WO2021134774A1 - 激光雷达及汽车 - Google Patents

激光雷达及汽车 Download PDF

Info

Publication number
WO2021134774A1
WO2021134774A1 PCT/CN2020/070216 CN2020070216W WO2021134774A1 WO 2021134774 A1 WO2021134774 A1 WO 2021134774A1 CN 2020070216 W CN2020070216 W CN 2020070216W WO 2021134774 A1 WO2021134774 A1 WO 2021134774A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
bearing surface
lidar
module
galvanometer
Prior art date
Application number
PCT/CN2020/070216
Other languages
English (en)
French (fr)
Inventor
刘少平
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to PCT/CN2020/070216 priority Critical patent/WO2021134774A1/zh
Priority to CN202310915280.8A priority patent/CN116859414A/zh
Priority to CN202080005438.2A priority patent/CN113424080B/zh
Publication of WO2021134774A1 publication Critical patent/WO2021134774A1/zh
Priority to US17/855,926 priority patent/US11885913B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • This application relates to the technical field of laser detection, in particular to a laser radar and an automobile.
  • Lidar is a radar system that emits a laser beam to detect the position and speed of the target object. Its working principle is that the transmitting module first transmits the outgoing light signal for detection to the target, and then the receiving module receives the reflection from the target object The returned reflected light signal is compared with the outgoing light signal, and the relevant information of the target object can be obtained after processing, such as distance, azimuth, height, speed, posture, and even shape parameters.
  • the distance and deflection angle of each laser transceiving device relative to the galvanometer device will affect the detection field of view corresponding to each reflecting device.
  • the laser transceiver with a larger mirror deflection angle of the device is adjusted to a greater distance from the galvanometer device.
  • this structural arrangement will increase the overall volume of the lidar.
  • This application provides a lidar and a car, which can reduce the space occupied by the lidar.
  • a lidar including:
  • the base includes a bearing surface, and the galvanometer module of the lidar is fixed on the bearing surface;
  • Adjusting structure located on the bearing surface
  • the laser transceiver module includes a plurality of laser transceiver devices, each laser transceiver device is respectively fixed to the adjusting structure, and each laser transceiver device can respectively generate outgoing laser light directed to the galvanometer module;
  • the adjustment structure is configured so that each laser transceiver device installed on it has a corresponding distance from the bearing surface, so that the emitted light generated by each laser transceiver device forms a preset laser detection field of view outside the lidar .
  • the adjustment structure includes a plurality of first bosses arranged on the bearing surface, and each laser transceiver device is connected to each first boss in a one-to-one correspondence, and the direction of each first boss is perpendicular to the bearing surface.
  • the size of is equal to the distance between the laser transceiver connected to it and the bearing surface;
  • Each first boss is integrally arranged with the base.
  • the laser radar further includes a reflection module, the reflection module and the laser transceiver module are respectively arranged on both sides of the galvanometer module, and the reflection module faces the galvanometer surface of the galvanometer module;
  • the reflection module includes a plurality of reflection mirrors, and each reflection mirror is configured to reflect the reflected laser light generated by each laser transceiver module to the galvanometer surface in a one-to-one correspondence.
  • the mirrors are respectively arranged in the adjustment structure, and the adjustment structure is configured so that each mirror mounted thereon has a corresponding distance from the bearing surface, so that the emitted laser light reflected by each mirror is The preset path is directed toward the galvanometer surface.
  • the adjustment structure further includes a plurality of second bosses arranged on the bearing surface, and each reflector is connected to each second boss in a one-to-one correspondence, and the direction of each second boss is perpendicular to the bearing surface.
  • the size of is equal to the distance from the mirror connected to the bearing surface;
  • Each second boss is integrally arranged with the base.
  • the mirrors are arranged around the galvanometer surface
  • the lidar has an intermediate optical path axis located in the middle of the detection area, and the adjustment structure is configured to make the distance between the mirror that deviates from the intermediate optical path axis and the bearing surface larger.
  • the base further includes an outer wall surface opposite to the carrying surface, the outer wall surface is located outside the lidar, and a plurality of first heat dissipation grooves are provided on the outer wall surface, and each first heat dissipation groove is arranged in a one-to-one correspondence with each first heat dissipation groove.
  • the boss is in the orthographic projection area on the outer wall; or
  • the base also includes an outer wall surface opposite to the bearing surface, the outer wall surface is located outside the lidar, a plurality of second heat dissipation grooves are arranged on the outer wall surface, and each second heat dissipation groove is arranged on the outer wall surface of each second boss in a one-to-one correspondence Within the orthographic projection area.
  • the galvanometer module includes a bracket and a galvanometer device, the bracket is connected to the bearing surface, and the galvanometer device is disposed on the bracket;
  • the stent includes a relief channel, and the emitted light generated by each laser transceiver passes through the relief channel and is directed to each reflector in a one-to-one correspondence.
  • the galvanometer module further includes a light-shielding plate, which is arranged in the relief channel for blocking the light reflected by the reflection module to the laser transceiver module;
  • the light-shielding plate includes a plurality of relief holes, and the emitted light generated by each laser transceiver device correspondingly passes through one relief hole and is directed to the reflecting mirror.
  • the second aspect of the application also provides a car
  • Lidar including any of the above
  • the car body, the lidar is installed on the outside of the car body or embedded in the car body.
  • the application provides a laser radar, which includes a base, an adjustment structure, a laser transceiver module, and a galvanometer module.
  • the distance of each laser transceiver relative to the galvanometer is not adjusted, but the distance between each laser transceiver relative to the base is adjusted through the adjustment structure. Adjust the distance and angle of the bearing surface.
  • This structural arrangement can adjust the distance of the laser transceiver device relative to the bearing surface of the base by setting the height of the adjustment structure, and then adjust the distance and deflection angle of the galvanometer device relative to the laser transceiver device, so as to adjust the corresponding detection of the edge reflection device.
  • the field of view offset ensures the overall detection efficiency of the lidar for the target detection area, and at the same time avoids being forced to increase the volume of the lidar due to the adjustment of the detection field of view, thereby reducing the overall space occupied by the lidar.
  • Fig. 1 is a schematic diagram of a laser detection field of view of a lidar in the prior art, wherein the a-axis is a horizontal 0-degree field of view line;
  • Fig. 2 is a three-dimensional schematic diagram of a lidar in an embodiment of the application
  • FIG. 3 is an exploded schematic diagram of the lidar in an embodiment of the application.
  • FIG. 4 is a combined three-dimensional schematic diagram of a reflection module, a galvanometer module, and a laser transceiver module in an embodiment of the application;
  • FIG. 5 is a schematic top view of a combination of a reflection module, a galvanometer module, and a laser transceiver module in an embodiment of the application;
  • FIG. 6 is a schematic front view of a combination of a reflection module, a galvanometer module, and a laser transceiver module in an embodiment of the application;
  • FIG. 7 is a schematic diagram of a rear view of a combination of a reflection module, a galvanometer module, and a laser transceiver module in an embodiment of the application;
  • FIG. 8 is a first three-dimensional schematic diagram of the base in an embodiment of the application.
  • Fig. 9 is a partial enlarged schematic diagram of A in Fig. 8.
  • FIG. 10 is a schematic diagram of the laser detection field of view of the lidar in this application, where the abscissa is the horizontal field of view, and the ordinate is the vertical field of view;
  • FIG. 11 is a three-dimensional schematic diagram of a galvanometer module in an embodiment of the application.
  • FIG. 12 is a second three-dimensional schematic diagram of the base in an embodiment of the application.
  • FIG. 13 is a schematic diagram of a car in an embodiment of this application.
  • FIG. 14 is a schematic diagram of a car in another embodiment of the application.
  • Lidar is a radar system that emits a laser beam to detect the position and speed of the target object. Its working principle is that the transmitting module first transmits the outgoing light signal for detection to the target, and then the receiving module receives the reflection from the target object The returned reflected light signal is compared with the outgoing light signal, and the relevant information of the target object can be obtained after processing, such as distance, azimuth, height, speed, posture, and even shape parameters.
  • the laser radar includes a laser transceiving device and a galvanometer device.
  • the light generated by the laser transceiving device is directed to the galvanometer device.
  • the galvanometer device causes the emitted laser light to be directed toward the detection area through a preset path through displacement and deflection.
  • the lidar may have multiple laser transceivers, and each laser transceiver sends laser light to the galvanometer device.
  • the distance and deflection angle of the galvanometer device relative to each laser transceiver will affect the detection field of view corresponding to each laser transceiver, and the laser transceiver at the edge relative to the galvanometer
  • the position is farther, the relative deflection angle is larger, so the detection field of view will move upward, deviating from the horizontal 0 degree detection field of view, as shown in Figure 1, which shows five detection fields of view, of which, located at the edges on both sides
  • the detection field of view shifts upward from the horizontal 0 degree detection field of view alignment a.
  • the horizontal 0 degree detection field of view is the target detection area.
  • the edge transceiver device is Objects in the target area cannot be detected, which will affect the overall detection efficiency of the lidar for the target area.
  • this embodiment provides a laser radar 100.
  • the laser radar 100 has a plurality of laser transceivers 141, and the laser radar 100 in this embodiment can be formed in each laser transceiver 141. Under the premise that the reflected laser field of view meets the requirements, the volume of the lidar 100 is smaller.
  • the laser radar 100 in this embodiment includes a housing, a laser transceiver module 140, and a reflection module 120 (in other embodiments, the reflection module 120 may not be included, and the addition of the reflection module 120 can further reduce The volume of the lidar 100) and the galvanometer module 130.
  • the lidar 100 has an intermediate optical path axis 150 located in the middle of the detection area, and the intermediate optical path axis 150 can be understood as the axis 150 of the lidar 100 pointing in a straight forward direction.
  • the housing includes a base 110, and the base 110 may be a regular plate-shaped member or an irregular structure.
  • the base 110 may be located inside the lidar 100 to provide a carrier for other components of the lidar 100.
  • the base 110 may also be a part of the shell of the lidar 100.
  • the base 110 includes a bearing surface 111 facing the inside of the lidar 100, and the galvanometer module 130 of the lidar 100 is fixed on the bearing surface 111.
  • the bearing surface 111 may be a flat surface or an irregular curved surface, and the specific shape of the bearing surface 111 depends on specific assembly requirements.
  • the bearing surface 111 of the base 110 is provided with an adjusting structure 160 for adjusting the distance between the reflective module 120 and the bearing surface 111.
  • the adjusting structure 160 may be an independent component and connected to the bearing surface 111.
  • the adjusting structure 160 may It is bonded or threaded to the bearing surface 111.
  • the adjustment structure 160 may also be integrally provided with the base 110, that is, the adjustment structure 160 is a convex or concave structure on the bearing surface 111 of the base 110.
  • the reflection module 120 includes a plurality of reflection mirrors 121, and each of the reflection mirrors 121 is used to reflect the light emitted from the laser radar 100 to the galvanometer module 130. As shown in FIGS. 3 to 5, the reflection module 120 in FIG. 5 has seven components used for reflection, but the three reflection components located in the middle and on both sides of the application are used for the detection and scanning of the ROI area, and belong to the ROI area. The detection mirror is therefore not used as the mirror 121 in this embodiment.
  • each reflector 121 there are four reflectors 121 (in other embodiments, the number of reflectors is not limited, and it can be two or more), and each reflector 121 independently receives the emitted light inside the lidar 100 Light, and reflect the emitted light to the galvanometer module 130.
  • each mirror 121 is fixed to the adjustment structure 160 respectively.
  • the adjusting structure 160 is configured so that each mirror 121 mounted on it has a corresponding distance from the bearing surface 111 (for example, as shown in FIG. 6, located on both sides of the middle optical path axis 150 and distanced from the middle optical path axis 150).
  • the mirrors 121 with equal distances have the same height), so that the emitted light reflected by each mirror 121 forms a preset laser detection field of view outward from the lidar 100 (specifically, it may be an optimal laser detection field of view).
  • the distance of each reflector 121 relative to the bearing surface 111 may also be different, so that the emitted light reflected by each reflector 121 is in the laser beam.
  • the laser detection field of view formed outward by the radar 100 is in the best state.
  • the distance between the mirror 121 and the bearing surface 111 is determined based on the part of the mirror 121 closest to the bearing surface 111 as a reference, instead of referring to the position of the mirror 121 closest to the bearing surface 111.
  • the center of the mirror 121 is a reference. Because the adjustment structure 160 can raise the mirror 121 corresponding to the emitted laser light that deviates from the middle optical path axis 150 by a certain distance relative to the bearing surface 111. This structure can offset the influence on the laser detection area caused by its deviation from the middle optical path axis 150.
  • the volume of the laser radar 100 in this embodiment can be made smaller.
  • the adjustment structure 160 When the adjustment structure 160 is integrally provided with the base 110, the adjustment structure 160 can be both bosses on the bearing surface 111, can be both grooves on the bearing surface 111, or part of the bosses on the bearing surface 111. The groove on the bearing surface 111. In the above three cases, the arrangement height of the reflector 121 relative to the base 110 can be adjusted.
  • the adjustment structures 160 are all bosses on the carrying surface 111, the adjustment structure 160 may include a plurality of second bosses 161 provided on the carrying surface 111, and each reflector 121 corresponds to each second boss 161 one by one. connection.
  • each second boss 161 in the direction perpendicular to the bearing surface 111 is equal to the distance from the mirror 121 connected to the bearing surface 111 to the bearing surface 111. That is, the arrangement height of each reflector 121 relative to the base 110 is determined by the size of each second boss 161 in a direction perpendicular to the bearing surface 111.
  • the distance of the corresponding reflector 121 relative to the bearing surface 111 is larger; when the size of the second boss 161 in the direction perpendicular to the bearing surface 111 is larger The smaller the distance between the corresponding mirror 121 and the bearing surface 111 is, the smaller the distance.
  • each reflecting mirror 121 may be arranged around the galvanometer module 130. Specifically, the projections of the centers of the mirrors 121 on the bearing surface 111 may be arranged in a common arc.
  • the adjustment structure 160 can be configured to make the distance between the mirror 121 and the bearing surface 111 that deviate from the middle optical path axis 150 greater. That is, the size of the second boss 161 perpendicular to the bearing surface 111 that deviates from the middle optical path axis 150 is larger.
  • the laser radar 100 includes a laser transceiver module 140, and the laser transceiver module 140 is arranged in a housing of the laser radar 100. As shown in FIG. 5, in this embodiment, the reflection module 120 is arranged on the side of the galvanometer module 130, and the laser transceiver module 140 is arranged on the side of the galvanometer module 130 away from the reflection module 120.
  • the laser transceiving module 140 includes a plurality of laser transceiving devices 141, and the outgoing laser light generated by each laser transceiving device 141 is directed to each mirror 121 in a one-to-one correspondence.
  • the number of laser transceivers 141 can be the same as the number of mirrors 121, and the two have a one-to-one correspondence.
  • the number of laser transceiving devices 141 may be more than the number of reflecting mirrors 121, and the emitted laser light generated by multiple laser transceiving devices 141 is emitted to the same reflecting mirror 121 at the same time.
  • the laser transceiver module 140 and the reflection module 120 are respectively located on both sides of the galvanometer module 130, the integration degree of the laser radar 100 can be improved, and the overall occupied space of the laser radar 100 can be reduced.
  • the laser transceiver 141 can be fixed to the base 110 and other positions in the housing. In order to achieve better integration, each laser transceiver 141 can be fixed to the base 110.
  • each laser transceiver 141 is disposed in the adjusting structure 160, and the adjusting structure 160 is configured so that each laser transceiver 141 installed on it has a corresponding distance from the bearing surface 111. , So that the emitted laser light generated by each laser transceiving device 141 is directed to the corresponding reflector 121 along a preset path.
  • the above structure enables each laser transceiver 141 to correspond to the position of each mirror 121.
  • the part of the adjustment structure 160 that is connected to the laser transceiver 141 can be all bosses on the carrying surface 111, can all be grooves on the carrying surface 111, or part of the bosses on the carrying surface 111 can be part of the carrying surface 111. Groove on face 111. In the above three cases, the arrangement height of the laser transceiver 141 relative to the base 110 can be adjusted.
  • the adjustment structure 160 further includes a plurality of first bosses 162 arranged on the carrying surface 111, and each laser transceiver 141
  • the first bosses 162 are connected in a one-to-one correspondence, and the dimension of each first boss 162 in the direction perpendicular to the carrying surface 111 is equal to the distance from the laser transceiver 141 connected to the carrying surface 111 to the carrying surface 111. That is, the arrangement height of each laser transceiver 141 relative to the base 110 is determined by the size of each first boss 162 in the direction perpendicular to the bearing surface 111.
  • the distance of the corresponding laser transceiver 141 relative to the bearing surface 111 is larger; when the size of the first boss 162 in the direction perpendicular to the bearing surface 111 is larger The smaller the distance, the smaller the distance between the corresponding laser transceiver 141 and the bearing surface 111.
  • a laser transceiver 141 when a laser transceiver 141 emits laser light toward a certain reflector 121, it can be considered that the laser transceiver 141 corresponds to the reflector 121, and the first boss 162 connected to the laser transceiver 141 The second boss 161 connected to the mirror 121 corresponds to the second boss 161.
  • the dimensions perpendicular to the carrying surface 111 of the first boss 162 and the second boss 161 corresponding to each other can be made the same, so that the raised heights of the laser transceiver 141 and the mirror 121 corresponding to each other are the same.
  • the base 110 may be an outer shell of the lidar 100, wherein the bearing surface 111 of the base 110 is a wall surface facing the inside of the lidar 100. At this time, the base 110 further includes an outer wall surface 112 opposite to the carrying surface 111, and the outer wall surface 112 is located outside the lidar 100.
  • the adjusting structure 160 increases the material of the base 110 on the one hand, and also increases the material of the base 110 on the other hand. weight.
  • a plurality of first heat dissipation grooves may be provided on the outer wall surface 112 of the base 110, and each of the first heat dissipation grooves is not shown in the figure.
  • the heat dissipation grooves are uniformly and correspondingly arranged in the orthographic projection area of each first boss 161 on the outer wall surface 112.
  • the first heat dissipation groove can also increase the outer surface area of the lidar 100, so the heat dissipation performance of the lidar 100 can also be improved.
  • the size and depth of the first heat sink depends on specific requirements.
  • Each first boss 161 and each second boss 162 may be correspondingly provided with a first heat dissipation groove or may be correspondingly provided with a plurality of first heat dissipation grooves. And when the material strength of the base 110 is sufficient, the depth of the first heat dissipation groove may be greater than the minimum wall thickness of the base 110.
  • each second heat dissipation groove 113 may also be provided on the outer wall surface 112, and each second heat dissipation groove 113 is uniformly arranged in the orthographic projection area of each second boss 162 on the outer wall surface 112 in a one-to-one correspondence.
  • the first heat dissipation groove can dissipate the reflection module 120, and the second heat dissipation groove 113 can dissipate the laser transceiver module 140.
  • the galvanometer module 130 can be adjusted relative to The height of the laser transceiver module 140 and the reflection module 120.
  • the galvanometer module 130 may include a bracket 131 and a galvanometer device 132, the bracket 131 is connected to the bearing surface 111, and the galvanometer device 132 is disposed on the bracket 131.
  • the bracket 131 may include a relief channel, and the emitted light generated by each laser transceiver 141 passes through the relief channel and is directed to each reflector 121 in a one-to-one correspondence.
  • the bracket 131 is used to raise the height of the galvanometer module 130, and the relief channel in the bracket 131 is used to allow the laser transceiver module 140 to generate emitted light to pass through and be directed toward the reflection module 120.
  • the galvanometer module 130 may further include a light shielding plate 133 which is disposed in the relief channel for shielding the light reflected by the reflection module 120 to the laser transceiver module 140.
  • the shading plate 133 may be a separate component and connected to the bracket 131, and the shading plate 133 may also be integrally formed with the bracket 131.
  • the light shielding plate 133 can prevent the stray light reflected by the reflection module 120 from returning to the laser transceiver 141, thereby affecting the detection accuracy.
  • the light shielding plate 133 may include a plurality of relief holes 1331, and the emitted light generated by each laser transceiver 141 correspondingly passes through one of the relief holes 1331 and is directed to the reflector 121 . That is, the number of the relief holes 1331 corresponds to the number of the laser transceivers 141 one-to-one, and when the number of the laser transceivers 141 is the same as the number of the mirror 121, the laser transceiver 141, the mirror 121, and the relief hole 1331 are three The numbers are the same. The size of the relief hole 1331 depends on the actual demand, and will not be repeated here.
  • the second aspect of the present application also provides an automobile 10, the automobile 10 includes the lidar 100 in any of the above embodiments, specifically, the automobile 10 further includes the body of the automobile 10,
  • the lidar 100 is installed outside the body of the automobile 10 or embedded in the body of the automobile 10.
  • the lidar 100 is preferably installed on the roof of the body of the automobile 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达(100),包括:基座(110),包括承载面(111),激光雷达的振镜模组(130)固定于承载面;调节结构(160),位于承载面;激光收发模组(140),包括多个激光收发装置(141),各激光收发装置均分别固定于调节结构,每个激光收发装置均可分别产生射向振镜模组的出射激光;其中,调节结构配置成使安装于其上的每个激光收发装置相对承载面均分别具有对应的距离,以使得每个激光收发装置产生的出射光线在激光雷达外形成预设的激光探测视场。为了使每个反射镜对应的激光探测视场符合要求,并没有调整每个反射镜(121)相对于振镜的距离,而是通过调节结构对每个激光收发装置相对于基座的承载面的距离与角度进行调整,从而降低激光雷达整体的占用空间。

Description

激光雷达及汽车 技术领域
本申请涉及激光探测的技术领域,尤其涉及一种激光雷达及汽车。
背景技术
激光雷达是以发射激光光束来探测目标物体的位置、速度等特征量的雷达系统,其工作原理是发射模组先向目标发射用于探测的出射光信号,然后接收模组接收从目标物体反射回来的反射光信号,将反射光信号与出射光信号进行比较,处理后可获得目标物体的有关信息,例如距离、方位、高度、速度、姿态、甚至形状等参数。
当激光雷达具有多个激光收发装置时,各激光收发装置相对于振镜装置的距离以及偏转角度将影响每个反射装置对应的探测视场,为了使探测视场符合要求,需将与振镜装置的镜面偏转角度较大的激光收发装置调整至与振镜装置更远的距离。但这种结构设置将增大激光雷达的整体体积。
发明内容
本申请提供一种激光雷达及汽车,能够减小激光雷达的占用空间。
根据本申请的一个方面,提供了一种激光雷达,包括:
基座,包括承载面,激光雷达的振镜模组固定于承载面;
调节结构,位于承载面;
激光收发模组,包括多个激光收发装置,各激光收发装置均分别固定于调节结构,每个激光收发装置均可分别产生射向振镜模组的出射激光;
其中,调节结构配置成使安装于其上的每个激光收发装置相对承载面均分别具有对应的距离,以使得每个激光收发装置产生的出射光线在激光雷达外形成预设的激光探测视场。
根据一些实施例,调节结构包括多个设置于承载面上的第一凸台,各激光收发装置均一一对应与各第一凸台连接,每个第一凸台的沿垂直于承载面方向的尺寸均等于与其连接的激光收发装置到承载面的距离;
各第一凸台与基座一体设置。
根据一些实施例,激光雷达还包括反射模组,反射模组与激光收发模组分别布置于振镜模组的两侧,且反射模组面向振镜模组的振镜面;
反射模组包括多个反射镜,且各反射镜配置成可一一对应将各激光收发模组产生的反射激光反射至振镜面。
根据一些实施例,各反射镜均分别设置于调节结构,调节结构配置成使安装于其上的每个反射镜相对承载面均分别具有对应的距离,以使得每个反射镜反射的出射激光以预设路径射向振镜面。
根据一些实施例,调节结构还包括多个设置于承载面上的第二凸台,各反射镜均一一对应与各第二凸台连接,每个第二凸台的沿垂直于承载面方向的尺寸均等于与其连接的反射镜到承载面的距离;
各第二凸台与基座一体设置。
根据一些实施例,各反射镜绕振镜面布置;
激光雷达具有位于探测区域中部的中间光路轴线,调节结构配置成使越偏离中间光路轴线的反射镜相对于承载面的距离越大。
根据一些实施例,基座还包括与承载面相对的外壁面,外壁面位于激光雷达外,外壁面上设置有多个第一散热槽,各第一散热槽均一一对应布置于各第一凸台在外壁面上的正投影区域内;或
基座还包括与承载面相对的外壁面,外壁面位于激光雷达外,外壁面上设置有多个第二散热槽,各第二散热槽均一一对应布置于各第二凸台在外壁面上的正投影区域内。
根据一些实施例,振镜模组包括支架以及振镜装置,支架连接于承载面,振镜装置设置于支架;
支架包括让位通道,各激光收发装置产生的出射光线穿过让位通道而一一对应射向各反射镜。
根据一些实施例,振镜模组还包括遮光板,遮光板设置于让位通道,以用于遮挡由反射模组反射至激光收发模组的光线;
遮光板包括多个让位孔,由每个激光收发装置产生的出射光线对应穿过一个让位孔而射向反射镜。
本申请的第二方面还提供了一种汽车,
包括上述任一项的激光雷达;
汽车本体,激光雷达安装于汽车本体的外部或嵌入于汽车本体内。
本申请提供一种激光雷达,其包括基座、调节结构、激光收发模组以及振镜模组。本申请中,为了使每个激光收发装置对应的激光探测视场符合要求,并没有调整每个激光收发装置相对于振镜的距离,而是通过调节结构对每个激光收发装置相对于基座的承载面的距离与角度进行调整。这种结构设置可以通过设置调整结构高度来调整激光收发装置相对于基座的承载面的距离,进而调整振镜装置相对于激光收发装置的距离以及偏转角度,从而在调整边缘反射装置对应的探测视场偏移,保证激光雷达整体对于目标探测区域的探测效率,同时避免因调整探测视场而被迫增大激光雷达的体积,从而可以降低激光雷达整体的占用空间。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的激光雷达的激光探测视场示意图,其中,a轴为水平0度视场准线;
图2为本申请一种实施例中的激光雷达的立体示意图;
图3为本申请一种实施例中的激光雷达的爆炸示意图;
图4为本申请一种实施例中的反射模组、振镜模组以及激光收发模组的组合立体示意图;
图5为本申请一种实施例中的反射模组、振镜模组以及激光收发模组的组合俯视示意图;
图6为本申请一种实施例中的反射模组、振镜模组以及激光收发模组的组合主视示意图;
图7为本申请一种实施例中的反射模组、振镜模组以及激光收发模组的组合后视示意图;
图8为本申请一种实施例中的基座的第一立体示意图;
图9为图8中A处的局部放大示意图;
图10为本申请中的激光雷达的激光探测视场示意图,其中,横坐标为水平视场角,纵坐标为竖直视场角;
图11为本申请一种实施例中的振镜模组的立体示意图;
图12为本申请一种实施例中的基座的第二立体示意图;
图13为本申请一种实施例中的汽车示意图;
图14为本申请另一种实施例中的汽车示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
激光雷达是以发射激光光束来探测目标物体的位置、速度等特征量的雷达系统,其工作原理是发射模组先向目标发射用于探测的出射光信号,然后接收模组接收从目标物体反射回来的反射光信号,将反射光信号与出射光信号进行比较,处理后可获得目标物体的有关信息,例如距离、方位、高度、速度、姿态、甚至形状等参数。
激光雷达包括激光收发装置以及振镜装置,激光收发装置产生的光线射向振镜装置,振镜装置通过位移以及偏转使出射激光以预设路径射向探测区域。激光雷达可以具有多个激光收发装置,每个激光收发装置均分别对应将激光射向振镜装置。
当激光雷达具有多个激光收发装置时,振镜装置相对于各激光收发装置的距离以及偏转角度将影响每个激光收发装置对应的探测视场,而位于边缘的激光收发装置相对于振镜的位置较远,相对的偏转角度较大所以产生的探测视场会向上移,偏离水平0度探测视场,如图1所示,其示出了五个探测视场,其中,位于两边的边缘探测视场向上偏移水平0度探测视场准线a,其中可以理解的是,水平0度探测视场为目标探测区域,当边缘探测视场偏离水平探测视场时,则边缘收发装置则探测不到目标区域物体,这将影响激光雷达整体对于目标区域的探测效率。
如图2至图12所示,本实施例提供了一种激光雷达100,该激光雷达100 具有多个激光收发装置141,且本实施例中的激光雷达100可以在每个激光收发装置141形成的反射激光视场符合要求的前提下使激光雷达100的体积更小。具体地,本实施例中的激光雷达100包括壳体、激光收发模组140、反射模组120(在别的实施例中可以不包括反射模组120,反射模组120的加入能够进一步减小激光雷达100的体积)以及振镜模组130。需要注意的是,为了描述方便,本实施例中,定义激光雷达100具有位于探测区域中部的中间光路轴线150,中间光路轴线150可以理解为激光雷达100的指向正前方方向的轴线150。
壳体包括基座110,基座110可以为规则的板状件,也可以为不规则结构。基座110可以位于激光雷达100内部,为激光雷达100的其他部件提供载体。基座110也可以为激光雷达100的外壳的一部分。基座110包括面向激光雷达100内部的承载面111,激光雷达100的振镜模组130固定于承载面111。承载面111可以为平面也可以为不规则的曲面,承载面111的具体形状视具体装配需求而定。
基座110的承载面111上设置有用于调节反射模组120相对于承载面111的距离的调节结构160,调节结构160可以为独立的部件,并且与承载面111进行连接,例如调节结构160可以与承载面111粘接或螺纹连接。调节结构160亦可以与基座110一体设置,即调节结构160为基座110的承载面111上的凸起或凹陷的结构。
反射模组120包括多个反射镜121,各反射镜121均分别用于将激光雷达100内的出射光线反射至振镜模组130。如图3至图5所示,图5中的反射模组120具有七个用于反射的部件,但本申请中位于中间以及两边的三个反射部件用于ROI区域的探测扫描,属于ROI区域探测反射镜,因此不作为本实施例中的反射镜121。
本实施例中具有四个反射镜121(在其他实施例中,反射镜的数量不做限制,其可以为两个或两个以上),每个反射镜121独立接收位于激光雷达100内部的出射光线,并使出射光线反射至振镜模组130。特别地,各反射镜121均分别固定于调节结构160。其中,调节结构160配置成使安装于其上的每个反射镜121相对承载面111均分别具有对应的距离(例如,如图6所示,位于中间光路轴线150两侧且距离中间光路轴线150距离相等的反射镜121的高度相同),以使得每个反射镜121反射的出射光线在激光雷达100向外形成预设的激光探测视场(具体可以为最优的激光探测视场)。在其他可选的实施例中,当反射镜121安装于调节结构160后,各反射镜121相对于承载面111的距离也可以均不相同,从而使得每个反射镜121反射的出射光线在激光雷达100向外形成的激光探测视场均处于最佳状态。
需要注意的是,本实施例中,当调节结构160全部突出于承载面111时,反射镜121到承载面111的距离判定以反射镜121的最靠近承载面111的部位为参照,而不是以反射镜121的中心为参照。由于调节结构160可以将越偏离中间光路轴线150的出射激光对应的反射镜121相对于承载面111抬高一定距离。这种结构可以抵消其偏离中间光路轴线150所带来的对激光探测区域的影响。由于将反射镜121抬高后,反射镜121占用的空间为原本多余出来的空间,故这种结构设置未额外占用体积,使得激光雷达100的整体体积不变,从而相较于现有技术中的激光雷达而言,本实施例中的激光雷达100的体积可以做得更小。
当调节结构160与基座110一体设置时,调节结构160可以均为承载面111上的凸台、可以均为承载面111上的凹槽、亦可以一部分为承载面111上的凸台一部分为承载面111上的凹槽。上述三种情况均可以调节反射镜121相对于基座110的布置高度。当调节结构160均为承载面111上的凸台时,调节 结构160可以包括多个设置于承载面111上的第二凸台161,各反射镜121均一一对应与各第二凸台161连接。每个第二凸台161的沿垂直于承载面111方向的尺寸等于与其连接的反射镜121到承载面111的距离。即每个反射镜121相对于基座110的布置高度由各第二凸台161沿垂直于承载面111方向的尺寸决定。当第二凸台161沿垂直于承载面111方向的尺寸越大时,对应的反射镜121相对于承载面111的距离越大;当第二凸台161沿垂直于承载面111方向的尺寸越小时,对应的反射镜121相对于承载面111的距离越小。
为了便于多个反射镜121的位置布置,各反射镜121可以绕振镜模组130布置。具体地,各反射镜121的中心在承载面111上的投影可以共弧线布置。当各反射镜121按上述结构布置时,为了获得最优的探测视场,调节结构160可以配置成使越偏离中间光路轴线150的反射镜121相对于承载面111的距离越大。即越偏离中间光路轴线150的第二凸台161的垂直于承载面111的尺寸越大。这样可以拉低位于远离中间光路轴线150的反射镜121对应的视场偏离中心0度视场准线的高度,具体探测视场效果如图10,从而提高处于边缘的探测模组的探测效率,进而提高激光雷达整体的探测效率。
激光雷达100包括激光收发模组140,激光收发模组140布置于激光雷达100的壳体内。如图5所示,本实施例中,反射模组120布置于振镜模组130的振镜面的一侧,激光收发模组140布置于振镜模组130背离反射模组120的一侧。激光收发模组140包括多个激光收发装置141,且各激光收发装置141产生的各出射激光一一对应射向各反射镜121。激光收发装置141的数量可以与反射镜121的数量一致,且两者一一对应。当然,其他实施例中,激光收发装置141的数量可以多于反射镜121的数量,且产生多个激光收发装置141产生的出射激光同时射向同一个反射镜121。当激光收发模组140与反射模组120分别位于振镜模组130的两侧时,可以提高激光雷达100的集成度,减小 激光雷达100整体的占用空间。
激光收发装置141可以固定于基座110和壳体内的其他位置。而为了实现较佳的一体性,各激光收发装置141可以固定于基座110。当激光收发装置141固定于基座110时,各激光收发装置141设置于调节结构160,调节结构160配置成使安装于其上的每个激光收发装置141相对承载面111均分别具有对应的距离,以使得每个激光收发装置141产生的出射激光以预设路径射向对应的反射镜121。上述结构能够使得每个激光收发装置141与每个反射镜121的位置对应。
同样地,调节结构160的连接激光收发装置141的部分可以均为承载面111上的凸台、可以均为承载面111上的凹槽、亦可以一部分为承载面111上的凸台一部分为承载面111上的凹槽。上述三种情况均可以调节激光收发装置141的相对于基座110的布置高度。当调节结构160的连接激光收发装置141的部分均为设置与承载面111上的凸台时,调节结构160还包括多个设置于承载面111上的第一凸台162,各激光收发装置141均一一对应与各第一凸台162连接,每个第一凸台162的沿垂直于承载面111方向的尺寸等于与其连接的激光收发装置141到承载面111的距离。即每个激光收发装置141相对于基座110的布置高度由各第一凸台162沿垂直于承载面111方向的尺寸决定。当第一凸台162沿垂直于承载面111方向的尺寸越大时,对应的激光收发装置141相对于承载面111的距离越大;当第一凸台162沿垂直于承载面111方向的尺寸越小时,对应的激光收发装置141相对于承载面111的距离越小。
在一种实施例中,当某个激光收发装置141朝向某个反射镜121发射激光时,可以认为此激光收发装置141与此反射镜121对应、此激光收发装置141连接的第一凸台162与此反射镜121连接的第二凸台161对应。特别地,可以使彼此对应的第一凸台162与第二凸台161的垂直于承载面111的尺寸相同, 以使得彼此对应的激光收发装置141与反射镜121的被抬高的高度相同。
一种实施例中,基座110可以为激光雷达100的外壳体,其中,基座110的承载面111为其面向激光雷达100的内部的壁面。此时,基座110还包括与承载面111相对的外壁面112,外壁面112位于激光雷达100外。
当调节结构160与基座110一体设置时,由于调节结构160为承载面111上的凸起,此时调节结构160一方面增加了基座110的材料,另一方面也增加了基座110的重量。为了既减少基座110的材料又降低基座110的重量,本实施例中,基座110的外壁面112上可以设置有多个第一散热槽(图中未示出),且各第一散热槽均一一对应布置于各第一凸台161在外壁面112上的正投影区域内。第一散热槽还能够增加激光雷达100的外表面积大小,故还可以提升激光雷达100的散热性能。第一散热槽的大小以及深度视具体需求而定。每个第一凸台161以及每个第二凸台162可以对应设置有一个第一散热槽也可以对应设置有多个第一散热槽。且当基座110的材料强度足够时,第一散热槽的深度可以大于基座110的最小壁厚。同样地,外壁面112上还可以设置有多个第二散热槽113,各第二散热槽113均一一对应布置于各第二凸台162在外壁面112上的正投影区域内。第一散热槽可以对反射模组120进行散热,第二散热槽113可以对激光收发模组140进行散热。
当激光收发模组140以及反射模组120分别位于振镜模组130的两侧时,为了使激光收发模组140产生的出射光线射向反射模组120,可以调节振镜模组130相对于激光收发模组140以及反射模组120高度。一种实施例中,如图11所示,振镜模组130可以包括支架131以及振镜装置132,支架131连接于承载面111,振镜装置132设置于支架131。支架131可以包括让位通道,各激光收发装置141产生的出射光线穿过让位通道而一一对应射向各反射镜121。支架131用于抬高振镜模组130的高度,而支架131内的让位通道用于使激光 收发模组140产生出射光线穿过而射向反射模组120。
具体地,振镜模组130还可以包括遮光板133,遮光板133设置于让位通道,以用于遮挡由反射模组120反射至激光收发模组140的光线。遮光板133可以为单独的部件,且与支架131连接,遮光板133也可以与支架131一体成型。遮光板133能够防止反射模组120反射的杂光返回至激光收发装置141,从而影响探测精度。当反射模组120具有多个反射镜121时,遮光板133可以包括多个让位孔1331,由每个激光收发装置141产生的出射光线对应穿过一个让位孔1331而射向反射镜121。即让位孔1331的数量与激光收发装置141的数量一一对应,而当激光收发装置141的数量与反射镜121的数量一致时,激光收发装置141、反射镜121以及让位孔1331三者的数量均一致。让位孔1331的大小使实际需求而定,这里不做赘述。
如图12至图14所示,本申请的第二方面还提供了一种汽车10,该汽车10包括上述任一实施例中的激光雷达100、具体地,该汽车10还包括汽车10本体,激光雷达100安装于汽车10本体的外部或嵌入于汽车10本体内。当激光雷达100设置与汽车10本体外时,激光雷达100优选为设置与汽车10本体的车顶。
本实施例的附图中相同或相似的标号对应相同或相似的部件;在本申请的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请 的保护范围之内。

Claims (10)

  1. 一种激光雷达,其特征在于,包括:
    基座,包括承载面,所述激光雷达的振镜模组固定于所述承载面;
    调节结构,位于所述承载面;
    激光收发模组,包括多个激光收发装置,各所述激光收发装置均分别固定于所述调节结构,每个所述激光收发装置均可分别产生射向所述振镜模组的出射激光;
    其中,所述调节结构配置成使安装于其上的每个所述激光收发装置相对所述承载面均分别具有对应的距离,以使得每个所述激光收发装置产生的所述出射光线在所述激光雷达外形成预设的激光探测视场。
  2. 如权利要求1所述的激光雷达,其特征在于,
    所述调节结构包括多个设置于所述承载面上的第一凸台,各所述激光收发装置均一一对应与各所述第一凸台连接,每个所述第一凸台的沿垂直于所述承载面方向的尺寸均等于与其连接的所述激光收发装置到所述承载面的距离;
    各所述第一凸台与所述基座一体设置。
  3. 如权利要求2所述的激光雷达,其特征在于,
    所述激光雷达还包括反射模组,所述反射模组与所述激光收发模组分别布置于所述振镜模组的两侧,且所述反射模组面向所述振镜模组的振镜面;
    所述反射模组包括多个反射镜,且各所述反射镜配置成可一一对应将各所述激光收发模组产生的反射激光反射至所述振镜面。
  4. 如权利要求3所述的激光雷达,其特征在于,
    各所述反射镜均分别设置于所述调节结构,所述调节结构配置成使安装于其上的每个所述反射镜相对所述承载面均分别具有对应的距离,以使得每个所述反射镜反射的所述出射激光以预设路径射向所述振镜面。
  5. 如权利要求4所述的激光雷达,其特征在于,
    所述调节结构还包括多个设置于所述承载面上的第二凸台,各所述反射镜均一一对应与各所述第二凸台连接,每个所述第二凸台的沿垂直于所述承载面方向的尺寸均等于与其连接的所述反射镜到所述承载面的距离;
    各所述第二凸台与所述基座一体设置。
  6. 如权利要求5所述的激光雷达,其特征在于,
    各所述反射镜绕所述振镜面布置;
    所述激光雷达具有位于探测区域中部的中间光路轴线,所述调节结构配置成使越偏离所述中间光路轴线的所述反射镜相对于所述承载面的距离越大。
  7. 如权利要求6所述的激光雷达,其特征在于,
    所述基座还包括与所述承载面相对的外壁面,所述外壁面位于所述激光雷达外,所述外壁面上设置有多个第一散热槽,各所述第一散热槽均一一对应布置于各所述第一凸台在所述外壁面上的正投影区域内;或
    所述基座还包括与所述承载面相对的外壁面,所述外壁面位于所述激光雷达外,所述外壁面上设置有多个第二散热槽,各所述第二散热槽均一一对应布置于各所述第二凸台在所述外壁面上的正投影区域内。
  8. 如权利要求4所述的激光雷达,其特征在于,
    所述振镜模组包括支架以及振镜装置,所述支架连接于所述承载面,所述振镜装置设置于所述支架;
    所述支架包括让位通道,各所述激光收发装置产生的所述出射光线穿过所述让位通道而一一对应射向各所述反射镜。
  9. 如权利要求8所述的激光雷达,其特征在于,
    所述振镜模组还包括遮光板,所述遮光板设置于所述让位通道,以用于遮挡由所述反射模组反射至所述激光收发模组的光线;
    所述遮光板包括多个让位孔,由每个所述激光收发装置产生的所述出射光线对应穿过一个所述让位孔而射向所述反射镜。
  10. 一种汽车,其特征在于,
    包括权利要求1-9任一项所述的激光雷达;
    汽车本体,所述激光雷达安装于所述汽车本体的外部或嵌入于所述汽车本体内。
PCT/CN2020/070216 2020-01-03 2020-01-03 激光雷达及汽车 WO2021134774A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/070216 WO2021134774A1 (zh) 2020-01-03 2020-01-03 激光雷达及汽车
CN202310915280.8A CN116859414A (zh) 2020-01-03 2020-01-03 激光雷达及汽车
CN202080005438.2A CN113424080B (zh) 2020-01-03 2020-01-03 激光雷达及汽车
US17/855,926 US11885913B2 (en) 2020-01-03 2022-07-01 LiDAR and automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070216 WO2021134774A1 (zh) 2020-01-03 2020-01-03 激光雷达及汽车

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/855,926 Continuation US11885913B2 (en) 2020-01-03 2022-07-01 LiDAR and automobile

Publications (1)

Publication Number Publication Date
WO2021134774A1 true WO2021134774A1 (zh) 2021-07-08

Family

ID=76686264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070216 WO2021134774A1 (zh) 2020-01-03 2020-01-03 激光雷达及汽车

Country Status (3)

Country Link
US (1) US11885913B2 (zh)
CN (2) CN113424080B (zh)
WO (1) WO2021134774A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060092004A1 (en) * 2002-10-15 2006-05-04 Albrecht Klotz Optical sensor
DE102005007945A1 (de) * 2005-02-22 2006-08-24 Adc Automotive Distance Control Systems Gmbh Optische Linse
CN109991586A (zh) * 2019-03-29 2019-07-09 深圳市速腾聚创科技有限公司 激光雷达装置
CN110488250A (zh) * 2019-07-02 2019-11-22 上海蔚来汽车有限公司 用于激光雷达的高重频激光器、编码激光收发装置及汽车
CN110632618A (zh) * 2019-11-22 2019-12-31 深圳市速腾聚创科技有限公司 激光雷达及其控制方法以及自动驾驶装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144341A1 (ja) * 2011-04-20 2012-10-26 三洋電機株式会社 レーザレーダ
US10527726B2 (en) * 2015-07-02 2020-01-07 Texas Instruments Incorporated Methods and apparatus for LIDAR with DMD
DE102015215833A1 (de) * 2015-08-19 2017-02-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multiaperturabbildungsvorrichtung mit Optiksubstrat
WO2020098771A1 (zh) * 2018-11-16 2020-05-22 上海禾赛光电科技有限公司 一种激光雷达系统
WO2020135802A1 (zh) * 2018-12-29 2020-07-02 华为技术有限公司 一种激光测量模组和激光雷达
CN110045498A (zh) * 2019-04-01 2019-07-23 深圳市速腾聚创科技有限公司 光扫描装置和激光雷达
US12013493B2 (en) * 2019-04-26 2024-06-18 Continental Autonomous Mobility US, LLC Lidar system including light emitter for multiple receiving units
CN110346811B (zh) * 2019-08-08 2022-05-06 上海禾赛科技有限公司 激光雷达及其探测装置
CN110398724A (zh) * 2019-08-26 2019-11-01 上海禾赛光电科技有限公司 激光雷达

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060092004A1 (en) * 2002-10-15 2006-05-04 Albrecht Klotz Optical sensor
DE102005007945A1 (de) * 2005-02-22 2006-08-24 Adc Automotive Distance Control Systems Gmbh Optische Linse
CN109991586A (zh) * 2019-03-29 2019-07-09 深圳市速腾聚创科技有限公司 激光雷达装置
CN110488250A (zh) * 2019-07-02 2019-11-22 上海蔚来汽车有限公司 用于激光雷达的高重频激光器、编码激光收发装置及汽车
CN110632618A (zh) * 2019-11-22 2019-12-31 深圳市速腾聚创科技有限公司 激光雷达及其控制方法以及自动驾驶装置

Also Published As

Publication number Publication date
US11885913B2 (en) 2024-01-30
CN116859414A (zh) 2023-10-10
CN113424080B (zh) 2023-08-29
CN113424080A (zh) 2021-09-21
US20220334230A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
US11874400B2 (en) Lidar device, cruise assist system, and vehicle
WO2020200206A1 (zh) 光扫描装置和激光雷达
CN111381239A (zh) 一种激光测量模组和激光雷达
US11867820B2 (en) Mirror adjusting device, reflecting assembly, LiDAR, and intelligent driving apparatus
JP6414349B1 (ja) 光放射装置、物体情報検知装置、光路調整方法、物体情報検知方法、及び、光変調ユニット
US20230145710A1 (en) Laser receiving device, lidar, and intelligent induction apparatus
US20210199773A1 (en) Kinematic mount for active galvo mirror alignment with multi-degree-of-freedom
WO2021134774A1 (zh) 激光雷达及汽车
CN210347918U (zh) 一种激光发射装置以及激光雷达系统
US20230100657A1 (en) Lidar
WO2019146646A1 (ja) ライダー装置
CN215526099U (zh) 光扫描装置及激光雷达
US20200348400A1 (en) Lidar device
WO2020052300A1 (zh) 投影模组、结构光三维成像装置和电子设备
CN219122402U (zh) 激光雷达
WO2024045520A1 (zh) 激光雷达
CN113567957B (zh) 激光雷达的发射装置及激光雷达
CN219957854U (zh) 光学系统、激光雷达及交通工具
CN212647233U (zh) 光投射器、相机模组和电子设备
US20240310486A1 (en) Lidar, autonomous driving system, and mobile device
JP7176687B2 (ja) 車両用表示装置
CN210347921U (zh) 一种激光发射装置以及激光雷达系统
KR20220011291A (ko) 바이코엑시얼 구조를 갖는 스캐닝 라이다
CN115453493A (zh) 光扫描装置及激光雷达
JP2021063696A (ja) 物体情報検知装置及び物体情報検知方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20909660

Country of ref document: EP

Kind code of ref document: A1