WO2021134617A1 - 信号处理系统、信号处理模组和终端设备 - Google Patents

信号处理系统、信号处理模组和终端设备 Download PDF

Info

Publication number
WO2021134617A1
WO2021134617A1 PCT/CN2019/130816 CN2019130816W WO2021134617A1 WO 2021134617 A1 WO2021134617 A1 WO 2021134617A1 CN 2019130816 W CN2019130816 W CN 2019130816W WO 2021134617 A1 WO2021134617 A1 WO 2021134617A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
radio frequency
receiving
transmitting
card module
Prior art date
Application number
PCT/CN2019/130816
Other languages
English (en)
French (fr)
Inventor
杜英强
刘道明
刘伟
曾伟才
阳美文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/130816 priority Critical patent/WO2021134617A1/zh
Priority to CN201980052341.4A priority patent/CN113412581A/zh
Publication of WO2021134617A1 publication Critical patent/WO2021134617A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • This application relates to the field of circuits, in particular to a signal processing system, a signal processing module, and terminal equipment.
  • Terminal devices in a communication network usually include mobile broadband (MBB) products (for example, mobile phones), vehicles, and Internet of Things (IOT) devices.
  • MBB mobile broadband
  • IOT Internet of Things
  • products of the same model often need to support single-card, dual-card dual-pass and other versions.
  • SIM subscriber identity module
  • the dual-card dual-pass system can support two SIMs for communication at the same time.
  • the dual-card dual-pass version requires the chip in the terminal device to support two sets of baseband processing protocols, and the terminal device also needs to include two corresponding sets of radio frequency circuits and antennas.
  • a dual-card dual-pass system needs to add a set of radio frequency resources on the basis of a single-card design.
  • the circuit board includes respective corresponding radio frequency circuits and radio frequency front-end circuits of the main card and the auxiliary card.
  • the circuit board can realize compatible design, so that the single-card version reduces a set of radio frequency devices on the basis of the dual-card dual-pass version.
  • the circuit board area of the single-card version is larger, which imposes greater constraints on the modular design of the product design. Therefore, how to be compatible with multiple versions such as single-card, dual-card dual-pass, etc. during product design brings greater challenges to the design and development cycle of terminal equipment.
  • This application provides a signal processing system, a signal processing module, and terminal equipment, which can improve the efficiency of modular production of products.
  • a signal processing system which is characterized by comprising: a main card module and a sub-card module, the main card module includes: a first radio frequency integrated circuit, the first radio frequency integrated circuit is used to support receiving And/or sending a radio frequency signal corresponding to the first subscriber identification module SIM; a first front-end module FEM is connected to the first radio frequency integrated circuit, and the first FEM includes a radio frequency front-end device matched to the first radio frequency integrated circuit A second radio frequency integrated circuit, the second radio frequency integrated circuit is used to support receiving and/or sending a radio frequency signal corresponding to the second SIM; a self-calibration circuit, which is connected to the second radio frequency integrated circuit, and the self-calibration circuit is used For calibrating a second FEM matched to the second radio frequency integrated circuit, the second FEM is provided in a secondary card module, and the primary card module and the secondary card module are modules that can be coupled or separated from each other.
  • the circuit in the main card module can be calibrated on the production line of the product (or before leaving the factory), without the need to calibrate the circuit in the secondary card module.
  • the main card module is provided with a self-calibration circuit, and the self-calibration circuit is used to calibrate the circuit in the sub-card module. If the main card module is used in a dual-card dual-pass or multi-card multi-pass system, then in the subsequent product assembly process, after the main card module and the auxiliary card module are coupled with each other and powered on, the self-calibration circuit can be used for the auxiliary card module Carry out calibration, thereby simplifying the product calibration process and improving the efficiency of product modular production.
  • the main card module further includes: a calibration main interface for coupling with the calibration secondary interface in the secondary card module, and the calibration main interface is used to communicate with The self-calibration circuit is connected; the receiving main interface is used to couple with the receiving secondary interface in the secondary card module, and the receiving main interface is used to connect to the receiving link in the second radio frequency integrated circuit; The main interface is used for mutual coupling with the transmitting secondary interface in the secondary card module, and the transmitting main interface is used for connecting with the transmitting link in the second radio frequency integrated circuit.
  • the self-calibration circuit includes a multiple selection unit, the multiple selection unit includes multiple input terminals and an output terminal, and the output terminal is used to communicate with the The calibration main interface of the main card module is connected; the multiple input ends include: an antenna input end, which is used to connect to the antenna corresponding to the second SIM; wherein, the multiple selection unit is used to: When the module is working normally, the output terminal is switched to the antenna input terminal.
  • a multiple selection unit is provided in the self-calibration circuit.
  • the multiple selection unit includes multiple input terminals and an output terminal.
  • the multiple selection unit can adjust the multiple selection unit according to whether the secondary card module is calibrated or not.
  • the output terminal is switched to a different input terminal. Therefore, by setting a multi-channel selection unit in the self-calibration circuit, the secondary card module can be flexibly switched between the calibration mode and the working mode, which simplifies the product calibration process and improves the efficiency of product modular production.
  • the multiple input terminals of the multiplexing unit further include: a reference signal input terminal for receiving a reference signal from the transmission link of the second radio frequency integrated circuit signal.
  • the second FEM includes: a receiving front-end circuit, including a radio frequency front-end device matched with a receiving link in the second radio frequency integrated circuit, the receiving front-end circuit
  • the input terminal of the receiving front-end circuit is connected to the calibration secondary interface, and the output terminal of the receiving front-end circuit is connected to the receiving secondary interface;
  • the multiplexer is used for: in the case of calibrating the receiving front-end circuit, the The output terminal is switched to the reference signal input terminal, wherein the receiving front-end circuit is used to receive the reference signal and output the measurement signal of the receiving front-end circuit.
  • the receiving front-end circuit includes a first filter and a low-noise amplifier, and the input end of the first filter is connected to the input end of the receiving front-end circuit, so The output terminal of the first filter is connected with the input terminal of the low noise filter, and the output terminal of the low noise filter is connected with the output terminal of the receiving front-end circuit.
  • connection between the above-mentioned various devices may refer to electrical connection, and the above-mentioned connected devices may be directly connected or may be provided with other electronic components, such as resistors, inductors, or capacitors.
  • the multiple input terminals of the multiple selection unit further include: a ground input terminal, which is used to connect to the ground through a ground resistance.
  • the second FEM includes: a transmitting front-end circuit, including a radio frequency front-end device matched with a transmitting link in the second radio frequency integrated circuit, the transmitting front-end circuit
  • the input end of the transmission link circuit is connected to the transmission sub-interface, and the output end of the transmission link circuit is connected to the calibration sub-interface;
  • the multiplexer is used to: in the case of calibrating the transmission front-end circuit, The output terminal is switched to the ground input terminal, wherein the transmission front-end circuit is used to receive a reference signal from the transmission link and output a measurement signal of the transmission front-end circuit, and the reference signal is a calibrated signal.
  • the self-calibration circuit further includes: a coupling circuit for sensing and outputting the transmitting front-end circuit passing through the ground input terminal of the multiplexer unit Measurement signal.
  • the coupling circuit includes a coupling inductor, the coupling inductor is configured to couple with the ground input end of the multiplexer unit, and the first end of the coupling inductor is grounded , The second end of the coupled inductor is used to output the measurement signal of the transmitting front-end circuit induced by it.
  • the transmit front-end circuit includes a power amplifier and a second filter, the input end of the power amplifier is connected to the input end of the transmit front-end circuit, and the power amplifier
  • the output end of the second filter is connected to the input end of the second filter, and the output end of the second filter is connected to the output end of the transmitting front-end circuit.
  • the reference signal includes at least one of the following reference signals: a low-band reference signal, a mid-high-band reference signal, and an ultra-high-band reference signal.
  • the main card module further includes a baseband subsystem, the baseband subsystem is respectively connected to the first radio frequency integrated circuit and the second radio frequency integrated circuit, the baseband The subsystem is used to process baseband signals.
  • the main card module may also be provided with a baseband interface, and the baseband interface is connected to the first radio frequency integrated circuit and the second radio frequency integrated circuit respectively.
  • the radio frequency integrated circuit is connected, and the main card module can be connected to the baseband subsystem through the baseband interface.
  • a signal processing module including: a main card module, the main card module including: a first radio frequency integrated circuit, the first radio frequency integrated circuit is used to support receiving and/or sending a first user The radio frequency signal corresponding to the identification module SIM; a first front-end module FEM, which is connected to the first radio-frequency integrated circuit, and the first FEM includes a radio-frequency front-end device matched to the first radio-frequency integrated circuit;
  • the second radio frequency integrated circuit is used to support receiving and/or transmitting the radio frequency signal corresponding to the second SIM;
  • a self-calibration circuit is connected to the second radio frequency integrated circuit, and the self-calibration circuit is used to calibrate and match the second radio frequency integrated circuit.
  • Two second FEM of the radio frequency integrated circuit, the second FEM is arranged in the secondary card module, and the primary card module and the secondary card module are modules that can be coupled or separated from each other.
  • the above-mentioned signal processing module may refer to a product used for modular design and production.
  • a signal processing module may refer to a product module, and a signal processing module may be set on an integrated circuit board.
  • an independent signal processing module may be provided, and the signal processing module includes a main card module, and the main card module and the auxiliary card module can be coupled or separated from each other.
  • the product's production line (or before leaving the factory) only calibrates the circuit in the main card module, and does not need to calibrate the circuit in the secondary card module.
  • the main card module is provided with a self-calibration circuit, and the self-calibration circuit is used to calibrate the circuit in the sub-card module.
  • the self-calibration circuit can be used for the auxiliary card module Carry out calibration, thereby simplifying the product calibration process and improving the efficiency of product modular production.
  • the main card module further includes: a calibration main interface for coupling with the calibration secondary interface in the secondary card module, and the calibration main interface is used to communicate with The self-calibration circuit is connected; the receiving main interface is used to couple with the receiving secondary interface in the secondary card module, and the receiving main interface is used to connect to the receiving link in the second radio frequency integrated circuit; The main interface is used for mutual coupling with the transmitting secondary interface in the secondary card module, and the transmitting main interface is used for connecting with the transmitting link in the second radio frequency integrated circuit.
  • the self-calibration circuit includes a multiple selection unit, and the multiple selection unit includes multiple input terminals and an output terminal, and the output terminal is used to communicate with the The calibration main interface of the main card module is connected; the multiple input ends include: an antenna input end, which is used to connect to the antenna corresponding to the second SIM; wherein, the multiple selection unit is used to: When the module is working normally, the output terminal is switched to the antenna input terminal.
  • the multiple input terminals of the multiplexing unit further include: a reference signal input terminal for receiving a reference signal from the transmission link of the second radio frequency integrated circuit signal.
  • the second FEM includes: a receiving front-end circuit, including a radio frequency front-end device matching the receiving link in the second radio frequency integrated circuit, the receiving front-end circuit
  • the input terminal of the receiving front-end circuit is connected to the calibration secondary interface, and the output terminal of the receiving front-end circuit is connected to the receiving secondary interface;
  • the multiplexer is used for: in the case of calibrating the receiving front-end circuit, the The output terminal is switched to the reference signal input terminal, wherein the receiving front-end circuit is used to receive the reference signal and output the measurement signal of the receiving front-end circuit.
  • the receiving front-end circuit includes a first filter and a low-noise amplifier, and the input end of the first filter is connected to the input end of the receiving front-end circuit, so The output terminal of the first filter is connected with the input terminal of the low noise filter, and the output terminal of the low noise filter is connected with the output terminal of the receiving front-end circuit.
  • the multiple input terminals of the multiple selection unit further include: a ground input terminal, which is used to connect to the ground through a ground resistance.
  • the second FEM includes: a transmitting front-end circuit, including a radio frequency front-end device matched with a transmitting link in the second radio frequency integrated circuit, the transmitting front-end circuit
  • the input end of the transmission link circuit is connected to the transmission sub-interface, and the output end of the transmission link circuit is connected to the calibration sub-interface;
  • the multiplexer is used to: in the case of calibrating the transmission front-end circuit, The output terminal is switched to the ground input terminal, wherein the transmission front-end circuit is used to receive a reference signal from the transmission link and output a measurement signal of the transmission front-end circuit, and the reference signal is a calibrated signal.
  • the self-calibration circuit further includes: a coupling circuit for sensing and outputting the transmitting front-end circuit passing through the ground input terminal of the multiplexer unit Measurement signal.
  • the coupling circuit includes a coupling inductor, the coupling inductor is configured to couple with the ground input end of the multiplexer unit, and the first end of the coupling inductor is grounded , The second end of the coupled inductor is used to output the measurement signal of the transmitting front-end circuit induced by it.
  • the transmit front-end circuit includes a power amplifier and a second filter, the input end of the power amplifier is connected to the input end of the transmit front-end circuit, and the power amplifier
  • the output end of the second filter is connected to the input end of the second filter, and the output end of the second filter is connected to the output end of the transmitting front-end circuit.
  • the reference signal includes at least one of the following reference signals: a low-frequency band reference signal, a mid-high-frequency band reference signal, and an ultra-high-frequency band reference signal.
  • the main card module further includes a baseband subsystem, the baseband subsystem is respectively connected to the first radio frequency integrated circuit and the second radio frequency integrated circuit, the baseband The subsystem is used to process baseband signals.
  • the main card module may also be provided with a baseband interface, and the baseband interface is connected to the first radio frequency integrated circuit and the second radio frequency integrated circuit respectively.
  • the radio frequency integrated circuit is connected, and the main card module can be connected to the baseband subsystem through the baseband interface.
  • a signal processing module including: a secondary card module, the secondary card module includes: a second front-end module FEM, the second FEM includes a radio frequency front-end device matched to a second radio frequency integrated circuit, The second radio frequency integrated circuit is provided in the main card module, and the main card module and the auxiliary card module are modules that can be coupled or separated from each other; the calibration auxiliary interface is used to connect to the calibration main interface in the main card module The calibration main interface is used to connect with the self-calibration circuit in the main card module, and the self-calibration circuit is used to calibrate the second FEM.
  • the above-mentioned signal processing module may refer to a product used for modular design and production.
  • a signal processing module may refer to a product module, and a signal processing module may be set on an integrated circuit board.
  • an independent signal processing module may be provided, and the signal processing module includes a secondary card module, and the secondary card module can be coupled or separated from the main card module.
  • the product's production line (or before leaving the factory) only calibrates the circuit in the main card module, and does not need to calibrate the circuit in the secondary card module.
  • the main card module is provided with a self-calibration circuit, and the self-calibration circuit is used to calibrate the circuit in the sub-card module.
  • the self-calibration circuit can be used for the auxiliary card module Carry out calibration, thereby simplifying the product calibration process and improving the efficiency of product modular production.
  • the secondary card module further includes: a receiving secondary interface for coupling with the receiving primary interface in the secondary card module, and the receiving primary interface is used for communicating with The receiving link in the second radio frequency integrated circuit is connected; the transmitting secondary interface is used to couple with the transmitting main interface in the secondary card module, and the transmitting main interface is used to communicate with the second radio frequency integrated circuit.
  • the transmission link is connected.
  • the second FEM includes: a receiving front-end circuit, including a radio frequency front-end device matched with a receiving link in the second radio frequency integrated circuit, the receiving front-end circuit The input terminal of is connected to the calibration secondary interface, and the output terminal of the receiving front-end circuit is connected to the receiving secondary interface.
  • the receiving front-end circuit includes a first filter and a low-noise amplifier, and the input end of the first filter is connected to the input end of the receiving front-end circuit, so The output terminal of the first filter is connected with the input terminal of the low noise filter, and the output terminal of the low noise filter is connected with the output terminal of the receiving front-end circuit.
  • the second FEM includes: a transmitting front-end circuit, including a radio frequency front-end device matched with a transmitting link in the second radio frequency integrated circuit, the transmitting front-end circuit
  • the input terminal of the transmission link circuit is connected to the transmission secondary interface, and the output terminal of the transmission link circuit is connected to the calibration secondary interface.
  • the transmit front-end circuit includes a power amplifier and a second filter, the input end of the power amplifier is connected to the input end of the transmit front-end circuit, and the power amplifier
  • the output end of the second filter is connected to the input end of the second filter, and the output end of the second filter is connected to the output end of the transmitting front-end circuit.
  • a terminal device in a fourth aspect, includes the signal processing system described in the first aspect or any one of the possible implementation manners of the first aspect.
  • a terminal device in a fifth aspect, includes the signal processing module described in the second aspect or any one of the possible implementation manners of the second aspect.
  • an integrated circuit board is provided, and the integrated circuit board is provided with the signal processing module described in the second aspect or any one of the possible implementation manners of the second aspect.
  • an integrated circuit board is provided, and the integrated circuit board is provided with the signal processing module described in the third aspect or any one of the possible implementation manners of the third aspect.
  • Fig. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a terminal device 100 according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a signal processing system 300 according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application.
  • the terminal equipment in the embodiments of this application may refer to user equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices (such as in-vehicle communication modules), in-vehicle systems, IOT terminals, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network equipment in the embodiments of the present application may be equipment used to communicate with terminal equipment.
  • the network equipment may be an evolved base station (evolutional nodeB, eNB or eNodeB) in an LTE system, or a cloud wireless access network (cloud wireless access network).
  • Radio access network, CRAN) wireless controller, or the network equipment can be relay station, access point, in-vehicle equipment, wearable equipment, network equipment in the future 5G network or network equipment in the future evolved PLMN network, etc.
  • CRAN Radio access network
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of this application.
  • the wireless communication system includes terminal equipment and network equipment. According to different transmission directions, the transmission link from the terminal device to the network device is recorded as uplink (UL), and the transmission link from the network device to the terminal device is recorded as downlink (DL).
  • UL uplink
  • DL downlink
  • data transmission in the uplink can be abbreviated as uplink data transmission or uplink transmission
  • data transmission in the downlink can be abbreviated as downlink data transmission or downlink transmission.
  • network devices can provide communication coverage for specific geographic areas through integrated or external antenna devices.
  • One or more terminal devices located within the communication coverage area of the network device can all be connected to the network device.
  • One network device can manage one or more cells.
  • Each cell has an identity certificate, which is also called a cell identity (cell ID). From the perspective of radio resources, a cell is a combination of downlink radio resources and uplink radio resources (not necessary) paired with it.
  • terminal equipment and network equipment support one or more of the same RAT, such as 5G NR, 4G LTE, or the RAT of the future evolution system.
  • the terminal device and the network device use the same air interface parameters, coding scheme, modulation scheme, etc., and communicate with each other based on the wireless resources specified by the system.
  • FIG. 1 is only used as an example to describe the application environment of the terminal device of the embodiment of the present application.
  • the terminal equipment in the embodiments of this application can also be applied to other fields, such as intelligent connected vehicle (ICV) field, intelligent driving (intelligent driving) field, intelligent (automobile) vehicle field, autonomous driving field, network connection Driving (network driving), intelligent network driving (intelligent network driving), in-car networking, car-to-cloud communication, vehicular communication, etc.
  • IOV intelligent connected vehicle
  • intelligent driving intelligent driving
  • autonomous vehicle autonomous driving field
  • network connection Driving network driving
  • intelligent network driving intelligent network driving
  • in-car networking car-to-cloud communication
  • vehicular communication etc.
  • FIG. 2 is a schematic structural diagram of a terminal device 100 provided by an embodiment of the application.
  • the terminal device 100 may be applicable to the application environment described in FIG. 1 or other parts of the embodiments of the present application.
  • FIG. 2 only shows the main components of the terminal device 100.
  • the terminal device 100 includes a processing system 220, a storage system 230, a signal processing system 300, an antenna (ANT), and an input and output device 240.
  • ANT antenna
  • the signal processing system 300 is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • the signal processing system 300 and the antenna together can also be called a transceiver, which is mainly used to transmit and receive radio frequency signals in the form of electromagnetic waves.
  • the processing system 220 can be used as the main control system or main computing system of the terminal device 100 to run the main operating system and application programs, manage the software and hardware resources of the entire terminal device 100, control the entire terminal device, and execute software programs. Process the data of the software program and provide users with a user interface.
  • the processing system 220 is also used to process communication protocols and communication data.
  • the processing system 220 may include one or more processors. Multiple processors may be multiple processors of the same type, or may include a combination of multiple types of processors.
  • the processor may be a general-purpose processor or a processor designed for a specific field.
  • the processor may be a central processing unit (central processing unit,
  • the processor can also be a graphics processing unit (GPU), an image signal processing (ISP), an audio signal processor (ASP), and an artificial intelligence (AI) Application of specially designed AI processor.
  • the AI processor includes, but is not limited to, a neural network processing unit (NPU), a tensor processing unit (TPU), and a processor called an AI engine.
  • the storage system 230 is mainly used to store software programs and data, and the storage system 230 may include memory and/or storage.
  • the processing system 220 may also include one or more caches respectively.
  • memory can be divided into volatile memory (volatile memory) and non-volatile memory (non-volatile memory, NVM).
  • Volatile memory refers to the memory in which the data stored inside will be lost when the power supply is interrupted.
  • volatile memory is mainly random access memory (RAM), including static random access memory (static RAM, SRAM) and dynamic random access memory (dynamic RAM, DRAM).
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • Non-volatile memory refers to the memory in which the data stored in the internal storage will not be lost even if the power supply is interrupted.
  • Non-volatile memories include read only memory (ROM), optical disks, magnetic disks, and various memories based on flash memory technology.
  • volatile memory can be used for memory and cache
  • non-volatile memory such as flash memory, can be used for mass storage.
  • the input and output device 240 is mainly used to receive data input by the user and output data to the user, such as a touch screen, a display screen, and a keyboard light.
  • FIG. 3 is a schematic structural diagram of a signal processing system 300 according to an embodiment of the present application. Hereinafter, the working principle of the signal processing system 300 will be described in conjunction with FIG. 3.
  • ANT_1 represents the first antenna
  • ANT_N represents the Nth antenna
  • N is a positive integer greater than 1.
  • Tx represents the transmission path
  • Rx represents the reception path
  • MRX represents the feedback reception path
  • different numbers indicate different paths.
  • Each path can represent a signal processing channel.
  • HB stands for high frequency
  • LB stands for low frequency
  • BB stands for baseband.
  • a radio frequency integrated circuit (RFIC) and a front end module (FEM) can jointly form a radio frequency subsystem 340.
  • the radio frequency subsystem 340 can also be divided into a radio frequency receiving path (RF receive path) and a radio frequency transmitting path (RF transmit path).
  • the radio frequency receiving channel can receive radio frequency signals through an antenna, and process the radio frequency signals (such as amplifying, filtering, and down-converting) to obtain a baseband signal, and transmit it to the baseband subsystem 330.
  • the radio frequency transmission channel can receive the baseband signal from the baseband subsystem 330, process the baseband signal (such as up-conversion, amplification and filtering) to obtain the radio frequency signal, and finally radiate the radio frequency signal into the space through the antenna.
  • Radio frequency integrated circuits can be called radio frequency transceiver circuits, radio frequency processing chips or radio frequency chips.
  • the radio frequency subsystem 340 may include an antenna switch, an antenna tuner, a low noise amplifier (LNA), a power amplifier (PA), a mixer (mixer), and a local oscillator (local oscillator, Electronic devices such as LO) and filters, which can be integrated into one or more chips as required.
  • the radio frequency integrated circuit may be called a radio frequency processing chip or a radio frequency chip.
  • FEM can also be an independent chip. Radio frequency chips are sometimes called receivers, transmitters, or transceivers. With the evolution of technology, the antenna can sometimes be considered as a part of the radio frequency subsystem 340 and can be integrated into the chip of the radio frequency subsystem 340. Antennas, FEM and RF chips can all be manufactured and sold separately.
  • the radio frequency subsystem 340 may also adopt different devices or different integration methods based on power consumption and performance requirements. For example, if part of the devices belonging to the FEM are integrated into the radio frequency chip, or even the antenna and the FEM are integrated into the radio frequency chip, the radio frequency chip may also be called a radio frequency antenna module or an antenna module.
  • the baseband subsystem 330 mainly completes the processing of baseband signals.
  • the baseband subsystem 330 can extract useful information or data bits from the baseband signal, or convert the information or data bits into a baseband signal to be transmitted. These information or data bits can be data representing user data or control information such as voice, text, and video.
  • the baseband subsystem 330 can implement signal processing operations such as modulation and demodulation, encoding and decoding.
  • signal processing operations are not completely the same.
  • the radio frequency signal is usually an analog signal
  • the signal processed by the baseband subsystem 330 is mainly a digital signal
  • an analog-to-digital conversion device is also required in the terminal equipment.
  • the analog-to-digital conversion device may be provided in the baseband subsystem 330 or the radio frequency subsystem 340.
  • Analog-to-digital conversion devices include analog-to-digital converters (ADC) that convert analog signals into digital signals, and digital-to-analog converters (DAC) that convert digital signals into analog signals.
  • the baseband subsystem 330 may include one or more processors.
  • the baseband subsystem 330 may also include one or more hardware accelerators (HAC).
  • HAC hardware accelerators
  • the hardware accelerator can be used to specifically complete some sub-functions with relatively large processing overhead, such as the assembly and analysis of data packets, and the encryption and decryption of data packets. These sub-functions can also be implemented using general-purpose processors, but due to performance or cost considerations, hardware accelerators may be more appropriate.
  • the hardware accelerator is mainly implemented by an application-specified intergated circuit (ASIC).
  • ASIC application-specified intergated circuit
  • the hardware accelerator may also include one or more relatively simple processors, such as MCUs.
  • the baseband subsystem 330 and the radio frequency subsystem 340 may jointly form the signal processing system 300 to provide wireless communication functions for terminal devices.
  • the signal processing system 300 may also only include the radio frequency subsystem 340.
  • the baseband subsystem 330 is responsible for managing the software and hardware resources of the communication subsystem, and can configure the working parameters of the radio frequency subsystem 340.
  • the processor of the baseband subsystem 330 may run a sub-operating system of the signal processing system.
  • the sub-operating system may be an embedded operating system or a real-time operating system, such as the VxWorks operating system or the QuRT system of Qualcomm.
  • the baseband subsystem 330 may be integrated into one or more chips, which may be referred to as a baseband processing chip or a baseband chip.
  • the baseband subsystem 330 can be used as an independent chip, and the chip can be called a modem (modem) or a modem chip.
  • the baseband subsystem 330 can be manufactured and sold in units of modem chips.
  • the modem chip is sometimes called a baseband processor or mobile processor.
  • the baseband subsystem 330 can also be further integrated into a larger chip, and manufactured and sold in units of the larger chip. This larger chip may be called a system chip, a system on a chip or a system on a chip (system on a chip, SoC), or a SoC chip for short.
  • the software components of the baseband subsystem 330 can be built into the hardware components of the chip before the chip leaves the factory, or imported into the hardware components of the chip from other non-volatile memory after the chip leaves the factory, or can also be online via the network Download and update these software components.
  • the baseband subsystem 330 may also include one or more buffers respectively.
  • volatile memory can be used for the cache.
  • the embodiments of this application appropriately decouple the specifications of single-card and dual-card dual-pass, and propose a signal processing system that can realize the modular design of radio frequency subsystems and is compatible with single Card system, dual-card dual-pass system or multi-card multi-pass system to improve the efficiency of modular production.
  • FIG. 4 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application.
  • the signal circuit system 300 in the embodiment of the present application may be applied to the terminal device 100 in FIG. 2.
  • the signal processing system 300 is used to receive and/or send a radio frequency signal corresponding to the SIM.
  • the signal processing system 300 includes a main card module 310. Further, the signal processing system 300 may also include one or more secondary card modules 320.
  • the main card module 310 and the auxiliary card module 320 may be coupled or separated from each other. Wherein, if the terminal device is a single-card system, only the main card module 310 may be provided in the signal processing system 300.
  • the signal processing system 300 may include a main card module 310 and a secondary card module 320. If the terminal device supports a multi-card multi-pass system, the signal processing system may include a main card module 310 and a plurality of auxiliary card modules 320.
  • the main card module 310 and the auxiliary card module 320 may be respectively provided with interfaces, and the main card module 310 and the auxiliary card 320 modules may be coupled to each other through the interfaces.
  • the main card module 310 is used to support the transmission and reception of radio frequency signals corresponding to the first SIM, and one or more secondary card modules 320 are used to support the transmission and reception of radio frequency signals corresponding to other SIMs except the first SIM.
  • each secondary card module is used to support the sending and receiving of radio frequency signals corresponding to one SIM.
  • the first SIM may also be called a primary card
  • other SIMs may also be called a secondary card.
  • the main card module can be used to support the SIM provided by the user
  • the secondary card module can be used to support the SIM matching the vehicle identity, which can also be referred to as a car factory card.
  • the above-mentioned SIM may be a virtual module or a physical module.
  • the physical module can refer to a physical SIM card
  • the virtual module can include an embedded-SIM (embedded-SIM, eSIM) card.
  • the eSIM refers to a software module that can directly embed the SIM in the chip of the terminal device, rather than as an independent software module. Remove components and add them to the terminal device.
  • FIG. 5 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application.
  • a baseband subsystem 330 is provided in the main card module 310 in (a) of FIG. 5.
  • the main card module 310 in (b) of FIG. 5 does not include the baseband subsystem 330.
  • the main card module 310 may include the baseband subsystem 330 or not.
  • a baseband interface (not shown in the figure) may be provided on the main card module 310.
  • the main card module can be used to connect to the baseband subsystem 330 through a baseband interface, so as to facilitate communication and/or signal transmission between the baseband subsystem 330 and the radio frequency integrated circuits (311, 13).
  • the baseband interface is connected to the first radio frequency integrated circuit 311 and the second radio frequency integrated circuit 313.
  • the signal processing system 300 includes a secondary card module 320 as an example for description. It should be understood that, after proper modification, the solution in FIG. 5 can also be applied to a scenario where the signal processing system 300 includes multiple secondary card modules 320.
  • the signal processing system includes a main card module 310 and a plurality of auxiliary card modules 320.
  • the main card module 310 may include a first radio frequency integrated circuit 311, a plurality of second radio frequency integrated circuits 313, and a plurality of self-calibration circuits 315.
  • the plurality of second radio frequency integrated circuits 313, the plurality of self-calibration circuits 315, and the plurality of secondary card modules 320 correspond one to one.
  • Each self-calibration circuit 315 is connected to its corresponding second radio frequency integrated circuit 313, and is used to calibrate its corresponding secondary card module 320.
  • the main card module 310 includes a first radio frequency integrated circuit 311, a first front end module (FEM) 312, a second radio frequency integrated circuit 313, and a self-calibration circuit 315.
  • the signal processing system 300 may further include a baseband subsystem 330.
  • the secondary card module 320 includes a second FEM 314.
  • the functions and structures of the first radio frequency integrated circuit 311 and the second radio frequency integrated circuit 313 are the same as or similar to the RFIC in FIG. 3, and the functions and structures of the first FEM 312 and the second FEM 314 are the same as or similar to those of the FEM in FIG.
  • the function of the baseband subsystem 330 is the same as or similar to that of the baseband subsystem 330 in FIG. 3, and will not be repeated here.
  • the first radio frequency integrated circuit 311 is used to support receiving and/or sending a radio frequency signal corresponding to the first SIM.
  • the first FEM 312 is connected to the first radio frequency integrated circuit 311, and the first FEM 312 includes a radio frequency front-end device matched with the first radio frequency integrated circuit 311.
  • the first radio frequency integrated circuit 311 and the first FEM 312 are together a component part of the radio frequency subsystem corresponding to the first SIM.
  • the first radio frequency integrated circuit 311 includes a receiving link and a transmitting link
  • the first FEM 312 includes a receiving front-end circuit and a transmitting front-end circuit.
  • the receiving link and the receiving front-end circuit form a radio frequency receiving channel corresponding to the first SIM.
  • the transmitting link and the transmitting front-end circuit form a radio frequency transmitting channel corresponding to the first SIM.
  • the first FEM 312 may include PA, LNA, and filters.
  • the filter may be a duplex filter.
  • the second radio frequency integrated circuit 313 is used to support receiving and/or transmitting radio frequency signals corresponding to the second SIM.
  • the second FEM 314 includes a radio frequency front-end device matched to the second radio frequency integrated circuit 313.
  • the second radio frequency integrated circuit 313 and the second FEM 314 are together a component of the radio frequency subsystem corresponding to the second SIM.
  • the second radio frequency integrated circuit 313 includes a receiving link and a transmitting link
  • the second FEM 314 includes a receiving front-end circuit and a transmitting front-end circuit.
  • the receiving link and the receiving front-end circuit form a radio frequency receiving channel corresponding to the second SIM.
  • the transmitting link and the transmitting front-end circuit form a radio frequency transmitting channel corresponding to the second SIM.
  • the second radio frequency integrated circuit 313 and the second FEM 314 may be coupled to each other through an interface between the main card module 310 and the auxiliary card module 320.
  • the self-calibration circuit 315 is connected to the second radio frequency integrated circuit 313, and the self-calibration circuit 315 is used to calibrate the second FEM 314 matched to the second radio frequency integrated circuit 313.
  • the circuit in the main card module can be calibrated on the production line of the product (or before leaving the factory), without the need to calibrate the circuit in the secondary card module.
  • the main card module is provided with a self-calibration circuit, and the self-calibration circuit is used to calibrate the circuit in the sub-card module. If the main card module is used in a dual-card dual-pass or multi-card multi-pass system, then in the subsequent product assembly process, after the main card module and the auxiliary card module are coupled with each other and powered on, the self-calibration circuit can be used for the auxiliary card module Carry out calibration, thereby simplifying the product calibration process and improving the efficiency of product modular production.
  • the main card module 310 is further provided with a baseband subsystem 330, which is respectively connected to the first radio frequency integrated circuit 311 and the second radio frequency integrated circuit 313, and the baseband subsystem 330 also It can communicate with the main processor (for example, the processing system 220 in FIG. 2) in the terminal device to control the first radio frequency integrated circuit 311 and/or the second radio frequency integrated circuit 313 to execute the corresponding instructions according to the instructions sent by the main processor. Operation.
  • the main processor for example, the processing system 220 in FIG. 2
  • FIG. 6 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application.
  • the first radio frequency integrated circuit 311 and the second FEM 312 are omitted from the main card module 310 in FIG. 6.
  • the main card module 310 and the auxiliary card module 320 can be connected through an interface.
  • the main card module 310 includes a calibration main interface A1, a transmitting main interface A2, and a receiving main interface A3.
  • the secondary card module 320 includes a calibration secondary interface B1, a transmitting secondary interface B2, and a receiving secondary interface B3.
  • the calibration main interface A1 is used to couple with the calibration secondary interface B1, and the calibration primary interface A1 is connected to the self-calibration circuit 315 in the main card module 310, and the calibration secondary interface B1 is used to connect to the secondary card module 320.
  • the second FEM 314 is connected.
  • the calibration secondary interface B1 can be connected to the receiving front-end circuit and the transmitting front-end circuit in the second FEM.
  • the receiving main interface A3 is used to couple with the receiving secondary interface B3, and the receiving primary interface A3 is connected to the receiving link in the second radio frequency integrated circuit 313, and the receiving secondary interface B3 is used to communicate with the secondary card module 320.
  • the receiving front-end circuit in the second FEM 314 is connected.
  • the receiving front-end circuit in the second FEM 314 and the receiving link in the second radio frequency integrated circuit 313 are matched with each other, and they are together a component of the radio frequency receiving channel corresponding to the second SIM.
  • the radio frequency receiving channel can receive radio frequency signals through an antenna, and process the radio frequency signals to obtain a baseband signal, which is transmitted to the baseband subsystem 330.
  • the transmitting main interface A2 is used to couple with the transmitting sub-interface B2, and the transmitting main interface A2 is connected to the transmitting link in the second radio frequency integrated circuit 313, and the receiving sub-interface B3 is used to connect to the sub-card module 320.
  • the transmitting front-end circuit in the second FEM 314 is connected.
  • the transmission front-end circuit in the second FEM 314 and the transmission link in the second radio frequency integrated circuit 313 are matched with each other, and together are a component of the radio frequency transmission channel corresponding to the second SIM.
  • the radio frequency transmitting channel can receive the baseband signal from the baseband subsystem 330, process the baseband signal to obtain a radio frequency signal, and transmit the radio frequency signal through an antenna.
  • the signal processing system 300 may include multiple radio frequency subsystems corresponding to the second SIM.
  • the second radio frequency integrated circuit 313 may include multiple receiving links and multiple transmitting links
  • the second FEM 314 in the secondary card module 320 may also be provided with multiple receiving front-end circuits and multiple transmission links.
  • multiple transmitting links correspond to multiple transmitting main interfaces A2 one-to-one
  • multiple receiving links correspond to multiple receiving main interfaces A3 one-to-one
  • multiple transmitting front-end circuits correspond to multiple transmitting sub-interfaces B2 one-to-one.
  • the multiple receiving front-end circuits correspond to the multiple receiving sub-interfaces B3 one-to-one.
  • Multiple transmitting links + receiving links correspond to multiple calibration main interfaces A1 one-to-one
  • multiple receiving front-end circuits + transmitting front-end circuits correspond to multiple calibration secondary interfaces B1 one-to-one.
  • FIG. 7 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application.
  • the above-mentioned self-calibration circuit 315 includes a multiplexing unit 350.
  • the self-calibration circuit 315 may include multiple multiplexing units 350, and the multiple multiplexing units 350 correspond to multiple radio frequency subsystems one-to-one.
  • Each radio frequency subsystem includes a radio frequency transmitting channel and a receiving channel.
  • the self-calibration circuit 315 includes a multiple selection unit 350 as an example for description.
  • the multiple selection unit 350 includes a plurality of input terminals C1 to C3 and an output terminal D, and the output terminal D is connected to the calibration main interface A1 of the main card module 310.
  • the input terminal of the multiple selection unit 350 includes but is not limited to the following terminals:
  • the antenna end is used to connect to the antenna corresponding to the second SIM, and the antenna corresponding to the second SIM may also be called a secondary card antenna.
  • the reference signal input terminal is used to receive the reference signal from the transmission link of the second radio frequency integrated circuit 313.
  • the circuit in the main card module 310 can be calibrated on the production line.
  • the calibration performed by the main card module on the production line is called initial calibration
  • the auxiliary card module is coupled with the main card module in the subsequent product assembly process.
  • the subsequent calibration is called the self-calibration of the secondary card module. Therefore, the second radio frequency integrated circuit 313 is a circuit that has undergone initial calibration.
  • the second radio frequency integrated circuit 313 in the main card module 310 can be calibrated by an external instrument, and the electrical parameters of the second radio frequency integrated circuit 313 can be configured according to the calibration result.
  • the aforementioned reference signal may be a signal used for initial calibration of the second radio frequency integrated circuit 313.
  • the aforementioned reference signal may include signals of different frequency bands and/or different powers.
  • the multiplexing unit 350 may include one or more reference signal input terminals C2. Different reference signal input terminals C2 are used to output reference signals of different frequency bands.
  • the reference signal may include at least one of the following: a low frequency band reference signal, a mid-high frequency band reference signal, and an ultra-high frequency band reference signal.
  • the ground input terminal C3 is used to connect to the ground through a ground resistance.
  • the working principle of the multiple selection unit 350 is as follows:
  • the multiple selection unit 350 can switch the output terminal D to the antenna input terminal C1.
  • the second radio frequency integrated circuit 313, the second FEM 314, and the antenna are connected to each other, and the radio frequency signal can be normally transmitted and received.
  • the multiple selection unit 350 can switch the output terminal D to the reference signal input terminal C2.
  • the receiving front-end circuit can receive the reference signal through the calibration secondary interface B1, and output the measurement signal of the receiving front-end circuit through the receiving secondary interface B3.
  • the multiplexing unit 350 may sequentially switch the output terminal D to different reference signal input terminals C2, so that the receiving front-end circuit receives reference signals of different frequency bands. And output measurement signals in different frequency bands.
  • the receiving front-end circuit includes a radio frequency front-end device that matches the receiving link in the second radio frequency integrated circuit 313, the input end of the receiving front-end circuit is connected to the calibration sub-interface B1, and the output end of the receiving front-end circuit is connected to the receiving sub-interface B3 Connected.
  • the transmitting front-end circuit includes a power amplifier and a second filter
  • the input end of the power amplifier is connected to the input end of the transmitting front-end circuit
  • the power The output terminal of the amplifier is connected with the input terminal of the second filter
  • the output terminal of the second filter is connected with the output terminal of the transmitting front-end circuit.
  • the filter in FIG. 7 is a duplex filter.
  • the filter can be applied to both the transmitting front-end circuit and the receiving front-end circuit.
  • the above-mentioned second filter can be understood as a part of the duplex filter in FIG. 7.
  • the receiving front-end circuit can output the measurement signal of the receiving front-end circuit to the receiving link in the main card module 310 through the receiving secondary interface B3.
  • the receiving link in the main card module 310 receives the measurement signal of the receiving front-end circuit, it can continue to output the measurement signal after passing the receiving link to the upper-layer calibration processing module, so that the upper-layer calibration processing module can be based on the received The signal to calibrate the electrical parameters of the receiving front-end circuit.
  • the reference signal is a signal that has been calibrated before the main card module 310 leaves the factory, it can be considered that the reference signal is a standard signal.
  • the calibration processing module can compare the reference signal and the measurement signal passing through the receiving link, and calibrate the electrical parameters of the receiving front-end circuit according to the comparison result.
  • the calibration processing module may be located in the second radio frequency integrated circuit 313, or may be located in the baseband subsystem 330 in the main card module 310. Or, it can be located in other types of processors.
  • the multiple-way selection unit 350 can switch the output terminal D to the ground input terminal C3, where the transmitter front-end circuit receives from the transmitting chain through the transmitting secondary interface B2 Channel reference signal, and output the measurement signal of the transmitter front-end circuit through the calibration secondary interface B1.
  • the aforementioned reference signals may include reference signals of different frequency bands, and the transmission link may sequentially send reference signals of different frequency bands to the transmitting front-end circuit to obtain measurement signals of the transmitting front-end circuit in different frequency bands.
  • the transmit front-end circuit includes a radio frequency front-end device that matches the transmit link in the second radio frequency integrated circuit 313, the input end of the transmit front-end circuit is connected to the transmit sub-interface B2, and the transmit link circuit The output terminal is connected to the calibration secondary interface B1.
  • the receiving front-end circuit includes a first filter and a low-noise amplifier, and the input end of the first filter is connected to the input end of the receiving front-end circuit, The output terminal of the first filter is connected to the input terminal of the low noise filter, and the output terminal of the low noise filter is connected to the output terminal of the receiving front-end circuit.
  • the filter in FIG. 7 is a duplex filter.
  • the filter can be applied to both the transmitting front-end circuit and the receiving front-end circuit.
  • the above-mentioned first filter can be understood as a part of the duplex filter in FIG. 7.
  • the self-calibration circuit 315 further includes: a coupling circuit 360 for sensing the transmitting front-end circuit passing through the ground input terminal C3 of the multiplexing unit 350 Measure the signal and output the induced signal.
  • the coupling circuit 360 includes a coupling inductor for coupling with the ground input terminal C3 of the multiplexing unit 350, the first end of the coupling inductor is grounded, and the coupling inductor The second terminal is used to output the measurement signal of the transmitting front-end circuit induced by it.
  • the coupled inductor may be connected to the ground through a ground resistance.
  • the transmitting front-end circuit after receiving the reference signal from the transmission link, can output the measurement signal of the transmitting front-end circuit to the self-calibration circuit 315 through the calibration secondary interface B1 and the calibration main interface A1.
  • the coupling circuit 360 in the self-calibration circuit 315 can sense and output the measurement signal of the aforementioned transmitting front-end circuit.
  • the main card module 310 further includes a measurement receiving circuit, and the measurement receiving circuit is used to receive the measurement signal of the transmitting front-end circuit from the coupling circuit.
  • the measurement receiving circuit can be provided in the second radio frequency integrated circuit 313, or can be provided in other circuit modules in the main card module 310.
  • the measurement receiving circuit After the measurement receiving circuit receives the measurement signal of the transmitting front-end circuit, it can continue to output the measurement signal to the upper calibration processing module, so that the upper calibration processing module can calibrate the electrical parameters of the transmitting front-end circuit based on the received signal .
  • the calibration processing module may be located in the second radio frequency integrated circuit 313, or in the baseband subsystem 330 in the main card module 310. Or, it can be located in other types of processors.
  • the measurement receiving circuit in the main card module 310 may also be calibrated.
  • the measurement receiving circuit can be calibrated by an external instrument, and the electrical parameters of the measurement receiving circuit can be configured according to the calibration result. Specifically, the electrical parameters of the measurement receiving circuit can be calibrated for the situation that the measurement receiving circuit is receiving reference signals of different frequency bands and/or different frequencies.
  • the radio frequency circuit in the main card module 310 may be calibrated, without the need to calibrate the circuit in the secondary card module 320.
  • the main card module 310 can use an external instrument to calibrate the second radio frequency integrated circuit 313.
  • the self-calibration circuit in the main card module 310 can be used when the main card module 310 and the auxiliary card module 320 are powered on. 315 performs self-calibration on the second FEM in the secondary card module 320.
  • the secondary card module 320 can be calibrated when the device is assembled after leaving the factory, so that the modular production of the primary card module 310 and the secondary card module 320 can be realized, and the self-calibration of the secondary card module 320 after leaving the factory can be realized.
  • the main card module 310 can store information of the reference signal for the initial calibration, so that the reference signal can be used to calibrate the circuit in the auxiliary card module 320.
  • FIG. 8 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application. As shown in FIG. 8, the signal processing system 300 is described by taking the second radio frequency integrated circuit 313 including two transmitting links (TX1, TX2) and two receiving links (RX1, RX2) as an example.
  • TX1, TX2 transmitting links
  • RX1, RX2 receiving links
  • the self-calibration circuit includes two multiplexer units (350-1, 350-2).
  • the multiplexing unit 350-1 corresponds to the first transmission link TX1 and the first reception link RX1.
  • the multiplexing unit 350-2 corresponds to the second transmission link TX2 and the second reception link RX2.
  • the main card module 310 also includes a measurement receiving circuit MRX.
  • the multiplex selection unit 350-1 corresponds to the calibration main interface A1-1
  • the multiplex selection unit 350-2 corresponds to the calibration main interface A1-2.
  • the first transmission link TX1 corresponds to the transmission main interface A2-1.
  • the first receiving link RX1 corresponds to the receiving main interface A3-1
  • the second receiving link RX2 corresponds to the receiving main interface A3-2.
  • the interfaces on the secondary card module correspond to the interfaces on the main card module one-to-one. For the sake of brevity, we will not repeat them here.
  • the transmission front-end circuit and corresponding interface corresponding to the second transmission link TX2 are omitted in FIG. 8.
  • the input terminal of the multiplexer 350-1 includes an antenna input terminal, a ground input terminal, and three reference signal input terminals.
  • the above three reference signal input terminals are respectively used to receive the reference signals CAL_LB, CAL_MHB and CAL_UHB.
  • CAL_LB, CAL_MHB, and CAL_UHB are used to represent low-band reference signals, mid-high-band reference signals, and ultra-high-band reference signals, respectively.
  • the main card module can be calibrated based on the reference signals CAL_LB, CAL_MHB, and CAL_UHB, and save the corresponding electrical parameters and reference signal information.
  • the above-mentioned reference signal will also be used for self-calibration of the secondary card module.
  • the main card module can also calibrate the measurement receiving circuit MRX based on the reference signals CAL_LB, CAL_MHB, and CAL_UHB, and save the corresponding electrical parameters and reference signal information.
  • FIG. 9 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application.
  • FIG. 9 shows a scenario where the receiving front-end circuit in the secondary card module 320 is self-calibrated.
  • the multiplexer unit 350-1, 350-2 switches the output terminal to three reference signal input terminals in turn, and the transmission link (TX1, TX2) outputs the reference of different frequency bands through the reference signal input terminal.
  • Signal CAL_LB, CAL_MHB or CAL_UHB The receiving front-end circuit in the secondary card module 320 receives the reference signal CAL_LB, CAL_MHB or CAL_UHB from the transmitting link TX1 through the receiving secondary interface (B1-1, B1-2).
  • the receiving link (RX1, RX2) in the main card module 310 After the receiving link (RX1, RX2) in the main card module 310 receives the measurement signal of the receiving front-end circuit, it can continue to output the measurement signal after passing through the receiving link (RX1, RX2) to the upper calibration processing module, So that the upper-level calibration processing module can calibrate the electrical parameters of the receiving front-end circuit based on the received signal.
  • FIG. 10 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application.
  • FIG. 10 shows a scene of self-calibrating the transmitting front-end circuit in the auxiliary card module 320.
  • the multiplexer 350-1 switches the output terminal to the ground input terminal.
  • the transmit front-end circuit receives the reference signal CAL_LB, CAL_MHB or CAL_UHB output by the transmit link TX1 through the transmit sub-interface B2-1, and sends the measurement of the transmit front-end circuit to the output terminal of the multiplexer 350-1 through the calibration sub-interface B1-1 signal.
  • the coupling circuit in the self-calibration circuit senses and outputs the measurement signal of the transmitting front-end circuit, and the measurement receiving circuit MRX receives the measurement signal. After the measurement receiving circuit MRX receives the measurement signal of the transmitting front-end circuit, it can continue to output the measurement signal to the upper calibration processing module, so that the upper calibration processing module can perform the electrical parameters of the transmitting front-end circuit based on the received signal. calibration.
  • the transmitting link TX1 may send reference signals of different frequency bands to the transmitting front-end circuit through the transmitting secondary interface A2-1.
  • the aforementioned reference signal may include, but is not limited to, the reference signal CAL_LB, CAL_MHB, or CAL_UHB.
  • FIG. 11 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application.
  • FIG. 11 shows a scenario where the signal processing system 300 is in normal operation, that is, the signal processing system 300 is in a business mode.
  • the multiplexer unit 350-1, 350-2
  • the signal processing system 300 may perform normal operations of sending and receiving radio frequency signals based on the electrical parameters after self-calibration of the secondary card module.
  • FIG. 12 is a schematic structural diagram of a signal processing system 300 according to another embodiment of the present application.
  • FIG. 12 shows a schematic structural diagram of the signal processing system 300 applied to a single card system. As shown in FIG. 12, when applied to a single-card system, the signal processing system 300 only includes the main card module 310.
  • the radio frequency circuit corresponding to the first SIM in the main card module can be calibrated for transmitter and receiver, and the second radio frequency integrated circuit 313 can be initially calibrated and stored
  • the calibrated electrical parameters and reference signal information can facilitate self-calibration of the secondary card module in the subsequent product assembly process.
  • the secondary card module may not be calibrated.
  • only the main card module can be packaged during the product assembly process of the signal processing system, and the signal processing system can perform normal radio frequency signal transmission and reception operations after power-on .
  • the main card module and the auxiliary card module may be packaged during the product assembly process of the signal processing system. After the initial power-on, the main card module can complete the self-calibration of the secondary card module through the self-calibration circuit, and after completing the self-calibration of the secondary card module, perform normal radio frequency signal transmission and reception operations.
  • the main card module and the auxiliary card module in the signal processing system adopt a modular design, which facilitates the production and assembly of products.
  • the auxiliary card module can realize self-calibration based on the main card module, without the need to calibrate the auxiliary card module online before leaving the factory, thereby improving the production efficiency of the product.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Abstract

本申请提供了一种信号处理系统、信号处理模组和终端设备,可应用于智能车联网领域,且能够提高产品模块化生产的效率。该信号处理系统包括主卡模块和副卡模块,主卡模块包括:第一射频集成电路,第一射频集成电路用于支持接收和/或发送第一SIM对应的射频信号;第一FEM,与第一射频集成电路相连,第一FEM包括匹配于第一射频集成电路的射频前端器件;第二射频集成电路,第二射频集成电路用于支持接收和/或发送第二SIM对应的射频信号;自校准电路,与第二射频集成电路相连,自校准电路用于校准匹配于第二射频集成电路的第二FEM,第二FEM设置于副卡模块,主卡模块和副卡模块为能够相互耦合或分离的模块。

Description

信号处理系统、信号处理模组和终端设备 技术领域
本申请涉及电路领域,尤其涉及一种信号处理系统、信号处理模组和终端设备。
背景技术
通信网络中的终端设备通常包括移动宽带(mobile broadband,MBB)产品(例如,手机)、车辆、物联网(the internet of things,IOT)设备等。在终端设备的模块产品设计中,同一型号的产品往往需要支持单卡、双卡双通等版本。其中,单卡系统仅支持一个用户识别模块(subscriber identity module,SIM)进行通信,而双卡双通系统中可同时支持两个SIM进行通信。双卡双通版本要求终端设备中的芯片能够支持两套基带处理协议,并且终端设备中还需要包括对应的两套射频电路和天线。换句话说,双卡双通系统需要在单卡设计的基础上增加一套射频资源。
为了实现模块化设计和生产,在产品模块设计时可以只设计一套射频集成电路板,该电路板包括主卡和副卡各自对应的射频电路以及射频前端电路。电路板可以实现兼容设计,使得单卡版本在双卡双通的版本的基础上减少一套射频器件。但是在这种设计模式下,由于单卡版本需要复用双卡双通版本的电路板设计,导致单卡版本的电路板面积较大,对产品设计的模块化设计有较大约束。因此,如何在产品设计时兼容单卡、双卡双通等多种版本,给终端设备的设计和开发周期带来了较大挑战。
发明内容
本申请提供了一种信号处理系统、信号处理模组和终端设备,能够提高产品模块化生产的效率。
第一方面,提供了一种信号处理系统,其特征在于,包括:主卡模块和副卡模块,所述主卡模块包括:第一射频集成电路,所述第一射频集成电路用于支持接收和/或发送第一用户识别模块SIM对应的射频信号;第一前端模块FEM,与所述第一射频集成电路相连,所述第一FEM包括匹配于所述第一射频集成电路的射频前端器件;第二射频集成电路,所述第二射频集成电路用于支持接收和/或发送第二SIM对应的射频信号;自校准电路,与所述第二射频集成电路相连,所述自校准电路用于校准匹配于所述第二射频集成电路的第二FEM,所述第二FEM设置于副卡模块,所述主卡模块和所述副卡模块为能够相互耦合或分离的模块。
在本申请实施例中,可以在产品的生产线上(或者出厂前)只校准主卡模块中的电路,而无需校准副卡模块中的电路。主卡模块中设置有自校准电路,该自校准电路用于校准副卡模块中的电路。若主卡模块应用于双卡双通或多卡多通系统,则可以在后续的产品组装过程中,在主卡模块和副卡模块相互耦合并上电之后,利用自校准电路对副卡模块进行校 准,从而简化了产品的校准流程,提高了产品模块化生产的效率。
结合第一方面,在一种可能的实现方式中,所述主卡模块还包括:校准主接口,用于与所述副卡模块中的校准副接口相互耦合,所述校准主接口用于与所述自校准电路相连;接收主接口,用于与所述副卡模块中的接收副接口相互耦合,所述接收主接口用于与所述第二射频集成电路中的接收链路相连;发射主接口,用于与所述副卡模块中的发射副接口相互耦合,所述发射主接口用于与所述第二射频集成电路中的发射链路相连。
结合第一方面,在一种可能的实现方式中,所述自校准电路包括多路选择单元,所述多路选择单元包括多个输入端和一个输出端,所述输出端用于与所述主卡模块的校准主接口相连;所述多个输入端包括:天线输入端,用于与所述第二SIM对应的天线相连;其中,所述多路选择单元用于:在所述副卡模块正常工作的情况下,将所述输出端切换至所述天线输入端。
在本申请实施例中,自校准电路中设置有多路选择单元,多路选择单元包括多个输入端和一个输出端,多路选择单元可以根据是否对副卡模块进行校准对多路选择单元的输出端切换至不同的输入端。从而通过在自校准电路中设置多路选择单元,实现副卡模块在校准模式和工作模式之间的灵活切换,简化了产品的校准流程,提高了产品模块化生产的效率。
结合第一方面,在一种可能的实现方式中,所述多路选择单元的多个输入端还包括:参考信号输入端,用于接收来自所述第二射频集成电路的发射链路的参考信号。
结合第一方面,在一种可能的实现方式中,所述第二FEM包括:接收前端电路,包括与所述第二射频集成电路中的接收链路匹配的射频前端器件,所述接收前端电路的输入端与所述校准副接口相连,所述接收前端电路的输出端与所述接收副接口相连;所述多路选择单元用于:在校准所述接收前端电路的情况下,将所述输出端切换至所述参考信号输入端,其中,所述接收前端电路用于接收所述参考信号,并输出所述接收前端电路的测量信号。
结合第一方面,在一种可能的实现方式中,所述接收前端电路包括第一滤波器以及低噪声放大器,所述第一滤波器的输入端与所述接收前端电路的输入端相连,所述第一滤波器的输出端与所述低噪声滤波器的输入端相连,所述低噪声滤波器的输出端与所述接收前端电路的输出端相连。
需要说明的是,上述各个器件之间相连,可以指电性相连,上述各个相连的器件之间可以直接相连,或者可以设置有其它电子元器件,例如电阻、电感或电容等元器件。
结合第一方面,在一种可能的实现方式中,所述多路选择单元的多个输入端还包括:接地输入端,用于通过接地电阻与地相连。
结合第一方面,在一种可能的实现方式中,所述第二FEM包括:发射前端电路,包括与所述第二射频集成电路中的发射链路匹配的射频前端器件,所述发射前端电路的输入端与所述发射副接口相连,所述发射链路电路的输出端与所述校准副接口相连;所述多路选择单元用于:在校准所述发射前端电路的情况下,将所述输出端切换至所述接地输入端,其中,所述发射前端电路用于接收来自所述发射链路的参考信号,并输出所述发射前端电路的测量信号,所述参考信号为经过校准的信号。
结合第一方面,在一种可能的实现方式中,所述自校准电路还包括:耦合电路,所述 耦合电路用于感应并输出通过所述多路选择单元的接地输入端的所述发射前端电路的测量信号。
结合第一方面,在一种可能的实现方式中,所述耦合电路包括耦合电感,所述耦合电感用于与所述多路选择单元的接地输入端耦合,所述耦合电感的第一端接地,所述耦合电感的第二端用于输出其感应的所述发射前端电路的测量信号。
结合第一方面,在一种可能的实现方式中,所述发射前端电路包括功率放大器以及第二滤波器,所述功率放大器的输入端与所述发射前端电路的输入端相连,所述功率放大器的输出端与所述第二滤波器的输入端相连,所述第二滤波器的输出端与所述发射前端电路的输出端相连。
结合第一方面,在一种可能的实现方式中,所述参考信号包括以下参考信号中的至少一项:低频段参考信号、中高频段参考信号以及超高频段参考信号。
结合第一方面,在一种可能的实现方式中,所述主卡模块还包括基带子系统,所述基带子系统分别与所述第一射频集成电路以及第二射频集成电路相连,所述基带子系统用于处理基带信号。
可选地,在所述主卡模块中不包括上述基带子系统的情况下,所述主卡模块上还可以设置有基带接口,所述基带接口分别与所述第一射频集成电路以及第二射频集成电路相连,所述主卡模块可通过所述基带接口与基带子系统相连。
第二方面,提供了一种信号处理模组,包括:主卡模块,所述主卡模块包括:第一射频集成电路,所述第一射频集成电路用于支持接收和/或发送第一用户识别模块SIM对应的射频信号;第一前端模块FEM,与所述第一射频集成电路相连,所述第一FEM包括匹配于所述第一射频集成电路的射频前端器件;第二射频集成电路,所述第二射频集成电路用于支持接收和/或发送第二SIM对应的射频信号;自校准电路,与所述第二射频集成电路相连,所述自校准电路用于校准匹配于所述第二射频集成电路的第二FEM,所述第二FEM设置于副卡模块,所述主卡模块和所述副卡模块为能够相互耦合或分离的模块。
可选地,上述信号处理模组可以指用于模块化设计和生产的产品,例如,一个信号处理模组可以指一个产品模块,一个信号处理模组可以设置在一个集成电路板上。
在本申请实施例中,可以提供独立的信号处理模组,该信号处理模组中包括主卡模块,主卡模块可以和副卡模块相互耦合或分离。产品的生产线上(或者出厂前)只校准主卡模块中的电路,而无需校准副卡模块中的电路。主卡模块中设置有自校准电路,该自校准电路用于校准副卡模块中的电路。若主卡模块应用于双卡双通或多卡多通系统,则可以在后续的产品组装过程中,在主卡模块和副卡模块相互耦合并上电之后,利用自校准电路对副卡模块进行校准,从而简化了产品的校准流程,提高了产品模块化生产的效率。
结合第二方面,在一种可能的实现方式中,所述主卡模块还包括:校准主接口,用于与所述副卡模块中的校准副接口相互耦合,所述校准主接口用于与所述自校准电路相连;接收主接口,用于与所述副卡模块中的接收副接口相互耦合,所述接收主接口用于与所述第二射频集成电路中的接收链路相连;发射主接口,用于与所述副卡模块中的发射副接口相互耦合,所述发射主接口用于与所述第二射频集成电路中的发射链路相连。
结合第二方面,在一种可能的实现方式中,所述自校准电路包括多路选择单元,所述多路选择单元包括多个输入端和一个输出端,所述输出端用于与所述主卡模块的校准主接 口相连;所述多个输入端包括:天线输入端,用于与所述第二SIM对应的天线相连;其中,所述多路选择单元用于:在所述副卡模块正常工作的情况下,将所述输出端切换至所述天线输入端。
结合第二方面,在一种可能的实现方式中,所述多路选择单元的多个输入端还包括:参考信号输入端,用于接收来自所述第二射频集成电路的发射链路的参考信号。
结合第二方面,在一种可能的实现方式中,所述第二FEM包括:接收前端电路,包括与所述第二射频集成电路中的接收链路匹配的射频前端器件,所述接收前端电路的输入端与所述校准副接口相连,所述接收前端电路的输出端与所述接收副接口相连;所述多路选择单元用于:在校准所述接收前端电路的情况下,将所述输出端切换至所述参考信号输入端,其中,所述接收前端电路用于接收所述参考信号,并输出所述接收前端电路的测量信号。
结合第二方面,在一种可能的实现方式中,所述接收前端电路包括第一滤波器以及低噪声放大器,所述第一滤波器的输入端与所述接收前端电路的输入端相连,所述第一滤波器的输出端与所述低噪声滤波器的输入端相连,所述低噪声滤波器的输出端与所述接收前端电路的输出端相连。
结合第二方面,在一种可能的实现方式中,所述多路选择单元的多个输入端还包括:接地输入端,用于通过接地电阻与地相连。
结合第二方面,在一种可能的实现方式中,所述第二FEM包括:发射前端电路,包括与所述第二射频集成电路中的发射链路匹配的射频前端器件,所述发射前端电路的输入端与所述发射副接口相连,所述发射链路电路的输出端与所述校准副接口相连;所述多路选择单元用于:在校准所述发射前端电路的情况下,将所述输出端切换至所述接地输入端,其中,所述发射前端电路用于接收来自所述发射链路的参考信号,并输出所述发射前端电路的测量信号,所述参考信号为经过校准的信号。
结合第二方面,在一种可能的实现方式中,所述自校准电路还包括:耦合电路,所述耦合电路用于感应并输出通过所述多路选择单元的接地输入端的所述发射前端电路的测量信号。
结合第二方面,在一种可能的实现方式中,所述耦合电路包括耦合电感,所述耦合电感用于与所述多路选择单元的接地输入端耦合,所述耦合电感的第一端接地,所述耦合电感的第二端用于输出其感应的所述发射前端电路的测量信号。
结合第二方面,在一种可能的实现方式中,所述发射前端电路包括功率放大器以及第二滤波器,所述功率放大器的输入端与所述发射前端电路的输入端相连,所述功率放大器的输出端与所述第二滤波器的输入端相连,所述第二滤波器的输出端与所述发射前端电路的输出端相连。
结合第二方面,在一种可能的实现方式中,所述参考信号包括以下参考信号中的至少一项:低频段参考信号、中高频段参考信号以及超高频段参考信号。
结合第一方面,在一种可能的实现方式中,所述主卡模块还包括基带子系统,所述基带子系统分别与所述第一射频集成电路以及第二射频集成电路相连,所述基带子系统用于处理基带信号。
可选地,在所述主卡模块中不包括上述基带子系统的情况下,所述主卡模块上还可以 设置有基带接口,所述基带接口分别与所述第一射频集成电路以及第二射频集成电路相连,所述主卡模块可通过所述基带接口与基带子系统相连。
第三方面,提供了一种信号处理模组,包括:副卡模块,所述副卡模块包括:第二前端模块FEM,所述第二FEM包括匹配于第二射频集成电路的射频前端器件,所述第二射频集成电路设置于主卡模块,所述主卡模块和所述副卡模块为能够相互耦合或分离的模块;校准副接口,用于与所述主卡模块中的校准主接口相连,所述校准主接口用于与所述主卡模块中的自校准电路相连,所述自校准电路用于校准所述第二FEM。
可选地,上述信号处理模组可以指用于模块化设计和生产的产品,例如,一个信号处理模组可以指一个产品模块,一个信号处理模组可以设置在一个集成电路板上。
在本申请实施例中,可以提供独立的信号处理模组,该信号处理模组中包括副卡模块,副卡模块可以和主卡模块相互耦合或分离。产品的生产线上(或者出厂前)只校准主卡模块中的电路,而无需校准副卡模块中的电路。主卡模块中设置有自校准电路,该自校准电路用于校准副卡模块中的电路。若主卡模块应用于双卡双通或多卡多通系统,则可以在后续的产品组装过程中,在主卡模块和副卡模块相互耦合并上电之后,利用自校准电路对副卡模块进行校准,从而简化了产品的校准流程,提高了产品模块化生产的效率。
结合第三方面,在一种可能的实现方式中,所述副卡模块还包括:接收副接口,用于与所述副卡模块中的接收主接口相互耦合,所述接收主接口用于与所述第二射频集成电路中的接收链路相连;发射副接口,用于与所述副卡模块中的发射主接口相互耦合,所述发射主接口用于与所述第二射频集成电路中的发射链路相连。
结合第三方面,在一种可能的实现方式中,所述第二FEM包括:接收前端电路,包括与所述第二射频集成电路中的接收链路匹配的射频前端器件,所述接收前端电路的输入端与所述校准副接口相连,所述接收前端电路的输出端与所述接收副接口相连。
结合第三方面,在一种可能的实现方式中,所述接收前端电路包括第一滤波器以及低噪声放大器,所述第一滤波器的输入端与所述接收前端电路的输入端相连,所述第一滤波器的输出端与所述低噪声滤波器的输入端相连,所述低噪声滤波器的输出端与所述接收前端电路的输出端相连。
结合第三方面,在一种可能的实现方式中,所述第二FEM包括:发射前端电路,包括与所述第二射频集成电路中的发射链路匹配的射频前端器件,所述发射前端电路的输入端与所述发射副接口相连,所述发射链路电路的输出端与所述校准副接口相连。
结合第三方面,在一种可能的实现方式中,所述发射前端电路包括功率放大器以及第二滤波器,所述功率放大器的输入端与所述发射前端电路的输入端相连,所述功率放大器的输出端与所述第二滤波器的输入端相连,所述第二滤波器的输出端与所述发射前端电路的输出端相连。
第四方面,提供了一种终端设备,其特征在于,所述终端设备包括第一方面或第一方面中的任意一种可能的实现方式中所述的信号处理系统。
第五方面,提供了一种终端设备,其特征在于,所述终端设备包括第二方面或第二方面中的任意一种可能的实现方式中所述的信号处理模组。
第六方面,提供了一种集成电路板,所述集成电路板上设置有第二方面或第二方面中的任意一种可能的实现方式中所述的信号处理模组。
第七方面,提供了一种集成电路板,所述集成电路板上设置有第三方面或第三方面中的任意一种可能的实现方式中所述的信号处理模组。
附图说明
图1是本申请一实施例的无线通信系统的结构示意图。
图2是本申请一实施例的终端设备100的结构示意图。
图3是本申请一实施例的信号处理系统300的结构示意图。
图4是本申请又一实施例的信号处理系统300的结构示意图。
图5是本申请又一实施例的信号处理系统300的结构示意图。
图6是本申请又一实施例的信号处理系统300的结构示意图。
图7是本申请又一实施例的信号处理系统300的结构示意图。
图8是本申请又一实施例的信号处理系统300的结构示意图。
图9是本申请又一实施例的信号处理系统300的结构示意图。
图10是本申请又一实施例的信号处理系统300的结构示意图。
图11是本申请又一实施例的信号处理系统300的结构示意图。
图12是本申请又一实施例的信号处理系统300的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备(如车载通信模块)、车载系统、IOT终端等。
可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是LTE系统中的演进型基站(evolutional nodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1为本申请实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统包括终端设备和网络设备。按照传输方向的不同,从终端设备到网络设备的传输链路记为上行链路(uplink,UL),从网络设备到终端设备的传输链路记为下行链路(downlink,DL)。相类似地,上行链路中的数据传输可简记为上行数据传输或上行传输,下行链路中的数据传输可简记为下行数据传输或下行传输。
该无线通信系统中,网络设备可通过集成或外接的天线设备,为特定地理区域提供通信覆盖。位于网络设备的通信覆盖范围内的一个或多个终端设备,均可以接入网络设备。 一个网络设备可以管理一个或多个小区(cell)。每个小区具有一个身份证明,该身份证明也被称为小区标识(cell identity,cell ID)。从无线资源的角度看,一个小区是下行无线资源,以及与其配对的上行无线资源(非必需)的组合。
该无线通信系统中,终端设备和网络设备支持一种或多种相同的RAT,例如5G NR,4G LTE,或未来演进系统的RAT。具体地,终端设备和网络设备采用相同的空口参数、编码方案和调制方案等,并基于系统规定的无线资源相互通信。
应理解,图1仅仅作为示例,描述本申请实施例的终端设备的应用环境。本申请实施例中的终端设备还可以应用于其它领域,例如智能网联车(intelligent connected vehicle,ICV)领域、智能驾驶(intelligent driving)领域、智能(汽)车领域、自动驾驶领域、网联驾驶(network driving)、智能网联驾驶(intelligent network driving)、车内网(in-car networking)、车云通信(car-to-cloud communication)、车载通信(vehicular communication)等。
图2为本申请实施例提供的终端设备100的结构示意图。该终端设备100可适用于图1或本申请实施例其他部分所描述的应用环境中。为了便于说明,图2仅示出了终端设备100的主要部件。如图2所示,终端设备100包括处理系统220、存储系统230、信号处理系统300、天线(antenna,ANT)以及输入输出装置240。
信号处理系统300主要用于基带信号与射频信号的转换以及对射频信号的处理。信号处理系统300和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。
其中,处理系统220可作为终端设备100的主控制系统或主计算系统,用于运行主操作系统和应用程序,管理整个终端设备100的软硬件资源,对整个终端设备进行控制,执行软件程序,处理软件程序的数据,并可为用户提供用户操作界面。处理系统220还用于对通信协议以及通信数据进行处理。
处理系统220可包括一个或多个处理器。多个处理器可以多个相同类型的处理器,也可以包括多种类型的处理器组合。本申请中,处理器可以是通用用途的处理器,也可以是为特定领域设计的处理器。例如,处理器可以是中央处理单元(central processing unit,
CPU),数字信号处理器(digital signal processor,DSP),或微控制器(micro control unit,MCU)。处理器也可以是图形处理器(graphics processing unit,GPU)、图像信号处理器(image signal processing,ISP),音频信号处理器(audio signal processor,ASP),以及为人工智能(artificial intelligence,AI)应用专门设计的AI处理器。AI处理器包括但不限于神经网络处理器(neural network processing unit,NPU),张量处理器(tensor processing unit,TPU)以及被称为AI引擎的处理器。
存储系统230主要用于存储软件程序和数据,存储系统230可以包括内存和/或存储器。此外,处理系统220中还可以分别包括一个或多个缓存。具体实现中,存储器可分为易失性存储器(volatile memory)和非易失性存储器(non-volatile memory,NVM)。易失性存储器是指当电源供应中断后,内部存放的数据便会丢失的存储器。目前,易失性存储器主要是随机存取存储器(random access memory,RAM),包括静态随机存取存储器(static RAM,SRAM)和动态随机存取存储器(dynamic RAM,DRAM)。非易失性存储器是指即使电源供应中断,内部存放的数据也不会因此丢失的存储器。常见的非易失性存储器包括只读存储器(read only memory,ROM)、光盘、磁盘以及基于闪存(flash memory) 技术的各种存储器等。通常来说,内存和缓存可以选用易失性存储器,大容量存储器可以选用非易失性存储器,例如闪存。
输入输出装置240,主要用于接收用户输入的数据以及对用户输出数据,例如触摸屏、显示屏,键盘灯等。
图3是本申请一实施例的信号处理系统300的结构示意图。下文中将结合图3,描述信号处理系统300的工作原理。
图3中,ANT_1表示第一天线,ANT_N表示第N天线,N为大于1的正整数。Tx表示发送路径,Rx表示接收路径,MRX表示反馈接收路径,不同的数字表示不同的路径。每条路径均可以表示一个信号处理通道。其中,HB表示高频,LB表示低频,两者是指频率的相对高低。BB表示基带。应理解,图3中的标记和组件仅为示意目的,仅作为一种可能的实现方式,本申请实施例还包括其他的实现方式。例如,终端设备可以包括更多或更少的路径,包括更多或更少的组件。
图3中,射频集成电路(radio frequency integrated circuit,RFIC)和前端模块(front end module,FEM)可以共同组成射频子系统340。根据信号的接收或发送路径的不同,射频子系统340也可以分为射频接收通道(RF receive path)和射频发射通道(RF transmit path)。其中,射频接收通道可通过天线接收射频信号,对该射频信号进行处理(如放大、滤波和下变频)以得到基带信号,并传递给基带子系统330。射频发送通道可接收来自基带子系统330的基带信号,对基带信号进行处理(如上变频、放大和滤波)以得到射频信号,并最终通过天线将该射频信号辐射到空间中。射频集成电路可以被称为射频收发电路、射频处理芯片或射频芯片。
具体地,射频子系统340可包括天线开关,天线调谐器,低噪声放大器(low noise amplifier,LNA),功率放大器(power amplifier,PA),混频器(mixer),本地振荡器(local oscillator,LO)、滤波器(filter)等电子器件,这些电子器件可以根据需要集成到一个或多个芯片中。射频集成电路可以被称为射频处理芯片或射频芯片。FEM也可以是独立的芯片。射频芯片有时也被称为接收机(receiver)、发射机(transmitter)或收发机(transceiver)。随着技术的演进,天线有时也可以认为是射频子系统340的一部分,并可集成到射频子系统340的芯片中。天线、FEM和射频芯片都可以单独制造和销售。当然,射频子系统340也可以基于功耗和性能的需求,采用不同的器件或者不同的集成方式。例如,将属于FEM的部分器件集成在射频芯片中,甚至将天线和FEM都集成射频芯片中,该射频芯片也可以称为射频天线模组或天线模组。
与射频子系统340主要完成射频信号处理类似,顾名思义,基带子系统330主要完成对基带信号的处理。基带子系统330可以从基带信号中提取有用的信息或数据比特,或者将信息或数据比特转换为待发送的基带信号。这些信息或数据比特可以是表示语音、文本、视频等用户数据或控制信息的数据。例如,基带子系统330可以实现诸如调制和解调,编码和解码等信号处理操作。对于不同的无线接入技术,例如5G NR和4G LTE,基带信号处理操作也不完全相同。
此外,由于射频信号通常是模拟信号,基带子系统330处理的信号主要是数字信号,终端设备中还需要有模数转换器件。本申请实施例中,模数转换器件可以设置在基带子系统330中,也可以设置在射频子系统340中。模数转换器件包括将模拟信号转换为数字信 号的模数转换器(analog to digital converter,ADC),以及将数字信号转换为模拟信号的数模转换器(digital to analog converter,DAC)。
基带子系统330可包括一个或多个处理器。此外,基带子系统330还可以包括一种或多种硬件加速器(hardware accelerator,HAC)。硬件加速器可用于专门完成一些处理开销较大的子功能,如数据包(data packet)的组装和解析,数据包的加解密等。这些子功能采用通用功能的处理器也可以实现,但是因为性能或成本的考量,采用硬件加速器可能更加合适。在具体的实现中,硬件加速器主要是用专用集成电路(application specified intergated circuit,ASIC)来实现。当然,硬件加速器中也可以包括一个或多个相对简单的处理器,如MCU。
本申请实施例中,基带子系统330和射频子系统340可以共同组成信号处理系统300,为终端设备提供无线通信功能。或者,信号处理系统300也可以只包括射频子系统340。通常,基带子系统330负责管理通信子系统的软硬件资源,并且可配置射频子系统340的工作参数。基带子系统330的处理器中可以运行信号处理系统的子操作系统,该子操作系统可以是嵌入式操作系统或实时操作系统(real time operating system),例如VxWorks操作系统或高通公司的QuRT系统。
基带子系统330可以集成为一个或多个芯片,该芯片可称为基带处理芯片或基带芯片。基带子系统330可以作为独立的芯片,该芯片可被称调制解调器(modem)或modem芯片。基带子系统330可以按照modem芯片为单位来制造和销售。modem芯片有时也被称为基带处理器或移动处理器。此外,基带子系统330也可以进一步集成在更大的芯片中,以更大的芯片为单位来制造和销售。这个更大的芯片可以称为系统芯片,芯片系统或片上系统(system on a chip,SoC),或简称为SoC芯片。基带子系统330的软件组件可以在芯片出厂前内置在芯片的硬件组件中,也可以在芯片出厂后从其他非易失性存储器中导入到芯片的硬件组件中,或者还可以通过网络以在线方式下载和更新这些软件组件。此外,基带子系统330中,还可以分别包括一个或多个缓存。通常来说缓存可以选用易失性存储器。
本申请实施例基于模块化设计的思路,将单卡及双卡双通的规格适当解耦,提出了一种信号处理系统,该信号处理系统可以实现射频子系统的模块化设计,同时兼容单卡系统、双卡双通系统或者多卡多通系统,提高模块化生产的效率。
图4是本申请又一实施例的信号处理系统300的结构示意图。本申请实施例中的信号电路系统300可以应用于图2中的终端设备100。所述信号处理系统300用于接收和/或发送SIM对应的射频信号。信号处理系统300包括主卡模块310。进一步地,所述信号处理系统300还可以包括一个或多个副卡模块320。主卡模块310和副卡模块320之间可以相互耦合或分离。其中,若终端设备为单卡系统,则所述信号处理系统300中可以只设置主卡模块310。若终端设备支持双卡双通系统,则该信号处理系统300中可以包括主卡模块310以及副卡模块320。若终端设备支持多卡多通系统,则该信号处理系统中可以包括主卡模块310以及多个副卡模块320。
可选地,主卡模块310和副卡模块320上可以分别设置有接口,主卡模块310和副卡320模块之间可以通过接口相互耦合。
其中,主卡模块310用于支持第一SIM对应的射频信号的收发,一个或多个副卡模块320用于支持除第一SIM之外的其它SIM对应的射频信号的收发。例如,每个副卡模块用于支持一个SIM对应的射频信号的收发。其中,第一SIM也可以称为主卡,其它SIM也可以称为副卡。作为示例,对于车载领域来说,主卡模块可以用于支持用户提供的SIM,副卡模块可以用于支持与车辆身份匹配的SIM,也可以称为车厂卡。
可选地,上述SIM可以为虚拟模块或实体模块。其中,实体模块可以指物理的SIM卡,虚拟模块可以包括嵌入式SIM(embedded-SIM,eSIM)卡,eSIM是指可以将SIM直接嵌入终端设备的芯片中的软件模块,而不是作为独立的可移除部件加入终端设备中。
图5是本申请又一实施例的信号处理系统300的结构示意图。其中,图5中的(a)的主卡模块310中设置有基带子系统330。图5中的(b)的主卡模块310中不包括基带子系统330。如图5中的(a)和(b)所示,主卡模块310中可以包括基带子系统330,也可以不包括基带子系统330。在不包括基带子系统330的情况下,主卡模块310上可以设置基带接口(图中未示出)。主卡模块可用于通过基带接口与基带子系统330相连,以便于执行基带子系统330与射频集成电路(311,13)之间的通信和/或信号传输。其中,在主卡模块310内部,基带接口与第一射频集成电路311以及第二射频集成电路313相连。
图5中以信号处理系统300包括一个副卡模块320为例进行描述。应理解,经过适当变形,图5的方案也可以应用于信号处理系统300包括多个副卡模块320的场景中。例如,在多卡多通系统中,信号处理系统中包括一个主卡模块310以及多个副卡模块320。主卡模块310中可包括一个第一射频集成电路311、多个第二射频集成电路313以及多个自校准电路315。多个第二射频集成电路313、多个自校准电路315以及多个副卡模块320一一对应。每个自校准电路315与其对应的第二射频集成电路313相连,并用于校准与其对应的副卡模块320.
如图5所示,主卡模块310包括第一射频集成电路311、第一前端模块(front end module,FEM)312、第二射频集成电路313、自校准电路315。可选地,信号处理系统300中还可以包括基带子系统330。副卡模块320包括第二FEM 314。
其中,第一射频集成电路311、第二射频集成电路313的功能和结构与图3中的RFIC相同或相似,第一FEM 312、第二FEM 314的功能与结构与图3中的FEM相同或相似,基带子系统330的功能与图3中的基带子系统330相同或相似,此处不再赘述。
第一射频集成电路311用于支持接收和/或发送第一SIM对应的射频信号。第一FEM 312与第一射频集成电路311相连,第一FEM 312包括匹配于第一射频集成电路311的射频前端器件。第一射频集成电路311和第一FEM 312共同为第一SIM对应的的射频子系统的组成部分。
可选地,第一射频集成电路311中包括接收链路和发射链路,第一FEM 312中包括接收前端电路和发射前端电路。其中,接收链路和接收前端电路组成第一SIM对应的射频接收通道。发射链路和发射前端电路组成第一SIM对应的射频发射通道。
在一些示例中,第一FEM 312中可包括PA、LNA以及滤波器。可选地,所述滤波器可以为双工滤波器。
所述第二射频集成电路313用于支持接收和/或发送第二SIM对应的射频信号。第二FEM 314中包括匹配于第二射频集成电路313的射频前端器件。第二射频集成电路313和 第二FEM 314共同为第二SIM对应的射频子系统的组成部分。
可选地,第二射频集成电路313中包括接收链路和发射链路,第二FEM 314中包括接收前端电路和发射前端电路。其中,接收链路和接收前端电路组成第二SIM对应的射频接收通道。发射链路和发射前端电路组成第二SIM对应的射频发射通道。第二射频集成电路313和第二FEM 314之间可以通过主卡模块310和副卡模块320之间的接口相互耦合。
自校准电路315与第二射频集成电路313相连,自校准电路315用于校准匹配于第二射频集成电路313的第二FEM 314。
在本申请实施例中,可以在产品的生产线上(或出厂前)只校准主卡模块中的电路,而无需校准副卡模块中的电路。主卡模块中设置有自校准电路,该自校准电路用于校准副卡模块中的电路。若主卡模块应用于双卡双通或多卡多通系统,则可以在后续的产品组装过程中,在主卡模块和副卡模块相互耦合并上电之后,利用自校准电路对副卡模块进行校准,从而简化了产品的校准流程,提高了产品模块化生产的效率。
在一些示例中,所述主卡模块310上还设置有基带子系统330,所述基带子系统330分别与第一射频集成电路311以及第二射频集成电路313相连,所述基带子系统330还可以与终端设备中的主处理器(例如,图2中的处理系统220)进行通信,以根据主处理器发送的指令,控制第一射频集成电路311和/或第二射频集成电路313执行相应的操作。
图6是本申请又一实施例的信号处理系统300的结构示意图。其中,为了简洁,图6中的主卡模块310中省略了第一射频集成电路311和第二FEM 312。如图6所示,所述主卡模块310和所述副卡模块320之间可通过接口相连。在一些示例中,所述主卡模块310包括校准主接口A1、发射主接口A2以及接收主接口A3。所述副卡模块320包括校准副接口B1、发射副接口B2以及接收副接口B3。
在一些示例中,校准主接口A1用于与校准副接口B1相互耦合,且校准主接口A1与主卡模块310中的自校准电路315相连,校准副接口B1用于与副卡模块320中的第二FEM 314相连。例如,校准副接口B1可以与第二FEM中的接收前端电路以及发射前端电路相连。
在一些示例中,接收主接口A3用于与接收副接口B3相互耦合,且接收主接口A3与第二射频集成电路313中的接收链路相连,接收副接口B3用于与副卡模块320中的第二FEM 314中的接收前端电路相连。
换句话说,第二FEM 314中的接收前端电路与第二射频集成电路313中的接收链路相互匹配,共同为第二SIM对应的射频接收通道中的组成部分。该射频接收通道可通过天线接收射频信号,并对该射频信号进行处理,以得到基带信号,并传递给基带子系统330。
在一些示例中,发射主接口A2用于与发射副接口B2相互耦合,且发射主接口A2与第二射频集成电路313中的发射链路相连,接收副接口B3用于与副卡模块320中的第二FEM 314中的发射前端电路相连。
换句话说,第二FEM 314中的发射前端电路与第二射频集成电路313中的发射链路相互匹配,共同为第二SIM对应的射频发射通道的组成部分。该射频发射通道可接收来自基带子系统330的基带信号,对基带信号进行处理以得到射频信号,并通过天线发送该 射频信号。
可选地,信号处理系统300中可以包括多个对应于第二SIM的射频子系统。换句话说,第二射频集成电路313中可包括多个接收链路、多个发射链路,副卡模块320中的第二FEM 314中也可以相应地设置有多个的接收前端电路、多个发射前端电路。因此,主卡模块310和副卡模块320也可以相应地设置有多个校准主/副接口(A1/B1)、多个接收主/副接口(A3/B3)、多个发射主/副接口(A2/B2)。
例如,多个发射链路与多个发射主接口A2一一对应,多个接收链路与多个接收主接口A3一一对应,多个发射前端电路与多个发射副接口B2一一对应,多个接收前端电路与多个接收副接口B3一一对应。多个发射链路+接收链路与多个校准主接口A1一一对应,多个接收前端电路+发射前端电路与多个校准副接口B1一一对应。
图7是本申请又一实施例的信号处理系统300的结构示意图。如图7所示,上述自校准电路315包括多路选择单元350。需要说明的是,若第二SIM对应于多个射频子系统,则自校准电路315中可包括多个多路选择单元350,多个多路选择单元350与多个射频子系统一一对应。每个射频子系统包括一个射频发射通道和一个接收通道。接下来以自校准电路315包括一个多路选择单元350为例进行描述。
如图7所示,多路选择单元350包括多个输入端C1~C3和一个输出端D,该输出端D与主卡模块310的校准主接口A1相连。
多路选择单元350的输入端包括但不限于以下端子:
A.天线输入端C1。
天线端用于与第二SIM对应的天线相连,第二SIM对应的天线也可以称为副卡天线。
B.参考信号输入端C2。
参考信号输入端用于接收来自第二射频集成电路313的发射链路的参考信号。
可选地,主卡模块310中的电路可以在生产线上进行校准,下文中将主卡模块在生产线上进行的校准称为初始校准,将副卡模块在后续产品组装过程中和主卡模块耦合之后进行的校准称为副卡模块的自校准。因此,所述第二射频集成电路313是已经过初始校准的电路。在一些示例中,在主卡模块310的生产线上,可以通过外部仪表对主卡模块310中的第二射频集成电路313进行校准,并根据校准结果配置第二射频集成电路313的电学参数。
可选地,上述参考信号可以是用于对第二射频集成电路313进行初始校准的信号。上述参考信号可以包括不同频段和/或不同功率的信号。
可选地,多路选择单元350可以包括一个或多个参考信号输入端C2。不同的参考信号输入端C2用于输出不同频段的参考信号。例如,参考信号可以包括以下至少一项:低频段参考信号、中高频段参考信号以及超高频段参考信号。
C.接地输入端C3。
接地输入端C3用于通过接地电阻与地相连。
其中,多路选择单元350的工作原理如下:
i).在副卡模块320正常工作的情况下,多路选择单元350可以将输出端D切换至天线输入端C1。在这种情况下,第二射频集成电路313、第二FEM 314以及天线相互连通,可以进行射频信号的正常收发。
ii).在需要校准副卡模块320中的接收前端电路的情况下,多路选择单元350可以将输出端D切换至参考信号输入端C2。在这种情况下,接收前端电路可通过校准副接口B1接收参考信号,并通过接收副接口B3输出所述接收前端电路的测量信号。可选地,在包括多个参考信号输入端C2的情况下,多路选择单元350可以将输出端D依次切换至不同的参考信号输入端C2,以使得接收前端电路接收不同频段的参考信号,并输出在不同频段的测量信号。
可选地,接收前端电路包括与第二射频集成电路313中的接收链路匹配的射频前端器件,接收前端电路的输入端与校准副接口B1相连,接收前端电路的输出端与接收副接口B3相连。
可选地,如图7所示,在一些示例中,所述发射前端电路包括功率放大器以及第二滤波器,所述功率放大器的输入端与所述发射前端电路的输入端相连,所述功率放大器的输出端与所述第二滤波器的输入端相连,所述第二滤波器的输出端与所述发射前端电路的输出端相连。
需要说明的是,图7中的滤波器为双工滤波器。该滤波器可以同时应用于发射前端电路和接收前端电路。上述第二滤波器可以理解为图7中的双工滤波器中的一部分。
结合图7可知,接收前端电路在接收到发射链路输出的参考信号之后,可通过接收副接口B3将接收前端电路的测量信号输出至主卡模块310中的接收链路中。主卡模块310中的接收链路在接收到接收前端电路的测量信号之后,可以继续将通过接收链路后的测量信号输出至上层的校准处理模块中,以便于上层的校准处理模块基于接收到的信号对接收前端电路的电学参数进行校准。具体地,由于参考信号是在主卡模块310出厂前已经校准过的信号,可以认为参考信号为标准信号。因此,校准处理模块可以比较参考信号和通过接收链路的测量信号,并根据比较结果对接收前端电路的电学参数进行校准。该校准处理模块可以位于第二射频集成电路313中,也可以位于主卡模块310中的基带子系统330。或者,也可以位于其它类型的处理器中。
iii).在需要校准副卡模块320中的发射前端电路的情况下,多路选择单元350可以将输出端D切换至接地输入端C3,其中,发射前端电路通过发射副接口B2接收来自发射链路的参考信号,并通过校准副接口B1输出发射前端电路的测量信号。可选地,上述参考信号可以包括不同频段的参考信号,发射链路可以依次向发射前端电路发送不同频段的参考信号,以获取发射前端电路在不同频段的测量信号。
可选地,发射前端电路包括与第二射频集成电路313中的发射链路匹配的射频前端器件,所述发射前端电路的输入端与所述发射副接口B2相连,所述发射链路电路的输出端与所述校准副接口B1相连。
可选地,如图7所示,在一些示例中,所述接收前端电路包括第一滤波器以及低噪声放大器,所述第一滤波器的输入端与所述接收前端电路的输入端相连,所述第一滤波器的输出端与所述低噪声滤波器的输入端相连,所述低噪声滤波器的输出端与所述接收前端电路的输出端相连。
需要说明的是,图7中的滤波器为双工滤波器。该滤波器可以同时应用于发射前端电路和接收前端电路。上述第一滤波器可以理解为图7中的双工滤波器中的一部分。
可选地,如图7所示,所述自校准电路315还包括:耦合电路360,所述耦合电路360 用于感应通过所述多路选择单元350的接地输入端C3的所述发射前端电路的测量信号,并输出感应的信号。在一些示例中,所述耦合电路360包括耦合电感,所述耦合电感用于与所述多路选择单元350的接地输入端C3耦合,所述耦合电感的第一端接地,所述耦合电感的第二端用于输出其感应的所述发射前端电路的测量信号。作为示例,所述耦合电感可以通过接地电阻与地相连。
换句话说,结合图7可知,发射前端电路在接收来自发射链路的参考信号之后,可以通过校准副接口B1和校准主接口A1将发射前端电路的测量信号输出至自校准电路315中。自校准电路315中的耦合电路360可以感应并输出上述发射前端电路的测量信号。
如图7所示,在一些示例中,主卡模块310中还包括测量接收电路,该测量接收电路用于从所述耦合电路接收发射前端电路的测量信号。可选地,该测量接收电路可以设置于第二射频集成电路313之中,也可以设置于主卡模块310中的其它电路模块中。该测量接收电路在接收到发射前端电路的测量信号之后,可以继续将测量信号输出至上层的校准处理模块中,以便于上层的校准处理模块基于接收到的信号对发射前端电路的电学参数进行校准。该校准处理模块可以位于第二射频集成电路313中,也可以位于主卡模块310中的基带子系统330中。或者,也可以位于其它类型的处理器中。
可选地,在初始校准时,还可以对主卡模块310中的测量接收电路进行校准。在一些示例中,在主卡模块310的生产线上,可以通过外部仪表对测量接收电路校准,并根据校准结果配置测量接收电路的电学参数。具体地,可以针对测量接收电路在接收不同频段和/或不同频率的参考信号的情况,对测量接收电路的电学参数进行校准。
在本申请实施例的方案中,在产品出厂前,可以只校准主卡模块310中的射频电路,而无需校准副卡模块320中的电路。例如,只校准第一射频集成电路311、第一FEM 312以及第二射频集成电路313。其中,主卡模块310可以利用外部仪表对第二射频集成电路313进行校准。在后期的设备组装过程中,若主卡模块310和副卡模块320相互耦合,则可以在对主卡模块310和副卡模块320上电的情况下,利用主卡模块310中的自校准电路315对副卡模块320中的第二FEM进行自校准。即副卡模块320可以在出厂后进行设备组装时再进行校准,从而可以实现主卡模块310和副卡模块320的模式化生产,并且实现了副卡模块320在出厂后的自校准。
另外,主卡模块310中可以保存初始校准的参考信号的信息,以便于使用该参考信号对副卡模块320中的电路进行校准。
图8是本申请又一实施例的信号处理系统300的结构示意图。如图8所示,该信号处理系统300以第二射频集成电路313中包括两个发射链路(TX1,TX2)和两个接收链路(RX1,RX2)为例进行描述。
如图8所示,自校准电路包括两个多路选择单元(350-1,350-2)。其中,多路选择单元350-1与第一发射链路TX1、第一接收链路RX1对应。多路选择单元350-2与第二发射链路TX2、第二接收链路RX2对应。主卡模块310中还包括测量接收电路MRX。其中,多路选择单元350-1对应于校准主接口A1-1,多路选择单元350-2对应于校准主接口A1-2。第一发射链路TX1对应于发射主接口A2-1。第一接收链路RX1对应于接收主接口A3-1,第二接收链路RX2对应于接收主接口A3-2。副卡模块上的接口与主卡模块上的接口一一对应,为了简洁,此处不再赘述。另外,为了视图清楚,图8中省略了第二发射链路TX2 对应的发射前端电路以及相应接口。
如图8所示,多路选择单元350-1的输入端包括一个天线输入端、一个接地输入端以及三个参考信号输入端。上述三个参考信号输入端分别用于接收参考信号CAL_LB、CAL_MHB以及CAL_UHB。其中,CAL_LB、CAL_MHB以及CAL_UHB分别用于表示低频段参考信号、中高频段参考信号以及超高频段参考信号。
在初始校准阶段,主卡模块可以基于参考信号CAL_LB、CAL_MHB以及CAL_UHB进行校准,并保存相应的电学参数和参考信号的信息。可选地,上述参考信号还将用于副卡模块的自校准。
在初始校准阶段,主卡模块还可以基于参考信号CAL_LB、CAL_MHB以及CAL_UHB,对测量接收电路MRX进行校准,并保存相应的电学参数和参考信号的信息。
图9是本申请又一实施例的信号处理系统300的结构示意图。图9示出了对副卡模块320中的接收前端电路进行自校准的场景。如图9所示,多路选择单元(350-1、350-2)将输出端依次切换至三个参考信号输入端,发射链路(TX1,TX2)通过参考信号输入端输出不同频段的参考信号CAL_LB、CAL_MHB或CAL_UHB。副卡模块320中的接收前端电路通过接收副接口(B1-1、B1-2)从发射链路TX1接收参考信号CAL_LB、CAL_MHB或CAL_UHB。主卡模块310中的接收链路(RX1,RX2)在接收到接收前端电路的测量信号之后,可以继续将通过接收链路(RX1,RX2)后的测量信号输出至上层的校准处理模块中,以便于上层的校准处理模块基于接收到的信号对接收前端电路的电学参数进行校准。
图10是本申请又一实施例的信号处理系统300的结构示意图。图10示出了对副卡模块320中的发射前端电路进行自校准的场景,如图10所示,多路选择单元350-1将输出端切换至接地输入端。发射前端电路通过发射副接口B2-1接收发射链路TX1输出的参考信号CAL_LB、CAL_MHB或CAL_UHB,并通过校准副接口B1-1向多路选择单元350-1的输出端发送发射前端电路的测量信号。自校准电路中的耦合电路感应并输出所述发射前端电路的测量信号,测量接收电路MRX接收上述测量信号。该测量接收电路MRX在接收到发射前端电路的测量信号之后,可以继续将测量信号输出至上层的校准处理模块中,以便于上层的校准处理模块基于接收到的信号对发射前端电路的电学参数进行校准。
可选地,发射链路TX1可以通过发射副接口A2-1向发射前端电路发送不同频段的参考信号。例如,上述参考信号可以包括但不限于参考信号CAL_LB、CAL_MHB或CAL_UHB。
图11是本申请又一实施例的信号处理系统300的结构示意图。图11示出信号处理系统300处于正常工作的场景,即信号处理系统300处于业务模式。如图11所示,在业务模式下,多路选择单元(350-1,350-2)将输出端切换至天线输入端。信号处理系统300可以基于副卡模块进行自校准之后的电学参数,进行射频信号的正常收发的操作。
图12是本申请又一实施例的信号处理系统300的结构示意图。图12示出了信号处理系统300应用于单卡系统的结构示意图。如图12所示,在应用于单卡系统的情况下,信号处理系统300中只包括主卡模块310。
在本申请实施例中,在主卡模块生产线上,可以对主卡模块中第一SIM对应的射频电路进行发射机和接收机的校准,以及对第二射频集成电路313进行初始校准,并存储校 准后的电学参数和参考信号的信息,以便于在后续的产品组装流程中实现对副卡模块的自校准。而在副卡模块的生产线上,可以不对副卡模块进行校准。
在一些示例中,对于支持单卡系统的信号处理系统,可以在信号处理系统的产品组装过程中,仅封装主卡模块,该信号处理系统在上电之后即可以进行正常的射频信号的收发操作。
在一些示例中,对于支持双卡双通或者多卡多通规格的信号处理系统,可以在信号处理系统的产品组装过程中封装主卡模块和副卡模块。在初次上电后,主卡模块可以通过自校准电路完成对副卡模块的自校准,并在完成副卡模块的自校准之后,进行正常的射频信号的收发操作。
在本申请实施例中,信号处理系统中的主卡模块和副卡模块采用模块化设计,方便产品的生产和组装。另外,在主卡模块和副卡模块相互耦合并上电之后,副卡模块可以基于主卡模块实现自校准,无需额外在出厂前线对副卡模块进行校准,从而提高了产品的生产效率。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种信号处理系统,其特征在于,包括:主卡模块和副卡模块,所述主卡模块包括:
    第一射频集成电路,所述第一射频集成电路用于支持接收和/或发送第一用户识别模块SIM对应的射频信号;
    第一前端模块FEM,与所述第一射频集成电路相连,所述第一FEM包括匹配于所述第一射频集成电路的射频前端器件;
    第二射频集成电路,所述第二射频集成电路用于支持接收和/或发送第二SIM对应的射频信号;
    自校准电路,与所述第二射频集成电路相连,所述自校准电路用于校准匹配于所述第二射频集成电路的第二FEM,所述第二FEM设置于副卡模块,所述主卡模块和所述副卡模块为能够相互耦合或分离的模块。
  2. 如权利要求1所述的系统,其特征在于,所述主卡模块还包括:
    校准主接口,用于与所述副卡模块中的校准副接口相互耦合,所述校准主接口用于与所述自校准电路相连;
    接收主接口,用于与所述副卡模块中的接收副接口相互耦合,所述接收主接口用于与所述第二射频集成电路中的接收链路相连;
    发射主接口,用于与所述副卡模块中的发射副接口相互耦合,所述发射主接口用于与所述第二射频集成电路中的发射链路相连。
  3. 如权利要求2所述的系统,其特征在于,所述自校准电路包括多路选择单元,所述多路选择单元包括多个输入端和一个输出端,所述输出端用于与所述主卡模块的校准主接口相连;
    所述多个输入端包括:天线输入端,用于与所述第二SIM对应的天线相连;
    其中,所述多路选择单元用于:在所述副卡模块正常工作的情况下,将所述输出端切换至所述天线输入端。
  4. 如权利要求3所述的系统,其特征在于,所述多路选择单元的多个输入端还包括:
    参考信号输入端,用于接收来自所述第二射频集成电路的发射链路的参考信号。
  5. 如权利要求4所述的系统,其特征在于,所述第二FEM包括:
    接收前端电路,包括与所述第二射频集成电路中的接收链路匹配的射频前端器件,所述接收前端电路的输入端与所述校准副接口相连,所述接收前端电路的输出端与所述接收副接口相连;
    所述多路选择单元用于:在校准所述接收前端电路的情况下,将所述输出端切换至所述参考信号输入端,其中,所述接收前端电路用于接收所述参考信号,并输出所述接收前端电路的测量信号。
  6. 如权利要求5所述的系统,其特征在于,所述接收前端电路包括第一滤波器以及低噪声放大器,所述第一滤波器的输入端与所述接收前端电路的输入端相连,所述第一滤波器的输出端与所述低噪声滤波器的输入端相连,所述低噪声滤波器的输出端与所述接收 前端电路的输出端相连。
  7. 如权利要求3至6中任一项所述的系统,其特征在于,所述多路选择单元的多个输入端还包括:
    接地输入端,用于通过接地电阻与地相连。
  8. 如权利要求7所述的系统,其特征在于,所述第二FEM包括:
    发射前端电路,包括与所述第二射频集成电路中的发射链路匹配的射频前端器件,所述发射前端电路的输入端与所述发射副接口相连,所述发射链路电路的输出端与所述校准副接口相连;
    所述多路选择单元用于:在校准所述发射前端电路的情况下,将所述输出端切换至所述接地输入端,其中,所述发射前端电路用于接收来自所述发射链路的参考信号,并输出所述发射前端电路的测量信号,所述参考信号为经过校准的信号。
  9. 如权利要求8所述的系统,其特征在于,所述自校准电路还包括:
    耦合电路,所述耦合电路用于感应并输出通过所述多路选择单元的接地输入端的所述发射前端电路的测量信号。
  10. 如权利要求9所述的系统,其特征在于,所述耦合电路包括耦合电感,所述耦合电感用于与所述多路选择单元的接地输入端耦合,所述耦合电感的第一端接地,所述耦合电感的第二端用于输出其感应的所述发射前端电路的测量信号。
  11. 如权利要求8至10中任一项所述的系统,其特征在于,所述发射前端电路包括功率放大器以及第二滤波器,所述功率放大器的输入端与所述发射前端电路的输入端相连,所述功率放大器的输出端与所述第二滤波器的输入端相连,所述第二滤波器的输出端与所述发射前端电路的输出端相连。
  12. 如权利要求8至11中任一项所述的系统,其特征在于,所述参考信号包括以下参考信号中的至少一项:低频段参考信号、中高频段参考信号以及超高频段参考信号。
  13. 如权利要求1至12中任一项所述的系统,其特征在于,所述主卡模块还包括基带子系统,所述基带子系统分别与所述第一射频集成电路以及第二射频集成电路相连,所述基带子系统用于处理基带信号。
  14. 一种信号处理模组,其特征在于,包括:主卡模块,所述主卡模块包括:
    第一射频集成电路,所述第一射频集成电路用于支持接收和/或发送第一用户识别模块SIM对应的射频信号;
    第一前端模块FEM,与所述第一射频集成电路相连,所述第一FEM包括匹配于所述第一射频集成电路的射频前端器件;
    第二射频集成电路,所述第二射频集成电路用于支持接收和/或发送第二SIM对应的射频信号;
    自校准电路,与所述第二射频集成电路相连,所述自校准电路用于校准匹配于所述第二射频集成电路的第二FEM,所述第二FEM设置于副卡模块,所述主卡模块和所述副卡模块为能够相互耦合或分离的模块。
  15. 如权利要求14所述的模组,其特征在于,所述主卡模块还包括:
    校准主接口,用于与所述副卡模块中的校准副接口相互耦合,所述校准主接口用于与所述自校准电路相连;
    接收主接口,用于与所述副卡模块中的接收副接口相互耦合,所述接收主接口用于与所述第二射频集成电路中的接收链路相连;
    发射主接口,用于与所述副卡模块中的发射副接口相互耦合,所述发射主接口用于与所述第二射频集成电路中的发射链路相连。
  16. 如权利要求15所述的模组,其特征在于,所述自校准电路包括多路选择单元,所述多路选择单元包括多个输入端和一个输出端,所述输出端用于与所述主卡模块的校准主接口相连;
    所述多个输入端包括:天线输入端,用于与所述第二SIM对应的天线相连;
    其中,所述多路选择单元用于:在所述副卡模块正常工作的情况下,将所述输出端切换至所述天线输入端。
  17. 如权利要求16所述的模组,其特征在于,所述多路选择单元的多个输入端还包括:
    参考信号输入端,用于接收来自所述第二射频集成电路的发射链路的参考信号。
  18. 如权利要求17所述的模组,其特征在于,所述第二FEM包括:
    接收前端电路,包括与所述第二射频集成电路中的接收链路匹配的射频前端器件,所述接收前端电路的输入端与所述校准副接口相连,所述接收前端电路的输出端与所述接收副接口相连;
    所述多路选择单元用于:在校准所述接收前端电路的情况下,将所述输出端切换至所述参考信号输入端,其中,所述接收前端电路用于接收所述参考信号,并输出所述接收前端电路的测量信号。
  19. 如权利要求18所述的模组,其特征在于,所述接收前端电路包括第一滤波器以及低噪声放大器,所述第一滤波器的输入端与所述接收前端电路的输入端相连,所述第一滤波器的输出端与所述低噪声滤波器的输入端相连,所述低噪声滤波器的输出端与所述接收前端电路的输出端相连。
  20. 如权利要求16至19中任一项所述的模组,其特征在于,所述多路选择单元的多个输入端还包括:
    接地输入端,用于通过接地电阻与地相连。
  21. 如权利要求20所述的模组,其特征在于,所述第二FEM包括:
    发射前端电路,包括与所述第二射频集成电路中的发射链路匹配的射频前端器件,所述发射前端电路的输入端与所述发射副接口相连,所述发射链路电路的输出端与所述校准副接口相连;
    所述多路选择单元用于:在校准所述发射前端电路的情况下,将所述输出端切换至所述接地输入端,其中,所述发射前端电路用于接收来自所述发射链路的参考信号,并输出所述发射前端电路的测量信号,所述参考信号为经过校准的信号。
  22. 如权利要求21所述的模组,其特征在于,所述自校准电路还包括:
    耦合电路,所述耦合电路用于感应并输出通过所述多路选择单元的接地输入端的所述发射前端电路的测量信号。
  23. 如权利要求22所述的模组,其特征在于,所述耦合电路包括耦合电感,所述耦合电感用于与所述多路选择单元的接地输入端耦合,所述耦合电感的第一端接地,所述耦 合电感的第二端用于输出其感应的所述发射前端电路的测量信号。
  24. 如权利要求21至23中任一项所述的模组,其特征在于,所述发射前端电路包括功率放大器以及第二滤波器,所述功率放大器的输入端与所述发射前端电路的输入端相连,所述功率放大器的输出端与所述第二滤波器的输入端相连,所述第二滤波器的输出端与所述发射前端电路的输出端相连。
  25. [根据细则91更正 29.04.2020] 
    如权利要求21至24中任一项所述的模组,其特征在于,所述参考信号包括以下参考信号中的至少一项:低频段参考信号、中高频段参考信号以及超高频段参考信号。
  26. 如权利要求14至25中任一项所述的模组,其特征在于,所述主卡模块还包括基带子系统,所述基带子系统分别与所述第一射频集成电路以及第二射频集成电路相连,所述基带子系统用于处理基带信号。
  27. 一种信号处理模组,其特征在于,包括:副卡模块,所述副卡模块包括:
    第二前端模块FEM,所述第二FEM包括匹配于第二射频集成电路的射频前端器件,所述第二射频集成电路设置于主卡模块,所述主卡模块和所述副卡模块为能够相互耦合或分离的模块;
    校准副接口,用于与所述主卡模块中的校准主接口相连,所述校准主接口用于与所述主卡模块中的自校准电路相连,所述自校准电路用于校准所述第二FEM。
  28. 如权利要求27所述的模组,其特征在于,所述副卡模块还包括:
    接收副接口,用于与所述副卡模块中的接收主接口相互耦合,所述接收主接口用于与所述第二射频集成电路中的接收链路相连;
    发射副接口,用于与所述副卡模块中的发射主接口相互耦合,所述发射主接口用于与所述第二射频集成电路中的发射链路相连。
  29. 如权利要求28所述的模组,其特征在于,所述第二FEM包括:
    接收前端电路,包括与所述第二射频集成电路中的接收链路匹配的射频前端器件,所述接收前端电路的输入端与所述校准副接口相连,所述接收前端电路的输出端与所述接收副接口相连。
  30. 如权利要求29所述的模组,其特征在于,所述接收前端电路包括第一滤波器以及低噪声放大器,所述第一滤波器的输入端与所述接收前端电路的输入端相连,所述第一滤波器的输出端与所述低噪声滤波器的输入端相连,所述低噪声滤波器的输出端与所述接收前端电路的输出端相连。
  31. 如权利要求28至30中任一项所述的模组,其特征在于,所述第二FEM包括:
    发射前端电路,包括与所述第二射频集成电路中的发射链路匹配的射频前端器件,所述发射前端电路的输入端与所述发射副接口相连,所述发射链路电路的输出端与所述校准副接口相连。
  32. 如权利要求31所述的模组,其特征在于,所述发射前端电路包括功率放大器以及第二滤波器,所述功率放大器的输入端与所述发射前端电路的输入端相连,所述功率放大器的输出端与所述第二滤波器的输入端相连,所述第二滤波器的输出端与所述发射前端电路的输出端相连。
  33. 一种终端设备,其特征在于,所述终端设备包括如权利要求1至13中任一项所述的信号处理系统。
  34. 一种终端设备,其特征在于,所述终端设备包括如权利要求14至26中任一项所述的信号处理模组。
  35. 一种集成电路板,其特征在于,所述集成电路板上设置有如权利要求14至26中任一项所述的信号处理模组。
  36. 一种集成电路板,其特征在于,所述集成电路板上设置有如权利要求27至32中任一项所述的信号处理模组。
PCT/CN2019/130816 2019-12-31 2019-12-31 信号处理系统、信号处理模组和终端设备 WO2021134617A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/130816 WO2021134617A1 (zh) 2019-12-31 2019-12-31 信号处理系统、信号处理模组和终端设备
CN201980052341.4A CN113412581A (zh) 2019-12-31 2019-12-31 信号处理系统、信号处理模组和终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130816 WO2021134617A1 (zh) 2019-12-31 2019-12-31 信号处理系统、信号处理模组和终端设备

Publications (1)

Publication Number Publication Date
WO2021134617A1 true WO2021134617A1 (zh) 2021-07-08

Family

ID=76686818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130816 WO2021134617A1 (zh) 2019-12-31 2019-12-31 信号处理系统、信号处理模组和终端设备

Country Status (2)

Country Link
CN (1) CN113412581A (zh)
WO (1) WO2021134617A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115103464B (zh) * 2022-06-22 2024-03-01 Oppo广东移动通信有限公司 模式切换方法、装置、计算机设备、存储介质和程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277496A (zh) * 2008-05-12 2008-10-01 中兴通讯股份有限公司 一种双卡双模手机
US20180351255A1 (en) * 2016-11-30 2018-12-06 Ethertronics, Inc. Distributed control system for beam steering applications
CN109787643A (zh) * 2019-03-27 2019-05-21 龙尚科技(上海)有限公司 一种通信模组的制作方法
CN110535483A (zh) * 2019-07-26 2019-12-03 华为技术有限公司 通信模块及终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8472883B2 (en) * 2008-09-23 2013-06-25 Intel Mobile Communications GmbH Self calibration method for radio equipment with receive and transmit circuitry
CN105471490B (zh) * 2014-09-05 2020-05-12 中国移动通信集团有限公司 一种直放站及其信号处理方法
CN110289883B (zh) * 2019-07-31 2021-09-28 维沃移动通信有限公司 一种射频电路、终端设备及电路控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277496A (zh) * 2008-05-12 2008-10-01 中兴通讯股份有限公司 一种双卡双模手机
US20180351255A1 (en) * 2016-11-30 2018-12-06 Ethertronics, Inc. Distributed control system for beam steering applications
CN109787643A (zh) * 2019-03-27 2019-05-21 龙尚科技(上海)有限公司 一种通信模组的制作方法
CN110535483A (zh) * 2019-07-26 2019-12-03 华为技术有限公司 通信模块及终端

Also Published As

Publication number Publication date
CN113412581A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
US9203455B2 (en) Full duplex system with self-interference cancellation
EP2947781B1 (en) System and method for tuning an antenna in a wireless communication device
US20110045786A1 (en) Apparatus and method for switching from reception to transmission
US20210098897A1 (en) Antenna-plexer for interference cancellation
CN107925423A (zh) 多个lna之间的级联开关
US9374127B2 (en) Balancing method of tunable duplexer
WO2013063922A1 (zh) 射频收发器、终端和终端接收信号的方法
US8948707B2 (en) Duplex filter arrangements for use with tunable narrow band antennas having forward and backward compatibility
WO2016032573A1 (en) Systems and methods for a wireless network bridge
CN110460365A (zh) 多输入多输出(mimo)中继器系统
TW202316819A (zh) 包括共同濾波器之射頻前端模組
US10812128B2 (en) System and method for exchanging information
WO2021134617A1 (zh) 信号处理系统、信号处理模组和终端设备
CN101965749B (zh) 射频装置
CN113841341B (zh) 一种无线通信装置及其天线切换方法
CN114073026A (zh) 数据重排序方法及通信装置
WO2022160313A1 (zh) 一种通信装置
EP4020853A1 (en) A distributed radiohead system
WO2022110230A1 (zh) 一种射频电路、信号反馈电路和通信系统
US20180159583A1 (en) Wireless device
US20240072455A1 (en) Methods and devices for antenna sharing using a radiohead in a distributed radio system
CN107154806B (zh) 用于单无线电多设备通信的系统和方法
US20220294527A1 (en) Apparatus, system and method of wireless communication by an integrated radio head
CN117040658A (zh) 一种射频功率校准方法、装置、终端及介质
CN116414753A (zh) 控制展频的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958129

Country of ref document: EP

Kind code of ref document: A1