through the non-metal dielectric block 21 , and the metal layer 25 covers all the walls of the adjustment hole 24 .
  • the height of the metal layer 25 is equal to the height of the non-metal dielectric block 21 .
  • the adjustment hole 24 may also be a blind hole that does not penetrate the non-metal dielectric block 21 , and the metal layer 25 covers all the hole walls of the adjustment hole 24 .
  • the height of the metal layer 25 is smaller than the height of the non-metal dielectric block 21 .
  • the metal layer 25 can also cover part of the hole wall of the adjustment hole 24, the adjustment hole 24 is a through hole or a blind hole, and in the direction perpendicular to the circuit board 1, the height of the metal layer 25 is smaller than that of the non-metal dielectric Height of block 21.
  • FIG. 19 is a schematic structural diagram of the dielectric resonant antenna 2 provided by the present application in still other embodiments.
  • the dielectric resonant antenna 2 includes a non-metallic dielectric block 21 and a feeding port 22 fixed to the non-metallic dielectric block 21 .
  • the feeding signal is input through the feeding port 22 to excite the non-metallic dielectric block 21 to generate resonance.
  • the non-metallic dielectric block 21 does not need to perform processing steps such as opening holes, and the processing is simple and the cost is low.
  • FIG. 20 is a schematic structural diagram of the dielectric resonant antenna 2 provided by the present application in still other embodiments.
  • the dielectric resonant antenna 2 includes a non-metallic dielectric block 21 and a feeding port 22 fixed to the non-metallic dielectric block 21 .
  • the feed port 22 can be implemented in a variety of ways. Exemplarily, as shown in FIG. 4 , the feeding port 22 includes a first portion 22a and a second portion 22b connected to the first portion 22a. The first portion 22a is fixed to the side of the non-metallic dielectric block 21, and the second portion 22b is opposite to the first portion 22a. Bend and extend away from the non-metallic dielectric block 21 . Exemplarily, as shown in FIG.
  • the feeding port 22 includes a first part 22a and a second part 22b connected to the first part 22a, the first part 22a is fixed on the side of the non-metal dielectric block 21, and the second part 22b is opposite to the first part 22a. Bend and fix to the bottom surface of the non-metallic dielectric block 21 .
  • the dielectric resonant antenna 2 shown in FIG. 16 to FIG. 20 may also be integrated into a structural component of the mobile terminal 100 , for example, integrated into the button 10 shown in FIG. 3 .
  • buttons 10 have various variants.
  • the following buttons 10 can all be applied to the mobile terminal 100 by way of example.
  • FIG. 21 is a schematic diagram of the internal structure of the button 10 provided by the embodiments of the present application in other embodiments.
  • the key 10 of this embodiment may include most of the features of the key 10 of the previous embodiment. The following mainly describes the differences between the two, and the same parts are not repeated.
  • the button 10 may further include a radio frequency chip 4 , the radio frequency chip 4 is fixed on the side of the circuit board 1 facing away from the dielectric resonant antenna 2 , and the radio frequency chip 4 is electrically connected to the circuit board 1 .
  • the radio frequency chip 4 is electrically connected between the circuit board 1 and the feeding port 22 of the dielectric resonant antenna 2 to send and receive radio frequency signals. At this time, the transmission path of the radio frequency signal is short, which is beneficial to improve the antenna performance of the dielectric resonant antenna 2 .
  • FIG. 22 is a schematic diagram of the internal structure of the button 10 provided by the embodiments of the present application in still other embodiments.
  • the key 10 of this embodiment may include most of the features of the key 10 of the previous embodiment. The following mainly describes the differences between the two, and the same parts are not repeated.
  • the circuit board 1 includes a circuit board antenna 14 and an antenna feeder 15 , and both the circuit board antenna 14 and the dielectric resonant antenna 2 are electrically connected to the antenna feeder 15 .
  • the circuit board antenna 14 and the dielectric resonant antenna 2 together form an antenna module, and the two are connected to the same antenna feeder 15.
  • the circuit board antenna 14 and the dielectric resonant antenna 2 respectively form different resonant frequency bands, so that the antenna module obtains at least two resonant frequency bands to have a larger bandwidth.
  • the two resonance frequency bands can also be combined into a wide frequency band.
  • FIG. 23 is a schematic diagram of the internal structure of the button 10 provided by the embodiments of the present application in still other embodiments.
  • the key 10 of this embodiment may include most of the features of the key 10 of the previous embodiment. The following mainly describes the differences between the two, and the same parts are not repeated.
  • the keycap 3 of the key 10 has a top surface 31 and a peripheral side surface 32, the top surface 31 of the keycap 3 is located on the side of the dielectric resonant antenna 2 facing away from the circuit board 1, and the peripheral side surface 32 of the keycap 3 is connected to the top surface. perimeter of face 31.
  • the key 10 may further include a non-metallic plating layer 33, and the non-metallic plating layer 33 is fixed to the keycap 3 and covers the top surface 31 and the peripheral side surface 32. In this embodiment, the non-metallic plating layer 33 can be used to protect the keycap 3 without affecting the signal transmission and reception of the dielectric resonant antenna 2 .
  • the non-metallic plating layer 33 may be the same or similar to the color of the appearance surface 1011 (refer to FIG. 6 ) of the frame 101 a of the mobile terminal 100 , and the two may adopt the same color system, so as to improve the appearance consistency and the appearance of the mobile terminal 100 . Aesthetics.
  • FIG. 24 is a schematic diagram of the internal structure of a card tray 20 provided by an embodiment of the present application
  • FIG. 25 is a schematic diagram of the internal structure of the card tray 20 shown in FIG. 24 from another angle.
  • the card tray 20 shown in this embodiment may be used as the card tray 103 of the mobile terminal 100 shown in FIG. 1 .
  • the card tray 20 includes a circuit board 1 , a dielectric resonant antenna 2 , a door panel 5 , and a tray 6 .
  • the tray 6 is fixed on one side of the door panel 5 , and the tray 6 is provided with a slot 61 .
  • the card slot 61 is used for installing a memory card, a SIM card, and the like.
  • the dielectric resonant antenna 2 is fixed to the circuit board 1 and is electrically connected to the circuit board 1 .
  • the dielectric resonant antenna 2 is used for transmitting and receiving electromagnetic waves.
  • the dielectric resonant antenna 2 can be used as a millimeter-wave antenna, for example, the dielectric resonant antenna 2 can operate in the frequency bands of 24.25GHz to 29.5GHz and 37GHz to 43.5GHz.
  • the dielectric resonant antenna 2 is embedded in the door panel 5 , and the circuit board 1 is located on the side of the dielectric resonant antenna 2 facing the tray 6 .
  • the door panel 5 adopts a low dielectric constant material to allow electromagnetic waves to pass through.
  • the radiation direction of the dielectric resonant antenna 2 for sending and receiving electromagnetic waves points to the side away from the circuit board 1. Since the door panel 5 will not shield the electromagnetic waves, the dielectric resonant antenna 2 has better antenna performance. . In addition, since the door panel 5 wraps the dielectric resonant antenna 2, when the card tray 20 is installed on other structures, the door panel 5 can isolate the dielectric resonant antenna 2 from other structures, especially metal structures, so as to reduce the interference of other structures to the dielectric resonant antenna 2 .
  • the dielectric constant of the door panel 5 is less than or equal to 6.
  • the dielectric constant of the door panel 5 may be between 2 and 6, and may be as small as possible.
  • the door panel 5 can be made of plastic, glass and other materials.
  • the door panel 5 can wrap the dielectric resonant antenna 2 and be fixed to the dielectric resonant antenna 2 by means of plastic packaging.
  • the circuit board 1 is a structural member including at least one layer of non-conductive base material and at least one layer of conductive layer.
  • the tray 6 and the door panel 5 may be an integrated structure, or may be assembled to form an integrated structure.
  • the material of the tray 6 may be the same as or different from that of the door panel 5, for example, the tray 6 may be made of a plastic material.
  • the dielectric resonant antenna 2 includes a non-metallic dielectric block 21 and two feeding ports 22 located on the surface of the non-metallic dielectric block 21 , and the two feeding ports 22 are spaced apart from each other.
  • the non-metallic dielectric block 21 is made of a high dielectric constant material, and the dielectric constant of the non-metallic dielectric block 21 may be in the range of 8 to 100, for example, 10 to 30.
  • the non-metallic dielectric block 21 can be made of ceramic material.
  • the non-metallic dielectric block 21 is fixed on the circuit board 1 , and the two feeding ports 22 are both electrically connected to the circuit board 1 to form a dual-polarized dielectric resonant antenna 2 .
  • the two polarization directions of the dual-polarized dielectric resonant antenna 2 are orthogonal, for example, the two polarization directions are horizontal and vertical, or the two polarization directions are +45° and -45° respectively.
  • the dual-polarized dielectric resonant antenna 2 has a large communication capacity.
  • the circuit board 1 may be a multi-layer board structure, such as a 4-layer board, that is, having 4 conductive layers.
  • the circuit board 1 has a feed line (not shown in the figure), and the feed line is electrically connected to the feed port 22 of the dielectric resonant antenna 2 .
  • the circuit board 1 may also have a first ground layer (not shown in the figure), and the first ground layer is located on the side of the feed line away from the dielectric resonant antenna 2 .
  • the circuit board 1 may also have a second ground layer (not shown in the figure), and the second ground layer is located on the side of the feed line 1 close to the dielectric resonant antenna 2 .
  • the circuit board 1 may also be a double-layer board, a six-layer board, etc., and the feed lines and the ground layer may also be arranged at different positions in the circuit board 1, which are not strictly limited in this application.
  • the circuit board 1 may be a rigid circuit board or a flexible circuit board.
  • the dielectric resonant antenna 2 may further include a metal column 23 , and the metal column 23 is embedded in the non-metal dielectric block 21 . Wherein, the metal column 23 is not grounded.
  • the dielectric resonant antenna 2 can form two resonant frequency bands, the low-frequency resonant frequency band in the two resonant frequency bands is mainly generated by the non-metallic dielectric block 21 excited by the two feed ports 22 , and the high-frequency resonant frequency band is mainly generated by the metal column 23 . Inductive loading occurs.
  • the arrangement of the metal pillars 23 can increase the generation of new resonant frequency bands, increase the coverage frequency band of the dielectric resonant antenna 2 , and thus increase the bandwidth of the dielectric resonant antenna 2 .
  • the metal posts 23 can also increase the isolation of the two feeding ports 22 .
  • the two resonance frequency bands can also be combined into a wide frequency band.
  • the metal column 23 may penetrate through the dielectric resonant antenna 2 . At this time, in the direction perpendicular to the circuit board 1 , the length of the metal pillar 23 is equal to the height of the non-metal dielectric block 21 . In some other embodiments, the metal post 23 may not penetrate through the dielectric resonant antenna 2 . At this time, in the direction perpendicular to the circuit board 1 , the length of the metal pillar 23 is smaller than the height of the non-metal dielectric block 21 .
  • the non-metal dielectric block 21 is provided with adjustment holes, and the hole walls of the adjustment holes are provided with metal layers. At this time, no metal pillars are disposed in the non-metallic dielectric block 21 .
  • the dielectric resonant antenna 2 generates a new resonant frequency band by the inductive loading of the metal layer, which increases the coverage frequency band of the dielectric resonant antenna 2 and expands the bandwidth.
  • the resonance frequency band produced by the loading of the metal layer is affected by the height of the metal layer.
  • the adjustment hole may be a through hole passing through the non-metal dielectric block 21 , and the metal layer covers all the hole walls of the adjustment hole.
  • the height of the metal layer is equal to the height of the non-metal dielectric block 21 .
  • the adjustment hole may also be a blind hole that does not penetrate the non-metallic dielectric block 21 , and the metal layer covers all the hole walls of the adjustment hole.
  • the height of the metal layer is smaller than the height of the non-metal dielectric block 21 .
  • the metal layer can also cover part of the hole wall of the adjustment hole, and the adjustment hole is a through hole or a blind hole.
  • metal pillars and metal layers may not be provided in the non-metal dielectric block 21 .
  • the number of dielectric resonant antennas 2 is multiple, and the multiple dielectric resonant antennas 2 are arranged in an array.
  • a plurality of dielectric resonant antennas 2 may form a 1 ⁇ 2 array antenna.
  • a plurality of dielectric resonant antennas 2 arranged in an array form an array antenna, which can reduce the scattering problem of high-frequency electromagnetic waves when using millimeter waves, and can also strengthen and improve the directivity of the radiation field and strengthen the radiation field. Strength of.
  • the distance between two adjacent dielectric resonant antennas 2 may be about half a wavelength.
  • the working frequency band of the dielectric resonant antenna 2 includes 30 GHz, and the distance between two adjacent dielectric resonant antennas 2 is about 5 mm.
  • the number of dielectric resonant antennas 2 may also be one.
  • the card tray 20 may further include a connection circuit (not shown in the figure), one end of the connection circuit is electrically connected to the circuit board 1, and the other end may be provided with a connection terminal.
  • the connection circuit can be realized by a circuit board, which can be fixedly connected to the door panel 5 and/or the tray 6 ; the connection circuit can also be realized by a conductive wire embedded in the door panel 5 and/or the tray 6 .
  • the connection terminals are used for electrical connection with other components of the mobile terminal 100 (eg, connection terminals in the card holder).
  • the connection terminals may be structures such as pads, conductive elastic sheets, and probes.
  • the mobile terminal 100 may include a radio frequency chip (not shown in the figure), and the radio frequency chip is used for modulating a radio frequency signal or demodulating a radio frequency signal.
  • the radio frequency chip is fixed on the main board 107, and the radio frequency chip is electrically connected to the processor.
  • the connection terminal of the card holder is electrically connected to the radio frequency chip.
  • the processor includes a radio frequency processing module for processing radio frequency signals, the connection terminal of the card holder is electrically connected to the processor, and the mobile terminal 100 may no longer be provided with a radio frequency chip.
  • the card tray 20 may further include a radio frequency chip (not shown in the figure), the radio frequency chip is fixed on the side of the circuit board 1 facing away from the dielectric resonant antenna 2 , and the radio frequency chip is electrically connected to the circuit board 1 .
  • the radio frequency chip is electrically connected between the circuit board 1 and the feeding port 22 of the dielectric resonant antenna 2 to send and receive radio frequency signals. At this time, the transmission path of the radio frequency signal is short, which is beneficial to improve the antenna performance of the dielectric resonant antenna 2 .
  • FIG. 26 is a partial structural diagram of the mobile terminal 100 shown in FIG. 1 .
  • the card tray 20 shown in FIG. 24 can be used as the card tray 103 of the mobile terminal 100 .
  • the mobile terminal 100 includes a frame 101 a , a card holder 104 located inside the frame 101 a , and a card tray 20 .
  • the frame 101a is made of metal material, the frame 101a is provided with a card tray hole 101c, the door panel 5 is located in the card tray hole 101c, and the tray 6 is inserted into the card seat 104. The door panel 5 is exposed relative to the frame 101a.
  • the dielectric resonant antenna 2 is integrated in the card tray 20, and the door panel 5 of the card tray 20 is located in the card tray jack 101c. Since the door panel 5 wraps the dielectric resonant antenna 2, the dielectric resonant antenna 2 and the frame 101a are formed between the dielectric resonant antenna 2 and the frame 101a. a certain distance. The door panel 5 is partially exposed relative to the frame 101a. The dielectric resonant antenna 2 is not blocked by the frame 101a and forms a certain distance from the frame 101a. The door panel 5 allows electromagnetic waves to pass through. Therefore, the door panel 5 and the frame 101a send and receive millimeter wave beams to the dielectric resonant antenna 2.
  • the influence of the pointing is small, so that the millimeter wave beam can cover the required direction, and the beam pointing error is small, which improves the antenna performance of the millimeter wave antenna.
  • the frame 101a of the mobile terminal 100 does not need additional slits, so the millimeter wave antenna will not affect the product appearance design of the mobile terminal 100, and the appearance integrity of the mobile terminal 100 is better.
  • the door panel 5 is exposed relative to the frame 101a, which may include the case where the exterior surface 5a of the door panel 5 is flush with the exterior surface 1011 of the frame 101a, or the exterior surface 5a of the door panel 5 may be retracted relative to the exterior surface 1011 of the frame 101a, but not When it is blocked by the appearance surface 1011 of the frame 101a.
  • the exterior surface 5 a of the door panel 5 is an outer surface facing the outside of the mobile terminal 100 .
  • the appearance surface 1011 of the frame 101 a is the outer surface of the frame 101 a facing the outside of the mobile terminal 100 .
  • the mobile terminal 100 When the appearance surface 5a of the door panel 5 is flush with the appearance surface 1011 of the frame 101a, the mobile terminal 100 has a relatively smooth appearance, and there is less risk of dust and other contamination accumulating around the card tray 20 .
  • the appearance surface 5a of the door panel 5 and the appearance surface 1011 of the frame 101a are retracted, it is beneficial to avoid problems such as fading affecting the deformation and damage of non-metallic parts.
  • the card holder 104 is provided with a connection terminal (not shown in the figure), and the connection terminal is electrically connected to the radio frequency chip or the radio frequency processing module of the mobile terminal 100 .
  • the connection terminals of the connection circuit of the card holder 20 are electrically connected to the connection terminals of the card holder 104 of the mobile terminal 100 , so that the dielectric resonant antenna 2 can transmit and receive radio frequency signals.
  • the connection terminal of the connection circuit is separated from the connection terminal of the card holder 104, and the dielectric resonant antenna 2 does not work.
  • the color of the appearance surface 5a of the door panel 5 may be the same as or similar to the color of the appearance surface 1011 of the frame 101a, and the two may use the same color system to improve the appearance consistency and aesthetics of the mobile terminal 100.
  • the door panel 5 may adopt one color as a whole, and the color of the door panel 5 is the color of the appearance surface 5 a of the door panel 5 .
  • the door panel 5 can also be mixed with multiple colors, and the color of a part of the door panel 5 can be different from the color of the appearance surface 5a of the door panel 5 .
  • the card tray 20 has various modification solutions.
  • the following card trays 20 can all be applied to the mobile terminal 100 by way of example.
  • FIG. 27 is a schematic diagram of the internal structure of the card tray 20 provided by the embodiments of the present application in other embodiments.
  • the card tray 20 of this embodiment may include most of the features of the card tray 20 of the previous embodiment. The following mainly describes the differences between the two, and the same parts are not repeated.
  • the door panel 5 of the card tray 20 has a top surface 51 , and the top surface 51 of the door panel 5 is located on the side of the dielectric resonant antenna 2 facing away from the circuit board 1 .
  • the card tray 20 may further include a non-metallic plating layer 52 , and the non-metallic plating layer 52 is fixed to the door panel 5 and covers the top surface 51 of the door panel 5 .
  • the non-metallic plating layer 52 can be used to protect the card tray 20 , and at the same time, it will not affect the signal transmission and reception of the dielectric resonant antenna 2 .
  • the outer surface of the non-metallic plating layer 52 facing away from the door panel 5 is the exterior surface 5 a of the door panel 5 .
  • the non-metallic plating layer 52 may be the same or similar to the color of the appearance surface 1011 (refer to FIG. 26 ) of the frame 101a of the mobile terminal 100 , and the two may use the same color system to improve the performance of the mobile terminal 100 . appearance consistency and aesthetics.
  • the color of the surface sub-plating layer including the appearance surface 5a of the non-metallic plating layer 52 is the same as that of the appearance surface 1011 of the frame 101a of the mobile terminal 100 (see 26) are the same or similar colors, and the two can use the same color system.
  • FIG. 28 is a schematic diagram of the internal structure of the card tray 20 provided by the embodiments of the present application in still other embodiments.
  • the card tray 20 of this embodiment may include most of the features of the card tray 20 of the previous embodiment. The following mainly describes the differences between the two, and the same parts are not repeated.
  • the circuit board 1 includes a circuit board antenna 14 and an antenna feeder 15 , and both the circuit board antenna 14 and the dielectric resonant antenna 2 are electrically connected to the antenna feeder 15 .
  • the circuit board antenna 14 and the dielectric resonant antenna 2 together form an antenna module, and the two are connected to the same antenna feeder 15.
  • the circuit board antenna 14 and the dielectric resonant antenna 2 respectively form different resonant frequency bands, so that the antenna module obtains at least Two resonant frequency bands with larger bandwidth. Among them, the two resonance frequency bands can also be combined into a wide frequency band.
  • the card tray 20 shown in FIGS. 24 to 28 may include some features of the keys 10 described above, such as the related features of the dielectric resonant antenna, the related features of the circuit board, and the like.
  • FIG. 29 is a schematic diagram of an internal structure of a camera decoration member 30 provided by an embodiment of the present application.
  • the camera decoration 30 shown in this embodiment can be used as the camera decoration 1014 of the mobile terminal 100 shown in FIG. 2 .
  • the camera decoration 30 includes a circuit board 1 , a dielectric resonant antenna 2 , a decoration body 7 and a lens 8 .
  • the decoration body 7 is provided with a light-transmitting hole 71 for allowing light to pass through.
  • the lens 8 is fixed to the decoration body 7 and covers the light-transmitting hole 71 .
  • the lens 8 is a light-transmitting member, and the lens 8 can be made of glass material.
  • the dielectric resonant antenna 2 is fixed to the circuit board 1 and is electrically connected to the circuit board 1 .
  • the dielectric resonant antenna 2 is used for transmitting and receiving electromagnetic waves.
  • the dielectric resonant antenna 2 can be used as a millimeter-wave antenna, for example, the dielectric resonant antenna 2 can operate in the frequency bands of 24.25GHz to 29.5GHz and 37GHz to 43.5GHz.
  • the dielectric resonant antenna 2 is embedded in the decoration body 7 and covered by the lens 8 , that is, the dielectric resonant antenna 2 is located under the lens 8 in the projection area of the lens 8 in the thickness direction thereof.
  • the circuit board 1 is located on the side of the dielectric resonant antenna 2 away from the mirror 8 .
  • the trim body 7 adopts a low dielectric constant material to allow electromagnetic waves to pass through.
  • the radiation direction of the electromagnetic wave received and received by the dielectric resonant antenna 2 is directed to the side away from the circuit board 1, that is, to the lens 8. Since the decoration body 7 and the lens 8 will not shield the electromagnetic waves, Therefore, the dielectric resonant antenna 2 has better antenna performance.
  • the decorative part body 7 wraps the dielectric resonant antenna 2 , the decorative part body 7 can isolate the dielectric resonant antenna from other structures, especially metal structures, so as to reduce the interference of other structures on the dielectric resonant antenna 2 .
  • the dielectric constant of the trim body 7 is less than or equal to 6.
  • the dielectric constant of the decoration body 7 may be between 2 and 6, and may be as small as possible.
  • the decoration body 7 can be made of plastic, glass and other materials.
  • the decoration body 7 can wrap the dielectric resonant antenna 2 and be fixed to the dielectric resonant antenna 2 by means of plastic packaging.
  • the circuit board 1 is a structural member including at least one layer of non-conductive base material and at least one layer of conductive layer.
  • the decoration body 7 may be provided with two light-transmitting holes 71 spaced apart from each other, and the dielectric resonant antenna 2 is located between the two light-transmitting holes 71 .
  • the decoration body 7 may also be provided with three or more light-transmitting holes 71 spaced apart from each other, and the dielectric resonant antenna 2 is located between the plurality of light-transmitting holes 71 .
  • the decoration body 7 may also be provided with a light-transmitting hole 71 , and the dielectric resonant antenna 2 is located around the light-transmitting hole 71 .
  • the camera decoration 30 may further include a metal ring 9 .
  • the metal ring 9 is fixed on the decoration body 7 and is arranged around the lens 8 , and the dielectric resonant antenna 2 and the metal ring 9 are arranged at intervals from each other.
  • the metal ring 9 can protect the lens 8 so as to reduce the risk of the lens 8 being broken due to impact, collision and the like.
  • the metal ring 9 is arranged around the mirror 8, the dielectric resonant antenna 2 is located under the mirror 8 and is spaced from the metal ring 9, so the setting of the metal ring 9 will not affect the dielectric resonant antenna 2 to send and receive signals.
  • the metal ring 9 can be fixed to the decoration body 7 by means of bonding.
  • FIG. 30 is a top view of the dielectric resonant antenna 2 of the camera decorative component 30 shown in FIG. 29 .
  • the dielectric resonant antenna 2 includes a non-metallic dielectric block 21 and two feeding ports 22 located on the surface of the non-metallic dielectric block 21, and the two feeding ports 22 are spaced apart from each other.
  • the non-metallic dielectric block 21 is made of a high dielectric constant material, and the dielectric constant of the non-metallic dielectric block 21 may be in the range of 8 to 100, for example, 10 to 30.
  • the non-metallic dielectric block 21 can be made of ceramic material.
  • the non-metallic dielectric block 21 is fixed on the circuit board 1 , and the two feeding ports 22 are both electrically connected to the circuit board 1 to form a dual-polarized dielectric resonant antenna 2 .
  • the two polarization directions of the dual-polarized dielectric resonant antenna 2 are orthogonal, for example, the two polarization directions are horizontal and vertical, or the two polarization directions are +45° and -45° respectively.
  • the dual-polarized dielectric resonant antenna 2 has a large communication capacity.
  • the circuit board 1 may be a multi-layer board structure, such as a 4-layer board, that is, having 4 conductive layers.
  • the circuit board 1 has a feed line (not shown in the figure), and the feed line is electrically connected to the feed port 22 of the dielectric resonant antenna 2 .
  • the circuit board 1 may also have a first ground layer (not shown in the figure), and the first ground layer is located on the side of the feed line away from the dielectric resonant antenna 2 .
  • the circuit board 1 may also have a second ground layer (not shown in the figure), and the second ground layer is located on the side of the feed line 1 close to the dielectric resonant antenna 2 .
  • the circuit board 1 may also be a double-layer board, a six-layer board, etc., and the feed lines and the ground layer may also be arranged at different positions in the circuit board 1, which are not strictly limited in this application.
  • the circuit board 1 may be a rigid circuit board or a flexible circuit board.
  • the arrangement of the metal pillars 23 can increase the generation of new resonant frequency bands, increase the coverage frequency band of the dielectric resonant antenna 2 , and thus increase the bandwidth of the dielectric resonant antenna 2 .
  • the metal posts 23 can also increase the isolation of the two feeding ports 22 .
  • the two resonance frequency bands can also be combined into a wide frequency band.
  • the metal column 23 may penetrate through the dielectric resonant antenna 2 . At this time, in the direction perpendicular to the circuit board 1 , the length of the metal pillar 23 is equal to the height of the non-metal dielectric block 21 . In some other embodiments, the metal post 23 may not penetrate through the dielectric resonant antenna 2 . At this time, in the direction perpendicular to the circuit board 1 , the length of the metal pillar 23 is smaller than the height of the non-metal dielectric block 21 .
  • the non-metal dielectric block 21 is provided with adjustment holes, and the hole walls of the adjustment holes are provided with metal layers. At this time, no metal pillars are disposed in the non-metallic dielectric block 21 .
  • the dielectric resonant antenna 2 generates a new resonant frequency band by the inductive loading of the metal layer, which increases the coverage frequency band of the dielectric resonant antenna 2 and expands the bandwidth.
  • the resonance frequency band produced by the loading of the metal layer is affected by the height of the metal layer.
  • the adjustment hole may be a through hole passing through the non-metal dielectric block 21 , and the metal layer covers all the hole walls of the adjustment hole.
  • the height of the metal layer is equal to the height of the non-metal dielectric block 21 .
  • the adjustment hole may also be a blind hole that does not penetrate the non-metallic dielectric block 21 , and the metal layer covers all the hole walls of the adjustment hole.
  • the height of the metal layer is smaller than the height of the non-metal dielectric block 21 .
  • the metal layer can also cover part of the hole wall of the adjustment hole, and the adjustment hole is a through hole or a blind hole.
  • metal pillars and metal layers may not be provided in the non-metal dielectric block 21 .
  • the number of dielectric resonant antennas 2 is one. In some other embodiments, the number of dielectric resonant antennas 2 may also be multiple, and the multiple dielectric resonant antennas 2 are arranged in an array. For example, a plurality of dielectric resonant antennas 2 may form a 1 ⁇ 2 array antenna or a 2 ⁇ 2 array antenna or the like. In this embodiment, a plurality of dielectric resonant antennas 2 arranged in an array form an array antenna, which can reduce the scattering problem of high-frequency electromagnetic waves when using millimeter waves, and can also strengthen and improve the directivity of the radiation field and strengthen the radiation field. Strength of. Wherein, the distance between two adjacent dielectric resonant antennas 2 may be about half a wavelength.
  • the camera decoration 30 may further include a flexible circuit board (not shown in the figure).
  • One end of the flexible circuit board is electrically connected to the circuit board 1, and the other end is provided with an electrical connector.
  • the electrical connector is used for electrical connection with other components of the mobile terminal 100.
  • the mobile terminal 100 may include a radio frequency chip (not shown in the figure), and the radio frequency chip is used for modulating a radio frequency signal or demodulating a radio frequency signal.
  • the radio frequency chip is fixed on the main board 107, and the radio frequency chip is electrically connected to the processor.
  • the electrical connector of the flexible circuit board is electrically connected to the radio frequency chip.
  • the processor includes a radio frequency processing module for processing radio frequency signals
  • the electrical connector of the flexible circuit board is electrically connected to the processor
  • the mobile terminal 100 may no longer be provided with a radio frequency chip.
  • the flexible circuit board and the circuit board 1 may be connected by assembly, or may be an integrated structure, for example, the flexible circuit board and the circuit board 1 are respectively part of a flexible and rigid circuit board. This application does not strictly limit the specific structure, connection relationship, etc. of the flexible circuit board and the circuit board 1 .
  • FIG. 31 is a partial structural diagram of the mobile terminal 100 shown in FIG. 1 .
  • the camera decoration 30 shown in FIG. 29 can be used as the camera decoration 1014 of the mobile terminal 100 shown in FIG. 1 .
  • the mobile terminal 100 includes a back cover 101b and a camera decoration 30 .
  • the back cover 101b is made of metal material, and the back cover 101b is provided with a camera hole 101i.
  • the camera decorative piece 30 is inserted through the camera hole 101i, and the lens 8 is exposed relative to the rear cover 101b.
  • the camera decoration 30 may partially protrude from the appearance surface of the rear cover 101b, for example, the metal ring 9 of the camera decoration 30 may protrude partially relative to the appearance surface of the rear cover 101b.
  • the dielectric resonant antenna 2 is integrated in the camera trim 30, and the camera trim 30 is penetrated through the camera hole 101i. Since the trim body 7 wraps the dielectric resonant antenna 2, the dielectric resonant antenna 2 and the back cover 101b are separated from each other. form a certain distance.
  • the lens 8 of the camera decoration 30 is exposed relative to the back cover 101b, the dielectric resonant antenna 2 is located under the lens 8, the dielectric resonant antenna 2 is not blocked by the back cover 101b and forms a certain distance from the back cover 101b, the lens 8 and the decoration body 7 Electromagnetic waves are allowed to pass through, so the lens 8, the decoration body 7 and the back cover 101b have little influence on the direction of the millimeter wave beam transmitted and received by the dielectric resonant antenna 2, so that the millimeter wave beam can cover the required direction, and the beam pointing error is small, improving the Antenna performance of mmWave antennas. Meanwhile, the back cover 101b of the mobile terminal 100 does not need additional slits, so the millimeter wave antenna will not affect the product appearance design of the mobile terminal 100, and the appearance integrity of the mobile terminal 100 is better.
  • the camera module 1013 of the mobile terminal 100 is disposed corresponding to the light-transmitting hole 71 , and external light enters the camera module 1013 after passing through the lens 8 and the light-transmitting hole 71 .
  • the camera module 1013 may partially extend into the light-transmitting hole 71 .
  • the number of camera modules 1013 is adapted to the number of light-transmitting holes 71 .
  • the camera decoration member 30 has various modification solutions, and the following camera decoration member 30 can be applied to the mobile terminal 100 by way of example below.
  • FIG. 32 is a schematic diagram of the internal structure of the camera decoration member 30 provided in the embodiments of the present application in still other embodiments.
  • the camera decoration piece 30 of this embodiment may include most of the features of the camera head decoration piece 30 of the previous embodiment. The following mainly describes the differences between the two, and the same parts will not be repeated.
  • the circuit board 1 includes a circuit board antenna 14 and an antenna feeder 15 , and both the circuit board antenna 14 and the dielectric resonant antenna 2 are electrically connected to the antenna feeder 15 .
  • the circuit board antenna 14 and the dielectric resonant antenna 2 together form an antenna module, and the two are connected to the same antenna feeder 15.
  • the circuit board antenna 14 and the dielectric resonant antenna 2 respectively form different resonant frequency bands, so that the antenna module obtains at least Two resonant frequency bands with larger bandwidth. Among them, the two resonance frequency bands can also be combined into a wide frequency band.
  • the camera decoration 30 shown in FIG. 29 to FIG. 32 may include some features of the button 10 described above, such as the related features of the dielectric resonant antenna, the related features of the circuit board, and the like.
  • FIG. 33 is a schematic structural diagram of an antenna module provided by an embodiment of the present application
  • FIG. 34 is a cross-sectional schematic diagram of the antenna module shown in FIG. 33 taken along line C-C.
  • the antenna module 300 includes a dielectric substrate 301 , a floor 302 , a ground post 303 , a patch antenna 304 , two feed posts 305 , and a dielectric resonant antenna 306 .
  • the dielectric constant of the dielectric substrate 301 may be between 2.2 and 4.5.
  • the floor 302 is fixed on the bottom surface of the dielectric substrate 301 , and the grounding column 303 is embedded in the dielectric substrate 301 and connected to the floor 302 .
  • the patch antenna 304 is fixed on the top surface of the dielectric substrate 301 .
  • the two feed posts 305 are spaced apart from each other, and one end of each feed post 305 is connected to the patch antenna 304 .
  • the other end of each feeding column 305 may penetrate through the floor 302 and form a gap with the floor 302 .
  • the grounding column 303 may be spaced apart from the patch antenna 304 , or may be connected to the patch antenna 304 .
  • the dielectric resonant antenna 306 is fixed on the side of the patch antenna 304 away from the dielectric substrate 301 , that is, on the top side of the patch antenna 304 .
  • the dielectric resonant antenna 306 may be bonded to the dielectric substrate 301 through the adhesive layer 307 .
  • the dielectric resonant antenna 306 includes a metal pillar 306a, a first dielectric block 306b disposed around the metal pillar 306a, and a second dielectric block 306c disposed around the first dielectric block 306b.
  • the metal post 306a contacts the patch antenna 304 .
  • the adhesive layer 307 can be bonded between the first dielectric block 306b and the second dielectric block 306c and the dielectric substrate 301 .
  • the antenna module 300 radiates through the patch antenna 304 and the dielectric resonant antenna 306 .
  • the patch antenna 304 and the dielectric resonant antenna 306 are dual-polarized antennas, and can be excited by the feeding signals of the two feeding posts 305
  • the patch antenna 304 radiates, and the patch antenna 304 can excite the dielectric resonant antenna 306 to radiate, so the antenna module 300 can realize the millimeter-wave antenna performance of 24.25GHz-29.5GHz and 37GHz-43.5GHz dual-frequency full frequency band.
  • the ground post 303 can improve high frequency isolation and cross polarization.
  • the metal post 306a of the dielectric resonant antenna 306 can adjust the resonance and improve the beam deflection.
  • the antenna module 300 may further include a metal wall 308, and the metal wall 308 is fixed to the peripheral side surface 32 of the dielectric substrate 301 and connected to the floor 302 so as to enclose a metal cavity.
  • the metal cavity is used to prevent other electromagnetic signals from interfering with the patch antenna 304 .
  • the antenna module 300 may not be provided with the metal wall 308, which is not strictly limited in this application.
  • the patch antenna 304 forms a first projection on the top surface of the dielectric substrate 301
  • the metal pillar 306 a forms a second projection on the top surface of the dielectric substrate 301
  • the first dielectric block 306 b forms a top surface of the dielectric substrate 301 .
  • a third projection is formed on the first projection, the outline of the first projection surrounds the second projection, and the outline of the third projection surrounds the first projection.
  • a possible embodiment of the antenna module 300 shown in FIG. 33 is simulated and described below.
  • FIG. 35 is a schematic diagram of the internal structure of the antenna module 300 shown in FIG. 33 in a possible embodiment.
  • the dielectric constant of the dielectric substrate 301 is 3.5; the outer peripheral contour of the metal wall 308 is rectangular, and the size is 3.8mm ⁇ 3.8mm; the patch antenna 304 is rectangular and the size is 1.8mm ⁇ 1.8mm; the patch antenna 304
  • the distance between the top surface of the antenna and the bottom surface of the floor 302 is 0.5mm;
  • the dielectric resonant antenna 306 is a rectangular parallelepiped with a size of 3.8mm ⁇ 3.8mm ⁇ 1mm;
  • the metal column 306a is made of copper;
  • the first dielectric block 306b is made of a dielectric constant of The plastic material is 2.8, and the second dielectric block 306c is a ceramic material with a dielectric constant of 11.
  • FIG. 36 is an echo curve and an isolation curve diagram obtained by simulation of the antenna module 300 shown in FIG. 35 .
  • the solid line in Figure 36 is the echo curve, and the dotted line is the isolation curve of the two ports; the abscissa is the frequency, in GHz, and the ordinate is in dB.
  • the return loss of the antenna module 300 in the 24.25GHz-29.5GHz and 37GHz-43.5GHz frequency bands is above 10dB, and the isolation is above 17dB, which meets the antenna performance requirements.
  • FIG. 37 is a schematic diagram 1 of the electric field obtained by the simulation of the antenna module 300 shown in FIG. 35
  • FIG. 38 is a schematic diagram of the electric field 2 obtained by the simulation of the antenna module 300 shown in FIG. 35 ; Schematic diagram of the electric field shown at 38 at another angle.
  • the antenna module 300 forms low frequency resonance and high frequency resonance.
  • the low-frequency resonance is generated by the patch antenna 304
  • the main operating mode of the patch antenna 304 is the TM10 mode, that is, the electric field has a change of half the guided wave wavelength in the length direction of the patch antenna 304 . , remains unchanged in the width direction.
  • the high-frequency resonance is generated by the patch antenna 304 exciting the dielectric resonant antenna 306, and the main operating mode of the dielectric resonant antenna 306 is the HEM11 mode, that is, the hybrid electromagnetic mode (HEM), including
  • HEM11 mode that is, the hybrid electromagnetic mode (HEM)
  • the mixed mode of the TE mode and the TM mode has a change of the guided wave wavelength in the circumferential and radial directions.
  • the TE mode refers to the propagation mode in which the longitudinal component of the electric field is zero and the longitudinal component of the magnetic field is not zero in the propagation direction of the electromagnetic wave.
  • a TM mode refers to a propagation mode in a waveguide in which the longitudinal component of the magnetic field is zero, but the longitudinal component of the electric field is not.
  • the solid line represents the gain of the main polarization (that is, the first polarization), and the dashed line represents the cross-polarization index; in Figures 41, 43 and 45, the dashed line represents the main polarization (also That is, the second polarization) gain, the solid line represents the cross-polarization index; the unit of abscissa in Fig. 40 to Fig. 45 is angle, and the unit of ordinate is dB. It can be seen from FIG. 40 to FIG. 45 that the gain of the antenna module 300 in the whole frequency band is more than 5dB, and the cross-polarization is more than 16dB, which meets the performance requirements of the antenna.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请提供一种按键、卡托、摄像头装饰件及移动终端。按键、卡托及摄像头装饰件等结构件中集成有用作毫米波天线的介质谐振天线,结构件相对移动终端的边框或后盖等壳体部分露出,介质谐振天线与壳体之间形成一定距离,并且结构件中用于包裹介质谐振天线的结构采用低介电常数材料,因此壳体对毫米波波束指向的影响较小,毫米波波束能够覆盖所需方向,波束指向误差较小,提高了毫米波天线的天线性能。

Description

按键、卡托、摄像头装饰件及移动终端
本申请要求于2020年08月24日提交中国专利局、申请号为202010858948.6、申请名称为“按键、卡托、摄像头装饰件及移动终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及移动通信技术领域,尤其涉及一种按键、卡托、摄像头装饰件及移动终端。
背景技术
目前的移动终端中集成有第五代移动通信技术(5th generation wireless systems,5G)天线(例如毫米波天线)、无线保真(wireless fidelity,Wi-Fi)天线、全球卫星定位系统(global positioning system,GPS)天线、蓝牙(bluetooth)天线等众多天线,以满足不同使用场景中的通信需求。
采用边框和后盖的移动终端,一般将天线布局在边框内侧或后盖内侧,然后通过在边框或后盖上开缝来解决信号屏蔽问题。然而,边框容易导致毫米波天线的毫米波波束指向偏移所需方向,产生较大的波束指向误差,故而毫米波天线的天线性能较差。
发明内容
本申请的目的在于提供一种按键、卡托、摄像头装饰件及移动终端。按键、卡托及摄像头装饰件等结构件中集成有用作毫米波天线的介质谐振天线,结构件相对移动终端的边框或后盖等壳体部分露出,介质谐振天线与壳体之间形成一定距离,因此壳体对毫米波波束指向的影响较小,毫米波波束能够覆盖所需方向,波束指向误差较小,提高了毫米波天线的天线性能。
为实现上述技术目的,本申请采用如下技术方案:
第一方面,本申请提供一种按键,可以应用于移动终端。按键包括电路板、介质谐振天线以及键帽。介质谐振天线固定于电路板且电连接电路板。介质谐振天线可以用作毫米波天线,例如,介质谐振天线可以工作在24.25GHz至29.5GHz、37GHz至43.5GHz频段范围内。键帽固定于电路板并包覆介质谐振天线。键帽采用低介电常数材料,以允许电磁波通过。其中,键帽的介电常数小于或等于6。
在本申请中,介质谐振天线集成在按键中,根据天线辐射原理,介质谐振天线收发电磁波的辐射方向指向远离电路板的一侧,由于键帽不会对电磁波产生屏蔽,因此介质谐振天线具有较佳的天线性能。此外,由于键帽包裹介质谐振天线,因此当按键安装于其他结构时,键帽可以隔离介质谐振天线与其他结构,特别是金属结构,以降低其他结构对介质谐振天线的干扰。
示例性的,按键可以穿设于移动终端的边框的按键孔。由于键帽包裹介质谐振天线,因此介质谐振天线与边框之间形成一定距离。键帽相对边框部分露出,介质谐振天线不被边框遮挡且与边框之间形成一定距离,键帽允许电磁波穿过,因此键帽和边框对介质谐振天线收 发的毫米波波束指向的影响较小,使得毫米波波束能够覆盖所需方向,波束指向误差较小,提高了毫米波天线的天线性能。同时,移动终端的边框无需额外开缝,因此毫米波天线不会影响到移动终端的产品外观设计,移动终端的外观完整性较佳。
一种可能的实现方式中,介质谐振天线的数量为多个,多个介质谐振天线呈阵列排布。呈阵列排布的多个介质谐振天线形成阵列天线,能够减小毫米波使用时的高频电磁波的散射问题,还能够加强和改善辐射场的方向性、加强辐射场的强度。其中,相邻的两个介质谐振天线之间的距离可以约为半个波长。
一种可能的实现方式中,键帽采用塑料材料。在其他可能的实现方式中,键帽也可以采用玻璃材料。
一种可能的实现方式中,键帽具有顶面和周侧面,键帽的顶面位于介质谐振天线背向电路板的一侧,键帽的周侧面连接键帽的顶面的周缘。按键还包括非金属镀层,非金属镀层固定于键帽且覆盖键帽的顶面和键帽的周侧面。
在本实现方式中,非金属镀层能够用于保护键帽,同时也不会影响介质谐振天线的信号收发。示例性的,非金属镀层可以与移动终端的边框的外观面的颜色相同或相近,两者可以采用相同色系,以提高移动终端的外观一致性和美观性。
一种可能的实现方式中,介质谐振天线包括非金属介质块及位于非金属介质块表面的两个馈电端口,两个馈电端口彼此间隔设置,非金属介质块固定于电路板,两个馈电端口均电连接电路板,以形成双极化介质谐振天线。其中,双极化介质谐振天线的两个极化方向正交,例如,两个极化方向分别为水平和垂直,或者两个极化方向分别为+45°和-45°。双极化介质谐振天线具有较大的通信容量。
一种可能的实现方式中,介质谐振天线还包括金属柱,金属柱嵌设于非金属介质块内。其中,金属柱不接地。示例性的,介质谐振天线能够形成两个谐振频段,两个谐振频段中的低频谐振频段主要由两个馈电端口激励非金属介质块产生,高频谐振频段主要由金属柱的感性加载产生。简言之,金属柱的设置能够增加产生新的谐振频段,增加介质谐振天线的覆盖频段,从而增加介质谐振天线的带宽。此外,金属柱还可以增加两个馈电端口的隔离度。其中,两个谐振频段也可以组合为一个宽频段。
一种可能的实现方式中,非金属介质块内设有调节孔,调节孔的孔壁设有金属层。其中,介质谐振天线由金属层的感性加载产生新的谐振频段,增加了介质谐振天线的覆盖频段,拓展了带宽。由金属层加载所产生的谐振频段受金属层的高度影响。
一种可能的实现方式中,电路板包括电路板天线和天线馈线,电路板天线和介质谐振天线均电连接天线馈线。在本实现方式中,电路板天线和介质谐振天线共同形成天线模块,两者连接相同的天线馈线,电路板天线和介质谐振天线分别形成不同的谐振频段,使得天线模块获得至少两个谐振频段,以具有较大的带宽。其中,两个谐振频段也可以组合为一个宽频段。
一种可能的实现方式中,按键还包括射频芯片,射频芯片固定于电路板背向介质谐振天线的一侧,射频芯片电连接电路板。在本实现方式中,射频芯片通过电路板与介质谐振天线的馈电端口之间实现电连接,以收发射频信号。此时,射频信号的传输路径较短,有利于提高介质谐振天线的天线性能。
一种可能的实现方式中,按键还包括柔性电路板,柔性电路板的一端电连接电路板,另一端设有电连接器。外部器件通过电连接器及柔性电路板与介质谐振天线传输射频信号。
一种可能的实现方式中,电路板设有避让孔,键帽包括按压部和触发部,按压部固定于 电路板并包裹介质谐振天线,触发部的一端固定于按压部,触发部的另一端经避让孔相对电路板凸出。其中,移动终端还可以包括位于边框内侧的按键板和固定在按键板上的开关,按键板可以为电路板,开关电连接按键板。键帽的触发部正对开关设置,用户在边框外侧按压键帽的按压部时,触发部抵持开关以触发开关。按键、按键板以及开关共同形成按键模组。
第二方面,本申请还提供一种卡托,卡托可以应用于移动终端。一种卡托包括门板、托盘、电路板及介质谐振天线。托盘固定于门板的一侧,托盘设有卡槽。介质谐振天线固定于电路板且电连接电路板。介质谐振天线可以用作毫米波天线。介质谐振天线嵌入门板,电路板位于介质谐振天线朝向托盘的一侧。门板采用低介电常数材料,以允许电磁波通过。其中,门板的介电常数小于或等于6。
在本申请中,介质谐振天线集成在卡托中,根据天线辐射原理,介质谐振天线收发电磁波的辐射方向指向远离电路板的一侧,由于门板不会对电磁波产生屏蔽,因此介质谐振天线具有较佳的天线性能。此外,由于门板包裹介质谐振天线,因此当卡托安装于其他结构时,门板可以隔离介质谐振天线与其他结构,特别是金属结构,以降低其他结构对介质谐振天线的干扰。
示例性的,卡托可以穿设于移动终端的边框的卡托插孔。由于门板包裹介质谐振天线,因此介质谐振天线与边框之间形成一定距离。门板相对边框部分露出,介质谐振天线不被边框遮挡且与边框之间形成一定距离,门板允许电磁波穿过,因此门板和边框对介质谐振天线收发的毫米波波束指向的影响较小,使得毫米波波束能够覆盖所需方向,波束指向误差较小,提高了毫米波天线的天线性能。同时,移动终端的边框无需额外开缝,因此毫米波天线不会影响到移动终端的产品外观设计,移动终端的外观完整性较佳。
一种可能的实现方式中,介质谐振天线的数量为多个,多个介质谐振天线呈阵列排布。呈阵列排布的多个介质谐振天线形成阵列天线,能够减小毫米波使用时的高频电磁波的散射问题,还能够加强和改善辐射场的方向性、加强辐射场的强度。其中,相邻的两个介质谐振天线之间的距离可以约为半个波长。
一种可能的实现方式中,门板采用塑料材料。在其他可能的实现方式中,门板也可以采用玻璃材料。
一种可能的实现方式中,门板具有顶面,门板的顶面位于介质谐振天线背向电路板的一侧。卡托还包括非金属镀层,非金属镀层固定于门板且覆盖门板的顶面。
在本实现方式中,非金属镀层能够用于保护门板,同时也不会影响介质谐振天线的信号收发。示例性的,非金属镀层可以与移动终端的边框的外观面的颜色相同或相近,两者可以采用相同色系,以提高移动终端的外观一致性和美观性。
一种可能的实现方式中,介质谐振天线包括非金属介质块及位于非金属介质块表面的两个馈电端口,两个馈电端口彼此间隔设置,非金属介质块固定于电路板,两个馈电端口均电连接电路板,以形成双极化介质谐振天线。其中,双极化介质谐振天线的两个极化方向正交,例如,两个极化方向分别为水平和垂直,或者两个极化方向分别为+45°和-45°。双极化介质谐振天线具有较大的通信容量。
一种可能的实现方式中,介质谐振天线还包括金属柱,金属柱嵌设于非金属介质块内。其中,金属柱不接地。示例性的,介质谐振天线能够形成两个谐振频段,两个谐振频段中的低频谐振频段主要由两个馈电端口激励非金属介质块产生,高频谐振频段主要由金属柱的感性加载产生。简言之,金属柱的设置能够增加产生新的谐振频段,增加介质谐振天线的覆盖频段,从而增加介质谐振天线的带宽。此外,金属柱还可以增加两个馈电端口的隔离度。其 中,两个谐振频段也可以组合为一个宽频段。
一种可能的实现方式中,非金属介质块内设有调节孔,调节孔的孔壁设有金属层。其中,介质谐振天线由金属层的感性加载产生新的谐振频段,增加了介质谐振天线的覆盖频段,拓展了带宽。由金属层加载所产生的谐振频段受金属层的高度影响。
一种可能的实现方式中,电路板包括电路板天线和天线馈线,电路板天线和介质谐振天线均连接天线馈线。在本实现方式中,电路板天线和介质谐振天线共同形成天线模块,两者连接相同的天线馈线,电路板天线和介质谐振天线分别形成不同的谐振频段,使得天线模块获得至少两个谐振频段,以具有较大的带宽。其中,两个谐振频段也可以组合为一个宽频段。
第三方面,本申请还提供一种摄像头装饰件,可以应用于移动终端。摄像头装饰件包括装饰件本体、镜片、电路板及介质谐振天线。装饰件本体设有透光孔,镜片固定于装饰件本体且覆盖透光孔。介质谐振天线固定于电路板且电连接电路板。介质谐振天线可以用作毫米波天线。介质谐振天线嵌入装饰件本体且被镜片覆盖,电路板位于介质谐振天线远离镜片的一侧。装饰件本体采用低介电常数材料,以允许电磁波通过。其中,装饰件本体的介电常数小于或等于6。
在本申请中,介质谐振天线集成在摄像头装饰件中,根据天线辐射原理,介质谐振天线收发电磁波的辐射方向指向远离电路板的一侧,由于装饰件本体不会对电磁波产生屏蔽,因此介质谐振天线具有较佳的天线性能。此外,由于装饰件本体包裹介质谐振天线,因此当摄像头装饰件安装于其他结构时,装饰件本体可以隔离介质谐振天线与其他结构,特别是金属结构,以降低其他结构对介质谐振天线的干扰。
示例性的,摄像头装饰件可以穿设于移动终端的后盖的摄像孔。由于装饰件本体包裹介质谐振天线,因此介质谐振天线与后盖之间形成一定距离。镜片相对后盖部分露出,介质谐振天线位于镜片下方,介质谐振天线不被后盖遮挡且与后盖之间形成一定距离,装饰件本体和镜片允许电磁波穿过,因此装饰件本体、镜片及后盖对介质谐振天线收发的毫米波波束指向的影响较小,使得毫米波波束能够覆盖所需方向,波束指向误差较小,提高了毫米波天线的天线性能。同时,移动终端的后盖无需额外开缝,因此毫米波天线不会影响到移动终端的产品外观设计,移动终端的外观完整性较佳。
一种可能的实现方式中,装饰件本体采用塑料材料。在其他可能的实现方式中,装饰件本体也可以采用玻璃材料。
一种可能的实现方式中,摄像头装饰件还包括金属圈,金属圈固定于装饰件本体且环绕镜片设置,介质谐振天线与金属圈彼此间隔设置。在本实现方式中,金属圈能够保护镜片,以降低镜片因冲击、碰撞等出现破碎的风险。并且,由于金属圈环绕镜片设置,介质谐振天线位于镜片下方且与金属圈彼此间隔,因此金属圈的设置也不会影响到介质谐振天线收发信号。其中,金属圈可以通过粘接方式固定于装饰件本体。
一种可能的实现方式中,介质谐振天线包括非金属介质块及位于非金属介质块表面的两个馈电端口,两个馈电端口彼此间隔设置,非金属介质块固定于电路板,两个馈电端口均电连接电路板,以形成双极化介质谐振天线。其中,双极化介质谐振天线的两个极化方向正交,例如,两个极化方向分别为水平和垂直,或者两个极化方向分别为+45°和-45°。双极化介质谐振天线具有较大的通信容量。
一种可能的实现方式中,介质谐振天线还包括金属柱,金属柱嵌设于非金属介质块内。其中,金属柱不接地。示例性的,介质谐振天线能够形成两个谐振频段,两个谐振频段中的低频谐振频段主要由两个馈电端口激励非金属介质块产生,高频谐振频段主要由金属柱的感 性加载产生。简言之,金属柱的设置能够增加产生新的谐振频段,增加介质谐振天线的覆盖频段,从而增加介质谐振天线的带宽。此外,金属柱还可以增加两个馈电端口的隔离度。其中,两个谐振频段也可以组合为一个宽频段。
一种可能的实现方式中,非金属介质块内设有调节孔,调节孔的孔壁设有金属层。其中,介质谐振天线由金属层的感性加载产生新的谐振频段,增加了介质谐振天线的覆盖频段,拓展了带宽。由金属层加载所产生的谐振频段受金属层的高度影响。
一种可能的实现方式中,电路板包括电路板天线和天线馈线,电路板天线和介质谐振天线均电连接天线馈线。在本实现方式中,电路板天线和介质谐振天线共同形成天线模块,两者连接相同的天线馈线,电路板天线和介质谐振天线分别形成不同的谐振频段,使得天线模块获得至少两个谐振频段,以具有较大的带宽。其中,两个谐振频段也可以组合为一个宽频段。
第四方面,本申请还提供一种移动终端。移动终端包括边框和上述任一项的按键。边框采用金属材料,边框设有按键孔。按键穿设于按键孔,且键帽相对边框的外观面部分凸出。
在本申请中,介质谐振天线可以用作毫米波天线,介质谐振天线集成在按键中,键帽相对边框部分露出,介质谐振天线不被边框遮挡且与边框之间形成一定距离,键帽允许电磁波穿过,因此键帽和边框对介质谐振天线收发的毫米波波束指向的影响较小,使得毫米波波束能够覆盖所需方向,波束指向误差较小,提高了毫米波天线的天线性能。其中,按键可以用作移动终端的电源键(或称开机键)、音量键、拍照键等功能按键。
第五方面,本申请还提供一种移动终端。移动终端包括边框、位于边框内侧的卡座以及上述任一项的卡托。边框采用金属材料,边框设有卡托插孔。门板位于卡托插孔,门板相对边框露出。托盘插入卡座。
在本申请中,介质谐振天线可以用作毫米波天线,介质谐振天线集成在卡托中,门板相对边框露出,介质谐振天线不被边框遮挡且与边框之间形成一定距离,门板允许电磁波穿过,因此门板及边框对介质谐振天线收发的毫米波波束指向的影响较小,使得毫米波波束能够覆盖所需方向,波束指向误差较小,提高了毫米波天线的天线性能。其中,卡托的托盘可以用于安装一张或多张用户身份识别卡(subscriber identity module,SIM),还可以用于安装一张或多张存储卡等。
一种可能的实现方式中,门板的外观面与边框的外观面齐平,或者门板的外观面相对边框的外观面内缩、但不被遮挡。
一种可能的实现方式中,门板的外观面的颜色与边框的外观面的颜色相同或相近,两者可以采用相同色系,以提高移动终端的外观一致性和美观性。
第六方面,本申请还提供一种移动终端。移动终端包括后盖和上述任一项的摄像头装饰件,后盖采用金属材料,后盖设有摄像孔,摄像头装饰件穿设于摄像孔,摄像头装饰件的镜片相对后盖露出。
在本申请中,介质谐振天线可以用作毫米波天线,介质谐振天线集成在摄像头装饰件中,镜片相对后盖露出,介质谐振天线位于镜片下方,因此介质谐振天线不被后盖遮挡且与后盖之间形成一定距离,后盖对介质谐振天线收发的毫米波波束指向的影响较小,使得毫米波波束能够覆盖所需方向,波束指向误差较小,提高了毫米波天线的天线性能。
一种可能的实现方式中,摄像头装饰件的装饰件本体和金属圈穿设于摄像孔,金属圈相对后盖的外观面凸出。
第七方面,本申请还提供一种移动终端。移动终端包括壳体和结构件。壳体采用金属材 料,壳体设有通孔。结构件穿设于通孔,且相对壳体部分露出。结构件包括本体及嵌设于本体的介质谐振天线,介质谐振天线与壳体之间形成一定距离。本体的介电常数小于或等于6。介质谐振天线用于向壳体的外侧发射电磁波和/或接收壳体外侧的电磁波。
在本申请中,介质谐振天线可以用作毫米波天线,介质谐振天线集成在结构件中,结构件相对壳体部分露出,介质谐振天线与壳体之间形成一定距离,结构件的本体允许电磁波穿过,使得介质谐振天线的收发信号不被本体遮挡且不被壳体遮挡,从而解决由于壳体覆盖而导致毫米波波束指向误差较大的问题,以在不影响移动终端外观的情况下,使毫米波波束覆盖所需方向,毫米波天线具有较佳的天线性能。
在前述移动终端中,由于介质谐振天线集成于按键、卡托、摄像头装饰件等结构件中,介质谐振天线无需额外占用移动终端的内部空间,并且移动终端的壳体无需额外开缝,因此毫米波天线不会影响到移动终端的产品外观设计,移动终端的外观完整性较佳。此外,按键、卡托、摄像头装饰件等结构件在移动终端中,一般处于不会被用户手握到的位置,因此发生“死亡之握”的风险较小,能够减小人体对天线产生的影响,从而实现较好的辐射。可以理解的是,介质谐振天线也可以集成在移动终端的其他结构件中。
附图说明
图1是本申请实施例提供的移动终端在一些实施例中的结构示意图;
图2是图1所示移动终端在另一角度的结构示意图;
图3是本申请实施例提供的按键在一些实施例中的结构示意图;
图4是图3所示按键沿A-A线剖开的截面示意图;
图5是图4所示键帽的部分结构示意图;
图6是图1所示移动终端的部分结构示意图;
图7是本申请实施例提供的一种金属框架与介质谐振天线的配合结构示意图;
图8是图7所示结构沿B-B线剖开的结构示意图;
图9是图7所示结构进行仿真获得的介质谐振天线的S参数曲线图;
图10是图7所示结构进行仿真获得的介质谐振天线的电场示意图一;
图11是图7所示结构进行仿真获得的介质谐振天线的电场示意图二;
图12是图7所示结构进行仿真获得的介质谐振天线在28GHz增益切面方向图;
图13是图4所示1×2阵列的介质谐振天线进行仿真获得的增益方向图;
图14是图4所示1×2阵列的介质谐振天线进行仿真获得的水平极化方向图;
图15是图4所示1×2阵列的介质谐振天线进行仿真获得的垂直极化方向图;
图16是本申请提供的介质谐振天线在另一些实施例中的结构示意图;
图17是本申请提供的介质谐振天线在再一些实施例中的结构示意图;
图18是本申请提供的介质谐振天线在再一些实施例中的结构示意图;
图19是本申请提供的介质谐振天线在再一些实施例中的结构示意图;
图20是本申请提供的介质谐振天线在再一些实施例中的结构示意图;
图21是本申请实施例提供的按键在另一些实施例中的内部结构示意图;
图22是本申请实施例提供的按键在再一些实施例中的内部结构示意图;
图23是本申请实施例提供的按键在再一些实施例中的内部结构示意图;
图24是本申请实施例提供的一种卡托的内部结构示意图;
图25是图24所示卡托在另一角度的内部结构示意图;
图26是图1所示移动终端的部分结构示意图;
图27是本申请实施例提供的卡托在另一些实施例中的内部结构示意图;
图28是本申请实施例提供的卡托在再一些实施例中的内部结构示意图;
图29是本申请实施例提供的一种摄像头装饰件的内部结构示意图;
图30是图29所示摄像头装饰件的介质谐振天线的俯视图;
图31是图1所示移动终端的部分结构示意图;
图32是本申请实施例提供的摄像头装饰件在再一些实施例中的内部结构示意图;
图33是本申请实施例提供的一种天线模块的结构示意图;
图34是图33所示天线模块沿C-C线处剖开的截面示意图;
图35是图33所示天线模块在一种可能的实施例中的内部结构示意图;
图36是图35所示天线模块进行仿真获得的回波曲线和隔离度曲线图;
图37是图35所示天线模块进行仿真获得的电场示意图一;
图38是图35所示天线模块进行仿真获得的电场示意图二;
图39是图38所示电场在另一角度的示意图;
图40是图35所示天线模块进行仿真获得的在24.5HGz的第一极化切面方向图;
图41是图35所示天线模块进行仿真获得的在24.5HGz的第二极化切面方向图;
图42是图35所示天线模块进行仿真获得的在37.5HGz的第一极化切面方向图;
图43是图35所示天线模块进行仿真获得的在37.5HGz的第二极化切面方向图;
图44是图35所示天线模块进行仿真获得的在43.5HGz的第一极化切面方向图;
图45是图35所示天线模块进行仿真获得的在43.5HGz的第二极化切面方向图。
具体实施方式
下面结合本申请实施例中的附图对本申请以下各个实施例进行描述。
在本申请实施例的描述中,除非另有说明,文本中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。在本申请实施例的描述中,“多个”是指两个或多于两个。在本申请实施例的描述中,A至B的范围包括端点A和B。
本申请实施例中所提到的方位用语,例如,“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”、“侧面”、“顶”、“底”等,仅是参考附图的方向,因此,使用的方位用语是为了更好、更清楚地说明及理解本申请实施例,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
本申请提供一种移动终端,包括壳体和结构件。其中,壳体可以为移动终端的外壳的一部分,例如为移动终端的边框或后盖。壳体采用金属材料。壳体也可以为移动终端的外壳。壳体设有通孔,结构件穿设于通孔,且相对壳体部分露出。结构件包括本体及嵌设于本体的介质谐振天线(dielectric resonant antenna,DRA)。本体采用低介电常数材料,例如本体的介电常数小于或等于6。介质谐振天线与壳体之间形成一定距离,介质谐振天线用于向壳体的外侧发射电磁波和/或接收壳体外侧的电磁波。
在本申请中,介质谐振天线可以用作毫米波天线,介质谐振天线集成在结构件中,结构件相对壳体部分露出,介质谐振天线与壳体之间形成一定距离,结构件的本体允许电磁波穿过,使得介质谐振天线的收发信号不被本体遮挡且不被壳体遮挡,从而解决由于壳体覆盖而 导致毫米波波束指向误差较大的问题,以在不影响移动终端外观的情况下,使毫米波波束覆盖所需方向,毫米波天线具有较佳的天线性能。
可以理解的,在本申请实施例中,部件A相对部件B“露出”,是指从部件B的外部可以看到部件A,部件A不会被部件B完全遮挡。例如,可以包括部件A的外观面相对部件B的外观面凸出的情况,也可以包括部件A的外观面与部件B的外观面齐平的情况,也可以包括部件A的外观面相对部件B的外观面内缩、但未被遮挡的情况。
一些实施例中,上述结构件包括按键。按键包括键帽和嵌设于键帽的介质谐振天线,键帽采用低介电常数材料。移动终端的边框采用金属材料,边框设有按键孔。按键穿设于按键孔,且键帽相对边框的外观面部分凸出。
在本申请中,介质谐振天线可以用作毫米波天线,介质谐振天线集成在按键中,键帽相对边框部分露出,介质谐振天线不被边框遮挡且与边框之间形成一定距离,键帽允许电磁波穿过,因此键帽和边框对介质谐振天线收发的毫米波波束指向的影响较小,使得毫米波波束能够覆盖所需方向,波束指向误差较小,提高了毫米波天线的天线性能。其中,按键可以用作移动终端的电源键(或称开机键)、音量键、拍照键等功能按键。
一些实施例中,上述结构件包括卡托。卡托包括门板、托盘及介质谐振天线,介质谐振天线嵌设于门板,门板采用低介电常数材料。移动终端的边框采用金属材料,边框设有卡托插孔,卡托插接卡托插孔,门板位于卡托插孔、相对边框露出,托盘插入位于边框内侧的卡座。
在本申请中,介质谐振天线可以用作毫米波天线,介质谐振天线集成在卡托中,门板相对边框露出,介质谐振天线不被边框遮挡且与边框之间形成一定距离,门板允许电磁波穿过,因此门板及边框对介质谐振天线收发的毫米波波束指向的影响较小,使得毫米波波束能够覆盖所需方向,波束指向误差较小,提高了毫米波天线的天线性能。其中,卡托的托盘可以用于安装一张或多张用户身份识别卡(subscriber identity module,SIM),还可以用于安装一张或多张存储卡等。
一些实施例中,上述结构件包括摄像头装饰件。摄像头装饰件包括装饰件本体、固定于装饰件本体的镜片及嵌设于装饰件本体的介质谐振天线,介质谐振天线位于镜片下方,装饰件本体采用低介电常数材料。移动终端的后盖采用金属材料,后盖设有摄像孔,摄像头装饰件穿设于摄像孔,镜片相对后盖露出。
在本申请中,介质谐振天线可以用作毫米波天线,介质谐振天线集成在摄像头装饰件中,镜片相对后盖露出,介质谐振天线位于镜片下方,因此介质谐振天线不被后盖遮挡且与后盖之间形成一定距离,后盖对介质谐振天线收发的毫米波波束指向的影响较小,使得毫米波波束能够覆盖所需方向,波束指向误差较小,提高了毫米波天线的天线性能。
在前述实施例中,由于介质谐振天线集成于按键、卡托、摄像头装饰件等结构件中,介质谐振天线无需额外占用移动终端的内部空间,并且移动终端的壳体无需额外开缝,因此毫米波天线不会影响到移动终端的产品外观设计,移动终端的外观完整性较佳。此外,按键、卡托、摄像头装饰件等结构件在移动终端中,一般处于不会被用户手握到的位置,因此发生“死亡之握”的风险较小,能够减小人体对天线产生的影响,从而实现较好的辐射。可以理解的是,介质谐振天线也可以集成在移动终端的其他结构件中。
请一并参阅图1和图2,图1是本申请实施例提供的移动终端100在一些实施例中的结构示意图,图2是图1所示移动终端100在另一角度的结构示意图。其中,移动终端100可 以是手机、平板、可穿戴设备等终端设备。本申请实施例以移动终端100是手机为例进行说明。
一些实施例中,移动终端100可以包括壳体101、显示屏102、卡托103、卡座104、电源键105、音量键106、主板107、电池108、扬声器109、通用串行总线(universal serial bus,USB)接口1010、麦克风1011、耳机接口1012、摄像头模组1013、摄像头装饰件1014等。可以理解的是,本发明实施例示意的结构并不构成对移动终端100的具体限定。在本申请另一些实施例中,移动终端100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。
其中,壳体101包括边框101a和后盖101b。后盖101b和显示屏102分别固定于边框101a的相背两侧。后盖101b与边框101a可以通过组装方式形成一体化结构,也可以是一体成型的一体化结构。其中,壳体101还可以包括中板(图中未示出),中板位于边框101a内侧,中板与边框101a可以通过组装方式或一体成型方式形成一体化结构,两者共同形成中框。移动终端100的其他部件可以与中框和/或后盖101b相互固定。
其中,边框101a和/或后盖101b可以采用金属材料。应当理解的,边框101a采用金属材料的方案包括:边框101a整体采用金属材料,或者,边框101a的大部分结构采用金属材料、少部分结构可以采用其他材料。例如,边框101a可以设有一个或多个天线缝隙,多个天线缝隙可以将边框101a分隔为多段彼此独立的金属段,多个天线缝隙中可以填充非金属材料。后盖101b采用金属材料的方案包括:后盖101b整体采用金属材料,或者,后盖101b的大部分结构采用金属材料、少部分结构可以采用其他材料。在其他一些实施例中,边框101a也可以采用塑料、陶瓷等非金属材料。在其他一些实施例中,后盖101b也可以采用塑料、陶瓷、玻璃等非金属材料。
一些实施例中,如图1所示,边框101a设有卡托插孔101c、电源键孔101d、扬声器孔101e、USB孔101f、麦克风孔101g以及耳机插孔101h。其中,边框101a还可以设有音量键孔(图中未示出)。如图2所示,后盖101b设有摄像孔101i。移动终端100的卡托103、卡座104、电源键105、音量键106、主板107、电池108、扬声器109、USB接口1010、麦克风1011、耳机接口1012、摄像头模组1013、摄像头装饰件1014等结构安装于壳体101内侧。
其中,如图1所示,卡托103的部分结构位于卡托插孔101c且相对边框101a露出。卡托103位于壳体101内侧的部分可以插接卡座104。卡托103可用于安装存储卡、用户身份卡(subscriber identity module,SIM)等。电源键105穿设于电源键孔101d,电源键105的部分结构相对边框101a露出。扬声器109用于将音频电信号转换为声音信号。扬声器109对应扬声器孔101e设置,以通过扬声器孔101e发出声音信号。移动终端100可以通过扬声器109收听音乐,或收听免提通话等。USB接口1010是符合USB标准规范的接口,例如Mini USB接口,Micro USB接口,USB Type C接口等。USB接口1010对应USB孔101f设置,外部结构通过USB孔101f插接USB接口1010。USB接口1010可以用于连接充电器为移动终端100充电,也可以用于移动终端100与外围设备之间传输数据。USB接口1010也可以用于连接耳机,通过耳机播放音频。USB接口1010还可以用于连接其他电子设备,例如AR设备等。麦克风1011用于将声音信号转换为电信号。麦克风1011对应麦克风孔101g设置,以通过麦克风孔101g接收声音信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风1011发声,将声音信号输入到麦克风1011。耳机接口1012对应耳机插孔101h设置,外部结构通过耳机插孔101h插接耳机接口1012。如图2所示,摄像头装饰件1014穿设于摄像孔101i,摄像头装饰件1014的部分结构相对后盖101b露出。摄像头模组1013对应摄像头装饰件1014 设置,以通过摄像头装饰件1014上的透光部分采集光线,实现拍摄。
其中,主板107可以包括一块或多块印刷电路板(printed circuit board,PCB)。主板107上设有处理器(图中未示出)。处理器耦合移动终端100的各功能模组。处理器可以包括一个或多个处理单元,例如:处理器可以包括应用处理器(application processor,AP)、调制解调处理器、图形处理器(graphics processing unit,GPU)、图像信号处理器(image signal processor,ISP)、控制器、存储器、视频编解码器、数字信号处理器(digital signal processor,DSP)、基带处理器、和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。电池108电连接主板107以及移动终端100的各功能模组,用于为移动终端100供电。
请一并参阅图3和图4,图3是本申请实施例提供的按键10在一些实施例中的结构示意图,图4是图3所示按键10沿A-A线剖开的截面示意图。其中,本实施例所示按键10可以应用于移动终端100,作为电源键105、音量键106等功能键使用。
一些实施例中,按键10包括电路板1、介质谐振天线2以及键帽3。介质谐振天线2固定于电路板1且电连接电路板1。键帽3固定于电路板1并包覆介质谐振天线2。也即,介质谐振天线2嵌入键帽3设置。介质谐振天线2用于收发电磁波。介质谐振天线2可以用作毫米波天线,例如,介质谐振天线2可以工作在24.25GHz至29.5GHz、37GHz至43.5GHz频段范围内。键帽3采用低介电常数材料,以允许电磁波通过。
在本实施例中,根据天线辐射原理,介质谐振天线2收发电磁波的辐射方向指向远离电路板1的一侧,由于键帽3不会对电磁波产生屏蔽,因此介质谐振天线2具有较佳的天线性能。此外,由于键帽3包裹介质谐振天线2,因此当按键10安装于其他结构时,键帽3可以隔离介质谐振天线2与其他结构,特别是金属结构,以降低其他结构对介质谐振天线2的干扰。
示例性的,键帽3的介电常数小于或等于6。其中,键帽3的介电常数可以在2至6之间,可以尽量采用较小值。例如,键帽3可以采用塑料、玻璃等材料。键帽3可以通过塑胶包装方式,包裹介质谐振天线2且与介质谐振天线2相互固定。其中,电路板1为包括至少一层非导电基材和至少一层导电层的结构件。
其中,本申请实施例中介质谐振天线2可以工作的毫米波频段可以包括但不限于:频段n257,26.5GHz至29.5GHz;频段n258,24.25GHz至27.5GHz;频段n259,39.5GHz至43.5GHz;频段n260,37.0GHz至40.0GHz;频段n261,27.5GHz至28.35GHz。
一些实施例中,电路板1可以设有避让孔11。避让孔11可以形成在电路板1的中部,为孔壁完整的通孔结构;避让孔11也可以形成在电路板1的周缘,为孔壁不完整的缺口结构。键帽3包括按压部31和触发部32,按压部31固定于电路板1并包裹介质谐振天线2,触发部32的一端固定于按压部31,触发部32的另一端经避让孔11相对电路板1凸出。其中,电路板1可以为硬质电路板,也可以为柔性电路板。
一些实施例中,按键10还可以包括柔性电路板12。柔性电路板12的一端电连接电路板1,另一端设有电连接器13。电连接器13用于与移动终端100的其他部件电连接。示例性的,移动终端100可以包括射频芯片(图中未示出),射频芯片用于调制射频信号或解调射频信号。射频芯片固定于主板107,射频芯片电连接处理器。键帽3的电连接器13电连接射频芯片。在其他一些实施例中,处理器包括用于处理射频信号的射频处理模块,键帽3的电连接器13电连接处理器,移动终端100可以不再设置射频芯片。示例性的,柔性电路板12与电路板1 之间可以通过组装方式连接,也可以是一体式结构,例如柔性电路板12和电路板1分别为软硬结合电路板的一部分。本申请不对柔性电路板12和电路板1的具体结构、连接关系等作严格限定。
一些实施例中,介质谐振天线2的尺寸可以小于或等于长2mm×宽2mm×高4mm以内,以更好地嵌入体积小的键帽3中。
一些实施例中,介质谐振天线2包括非金属介质块21及位于非金属介质块21表面的两个馈电端口22,两个馈电端口22彼此间隔设置。其中,非金属介质块21采用高介电常数材料,非金属介质块21的介电常数可以在8至100范围内,例如10至30。示例性的,非金属介质块21可以采用陶瓷材料,例如低损耗的微波介质陶瓷(microwave dielectric ceramic),可以是但不限于是复合钙钛矿结构型材料。微波介质陶瓷是指应用于微波频段电路中作为介质材料并完成一种或多种功能的陶瓷。非金属介质块21固定于电路板1,两个馈电端口22均电连接电路板1,以形成双极化介质谐振天线。其中,双极化介质谐振天线的两个极化方向正交,例如,两个极化方向分别为水平和垂直,或者两个极化方向分别为+45°和-45°。双极化介质谐振天线具有较大的通信容量。
一些实施例中,介质谐振天线2还可以包括金属柱23,金属柱23嵌设于非金属介质块21内。其中,金属柱23不接地。示例性的,介质谐振天线2能够形成两个谐振频段,两个谐振频段中的低频谐振频段主要由两个馈电端口22激励非金属介质块21产生,高频谐振频段主要由金属柱23的感性加载产生。简言之,金属柱23的设置能够产生新的谐振频段,增加介质谐振天线2的覆盖频段,从而增加介质谐振天线2的带宽。此外,金属柱23还可以增加两个馈电端口22的隔离度。其中,两个谐振频段也可以组合为一个宽频段。
一些实施例中,介质谐振天线2的馈电端口22可以采用贴片件。示例性的,馈电端口22呈L形,馈电端口22包括第一部分22a和连接第一部分22a的第二部分22b,第一部分22a固定于非金属介质块21的侧面,第二部分22b相对第一部分22a弯折,且朝远离非金属介质块21的方向延伸。第二部分22b固接电路板1。其中,第二部分22b可以焊接电路板1或者通过导电胶连接电路板1,以与电路板1电连接。在其他一些实施例中,介质谐振天线2的馈电端口22与电路板1之间通过也可以探针连接或其他方式连接。
请参阅图5,图5是图4所示键帽3的部分结构示意图。图5中示意出键帽3的介质谐振天线2与电路板1的连接结构。
一些实施例中,电路板1可以为多层板,例如4层板,也即具有4层导电层。电路板1具有馈电线1a,馈电线1a通过导电柱1b电连接介质谐振天线2的馈电端口22。其中,电路板1还可以具有第一接地层1c,第一接地层1c位于馈电线1a远离介质谐振天线2的一侧。其中,电路板1还可以具有第二接地层1d,第二接地层1d位于馈电线1a靠近介质谐振天线2的一侧。在其他一些实施例中,电路板1也可以为双层板、六层板等,馈电线和接地层也可以排布于电路板1中的不同位置,本申请对此不作严格限定。
请参阅图6,图6是图1所示移动终端100的部分结构示意图。其中,图3所示按键10可以用作电源键105应用于移动终端100中。
一些实施例中,移动终端100包括边框101a和按键10。边框101a采用金属材料,边框101a设有按键孔(也即电源键孔101d)。按键10穿设于按键孔,且按键10的键帽3相对边框101a的外观面1011部分凸出。边框101a的外观面1011为边框101a的朝向移动终端100外部的外表面。此时,按键10的电路板1位于边框101a内侧。
在本实施例中,介质谐振天线2集成在按键10中,键帽3穿设于按键孔,由于键帽3包 裹介质谐振天线2,因此介质谐振天线2与边框101a之间形成一定距离。键帽3相对边框101a部分露出,介质谐振天线2不被边框101a遮挡且与边框101a之间形成一定距离,键帽3允许电磁波穿过,因此键帽3和边框101a对介质谐振天线2收发的毫米波波束指向的影响较小,使得毫米波波束能够覆盖所需方向,波束指向误差较小,提高了毫米波天线的天线性能。同时,移动终端100的边框101a无需额外开缝,因此毫米波天线不会影响到移动终端100的产品外观设计,移动终端100的外观完整性较佳。在其他一些实施例中,按键10也可以用作移动终端100的音量键106、拍照键等功能按键。
一些实施例中,移动终端100还可以包括位于边框101a内侧的按键板1015和固定在按键板1015上的开关1016,按键板1015可以为电路板,开关1016电连接按键板1015。键帽3的触发部32正对开关1016设置,用户在边框101a外侧按压键帽3的按压部31时,触发部32抵持开关1016以触发开关1016。按键10、按键板1015以及开关1016共同形成按键模组。
一些实施例中,键帽3的颜色可以与边框101a的外观面1011的颜色相同或相近,两者可以采用相同色系,以提高移动终端100的外观一致性和美观性。
以下通过仿真说明金属框架对介质谐振天线2的影响。
请一并参阅图7和图8,图7是本申请实施例提供的一种金属框架200与介质谐振天线2的配合结构示意图,图8是图7所示结构沿B-B线剖开的结构示意图。
一些实施例中,金属框架200具有矩形的、尺寸为2mm*2mm的安装空间201,介质谐振天线2位于安装空间201。介质谐振天线2包括非金属介质块21、两个馈电端口22以及金属柱23。非金属介质块21的高为3mm,非金属介质块21相对金属框架200凸出1mm,非金属介质块21的截面呈矩形、尺寸为长1.7mm×宽1.7mm。非金属介质块21采用介电常数为20的陶瓷材料。两个馈电端口22分别固定于非金属介质块21的两个侧面。金属柱23嵌设于非金属介质块21的中部,金属柱23贯穿非金属介质块21。非金属介质块21的表面与安装空间201的壁面之间形成间隙,两个馈电端口22与安装空间201的壁面之间形成间隙。其中,介质谐振天线2可以被封装件(图中未示出)包裹,封装件隔离介质谐振天线2与金属框架200,封装件采用介电常数为2.8的塑料材料。
请一并参阅图9至图13,图9是图7所示结构进行仿真获得的介质谐振天线2的S参数曲线图,图10是图7所示结构进行仿真获得的介质谐振天线2的电场示意图一,图11是图7所示结构进行仿真获得的介质谐振天线2的电场示意图二,图12是图7所示结构进行仿真获得的介质谐振天线2在28GHz增益切面方向图。
其中,图9中实线代表S11曲线,S11曲线用于体现输入回波损耗;点线代表S22曲线,S22曲线用于体现输出回波损耗;虚线代表S21曲线,S21曲线用于体现两个端口之间的隔离度;横坐标为频率,单位GHz,纵坐标单位为dB。如图9所示,介质谐振天线2在毫米波的工作频段26.5GHz至29.5GHz内,两个馈电端口22的回波损耗在10dB以上,隔离度在15dB以上,满足天线性能需求。
其中,由图9可知,介质谐振天线2形成两个谐振频段,图10对应于介质谐振天线2在低频谐振频段的电场图,图11对应于介质谐振天线2在高频谐振频段的电场图。
其中,图12中实线代表主极化增益,虚线代表交叉极化指标;横坐标单位为角度,纵坐标单位为dB。由图12可知,介质谐振天线2的在28GHz的最小增益为4.5dB,交叉极化大于20dB,满足天线性能需求。
请再次参阅图4,一些实施例中,介质谐振天线2的数量为多个,多个介质谐振天线2 呈阵列排布。例如,多个介质谐振天线2可以形成1×2阵列天线。在本实施例中,呈阵列排布的多个介质谐振天线2形成阵列天线,能够减小毫米波使用时的高频电磁波的散射问题,还能够加强和改善辐射场的方向性、加强辐射场的强度。
其中,相邻的两个介质谐振天线2之间的距离可以约为半个波长。示例性的,介质谐振天线2的工作频段包括30GHz,相邻的两个介质谐振天线2之间的距离为5mm左右。
请参阅图13,图13是图4所示1×2阵列的介质谐振天线2进行仿真获得的增益方向图。由图13可知,1×2阵列介质谐振天线2的辐射场具有很好的方向性,介质谐振天线2主要向远离电路板1的方向辐射,也即往电路板1上方辐射。当介质谐振天线2集成于按键10时,主要辐射方向往按键10的外侧辐射,也即往移动终端100的边框101a的外侧辐射,不会被边框101a遮挡,边框101a对介质谐振天线2收发的毫米波波束指向的影响较小,使得毫米波波束能够覆盖所需方向,波束指向误差较小,提高了毫米波天线的天线性能。
请一并参阅图14和图15,图14是图4所示1×2阵列的介质谐振天线2进行仿真获得的水平极化方向图,图15是图4所示1×2阵列的介质谐振天线2进行仿真获得的垂直极化方向图。其中,图14及图15与图13相对应。由图14和图15可知,1×2阵列介质谐振天线2的两个极化方向的辐射场均具有很好的方向性,1×2阵列介质谐振天线2集成于按键10时,主要辐射方向往移动终端100的边框101a的外侧辐射,不会被边框101a遮挡,边框101a对介质谐振天线2收发的毫米波波束指向的影响小。
在本申请中,可以依据结构件(例如按键10)的形状、尺寸等选择介质谐振天线2的介电常数材料和排列数量。例如,根据电源键105的形状和尺寸,在电源键105中集成1×2阵列的介质谐振天线2。当介质谐振天线2集成于结构尺寸较大的音量键106时,可以形成1×4阵列。在其他一些实施例中,介质谐振天线2的数量也可以为1个、8个或其他数量,本申请对此不做严格限定。
在本申请中,介质谐振天线2具有多种变形方案,以下通过举例说明。
请一并参阅图4和图16,图16是本申请提供的介质谐振天线2在另一些实施例中的结构示意图。
一些实施例中,介质谐振天线2包括非金属介质块21、嵌设于非金属介质块21的金属柱23以及固定于非金属介质块21的馈电端口22。其中,介质谐振天线2的由金属柱23加载所产生的谐振频段受金属柱23长度的影响。示例性的,如图4所示,金属柱23可以贯穿介质谐振天线2。此时,在垂直于电路板1的方向上,金属柱23的长度等于非金属介质块21的高度。示例性的,如图16所示,金属柱23也可以不贯穿介质谐振天线2。此时,在垂直于电路板1的方向上,金属柱23的长度小于非金属介质块21的高度。
请一并参阅图17和图18,图17是本申请提供的介质谐振天线2在再一些实施例中的结构示意图,图18是本申请提供的介质谐振天线2在再一些实施例中的结构示意图。
一些实施例中,介质谐振天线2包括非金属介质块21和固定于非金属介质块21的馈电端口22。非金属介质块21内设有调节孔24,调节孔24的孔壁设有金属层25。其中,金属层25环绕地固定于调节孔24的孔壁。其中,介质谐振天线2由金属层25的感性加载产生新的谐振频段,增加了介质谐振天线2的覆盖频段,拓展了带宽。由金属层25加载所产生的谐振频段受金属层25的高度影响。
示例性的,如图17所示,调节孔24为贯穿非金属介质块21的通孔,金属层25覆盖调节孔24的全部孔壁。此时,在垂直于电路板1的方向上,金属层25的高度等于非金属介质块21的高度。示例性的,如图18所示,调节孔24也可以为不贯穿非金属介质块21的盲孔, 金属层25覆盖调节孔24的全部孔壁。此时,在垂直于电路板1的方向上,金属层25的高度小于非金属介质块21的高度。在其他一些实施例中,金属层25也可以覆盖调节孔24的部分孔壁,调节孔24为通孔或盲孔,在垂直于电路板1的方向上,金属层25的高度小于非金属介质块21的高度。
请参阅图19,图19是本申请提供的介质谐振天线2在再一些实施例中的结构示意图。
一些实施例中,介质谐振天线2包括非金属介质块21和固定于非金属介质块21的馈电端口22。在本实施例中,由馈电端口22输入馈电信号,激励非金属介质块21产生谐振。本实施例中,非金属介质块21无需进行开孔等加工工序,加工简单、成本低。
请一并参阅图4和图20,图20是本申请提供的介质谐振天线2在再一些实施例中的结构示意图。
一些实施例中,介质谐振天线2包括非金属介质块21和固定于非金属介质块21的馈电端口22。馈电端口22可以有多种实现方式。示例性的,如图4所示,馈电端口22包括第一部分22a和连接第一部分22a的第二部分22b,第一部分22a固定于非金属介质块21的侧面,第二部分22b相对第一部分22a弯折,且朝远离非金属介质块21的方向延伸。示例性的,如图20所示,馈电端口22包括第一部分22a和连接第一部分22a的第二部分22b,第一部分22a固定于非金属介质块21的侧面,第二部分22b相对第一部分22a弯折并固定于非金属介质块21的底面。
可以理解的,图16至图20所示介质谐振天线2也可以集成于移动终端100的结构件中,例如集成于图3所示按键10。
在本申请中,按键10具有多种变形方案,以下通过举例说明,以下按键10均可应用于移动终端100中。
请参阅图21,图21是本申请实施例提供的按键10在另一些实施例中的内部结构示意图。本实施例的按键10可以包括前述实施例的按键10的大部分特征,以下主要说明两者的区别点,两者相同的部分不再赘述。
一些实施例中,按键10还可以包括射频芯片4,射频芯片4固定于电路板1背向介质谐振天线2的一侧,射频芯片4电连接电路板1。在本实施例中,射频芯片4通过电路板1与介质谐振天线2的馈电端口22之间实现电连接,以收发射频信号。此时,射频信号的传输路径较短,有利于提高介质谐振天线2的天线性能。
请参阅图22,图22是本申请实施例提供的按键10在再一些实施例中的内部结构示意图。本实施例的按键10可以包括前述实施例的按键10的大部分特征,以下主要说明两者的区别点,两者相同的部分不再赘述。
一些实施例中,电路板1包括电路板天线14和天线馈线15,电路板天线14和介质谐振天线2均电连接天线馈线15。在本实施例中,电路板天线14和介质谐振天线2共同形成天线模块,两者连接相同的天线馈线15,电路板天线14和介质谐振天线2分别形成不同的谐振频段,使得天线模块获得至少两个谐振频段,以具有较大的带宽。其中,两个谐振频段也可以组合为一个宽频段。
请参阅图23,图23是本申请实施例提供的按键10在再一些实施例中的内部结构示意图。本实施例的按键10可以包括前述实施例的按键10的大部分特征,以下主要说明两者的区别点,两者相同的部分不再赘述。
一些实施例中,按键10的键帽3具有顶面31和周侧面32,键帽3的顶面31位于介质谐振天线2背向电路板1的一侧,键帽3的周侧面32连接顶面31的周缘。按键10还可以包 括非金属镀层33,非金属镀层33固定于键帽3且覆盖顶面31和周侧面32。在本实施例中,非金属镀层33能够用于保护键帽3,同时也不会影响介质谐振天线2的信号收发。
示例性的,非金属镀层33可以与移动终端100的边框101a的外观面1011(可参阅图6)的颜色相同或相近,两者可以采用相同色系,以提高移动终端100的外观一致性和美观性。
请一并参阅图24和图25,图24是本申请实施例提供的一种卡托20的内部结构示意图;图25是图24所示卡托20在另一角度的内部结构示意图。其中,本实施例所示卡托20可以作为图1所示移动终端100的卡托103使用。
一些实施例中,卡托20包括电路板1、介质谐振天线2、门板5、托盘6。托盘6固定于门板5的一侧,托盘6设有卡槽61。卡槽61用于安装存储卡、SIM卡等。介质谐振天线2固定于电路板1且电连接电路板1。介质谐振天线2用于收发电磁波。介质谐振天线2可以用作毫米波天线,例如,介质谐振天线2可以工作在24.25GHz至29.5GHz、37GHz至43.5GHz频段范围内。介质谐振天线2嵌入门板5,电路板1位于介质谐振天线2朝向托盘6的一侧。门板5采用低介电常数材料,以允许电磁波通过。
在本实施例中,根据天线辐射原理,介质谐振天线2收发电磁波的辐射方向指向远离电路板1的一侧,由于门板5不会对电磁波产生屏蔽,因此介质谐振天线2具有较佳的天线性能。此外,由于门板5包裹介质谐振天线2,因此当卡托20安装于其他结构时,门板5可以隔离介质谐振天线2与其他结构,特别是金属结构,以降低其他结构对介质谐振天线2的干扰。
示例性的,门板5的介电常数小于或等于6。其中,门板5的介电常数可以在2至6之间,可以尽量采用较小值。例如,门板5可以采用塑料、玻璃等材料。门板5可以通过塑胶包装方式,包裹介质谐振天线2且与介质谐振天线2相互固定。其中,电路板1为包括至少一层非导电基材和至少一层导电层的结构件。
其中,托盘6与门板5可以是一体成型结构,也可以采用组装方式形成一体化结构。托盘6的材料可以与门板5的材料相同或不同,例如,托盘6可以采用塑料材料。
一些实施例中,介质谐振天线2包括非金属介质块21及位于非金属介质块21表面的两个馈电端口22,两个馈电端口22彼此间隔设置。其中,非金属介质块21采用高介电常数材料,非金属介质块21的介电常数可以在8至100范围内,例如10至30。示例性的,非金属介质块21可以采用陶瓷材料。非金属介质块21固定于电路板1,两个馈电端口22均电连接电路板1,以形成双极化介质谐振天线2。其中,双极化介质谐振天线2的两个极化方向正交,例如,两个极化方向分别为水平和垂直,或者两个极化方向分别为+45°和-45°。双极化介质谐振天线2具有较大的通信容量。
一些实施例中,电路板1可以为多层板结构,例如4层板,也即具有4层导电层。电路板1具有馈电线(图中未示出),馈电线电连接介质谐振天线2的馈电端口22。其中,电路板1还可以具有第一接地层(图中未示出),第一接地层位于馈电线远离介质谐振天线2的一侧。其中,电路板1还可以具有第二接地层(图中未示出),第二接地层位于馈电线1靠近介质谐振天线2的一侧。在其他一些实施例中,电路板1也可以为双层板、六层板等,馈电线和接地层也可以排布于电路板1中的不同位置,本申请对此不作严格限定。其中,电路板1可以为硬质电路板,也可以为柔性电路板。
一些实施例中,介质谐振天线2还可以包括金属柱23,金属柱23嵌设于非金属介质块21内。其中,金属柱23不接地。示例性的,介质谐振天线2能够形成两个谐振频段,两个 谐振频段中的低频谐振频段主要由两个馈电端口22激励非金属介质块21产生,高频谐振频段主要由金属柱23的感性加载产生。简言之,金属柱23的设置能够增加产生新的谐振频段,增加介质谐振天线2的覆盖频段,从而增加介质谐振天线2的带宽。此外,金属柱23还可以增加两个馈电端口22的隔离度。其中,两个谐振频段也可以组合为一个宽频段。
其中,金属柱23可以贯穿介质谐振天线2。此时,在垂直于电路板1的方向上,金属柱23的长度等于非金属介质块21的高度。在其他一些实施例中,金属柱23也可以不贯穿介质谐振天线2。此时,在垂直于电路板1的方向上,金属柱23的长度小于非金属介质块21的高度。
在其他一些实施例中,非金属介质块21内设有调节孔,调节孔的孔壁设有金属层。此时,非金属介质块21内不再设置金属柱。介质谐振天线2由金属层的感性加载产生新的谐振频段,增加了介质谐振天线2的覆盖频段,拓展了带宽。由金属层加载所产生的谐振频段受金属层的高度影响。其中,调节孔可以为贯穿非金属介质块21的通孔,金属层覆盖调节孔的全部孔壁。此时,在垂直于电路板1的方向上,金属层的高度等于非金属介质块21的高度。或者,调节孔也可以为不贯穿非金属介质块21的盲孔,金属层覆盖调节孔的全部孔壁。此时,在垂直于电路板1的方向上,金属层的高度小于非金属介质块21的高度。或者,金属层也可以覆盖调节孔的部分孔壁,调节孔为通孔或盲孔,在垂直于电路板1的方向上,金属层的高度小于非金属介质块21的高度。在其他一些实施例中,非金属介质块21内也可以不设置金属柱和金属层。
一些实施例中,如图24所示,介质谐振天线2的数量为多个,多个介质谐振天线2呈阵列排布。例如,多个介质谐振天线2可以形成1×2阵列天线。在本实施例中,呈阵列排布的多个介质谐振天线2形成阵列天线,能够减小毫米波使用时的高频电磁波的散射问题,还能够加强和改善辐射场的方向性、加强辐射场的强度。
其中,相邻的两个介质谐振天线2之间的距离可以约为半个波长。示例性的,介质谐振天线2的工作频段包括30GHz,相邻的两个介质谐振天线2之间的距离为5mm左右。在其他一些实施例中,介质谐振天线2的数量也可以为1个。
一些实施例中,卡托20还可以包括连接电路(图中未示出),连接电路的一端电连接电路板1,另一端可以设有连接端子。连接电路可以由电路板实现,该电路板可以固定连接门板5和/或托盘6;连接电路也可以通过嵌设于门板5和/或托盘6中的导电线实现。连接端子用于与移动终端100的其他部件(例如卡座中的连接端子)电连接。连接端子可以为焊盘、导电弹片、探针等结构。示例性的,移动终端100可以包括射频芯片(图中未示出),射频芯片用于调制射频信号或解调射频信号。射频芯片固定于主板107,射频芯片电连接处理器。卡座的连接端子电连接射频芯片。在其他一些实施例中,处理器包括用于处理射频信号的射频处理模块,卡座的连接端子电连接处理器,移动终端100可以不再设置射频芯片。
在其他一些实施例中,卡托20还可以包括射频芯片(图中未示出),射频芯片固定于电路板1背向介质谐振天线2的一侧,射频芯片电连接电路板1。在本实施例中,射频芯片通过电路板1与介质谐振天线2的馈电端口22之间实现电连接,以收发射频信号。此时,射频信号的传输路径较短,有利于提高介质谐振天线2的天线性能。
请参阅图26,图26是图1所示移动终端100的部分结构示意图。其中,图24所示卡托20可以作为移动终端100的卡托103使用。
一些实施例中,移动终端100包括边框101a、位于边框101a内侧的卡座104以及卡托20。边框101a采用金属材料,边框101a设有卡托插孔101c,门板5位于卡托插孔101c,托 盘6插入卡座104。门板5相对边框101a露出。
在本实施例中,介质谐振天线2集成在卡托20中,卡托20的门板5位于卡托插孔101c,由于门板5包裹介质谐振天线2,因此介质谐振天线2与边框101a之间形成一定距离。门板5相对边框101a部分露出,介质谐振天线2不被边框101a遮挡且与边框101a之间形成一定距离,门板5允许电磁波穿过,因此门板5和边框101a对介质谐振天线2收发的毫米波波束指向的影响较小,使得毫米波波束能够覆盖所需方向,波束指向误差较小,提高了毫米波天线的天线性能。同时,移动终端100的边框101a无需额外开缝,因此毫米波天线不会影响到移动终端100的产品外观设计,移动终端100的外观完整性较佳。
其中,门板5相对边框101a露出,可以包括门板5的外观面5a与边框101a的外观面1011齐平的情况,也可以包括门板5的外观面5a相对边框101a的外观面1011内缩、但不被边框101a的外观面1011遮挡的情况。门板5的外观面5a为朝向移动终端100外部的外表面。边框101a的外观面1011为边框101a的朝向移动终端100外部的外表面。当门板5的外观面5a与边框101a的外观面1011齐平时,移动终端100具有较为光滑的外观,粉尘等脏污堆积于卡托20周围的风险较小。当门板5的外观面5a与边框101a的外观面1011内缩时,有利于避免衰落影响非金属件变形损坏等问题。
其中,卡座104设有连接端子(图中未示出),该连接端子电连接移动终端100的射频芯片或射频处理模块。当卡托20的托盘6插入卡座104时,卡托20的连接电路的连接端子与移动终端100的卡座104的连接端子电连接,使得介质谐振天线2能够收发射频信号。当托盘6脱离卡座104时,连接电路的连接端子脱离卡座104的连接端子,介质谐振天线2不工作。
一些实施例中,门板5的外观面5a的颜色可以与边框101a的外观面1011的颜色相同或相近,两者可以采用相同色系,以提高移动终端100的外观一致性和美观性。其中,门板5可以整体采用一种颜色,则门板5的颜色即为门板5的外观面5a的颜色。门板5也可以采用多种颜色混合,门板5的部分区域的颜色可以与门板5的外观面5a的颜色不同。
在本申请中,卡托20具有多种变形方案,以下通过举例说明,以下卡托20均可应用于移动终端100中。
请参阅图27,图27是本申请实施例提供的卡托20在另一些实施例中的内部结构示意图。本实施例的卡托20可以包括前述实施例的卡托20的大部分特征,以下主要说明两者的区别点,两者相同的部分不再赘述。
卡托20的门板5具有顶面51,门板5的顶面51位于介质谐振天线2背向电路板1的一侧。卡托20还可以包括非金属镀层52,非金属镀层52固定于门板5且覆盖门板5的顶面51。在本实施例中,非金属镀层52能够用于保护卡托20,同时也不会影响介质谐振天线2的信号收发。
此外,非金属镀层52背向门板5的外表面为门板5的外观面5a。非金属镀层52整体颜色相同时,非金属镀层52可以与移动终端100的边框101a的外观面1011(可参阅图26)的颜色相同或相近,两者可以采用相同色系,以提高移动终端100的外观一致性和美观性。非金属镀层52包括多层子镀层且多层子镀层具有两种以上颜色时,非金属镀层52的包括外观面5a的表层子镀层的颜色与移动终端100的边框101a的外观面1011(可参阅图26)的颜色相同或相近,两者可以采用相同色系。
请参阅图28,图28是本申请实施例提供的卡托20在再一些实施例中的内部结构示意图。本实施例的卡托20可以包括前述实施例的卡托20的大部分特征,以下主要说明两者的区别 点,两者相同的部分不再赘述。
一些实施例中,电路板1包括电路板天线14和天线馈线15,电路板天线14和介质谐振天线2均电连接天线馈线15。在本实施例中,电路板天线14和介质谐振天线2共同形成天线模块,两者连接相同的天线馈线15,电路板天线14和介质谐振天线2分别形成不同的谐振频段,使得天线模块获得至少两个谐振频段,具有较大的带宽。其中,两个谐振频段也可以组合为一个宽频段。
其中,在不冲突的情况下,图24至图28所示卡托20可以包括前文描述的按键10的部分特征,例如介质谐振天线的相关特征、电路板的相关特征等。
请参阅图29,图29是本申请实施例提供的一种摄像头装饰件30的内部结构示意图。其中,本实施例所示摄像头装饰件30可以作为图2所示移动终端100的摄像头装饰件1014使用。
一些实施例中,摄像头装饰件30包括电路板1、介质谐振天线2、装饰件本体7以及镜片8。装饰件本体7设有透光孔71,透光孔71用于允许光线穿过。镜片8固定于装饰件本体7且覆盖透光孔71。镜片8为透光件,镜片8可以采用玻璃材料。介质谐振天线2固定于电路板1且电连接电路板1。介质谐振天线2用于收发电磁波。介质谐振天线2可以用作毫米波天线,例如,介质谐振天线2可以工作在24.25GHz至29.5GHz、37GHz至43.5GHz频段范围内。介质谐振天线2嵌入装饰件本体7且被镜片8覆盖,也即,介质谐振天线2位于镜片8下方,处于镜片8在其厚度方向上的投影区域中。电路板1位于介质谐振天线2远离镜片8的一侧。装饰件本体7采用低介电常数材料,以允许电磁波通过。
在本实施例中,根据天线辐射原理,介质谐振天线2收发电磁波的辐射方向指向远离电路板1的一侧,也即指向镜片8,由于装饰件本体7和镜片8不会对电磁波产生屏蔽,因此介质谐振天线2具有较佳的天线性能。此外,由于装饰件本体7包裹介质谐振天线2,因此装饰件本体7能够隔离介质谐振天线与其他结构,特别是金属结构,以降低其他结构对介质谐振天线2的干扰。
示例性的,装饰件本体7的介电常数小于或等于6。其中,装饰件本体7的介电常数可以在2至6之间,可以尽量采用较小值。例如,装饰件本体7可以采用塑料、玻璃等材料。装饰件本体7可以通过塑胶包装方式,包裹介质谐振天线2且与介质谐振天线2相互固定。其中,电路板1为包括至少一层非导电基材和至少一层导电层的结构件。
示例性的,装饰件本体7可以设有彼此间隔设置的两个透光孔71,介质谐振天线2位于两个透光孔71之间。在其他一些实施例中,装饰件本体7也可以设有彼此间隔设置的三个以上透光孔71,介质谐振天线2位于多个透光孔71之间。在其他一些实施例中,装饰件本体7也可以设有一个透光孔71,介质谐振天线2位于透光孔71周边。
一些实施例中,摄像头装饰件30还可以包括金属圈9。金属圈9固定于装饰件本体7且环绕镜片8设置,介质谐振天线2与金属圈9彼此间隔设置。在本实施例中,金属圈9能够保护镜片8,以降低镜片8因冲击、碰撞等出现破碎的风险。并且,由于金属圈9环绕镜片8设置,介质谐振天线2位于镜片8下方且与金属圈9彼此间隔,因此金属圈9的设置也不会影响到介质谐振天线2收发信号。其中,金属圈9可以通过粘接方式固定于装饰件本体7。
请一并参阅图29和图30,图30是图29所示摄像头装饰件30的介质谐振天线2的俯视图。
一些实施例中,介质谐振天线2包括非金属介质块21及位于非金属介质块21表面的两 个馈电端口22,两个馈电端口22彼此间隔设置。其中,非金属介质块21采用高介电常数材料,非金属介质块21的介电常数可以在8至100范围内,例如10至30。示例性的,非金属介质块21可以采用陶瓷材料。非金属介质块21固定于电路板1,两个馈电端口22均电连接电路板1,以形成双极化介质谐振天线2。其中,双极化介质谐振天线2的两个极化方向正交,例如,两个极化方向分别为水平和垂直,或者两个极化方向分别为+45°和-45°。双极化介质谐振天线2具有较大的通信容量。
一些实施例中,电路板1可以为多层板结构,例如4层板,也即具有4层导电层。电路板1具有馈电线(图中未示出),馈电线电连接介质谐振天线2的馈电端口22。其中,电路板1还可以具有第一接地层(图中未示出),第一接地层位于馈电线远离介质谐振天线2的一侧。其中,电路板1还可以具有第二接地层(图中未示出),第二接地层位于馈电线1靠近介质谐振天线2的一侧。在其他一些实施例中,电路板1也可以为双层板、六层板等,馈电线和接地层也可以排布于电路板1中的不同位置,本申请对此不作严格限定。其中,电路板1可以为硬质电路板,也可以为柔性电路板。
一些实施例中,介质谐振天线2还可以包括金属柱23,金属柱23嵌设于非金属介质块21内。其中,金属柱23不接地。示例性的,介质谐振天线2能够形成两个谐振频段,两个谐振频段中的低频谐振频段主要由两个馈电端口22激励非金属介质块21产生,高频谐振频段主要由金属柱23的感性加载产生。简言之,金属柱23的设置能够增加产生新的谐振频段,增加介质谐振天线2的覆盖频段,从而增加介质谐振天线2的带宽。此外,金属柱23还可以增加两个馈电端口22的隔离度。其中,两个谐振频段也可以组合为一个宽频段。
其中,金属柱23可以贯穿介质谐振天线2。此时,在垂直于电路板1的方向上,金属柱23的长度等于非金属介质块21的高度。在其他一些实施例中,金属柱23也可以不贯穿介质谐振天线2。此时,在垂直于电路板1的方向上,金属柱23的长度小于非金属介质块21的高度。
在其他一些实施例中,非金属介质块21内设有调节孔,调节孔的孔壁设有金属层。此时,非金属介质块21内不再设置金属柱。介质谐振天线2由金属层的感性加载产生新的谐振频段,增加了介质谐振天线2的覆盖频段,拓展了带宽。由金属层加载所产生的谐振频段受金属层的高度影响。其中,调节孔可以为贯穿非金属介质块21的通孔,金属层覆盖调节孔的全部孔壁。此时,在垂直于电路板1的方向上,金属层的高度等于非金属介质块21的高度。或者,调节孔也可以为不贯穿非金属介质块21的盲孔,金属层覆盖调节孔的全部孔壁。此时,在垂直于电路板1的方向上,金属层的高度小于非金属介质块21的高度。或者,金属层也可以覆盖调节孔的部分孔壁,调节孔为通孔或盲孔,在垂直于电路板1的方向上,金属层的高度小于非金属介质块21的高度。在其他一些实施例中,非金属介质块21内也可以不设置金属柱和金属层。
一些实施例中,介质谐振天线2的数量为一个。在其他一些实施例中,介质谐振天线2的数量也可以为多个,多个介质谐振天线2呈阵列排布。例如,多个介质谐振天线2可以形成1×2阵列天线或2×2阵列天线等。在本实施例中,呈阵列排布的多个介质谐振天线2形成阵列天线,能够减小毫米波使用时的高频电磁波的散射问题,还能够加强和改善辐射场的方向性、加强辐射场的强度。其中,相邻的两个介质谐振天线2之间的距离可以约为半个波长。
一些实施例中,摄像头装饰件30还可以包括柔性电路板(图中未示出)。柔性电路板的一端电连接电路板1,另一端设有电连接器。电连接器用于与移动终端100的其他部件电连 接。示例性的,移动终端100可以包括射频芯片(图中未示出),射频芯片用于调制射频信号或解调射频信号。射频芯片固定于主板107,射频芯片电连接处理器。柔性电路板的电连接器电连接射频芯片。在其他一些实施例中,处理器包括用于处理射频信号的射频处理模块,柔性电路板的电连接器电连接处理器,移动终端100可以不再设置射频芯片。示例性的,柔性电路板与电路板1之间可以通过组装方式连接,也可以是一体式结构,例如柔性电路板和电路板1分别为软硬结合电路板的一部分。本申请不对柔性电路板和电路板1的具体结构、连接关系等作严格限定。
在其他一些实施例中,摄像头装饰件30还可以包括射频芯片(图中未示出),射频芯片固定于电路板1背向介质谐振天线2的一侧,射频芯片电连接电路板1。在本实施例中,射频芯片通过电路板1与介质谐振天线2的馈电端口22之间实现电连接,以收发射频信号。此时,射频信号的传输路径较短,有利于提高介质谐振天线2的天线性能。
请参阅图31,图31是图1所示移动终端100的部分结构示意图。其中,图29所示摄像头装饰件30可以作为图1所示移动终端100的摄像头装饰件1014使用。
一些实施例中,移动终端100包括后盖101b和摄像头装饰件30。后盖101b采用金属材料,后盖101b设有摄像孔101i。摄像头装饰件30穿设于摄像孔101i,镜片8相对后盖101b露出。其中,摄像头装饰件30可以部分相对后盖101b的外观面凸出,例如部分摄像头装饰件30的金属圈9相对后盖101b的外观面凸出。
在本实施例中,介质谐振天线2集成在摄像头装饰件30中,摄像头装饰件30穿设于摄像孔101i,由于装饰件本体7包裹介质谐振天线2,因此介质谐振天线2与后盖101b之间形成一定距离。摄像头装饰件30的镜片8相对后盖101b露出,介质谐振天线2位于镜片8下方,介质谐振天线2不被后盖101b遮挡且与后盖101b之间形成一定距离,镜片8及装饰件本体7允许电磁波穿过,因此镜片8、装饰件本体7及后盖101b对介质谐振天线2收发的毫米波波束指向的影响较小,使得毫米波波束能够覆盖所需方向,波束指向误差较小,提高了毫米波天线的天线性能。同时,移动终端100的后盖101b无需额外开缝,因此毫米波天线不会影响到移动终端100的产品外观设计,移动终端100的外观完整性较佳。
其中,移动终端100的摄像头模组1013对应透光孔71设置,外部光线经过镜片8和透光孔71后进入摄像头模组1013。例如,摄像头模组1013可以部分伸入透光孔71。摄像头模组1013的数量与透光孔71的数量相适应。
在本申请中,摄像头装饰件30具有多种变形方案,以下通过举例说明,以下摄像头装饰件30可应用于移动终端100中。
请参阅图32,图32是本申请实施例提供的摄像头装饰件30在再一些实施例中的内部结构示意图。本实施例的摄像头装饰件30可以包括前述实施例的摄像头装饰件30的大部分特征,以下主要说明两者的区别点,两者相同的部分不再赘述。
一些实施例中,电路板1包括电路板天线14和天线馈线15,电路板天线14和介质谐振天线2均电连接天线馈线15。在本实施例中,电路板天线14和介质谐振天线2共同形成天线模块,两者连接相同的天线馈线15,电路板天线14和介质谐振天线2分别形成不同的谐振频段,使得天线模块获得至少两个谐振频段,具有较大的带宽。其中,两个谐振频段也可以组合为一个宽频段。
其中,在不冲突的情况下,图29至图32所示摄像头装饰件30可以包括前文描述的按键10的部分特征,例如介质谐振天线的相关特征、电路板的相关特征等。
请一并参阅图33和图34,图33是本申请实施例提供的一种天线模块的结构示意图,图34是图33所示天线模块沿C-C线处剖开的截面示意图。
一些实施例中,天线模块300包括介质基板301、地板302、接地柱303、贴片天线304、两个馈电柱305以及介质谐振天线306。其中,介质基板301的介电常数可以在2.2至4.5之间。地板302固定于介质基板301的底面,接地柱303嵌设于介质基板301且连接地板302。贴片天线304固定于介质基板301的顶面。两个馈电柱305彼此间隔设置,每个馈电柱305的一端均连接贴片天线304。每个馈电柱305的另一端均可以贯穿地板302,且与地板302之间形成间隙。其中,接地柱303可以与贴片天线304间隔设置,也可以连接贴片天线304。
介质谐振天线306固定于贴片天线304远离介质基板301的一侧,也即固定于贴片天线304的顶侧。示例性的,介质谐振天线306可以通过胶层307粘接介质基板301。介质谐振天线306包括金属柱306a、围绕金属柱306a设置的第一介质块306b以及围绕第一介质块306b设置的第二介质块306c。金属柱306a接触贴片天线304。胶层307可以粘接于第一介质块306b及第二介质块306c与介质基板301之间。示例性的,第一介质块306b的介电常数可以在2至6范围内,例如可以采用塑料材料。第二介质块306c的介电常数可以在10至30的范围内,例如可以采用陶瓷材料。
在本实施例中,天线模块300通过贴片天线304和介质谐振天线306进行辐射,贴片天线304和介质谐振天线306为双极化天线,通过两个馈电柱305的馈入信号可以激励贴片天线304进行辐射,贴片天线304可以激励介质谐振天线306进行辐射,故而天线模块300能够实现24.25GHz-29.5GHz和37GHz-43.5GHz双频全频段的毫米波天线性能。此外,接地柱303能够改善高频隔离度和交叉极化。介质谐振天线306的金属柱306a能够调节谐振,并改善波束偏移。
一些实施例中,天线模块300还可以包括金属壁308,金属壁308环绕地固定于介质基板301的周侧面32并连接地板302,以围设出金属腔。金属腔用于防止其他电磁信号干扰贴片天线304。在其他一些实施例中,天线模块300也可以不设置金属壁308,本申请对此不作严格限定。
一些实施例中,贴片天线304在介质基板301的顶面上形成第一投影,金属柱306a在介质基板301的顶面上形成第二投影,第一介质块306b在介质基板301的顶面上形成第三投影,第一投影的轮廓包围第二投影,第三投影的轮廓包围第一投影。
以下通过对图33所示天线模块300的一种可能的实施例进行仿真说明。
请参阅图35,图35是图33所示天线模块300在一种可能的实施例中的内部结构示意图。
示例性的,介质基板301的介电常数为3.5;金属壁308的外周轮廓呈矩形,尺寸为3.8mm×3.8mm;贴片天线304呈矩形,尺寸为1.8mm×1.8mm;贴片天线304的顶面至地板302的底面之间的距离为0.5mm;介质谐振天线306为长方体,尺寸为3.8mm×3.8mm×1mm;金属柱306a采用铜材料;第一介质块306b采用介电常数为2.8的塑料材料,第二介质块306c采用介电常数为11的陶瓷材料。
请参阅图36,图36是图35所示天线模块300进行仿真获得的回波曲线和隔离度曲线图。
图36中实线为回波曲线,虚线为两个端口隔离度曲线;横坐标为频率,单位GHz,纵坐标单位为dB。如图36所示,天线模块300在24.25GHz-29.5GHz和37GHz-43.5GHz频段内的回波损耗在10dB以上,隔离度在17dB以上,满足天线性能需求。
请一并参阅图36至图39,图37是图35所示天线模块300进行仿真获得的电场示意图一,图38是图35所示天线模块300进行仿真获得的电场示意图二;图39是图38所示电场 在另一角度的示意图。
如图36所示,天线模块300形成低频谐振和高频谐振。如图37所示,低频谐振由贴片天线304产生,贴片天线304的主工作模式是TM10模式,也即电场在贴片天线304的长度方向上有二分之一个导波波长的改变,在宽度方向上保持不变。如图38和图39所示,高频谐振由贴片天线304激励介质谐振天线306产生,介质谐振天线306的主工作模式是HEM11模式,也即混合电磁模式(hybrid electromagnetic modes,HEM),包含TE模和TM模的混合模,就是在周向和径向有一个导波波长的改变。TE模是指电磁波的传播方向上电场的纵分向为零,磁场的纵向分量不为零的传播模式。TM模是指在波导中,磁场的纵向分量为零,而电场的纵向分量不为零的传播模式。
请一并参阅图40至图45,图40是图35所示天线模块300进行仿真获得的在24.5HGz的第一极化切面方向图,图41是图35所示天线模块300进行仿真获得的在24.5HGz的第二极化切面方向图;图42是图35所示天线模块300进行仿真获得的在37.5HGz的第一极化切面方向图,图43是图35所示天线模块300进行仿真获得的在37.5HGz的第二极化切面方向图;图44是图35所示天线模块300进行仿真获得的在43.5HGz的第一极化切面方向图,图45是图35所示天线模块300进行仿真获得的在43.5HGz的第二极化切面方向图。其中,第二极化垂直于第一极化。
图40、图42以及图44中,实线代表主极化(也即第一极化)增益,虚线代表交叉极化指标;图41、图43以及图45中,虚线代表主极化(也即第二极化)增益,实线代表交叉极化指标;图40至图45的横坐标单位为角度,纵坐标单位为dB。由图40至图45可知,天线模块300全频段的增益在5dB以上,交叉极化在16dB以上,满足天线性能需求。
以上描述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (24)

  1. 一种按键,其特征在于,包括电路板、介质谐振天线以及键帽,所述介质谐振天线固定于所述电路板且电连接所述电路板,所述键帽固定于所述电路板并包覆所述介质谐振天线,所述键帽的介电常数小于或等于6。
  2. 根据权利要求1所述的按键,其特征在于,所述介质谐振天线的数量为多个,多个所述介质谐振天线呈阵列排布。
  3. 根据权利要求1或2所述的按键,其特征在于,所述键帽采用塑料材料,所述键帽具有顶面和周侧面,所述键帽的顶面位于所述介质谐振天线背向所述电路板的一侧,所述键帽的周侧面连接所述键帽的顶面的周缘;
    所述按键还包括非金属镀层,所述非金属镀层固定于所述键帽且覆盖所述键帽的顶面和所述键帽的周侧面。
  4. 根据权利要求1至3中任一项所述的按键,其特征在于,所述介质谐振天线包括非金属介质块及位于所述非金属介质块表面的两个馈电端口,所述两个馈电端口彼此间隔设置,所述非金属介质块固定于所述电路板,所述两个馈电端口均电连接所述电路板,以形成双极化介质谐振天线。
  5. 根据权利要求4所述的按键,其特征在于,所述介质谐振天线还包括金属柱,所述金属柱嵌设于所述非金属介质块内;或者,
    所述非金属介质块内设有调节孔,所述调节孔的孔壁设有金属层。
  6. 根据权利要求1至5中任一项所述的按键,其特征在于,所述电路板包括电路板天线和天线馈线,所述电路板天线和所述介质谐振天线均电连接所述天线馈线。
  7. 根据权利要求1至6中任一项所述的按键,其特征在于,所述按键还包括射频芯片,所述射频芯片固定于所述电路板背向所述介质谐振天线的一侧,所述射频芯片电连接所述电路板。
  8. 根据权利要求1至6中任一项所述的按键,其特征在于,所述按键还包括柔性电路板,所述柔性电路板的一端电连接所述电路板,另一端设有电连接器。
  9. 根据权利要求1至8中任一项所述的按键,其特征在于,所述电路板设有避让孔,所述键帽包括按压部和触发部,所述按压部固定于所述电路板并包裹所述介质谐振天线,所述触发部的一端固定于所述按压部,所述触发部的另一端经所述避让孔相对所述电路板凸出。
  10. 一种卡托,其特征在于,包括门板、托盘、电路板及介质谐振天线,所述托盘固定于所述门板的一侧,所述托盘设有卡槽,所述介质谐振天线固定于所述电路板且电连接所述电路板,所述介质谐振天线嵌入所述门板,所述电路板位于所述介质谐振天线朝向所述托盘的一侧,所述门板的介电常数小于或等于6。
  11. 根据权利要求10所述的卡托,其特征在于,所述介质谐振天线的数量为多个,多个所述介质谐振天线呈阵列排布。
  12. 根据权利要求10或11所述的卡托,其特征在于,所述门板采用塑料材料,所述门板具有顶面,所述门板的顶面位于所述介质谐振天线背向所述电路板的一侧;
    所述卡托还包括非金属镀层,所述非金属镀层固定于所述门板且覆盖所述门板的顶面。
  13. 根据权利要求10至12中任一项所述的卡托,其特征在于,所述介质谐振天线包括非金属介质块及位于所述非金属介质块表面的两个馈电端口,所述两个馈电端口彼此间隔设置,所述非金属介质块固定于所述电路板,所述两个馈电端口均电连接所述电路板,以形成双极化介质谐振天线。
  14. 根据权利要求10至13中任一项所述的卡托,其特征在于,所述介质谐振天线还包括金属柱,所述金属柱嵌设于所述非金属介质块内;或者,
    所述非金属介质块内设有调节孔,所述调节孔的孔壁设有金属层。
  15. 根据权利要求10至14中任一项所述的卡托,其特征在于,所述电路板包括电路板天线和天线馈线,所述电路板天线和所述介质谐振天线均连接所述天线馈线。
  16. 一种摄像头装饰件,其特征在于,包括装饰件本体、镜片、电路板及介质谐振天线,所述装饰件本体设有透光孔,所述镜片固定于所述装饰件本体且覆盖所述透光孔,所述介质谐振天线固定于所述电路板且电连接所述电路板,所述介质谐振天线嵌入所述装饰件本体且被所述镜片覆盖,所述电路板位于所述介质谐振天线远离所述镜片的一侧,所述装饰件本体的介电常数小于或等于6。
  17. 根据权利要求16所述的摄像头装饰件,其特征在于,所述装饰件本体采用塑料材料,所述摄像头装饰件还包括金属圈,所述金属圈固定于所述装饰件本体且环绕所述镜片设置,所述介质谐振天线与所述金属圈彼此间隔设置。
  18. 根据权利要求16或17所述的摄像头装饰件,其特征在于,所述介质谐振天线包括非金属介质块及位于所述非金属介质块表面的两个馈电端口,所述两个馈电端口彼此间隔设置,所述非金属介质块固定于所述电路板,所述两个馈电端口均电连接所述电路板,以形成双极化介质谐振天线。
  19. 根据权利要求18所述的摄像头装饰件,其特征在于,所述介质谐振天线还包括金属柱,所述金属柱嵌设于所述非金属介质块内;或者,
    所述非金属介质块内设有调节孔,所述调节孔的孔壁设有金属层。
  20. 根据权利要求16至19中任一项所述的摄像头装饰件,其特征在于,所述电路板包括电路板天线和天线馈线,所述电路板天线和所述介质谐振天线均电连接所述天线馈线。
  21. 一种移动终端,其特征在于,包括边框和权利要求1至9中任一项所述的按键,所述边框采用金属材料,所述边框设有按键孔,所述按键穿设于所述按键孔,且所述键帽相对所述边框的外观面部分凸出。
  22. 一种移动终端,其特征在于,包括边框、位于边框内侧的卡座以及权利要求10至15中任一项所述的卡托,所述边框采用金属材料,所述边框设有卡托插孔,所述门板位于所述卡托插孔,所述托盘插入所述卡座。
  23. 一种移动终端,其特征在于,包括后盖和权利要求16至19中任一项所述的摄像头装饰件,所述后盖采用金属材料,所述后盖设有摄像孔,所述摄像头装饰件穿设于所述摄像孔,所述摄像头装饰件的镜片相对所述后盖露出。
  24. 一种移动终端,其特征在于,包括壳体和结构件,所述壳体采用金属材料,所述壳体设有通孔,所述结构件穿设于所述通孔,且相对所述壳体部分露出,所述结构件包括本体及嵌设于所述本体的介质谐振天线,所述本体的介电常数小于或等于6,所述介质谐振天线用于向所述壳体的外侧发射电磁波和/或接收所述壳体外侧的电磁波。
PCT/CN2021/110523 2020-08-24 2021-08-04 按键、卡托、摄像头装饰件及移动终端 WO2022042239A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010858948.6A CN114095591A (zh) 2020-08-24 2020-08-24 按键、卡托、摄像头装饰件及移动终端
CN202010858948.6 2020-08-24

Publications (1)

Publication Number Publication Date
WO2022042239A1 true WO2022042239A1 (zh) 2022-03-03

Family

ID=80295728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110523 WO2022042239A1 (zh) 2020-08-24 2021-08-04 按键、卡托、摄像头装饰件及移动终端

Country Status (2)

Country Link
CN (1) CN114095591A (zh)
WO (1) WO2022042239A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117097825A (zh) * 2022-05-13 2023-11-21 中兴通讯股份有限公司 移动终端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468528A (zh) * 2010-10-28 2012-05-23 宏达国际电子股份有限公司 手持式装置
CN103078973A (zh) * 2012-12-26 2013-05-01 厦门盛华电子科技有限公司 一种异型感应偶合手机智能卡
CN208706872U (zh) * 2018-09-13 2019-04-05 中兴通讯股份有限公司 终端天线结构及其移动终端
CN110416739A (zh) * 2019-08-05 2019-11-05 Oppo广东移动通信有限公司 壳体组件及移动终端
CN210350074U (zh) * 2019-09-24 2020-04-17 广东以诺通讯有限公司 一种作为手机天线的摄像头装饰件
US20200136232A1 (en) * 2018-10-29 2020-04-30 Motorola Solutions, Inc Replaceable card for antenna frequency tuning

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468528A (zh) * 2010-10-28 2012-05-23 宏达国际电子股份有限公司 手持式装置
CN103078973A (zh) * 2012-12-26 2013-05-01 厦门盛华电子科技有限公司 一种异型感应偶合手机智能卡
CN208706872U (zh) * 2018-09-13 2019-04-05 中兴通讯股份有限公司 终端天线结构及其移动终端
US20200136232A1 (en) * 2018-10-29 2020-04-30 Motorola Solutions, Inc Replaceable card for antenna frequency tuning
CN110416739A (zh) * 2019-08-05 2019-11-05 Oppo广东移动通信有限公司 壳体组件及移动终端
CN210350074U (zh) * 2019-09-24 2020-04-17 广东以诺通讯有限公司 一种作为手机天线的摄像头装饰件

Also Published As

Publication number Publication date
CN114095591A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
US10707561B2 (en) Wireless handheld electronic device
JP6820021B2 (ja) ウェアラブル無線デバイスの結合されたマルチバンドアンテナ
CN106887671B (zh) 移动装置
US10313497B2 (en) Handheld electronic device with cable grounding
EP2553760B1 (en) Cavity-backed slot antenna with near-field-coupled parasitic slot
EP1537623B1 (en) Antenna structures and their use in wireless communication devices
US20090153412A1 (en) Antenna slot windows for electronic device
CN113498565A (zh) 电子设备中的高频天线集成
KR102639685B1 (ko) 안테나 모듈을 포함하는 전자 장치
CN107645053B (zh) 天线结构及具有该天线结构的无线通信装置
CN113889764A (zh) 电介质谐振器天线模块
TW201909482A (zh) 電子裝置
US20220085493A1 (en) Housing assembly, antenna device, and electronic device
CN114512797A (zh) 天线装置及电子设备
WO2022042239A1 (zh) 按键、卡托、摄像头装饰件及移动终端
KR102647883B1 (ko) 안테나 모듈을 포함하는 전자 장치
CN112889183B (zh) 波束控制天线结构和包括所述结构的电子设备
CN114171912B (zh) Uwb贴片天线、天线结构、壳体组件以及电子设备
CN112821046B (zh) 一种天线结构和终端设备
CN117276254A (zh) 天线结构、天线模组、芯片与电子设备
US20240079785A1 (en) Electronic Device Having Antenna with Vent Structures
US20240079777A1 (en) Electronic Device Having Antenna Fed via Speaker
US20240079778A1 (en) Electronic Device Having Antenna Tuners Around Connector
US20240080976A1 (en) Electronic Device Having Conductive Contact Soldered to Printed Circuit
CN114696069B (zh) 电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860079

Country of ref document: EP

Kind code of ref document: A1