WO2021134749A1 - 一种交错结构环偶极子芯片检测石油的方法 - Google Patents

一种交错结构环偶极子芯片检测石油的方法 Download PDF

Info

Publication number
WO2021134749A1
WO2021134749A1 PCT/CN2020/070089 CN2020070089W WO2021134749A1 WO 2021134749 A1 WO2021134749 A1 WO 2021134749A1 CN 2020070089 W CN2020070089 W CN 2020070089W WO 2021134749 A1 WO2021134749 A1 WO 2021134749A1
Authority
WO
WIPO (PCT)
Prior art keywords
staggered
chip
spectrum
crude oil
terahertz
Prior art date
Application number
PCT/CN2020/070089
Other languages
English (en)
French (fr)
Inventor
陈麟
朱亦鸣
倪争技
庄松林
Original Assignee
上海理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海理工大学 filed Critical 上海理工大学
Priority to US17/271,570 priority Critical patent/US11346778B1/en
Priority to PCT/CN2020/070089 priority patent/WO2021134749A1/zh
Publication of WO2021134749A1 publication Critical patent/WO2021134749A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Raw oil, drilling fluid or polyphasic mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]

Definitions

  • the invention belongs to the field of terahertz ring dipole chip material detection, and specifically relates to a method for detecting petroleum with a staggered structure ring dipole chip.
  • the terahertz plasma enhanced resonance effect (such as Fano resonance) to achieve high-sensitivity microbiological detection.
  • This method solves the limitations of ordinary terahertz detection, such as large sample volume and unstable absorption spectrum intensity.
  • the signal-to-noise ratio caused by weak radiation power is low.
  • the transmission peak corresponding to the abnormal transmission phenomenon caused by the surface plasmon is usually shown as an asymmetric line, called the Fano line.
  • the non-resonant channel corresponds to the dipole oscillation caused by the interaction of the incident light and the bright state mode, and the resonance channel is related to the dark state generated by the surface plasmon.
  • Fano resonance can enhance the spectral selectivity of the electromagnetic field near it, and produce narrow-band spectral characteristics, thereby greatly enhancing the interaction of light with substances close to (or in direct contact) on the surface. Therefore, even weak disturbances in the plasma electromagnetic environment can significantly change its scattering characteristics. For absorbing media, field enhancement can lead to a broadening and reduction in the amplitude of the Rayleigh characteristic associated with Fano resonance. But its disadvantage is that in addition to drifting with the reaction process, Fano's own resonance peaks are distorted, which is caused by the asymmetry of the Fano oscillation, and the Fano oscillation becomes longer with the detection time, and the signal itself is unstable. Therefore, based on the above-mentioned Fano work, it is necessary to further find a more stable resonance mode, which has become a key problem to be solved urgently for such high-Q microcavity chips.
  • the present invention is made to solve the above-mentioned problems, and aims to provide a method for detecting petroleum with a staggered ring dipole chip.
  • the present invention provides a method for detecting petroleum with a staggered structure ring dipole chip, which has such characteristics and includes the following steps: step one, the detection environment of the terahertz spectrum analysis system is dried and pretreated, and the measurement under dry conditions Use a pipette to transfer the crude oil sample and spread it evenly on the super-surface of the interlaced structure ring dipole chip; step three, apply the interlaced structure ring couple to the crude oil sample
  • the pole chip is placed in the dried terahertz spectrum analysis system, and the terahertz pulse signal of the terahertz spectrum analysis system is vertically irradiated on the chip for detection to obtain the detection spectrum of the crude oil sample; step four, the detection spectrum minus the reference spectrum
  • the staggered ring dipole chip is a terahertz chip designed based on the ring dipole effect.
  • the metasurface of the staggered ring dipole chip is a staggered structure, and the staggered structure is split by two circular shapes.
  • Two circular split resonant rings have a certain overlap area. The center of one circular split resonant ring is on the left and its notch is on the right, and the center of the other circular split resonant ring is on the right and its notch. on the left.
  • the method for detecting petroleum with a staggered structure ring dipole chip may also have the characteristics that the inner radius of the circular split resonant ring is 35 ⁇ m, the outer radius is 40 ⁇ m, and the size of the gap is 4 ⁇ m.
  • the terahertz spectrum analysis system is the Advantech 7400 system, and the detection method is projection detection.
  • the method for detecting petroleum with a staggered structure ring dipole chip provided by the present invention, it may also have the following characteristics: wherein the volume of the crude oil sample is 1 ⁇ L-10 ⁇ L, and the thickness of the crude oil sample smeared on the staggered ring dipole chip It is 1 ⁇ m ⁇ 3 ⁇ m.
  • the method for detecting petroleum with a staggered structure ring dipole chip provided by the present invention, it may also have the following characteristics: wherein the volume of the crude oil sample is 2 ⁇ L, and the thickness of the crude oil sample smeared on the staggered ring dipole chip is 1 ⁇ m .
  • the method for detecting petroleum with a staggered structure ring dipole chip because the method uses a staggered ring dipole chip and combines the terahertz time-domain spectroscopy detection technology, the method can realize the detection of crude oil samples. Spectral detection. Moreover, because the interlaced structure ring dipole chip used is a terahertz chip designed based on the ring dipole effect, it can effectively improve the unstable spectrum caused by the general metamaterial excitation such as Fano resonance, so the detection of this method better result.
  • the staggered ring dipole chip in the present invention has a small volume and can greatly improve the portability of detection.
  • the detection time is short, and rapid, accurate, and real-time spectroscopic detection with trace amounts can be realized.
  • FIG. 1 is a schematic diagram of the super-surface structure of a staggered ring dipole chip in the first embodiment of the present invention
  • FIG. 2 is a field distribution diagram of the Toroidal effect of a staggered ring dipole chip in the first embodiment of the present invention
  • FIG. 3 is a schematic diagram of the detection process of the terahertz spectrum analysis system in the first embodiment of the present invention.
  • Fig. 4 is a transmission spectrum of four crude oils from different producing areas in the second embodiment of the present invention.
  • This implementation provides a method for detecting petroleum with a staggered ring dipole chip.
  • the method includes the following steps:
  • Step one is to dry and preprocess the detection environment of the terahertz spectrum analysis system to eliminate the influence of air water molecules on the experiment, and measure the spectrum under dry conditions, and use this spectrum as a reference spectrum.
  • the terahertz spectrum analysis system is the Advantech 7400 system, and its detection method is projection detection.
  • step 1 the process of dry pretreatment is: before the experiment, the water vapor inside the system is removed through the dry air filter unit, and real-time monitoring with a hygrometer until the humidity is lower than 3%.
  • Step two take a 1cm ⁇ 1cm ring dipole chip with a staggered structure, transfer the crude oil sample with a volume of 1 ⁇ L ⁇ 10 ⁇ L with a pipette and evenly smear it on the super-surface of the staggered ring dipole chip with a staggered structure. one side.
  • the thickness of the crude oil sample smeared on the staggered ring dipole chip is 1 ⁇ m to 3 ⁇ m, and the smaller the thickness, the better, in order to facilitate the transmission of the terahertz pulse signal.
  • the metasurface of the ring dipole chip with a staggered structure used in this embodiment is designed based on the ring dipole effect.
  • the ring dipole effect (Toroidal effect) refers to the resonance response caused by the current flowing along the center line on a doughnut-like torus, that is, the magnetic dipoles connect end to end to form a vortex distribution. Its advantage is that it breaks the symmetry of space and time inversion at the same time, and has many interesting characteristics, such as magnetoelectric effect, dichroism and non-reciprocal refraction, etc. Its unique current distribution and vortex field distribution can usually be achieved Very strong near field local area. Utilizing the unique electromagnetic characteristics of ring dipoles, such as high Q value, sensitivity to medium and environment, and polarization independence, the sensor device with ultra-high sensitivity and stability in this embodiment is designed-staggered Structure ring dipole chip.
  • FIG. 1 is a schematic diagram of the super-surface structure of a staggered ring dipole chip in the first embodiment of the present invention.
  • Fig. 2 is a field distribution diagram of Toroidal effect of a staggered ring dipole chip in the first embodiment of the present invention.
  • the metasurface of the ring dipole chip with a staggered structure in this embodiment is a staggered structure.
  • the staggered structure is composed of two circular split resonant rings, and the two circular split resonant rings have a certain overlap. area.
  • the center of a circular split resonant ring is on the left and its notch is on the right
  • the center of the other circular split resonant ring is on the right and its notch is on the left.
  • the inner radius of the circular split resonance ring is 35 ⁇ m
  • the outer radius is 40 ⁇ m
  • the size of the gap is 4 ⁇ m.
  • Figure 2(A) shows the electromagnetic intensity
  • Figure 2(B) shows the surface current distribution
  • Figure 2(C) shows the magnetic field strength
  • Figure 2(D) shows the magnetic field vector form.
  • Figures 2(A) to 2(D) respectively show the surface electric field distribution, surface current distribution, magnetic field distribution, and the vector distribution of the magnetic cross section of the metasurface of the staggered ring dipole chip at a frequency of 0.546 THz.
  • Figure 2(A) forms the energy accumulation caused by current oscillation at the opening; in Figure 2(B), the clockwise circle on the left and the counterclockwise ellipse on the right form a reverse current, and the counterclockwise circle on the right points to and The clockwise ellipse on the left points to form a reverse current;
  • Figure 2(D) shows the two directions of the corresponding reverse current in the corresponding left and right openings in Figure 2(B).
  • the vertical plane faces inward. Sub pole moment.
  • Step 3 Put the interlaced structure ring dipole chip coated with crude oil sample into the dried terahertz spectrum analysis system, so that the terahertz pulse signal of the terahertz spectrum analysis system is vertically irradiated on the chip for detection, and the terahertz spectrum analysis system is executed.
  • the program of the spectrum analysis system, the detection is about 5 minutes, and the detection spectrum of the crude oil sample is obtained.
  • FIG. 3 is a schematic diagram of the detection process of the terahertz spectrum analysis system in the first embodiment of the present invention.
  • step 3 the specific detection process in the terahertz spectrum analysis system is: the signal transmitter of the terahertz spectrum analysis system (Advand 7400) emits a terahertz pulse signal and irradiates it vertically on the crude oil The sample's interlaced structure ring dipole chip, and then the signal receiving end of the terahertz spectrum analysis system (Advan 7400) receives the transmitted pulse signal, and performs signal processing to obtain the detection spectrum.
  • the signal transmitter of the terahertz spectrum analysis system (Advand 7400) emits a terahertz pulse signal and irradiates it vertically on the crude oil
  • the sample's interlaced structure ring dipole chip and then the signal receiving end of the terahertz spectrum analysis system (Advan 7400) receives the transmitted pulse signal, and performs signal processing to obtain the detection spectrum.
  • Step 4 Subtract the reference spectrum from the detection spectrum to obtain the transmission spectrum of the crude oil sample.
  • the method for detecting petroleum with a staggered ring dipole chip in the first embodiment is used to detect four crude oil samples from different producing areas.
  • Step one is to dry and preprocess the detection environment of the Advantech 7400 system to eliminate the influence of air water molecules on the experiment, and measure the spectrum under dry conditions, and use this spectrum as the reference spectrum.
  • Step 2 Take a suitable 1cm ⁇ 1cm ring dipole chip with a staggered structure, transfer the crude oil sample with a volume of 2 ⁇ L with a pipette and evenly smear it on the side of the staggered ring dipole chip with a staggered supersurface.
  • the thickness of the crude oil sample smeared on the staggered ring dipole chip is 1 ⁇ m.
  • Step 3 Put the interlaced structure ring dipole chip coated with crude oil sample into the dried terahertz spectrum analysis system, so that the terahertz pulse signal of the terahertz spectrum analysis system is vertically irradiated on the chip for detection, and the terahertz spectrum analysis system is executed.
  • the program of the spectrum analysis system, the detection is about 5 minutes, and the detection spectrum of the crude oil sample is obtained.
  • Step 4 Subtract the reference spectrum from the detection spectrum to obtain the transmission spectrum of the crude oil sample.
  • Step 5 Repeat steps 2 to 4 to test the other 3 crude oil samples, and to ensure the accuracy of the measurement, each time a different sample is measured, a new staggered ring dipole chip needs to be replaced.
  • Fig. 4 is a transmission spectrum of four crude oils from different producing areas in the second embodiment of the present invention.
  • Figs. 4(A) to 4(D) respectively represent one of four crude oil samples from different producing areas.
  • the abscissa in the figure represents the frequency, and the ordinate represents the transmittance (dB).
  • dB transmittance
  • the transmission spectra of the four crude oil samples from different producing areas all show obvious ring dipole oscillations, indicating that the measured spectra of the detection method in Example 1 are stable; in addition, the four crude oils
  • the transmission frequency points exhibited by the samples are slightly different, respectively, 0.9384, 0.9327, 0.9136, 0.9594, which shows that although the transmission frequency points of the four crude oil samples have very small differences, the detection method in Example 1 can still reduce this
  • the four crude oil samples are distinguished, which further shows that the detection method of Example 1 is highly sensitive.
  • the method for detecting petroleum with a staggered structure ring dipole chip involved in the first embodiment because the method uses a staggered ring dipole chip and combines the terahertz time-domain spectroscopy detection technology, the method can achieve the Spectral detection of crude oil samples. Moreover, because the interlaced structure ring dipole chip used is a terahertz chip designed based on the ring dipole effect, it can effectively improve the unstable spectrum caused by the general metamaterial excitation such as Fano resonance, so the detection of this method better result.
  • the staggered ring dipole chip in the first embodiment has a small volume, which can also greatly improve the portability of detection.
  • the detection of petroleum is carried out by the method of one of the embodiments, the detection requires less samples, the detection time is short, and rapid, accurate, and real-time spectroscopic detection with trace amounts can be realized.
  • the terahertz spectrum analysis system in the first embodiment is the Advantech 7400 system, which has a spectral resolution of up to 2.1 GHz, and can realize high-precision substance detection in a wide spectral range.
  • Example 2 can show that the crude oil sample can be detected more accurately by the method in Example 1, and the measured spectrum is very stable, so it can effectively distinguish between crude oils of different sources.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种交错结构环偶极子芯片检测石油的方法,包括以下步骤:步骤一,将太赫兹光谱分析系统的检测环境进行干燥预处理,并测得干燥条件下的频谱,将该频谱作为参考光谱;步骤二,用移液枪将原油样品转移并均匀涂抹在交错结构环偶极子芯片的上表面;步骤三,将涂抹着原油样品的交错结构环偶极子芯片放入干燥后的太赫兹光谱分析系统内,使太赫兹光谱分析系统的太赫兹脉冲信号垂直照射在芯片上进行检测,得到原油样品的检测光谱;步骤四,检测光谱减去参考光谱,从而得到原油样品的透射光谱;其中,交错结构环偶极子芯片为基于环偶极子效应所设计的太赫兹芯片。

Description

一种交错结构环偶极子芯片检测石油的方法 技术领域
本发明属于太赫兹环偶极子芯片物质检测领域,具体涉及一种交错结构环偶极子芯片检测石油的方法。
背景技术
从上世纪90年代开始,人们开启了利用传统的时域太赫兹波谱系统对物质检测的征程:利用太赫兹光谱特性检测样品,研究表明,虽然一些物质结构的远红外吸收特征对于物质的结构和空间排列非常敏感,太赫兹时域光谱技术可以鉴别物质结构存在微小差异的化合物,但传统的时域太赫兹波谱系统样品检测方法需要大量的样品,准确度较低,实验装置体积庞大,同时由于存在太赫兹源辐射功率弱、极性分子样品吸收大等问题,更加严重的是,在一些该频段没有吸收峰的材料检测时,只能测定材料的介电系数和吸收系数,这就造成了极大的测量的不准确性。这些都将导致在实时现场监测应用中困难重重。
本世纪初,人们开启了利用太赫兹等离子增强谐振效应(如Fano共振)实现微量高灵敏度生物检测,这种方法解决了普通太赫兹检测的局限性问题,如样品用量大,吸收谱强度不稳定,辐射功率弱导致的信噪比低等。表面等离激元导致的反常透射现象对应的透射峰通常表现为不对称的线型,称为Fano线型。对于金属薄膜超表面中由于 引入不对称性产生的的Fano共振,非共振通道对应于入射光与明态模式相互作用产生的dipole振荡,共振通道则与表面等离激元产生的暗态相关。Fano共振能够增强其附近电磁场的光谱选择性,产生窄带光谱特性,从而大大增强光与靠近(或直接接触)表面的物质的相互作用。因此,即使是等离子电磁环境中的弱扰动也能显著改变其散射特性。对于吸收介质,场增强可导致与Fano共振相关的瑞利特性振幅的展宽和减小。但其缺点是Fano除了随反应过程飘移以外,其本身的谐振峰会发生畸变,这是由Fano振荡的不对称性引起的,而且Fano振荡随检测时间变长,信号本身不稳定。因此,基于上述Fano工作,需要进一步寻找更稳定的谐振模式,成为此类高Q值微腔芯片亟待解决的关键问题。
发明内容
本发明是为了解决上述问题而进行的,目的在于提供一种交错结构环偶极子芯片检测石油的方法。
本发明提供了一种交错结构环偶极子芯片检测石油的方法,具有这样的特征,包括以下步骤:步骤一,将太赫兹光谱分析系统的检测环境进行干燥预处理,并测得干燥条件下的频谱,将该频谱作为参考光谱;步骤二,用移液枪将原油样品转移并均匀涂抹在交错结构环偶极子芯片的超表面上;步骤三,将涂抹着原油样品的交错结构环偶极子芯片放入干燥后的太赫兹光谱分析系统内,使太赫兹光谱分析系统的太赫兹脉冲信号垂直照射在芯片上进行检测,得到原油样品的检测 光谱;步骤四,检测光谱减去参考光谱,从而得到原油样品的透射光谱其中,交错结构环偶极子芯片为基于环偶极子效应所设计的太赫兹芯片。
在本发明提供的交错结构环偶极子芯片检测石油的方法中,还可以具有这样的特征:其中,交错结构环偶极子芯片的超表面为交错结构,该交错结构由两个圆型分裂谐振环构成,两个圆型分裂谐振环有一定的交叠面积,一个圆型分裂谐振环的圆心在左边,并且其缺口在右边,另个圆型分裂谐振环的圆心在右边,并且其缺口在左边。
在本发明提供的交错结构环偶极子芯片检测石油的方法中,还可以具有这样的特征:其中,圆型分裂谐振环的内半径为35μm,外半径为40μm,缺口的大小为4μm。
在本发明提供的交错结构环偶极子芯片检测石油的方法中,还可以具有这样的特征:其中,太赫兹光谱分析系统为爱德万7400系统,其检测方式为投射式检测。
在本发明提供的交错结构环偶极子芯片检测石油的方法中,还可以具有这样的特征:其中,原油样品的体积为1μL~10μL,原油样品涂抹在交错结构环偶极子芯片上的厚度为1μm~3μm。
在本发明提供的交错结构环偶极子芯片检测石油的方法中,还可以具有这样的特征:其中,原油样品的体积为2μL,原油样品涂抹在交错结构环偶极子芯片上的厚度为1μm。
发明的作用与效果
根据本发明所涉及的交错结构环偶极子芯片检测石油的方法,因为该方法使用交错结构环偶极子芯片并结合了太赫兹时域光谱检测技术,所以通过该方法能够实现对原油样品的光谱检测。并且,因为所使用的交错结构环偶极子芯片为基于环偶极子效应所设计的太赫兹芯片,能有效改进一般超材料激发的如Fano共振引起的不稳定光谱,所以该方法的检测检测效果更好。
此外,本发明中的交错结构环偶极子芯片的体积小,还能够极大地提高检测的便携性。
另外,通过本发明的方法对石油进行检测,检测所需的样品少,检测时间短,能实现快速、准确、微量实时的光谱检测。
附图说明
图1是本发明的实施例一中交错结构环偶极子芯片的超表面的结构示意图;
图2是本发明的实施例一中交错结构环偶极子芯片的Toroidal效应的场分布图;
图3是本发明的实施例一中太赫兹光谱分析系统进行检测的过程示意图;
图4是本发明的实施例二中对四种自不同产地的原油进行检测的透射光谱图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,以下实施例结合附图对本发明交错结构环偶极子芯片检测石油的方法作具体阐述。
<实施例一>
本实施提供了一种交错结构环偶极子芯片检测石油的方法,该方法包括以下步骤:
步骤一,将太赫兹光谱分析系统的检测环境进行干燥预处理,排除空气水分子对实验的影响,并测得干燥条件下的频谱,将该频谱作为参考光谱。
其中,太赫兹光谱分析系统为爱德万7400系统,其检测方式为投射式检测。步骤一中,干燥预处理的过程为:实验前,通过干燥空气过滤单元,将系统内部的水蒸气去除,用湿度计实时监测,直到湿度低于3%时。
步骤二,取一片1cm×1cm的交错结构环偶极子芯片,用移液枪将体积为1μL~10μL的原油样品转移并均匀涂抹在交错结构环偶极子芯片的有交错结构的超表面的一面。原油样品涂抹在交错结构环偶极子芯片上的厚度为1μm~3μm并且该厚度越小越好,以利于太赫兹脉冲信号的透过。
本实施例所使用的交错结构环偶极子芯片的超表面为基于环偶极子效应进行设计的。环偶极子效应(Toroidal效应)是指电流在一个甜甜圈式的圆环面上沿中线流动而引起得谐振响应,即磁偶极子首尾相接形成涡旋分布。其优点是它同时打破了空间和时间反演对称, 具有许多趣的特性,如磁电效应、二向色性和非互易折射等,其独特的电流分布和涡旋场分布,通常可以实现很强的近场局域。利用环偶极子独特的电磁特性,如高Q值、对介质和环境的敏感性和偏振不依赖性等特点,设计出了本实施例中的具有超高灵敏度和稳定度的传感器件-交错结构环偶极子芯片。
图1是本发明的实施例一中交错结构环偶极子芯片的超表面的结构示意图。图2是本发明的实施例一中交错结构环偶极子芯片的Toroidal效应的场分布图。
如图1所示,本实施例中的交错结构环偶极子芯片的超表面为交错结构,该交错结构由两个圆型分裂谐振环构成,两个圆型分裂谐振环有一定的交叠面积。其中,一个圆型分裂谐振环的圆心在左边,并且其缺口在右边,另个圆型分裂谐振环的圆心在右边,并且其缺口在左边。圆型分裂谐振环的的内半径为35μm,外半径为40μm,缺口的大小为4μm。
如图2所示,图2(A)表示电磁强度;图2(B)表示表面电流分布;图2(C)表示磁场强度;图2(D)表示磁场矢量形式。图2(A)~图2(D)分别是该交错结构环偶极子芯片的超表面在频点为0.546THz附近的表面电场分布、表面电流分布、磁场分布以及磁场横截面的矢量分布。其中图2(A)在开口处形成由电流震荡引起的能量聚集;图2(B)中左边顺时针的圆圈指向和右边逆时针的椭圆指向形成反向电流,同样右边逆时针的圆圈指向和左边顺时针的椭圆指向形成反向电流;图2(D)给出的是在图2(B)相应左边开口和 右边开口分别由相应反向电流产生的两个方向垂直平面朝里的环形偶极子极矩。
步骤三,将涂抹着原油样品的交错结构环偶极子芯片放入干燥后的太赫兹光谱分析系统内,使太赫兹光谱分析系统的太赫兹脉冲信号垂直照射在芯片上进行检测,执行太赫兹光谱分析系统的程序,检测约5min,得到原油样品的检测光谱。
图3是本发明的实施例一中太赫兹光谱分析系统进行检测的过程示意图。
如图3所示,在步骤三中,在太赫兹光谱分析系统内具体检测过程为:太赫兹光谱分析系统(爱德万7400)的信号发射端发射太赫兹脉冲信号并垂直照射在涂抹着原油样品的交错结构环偶极子芯片上,然后太赫兹光谱分析系统(爱德万7400)的信号接收端接收透射过来的脉冲信号,并进行信号处理得到检测光谱。
步骤四,将检测光谱减去参考光谱,从而得到原油样品的透射光谱。
<实施例二>
本实施例为采用实施例一中的一种交错结构环偶极子芯片检测石油的方法对来自不同产地的四种原油样品进行检测。
实施例二的检测具体过程为:
步骤一,将爱德万7400系统的检测环境进行干燥预处理,排除空气水分子对实验的影响,并测得干燥条件下的频谱,将该频谱作为 参考光谱。
步骤二,取1cm×1cm大小合适的交错结构环偶极子芯片,用移液枪将体积为2μL的原油样品转移并均匀涂抹在交错结构环偶极子芯片的有交错结构超表面的一面。原油样品涂抹在交错结构环偶极子芯片上的厚度为1μm。
步骤三,将涂抹着原油样品的交错结构环偶极子芯片放入干燥后的太赫兹光谱分析系统内,使太赫兹光谱分析系统的太赫兹脉冲信号垂直照射在芯片上进行检测,执行太赫兹光谱分析系统的程序,检测约5min,得到该原油样品的检测光谱。
步骤四,将检测光谱减去参考光谱,从而得到原油样品的透射光谱。
步骤五,重复步骤二~步骤四,对其他3种原油样品进行检测,并且为保证测量的准确性,每次测不同样品时,需更换新的交错结构环偶极子芯片。
图4是本发明的实施例二中对四种自不同产地的原油进行检测的透射光谱图。
如图4所示,图4(A)~4(D)分别表示来自不同产地的四种原油样品中的一种样品,图中的横坐标表示频率,纵坐标表示透射率(dB)。由图4可以看出,来自不同产地的四种原油样品的透射图谱均呈现出明显的环偶极子振荡,表明实施例一的检测方法的所测得的光谱很稳定;此外,四种原油样品所呈现出的透射频点略有不同,分别为0.9384、0.9327、0.9136、0.9594,这表明,虽然4种原油样品的 透射频点差异很小,但是通过实施例一的检测方法仍然能够将这4种原油样品加以区分,这进一步表明实施例一的检测方法的灵敏度高。
实施例的作用与效果
根据实施例一所涉及的一种交错结构环偶极子芯片检测石油的方法,因为该方法使用交错结构环偶极子芯片并结合了太赫兹时域光谱检测技术,所以通过该方法能够实现对原油样品的光谱检测。并且,因为所使用的交错结构环偶极子芯片为基于环偶极子效应所设计的太赫兹芯片,能有效改进一般超材料激发的如Fano共振引起的不稳定光谱,所以该方法的检测检测效果更好。
此外,实施例一中的交错结构环偶极子芯片的体积小,还能够极大地提高检测的便携性。
另外,通过实施例一种的方法对石油进行检测,检测所需的样品少,检测时间短,能实现快速、准确、微量实时的光谱检测。
进一步地,实施例一中的太赫兹光谱分析系统为爱德万7400系统,其频谱分辨率可达2.1GHz,能在宽光谱范围内实现高精度的物质检测。
进一步地,通过实施例二的检测可以表明,通过实施例一的方法能够更为精确地对原油样品进行检测,所测得的光谱非常稳定,因而能够有效地对不同来源的原油进行区分。
上述实施方式为本发明的优选案例,并不用来限制本发明的保护范围。

Claims (6)

  1. 一种交错结构环偶极子芯片检测石油的方法,其特征在于,包括以下步骤:
    步骤一,将太赫兹光谱分析系统的检测环境进行干燥预处理,并测得干燥条件下的频谱,将该频谱作为参考光谱;
    步骤二,用移液枪将原油样品转移并均匀涂抹在交错结构环偶极子芯片的超表面上;
    步骤三,将涂抹着原油样品的所述交错结构环偶极子芯片放入干燥后的所述太赫兹光谱分析系统内,使所述太赫兹光谱分析系统的太赫兹脉冲信号垂直照射在芯片上进行检测,得到所述原油样品的检测光谱;
    步骤四,所述检测光谱减去所述参考光谱,从而得到所述原油样品的透射光谱,
    其中,所述交错结构环偶极子芯片为基于环偶极子效应所设计的太赫兹芯片。
  2. 根据权利要求1所述的交错结构环偶极子芯片检测石油的方法,其特征在于:
    其中,所述交错结构环偶极子芯片的所述超表面为交错结构,该交错结构由两个圆型分裂谐振环构成,两个所述圆型分裂谐振环有一定的交叠面积,
    一个所述圆型分裂谐振环的圆心在左边,并且其缺口在右边,
    另个所述圆型分裂谐振环的圆心在右边,并且其缺口在左边。
  3. 根据权利要求2所述的交错结构环偶极子芯片检测石油的方法,其特征在于:
    其中,所述圆型分裂谐振环的内半径为35μm,外半径为40μm,
    所述缺口的大小为4μm。
  4. 根据权利要求1所述的交错结构环偶极子芯片检测石油的方法,其特征在于:
    其中,所述太赫兹光谱分析系统为爱德万7400系统,其检测方式为投射式检测。
  5. 根据权利要求1所述的交错结构环偶极子芯片检测石油的方法,其特征在于:
    其中,所述原油样品的体积为1μL~10μL,
    所述原油样品涂抹在所述交错结构环偶极子芯片上的厚度为1μm~3μm。
  6. 根据权利要求5所述的交错结构环偶极子芯片检测石油的方法,其特征在于:
    其中,所述原油样品的体积为2μL,
    所述原油样品涂抹在所述交错结构环偶极子芯片上的厚度为1μm。
PCT/CN2020/070089 2020-01-02 2020-01-02 一种交错结构环偶极子芯片检测石油的方法 WO2021134749A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/271,570 US11346778B1 (en) 2020-01-02 2020-01-02 Method for detecting petroleum with a staggered toroidal chip
PCT/CN2020/070089 WO2021134749A1 (zh) 2020-01-02 2020-01-02 一种交错结构环偶极子芯片检测石油的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070089 WO2021134749A1 (zh) 2020-01-02 2020-01-02 一种交错结构环偶极子芯片检测石油的方法

Publications (1)

Publication Number Publication Date
WO2021134749A1 true WO2021134749A1 (zh) 2021-07-08

Family

ID=76685889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070089 WO2021134749A1 (zh) 2020-01-02 2020-01-02 一种交错结构环偶极子芯片检测石油的方法

Country Status (2)

Country Link
US (1) US11346778B1 (zh)
WO (1) WO2021134749A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2614762A (en) * 2022-01-14 2023-07-19 African New Energies Ltd Fano based crab sensor and system for fuel quality, level, and volume monitoring for irregular shaped fuel tanks

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621083A (zh) * 2012-03-08 2012-08-01 中国石油大学(北京) 一种基于太赫兹时域光谱测定岩石光学参数的方法及系统
JP2013064646A (ja) * 2011-09-16 2013-04-11 National Institute Of Information & Communication Technology テラヘルツ分光による材料の評価方法
CN104215603A (zh) * 2014-09-10 2014-12-17 中国石油大学(北京) 利用太赫兹时域光谱技术检测岩石孔隙中原油含量的方法
CN105445219A (zh) * 2016-01-07 2016-03-30 上海理工大学 一种增强生物样品在太赫兹波段吸收光谱信号的方法
CN108414473A (zh) * 2018-03-13 2018-08-17 重庆邮电大学 一种太赫兹波段超材料传感器
CN108627466A (zh) * 2018-06-24 2018-10-09 泰山学院 一种检测循环肿瘤细胞的太赫兹超材料器件及其制备方法
CN109557050A (zh) * 2018-11-29 2019-04-02 重庆邮电大学 一种互补型结构的太赫兹超材料传感器
CN109580535A (zh) * 2018-12-03 2019-04-05 上海理工大学 用于增强太赫兹波检测生物细胞组织信号的超材料结构
CN109580443A (zh) * 2019-01-15 2019-04-05 上海理工大学 采用太赫兹技术检测物质中金属颗粒含量的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7330271B2 (en) * 2000-11-28 2008-02-12 Rosemount, Inc. Electromagnetic resonant sensor with dielectric body and variable gap cavity
US9606054B2 (en) * 2013-09-30 2017-03-28 Advantest Corporation Methods, sampling device and apparatus for terahertz imaging and spectroscopy of coated beads, particles and/or microparticles

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064646A (ja) * 2011-09-16 2013-04-11 National Institute Of Information & Communication Technology テラヘルツ分光による材料の評価方法
CN102621083A (zh) * 2012-03-08 2012-08-01 中国石油大学(北京) 一种基于太赫兹时域光谱测定岩石光学参数的方法及系统
CN104215603A (zh) * 2014-09-10 2014-12-17 中国石油大学(北京) 利用太赫兹时域光谱技术检测岩石孔隙中原油含量的方法
CN105445219A (zh) * 2016-01-07 2016-03-30 上海理工大学 一种增强生物样品在太赫兹波段吸收光谱信号的方法
CN108414473A (zh) * 2018-03-13 2018-08-17 重庆邮电大学 一种太赫兹波段超材料传感器
CN108627466A (zh) * 2018-06-24 2018-10-09 泰山学院 一种检测循环肿瘤细胞的太赫兹超材料器件及其制备方法
CN109557050A (zh) * 2018-11-29 2019-04-02 重庆邮电大学 一种互补型结构的太赫兹超材料传感器
CN109580535A (zh) * 2018-12-03 2019-04-05 上海理工大学 用于增强太赫兹波检测生物细胞组织信号的超材料结构
CN109580443A (zh) * 2019-01-15 2019-04-05 上海理工大学 采用太赫兹技术检测物质中金属颗粒含量的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
梁丽 等 (LIANG, LI ET AL.): "人工微结构太赫兹传感器的研究进展 (Research Progress of Terahertz Sensor Based on Artificial Microstructure)", 红外与激光工程 (INFRARED AND LASER ENGINEERING), vol. 48, no. 02, 28 February 2019 (2019-02-28), XP055807964, ISSN: 1007-2276, DOI: 10.3788/IRLA201948.0203001 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2614762A (en) * 2022-01-14 2023-07-19 African New Energies Ltd Fano based crab sensor and system for fuel quality, level, and volume monitoring for irregular shaped fuel tanks
GB2614762B (en) * 2022-01-14 2024-01-24 African New Energies Ltd Fano based crab sensor and system for fuel quality, level, and volume monitoring for irregular shaped fuel tanks

Also Published As

Publication number Publication date
US11346778B1 (en) 2022-05-31
US20220146419A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
Jin et al. Experimental measurements of water content in crude oil emulsions by terahertz time-domain spectroscopy
CN111766221A (zh) 一种基于Fano共振太赫兹超表面生物传感器及其制备方法
Mao et al. Detection of dissolved gas in oil–insulated electrical apparatus by photoacoustic spectroscopy
CN108982975B (zh) 一种电场探测器
CN102213682B (zh) 一种干涉不敏感太赫兹波透射测量方法
US20140354993A1 (en) Localized surface plasmon resonance sensing system with anisotropic particles
CN102374974B (zh) 基于集成光波导的衰减全反射光谱测量式傅里叶光谱仪
WO2021134749A1 (zh) 一种交错结构环偶极子芯片检测石油的方法
US9678009B2 (en) Method for localized surface plasmon resonance sensing system
Al-Naib Evaluation of amplitude difference referencing technique with terahertz metasurfaces for sub-micron analytes sensing
Chen et al. Terahertz dual-band metamaterial absorber for trace indole-3-acetic acid and tricyclazole molecular detection based on spectral response analysis
CN115015158A (zh) 基于准连续体束缚态的超灵敏太赫兹生物传感器
Deng et al. A metamaterial-based absorber for liquid sensing in terahertz regime
CN112934281B (zh) 一种基于周期性结构的人工表面等离激元的微流控检测芯片结构及其制备、检测方法
CN114002181A (zh) 一种集成自旋太赫兹源的太赫兹超表面生物传感器
CN111141687B (zh) 一种交错结构环偶极子芯片检测石油的方法
CN109142266A (zh) 一种太赫兹精细谱探测仪
Zhang et al. Sensitive detection of chlorpheniramine maleate using THz combined with metamaterials
Jiang et al. Nondestructive in-situ permittivity measurement of liquid within a bottle using an open-ended microwave waveguide
CN105466887B (zh) 薄壁封闭玻璃腔室光学参数的检测系统及方法
CN115128045A (zh) 一种集成化的近场增强太赫兹生物传感器
Zhang et al. Terahertz microfluidic metamaterial biosensor for tiny volume liquid samples
Weisenstein et al. Detection of human tumor markers with THz metamaterials
Zhao et al. Enhanced photothermal lens using a photonic crystal surface
Shi et al. Metamaterial-enhanced infrared attenuated total reflection spectroscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909361

Country of ref document: EP

Kind code of ref document: A1