WO2021134611A1 - 无线充电的方法、发射端设备和无线充电设备 - Google Patents

无线充电的方法、发射端设备和无线充电设备 Download PDF

Info

Publication number
WO2021134611A1
WO2021134611A1 PCT/CN2019/130805 CN2019130805W WO2021134611A1 WO 2021134611 A1 WO2021134611 A1 WO 2021134611A1 CN 2019130805 W CN2019130805 W CN 2019130805W WO 2021134611 A1 WO2021134611 A1 WO 2021134611A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
wave signal
wireless charging
charging
charging device
Prior art date
Application number
PCT/CN2019/130805
Other languages
English (en)
French (fr)
Inventor
刘永俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19958501.9A priority Critical patent/EP4068567A4/en
Priority to CN201980102839.7A priority patent/CN114930675A/zh
Priority to JP2022540497A priority patent/JP7407292B2/ja
Priority to PCT/CN2019/130805 priority patent/WO2021134611A1/zh
Publication of WO2021134611A1 publication Critical patent/WO2021134611A1/zh
Priority to US17/851,787 priority patent/US20220329104A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/22The load being a portable electronic device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas

Definitions

  • This application relates to the field of wireless charging, and more specifically, to a method of wireless charging, a transmitting terminal device, and a wireless charging device.
  • the transmitter device sends an electromagnetic wave signal
  • the wireless charging device can charge according to the electromagnetic wave signal.
  • the charging performance of the wireless charging technology is not high due to the positional relationship between the transmitter device and the wireless charging device. Therefore, as the application of wireless charging technology becomes more and more popular, how to improve the charging performance of wireless charging needs to be solved urgently.
  • the present application provides a wireless charging method, a transmitting terminal device, and a wireless charging device, which can improve the charging performance of wireless charging.
  • a wireless charging method includes: a transmitting end device receives a first electromagnetic wave signal from a wireless charging device; the transmitting end device performs power amplification on all or part of the first electromagnetic wave signal to obtain the first electromagnetic wave signal Three electromagnetic wave signals; the transmitter device sends the third electromagnetic wave signal to the wireless charging device, and the third electromagnetic wave signal is used to charge the wireless charging device.
  • the charging process between the transmitter device and the wireless charging device in the embodiment of the present application may form a cyclic process. That is, the transmitting end device sends electromagnetic wave signals to the wireless charging device for charging.
  • the wireless charging device uses part of the electromagnetic wave signal for charging, and the other part of the electromagnetic wave signal is used to feed back to the transmitting end device for amplification, and the amplified electromagnetic wave signal is reused for charging.
  • the wireless charging device performs charging. In this way, the transmitter device and the wireless charging device can reach a stable power range for wireless charging, thereby improving the charging performance.
  • the transmitting end device power-amplifying a part of the first electromagnetic wave signal to obtain the third electromagnetic wave signal includes: separating the first electromagnetic wave to obtain the second electromagnetic wave signal and the fourth electromagnetic wave signal The transmitting end device determines the gain coefficient according to the fourth electromagnetic wave signal; the transmitting end device performs power amplification on the second electromagnetic wave signal according to the gain coefficient to obtain the third electromagnetic wave signal.
  • the transmitting end device can adjust the gain coefficient according to the power of the fourth electromagnetic wave signal. For example, when the power of the fourth electromagnetic wave signal is low (for example, low level), the gain coefficient is increased; when the power of the fourth electromagnetic wave signal is high (for example, high level), the gain coefficient is reduced.
  • the transmitting end device may set a preset power threshold in advance, and determine the level of the fourth electromagnetic wave signal based on the relationship with the preset power threshold. In this way, the transmitting end device can adjust the power of the third electromagnetic wave signal through the gain coefficient so that the power of the third electromagnetic wave signal can reach a stable power range, which helps to improve the charging performance of wireless charging.
  • the fourth electromagnetic wave signal may be a partial signal of the first electromagnetic wave signal, wherein the fourth electromagnetic wave signal is different from the second electromagnetic wave signal.
  • the first electromagnetic wave signal can be separated into a second electromagnetic wave signal and a fourth electromagnetic wave signal.
  • performing power or energy distribution to obtain the second electromagnetic wave signal and the fourth electromagnetic wave signal may be implemented by a power distributor for power or energy distribution, or a coupler to electromagnetically couple power or energy.
  • the energy of the second electromagnetic wave signal and the energy of the fourth electromagnetic wave signal may be equally distributed or unequally distributed.
  • the second electromagnetic wave signal and the fourth electromagnetic wave signal are obtained by using a coupler to perform power or energy electromagnetic coupling of the first electromagnetic wave signal.
  • the energy of the fourth electromagnetic wave signal is generally less than the energy of the second electromagnetic wave signal.
  • the method further includes: the transmitting end device receives a fifth electromagnetic wave signal from the wireless charging device, and the fifth electromagnetic wave signal is the third electromagnetic wave signal from the wireless charging device. Obtained by separation; when the signal strength of the fifth electromagnetic wave signal is less than or equal to the preset value, the transmitting end device stops charging the wireless charging device.
  • the transmitting end device may determine whether to continue charging the wireless charging device according to the magnitude relationship between the signal strength of the fifth electromagnetic wave signal and the first preset signal strength threshold. Or the transmitter device may determine whether to continue charging the wireless charging device according to the magnitude relationship between the signal strength of the currently received electromagnetic wave signal and the signal strength of the previous electromagnetic wave signal and the second preset signal strength threshold.
  • the shielding reaches a certain degree, the radiation pollution of electromagnetic wave signals caused by the continuous emission of electromagnetic wave signals can be avoided.
  • the embodiments of the present application can reduce the radiation hazard to the human body.
  • the fifth electromagnetic wave signal is obtained by separating the third electromagnetic wave.
  • the method further includes: the transmitter device receives a charging connection request from the wireless charging device, the charging connection request includes charging power demand information of the wireless charging device; the transmitting The terminal device determines whether the wireless charging device can be charged according to the charging power demand information; the transmitting terminal device sends a charging connection response message to the wireless charging device, and the charging connection response message is used to indicate whether the wireless charging device can be charged Charge it.
  • the wireless charging device can actively send a charging connection request and carry charging power demand information indicating the required power.
  • the transmitting terminal device receives the charging connection request, and determines whether the power requirement can be met according to the charging power requirement information in the charging connection request, and notifies the wireless charging device of the result through a charging connection response message. If the transmitting terminal device determines that the wireless charging device can be charged, the charging connection response message indicates that the wireless charging device can be charged, so that the transmitting terminal device and the wireless charging device can establish a charging connection.
  • the charging connection response message in a case where the charging connection response message indicates that the wireless charging device cannot be charged, the charging connection response message further includes a delay time for re-establishing the charging connection.
  • the charging connection response message indicates that the transmitting terminal device cannot charge the wireless charging device
  • the charging connection response message further includes the delay time for re-establishing the charging connection. In this way, when the delay time arrives, the wireless charging device can resend the charging connection request to the transmitting end device, avoiding the power consumption overhead caused by multiple requests of the wireless charging device when the transmitting end device cannot provide charging services. .
  • the wireless charging device before the wireless charging device can send a charging connection request to the transmitting end device, the wireless charging device may also receive charging broadcast information from the transmitting end device, and the charging broadcast information is used to indicate the The transmitter device has charging capability.
  • the charging broadcast information may include the identification of the wireless charging device.
  • the transmitter device is used to trigger the wireless charging device to initiate a charging connection request. This avoids the wireless charging device from sending a charging connection request to the transmitting end device that does not have the charging capability, and helps to reduce the delay in establishing the charging connection.
  • the method further includes: the transmitting end device sends charging broadcast information, the charging broadcast information includes the charging capability of the transmitting end device; the transmitting end device receives from the wireless charging device The charging connection request is used to request to charge the wireless charging device.
  • the transmitting terminal device can actively send charging broadcast information, and the wireless charging device determines whether the power demand of the wireless charging device can be met according to the charging capability included in the received charging broadcast information. If the charging capability of the transmitting terminal device does not meet the power requirement of the wireless charging device, the wireless charging device may not send the charging connection request to the transmitting terminal device, thereby saving the power consumption of the wireless charging device.
  • a wireless charging method includes: a wireless charging device receives a third electromagnetic wave signal from a transmitting end device; and the wireless charging device separates the third electromagnetic wave signal to obtain a fifth electromagnetic wave signal and a sixth electromagnetic wave signal. Electromagnetic wave signal; the wireless charging device sends the fifth electromagnetic wave signal to the transmitting end device; the wireless charging device performs charging according to the sixth electromagnetic wave signal.
  • the charging process between the transmitter device and the wireless charging device in the embodiment of the present application may form a cyclic process. That is, the transmitting end device sends electromagnetic wave signals to the wireless charging device for charging.
  • the wireless charging device uses part of the electromagnetic wave signal for charging, and the other part of the electromagnetic wave signal is used to feed back to the transmitting end device for amplification, and the amplified electromagnetic wave signal is reused for charging.
  • the wireless charging device performs charging. In this way, the transmitter device and the wireless charging device can reach a stable power range for wireless charging, thereby improving the charging performance.
  • the fifth electromagnetic wave signal and the sixth electromagnetic wave may be partial signals of the third electromagnetic wave signal, respectively.
  • the third electromagnetic wave signal can be separated into a fifth electromagnetic wave signal and a sixth electromagnetic wave signal.
  • the fifth electromagnetic wave signal and the sixth electromagnetic wave signal are obtained through power or energy distribution through a power divider, or the fifth electromagnetic wave signal and the sixth electromagnetic wave signal are obtained through electromagnetic coupling of power or energy through a coupler.
  • the energy of the fifth electromagnetic wave signal and the energy of the sixth electromagnetic wave signal may be equally distributed or unequally distributed.
  • the fifth electromagnetic wave signal and the sixth electromagnetic wave signal are obtained by using a coupler to perform power or energy electromagnetic coupling of the third electromagnetic wave signal.
  • the energy of the fifth electromagnetic wave signal is generally less than the energy of the sixth electromagnetic wave signal.
  • the method further includes: the wireless charging device sends a charging connection request to the transmitting end device, the charging connection request includes charging power demand information of the wireless charging device; the wireless charging The device receives a charging connection response message from the transmitting terminal device, where the charging connection response message is used to indicate whether the transmitting terminal device can charge the wireless charging device.
  • the wireless charging device can actively send a charging connection request and carry charging power demand information indicating the required power.
  • the transmitting terminal device receives the charging connection request, and determines whether the power requirement can be met according to the charging power requirement information in the charging connection request, and notifies the wireless charging device of the result through a charging connection response message. If the transmitting terminal device determines that the wireless charging device can be charged, the charging connection response message indicates that the wireless charging device can be charged, so that the transmitting terminal device and the wireless charging device can establish a charging connection.
  • the charging connection response message in the case that the charging connection response message indicates that the transmitting end device cannot charge the wireless charging device, the charging connection response message further includes a delay in re-establishing the charging connection
  • the method further includes: when the delay time period arrives, the wireless charging device resends the charging connection request to the transmitting end device.
  • the charging connection response message indicates that the transmitting terminal device cannot charge the wireless charging device
  • the charging connection response message further includes the delay time for re-establishing the charging connection. In this way, when the delay time arrives, the wireless charging device can resend the charging connection request to the transmitting end device, avoiding the power consumption overhead caused by multiple requests of the wireless charging device when the transmitting end device cannot provide charging services. .
  • the method further includes: the wireless charging device receives charging broadcast information, where the charging broadcast information includes the charging capability of the transmitting end device; and the charging capability of the transmitting end device satisfies the In the case of the power demand of the wireless charging device, the wireless charging device sends a charging connection request to the transmitting end device, and the charging connection request is used to request to charge the wireless charging device.
  • the transmitting terminal device can actively send charging broadcast information, and the wireless charging device determines whether the power demand of the wireless charging device can be met according to the charging capability included in the received charging broadcast information. If the charging capability of the transmitting terminal device does not meet the power requirement of the wireless charging device, the wireless charging device may not send the charging connection request to the transmitting terminal device, thereby saving the power consumption of the wireless charging device.
  • a wireless charging transmitter device including: a transceiving antenna for receiving a first electromagnetic wave signal from a wireless charging device, and forwarding all or part of the first electromagnetic wave signal to a power amplifier module;
  • the power amplifying module is used to power amplify all or part of the first electromagnetic wave signal to obtain a third electromagnetic wave signal, and send the third electromagnetic wave signal to the transceiver antenna;
  • the transceiver antenna is also used for wireless charging The device sends the third electromagnetic wave signal, and the third electromagnetic wave signal is used to charge the wireless charging device.
  • the charging process between the transmitter device and the wireless charging device in the embodiment of the present application may form a cyclic process. That is, the transmitting end device sends electromagnetic wave signals to the wireless charging device for charging.
  • the wireless charging device uses part of the electromagnetic wave signal for charging, and the other part of the electromagnetic wave signal is used to feed back to the transmitting end device for amplification, and the amplified electromagnetic wave signal is reused for charging.
  • the wireless charging device performs charging. In this way, the transmitter device and the wireless charging device can reach a stable power range for wireless charging, thereby improving the charging performance.
  • the transmitting end device further includes a power distribution module and a gain control module.
  • the power distribution module is configured to separate the first electromagnetic wave signal to obtain the second electromagnetic wave signal and the fourth electromagnetic wave signal. Electromagnetic wave signal, and send the fourth electromagnetic wave signal to the gain control module; the gain control module is used to determine the gain coefficient according to the fourth electromagnetic wave signal, and send the gain coefficient to the power amplifying module; the power amplifying module , Used to power amplify all or part of the first electromagnetic wave signal to obtain a third electromagnetic wave signal, and send the third electromagnetic wave signal to the transceiver antenna, specifically: the power amplifying module is used to, according to the gain coefficient, Amplify the power of the second electromagnetic wave signal to obtain the third electromagnetic wave signal, and send the third electromagnetic wave signal to the transceiver antenna.
  • the transmitting end device can adjust the gain coefficient according to the power of the fourth electromagnetic wave signal. For example, when the power of the fourth electromagnetic wave signal is low (for example, low level), the gain coefficient is increased; when the power of the fourth electromagnetic wave signal is high (for example, high level), the gain coefficient is reduced.
  • the transmitting end device may set a preset power threshold in advance, and determine the level of the fourth electromagnetic wave signal based on the relationship with the preset power threshold. In this way, the transmitting end device can adjust the power of the third electromagnetic wave signal through the gain coefficient so that the power of the third electromagnetic wave signal can reach a stable power range, which helps to improve the charging performance of wireless charging.
  • the fourth electromagnetic wave signal may be a partial signal of the first electromagnetic wave signal, wherein the fourth electromagnetic wave signal is different from the second electromagnetic wave signal.
  • the first electromagnetic wave signal can be separated into a second electromagnetic wave signal and a fourth electromagnetic wave signal.
  • the second electromagnetic wave signal and the fourth electromagnetic wave signal are obtained by power or energy distribution through a power divider, or the second electromagnetic wave signal and the fourth electromagnetic wave signal are obtained by electromagnetically coupling power or energy through a coupler.
  • the energy of the second electromagnetic wave signal and the energy of the fourth electromagnetic wave signal may be equally distributed or unequally distributed.
  • the second electromagnetic wave signal and the fourth electromagnetic wave signal are obtained by using a coupler to perform power or energy electromagnetic coupling of the first electromagnetic wave signal.
  • the energy of the fourth electromagnetic wave signal is generally less than the energy of the second electromagnetic wave signal.
  • the transceiver antenna is also used to receive a fifth electromagnetic wave signal from the wireless charging device, where the fifth electromagnetic wave signal is obtained by separating the wireless charging device from the third electromagnetic wave signal
  • the transmitting end device also includes a processing module, the processing module is used to stop charging the wireless charging device when the signal strength of the fifth electromagnetic wave signal is less than or equal to a preset value.
  • the transmitting end device may determine whether to continue charging the wireless charging device according to the magnitude relationship between the signal strength of the fifth electromagnetic wave signal and the first preset signal strength threshold. Or the transmitter device may determine whether to continue charging the wireless charging device according to the magnitude relationship between the signal strength of the currently received electromagnetic wave signal and the signal strength of the previous electromagnetic wave signal and the second preset signal strength threshold.
  • the shielding reaches a certain degree, the radiation pollution of electromagnetic wave signals caused by the continuous emission of electromagnetic wave signals can be avoided.
  • the embodiments of the present application can reduce the radiation hazard to the human body.
  • the fifth electromagnetic wave signal is obtained by separating the third electromagnetic wave.
  • the transceiver antenna is also used to receive a charging connection request from the wireless charging device, and the charging connection request includes charging power demand information of the wireless charging device; the transmitting end device It also includes a processing module, which is used to determine whether the wireless charging device can be charged according to the charging power demand information; the transceiver antenna is also used to send a charging connection response message to the wireless charging device, and the charging connection The response message is used to indicate whether the wireless charging device can be charged.
  • the wireless charging device can actively send a charging connection request and carry charging power demand information indicating the required power.
  • the transmitting terminal device receives the charging connection request, and determines whether the power requirement can be met according to the charging power requirement information in the charging connection request, and notifies the wireless charging device of the result through a charging connection response message. If the transmitting terminal device determines that the wireless charging device can be charged, the charging connection response message indicates that the wireless charging device can be charged, so that the transmitting terminal device and the wireless charging device can establish a charging connection.
  • the charging connection response message in the case that the charging connection response message indicates that the wireless charging device cannot be charged, the charging connection response message further includes the delay time for re-establishing the charging connection.
  • the charging connection response message indicates that the transmitting terminal device cannot charge the wireless charging device
  • the charging connection response message further includes the delay time for re-establishing the charging connection. In this way, when the delay time arrives, the wireless charging device can resend the charging connection request to the transmitting end device, avoiding the power consumption overhead caused by multiple requests of the wireless charging device when the transmitting end device cannot provide charging services. .
  • the transceiver antenna is also used to send charging broadcast information, and the charging broadcast information includes the charging capability of the transmitting end device; the transceiver antenna is also used to receive data from the wireless charging device The charging connection request is used to request to charge the wireless charging device.
  • the transmitting terminal device can actively send charging broadcast information, and the wireless charging device determines whether the power demand of the wireless charging device can be met according to the charging capability included in the received charging broadcast information. If the charging capability of the transmitting terminal device does not meet the power requirement of the wireless charging device, the wireless charging device may not send the charging connection request to the transmitting terminal device, thereby saving the power consumption of the wireless charging device.
  • the transceiver antenna includes a van Atta antenna array.
  • the transmitting and receiving antennas can be realized by the Van Atta antenna array.
  • the Van Atta antenna array can achieve the phase difference between adjacent antenna elements as In this way, the transmission of the reverse signal can be realized, so that the transmission performance of the electromagnetic wave signal between the transmitting end device and the wireless charging device can be improved, and the directionality of energy transmission can be realized.
  • the transceiver antenna includes multiple antenna elements, each antenna element of the multiple antenna elements includes an antenna, one or more filters, and one or more Mixers.
  • the transceiver antenna can also be realized by a mixed frequency antenna array, that is, the transmission of the reverse signal can be realized, so that the transmission performance of the electromagnetic wave signal between the transmitting end device and the wireless charging device can be improved, and the directionality of energy transmission can be realized.
  • the power distribution module is arranged between the antenna feed point of the antenna and the mixer.
  • connection position of the power distribution module and the transceiver antenna can be set close to the antenna feed point of the antenna, which can reduce energy loss.
  • each antenna element includes an antenna, a filter, and a mixer
  • the frequency of the first input signal of the mixer is the second
  • the frequency of the input signal is twice the frequency of the input signal
  • the second input signal is the output signal after the input signal of the transceiver antenna passes through the antenna
  • the output signal of the mixer is the input signal of the filter
  • the filter is used to filter out The frequency is 3 times the frequency of the second input signal.
  • the mixing antenna array has specific requirements on the input signal of the mixer and the filtering ability of the filter.
  • the frequency of the first input signal of the mixer is set to 2 times the frequency of the second input signal
  • the filter When the frequency that can be filtered out is 3 times the frequency of the second input signal, the phase can be reversed, that is, the beam of the signal transmission is reversed, which can improve the communication between the transmitting end device and the wireless charging device.
  • each antenna element includes an antenna, two filters, and two mixers
  • the first mixer of the two mixers The frequency of the first input signal of the amplifier is the sum of the preset frequency and the frequency of the second input signal, the second input signal is the output signal of the antenna, and the output signal of the first mixer is the one of the two filters
  • the input signal of the first filter, the output signal of the first filter is the third input signal of the second mixer of the two mixers, and the frequency of the fourth input signal of the second mixer is The difference between the frequency of the second input signal and the preset frequency
  • the output signal of the second mixer is the input signal of the second filter of the two filters
  • the first filter is used for filtering
  • the frequency is the sum of the preset frequency and twice the frequency of the second input signal
  • the frequency used for filtering by the second filter is the difference between the frequency of the second input signal and the twice preset frequency.
  • the mixing antenna array has specific requirements for the input signal of the mixer and the filtering capability of the filter.
  • each antenna array element can perform secondary mixing. In this way, the phase inversion is realized, that is, the beams of the signal transmission are reversed, so that the transmission performance of the electromagnetic wave signal between the transmitting end device and the wireless charging device can be improved, and the directionality of energy transmission can be realized.
  • each antenna element includes an antenna, a filter, and a mixer
  • the frequency of the first input signal of the mixer is the second
  • the frequency of the input signal is twice the sum of the preset frequency
  • the second input signal is the output signal of the antenna
  • the frequency used by the filter is 3 times the frequency of the second input signal and twice the frequency of the second input signal. The sum of preset frequencies.
  • the transceiver antenna can also be used to set the frequency of the output signal to be different from the frequency of the input signal, thereby avoiding interference from uplink and downlink signals.
  • the power amplifier module includes one or more power amplifiers.
  • the power amplifier module can be realized by one or more power amplifiers.
  • multiple power amplifiers can be connected in series to achieve multi-stage amplification, which can provide greater gain.
  • multiple power amplifiers are connected in parallel, which can improve linearity and support a wider range of gain adjustment.
  • the power distribution module includes a coupler or a power distributor.
  • a wire with electromagnetic coupling can be placed near the transmission line to realize the function of signal distribution between the main transmission line and the coupled wire line.
  • a wireless charging device including: a transceiving antenna for receiving a third electromagnetic wave signal from a transmitting end device and forwarding the third electromagnetic wave signal to a power distribution module; the power distribution module is used for The third electromagnetic wave signal is separated to obtain a fifth electromagnetic wave signal and a sixth electromagnetic wave signal, and the fifth electromagnetic wave signal is forwarded to the transceiver antenna, and the sixth electromagnetic wave is forwarded to the charging module; the transceiver antenna is also used to transmit the The transmitting terminal device sends the fifth electromagnetic wave signal; the charging module is used for charging according to the sixth electromagnetic wave signal.
  • the charging process between the transmitter device and the wireless charging device in the embodiment of the present application may form a cyclic process. That is, the transmitting end device sends electromagnetic wave signals to the wireless charging device for charging.
  • the wireless charging device uses part of the electromagnetic wave signal for charging, and the other part of the electromagnetic wave signal is used to feed back to the transmitting end device for amplification, and the amplified electromagnetic wave signal is reused for charging.
  • the wireless charging device performs charging. In this way, the transmitter device and the wireless charging device can reach a stable power range for wireless charging, thereby improving the charging performance.
  • the fifth electromagnetic wave signal and the sixth electromagnetic wave may be partial signals of the third electromagnetic wave signal, respectively.
  • the third electromagnetic wave signal can be separated into a fifth electromagnetic wave signal and a sixth electromagnetic wave signal.
  • the fifth electromagnetic wave signal and the sixth electromagnetic wave signal are obtained through power or energy distribution through a power divider, or the fifth electromagnetic wave signal and the sixth electromagnetic wave signal are obtained through electromagnetic coupling of power or energy through a coupler.
  • the energy of the fifth electromagnetic wave signal and the energy of the sixth electromagnetic wave signal may be equally distributed or unequally distributed.
  • the fifth electromagnetic wave signal and the sixth electromagnetic wave signal are obtained by using a coupler to perform power or energy electromagnetic coupling of the third electromagnetic wave signal.
  • the energy of the fifth electromagnetic wave signal is generally less than the energy of the sixth electromagnetic wave signal.
  • the transceiver antenna is also used to send a charging connection request to the transmitting end device, where the charging connection request includes charging power demand information of the wireless charging device; the transceiver antenna also It is used to receive a charging connection response message from the transmitting terminal device, where the charging connection response message is used to indicate whether the wireless charging device can be charged.
  • the wireless charging device can actively send a charging connection request and carry charging power demand information indicating the required power.
  • the transmitting terminal device receives the charging connection request, and determines whether the power requirement can be met according to the charging power requirement information in the charging connection request, and notifies the wireless charging device of the result through a charging connection response message. If the transmitter device determines that the wireless charging device can be charged, the charging connection response message indicates that the wireless charging device can be charged, so that the transmitter device and the wireless charging device can establish a charging connection.
  • the charging connection response message when the charging connection response message indicates that the wireless charging device cannot be charged, the charging connection response message further includes the delay time for re-establishing the charging connection.
  • the transceiver antenna is also used to resend the charging connection request to the transmitting end device.
  • the charging connection response message indicates that the transmitting terminal device cannot charge the wireless charging device
  • the charging connection response message further includes the delay time for re-establishing the charging connection. In this way, when the delay time arrives, the wireless charging device can resend the charging connection request to the transmitting end device, avoiding the power consumption overhead caused by multiple requests of the wireless charging device when the transmitting end device cannot provide charging services. .
  • the transceiver antenna is also used to receive charging broadcast information, and the charging broadcast information includes the charging capability of the transmitting end device; the transmitting and receiving antenna is also used to When the charging capability of the wireless charging device meets the power requirement of the wireless charging device, a charging connection request is sent to the transmitting end device, and the charging connection request is used to request to charge the wireless charging device.
  • the transmitting terminal device can actively send charging broadcast information, and the wireless charging device determines whether the power demand of the wireless charging device can be met according to the charging capability included in the received charging broadcast information. If the charging capability of the transmitting terminal device does not meet the power requirement of the wireless charging device, the wireless charging device may not send the charging connection request to the transmitting terminal device, thereby saving the power consumption of the wireless charging device.
  • the transceiver antenna includes a van Atta antenna array.
  • the transmitting and receiving antennas can be realized by the Van Atta antenna array.
  • the Van Atta antenna array can achieve the phase difference between adjacent antenna elements as In this way, the transmission of the reverse signal can be realized, so that the transmission performance of the electromagnetic wave signal between the transmitting end device and the wireless charging device can be improved, and the directionality of energy transmission can be realized.
  • the transceiving antenna includes multiple antenna elements, and each antenna element of the multiple antenna elements includes an antenna, one or more filters, and one or more antenna elements.
  • a mixer, and the mixing antenna array combination includes one or more mixing antenna arrays.
  • the transceiver antenna can also be realized by a mixed frequency antenna array, that is, the transmission of the reverse signal can be realized, so that the transmission performance of the electromagnetic wave signal between the transmitting end device and the wireless charging device can be improved, and the directionality of energy transmission can be realized.
  • the power distribution module is arranged between the antenna feed point of the mixing antenna array combination and the mixer.
  • connection position of the power distribution module and the transceiver antenna can be set close to the antenna feed point of the antenna, which can reduce energy loss.
  • each antenna element includes an antenna, a filter, and a mixer
  • the frequency of the first input signal of the mixer is the second
  • the frequency of the input signal is twice the frequency of the input signal
  • the second input signal is the output signal after the input signal of the transceiver antenna passes through the antenna
  • the output signal of the mixer is the input signal of the filter
  • the filter is used to filter out The frequency is 3 times the frequency of the second input signal.
  • the mixing antenna array has specific requirements on the input signal of the mixer and the filtering ability of the filter.
  • the frequency of the first input signal of the mixer is set to 2 times the frequency of the second input signal
  • the filter When the frequency that can be filtered out is 3 times the frequency of the second input signal, the phase can be reversed, that is, the beam of the signal transmission is reversed, which can improve the communication between the transmitting end device and the wireless charging device.
  • each antenna element includes a combination of mixed antenna arrays, two filters, and two mixers
  • the frequency of the first input signal of the first mixer is the sum of the preset frequency and the frequency of the second input signal.
  • the second input signal is the output signal after the input signal of the transceiver antenna passes through the antenna.
  • the output signal of the frequency converter is the input signal of the first filter of the two filters, and the output signal of the first filter is the third input signal of the second mixer of the two mixers.
  • the frequency of the fourth input signal of the second mixer is the difference between the frequency of the second input signal and the preset frequency, and the output signal of the second mixer is the frequency of the second filter of the two filters.
  • Input signal, the frequency used by the first filter to filter out is the sum of the preset frequency and twice the frequency of the second input signal, and the frequency used to filter out by the second filter is the frequency of the second input signal The difference from 2 times the preset frequency.
  • the mixing antenna array has specific requirements for the input signal of the mixer and the filtering capability of the filter.
  • each antenna array element can perform secondary mixing. In this way, the phase inversion is realized, that is, the beams of the signal transmission are reversed, so that the transmission performance of the electromagnetic wave signal between the transmitting end device and the wireless charging device can be improved, and the directionality of energy transmission can be realized.
  • each antenna element includes an antenna, a filter, and a mixer
  • the frequency of the first input signal of the mixer is the second
  • the frequency of the input signal is twice the sum of the preset frequency
  • the second input signal is the output signal after the input signal of the transceiver antenna passes through the antenna
  • the filter is used to filter out the second input whose frequency is 3 times The difference between the frequency of the signal and 2 times the preset frequency.
  • the transceiver antenna can also be used to set the frequency of the output signal to be different from the frequency of the input signal, thereby avoiding interference from uplink and downlink signals.
  • the power distribution module includes a coupler or a power distributor.
  • a wire with electromagnetic coupling can be placed near the transmission line to realize the function of signal distribution between the main transmission line and the coupled wire line.
  • a wireless charging system in a fifth aspect, includes the transmitter device described in the first aspect and the wireless charging device described in the second aspect.
  • the charging process between the transmitter device and the wireless charging device in the embodiment of the present application can form a cyclic process. That is, the transmitting end device sends electromagnetic wave signals to the wireless charging device for charging.
  • the wireless charging device uses part of the electromagnetic wave signal for charging, and the other part of the electromagnetic wave signal is used to feed back to the transmitting end device for amplification, and the amplified electromagnetic wave signal is reused for charging.
  • the wireless charging device performs charging. In this way, the transmitter device and the wireless charging device can reach a stable power range for wireless charging, thereby improving the charging performance.
  • Figure 1 is a schematic diagram of an application scenario of wireless charging in this application
  • FIG. 2 is a schematic flowchart of a wireless charging method according to an embodiment of the present application
  • FIG. 3 is a schematic block diagram of a wireless charging transmitter device according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a Fan Atta antenna array according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a mixed frequency antenna array according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another frequency mixing antenna array according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another frequency mixing antenna array according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the connection relationship between the mixing antenna array and the power distribution module according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a wireless charging device according to an embodiment of the present application.
  • the wireless charging device in the embodiments of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent Or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), and wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the transmitter device in the embodiment of the present application may be a device for charging a wireless charging device, for example, a wireless power transmitter, a wireless charging pad, a mobile power supply, a vehicle-mounted device, etc., which is not limited in the embodiment of the present application.
  • Fig. 1 is a schematic diagram of an application scenario of wireless charging in this application.
  • the application scenario may include at least one charging device (for example, the wireless charging device 10, the wireless charging device 20, and the wireless charging device 30) and the transmitting terminal device 40.
  • the transmitting terminal device 40 may be used to send electromagnetic wave signals, and the wireless charging device may perform charging according to the received electromagnetic wave signals.
  • the wireless charging device 10 may be a tablet
  • the wireless charging device 20 may be a mobile phone
  • the wireless charging device 30 may be a wearable device (for example, a watch, earphone, etc.).
  • the wireless charging device 20 can also be regarded as a transmitting terminal device, so that the wireless charging device 20 can also charge the wireless charging device 30.
  • embodiments of the present application may be applied to a wireless charging system including one or more transmitting end devices, and may also be applied to a communication system including one or more charging devices, which is not limited in the present application.
  • FIG. 2 shows a schematic flowchart of a wireless charging method according to an embodiment of the present application.
  • the transmitting end device receives the first electromagnetic wave signal from the wireless charging device.
  • the wireless charging device sends the first electromagnetic wave signal to the transmitting terminal device.
  • the transmitting end device performs power amplification on all or part of the first electromagnetic wave signal to obtain a third electromagnetic wave signal.
  • the transmitting terminal device can obtain all or part of the first electromagnetic wave signal according to the first electromagnetic wave signal (for example, referred to as the second electromagnetic wave signal below).
  • the second electromagnetic wave signal may be a partial signal of the first electromagnetic wave signal, or the second electromagnetic wave signal may be the same as the first electromagnetic wave signal.
  • the gain coefficient required by the transmitting end device to amplify the power of the second electromagnetic wave signal may be determined according to the power of the first electromagnetic wave signal, that is, the gain coefficient will change as the power of the first electromagnetic wave signal changes.
  • the gain coefficient may decrease as the power of the first electromagnetic wave signal increases, or increase as the power of the first electromagnetic wave signal decreases.
  • the gain coefficient is preset or flexibly changed, which is not limited in this application.
  • the second electromagnetic wave signal is a partial signal of the first electromagnetic wave signal, and it can be understood that the energy of the second electromagnetic wave signal is less than the energy of the first electromagnetic wave signal.
  • the transmitting end device may also determine the gain coefficient according to the fourth electromagnetic wave signal, the fourth electromagnetic wave signal being separated from the first electromagnetic wave signal. In this way, the transmitting end device may specifically perform power amplification on the second electromagnetic wave signal according to the gain coefficient to obtain the third electromagnetic wave signal.
  • the transmitting end device may adjust the gain coefficient according to the power of the fourth electromagnetic wave signal. For example, when the power of the fourth electromagnetic wave signal is low (for example, low level), the gain coefficient is increased; when the power of the fourth electromagnetic wave signal is high (for example, high level), the gain coefficient is reduced.
  • the transmitting end device may set a preset power threshold in advance, and determine whether the fourth electromagnetic wave signal is of a high level or a low level based on the relationship with the preset power threshold. In this way, the transmitting end device can adjust the power of the third electromagnetic wave signal through the gain coefficient so that the power of the third electromagnetic wave signal can reach a stable power range, which helps to improve the charging performance of wireless charging.
  • the fourth electromagnetic wave signal may be a partial signal of the first electromagnetic wave signal, wherein the fourth electromagnetic wave signal is different from the second electromagnetic wave signal.
  • the first electromagnetic wave signal can be separated into a second electromagnetic wave signal and a fourth electromagnetic wave signal.
  • the energy distribution of the second electromagnetic wave signal and the fourth electromagnetic wave signal may be equal or unequal, which is not limited in this application.
  • the signal energy of the second electromagnetic wave signal may be 80% of the signal energy of the first electromagnetic wave signal.
  • the separation of the first electromagnetic wave signal into the second electromagnetic wave signal and the "separation" in the fourth electromagnetic wave signal can also be understood as “splitting", “decomposing” or “extracting”.
  • the first electromagnetic wave signal may be a second electromagnetic wave signal and a fourth electromagnetic wave signal obtained by power or energy distribution through a power divider, or a second electromagnetic wave signal and a fourth electromagnetic wave signal may be obtained by electromagnetically coupling power or energy through a coupler .
  • the first electromagnetic wave signal may also be separated into other signals and input to the processing module, and the processing module may perform signal processing, for example, extract commands or data.
  • the determination of the high and low levels of the fourth electromagnetic wave signal can be achieved through a preset level threshold.
  • a preset level threshold For example, when the level of the fourth electromagnetic wave signal is higher than the preset level threshold, the The fourth electromagnetic wave signal is at a high level; when the level of the fourth electromagnetic wave signal is lower than the preset level threshold, the fourth electromagnetic wave signal is at a low level.
  • the transmitting end device may set multiple correspondences between level intervals and gain coefficients, so that the transmitting end device may determine the corresponding gain coefficient according to the level interval to which the level of the fourth electromagnetic wave signal belongs.
  • the transmitter device sends the third electromagnetic wave signal to the wireless charging device, where the third electromagnetic wave signal is used to charge the wireless charging device.
  • the wireless charging device receives the third electromagnetic wave signal sent from the transmitting terminal device.
  • the beam direction of the third electromagnetic wave signal is opposite to the beam direction of the first electromagnetic wave signal.
  • the activation signal sent by the wireless charging device to the transmitting terminal device may be transmitted using an omnidirectional beam or a wide beam, and only the activation signal using a partial beam may be transmitted.
  • the transmitter device receives it.
  • the transmitting end device uses a full beam or a wide beam to send the start signal, and only the start signal of a part of the beam can be received by the wireless communication device. In this way, the transmitter device and the wireless charging device can find each other's position.
  • the transmitting end device uses a beam opposite to the beam direction of the received first electromagnetic wave signal to send the third electromagnetic wave signal to the wireless charging device, which can improve the transmission performance of the electromagnetic wave signal between the transmitting end device and the wireless charging device. And can achieve the directionality of energy transmission.
  • the third electromagnetic wave signal and the first electromagnetic wave signal have different frequencies.
  • the frequency at which the third electromagnetic wave signal is sent by the transmitting end device may be different from the frequency at which the first electromagnetic wave signal is received. This can reduce the interference of uplink and downlink signal transmission and further improve the charging performance.
  • the wireless charging device separates the third electromagnetic wave signal to obtain a fifth electromagnetic wave signal and a sixth electromagnetic wave signal.
  • the wireless charging device may obtain the fifth electromagnetic wave signal and the sixth electromagnetic wave signal according to the third electromagnetic wave signal.
  • the fifth electromagnetic wave signal and the sixth electromagnetic wave signal may be partial signals of the third electromagnetic wave signal, respectively.
  • the fifth electromagnetic wave signal is a partial signal of the third electromagnetic wave signal, and it can be understood that the energy of the fifth electromagnetic wave signal is less than the energy of the third electromagnetic wave signal.
  • the manner in which the third electromagnetic wave signal is separated to obtain the fifth electromagnetic wave signal and the sixth electromagnetic wave signal may be the same as the manner in which the first electromagnetic wave signal is separated to obtain the second electromagnetic wave signal and the fourth electromagnetic wave signal, in order to avoid repetition. , I won’t go into details here.
  • the wireless charging device sends the fifth electromagnetic wave signal to the transmitting end device.
  • the transmitting terminal device receives the fifth electromagnetic wave signal from the wireless charging device.
  • the transmitting end device may also determine whether to continue charging the wireless charging device according to the signal strength of the fifth electromagnetic wave signal.
  • the transmitting end device may determine whether to continue charging the wireless charging device according to the magnitude relationship between the signal strength of the fifth electromagnetic wave signal and the first preset signal strength threshold. For example, when the signal strength of the fifth electromagnetic wave signal is less than or equal to the first preset signal strength threshold, stop charging the wireless charging device. If the signal strength of the fifth electromagnetic wave signal is greater than the first preset signal strength threshold, continue to charge the wireless charging device. That is to say, the transmitting end device can determine whether there is any shielding between the transmitting end device and the wireless charging device according to the fifth electromagnetic wave signal fed back by the wireless charging device during the wireless charging process. When the shielding reaches a certain degree, it can avoid the continuous emission of electromagnetic wave signals. Radiation pollution of electromagnetic wave signals. In addition, if the shielding object is a human body, the embodiments of the present application can reduce the radiation hazard to the human body.
  • the transmitting end device stops charging the wireless charging device, for example, after stopping sending a charging signal (for example, the fifth electromagnetic wave signal) to the wireless charging device, it can also initiate a new connection with the wireless charging device.
  • a charging signal for example, the fifth electromagnetic wave signal
  • This application does not limit the charging connection between the wireless charging device, or finding other transmitting end devices for charging the wireless charging device.
  • the transmitting end device may also determine whether to continue to be based on the magnitude relationship between the signal strength of the fifth electromagnetic wave signal and the signal strength of the first electromagnetic wave signal and the second preset signal strength threshold.
  • the wireless charging device performs charging.
  • the transmitter device may determine whether to continue charging the wireless charging device according to the relationship between the signal strength of the currently received electromagnetic wave signal and the signal strength of the previous electromagnetic wave signal and the second preset signal strength threshold. . For example, in the case where the difference between the signal strength of the fifth electromagnetic wave signal and the signal strength of the first electromagnetic wave signal is less than or equal to the second preset signal strength threshold, the transmitting end device stops charging the wireless charging device . In the case where the difference between the signal strength of the fifth electromagnetic wave signal and the signal strength of the first electromagnetic wave signal is greater than the second preset signal strength threshold, the transmitter device continues to charge the wireless charging device.
  • the transmitting end device can determine whether there is any shielding between the transmitting end device and the wireless charging device according to the fifth electromagnetic wave signal and the first electromagnetic wave signal fed back by the wireless charging device during the wireless charging process, and it can avoid continuing when the shielding reaches a certain level. Radiation pollution of electromagnetic wave signals caused by the emission of electromagnetic wave signals.
  • the embodiments of the present application can reduce the radiation hazard to the human body.
  • the first electromagnetic wave signal may be an electromagnetic wave signal fed back to the transmitting end device by the wireless charging device during the previous charge.
  • the wireless charging device performs charging according to the six electromagnetic wave signals.
  • the charging process between the transmitter device and the wireless charging device in the embodiment of the present application may form a cyclic process. That is, the transmitting end device sends electromagnetic wave signals to the wireless charging device for charging.
  • the wireless charging device uses part of the electromagnetic wave signal for charging, and the other part of the electromagnetic wave signal is used to feed back to the transmitting end device for amplification, and the amplified electromagnetic wave signal is reused for charging.
  • the wireless charging device performs charging. In this way, the transmitter device and the wireless charging device can reach a stable power range for wireless charging, thereby improving the charging performance.
  • the third electromagnetic wave signal reaching the wireless charging device due to the path loss between the transmitting end device and the wireless charging device The proportion of the third electromagnetic wave signal sent from the transmitting end device is c 1 , the proportion of the fifth electromagnetic wave signal to the received third electromagnetic wave signal is r, and the fifth electromagnetic wave signal received by the transmitting end device accounts for the proportion of the signal sent from the wireless charging device
  • the ratio of the fifth electromagnetic wave signal is c 2 , so the round trip gain between the transmitting end device and the wireless charging device is Atrc 1 c 2 .
  • the signal power can be amplified in the round trip. If there is an obstruction between the transmitting end device and the wireless charging device, the channel loss will increase significantly, that is, the values of c 1 and c 2 will decrease significantly. That is to say, in the embodiment of the present application, when there is an obstruction between the transmitting end device and the wireless charging device, the signal power may be reduced during the round trip until it is interrupted. That is, the embodiments of the present application can respond to abnormal events such as shielding in a timely manner, and can cut off signal transmission within a time of ns, which reduces the radiation pollution of electromagnetic wave signals caused by electromagnetic wave signals emitted by wireless charging devices. In addition, if the shielding object is a human body, the embodiments of the present application can reduce the radiation hazard to the human body.
  • the third electromagnetic wave signal is separated into “separation” in the fifth electromagnetic wave signal and the sixth electromagnetic wave signal, which can also be understood as “splitting", “decomposing” or “extracting”.
  • the third electromagnetic wave signal may be a fifth electromagnetic wave signal and a sixth electromagnetic wave signal obtained by power or energy distribution through a power divider, or a fifth electromagnetic wave signal and a sixth electromagnetic wave signal may be obtained by electromagnetically coupling power or energy through a coupler .
  • the third electromagnetic wave signal may also be separated into other signals and input to the processing module, and the processing module may perform signal processing, for example, extract commands or data.
  • the charging end instruction is sent to the transmitting end device.
  • the transmitting end device stops sending the charging signal to the wireless charging device. This avoids radiation pollution caused by the transmitter device still sending the charging signal when the wireless charging device does not need to be charged.
  • the wireless charging device may send a charging connection request to the transmitting terminal device, and the charging connection request includes the wireless charging device. Charging power demand information.
  • the transmitting terminal device determines whether the wireless charging device can be charged according to the charging power demand information, and indicates whether the wireless charging device can be charged by sending a charging connection response message to the wireless charging device.
  • the wireless charging device may actively send a charging connection request, and carry charging power demand information indicating the required power.
  • the transmitting terminal device receives the charging connection request, and determines whether the power requirement can be met according to the charging power requirement information in the charging connection request, and notifies the wireless charging device of the result through a charging connection response message. For example, if the transmitting terminal device determines that the wireless charging device cannot be charged, the charging connection response message indicates that the wireless charging device cannot be charged. When the wireless charging device receives a charging connection response message indicating that the wireless charging device cannot be charged, it may also reselect the transmitter device or perform other operations. If the transmitting terminal device determines that the wireless charging device can be charged, the charging connection response message indicates that the wireless charging device can be charged, so that the transmitting terminal device and the wireless charging device can establish a charging connection.
  • the charging connection response message indicates that the transmitting end device cannot charge the wireless charging device
  • the charging connection response message further includes a delay time for re-establishing the charging connection. In this way, when the delay period arrives, the wireless charging device can resend the charging connection request to the transmitting end device.
  • the wireless charging device may also receive charging broadcast information from the transmitting end device, and the charging broadcast information is used to indicate that the transmitting end device has Charging capacity.
  • the charging broadcast information may include the identification of the wireless charging device.
  • the transmitter device is used to trigger the wireless charging device to initiate a charging connection request. This avoids the wireless charging device from sending a charging connection request to the transmitting end device that does not have the charging capability, and helps to reduce the delay in establishing the charging connection.
  • the wireless charging device may also receive charging broadcast information from the transmitting terminal device, and the charging broadcast information includes the The charging capability of the transmitter device.
  • the wireless charging device sends a charging connection request to the transmitting terminal device.
  • the transmitting end device may actively send charging broadcast information, and the wireless charging device determines whether the power demand of the wireless charging device can be met according to the charging capability included in the received charging broadcast information. If the charging capability of the transmitting end device meets the power demand of the wireless charging device, the wireless charging device sends a charging connection request to the transmitting end device, and the transmitting end device is the wireless charging device when receiving the charging connection request. Perform charging (for example, send the third electromagnetic wave signal). If the charging capability of the transmitting terminal device does not meet the power requirement of the wireless charging device, the wireless charging device may not send the charging connection request to the transmitting terminal device.
  • the transmitting end device may continuously send the charging broadcast information, or may periodically send the charging broadcast information, which is not limited in this application.
  • the transmitting end device can generate an electromagnetic wave signal by itself, and amplify the electromagnetic wave signal.
  • the charging broadcast information may also include the identification of the transmitting terminal device.
  • the methods and operations implemented by the transmitting-end device may also be implemented by components (for example, a chip or a circuit) that can be used for the transmitting-end device.
  • the methods and operations implemented by the wireless charging device can also be implemented by components (such as chips or circuits) that can be used in the wireless charging device.
  • each network element such as a transmitting terminal device or a wireless charging device
  • each network element includes hardware structures and/or software modules corresponding to each function in order to realize the above-mentioned functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the transmitter device or the wireless charging device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented either in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of using the corresponding functional modules to divide each functional module.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 2 illustrates in detail the method provided by the embodiment of the present application.
  • the device provided by the embodiment of the present application will be described in detail with reference to FIG. 3 to FIG. 9. It should be understood that the description of the device embodiment and the description of the method embodiment correspond to each other. Therefore, for the content that is not described in detail, please refer to the above method embodiment. For the sake of brevity, it will not be repeated here.
  • FIG. 3 shows a schematic block diagram of a wireless charging transmitter device 300 according to an embodiment of the present application.
  • the transmitter device 300 may correspond to each transmitter device or chip in the transmitter device shown in FIG. 1, and the transmitter device or chip in the transmitter device in the embodiment shown in FIG. It has any function of the transmitting end device in the method embodiment shown in FIG. 2.
  • the transmitting terminal device 300 includes a transmitting and receiving antenna 310 and a power amplification module 320.
  • the transceiver antenna 310 is used to receive the first electromagnetic wave signal from the wireless charging device, and forward all or part of the first electromagnetic wave signal to the power amplifier module;
  • the power amplifying module 320 is configured to power amplify all or part of the first electromagnetic wave signal to obtain a third electromagnetic wave signal, and send the third electromagnetic wave signal to the transceiver antenna;
  • the transceiver antenna 310 is also used to send the third electromagnetic wave signal to the wireless charging device, and the third electromagnetic wave signal is used to charge the wireless charging device.
  • the transceiving antenna 310 may be a directional retrospective antenna.
  • the directional retrospective antenna can be used to realize that the transmission beam of the third electric wave signal and the receiving beam of the first electromagnetic wave signal have opposite beam directions.
  • the transmitter device 300 further includes a power distribution module 330 and a gain control module 340.
  • the power distribution module 330 is configured to separate the first electromagnetic wave signal to obtain the second electromagnetic wave signal and the fourth electromagnetic wave signal, and The fourth electromagnetic wave signal is sent to the gain control module;
  • the gain control module 340 is configured to determine the gain coefficient according to the fourth electromagnetic wave signal, and send the gain coefficient to the power amplifying module;
  • the power amplifying module 320 is used for Amplify the power of all or part of the first electromagnetic wave signal to obtain a third electromagnetic wave signal, and send the third electromagnetic wave signal to the transceiver antenna, specifically: the power amplifier module 320 is configured to:
  • the second electromagnetic wave signal is power-amplified to obtain the third electromagnetic wave signal, and the third electromagnetic wave signal is sent to the transceiver antenna.
  • the power distribution module 330 may be a coupler.
  • the power distribution module 340 may be a power distributor.
  • the energy of the two or more electromagnetic wave signals obtained after the power divider divides the electromagnetic wave signals can be equal.
  • the energy of the two or more electromagnetic wave signals obtained by dividing the electromagnetic wave signal by the coupler is usually unequal.
  • the energy of the electromagnetic wave signal of one of the two electromagnetic waves obtained by the electromagnetic coupling method of the coupler is much smaller than the energy of the other electromagnetic wave signal.
  • the transceiver antenna 310 is also used to receive a fifth electromagnetic wave signal from the wireless charging device, where the fifth electromagnetic wave signal is obtained by separating the wireless charging device from the third electromagnetic wave signal; the transmitter device 300 is also A processing module 350 is included, and the processing module is configured to stop charging the wireless charging device when the signal strength of the fifth electromagnetic wave signal is less than or equal to a preset value.
  • processing module 350 can also be used to extract signaling or data, which is not limited in this application.
  • the transceiving antenna 310 is also used to receive a charging connection request from the wireless charging device, and the charging connection request includes charging power demand information of the wireless charging device; the transmitting end device 300 further includes a processing module 350.
  • the processing module 350 is configured to determine whether the wireless charging device can be charged according to the charging power demand information; the transceiving antenna 310 is also configured to send a charging connection response message to the wireless charging device, and the charging connection response message is used for Indicates whether the wireless charging device can be charged.
  • the charging connection response message further includes a delay time for re-establishing the charging connection.
  • the transceiving antenna 310 is also used to send charging broadcast information, which includes the charging capability of the transmitting end device; the transceiving antenna 310 is also used to receive a charging connection request from the wireless charging device, and the charging The connection request is used to request to charge the wireless charging device.
  • the transceiving antenna includes a van Atta antenna array.
  • the transceiver antenna is used to realize the inversion of the beams of the transmitted signal and the received signal.
  • the beam reversal can also be achieved by reversing the phase of the transmitted signal and the received signal.
  • the transceiver antenna can be a Van Atta antenna array.
  • the Van Atta antenna array is usually a linear array with an even number of elements. The connections between the corresponding antenna elements have the same signal delay, and the adjacent antenna elements have the same delay.
  • the phases of the received signals of antenna 1a, antenna 2a,...antenna Na, antenna Nb,...antenna 2b, and antenna 1b are respectively While the connection delay phases are all ⁇ , the phases of the transmitted signals of antenna 1a, antenna 2a,...antenna Na, antenna Nb,...antenna 2b, and antenna 1b are respectively ⁇ + ⁇ (For example, the signal transmitted by the antenna 1a comes from the received signal of the antenna 1b, so its phase is the phase of the received signal of the antenna 1b plus the connection delay phase), so that the phase difference between adjacent antenna elements is Thus, the transmission of the reverse signal can be realized.
  • the transceiver antenna includes a plurality of antenna array elements, and each antenna array element of the plurality of antenna array elements includes an antenna, one or more filters, and one or more mixers.
  • the transceiver antenna is a mixed frequency antenna array.
  • each antenna element includes an antenna, a filter, and a mixer.
  • the frequency of the first input signal of the mixer is twice the frequency of the second input signal
  • the second input signal is the output signal after the input signal of the transceiver antenna passes through the antenna
  • the mixer The output signal of is the input signal of the filter, and the frequency used for filtering by the filter is 3 times the frequency of the second input signal.
  • the input signal can be used as the second input signal of the mixer after passing through the antenna.
  • the mixer has another input signal (hereinafter referred to as the first input signal), which can be cos(4 ⁇ ft+ ⁇ ).
  • the output signal of the mixer after mixing the first input signal and the second input signal is Then after low-pass or band-pass filtering to filter out the 3 octave frequency components, it becomes The filter outputs the signal to the antenna for transmission, thereby realizing the phase inversion, that is, realizing the opposite beam of signal transmission.
  • the antenna in the transceiver antenna may be implemented by one physical unit to transmit or receive signals, or two physical units may implement signal transmission or reception respectively.
  • each antenna element includes an antenna, multiple filters, and multiple mixers.
  • the frequency of the first input signal of the first mixer of the two mixers is a preset frequency
  • the second input signal is the output signal after the input signal of the transceiver antenna passes through the antenna
  • the output signal of the first mixer is the first of the two filters
  • the output signal of the first filter is the third input signal of the second mixer of the two mixers
  • the frequency of the fourth input signal of the second mixer is the second input
  • the output signal of the second mixer is the input signal of the second filter of the two filters
  • the frequency used for filtering by the first filter is the preset Assuming the sum of the frequency and twice the frequency of the second input signal, the frequency used by the second filter to filter out is the difference between the frequency of the second input signal and twice the preset frequency.
  • each antenna element can also perform secondary mixing.
  • a certain antenna array element is taken as an example for description.
  • the mixed signal of the first input signal and the second input signal is Then filter 1 to filter out the (2f+f i ) frequency component into Will signal Passing through mixer 2 again, the other input signal of mixer 2 is cos(2 ⁇ ft-2 ⁇ f i t+ ⁇ 2 ), so the signal obtained after mixing by mixer 2 is The output signal of the mixer 2 is passed through the filter 2, and the frequency component (f-2f i) becomes In this way, the phase is reversed and the signal is transmitted in the reverse direction.
  • f i may be smaller than f, which can help reduce the difficulty of generating the first input signal.
  • the frequency of the first input signal of the mixer is 2% of the sum of the frequency of the second input signal and the preset frequency.
  • the second input signal is the output signal after the input signal of the transceiver antenna passes through the antenna, and the filter used to filter out the frequency is 3 times the frequency of the second input signal and 2 times the preset frequency.
  • the transceiver antenna can also be used to set the frequency of the output signal to be different from the frequency of the input signal, so as to avoid interference from uplink and downlink signals.
  • the i-th element in the transmitting and receiving antenna is taken as an example for description.
  • the other input signal of the mixer is cos[4 ⁇ (f+ ⁇ f)t+ ⁇ ].
  • the first input signal of the mixer in the transceiver antenna of the wireless charging device can be cos[4 ⁇ ft+ ⁇ ] or cos[4 ⁇ (f+ ⁇ f)t + ⁇ ].
  • the first input signal of the mixer in the transceiver antenna of the wireless charging device can be cos[4 ⁇ (f- ⁇ f)t+ ⁇ ]
  • the first input signal of the transmitting end device increases the frequency of 2 ⁇ f
  • the wireless The frequency of the first input signal of the charging device is reduced by 2 ⁇ f. If it is considered that the higher the frequency can make the antenna array smaller, the transmitter device can use a lower frequency, and the wireless charging device uses a higher frequency, thereby making the wireless charging device more compact.
  • ⁇ f can be a positive number or a negative number.
  • the power distribution module 330 is arranged between the antenna feed point of the antenna and the mixer.
  • connection position of the power distribution module and the transceiver antenna can be set close to the antenna feed point of the antenna, which can reduce energy loss.
  • the power amplifier module includes one or more power amplifiers.
  • the power amplification module may be realized by one or more power amplifiers.
  • multiple power amplifiers can be connected in series to achieve multi-stage amplification, which can provide greater gain.
  • multiple power amplifiers are connected in parallel, which can improve linearity and support a wider range of gain adjustment.
  • the power distribution module includes a coupler or a power distributor.
  • a wire with electromagnetic coupling can be placed near the transmission line to realize the function of power distribution between the main transmission line and the coupled wire line, and it can be realized by multiple couplings. Multiple power distribution.
  • Fig. 3 only shows the simplified design of the transmitting end device.
  • the transmitting end device may also include other necessary components, including but not limited to any number of transceiver antennas, processors, power splitters, couplers, power amplifiers, memories, etc., and all of them can implement the application. All terminals are within the protection scope of this application.
  • the embodiment of the present application also provides a transmitting terminal device, and the transmitting terminal device may be a terminal or a circuit.
  • the transmitting end device may be used to perform the actions performed by the transmitting end device in the foregoing method embodiments.
  • FIG. 9 shows a schematic block diagram of a wireless charging device 900 according to an embodiment of the present application.
  • the wireless charging device 900 may correspond to each wireless charging device or chip in the wireless charging device shown in FIG. 1, and the wireless charging device or the chip in the wireless charging device in the embodiment shown in FIG. It has any function of the wireless charging device in the method embodiment shown in FIG. 2.
  • the wireless charging device 900 includes a transceiver antenna 910, a power distribution module 920, and a charging module 930.
  • the transceiver antenna 910 is used to receive the third electromagnetic wave signal from the transmitting end device, and forward the third electromagnetic wave signal to the power distribution module;
  • the power distribution module 920 is used to separate the third electromagnetic wave signal to obtain the fifth electromagnetic wave signal and the sixth electromagnetic wave signal, and forward the fifth electromagnetic wave signal to the transceiver antenna, and forward the sixth electromagnetic wave signal to the charger Module
  • the transceiver antenna 910 is also used to send the fifth electromagnetic wave signal to the transmitting end device;
  • the charging module 930 is used for charging according to the sixth electromagnetic wave signal.
  • the transceiving antenna 910 is also used to send a charging connection request to the transmitting end device, and the charging connection request includes charging power demand information of the wireless charging device; the transceiving antenna 910 is also used to receive data from the transmitting end device.
  • the charging connection response message further includes a delay time for re-establishing the charging connection, and when the delay time arrives, the transceiver antenna Used to resend the charging connection request to the transmitting end device.
  • the transceiving antenna 910 is also used to receive charging broadcast information, which includes the charging capability of the transmitting end device; the transceiving antenna 910 is also used to meet the charging capability of the transmitting end device to meet the requirements of the wireless charging In the case of the power demand of the device, a charging connection request is sent to the transmitting end device, and the charging connection request is used to request to charge the wireless charging device.
  • the transceiver antenna 910 includes a van Atta antenna array.
  • the transceiver antenna includes multiple antenna array elements, and each antenna array element of the multiple antenna array elements includes an antenna, one or more filters, and one or more mixers.
  • the power distribution module is arranged between the antenna feed point of the antenna and the mixer.
  • each antenna element includes an antenna, a filter, and a mixer
  • the frequency of the first input signal of the mixer is twice the frequency of the second input signal
  • the second input signal is the output signal after the input signal of the transceiver antenna passes through the antenna
  • the output signal of the mixer is the input signal of the filter
  • the frequency used by the filter to filter out is the frequency of the second input signal 3 times.
  • each antenna element includes an antenna, two filters, and two mixers
  • the frequency of the first input signal of the first mixer of the two mixers is The sum of the preset frequency and the frequency of the second input signal
  • the second input signal is the output signal of the antenna
  • the output signal of the first mixer is the input signal of the first of the two filters
  • the The output signal of the first filter is the third input signal of the second mixer of the two mixers
  • the frequency of the fourth input signal of the second mixer is the frequency of the second input signal and the frequency of the
  • the output signal of the second mixer is the input signal of the second filter of the two filters
  • the frequency used for filtering by the first filter is 2 times the preset frequency
  • the frequency of the second input signal is the sum of the frequency of the second input signal
  • the frequency used by the second filter to filter out is the difference between the frequency of the second input signal and a preset frequency of twice.
  • each antenna element includes an antenna, a filter, and a mixer
  • the frequency of the first input signal of the mixer is a difference between the frequency of the second input signal and the preset frequency. 2 times the difference
  • the second input signal is the output signal of the antenna
  • the frequency used by the filter to filter out is the sum of 3 times the frequency of the second input signal and 2 times the preset frequency.
  • the power distribution module includes a coupler or a power distributor.
  • FIG. 9 only shows a simplified design of the wireless charging device.
  • the wireless charging device may also contain other necessary components, including but not limited to any number of transceiver antennas, processors, power dividers, memories, etc., and all terminals that can implement the application are included in this application. Within the scope of protection.
  • An embodiment of the present application also provides a wireless charging device, which may be a terminal or a circuit.
  • the transmitting end device may be used to perform the actions performed by the transmitting end device in the foregoing method embodiments.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • one embodiment or “an embodiment” mentioned throughout the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present invention. Therefore, the appearances of "in one embodiment” or “in an embodiment” in various places throughout the specification do not necessarily refer to the same embodiment. In addition, these specific features, structures or characteristics can be combined in one or more embodiments in any suitable manner. It should be understood that in various embodiments of the present invention, the size of the sequence number of the above-mentioned processes does not mean the order of execution. The execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present invention The implementation process constitutes any limitation.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种无线充电的方法、发射端设备(40)和无线充电设备(10、20、30)。发射端设备(40)和无线充电设备(10、20、30)之间的充电过程可以形成一个循环的流程。即发射端设备(40)向无线充电设备(10、20、30)发送电磁波信号进行充电,无线充电设备(10、20、30)将一部分电磁波信号用于充电,另一部分电磁波信号用于反馈给发射端设备(40)进行放大,并将放大后的电磁波信号再用于为该无线充电设备(10、20、30)进行充电。这样发射端设备(40)和无线充电设备(10、20、30)能够达到一个稳定的功率范围进行无线充电,从而提高了充电性能。

Description

无线充电的方法、发射端设备和无线充电设备 技术领域
本申请涉及无线充电领域,更具体地,涉及一种无线充电的方法、发射端设备和无线充电设备。
背景技术
随着智能技术的发展,终端的数量越来越多。例如,除手机、平板、个人电脑、汽车、大屏幕等设备之外,还有智能家居传感器、家电、健康监测等各种小终端等。由于频繁的电池使用率,会存在电池更新的问题,这样无线充电技术的使用将会越来越普及。
传统方案中,发射端设备发送电磁波信号,无线充电设备可以根据该电磁波信号进行充电。例如,在近场无线充电中已经有较多应用。但是在远场无线充电中,由于发射端设备和无线充电设备之间的位置关系,无线充电技术的充电性能并不高。因此,随着无线充电技术的应用越来越普及,如何提高无线充电的充电性能亟待解决。
发明内容
本申请提供一种无线充电的方法、发射端设备和无线充电设备,能够提高无线充电的充电性能。
第一方面,提供了一种无线充电的方法,该方法包括:发射端设备接收来自无线充电设备的第一电磁波信号;该发射端设备对该第一电磁波信号的全部或部分进行功率放大得到第三电磁波信号;该发射端设备向该无线充电设备发送该第三电磁波信号,该第三电磁波信号用于为该无线充电设备进行充电。
本申请实施例中发射端设备和无线充电设备之间的充电过程,可以形成一个循环的流程。即发射端设备向无线充电设备发送电磁波信号进行充电,无线充电设备将一部分电磁波信号用于充电,另一部分电磁波信号用于反馈给发射端设备进行放大,并将放大后的电磁波信号再用于为该无线充电设备进行充电。这样发射端设备和无线充电设备能够达到一个稳定的功率范围进行无线充电,从而提高了充电性能。
结合第一方面,在一些可能的实现方式中,该发射端设备对第一电磁波信号的部分进行功率放大得到第三电磁波信号包括:将该第一电磁波分离得到第二电磁波信号和第四电磁波信号;该发射端设备根据第四电磁波信号确定增益系数;该发射端设备根据该增益系数,对该第二电磁波信号进行功率放大得到该第三电磁波信号。
该发射端设备可以根据第四电磁波信号的功率大小调整增益系数。例如,该第四电磁波信号的功率较低(例如,低电平)时,增大增益系数;该第四电磁波信号的功率较高(例如,高电平)时,减小增益系数。例如,发射端设备可以预先设置预设功率阈值,通过与该预设功率阈值的大小关系,判断该第四电磁波信号的电平大小。这样发射端设备通过增益系数可以调整第三电磁波信号的功率使得第三电磁波信号的功率能够达到一个稳定的 功率范围,有助于提高无线充电的充电性能。
可以理解的是,该第四电磁波信号可以是该第一电磁波信号的部分信号,其中,第四电磁波信号与该第二电磁波信号不同。换句话说,该第一电磁波信号可以被分离为第二电磁波信号和第四电磁波信号。例如,进行功率或能量分配得到第二电磁波信号和第四电磁波信号,具体实现时可以是通过功率分配器进行功率或能量分配,或是通过耦合器将功率或能量进行电磁耦合。其中,第二电磁波信号的能量和第四电磁波信号的能量可以均等分配,也可以是不均等分配。
还可以理解的是,在实际应用中,通过采用耦合器将第一电磁波信号进行功率或能量的电磁耦合得到第二电磁波信号和第四电磁波信号。此外,第四电磁波信号的能量通常小于第二电磁波信号的能量。
结合第一方面,在一些可能的实现方式中,该方法还包括:该发射端设备接收来自该无线充电设备的第五电磁波信号,该第五电磁波信号是该无线充电设备从该第三电磁波信号分离得到的;该发射端设备在该第五电磁波信号的信号强度小于或等于预设值的情况下,该发射端设备停止为该无线充电设备进行充电。
该发射端设备可以根据第五电磁波信号的信号强度与第一预设信号强度阈值的大小关系,确定是否继续为该无线充电设备进行充电。或者该发射端设备可以根据当前接收到的电磁波信号的信号强度和上一次电磁波信号的信号强度的差值与第二预设信号强度阈值的大小关系确定是否继续为该无线充电设备进行充电。在遮挡到一定程度时可以避免继续发射电磁波信号造成的电磁波信号的辐射污染。此外,若该遮挡物为人体时,本申请实施例可以减少对人体的辐射危害。
可以理解的是,该第五电磁波信号为将第三电磁波分离得到的。
结合第一方面,在一些可能的实现方式中,该方法还包括:该发射端设备接收来自该无线充电设备的充电连接请求,该充电连接请求包括该无线充电设备的充电功率需求信息;该发射端设备根据该充电功率需求信息,确定是否能够为该无线充电设备进行充电;该发射端设备向该无线充电设备发送充电连接响应消息,该充电连接响应消息用于指示是否能够为该无线充电设备进行充电。
无线充电设备可以主动发送充电连接请求,并携带指示需求功率的充电功率需求信息。发射端设备接收到该充电连接请求,并根据该充电连接请求中的充电功率需求信息确定是否能够满足该功率需求,并将结果通过充电连接响应消息告知无线充电设备。若该发射端设备确定能够为该无线充电设备进行充电,则该充电连接响应消息指示能够为该无线充电设备进行充电,这样该发射端设备和该无线充电设备可以实现建立起充电连接。
结合第一方面,在一些可能的实现方式中,在该充电连接响应消息指示不能够为该无线充电设备进行充电的情况下,该充电连接响应消息还包括重新建立充电连接的延迟时长。
在该充电连接响应消息指示该发射端设备不能够为该无线充电设备进行充电的情况下,该充电连接响应消息还包括重新建立充电连接的延迟时长。这样在该延迟时长到达时,该无线充电设备可以向该发射端设备重新发送该充电连接请求,避免了在发射端设备不能够提供充电服务时,无线充电设备的多次请求造成的功耗开销。
在一些可能的实现方式中,在该无线充电设备可以向该发射端设备发送充电连接请求 之前,该无线充电设备还可以接收来自该发射端设备的充电广播信息,该充电广播信息用于指示该发射端设备具有充电能力。
该充电广播信息可以包括该无线充电设备的标识。也就是说,该发射端设备用于触发无线充电设备发起充电连接请求。这样避免了无线充电设备向没有充电能力的发射端设备发送充电连接请求,有助于减少充电连接建立的时延。
结合第一方面,在一些可能的实现方式中,该方法还包括:该发射端设备发送充电广播信息,该充电广播信息包括该发射端设备的充电能力;该发射端设备接收来自该无线充电设备的充电连接请求,该充电连接请求用于请求为该无线充电设备进行充电。
发射端设备可以主动发送充电广播信息,无线充电设备根据接收到的充电广播信息中包括的充电能力确定是否能够满足该无线充电设备的功率需求。若该发射端设备的充电能力不满足该无线充电设备的功率需求,则该无线充电设备可以不向该发射端设备发送该充电连接请求,从而节省了无线充电设备的功耗开销。
第二方面,提供了一种无线充电的方法,该方法包括:无线充电设备从发射端设备接收第三电磁波信号;该无线充电设备将所述第三电磁波信号分离得到第五电磁波信号和第六电磁波信号;该无线充电设备向该发射端设备发送该第五电磁波信号;该无线充电设备根据该第六电磁波信号进行充电。
本申请实施例中发射端设备和无线充电设备之间的充电过程,可以形成一个循环的流程。即发射端设备向无线充电设备发送电磁波信号进行充电,无线充电设备将一部分电磁波信号用于充电,另一部分电磁波信号用于反馈给发射端设备进行放大,并将放大后的电磁波信号再用于为该无线充电设备进行充电。这样发射端设备和无线充电设备能够达到一个稳定的功率范围进行无线充电,从而提高了充电性能。
可以理解的是,该第五电磁波信号和第六电磁波可以分别是该第三电磁波信号的部分信号。换句话说,该第三电磁波信号可以被分离为第五电磁波信号和第六电磁波信号。例如,通过功率分配器进行功率或能量分配得到第五电磁波信号和第六电磁波信号,或者通过耦合器对功率或能量电磁耦合得到第五电磁波信号和第六电磁波信号。其中,第五电磁波信号的能量和第六电磁波信号的能量可以均等分配,也可以是不均等分配。
还可以理解的是,在实际应用中,通过采用耦合器将第三电磁波信号进行功率或能量的电磁耦合得到第五电磁波信号和第六电磁波信号。此外,第五电磁波信号的能量通常小于第六电磁波信号的能量。
结合第二方面,在一些可能的实现方式中,该方法还包括:该无线充电设备向该发射端设备发送充电连接请求,该充电连接请求包括该无线充电设备的充电功率需求信息;该无线充电设备接收来自该发射端设备的充电连接响应消息,该充电连接响应消息用于指示该发射端设备是否能够为该无线充电设备进行充电。
无线充电设备可以主动发送充电连接请求,并携带指示需求功率的充电功率需求信息。发射端设备接收到该充电连接请求,并根据该充电连接请求中的充电功率需求信息确定是否能够满足该功率需求,并将结果通过充电连接响应消息告知无线充电设备。若该发射端设备确定能够为该无线充电设备进行充电,则该充电连接响应消息指示能够为该无线充电设备进行充电,这样该发射端设备和该无线充电设备可以实现建立起充电连接。
结合第二方面,在一些可能的实现方式中,在该充电连接响应消息指示该发射端设备 不能够为该无线充电设备进行充电的情况下,该充电连接响应消息还包括重新建立充电连接的延迟时长,该方法还包括:在该延迟时长到达时,该无线充电设备向该发射端设备重新发送该充电连接请求。
在该充电连接响应消息指示该发射端设备不能够为该无线充电设备进行充电的情况下,该充电连接响应消息还包括重新建立充电连接的延迟时长。这样在该延迟时长到达时,该无线充电设备可以向该发射端设备重新发送该充电连接请求,避免了在发射端设备不能够提供充电服务时,无线充电设备的多次请求造成的功耗开销。
结合第二方面,在一些可能的实现方式中,该方法还包括:该无线充电设备接收充电广播信息,该充电广播信息包括该发射端设备的充电能力;在该发射端设备的充电能力满足该无线充电设备的功率需求的情况下,该无线充电设备向该发射端设备发送充电连接请求,该充电连接请求用于请求为该无线充电设备进行充电。
发射端设备可以主动发送充电广播信息,无线充电设备根据接收到的充电广播信息中包括的充电能力确定是否能够满足该无线充电设备的功率需求。若该发射端设备的充电能力不满足该无线充电设备的功率需求,则该无线充电设备可以不向该发射端设备发送该充电连接请求,从而节省了无线充电设备的功耗开销。
第三方面,提供了一种无线充电的发射端设备,包括:收发天线,用于接收来自无线充电设备的第一电磁波信号,并将该第一电磁波信号的全部或部分转发给功率放大模块;该功率放大模块,用于对该第一电磁波信号的全部或部分进行功率放大得到第三电磁波信号,并将该第三电磁波信号发送到该收发天线;该收发天线,还用于向该无线充电设备发送该第三电磁波信号,该第三电磁波信号用于为该无线充电设备进行充电。
本申请实施例中发射端设备和无线充电设备之间的充电过程,可以形成一个循环的流程。即发射端设备向无线充电设备发送电磁波信号进行充电,无线充电设备将一部分电磁波信号用于充电,另一部分电磁波信号用于反馈给发射端设备进行放大,并将放大后的电磁波信号再用于为该无线充电设备进行充电。这样发射端设备和无线充电设备能够达到一个稳定的功率范围进行无线充电,从而提高了充电性能。
结合第三方面,在一些可能的实现方式中,该发射端设备还包括功率分配模块和增益控制模块,该功率分配模块,用于将该第一电磁波信号分离得到该第二电磁波信号和第四电磁波信号,并将该第四电磁波信号发送到该增益控制模块;该增益控制模块,用于根据该第四电磁波信号确定增益系数,并将该增益系数发送给该功率放大模块;该功率放大模块,用于对该第一电磁波信号的全部或部分进行功率放大得到第三电磁波信号,并将该第三电磁波信号发送到该收发天线,具体为:该功率放大模块,用于根据该增益系数,对该第二电磁波信号进行功率放大得到该第三电磁波信号,并将该第三电磁波信号发送到该收发天线。
该发射端设备可以根据第四电磁波信号的功率大小调整增益系数。例如,该第四电磁波信号的功率较低(例如,低电平)时,增大增益系数;该第四电磁波信号的功率较高(例如,高电平)时,减小增益系数。例如,发射端设备可以预先设置预设功率阈值,通过与该预设功率阈值的大小关系,判断该第四电磁波信号的电平大小。这样发射端设备通过增益系数可以调整第三电磁波信号的功率使得第三电磁波信号的功率能够达到一个稳定的功率范围,有助于提高无线充电的充电性能。
可以理解的是,该第四电磁波信号可以是该第一电磁波信号的部分信号,其中,第四电磁波信号与该第二电磁波信号不同。换句话说,该第一电磁波信号可以被分离为第二电磁波信号和第四电磁波信号。例如,通过功率分配器进行功率或能量分配得到第二电磁波信号和第四电磁波信号,或者通过耦合器将功率或能量进行电磁耦合得到第二电磁波信号和第四电磁波信号。其中,第二电磁波信号的能量和第四电磁波信号的能量可以均等分配,也可以是不均等分配。
还可以理解的是,在实际应用中,通过采用耦合器将第一电磁波信号进行功率或能量的电磁耦合得到第二电磁波信号和第四电磁波信号。此外,第四电磁波信号的能量通常小于第二电磁波信号的能量。
结合第三方面,在一些可能的实现方式中,该收发天线,还用于接收来自该无线充电设备的第五电磁波信号,该第五电磁波信号是该无线充电设备从该第三电磁波信号分离得到的;该发射端设备还包括处理模块,该处理模块用于在该第五电磁波信号的信号强度小于或等于预设值的情况下,停止为该无线充电设备进行充电。
该发射端设备可以根据第五电磁波信号的信号强度与第一预设信号强度阈值的大小关系,确定是否继续为该无线充电设备进行充电。或者该发射端设备可以根据当前接收到的电磁波信号的信号强度和上一次电磁波信号的信号强度的差值与第二预设信号强度阈值的大小关系确定是否继续为该无线充电设备进行充电。在遮挡到一定程度时可以避免继续发射电磁波信号造成的电磁波信号的辐射污染。此外,若该遮挡物为人体时,本申请实施例可以减少对人体的辐射危害。
可以理解的是,该第五电磁波信号为将第三电磁波分离得到的。
结合第三方面,在一些可能的实现方式中,该收发天线,还用于接收来自该无线充电设备的充电连接请求,该充电连接请求包括该无线充电设备的充电功率需求信息;该发射端设备还包括处理模块,该处理模块,用于根据该充电功率需求信息,确定是否能够为该无线充电设备进行充电;该收发天线,还用于向该无线充电设备发送充电连接响应消息,该充电连接响应消息用于指示是否能够为该无线充电设备进行充电。
无线充电设备可以主动发送充电连接请求,并携带指示需求功率的充电功率需求信息。发射端设备接收到该充电连接请求,并根据该充电连接请求中的充电功率需求信息确定是否能够满足该功率需求,并将结果通过充电连接响应消息告知无线充电设备。若该发射端设备确定能够为该无线充电设备进行充电,则该充电连接响应消息指示能够为该无线充电设备进行充电,这样该发射端设备和该无线充电设备可以实现建立起充电连接。
结合第三方面,在一些可能的实现方式中,在该充电连接响应消息指示不能够为该无线充电设备进行充电的情况下,该充电连接响应消息还包括重新建立充电连接的延迟时长。
在该充电连接响应消息指示该发射端设备不能够为该无线充电设备进行充电的情况下,该充电连接响应消息还包括重新建立充电连接的延迟时长。这样在该延迟时长到达时,该无线充电设备可以向该发射端设备重新发送该充电连接请求,避免了在发射端设备不能够提供充电服务时,无线充电设备的多次请求造成的功耗开销。
结合第三方面,在一些可能的实现方式中,该收发天线,还用于发送充电广播信息,该充电广播信息包括该发射端设备的充电能力;该收发天线还用于接收来自该无线充电设 备的充电连接请求,该充电连接请求用于请求为该无线充电设备进行充电。
发射端设备可以主动发送充电广播信息,无线充电设备根据接收到的充电广播信息中包括的充电能力确定是否能够满足该无线充电设备的功率需求。若该发射端设备的充电能力不满足该无线充电设备的功率需求,则该无线充电设备可以不向该发射端设备发送该充电连接请求,从而节省了无线充电设备的功耗开销。
结合第三方面,在一些可能的实现方式中,该收发天线包括范阿塔天线阵列。
收发天线可以通过范阿塔天线阵列实现。范阿塔天线阵列可以实现相邻天线阵元相位差为
Figure PCTCN2019130805-appb-000001
从而可以实现反向信号的发射,从而能够提高发射端设备和无线充电设备之间的电磁波信号的传输性能,以及能够实现能量传输的定向性。
结合第三方面,在一些可能的实现方式中,该收发天线包括多个天线阵元、该多个天线阵元中的每个天线阵元包括天线、一个或多个滤波器,以及一个或多个混频器。
收发天线也可以通过混频天线阵实现,即实现反向信号的发射,从而能够提高发射端设备和无线充电设备之间的电磁波信号的传输性能,以及能够实现能量传输的定向性。
结合第三方面,在一些可能的实现方式中,该功率分配模块设置在该天线的天线馈点与该混频器之间。
功率分配模块和收发天线的连接位置可以设置在靠近天线的天线馈点的位置,这样能够减小能量的损耗。
结合第三方面,在一些可能的实现方式中,在该每个天线阵元包括天线、一个滤波器,以及一个混频器的情况下,该混频器的第一输入信号的频率为第二输入信号的频率的2倍,该第二输入信号为该收发天线的输入信号经过该天线之后的输出信号,该混频器的输出信号为该滤波器的输入信号,该滤波器用于滤除的频率为该第二输入信号的频率的3倍。
混频天线阵中对混频器的输入信号和滤波器的滤波能力具有特定要求,例如,将混频器的第一输入信号的频率设置为第二输入信号的频率的2倍,以及将滤波器设置为能够滤除的频率为该第二输入信号的频率的3倍的情况下,可以实现相位取反,即实现了信号传输的波束相反,从而能够提高发射端设备和无线充电设备之间的电磁波信号的传输性能,以及能够实现能量传输的定向性。
结合第三方面,在一些可能的实现方式中,在该每个天线阵元包括天线、两个滤波器,以及两个混频器的情况下,该两个混频器中的第一混频器的第一输入信号的频率为预设频率和第二输入信号的频率之和,该第二输入信号为该天线的输出信号,该第一混频器的输出信号为两个滤波器中的第一滤波器的输入信号,该第一滤波器的输出信号为该两个混频器中的第二混频器的第三输入信号,该第二混频器的第四输入信号的频率为该第二输入信号的频率和该预设频率的差值,该第二混频器的输出信号为该两个滤波器中的第二滤波器的输入信号,该第一滤波器用于滤除的频率为该预设频率和2倍的该第二输入信号的频率之和,该第二滤波器用于滤除的频率为该第二输入信号的频率与2倍的预设频率的差值。
混频天线阵中对混频器的输入信号和滤波器的滤波能力具有特定要求,例如,每个天线阵元可以进行二次混频。这样实现相位取反,即实现了信号传输的波束相反,从而能够提高发射端设备和无线充电设备之间的电磁波信号的传输性能,以及能够实现能量传输的定向性。
结合第三方面,在一些可能的实现方式中,在该每个天线阵元包括天线、一个滤波器,以及一个混频器的情况下,该混频器的第一输入信号的频率为第二输入信号的频率和预设频率之和的2倍,该第二输入信号为该天线的输出信号,该滤波器用于滤除的频率为3倍的该第二输入信号的频率和2倍的该预设频率之和。
收发天线还可以用于将输出信号的频率设置为与输入信号的频率不同,从而避免上下行信号的干扰。
结合第三方面,在一些可能的实现方式中,该功率放大模块包括一个或多个功率放大器。
功率放大模块可以是通过一个或多个功率放大器实现的。例如,多个功率放大器可以通过串联连接实现多级放大,从而能够提供更大的增益。或者多个功率放大器并联连接,能够提高线性度,并支持更大范围的增益调节。
结合第三方面,在一些可能的实现方式中,该功率分配模块包括耦合器或功率分配器。
功率分配模块通过耦合器实现时,可以在传输线路附近放置的有电磁耦合作用的电线,即可实现功率在主传输线路及耦合电线线路之间信号分配的功能。
第四方面,提供了一种无线充电设备,包括:收发天线,用于从发射端设备接收第三电磁波信号,并将该第三电磁波信号转发给功率分配模块;该功率分配模块,用于将该第三电磁波信号分离得到第五电磁波信号和第六电磁波信号,并将该第五电磁波信号转发给该收发天线,以及将该第六电磁波转发给充电模块;该收发天线,还用于向该发射端设备发送该第五电磁波信号;充电模块,用于根据该第六电磁波信号进行充电。
本申请实施例中发射端设备和无线充电设备之间的充电过程,可以形成一个循环的流程。即发射端设备向无线充电设备发送电磁波信号进行充电,无线充电设备将一部分电磁波信号用于充电,另一部分电磁波信号用于反馈给发射端设备进行放大,并将放大后的电磁波信号再用于为该无线充电设备进行充电。这样发射端设备和无线充电设备能够达到一个稳定的功率范围进行无线充电,从而提高了充电性能。
可以理解的是,该第五电磁波信号和第六电磁波可以分别是该第三电磁波信号的部分信号。换句话说,该第三电磁波信号可以被分离为第五电磁波信号和第六电磁波信号。例如,通过功率分配器进行功率或能量分配得到第五电磁波信号和第六电磁波信号,或者通过耦合器对功率或能量电磁耦合得到第五电磁波信号和第六电磁波信号。其中,第五电磁波信号的能量和第六电磁波信号的能量可以均等分配,也可以是不均等分配。
还可以理解的是,在实际应用中,通过采用耦合器将第三电磁波信号进行功率或能量的电磁耦合得到第五电磁波信号和第六电磁波信号。此外,第五电磁波信号的能量通常小于第六电磁波信号的能量。
结合第四方面,在一些可能的实现方式中,该收发天线,还用于向该发射端设备发送充电连接请求,该充电连接请求包括该无线充电设备的充电功率需求信息;该收发天线,还用于接收来自该发射端设备的充电连接响应消息,该充电连接响应消息用于指示是否能够为该无线充电设备进行充电。
无线充电设备可以主动发送充电连接请求,并携带指示需求功率的充电功率需求信息。发射端设备接收到该充电连接请求,并根据该充电连接请求中的充电功率需求信息确定是否能够满足该功率需求,并将结果通过充电连接响应消息告知无线充电设备。若该发 射端设备确定能够为该无线充电设备进行充电,则该充电连接响应消息指示能够为该无线充电设备进行充电,这样该发射端设备和该无线充电设备可以实现建立起充电连接。
结合第四方面,在一些可能的实现方式中,在该充电连接响应消息指示不能够为该无线充电设备进行充电的情况下,该充电连接响应消息还包括重新建立充电连接的延迟时长,在该延迟时长到达时,该收发天线还用于向该发射端设备重新发送该充电连接请求。
在该充电连接响应消息指示该发射端设备不能够为该无线充电设备进行充电的情况下,该充电连接响应消息还包括重新建立充电连接的延迟时长。这样在该延迟时长到达时,该无线充电设备可以向该发射端设备重新发送该充电连接请求,避免了在发射端设备不能够提供充电服务时,无线充电设备的多次请求造成的功耗开销。
结合第四方面,在一些可能的实现方式中,该收发天线,还用于接收充电广播信息,该充电广播信息包括该发射端设备的充电能力;该收发天线,还用于在该发射端设备的充电能力满足该无线充电设备的功率需求的情况下,向该发射端设备发送充电连接请求,该充电连接请求用于请求为该无线充电设备进行充电。
发射端设备可以主动发送充电广播信息,无线充电设备根据接收到的充电广播信息中包括的充电能力确定是否能够满足该无线充电设备的功率需求。若该发射端设备的充电能力不满足该无线充电设备的功率需求,则该无线充电设备可以不向该发射端设备发送该充电连接请求,从而节省了无线充电设备的功耗开销。
结合第四方面,在一些可能的实现方式中,该收发天线包括范阿塔天线阵列。
收发天线可以通过范阿塔天线阵列实现。范阿塔天线阵列可以实现相邻天线阵元相位差为
Figure PCTCN2019130805-appb-000002
从而可以实现反向信号的发射,从而能够提高发射端设备和无线充电设备之间的电磁波信号的传输性能,以及能够实现能量传输的定向性。
结合第四方面,在一些可能的实现方式中,该收发天线包括多个天线阵元、该多个天线阵元中的每个天线阵元包括天线、一个或多个滤波器,以及一个或多个混频器,该混频天线阵列组合包括一个或多个混频天线阵列。
收发天线也可以通过混频天线阵实现,即实现反向信号的发射,从而能够提高发射端设备和无线充电设备之间的电磁波信号的传输性能,以及能够实现能量传输的定向性。
结合第四方面,在一些可能的实现方式中,该功率分配模块设置在该混频天线阵列组合的天线馈点与该混频器之间。
功率分配模块和收发天线的连接位置可以设置在靠近天线的天线馈点的位置,这样能够减小能量的损耗。
结合第四方面,在一些可能的实现方式中,在该每个天线阵元包括天线、一个滤波器,以及一个混频器的情况下,该混频器的第一输入信号的频率为第二输入信号的频率的2倍,该第二输入信号为该收发天线的输入信号经过该天线之后的输出信号,该混频器的输出信号为该滤波器的输入信号,该滤波器用于滤除的频率为该第二输入信号的频率的3倍。
混频天线阵中对混频器的输入信号和滤波器的滤波能力具有特定要求,例如,将混频器的第一输入信号的频率设置为第二输入信号的频率的2倍,以及将滤波器设置为能够滤除的频率为该第二输入信号的频率的3倍的情况下,可以实现相位取反,即实现了信号传输的波束相反,从而能够提高发射端设备和无线充电设备之间的电磁波信号的传输性能, 以及能够实现能量传输的定向性。
结合第四方面,在一些可能的实现方式中,在该每个天线阵元包括混频天线阵列组合、两个滤波器,以及两个混频器的情况下,该两个混频器中的第一混频器的第一输入信号的频率为预设频率和第二输入信号的频率之和,该第二输入信号为该收发天线的输入信号经过该天线之后的输出信号,该第一混频器的输出信号为两个滤波器中的第一滤波器的输入信号,该第一滤波器的输出信号为该两个混频器中的第二混频器的第三输入信号,该第二混频器的第四输入信号的频率为该第二输入信号的频率和该预设频率的差值,该第二混频器的输出信号为该两个滤波器中的第二滤波器的输入信号,该第一滤波器用于滤除的频率为该预设频率和2倍的该第二输入信号的频率之和,该第二滤波器用于滤除的频率为该第二输入信号的频率与2倍的预设频率的差值。
混频天线阵中对混频器的输入信号和滤波器的滤波能力具有特定要求,例如,每个天线阵元可以进行二次混频。这样实现相位取反,即实现了信号传输的波束相反,从而能够提高发射端设备和无线充电设备之间的电磁波信号的传输性能,以及能够实现能量传输的定向性。
结合第四方面,在一些可能的实现方式中,在该每个天线阵元包括天线、一个滤波器,以及一个混频器的情况下,该混频器的第一输入信号的频率为第二输入信号的频率和预设频率之和的2倍,该第二输入信号为该收发天线的输入信号经过该天线之后的输出信号,该滤波器用于滤除的频率为3倍的该第二输入信号的频率和2倍的该预设频率的差值。
收发天线还可以用于将输出信号的频率设置为与输入信号的频率不同,从而避免上下行信号的干扰。
结合第四方面,在一些可能的实现方式中,该功率分配模块包括耦合器或功率分配器。
功率分配模块通过耦合器实现时,可以在传输线路附近放置的有电磁耦合作用的电线,即可实现功率在主传输线路及耦合电线线路之间信号分配的功能。
第五方面,提供了一种无线充电系统,该无线充电系统包括所述第一方面所述的发射端设备和所述第二方面所述的无线充电设备。
基于上述技术方案,本申请实施例中发射端设备和无线充电设备之间的充电过程,可以形成一个循环的流程。即发射端设备向无线充电设备发送电磁波信号进行充电,无线充电设备将一部分电磁波信号用于充电,另一部分电磁波信号用于反馈给发射端设备进行放大,并将放大后的电磁波信号再用于为该无线充电设备进行充电。这样发射端设备和无线充电设备能够达到一个稳定的功率范围进行无线充电,从而提高了充电性能。
附图说明
图1是本申请无线充电的应用场景的示意图;
图2是本申请实施例的无线充电的方法的示意性流程图;
图3是本申请实施例的无线充电的发射端设备的示意性框图;
图4是本申请实施例的范阿塔天线阵的示意图;
图5是本申请实施例的一种混频天线阵列的示意图;
图6是本申请实施例的另一种混频天线阵列的示意图;
图7是本申请实施例的又一种混频天线阵列的示意图;
图8是本申请实施例的混频天线阵列和功率分配模块连接关系的示意图;
图9是本申请实施例的无线充电设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例中的无线充电设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的发射端设备可以是用于为无线充电设备进行充电的设备,例如,无线电源发射器、无线充电板、移动电源、车载设备等,本申请实施例对此并不限定。
图1是本申请无线充电的应用场景的示意图。该应用场景可以包括至少一个充电设备(例如,无线充电设备10、无线充电设备20和无线充电设备30)和发射端设备40。发射端设备40可以用于发送电磁波信号,无线充电设备可以根据接收到的电磁波信号进行充电。其中,无线充电设备10可以是平板、无线充电设备20可以是手机、无线充电设备30可以是可穿戴设备(例如,手表、耳机等)。
此外,无线充电设备20也可以看作一个发射端设备,这样无线充电设备20也可以为无线充电设备30进行充电。
需要说明的是,本申请实施例可以应用于包括一个或多个发射端设备的无线充电系统中,也可以应用于包括一个或多个充电设备的通信系统中,本申请对此不进行限定。
图2示出了本申请实施例的无线充电的方法的示意性流程图。
201,发射端设备接收来自无线充电设备的第一电磁波信号。相应地,该无线充电设备向该发射端设备发送该第一电磁波信号。
202,该发射端设备对该第一电磁波信号的全部或部分进行功率放大得到第三电磁波信号。
具体地,发射端设备根据第一电磁波信号可以获得该第一电磁波信号的全部或部分(例如,下述称为第二电磁波信号)。例如,该第二电磁波信号可以是该第一电磁波信号的部分信号,或者该第二电磁波信号与该第一电磁波信号相同。
需要说明的是,发射端设备对第二电磁波信号进行功率放大所需的增益系数可以是根据第一电磁波信号的功率确定的,即增益系数会随着第一电磁波信号的功率变化进行而变化。例如,增益系数会随着第一电磁波信号的功率增大而减小,或者随着第一电磁波信号的功率减小而增大。或者是该增益系数是预先设定的,或者是灵活变动的,本申请对此不进行限定。
可以理解的是,该第二电磁波信号是该第一电磁波信号的部分信号可以理解为该第二电磁波信号的能量小于该第一电磁波信号的能量。
可选地,该发射端设备还可以根据第四电磁波信号确定增益系数,该第四电磁波信号是从该第一电磁波信号分离得到的。这样该发射端设备具体可以是根据该增益系数,对该第二电磁波信号进行功率放大得到该第三电磁波信号。
具体地,该发射端设备可以根据第四电磁波信号的功率大小调整增益系数。例如,该第四电磁波信号的功率较低(例如,低电平)时,增大增益系数;该第四电磁波信号的功率较高(例如,高电平)时,减小增益系数。例如,发射端设备可以预先设置预设功率阈值,通过与该预设功率阈值的大小关系,判断该第四电磁波信号为高电平或低电平的大小。这样发射端设备通过增益系数可以调整第三电磁波信号的功率使得第三电磁波信号的功率能够达到一个稳定的功率范围,有助于提高无线充电的充电性能。
可以理解的是,该第四电磁波信号可以是该第一电磁波信号的部分信号,其中,第四电磁波信号与该第二电磁波信号不同。换句话说,该第一电磁波信号可以被分离为第二电磁波信号和第四电磁波信号。其中,第二电磁波信号和第四电磁波信号的能量分配可以均等,也可以不均等,本申请对此不进行限定。例如,第二电磁波信号的信号能量可以是第一电磁波信号的信号能量的80%。
还可以理解的是,该第一电磁波信号被分离为第二电磁波信号和第四电磁波信号中的“分离”,还可以理解为“拆分”、“分解”或“提取”。例如,该第一电磁波信号可以是通过功率分配器进行功率或能量分配得到第二电磁波信号和第四电磁波信号,或者通过耦合器将功率或能量进行电磁耦合得到第二电磁波信号和第四电磁波信号。
还可以理解的是,该第一电磁波信号还可以被分离出其他信号输入到处理模块,处理模块可以进行信号处理,例如,提取命令或数据。
还可以理解的是,该第四电磁波信号的高低电平的判断可以是通过预设电平阈值实现,例如,在该第四电磁波信号的电平高于该预设电平阈值时,则该第四电磁波信号为高电平;在该第四电磁波信号的电平低于该预设电平阈值时,则该第四电磁波信号为低电平。或者本申请实施例中,发射端设备可以设置多个电平区间与增益系数的对应关系,这样发射端设备可以根据第四电磁波信号的电平所属的电平区间确定对应的增益系数。
203,该发射端设备向该无线充电设备发送该第三电磁波信号,该第三电磁波信号用于为该无线充电设备进行充电。相应地,该无线充电设备接收来自该发射端设备发送的第三电磁波信号。
可选地,该第三电磁波信号的波束方向与该第一电磁波信号的波束方向相反。
具体地,该无线充电设备向该发射端设备发送启动信号(例如,该启动信号可以是第一电磁波信号)可以是采用全向波束或者宽波束发送的,可能只有采用部分波束的启动信号能被该发射端设备接收到。或者,发射端设备采用全波束或者宽波束发送启动信号,只有部分波束的启动信号能够被无线通信设备接收到。这样发射端设备和无线充电设备可以找到相互的位置。该发射端设备采用与接收到的第一电磁波信号的波束方向相反的波束向该无线充电设备发送该第三电磁波信号,这样能够提高发射端设备和无线充电设备之间的电磁波信号的传输性能,以及能够实现能量传输的定向性。
可选地,该第三电磁波信号和该第一电磁波信号的频率不同。
具体地,发射端设备发送该第三电磁波信号的频率可以与接收到该第一电磁波信号的频率不同,这样可以减少上下行信号传输的干扰,更进一步提高充电性能。
204,该无线充电设备将该第三电磁波信号进行分离得到第五电磁波信号和第六电磁波信号。
具体地,无线充电设备可以根据第三电磁波信号获得第五电磁波信号和第六电磁波信号。例如,该第五电磁波信号和该第六电磁波信号可以分别是该第三电磁波信号的部分信号。
可以理解的是,该第五电磁波信号是该第三电磁波信号的部分信号可以理解为该第五电磁波信号的能量小于该第三电磁波信号的能量。
还可以理解的是,该第三电磁波信号分离得到第五电磁波信号和第六电磁波信号的方式可以与上述该第一电磁波信号分离得到第二电磁波信号和第四电磁波信号的方式相同,为避免重复,在此不进行赘述。
205,该无线充电设备向该发射端设备发送该第五电磁波信号。相应地,该发射端设备接收来自该无线充电设备的第五电磁波信号。
在一个实施例中,该发射端设备还可以根据该第五电磁波信号的信号强度的情况,确定是否继续为该无线充电设备进行充电。
具体地,该发射端设备可以根据第五电磁波信号的信号强度与第一预设信号强度阈值的大小关系,确定是否继续为该无线充电设备进行充电。例如,在该第五电磁波信号的信号强度小于或等于该第一预设信号强度阈值的情况下,停止为该无线充电设备进行充电。在该第五电磁波信号的信号强度大于该第一预设信号强度阈值的情况下,继续为该无线充电设备进行充电。也就是说,发射端设备可以根据无线充电过程中无线充电设备反馈的第五电磁波信号确定发射端设备和无线充电设备之间是否存在遮挡,在遮挡到一定程度时可以避免继续发射电磁波信号造成的电磁波信号的辐射污染。此外,若该遮挡物为人体时,本申请实施例可以减少对人体的辐射危害。
可以理解的是,该发射端设备停止为该无线充电设备进行充电,例如,停止向该无线充电设备发送充电信号(例如,第五电磁波信号)之后,还可以再重新发起建立与该无线充电设备之间的充电连接,或者为该无线充电设备寻找其他发射端设备进行充电,本申请对此不进行限定。
在另一个实施例中,该发射端设备还可以根据该第五电磁波信号的信号强度与该第一电磁波信号的信号强度的差值与第二预设信号强度阈值的大小关系,确定是否继续为该无线充电设备进行充电。
具体地,该发射端设备可以根据当前接收到的电磁波信号的信号强度和上一次电磁波信号的信号强度的差值与第二预设信号强度阈值的大小关系确定是否继续为该无线充电设备进行充电。例如,在该第五电磁波信号的信号强度与该第一电磁波信号的信号强度的差值小于或等于该第二预设信号强度阈值的情况下,该发射端设备停止为该无线充电设备进行充电。在该第五电磁波信号的信号强度与该第一电磁波信号的信号强度的差值大于该第二预设信号强度阈值的情况下,该发射端设备继续为该无线充电设备进行充电。也就是说,发射端设备可以根据无线充电过程中无线充电设备反馈的第五电磁波信号和第一电磁波信号确定发射端设备和无线充电设备之间是否存在遮挡,在遮挡到一定程度时可以避免继续发射电磁波信号造成的电磁波信号的辐射污染。此外,若该遮挡物为人体时,本申请实施例可以减少对人体的辐射危害。
需要说明的是,该第一电磁波信号可以是无线充电设备上一次充电反馈给发射端设备的电磁波信号。
206,该无线充电设备根据该六电磁波信号进行充电。
具体地,本申请实施例中发射端设备和无线充电设备之间的充电过程,可以形成一个循环的流程。即发射端设备向无线充电设备发送电磁波信号进行充电,无线充电设备将一部分电磁波信号用于充电,另一部分电磁波信号用于反馈给发射端设备进行放大,并将放大后的电磁波信号再用于为该无线充电设备进行充电。这样发射端设备和无线充电设备能够达到一个稳定的功率范围进行无线充电,从而提高了充电性能。
此外,假设第三电磁波信号占第一电磁波信号的比例为t,发射端设备的功率放大倍数为A,由于发射端设备到无线充电设备之间的路径损耗,到达无线充电设备的第三电磁波信号占从发射端设备发出的第三电磁波信号的比例为c 1,第五电磁波信号占接收到的第三电磁波信号的比例为r,发射端设备接收的第五电磁波信号占从无线充电设备发出的第五电磁波信号的比例为c 2,这样发射端设备和无线充电设备之间的往返一次的增益为Atrc 1c 2。因此Atrc 1c 2>1可以实现信号功率在往返中放大。若发射端设备与无线充电设备之间存在遮挡,则导致信道损耗明显增大,即c 1和c 2的取值显著减小。也就是说,本申请实施例中,在发射端设备与无线充电设备之间存在遮挡时,信号功率在往返中可能会减小,直至中断。即本申请实施例能够对遮挡等异常事件做出及时的反应,在ns的时间量级内可以切断信号传输,减少了无线充电设备发射电磁波信号造成的电磁波信号的辐射污染。此外,若该遮挡物为人体时,本申请实施例可以减少对人体的辐射危害。
可以理解的是,该第三电磁波信号被分离为第五电磁波信号和第六电磁波信号中的“分离”,还可以理解为“拆分”、“分解”或“提取”。例如,该第三电磁波信号可以是通过功率分配器进行功率或能量分配得到第五电磁波信号和第六电磁波信号,或者通过耦合器将功率或能量进行电磁耦合得到第五电磁波信号和第六电磁波信号。
还可以理解的是,该第三电磁波信号还可以被分离出其他信号输入到处理模块,处理模块可以进行信号处理,例如,提取命令或数据。
可选地,在该无线充电设备不需要继续充电(例如完成充电)时,向发射端设备发送充电结束指示。
具体地,若发射端设备接收到来自该无线充电设备的充电结束指示,则该发射端设备停止向该无线充电设备发送充电信号。这样避免在无线充电设备不需要充电的情况下,发射端设备依然发送充电信号导致的辐射污染。
在一个实施例中,在发射端设备和无线充电设备建立充电连接之前,例如,在步骤201之前,该无线充电设备可以向该发射端设备发送充电连接请求,该充电连接请求包括该无线充电设备的充电功率需求信息。该发射端设备根据该充电功率需求信息确定是否能够为该无线充电设备进行充电,并通过向该无线充电设备发送充电连接响应消息指示是否能够为该无线充电设备进行充电。
具体地,无线充电设备可以主动发送充电连接请求,并携带指示需求功率的充电功率需求信息。发射端设备接收到该充电连接请求,并根据该充电连接请求中的充电功率需求信息确定是否能够满足该功率需求,并将结果通过充电连接响应消息告知无线充电设备。例如,若该发射端设备确定不能够为该无线充电设备进行充电,则该充电连接响应消息指 示不能为该无线充电设备进行充电。无线充电设备在接收到指示不能为该无线充电设备进行充电的充电连接响应消息的情况下,还可以重新选择发射端设备,或者进行其他操作等。若该发射端设备确定能够为该无线充电设备进行充电,则该充电连接响应消息指示能够为该无线充电设备进行充电,这样该发射端设备和该无线充电设备可以建立起充电连接。
可以理解的是,发射端设备和无线充电设备建立充电连接之前可以称为“准备阶段”。
可选地,在该充电连接响应消息指示该发射端设备不能够为该无线充电设备进行充电的情况下,该充电连接响应消息还包括重新建立充电连接的延迟时长。这样在该延迟时长到达时,该无线充电设备可以向该发射端设备重新发送该充电连接请求。
可选地,在该无线充电设备可以向该发射端设备发送充电连接请求之前,该无线充电设备还可以接收来自该发射端设备的充电广播信息,该充电广播信息用于指示该发射端设备具有充电能力。
具体地,该充电广播信息可以包括该无线充电设备的标识。也就是说,该发射端设备用于触发无线充电设备发起充电连接请求。这样避免了无线充电设备向没有充电能力的发射端设备发送充电连接请求,有助于减少充电连接建立的时延。
在另一个实施例中,在发射端设备和无线充电设备建立充电连接之前,例如,在步骤201之前,该无线充电设备还可以接收来自该发射端设备的充电广播信息,该充电广播信息包括该发射端设备的充电能力。在该发射端设备的充电能力满足该无线充电设备的功率需求的情况下,该无线充电设备向该发射端设备发送充电连接请求。
具体地,发射端设备可以主动发送充电广播信息,无线充电设备根据接收到的充电广播信息中包括的充电能力确定是否能够满足该无线充电设备的功率需求。若该发射端设备的充电能力满足该无线充电设备的功率需求,则该无线充电设备向该发射端设备发送充电连接请求,该发射端设备在接收到该充电连接请求时,为该无线充电设备进行充电(例如,发送该第三电磁波信号)。若该发射端设备的充电能力不满足该无线充电设备的功率需求,则该无线充电设备可以不向该发射端设备发送该充电连接请求。
可以理解的是,该发射端设备可以是连续发送该充电广播信息,也可以是周期性地发送该充电广播信息,本申请对此不进行限定。
还可以理解的是,在该通信系统初始运行时刻,发射端设备可以自己生成一个电磁波信号,并将该电磁波信号进行放大。
可选地,该充电广播信息还可以包括发射端设备的标识。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由发射端设备实现的方法和操作,也可以由可用于发射端设备的部件(例如芯片或者电路)实现。由无线充电设备实现的方法和操作,也可以由可用于无线充电设备的部件(例如芯片或者电路)实现。
上述主要从各个交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者无线充电设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方 案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者无线充电设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以使用硬件的形式实现,也可以使用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以使用对应各个功能划分各个功能模块为例进行说明。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,图2详细说明了本申请实施例提供的方法。以下,结合图3至图9详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图3示出了本申请实施例的无线充电的发射端设备300的示意性框图。
应理解,该发射端设备300可以对应于图1所示的各个发射端设备或发射端设备内的芯片,以及图2所示的实施例中的发射端设备或发射端设备内的芯片,可以具有图2所示的方法实施例中的发射端设备的任意功能。该发射端设备300包括收发天线310和功率放大模块320。
该收发天线310,用于接收来自无线充电设备的第一电磁波信号,并将该第一电磁波信号的全部或部分转发给功率放大模块;
该功率放大模块320,用于对该第一电磁波信号的全部或部分进行功率放大得到第三电磁波信号,并将该第三电磁波信号发送到该收发天线;
该收发天线310,还用于向该无线充电设备发送该第三电磁波信号,该第三电磁波信号用于为该无线充电设备进行充电。
可以理解的是,该收发天线310可以是方向回溯天线。该方向回溯天线可以用于实现第三电波信号的发送波束与第一电磁波信号的接收波束的波束方向相反。
可选地,该发射端设备300还包括功率分配模块330和增益控制模块340,该功率分配模块330,用于将该第一电磁波信号分离得到该第二电磁波信号和第四电磁波信号,并将该第四电磁波信号发送到该增益控制模块;该增益控制模块340,用于根据该第四电磁波信号确定增益系数,并将该增益系数发送给该功率放大模块;该功率放大模块320,用于对该第一电磁波信号的全部或部分进行功率放大得到第三电磁波信号,并将该第三电磁波信号发送到该收发天线,具体为:该功率放大模块320,用于根据该增益系数,对该第二电磁波信号进行功率放大得到该第三电磁波信号,并将该第三电磁波信号发送到该收发天线。
在一个示例中,该功率分配模块330可以是耦合器。
在另一个示例中,该功率分配模块340可以是功率分配器。
可以理解的是,功率分配器对电磁波信号进行划分后得到的两路或多路电磁波信号的能量可以是均等的。耦合器对电磁波信号进行划分得到的两路或多路电磁波信号的能量通常为不均等的。例如,通过耦合器的电磁耦合方式获得的两路电磁波中其中一路电磁波信号的能量是远小于另一路电磁波信号的能量。
可选地,该收发天线310,还用于接收来自该无线充电设备的第五电磁波信号,该第五电磁波信号是该无线充电设备从该第三电磁波信号分离得到的;该发射端设备300还包括处理模块350,该处理模块用于在该第五电磁波信号的信号强度小于或等于预设值的情况下,停止为该无线充电设备进行充电。
可以理解的是,该处理模块350还可以用于提取信令或数据等,本申请对此不进行限定。
可选地,该收发天线310,还用于接收来自该无线充电设备的充电连接请求,该充电连接请求包括该无线充电设备的充电功率需求信息;该发射端设备300还包括处理模块350,该处理模块350,用于根据该充电功率需求信息,确定是否能够为该无线充电设备进行充电;该收发天线310,还用于向该无线充电设备发送充电连接响应消息,该充电连接响应消息用于指示是否能够为该无线充电设备进行充电。
可选地,在该充电连接响应消息指示不能够为该无线充电设备进行充电的情况下,该充电连接响应消息还包括重新建立充电连接的延迟时长。
可选地,该收发天线310,还用于发送充电广播信息,该充电广播信息包括该发射端设备的充电能力;该收发天线310还用于接收来自该无线充电设备的充电连接请求,该充电连接请求用于请求为该无线充电设备进行充电。
在一个实施例中,该收发天线包括范阿塔天线阵列。
具体地,收发天线用于实现发射信号与接收信号的波束取反。其中,波束取反也可以通过发射信号和接收信号的相位取反实现。这样该收发天线可以是范阿塔天线阵列。如图4所示,范阿塔天线阵通常为直线阵,存在偶数个阵元,相对应的天线阵元之间的连接有相同的信号延迟,相邻天线阵元之间有相同的延迟,从而引起相同的相位差
Figure PCTCN2019130805-appb-000003
例如,假设接收时天线1a、天线2a、……天线Na、天线Nb、……天线2b、天线1b的接收信号相位分别为
Figure PCTCN2019130805-appb-000004
而连接延迟相位均为α,则发射时天线1a、天线2a、……天线Na、天线Nb、……天线2b、天线1b的发射信号相位分别为
Figure PCTCN2019130805-appb-000005
α+θ(比如天线1a发射的信号来自天线1b的接收信号,因此其相位是天线1b的接收信号相位加上连接延迟相位),这样便实现了相邻天线阵元相位差为
Figure PCTCN2019130805-appb-000006
从而可以实现反向信号的发射。
在另一个实施例中,该收发天线包括多个天线阵元,该多个天线阵元中的每个天线阵元包括天线、一个或多个滤波器,以及一个或多个混频器。
可以理解的是,该收发天线为混频天线阵。
在一个示例中,该每个天线阵元包括天线、一个滤波器和一个混频器。
可选地,该混频器的第一输入信号的频率为第二输入信号的频率的2倍,该第二输入信号为该收发天线的输入信号经过该天线之后的输出信号,该混频器的输出信号为该滤波器的输入信号,该滤波器用于滤除的频率为该第二输入信号的频率的3倍。
具体地,如图5所示,该多个天线阵元中的第i个天线阵元的输入信号为
Figure PCTCN2019130805-appb-000007
i=1,…,n。该输入信号经过天线后可以作为混频器的第二输入信号。此外,混频器还有另外一个输入信号(下述称为第一输入信号),该第一输入信号可以是cos(4πft+θ)。这样混频器通过对第一输入信号和第二输入信号的混频后输出的信号为
Figure PCTCN2019130805-appb-000008
再经过低通或带通滤波滤除3倍频频率成分后变成
Figure PCTCN2019130805-appb-000009
滤波器将信号输出到天线进行发射,从而实现相位取反,即实现了信号传输的波束相反。
可以理解的是,该收发天线中的天线可以是由一个物理单元实现信号的发送或接收,也可以由两个物理单元分别实现信号的发送或接收。
在另一个示例中,该每个天线阵元包括天线、多个滤波器和多个混频器。
可选地,在该收发天线包括天线、两个滤波器,以及两个混频器的情况下,该两个混频器中的第一混频器的第一输入信号的频率为预设频率和第二输入信号的频率之和,该第二输入信号为该收发天线的输入信号经过该天线之后的输出信号,该第一混频器的输出信号为两个滤波器中的第一滤波器的输入信号,该第一滤波器的输出信号为该两个混频器中的第二混频器的第三输入信号,该第二混频器的第四输入信号的频率为该第二输入信号的频率和该预设频率的差值,该第二混频器的输出信号为该两个滤波器中的第二滤波器的输入信号,该第一滤波器用于滤除的频率为该预设频率和2倍的该第二输入信号的频率之和,该第二滤波器用于滤除的频率为该第二输入信号的频率与2倍的预设频率的差值。
具体地,每个天线阵元也可以进行二次混频。例如,如图6所示,以某一个天线阵元为例进行说明。混频器1的第二输入信号为
Figure PCTCN2019130805-appb-000010
第一输入信号为cos(2πft+2πf it+θ 1),其中i=1,…,n。第一输入信号和第二输入信号经过混频后的信号为
Figure PCTCN2019130805-appb-000011
再经过滤波器1滤除(2f+f i)频率成分变成
Figure PCTCN2019130805-appb-000012
将信号
Figure PCTCN2019130805-appb-000013
再次经过混频器2,混频器2的另一个输入信号为cos(2πft-2πf it+θ 2),这样经过混频器2的混频后得到的信号为
Figure PCTCN2019130805-appb-000014
对混频器2的输出信号经过滤波器2,滤除(f-2f i)频率成分变成
Figure PCTCN2019130805-appb-000015
这样实现了相位取反,从而实现了反向发射信号。
可以理解的是,该f i的取值可以小于f,这样能够有助于降低生成该第一输入信号的的难度。
可选地,在该收发天线包括天线、一个滤波器,以及一个混频器的情况下,该混频器的第一输入信号的频率为第二输入信号的频率和预设频率之和的2倍,该第二输入信号为该收发天线的输入信号经过该天线之后的输出信号,该滤波器用于滤除的频率为3倍的该第二输入信号的频率和2倍的该预设频率之和。
具体地,收发天线还可以用于将输出信号的频率设置为与输入信号的频率不同,从而避免上下行信号的干扰。例如,如图7所示,以收发天线中的第i个阵元为例进行说明。该第i个阵元的输入信号为
Figure PCTCN2019130805-appb-000016
其中,i=1,…,n,该信号经过天线后输出到混频器。混频器的另一个输入信号为cos[4π(f+Δf)t+θ]。这样经过混频器的混频后可以得到
Figure PCTCN2019130805-appb-000017
再经过滤波器滤除3倍频频率成分后变成
Figure PCTCN2019130805-appb-000018
从而实现了相位取反,以及实现了收发天线的输出信号的频率和 输入信号的频率不同(即增加了2Δf)。
需要说明的是,在图7所示的场景中,无线充电设备的收发天线中的混频器的第一输入信号可以为cos[4πft+θ],或者为cos[4π(f+Δf)t+θ]。在无线充电设备的收发天线中的混频器的第一输入信号可以为cos[4π(f-Δf)t+θ]时,发射端设备的第一输入信号增加了2△f的频率,无线充电设备的第一输入信号减少了2△f的频率。如果考虑到频率越高能使得天线阵列体积越小,则可以让发射端设备使用更低的频率,无线充电设备使用更高的频率,从而使得无线充电设备的体积更紧凑。
可以理解的是,上述Δf的取值可以为正数,也可以是负数。
可选地,该功率分配模块330设置在该天线的天线馈点与该混频器之间。
具体地,如图8所示,功率分配模块和收发天线的连接位置可以设置在靠近天线的天线馈点的位置,这样能够减小能量的损耗。
可选地,该功率放大模块包括一个或多个功率放大器。
具体地,功率放大模块可以是通过一个或多个功率放大器实现的。例如,多个功率放大器可以通过串联连接实现多级放大,从而能够提供更大的增益。或者多个功率放大器并联连接,能够提高线性度,并支持更大范围的增益调节。
可选地,该功率分配模块包括耦合器或功率分配器。
具体地,功率分配模块通过耦合器实现时,可以在传输线路附近放置的有电磁耦合作用的电线,即可实现功率在主传输线路及耦合电线线路之间分配的功能,多次耦合就可以实现多路功率分配。
可以理解的是,图3仅仅示出了发射端设备的简化设计。在实际应用中,该发射端设备还可以分别包含必要的其他元件,包含但不限于任意数量的收发天线、处理器、功率分配器、耦合器、功率放大器、存储器等,而所有可以实现本申请的终端都在本申请的保护范围之内。
本申请实施例还提供一种发射端设备,该发射端设备可以是终端也可以是电路。该发射端设备可以用于执行上述方法实施例中由发射端设备所执行的动作。
图9示出了本申请实施例的无线充电设备900的示意性框图。
应理解,该无线充电设备900可以对应于图1所示的各个无线充电设备或无线充电设备内的芯片,以及图2所示的实施例中的无线充电设备或无线充电设备内的芯片,可以具有图2所示的方法实施例中的无线充电设备的任意功能。该无线充电设备900包括收发天线910、功率分配模块920和充电模块930。
该收发天线910,用于从发射端设备接收第三电磁波信号,并将该第三电磁波信号转发给功率分配模块;
该功率分配模块920,用于将该第三电磁波信号分离得到该第五电磁波信号和第六电磁波信号,并将该第五电磁波信号转发给该收发天线,以及将该第六电磁波信号转发给充电模块;
该收发天线910,还用于向该发射端设备发送该第五电磁波信号;
充电模块930,用于根据该第六电磁波信号进行充电。
可选地,该收发天线910,还用于向该发射端设备发送充电连接请求,该充电连接请求包括该无线充电设备的充电功率需求信息;该收发天线910,还用于接收来自该发射端 设备的充电连接响应消息,该充电连接响应消息用于指示是否能够为该无线充电设备进行充电。
可选地,在该充电连接响应消息指示不能够为该无线充电设备进行充电的情况下,该充电连接响应消息还包括重新建立充电连接的延迟时长,在该延迟时长到达时,该收发天线还用于向该发射端设备重新发送该充电连接请求。
可选地,该收发天线910,还用于接收充电广播信息,该充电广播信息包括该发射端设备的充电能力;该收发天线910,还用于在该发射端设备的充电能力满足该无线充电设备的功率需求的情况下,向该发射端设备发送充电连接请求,该充电连接请求用于请求为该无线充电设备进行充电。
可选地,该收发天线910包括范阿塔天线阵列。
可选地,该收发天线包括多个天线阵元、该多个天线阵元中的每个天线阵元包括天线、一个或多个滤波器,以及一个或多个混频器。
可选地,该功率分配模块设置在该天线的天线馈点与该混频器之间。
可选地,在该每个天线阵元包括天线、一个滤波器,以及一个混频器的情况下,该混频器的第一输入信号的频率为第二输入信号的频率的2倍,该第二输入信号为该收发天线的输入信号经过该天线之后的输出信号,该混频器的输出信号为该滤波器的输入信号,该滤波器用于滤除的频率为该第二输入信号的频率的3倍。
可选地,在该每个天线阵元包括天线、两个滤波器,以及两个混频器的情况下,该两个混频器中的第一混频器的第一输入信号的频率为预设频率和第二输入信号的频率之和,该第二输入信号为该天线的输出信号,该第一混频器的输出信号为两个滤波器中的第一滤波器的输入信号,该第一滤波器的输出信号为该两个混频器中的第二混频器的第三输入信号,该第二混频器的第四输入信号的频率为该第二输入信号的频率和该预设频率的差值,该第二混频器的输出信号为该两个滤波器中的第二滤波器的输入信号,该第一滤波器用于滤除的频率为该预设频率和2倍的该第二输入信号的频率之和,该第二滤波器用于滤除的频率为该第二输入信号的频率与2倍的预设频率的差值。
可选地,在该每个天线阵元包括天线、一个滤波器,以及一个混频器的情况下,该混频器的第一输入信号的频率为第二输入信号的频率和预设频率之差的2倍,该第二输入信号为该天线的输出信号,该滤波器用于滤除的频率为3倍的该第二输入信号的频率和2倍的该预设频率之和。
可选地,该功率分配模块包括耦合器或功率分配器。
可以理解的是,图9仅仅示出了无线充电设备的简化设计。在实际应用中,该无线充电设备还可以分别包含必要的其他元件,包含但不限于任意数量的收发天线、处理器、功率分配器、存储器等,而所有可以实现本申请的终端都在本申请的保护范围之内。
本申请实施例还提供一种无线充电设备,该无线充电设备可以是终端也可以是电路。该发射端设备可以用于执行上述方法实施例中由发射端设备所执行的动作。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项 中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中,单独存在A或B,并不限定A或B的数量。以单独存在A为例,可以理解为具有一个或多个A。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种无线充电的方法,其特征在于,包括:
    发射端设备接收来自无线充电设备的第一电磁波信号;
    所述发射端设备对所述第一电磁波信号的全部或部分进行功率放大得到第三电磁波信号;
    所述发射端设备向所述无线充电设备发送所述第三电磁波信号,所述第三电磁波信号用于为所述无线充电设备进行充电。
  2. 根据权利要求1所述的方法,其特征在于,所述发射端设备对第一电磁波信号的部分进行功率放大得到第三电磁波信号包括:
    将所述第一电磁波分离得到第二电磁波信号和第四电磁波信号;
    所述发射端设备根据所述第四电磁波信号确定增益系数;
    所述发射端设备根据所述增益系数,对所述第二电磁波信号进行功率放大得到所述第三电磁波信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述发射端设备接收来自所述无线充电设备的第五电磁波信号,所述第五电磁波信号是所述无线充电设备从所述第三电磁波信号分离得到的;
    所述发射端设备在所述第五电磁波信号的信号强度小于或等于预设值的情况下,所述发射端设备停止为所述无线充电设备进行充电。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述发射端设备接收来自所述无线充电设备的充电连接请求,所述充电连接请求包括所述无线充电设备的充电功率需求信息;
    所述发射端设备根据所述充电功率需求信息,确定是否能够为所述无线充电设备进行充电;
    所述发射端设备向所述无线充电设备发送充电连接响应消息,所述充电连接响应消息用于指示是否能够为所述无线充电设备进行充电。
  5. 根据权利要求4所述的方法,其特征在于,在所述充电连接响应消息指示不能够为所述无线充电设备进行充电的情况下,所述充电连接响应消息还包括重新建立充电连接的延迟时长。
  6. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述发射端设备发送充电广播信息,所述充电广播信息包括所述发射端设备的充电能力;
    所述发射端设备接收来自所述无线充电设备的充电连接请求,所述充电连接请求用于请求为所述无线充电设备进行充电。
  7. 一种无线充电的方法,其特征在于,包括:
    无线充电设备从发射端设备接收第三电磁波信号;
    所述无线充电设备将所述第三电磁波信号分离得到第五电磁波信号和第六电磁波信号;
    所述无线充电设备向所述发射端设备发送所述第五电磁波信号;
    所述无线充电设备根据所述第六电磁波信号进行充电。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述无线充电设备向所述发射端设备发送充电连接请求,所述充电连接请求包括所述无线充电设备的充电功率需求信息;
    所述无线充电设备接收来自所述发射端设备的充电连接响应消息,所述充电连接响应消息用于指示所述发射端设备是否能够为所述无线充电设备进行充电。
  9. 根据权利要求8所述的方法,其特征在于,在所述充电连接响应消息指示所述发射端设备不能够为所述无线充电设备进行充电的情况下,所述充电连接响应消息还包括重新建立充电连接的延迟时长,所述方法还包括:
    在所述延迟时长到达时,所述无线充电设备向所述发射端设备重新发送所述充电连接请求。
  10. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述无线充电设备接收充电广播信息,所述充电广播信息包括所述发射端设备的充电能力;
    在所述发射端设备的充电能力满足所述无线充电设备的功率需求的情况下,所述无线充电设备向所述发射端设备发送充电连接请求,所述充电连接请求用于请求为所述无线充电设备进行充电。
  11. 一种无线充电的发射端设备,其特征在于,包括:
    收发天线,用于接收来自无线充电设备的第一电磁波信号,并将所述第一电磁波信号的全部或部分转发给功率放大模块;
    所述功率放大模块,用于对所述第一电磁波信号的全部或部分进行功率放大得到第三电磁波信号,并将所述第三电磁波信号发送到所述收发天线;
    所述收发天线,还用于向所述无线充电设备发送所述第三电磁波信号,所述第三电磁波信号用于为所述无线充电设备进行充电。
  12. 根据权利要求11所述的发射端设备,其特征在于,所述发射端设备还包括功率分配模块和增益控制模块,
    所述功率分配模块,用于将所述第一电磁波信号分离得到所述第二电磁波信号和第四电磁波信号,并将所述第四电磁波信号发送到所述增益控制模块;
    所述增益控制模块,用于根据所述第四电磁波信号确定增益系数,并将所述增益系数发送给所述功率放大模块;
    所述功率放大模块,用于对所述第一电磁波信号的全部或部分进行功率放大得到第三电磁波信号,并将所述第三电磁波信号发送到所述收发天线,具体为:
    所述功率放大模块,用于根据所述增益系数,对所述第二电磁波信号进行功率放大得到所述第三电磁波信号,并将所述第三电磁波信号发送到所述收发天线。
  13. 根据权利要求11或12所述的发射端设备,其特征在于,所述收发天线,还用于接收来自所述无线充电设备的第五电磁波信号,所述第五电磁波信号是所述无线充电设备从所述第三电磁波信号分离得到的;
    所述发射端设备还包括处理模块,所述处理模块用于在所述第五电磁波信号的信号强 度小于或等于预设值的情况下,停止为所述无线充电设备进行充电。
  14. 根据权利要求11至13中任一项所述的发射端设备,其特征在于,所述收发天线,还用于接收来自所述无线充电设备的充电连接请求,所述充电连接请求包括所述无线充电设备的充电功率需求信息;
    所述发射端设备还包括处理模块,所述处理模块,用于根据所述充电功率需求信息,确定是否能够为所述无线充电设备进行充电;
    所述收发天线,还用于向所述无线充电设备发送充电连接响应消息,所述充电连接响应消息用于指示是否能够为所述无线充电设备进行充电。
  15. 根据权利要求14所述的发射端设备,其特征在于,在所述充电连接响应消息指示不能够为所述无线充电设备进行充电的情况下,所述充电连接响应消息还包括重新建立充电连接的延迟时长。
  16. 根据权利要求11至13中任一项所述的发射端设备,其特征在于,所述收发天线,还用于发送充电广播信息,所述充电广播信息包括所述发射端设备的充电能力;
    所述收发天线还用于接收来自所述无线充电设备的充电连接请求,所述充电连接请求用于请求为所述无线充电设备进行充电。
  17. 一种无线充电设备,其特征在于,包括:
    收发天线,用于从发射端设备接收第三电磁波信号,并将所述第三电磁波信号转发给功率分配模块;
    所述功率分配模块,用于将所述第三电磁波信号分离得到第五电磁波信号和第六电磁波信号,并将所述第五电磁波信号转发给所述收发天线,以及将所述第六电磁波信号转发给充电模块;
    所述收发天线,还用于向所述发射端设备发送所述第五电磁波信号;
    所述充电模块,用于根据所述第六电磁波信号进行充电。
  18. 根据权利要求17所述的无线充电设备,其特征在于,所述收发天线,还用于向所述发射端设备发送充电连接请求,所述充电连接请求包括所述无线充电设备的充电功率需求信息;
    所述收发天线,还用于接收来自所述发射端设备的充电连接响应消息,所述充电连接响应消息用于指示是否能够为所述无线充电设备进行充电。
  19. 根据权利要求18所述的无线充电设备,其特征在于,在所述充电连接响应消息指示不能够为所述无线充电设备进行充电的情况下,所述充电连接响应消息还包括重新建立充电连接的延迟时长,在所述延迟时长到达时,所述收发天线还用于向所述发射端设备重新发送所述充电连接请求。
  20. 根据权利要求17所述的无线充电设备,其特征在于,所述收发天线,还用于接收充电广播信息,所述充电广播信息包括所述发射端设备的充电能力;
    所述收发天线,还用于在所述发射端设备的充电能力满足所述无线充电设备的功率需求的情况下,向所述发射端设备发送充电连接请求,所述充电连接请求用于请求为所述无线充电设备进行充电。
  21. 一种无线充电系统,其特征在于,所述充电系统包括发射端设备和无线充电设备,
    所述发射端设备,用于接收来自所述无线充电设备的第一电磁波信号,并对所述第一 电磁波信号的全部或部分进行功率放大得到第三电磁波信号,以及向所述无线充电设备发送所述第三电磁波信号;
    所述无线充电设备,用于将所述第三电磁波信号进行分离得到第五电磁波信号和第六电磁波信号,并向所述发射端设备发送所述第五电磁波信号,以及根据所述第六电磁波信号进行充电。
  22. 根据权利要求21所述的无线充电系统,其特征在于,所述发射端设备,还用于接收来自所述无线充电设备的充电连接请求,所述充电连接请求包括所述无线充电设备的充电功率需求信息,并根据所述充电功率需求信息确定是否能够为所述无线充电设备进行充电;
    所述无线充电设备,还用于接收来自所述发射端设备的充电连接响应消息,所述充电连接响应消息用于指示是否能够为所述无线充电设备进行充电。
  23. 根据权利要求21所述的无线充电系统,其特征在于,所述发射端设备,还用于发送充电广播信息,所述充电广播信息包括所述发射端设备的充电能力;
    所述无线充电设备,还用于在所述发射端设备的充电能力满足所述无线充电设备的功率需求的情况下,向所述发射端设备发送充电连接请求,所述充电连接请求用于请求为所述无线充电设备进行充电。
PCT/CN2019/130805 2019-12-31 2019-12-31 无线充电的方法、发射端设备和无线充电设备 WO2021134611A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19958501.9A EP4068567A4 (en) 2019-12-31 2019-12-31 WIRELESS CHARGING METHOD, TRANSMISSION END DEVICE AND WIRELESS CHARGING DEVICE
CN201980102839.7A CN114930675A (zh) 2019-12-31 2019-12-31 无线充电的方法、发射端设备和无线充电设备
JP2022540497A JP7407292B2 (ja) 2019-12-31 2019-12-31 ワイヤレス充電方法、送信端装置、及びワイヤレス充電装置
PCT/CN2019/130805 WO2021134611A1 (zh) 2019-12-31 2019-12-31 无线充电的方法、发射端设备和无线充电设备
US17/851,787 US20220329104A1 (en) 2019-12-31 2022-06-28 Wireless charging method, transmit end device, and wireless charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130805 WO2021134611A1 (zh) 2019-12-31 2019-12-31 无线充电的方法、发射端设备和无线充电设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/851,787 Continuation US20220329104A1 (en) 2019-12-31 2022-06-28 Wireless charging method, transmit end device, and wireless charging device

Publications (1)

Publication Number Publication Date
WO2021134611A1 true WO2021134611A1 (zh) 2021-07-08

Family

ID=76686813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130805 WO2021134611A1 (zh) 2019-12-31 2019-12-31 无线充电的方法、发射端设备和无线充电设备

Country Status (5)

Country Link
US (1) US20220329104A1 (zh)
EP (1) EP4068567A4 (zh)
JP (1) JP7407292B2 (zh)
CN (1) CN114930675A (zh)
WO (1) WO2021134611A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120014274A1 (en) * 2008-12-19 2012-01-19 Nec Corporation Base station, wireless communication system, method for controlling base station, wireless communication method, control program, and mobile station
CN105099003A (zh) * 2015-07-28 2015-11-25 联想(北京)有限公司 一种无线充电方法及对应装置
CN106856346A (zh) * 2017-01-23 2017-06-16 华南理工大学 一种室内无线输能系统以及无线输能方法
CN106992813A (zh) * 2017-02-16 2017-07-28 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种低成本的自适应无线信息与能量复用传输系统
CN110635582A (zh) * 2019-08-30 2019-12-31 同济大学 一种电磁回波激励放大的无线能量传输系统与方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010039246A1 (en) * 2008-09-30 2010-04-08 Searete, Llc Beam power for local receivers
US8072380B2 (en) * 2009-04-10 2011-12-06 Raytheon Company Wireless power transmission system and method
KR20120135885A (ko) 2011-06-07 2012-12-17 삼성전자주식회사 무선 전력 송수신 시스템에서의 송신기 및 수신기 간의 양방향 통신 방법 및 상기 장치들
JP6130711B2 (ja) 2013-04-17 2017-05-17 キヤノン株式会社 通信装置、制御方法、及びプログラム
JP2016181953A (ja) 2015-03-23 2016-10-13 ルネサスエレクトロニクス株式会社 ワイヤレス給電システム、送電装置及び受電装置
US10498177B2 (en) 2015-06-30 2019-12-03 Ossia Inc. Techniques for wireless power transmission system handoff and load balancing
JP6274295B1 (ja) 2016-11-16 2018-02-07 石川 容平 電力伝送システム
JP2018129875A (ja) 2017-02-06 2018-08-16 京セラ株式会社 電子機器、送電装置及び送電システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120014274A1 (en) * 2008-12-19 2012-01-19 Nec Corporation Base station, wireless communication system, method for controlling base station, wireless communication method, control program, and mobile station
CN105099003A (zh) * 2015-07-28 2015-11-25 联想(北京)有限公司 一种无线充电方法及对应装置
CN106856346A (zh) * 2017-01-23 2017-06-16 华南理工大学 一种室内无线输能系统以及无线输能方法
CN106992813A (zh) * 2017-02-16 2017-07-28 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种低成本的自适应无线信息与能量复用传输系统
CN110635582A (zh) * 2019-08-30 2019-12-31 同济大学 一种电磁回波激励放大的无线能量传输系统与方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4068567A4 *

Also Published As

Publication number Publication date
CN114930675A (zh) 2022-08-19
US20220329104A1 (en) 2022-10-13
JP2023508573A (ja) 2023-03-02
EP4068567A4 (en) 2023-01-04
EP4068567A1 (en) 2022-10-05
JP7407292B2 (ja) 2023-12-28

Similar Documents

Publication Publication Date Title
US10887847B2 (en) Active antenna system, mobile terminal, and configuration method of antenna system
EP3944510A1 (en) Radio frequency front end circuit and mobile terminal
US10333665B2 (en) Method and system for wireless communication between terminals and half-duplex base stations
WO2021008495A1 (zh) 波束配置方法和装置
US20220264691A1 (en) Wireless communication method and wireless communication device
CN109687889A (zh) 射频电路及终端
WO2019028921A1 (zh) 一种测量方法、设备及系统
CN107426050B (zh) 数据中继传输系统及其构建方法与无线中继设备
CN108365860A (zh) 一种终端设备
CN112218377A (zh) 支持双连接的电子装置及其功率控制方法
US20210058115A1 (en) Antenna sharing system and terminal
WO2023125867A1 (zh) 信号传输的方法及装置
US8446825B2 (en) Method and system for reliable service period allocation in 60 GHz MAC
WO2022218229A1 (zh) 一种信号转发方法、中继设备及通信系统
EP3131214A1 (en) Combiner, base station, signal combiner system and signal transmission method
WO2021134611A1 (zh) 无线充电的方法、发射端设备和无线充电设备
CN112969221B (zh) 一种功耗控制装置、方法和电子设备
WO2022027681A1 (zh) 无线通信方法和设备
CN114499553A (zh) 一种保障射频单元运行可靠性的方法及通信装置
TW201408093A (zh) 載量平衡之方法及其相關無線通訊裝置
WO2023006018A1 (zh) 功率检测门限的确定方法、cot共享方法和设备
CN103887595A (zh) 天线系统
WO2022022482A1 (zh) 一种信息传输方法和通信装置
WO2023010563A1 (zh) 一种无线通信方法及装置、终端设备、网络设备
CN212936212U (zh) 一种天线效率提高系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540497

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019958501

Country of ref document: EP

Effective date: 20220629

NENP Non-entry into the national phase

Ref country code: DE