WO2021134516A1 - 一种含钠铵废液应用于红土镍矿的综合处理方法 - Google Patents

一种含钠铵废液应用于红土镍矿的综合处理方法 Download PDF

Info

Publication number
WO2021134516A1
WO2021134516A1 PCT/CN2019/130634 CN2019130634W WO2021134516A1 WO 2021134516 A1 WO2021134516 A1 WO 2021134516A1 CN 2019130634 W CN2019130634 W CN 2019130634W WO 2021134516 A1 WO2021134516 A1 WO 2021134516A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
containing ammonium
waste liquid
nickel ore
laterite nickel
Prior art date
Application number
PCT/CN2019/130634
Other languages
English (en)
French (fr)
Inventor
许开华
蒋振康
李琴香
王强
张坤
王文杰
Original Assignee
荆门市格林美新材料有限公司
格林美股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荆门市格林美新材料有限公司, 格林美股份有限公司 filed Critical 荆门市格林美新材料有限公司
Publication of WO2021134516A1 publication Critical patent/WO2021134516A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of metallurgy, in particular to a comprehensive treatment method for applying sodium-containing ammonium waste liquid to laterite nickel ore.
  • nickel minerals mainly exist in two forms: nickel sulfide ore and nickel oxide ore. Among them, nickel sulfide ore accounts for about 40% and oxide ore accounts for 60%.
  • the development and utilization of nickel oxide minerals is mainly based on laterite nickel ore.
  • laterite nickel ore there are three ore layers in turn from the surface layer to the bottom layer: laterite nickel ore layer, limonite layer and saprolite layer. With the gradual deepening of the surface, the nickel content gradually increases. The distribution trend of the iron content component decreases.
  • patent CN109837386 provides a new method for leaching laterite nickel ore. This method firstly pre-soaks laterite nickel ore slurry with concentrated sulfuric acid, and then introduces it into an oxygen autoclave with sodium salt solution. To obtain a leaching solution with a higher nickel leaching rate; however, in the actual implementation of this program, a large amount of sodium salt and acid solution needs to be newly introduced.
  • the purpose of the present invention is to provide a comprehensive treatment method for the application of sodium-containing ammonium waste liquid to laterite nickel ore, which is used to solve the safety risk of the oxygen autoclave during the oxygen pressure leaching of laterite nickel ore in the prior art, and the processing cost is relatively high The problem.
  • the present invention provides a comprehensive treatment method for applying sodium-containing ammonium waste liquid to laterite nickel ore.
  • the steps include ore blending, pre-leaching, oxygen pressure leaching, partial neutralization, precipitation impurity removal, and alkalization precipitation.
  • Nickel, cobalt and manganese; the partial neutralization step specifically includes: in the leaching solution obtained after the oxygen pressure leaching step, first add sodium-containing ammonium waste liquid, and then add the first neutralizer to a pH value of 1.0 to 2.5 to obtain a partial neutralization liquid.
  • the first neutralizing agent is a mixture of one or more of calcium carbonate, calcium oxide, calcium hydroxide, and sodium hydroxide.
  • the ore blending pre-soaking step specifically includes: adding concentrated sulfuric acid to the laterite nickel ore slurry, and pre-soaking for at least 2 hours in a normal pressure environment of not less than 75°C to obtain a prepreg; laterite nickel ore in the lateritic nickel ore slurry
  • the mass ratio of dry ore to concentrated sulfuric acid is 1:1 to 1:2.
  • laterite nickel ore slurry is prepared from limonite-type laterite nickel ore, transition layer laterite nickel ore, and saprolite-type laterite nickel ore after washing, crushing and ball milling. Lateritic nickel ore The particle size of the original slurry is less than 0.074mm.
  • the oxygen pressure leaching step is to perform oxygen pressure leaching of the prepreg in an oxygen autoclave; the total pressure of the oxygen pressure leaching is 0.5 to 2.5 MPa, preferably 1.8 MPa; the oxygen pressure leaching temperature is 120 to 210°C, and the time is 0.5 ⁇ 4h, the preferred oxygen pressure leaching temperature is 180-200°C, and the time is 2h.
  • the theoretical addition of sodium-containing ammonium solution is calculated based on the total charge of sodium-containing ammonium ions in the sodium-containing ammonium waste liquid and the total charge of iron-aluminum ions in the prepreg solution;
  • the actual amount of ammonium solution added is 1.05 to 2 times the theoretical amount.
  • the precipitation and impurity removal step specifically includes: adding a second neutralizing agent to the partial neutralization liquid, and solid-liquid separation of iron and aluminum in the partial neutralization liquid after precipitation to obtain the impurity-removed liquid.
  • the second neutralizing agent is a mixture of one or more of calcium carbonate, calcium oxide, calcium hydroxide, and sodium hydroxide, and the amount of the second neutralizing agent added is the same as the amount of iron and aluminum that needs to be precipitated in the partial neutralization solution.
  • the step of alkaline precipitation of nickel, cobalt and manganese specifically includes: adding an alkaline agent to the impurity removal liquid to obtain nickel, cobalt and manganese hydroxide.
  • the alkaline agent is one or a mixture of sodium hydroxide, magnesium oxide, and calcium oxide.
  • the amount of alkaline agent added is compatible with the amount of nickel, cobalt and manganese to be precipitated in the solution after impurity removal; by adjusting the alkalinity
  • the addition amount of the agent is used to control the pH of the slurry in the step of alkaline precipitation of nickel, cobalt and manganese, so that the pH value is maintained at 7.0-9.0.
  • the beneficial effect of the present invention is that: different from the prior art, the present invention provides a comprehensive treatment method for applying sodium-containing ammonium waste liquid to laterite nickel ore. After reacting and leaching through an oxygen autoclave, the sodium-containing ammonium waste is added. On the basis of ensuring the high leaching rate of nickel, cobalt and manganese, it avoids the spontaneous combustion of the titanium material oxygen autoclave caused by the sodium-containing ammonium waste liquid due to organic matter, ensuring safe production; at the same time, the present invention is difficult to use in industrial production The sodium-containing ammonium waste liquid was reused reasonably, which significantly reduced the processing cost of laterite nickel ore.
  • Fig. 1 is a process flow diagram of an embodiment of a comprehensive treatment method for applying sodium-containing ammonium waste liquid to laterite nickel ore in the present invention.
  • FIG. 1 is a process flow diagram of an embodiment of a comprehensive treatment method for applying sodium-containing ammonium waste liquid to laterite nickel ore in the present invention.
  • the sodium-containing ammonium waste liquid is applied to the comprehensive treatment method of laterite nickel ore, and its steps include ore blending presoaking S1, oxygen pressure leaching S2, partial neutralization S3, precipitation removal S4 and alkalization nickel cobalt manganese S5, The process of each step is described in detail below.
  • S1 Presoaking with ore blending.
  • This step specifically includes: adding concentrated sulfuric acid to the laterite nickel ore slurry, and pre-soaking for at least 2h under a normal pressure environment of not less than 75°C to obtain a prepreg.
  • the mass ratio of the laterite nickel ore slurry to the concentrated sulfuric acid is 1:1 ⁇ 1:2.
  • the laterite nickel ore slurry is prepared from a mixture of one or more of limonite type laterite nickel ore, transition layer laterite nickel ore, and saprolite laterite nickel ore after washing, crushing and ball milling .
  • the combined preparation method of laterite nickel ore slurry can be selected according to actual needs, and it is not limited here; preferably the particle size of laterite nickel ore slurry is less than 0.074mm, and the laterite nickel ore particle size is reduced to make acid pre-soaking It can be fully dissolved, which is beneficial to the subsequent S2 step of oxygen pressure leaching.
  • S2 Oxygen pressure leaching.
  • perform oxygen pressure leaching of the prepreg in an oxygen autoclave The total pressure of the oxygen pressure leaching is 0.5 to 2.5 MPa, preferably 1.8 MPa; the oxygen pressure leaching temperature is 120 to 210°C, and the time is 0.5 to 4 hours, preferably The oxygen pressure leaching temperature is 180-200°C, and the time is 2h; different from the prior art, in this step, the sodium-containing ammonium waste liquid and the laterite nickel ore slurry are not added for simultaneous oxygen pressure, which can effectively avoid sodium-containing The organic matter in the ammonium waste liquid is added to cause the safety problem of the oxygen autoclave, and the service life of the oxygen autoclave is prolonged.
  • This step specifically includes: first adding sodium-containing ammonium waste liquid to the leachate obtained after the oxygen pressure leaching step S2, and then adding the first neutralizing agent to a pH value of 1.0-2.5 to obtain a partial neutralization liquid.
  • the first neutralizing agent is a mixture of one or more of calcium carbonate, calcium oxide, calcium hydroxide, and sodium hydroxide; in the partial neutralization step S3, the theoretical addition amount of sodium-containing ammonium solution is determined according to the content of The total charge of sodium-ammonium ions in the sodium-ammonium waste solution is equal to the total charge of iron-aluminum ions in the prepreg solution; the actual amount of sodium-containing ammonium solution added is 1.05 to 2 times the theoretical amount to make sodium-containing ammonium A slight excess of the solution will help promote the full hydrolysis of iron and aluminum.
  • the sodium-containing ammonium waste liquid is an industrial waste liquid containing sodium ions.
  • the sodium-containing ammonium waste liquid produced in other industrial production is effectively used here, without the need to purchase new sodium sulfate, which effectively reduces the cost, and at the same time, the sodium-containing ammonium waste liquid is reused; on the other hand, the sodium-containing ammonium waste
  • the liquid promotes the hydrolysis of iron and aluminum and separates from the oxygen autoclave for reaction. On the basis of ensuring the original effect, it effectively avoids the potential safety hazards caused by the introduced organic matter to the oxygen autoclave, and significantly extends the service life of the oxygen autoclave.
  • S4 Precipitation and impurity removal.
  • This step specifically includes: adding a second neutralizing agent to a part of the neutralization solution to make the iron and aluminum in the part of the neutralization solution precipitate and separate solid and liquid to obtain a liquid after impurity removal; wherein the second neutralization agent is calcium carbonate, A mixture of one or more of calcium oxide, calcium hydroxide, and sodium hydroxide.
  • the amount of the second neutralizing agent added is compatible with the amount of iron and aluminum that needs to be precipitated in the partial neutralization solution; by adjusting the addition of the second neutralizing agent To control the pH of the slurry in the precipitation and impurity removal step, so that the pH value is maintained at 2.85-5.5. Since the S3 step only performs partial neutralization, and this step S4 further adjusts the pH value on the basis of the S3 step, so that the iron and aluminum in the partial neutralization solution are completely removed in the form of precipitation.
  • This step specifically includes: adding an alkaline agent to the impurity removal solution to obtain nickel cobalt manganese hydroxide, and the obtained nickel cobalt manganese hydroxide product can be used to prepare the precursor of the ternary cathode material of lithium ion battery; wherein, the alkaline The agent is one or a mixture of sodium hydroxide, magnesium oxide, and calcium oxide.
  • the amount of alkaline agent added is compatible with the amount of nickel, cobalt and manganese that needs to be precipitated in the liquid after the removal of impurities; by adjusting the amount of alkaline agent added To control the pH of the slurry in the step of alkaline precipitation of nickel, cobalt and manganese, so that the pH value is maintained at 7.0 to 9.0.
  • the present invention provides a comprehensive treatment method for applying sodium-containing ammonium waste liquid to laterite nickel ore.
  • the method of adding sodium-containing ammonium waste liquid after reaction leaching in an oxygen autoclave ensures high On the basis of the nickel, cobalt and manganese leaching rate, it avoids the spontaneous combustion of the titanium-based oxygen autoclave caused by the organic matter in the sodium-containing ammonium waste liquid, and ensures safe production; at the same time, the present invention performs the treatment of the sodium-containing ammonium waste liquid that is difficult to use in industrial production In order to rationally reuse, significantly reduce the processing cost of laterite nickel ore.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种含钠铵废液应用于红土镍矿的综合处理方法,其步骤包括配矿预浸、氧压浸出、部分中和、沉淀除杂和碱化沉镍钴锰;所述部分中和步骤具体包括:在经过所述氧压浸出步骤后得到的浸出液中,先加入含钠铵废液,再加入第一中和剂至pH值为1.0~2.5,得到部分中和液。该技术方案通过氧压釜进行反应浸出后再加入含钠铵废液的方式,在保证高镍钴锰浸出率的基础上,避免了含钠铵废液因带有机物而引发钛材质氧压釜的燃烧,保障安全生产;同时,其对工业生产中难以利用的含钠铵废液进行合理再利用,显著减低了红土镍矿的处理成本。

Description

一种含钠铵废液应用于红土镍矿的综合处理方法 技术领域
本发明涉及冶金技术领域,特别是一种含钠铵废液应用于红土镍矿的综合处理方法。
背景技术
目前,镍矿物主要以硫化镍矿和氧化镍矿两种形式存在,其中硫化镍矿约占40%、氧化矿占60%,而氧化镍矿物的开发利用主要以红土镍矿为主。对于红土镍矿的成矿分布,由地面浅表层向地底层依次包括三个矿层:红土镍矿层、褐铁矿层和腐泥土层,随着地表的逐渐深入,呈现出镍含量逐渐升高而铁含量组件减少的分布趋势。
现有技术中将红土镍矿常采用湿法冶金方式对红土镍矿进行处理,具体方法包括氨浸工艺、加压酸浸工艺以及常压酸浸工艺,而这三种传统湿法处理工艺仅存在不足之处。基于上述传统湿法工艺的不足,专利CN109837386提供了一种新的红土镍矿浸出方法,该方法先对红土镍矿浆料进行浓硫酸预浸,再导入氧压釜中加钠盐溶液后氧压,得到镍浸出率较高的浸出液;但在实际实施该方案时,需要新引入大量的钠盐和酸液,通常会使用一些工业生产中的含钠铵废液来替代一部分钠盐,以降低成本,但将预浸完的红土镍矿浆料与含钠铵废液混合后在氧压釜中进行氧压,虽然废液中钠铵盐的加入促进了铁铝的水解,但同时由于工业含钠铵废液中会含有一定量的有机物,这些有机物会引发钛材质氧压釜的燃烧现象,使氧压釜的寿命显著缩短,不利于长时间连续工业生产。故需要提出一种新的处理方式用于上述现有技术中所存在的不足之处。
发明内容
本发明的目的在于,提供含钠铵废液应用于红土镍矿的综合处理方法,用于解决现有技术中红土镍矿进行氧压浸出时氧压釜存在安全风险,且处理成本相对较高的问题。
为解决上述技术问题,本发明提供了一种含钠铵废液应用于红土镍矿的综合处理方法,其步骤包括配矿预浸、氧压浸出、部分中和、沉淀除杂和碱化沉镍钴锰;部分中和步骤具体包括:在经过氧压浸出步骤后得到的浸出液中,先加入含钠铵废液,再加入第一中和剂至pH值为1.0~2.5,得到部分中和液。
其中,第一中和剂为碳酸钙、氧化钙、氢氧化钙、氢氧化钠中一种或多种的混合物。
其中,配矿预浸步骤具体包括:向红土镍矿原浆中加入浓硫酸,在不低于75℃的常压环境下预浸至少2h,得到预浸液;红土镍矿原浆中红土镍矿干矿量与浓硫酸的质量比为1:1~1:2。
其中,红土镍矿原浆由褐铁矿型红土镍矿、过渡层红土镍矿、腐泥土型红土镍矿中一种或者多种的混合物经洗矿、破碎和球磨后制得,红土镍矿原浆的粒径小于0.074mm。
其中,氧压浸出步骤为将预浸液在氧压釜中进行氧压浸出;氧压浸出总压力为0.5~2.5MPa,优选为1.8MPa;氧压浸出温度为120~210℃,时间为0.5~4h,优选的氧压浸出温度为180~200℃,时间为2h。
其中,部分中和步骤中,对于含钠铵溶液的理论加入量,按含钠铵废液中含钠铵离子的电荷总数与预浸液中含铁铝离子的电荷总数相等进行计算;含钠铵溶液的实际加入量为理论加入量的1.05~2倍。
其中,沉淀除杂步骤具体包括:向部分中和液中加入第二中和剂,使部分中和液中的铁铝沉淀后固液分离,得到除杂后液。
其中,第二中和剂为碳酸钙、氧化钙、氢氧化钙、氢氧化钠中一种或多种的混合物,第二中和剂的加入量与部分中和液需沉淀铁铝的量相适应;通过调节第二中和剂的加入量来控制沉淀除杂步骤中浆料的pH,使pH值保持为2.5~5.5。
其中,碱化沉镍钴锰步骤具体包括:向除杂后液中加入碱性剂,得到氢氧化镍钴锰。
其中,碱性剂为氢氧化钠、氧化镁、氧化钙中一种或两种的混合物,碱性剂的加入量与除杂后液中需沉淀镍钴锰的量相适应;通过调节碱性剂的加入量来控制碱化沉镍钴锰步骤中浆料的pH,使pH值保持为7.0~9.0。
本发明的有益效果是:区别于现有技术的情况,本发明提供了一种含钠铵废液应用于红土镍矿的综合处理方法,通过氧压釜进行反应浸出后再加入含钠铵废液的方式,在保证高镍钴锰浸出率的基础上,避免了含钠铵废液因带有机物而引发钛材质氧压釜的自燃,保障安全生产;同时,本发明对工业生产中难以利用的含钠铵废液进行了合理再利用,显著减低了红土镍矿的处理成本。
附图说明
图1是本发明中含钠铵废液应用于红土镍矿的综合处理方法一实施方式的工艺流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本发明保护的范围。
请参阅图1,图1是本发明中含钠铵废液应用于红土镍矿的综合处理方法一实施方式的工艺流程图。本发明中含钠铵废液应用于红土镍矿的综合处理方法,其步骤包括配矿预浸S1、氧压浸出S2、部分中和S3、沉淀除杂S4和碱化沉镍钴锰S5,下面分别对各步骤过程进行详细描述。
S1:配矿预浸。本步骤具体包括:向红土镍矿原浆中加入浓硫酸,在不低于75℃的常压环境下预浸至少2h,得到预浸液,优选红土镍矿原浆与浓硫酸的质量比为1:1~1:2。本实施方式中,该红土镍矿原浆由褐铁矿型红土镍矿、过渡 层红土镍矿、腐泥土型红土镍矿中一种或者多种的混合物经洗矿、破碎和球磨后制得,对于红土镍矿原浆的组合配制方式可以根据实际需求进行选择,在此不作限定;优选红土镍矿原浆的粒径小于0.074mm,通过降低红土镍矿粒径使进行酸液预浸时能够充分溶解,有利于后续氧压浸出S2步骤的进行。
S2:氧压浸出。本步骤中将预浸液在氧压釜中进行氧压浸出,氧压浸出总压力为0.5~2.5MPa,优选为1.8MPa;氧压浸出温度为120~210℃,时间为0.5~4h,优选的氧压浸出温度为180~200℃,时间为2h;与现有技术不同,本步骤中,并未加入含钠铵废液与红土镍矿浆料进行同步氧压,这样可以有效避免含钠铵废液中的有机物加入后引发氧压釜安全问题,延长了氧压釜的使用寿命。
S3:部分中和。本步骤具体包括:于经过氧压浸出S2步骤后得到的浸出液中,先加入含钠铵废液,再加入第一中和剂至pH值为1.0~2.5,得到部分中和液。其中,第一中和剂为碳酸钙、氧化钙、氢氧化钙、氢氧化钠中一种或多种的混合物;在部分中和S3步骤中,对于含钠铵溶液的理论加入量,按含钠铵废液中含钠铵离子的电荷总数与预浸液中含铁铝离子的电荷总数相等进行计算;含钠铵溶液的实际加入量为理论加入量的1.05~2倍,使含钠铵溶液稍过量,有利于促进铁铝充分水解。本步骤中含钠铵废液为含有钠离子的工业废液,一方面,由于其他工业生产中会产生较多的含钠铵废液,而这些含钠铵废液由于难以回收,并未加以利用,此处有效利用其他工业生产中产生含钠铵废液,无需采购新的硫酸钠,有效降低了成本,同时也对含钠铵废液进行了再次利用;另一方面,含钠铵废液促进铁铝的水解,并脱离氧压釜进行反应,在保证原有效果的基础上,有效避免了所引入的有机物会对氧压釜造成安全隐患,显著延长了氧压釜的使用寿命。
S4:沉淀除杂。本步骤具体包括:向部分中和液中加入第二中和剂,使部分中和液中的铁铝沉淀后固液分离,得到除杂后液;其中,第二中和剂为碳酸钙、氧化钙、氢氧化钙、氢氧化钠中一种或多种的混合物,第二中和剂的加入量与部分中和液需沉淀铁铝的量相适应;通过调节第二中和剂的加入量来控制 沉淀除杂步骤中浆料的pH,使pH值保持为2.85~5.5。由于S3步骤仅进行了部分中和,而本步骤S4在S3步骤的基础上进一步对pH值进行调节,使部分中和液中的铁铝以沉淀形式完全除去。
S5:碱化沉镍钴锰。本步骤具体包括:向除杂后液中加入碱性剂,得到氢氧化镍钴锰,所得到的氢氧化镍钴锰产品可用于制备锂离子电池三元正极材料的前驱体;其中,碱性剂为氢氧化钠、氧化镁、氧化钙中一种或两种的混合物,碱性剂的加入量与除杂后液中需沉淀镍钴锰的量相适应;通过调节碱性剂的加入量来控制碱化沉镍钴锰步骤中浆料的pH,使pH值保持为7.0~9.0。
下面结合具体实施例对本发明中含钠铵废液应用于红土镍矿的综合处理方法作进一步详述。
实施例1
取固含量33.5%、200目过筛率为97%的腐泥土球磨浆料60L,加入浓硫酸31.2kg,70℃搅拌反应2h得到预浸液,再将预浸液置于氧压釜中进行氧压浸出,总压力为1.2MPa,浸出温度为180℃,浸出时间2h,得到镍浸出率95.96%,杂质元素铁:7.16g/L,铝:3.57g/L的浸出液。
加入含硫酸钠35g/L,硫酸铵20g/L的含钠铵废液,并加入碳氢氧化钙调节pH至2.0,过滤去除渣,向部分中和液中加入30%的液碱浆料调节pH至5.0,过滤去除铁铝渣,得到除杂后液。再向除杂后液中加入液碱调节pH至8.0,搅拌反应6h,得到氢氧化镍钴锰产品。
实施例2
取固含量33.5%、200目过筛率为97%的褐铁矿球磨浆料60L,加入浓硫酸32kg,80℃搅拌反应4h得到预浸液,再将预浸液置于氧压釜中进行氧压浸出,总压力为1.8MPa,浸出温度为180℃,浸出时间2h,得到镍浸出率96.35%,杂质元素铁:5.98g/L,铝:2.57g/L的浸出液。
加入含硫酸钠35g/L,硫酸铵20g/L的含钠铵废液,并加入碳酸钙调节pH至2.0,过滤去除渣,向部分中和液中加入15%碳酸钙调节pH至4.8,过滤去除铁铝渣,得到除杂后液。再向除杂后液中加入氧化钙调节pH至8.0,搅拌反 应6h,得到氢氧化镍钴锰产品。
实施例3
取固含量33.5%、200目过筛率为97%的褐铁矿球磨浆料60L,加入浓硫酸32kg,90℃搅拌反应4h得到预浸液,再将预浸液置于氧压釜中进行氧压浸出,总压力为1.8MPa,浸出温度为200℃,浸出时间2h,得到镍浸出率98.35%,杂质元素铁:4.5g/L,铝:0.57g/L的浸出液。
加入含硫酸钠20g/L,硫酸铵8g/L的含钠铵废液,并加入碳酸钙调节pH至2.0,过滤去除渣,向部分中和液中加入15%碳酸钙调节pH至4.8,过滤去除铁铝渣,得到除杂后液。再向除杂后液中加入氧化镁调节pH至7.8,搅拌反应6h,得到氢氧化镍钴锰产品。
区别于现有技术的情况,本发明提供了一种含钠铵废液应用于红土镍矿的综合处理方法,通过氧压釜进行反应浸出后再加入含钠铵废液的方式,在保证高镍钴锰浸出率的基础上,避免了含钠铵废液因带有机物而引发钛材质氧压釜的自燃,保障安全生产;同时,本发明对工业生产中难以利用的含钠铵废液进行了合理再利用,显著减低了红土镍矿的处理成本。
需要说明的是,以上各实施例均属于同一发明构思,各实施例的描述各有侧重,在个别实施例中描述未详尽之处,可参考其他实施例中的描述。
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种含钠铵废液应用于红土镍矿的综合处理方法,其特征在于,其步骤包括配矿预浸、氧压浸出、部分中和、沉淀除杂和碱化沉镍钴锰;
    所述部分中和步骤具体包括:在经过所述氧压浸出步骤后得到的浸出液中,先加入含钠铵废液,再加入第一中和剂至pH值为1.0~2.5,得到部分中和液。
  2. 根据权利要求1中所述的含钠铵废液应用于红土镍矿的综合处理方法,其特征在于,所述第一中和剂为碳酸钙、氧化钙、氢氧化钙、氢氧化钠中一种或多种的混合物。
  3. 根据权利要求1中所述的含钠铵废液应用于红土镍矿的综合处理方法,其特征在于,所述配矿预浸步骤具体包括:向红土镍矿原浆中加入浓硫酸,在不低于75℃的常压环境下预浸至少2h,得到所述预浸液;
    所述红土镍矿原浆中红土镍矿干矿量与浓硫酸的质量比为1:1~1:2。
  4. 根据权利要求3中所述的含钠铵废液应用于红土镍矿的综合处理方法,其特征在于,所述红土镍矿原浆由褐铁矿型红土镍矿、过渡层红土镍矿、腐泥土型红土镍矿中一种或者多种的混合物经洗矿、破碎和球磨后制得,所述红土镍矿原浆的粒径小于0.074mm。
  5. 根据权利要求3中所述的含钠铵废液应用于红土镍矿的综合处理方法,其特征在于,所述氧压浸出步骤为将所述预浸液在氧压釜中进行氧压浸出;
    氧压浸出总压力为0.5~2.5MPa,优选为1.8MPa;
    氧压浸出温度为120~210℃,时间为0.5~4h。
  6. 根据权利要求3中所述的含钠铵废液应用于红土镍矿的综合处理方法,其特征在于,所述部分中和步骤中,对于所述含钠铵溶液的理论加入量,按所述含钠铵废液中含钠铵离子的电荷总数与所述预浸液中含铁铝离子的电荷总数相等进行计算;
    所述含钠铵溶液的实际加入量为理论加入量的1.05~2倍。
  7. 根据权利要求1中所述的含钠铵废液应用于红土镍矿的综合处理方法,其特征在于,所述沉淀除杂步骤具体包括:向所述部分中和液中加入第二中和 剂,使所述部分中和液中的铁铝沉淀后固液分离,得到除杂后液。
  8. [根据细则91更正 15.01.2021]
    根据权利要求7中所述的含钠铵废液应用于红土镍矿的综合处理方法,其特征在于,所述第二中和剂为碳酸钙、氧化钙、氢氧化钙、氢氧化钠中一种或多种的混合物,所述第二中和剂的加入量与所述部分中和液需沉淀铁铝的量相适应;
    通过调节所述第二中和剂的加入量来控制所述沉淀除杂步骤中浆料的pH,使pH值保持为2.5~5.5。
  9. [根据细则91更正 15.01.2021] 
    根据权利要求7中所述的含钠铵废液应用于红土镍矿的综合处理方法,其特征在于,所述碱化沉镍钴锰步骤具体包括:向所述除杂后液中加入碱性剂,得到氢氧化镍钴锰。
  10. [根据细则91更正 15.01.2021]
    根据权利要求8中所述的含钠铵废液应用于红土镍矿的综合处理方法,其特征在于,所述碱性剂为氢氧化钠、氧化镁、氧化钙中一种或两种的混合物,所述碱性剂的加入量与所述除杂后液中需沉淀镍钴锰的量相适应;
    通过调节所述碱性剂的加入量来控制所述碱化沉镍钴锰步骤中浆料的pH,使pH值保持为7.0~9.0。
PCT/CN2019/130634 2019-12-30 2019-12-31 一种含钠铵废液应用于红土镍矿的综合处理方法 WO2021134516A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911389889.6A CN111100985B (zh) 2019-12-30 2019-12-30 一种含钠铵废液应用于红土镍矿的综合处理方法
CN201911389889.6 2019-12-30

Publications (1)

Publication Number Publication Date
WO2021134516A1 true WO2021134516A1 (zh) 2021-07-08

Family

ID=70424375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130634 WO2021134516A1 (zh) 2019-12-30 2019-12-31 一种含钠铵废液应用于红土镍矿的综合处理方法

Country Status (2)

Country Link
CN (1) CN111100985B (zh)
WO (1) WO2021134516A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114854987A (zh) * 2022-07-11 2022-08-05 中国恩菲工程技术有限公司 红土镍矿酸浸除铁铝溶液的镍钴沉淀方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793432A (en) * 1972-01-27 1974-02-19 D Weston Hydrometallurgical treatment of nickel group ores
CN101001964A (zh) * 2004-08-02 2007-07-18 斯凯资源有限公司 通过大气压浸出和中等压力浸出的结合从红土矿中回收镍和钴的方法
CN101006190A (zh) * 2004-06-28 2007-07-25 斯凯资源有限公司 通过与浓酸反应及水浸出从红土矿石中回收镍和钴的方法
US20090056501A1 (en) * 2007-08-29 2009-03-05 Vale Inco Limited Hydrometallurgical process using resin-neutralized-solution of a heap leaching effluent
CN101418379A (zh) * 2008-12-11 2009-04-29 昆明晶石矿冶有限公司 一种氧化镍矿密闭浸出提取镍钴的方法
CN101736150A (zh) * 2008-11-05 2010-06-16 玉林伟镍科技矿冶有限公司 含镍残积矿的浸出工艺
CN109837386A (zh) * 2019-03-13 2019-06-04 荆门市格林美新材料有限公司 一种红土镍矿的浸出方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614571A (zh) * 2013-10-09 2014-03-05 北京矿冶研究总院 一种红土镍矿联合浸出的工艺
CN109234526B (zh) * 2018-11-26 2020-11-03 中国恩菲工程技术有限公司 红土镍矿的处理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793432A (en) * 1972-01-27 1974-02-19 D Weston Hydrometallurgical treatment of nickel group ores
CN101006190A (zh) * 2004-06-28 2007-07-25 斯凯资源有限公司 通过与浓酸反应及水浸出从红土矿石中回收镍和钴的方法
CN101001964A (zh) * 2004-08-02 2007-07-18 斯凯资源有限公司 通过大气压浸出和中等压力浸出的结合从红土矿中回收镍和钴的方法
US20090056501A1 (en) * 2007-08-29 2009-03-05 Vale Inco Limited Hydrometallurgical process using resin-neutralized-solution of a heap leaching effluent
CN101736150A (zh) * 2008-11-05 2010-06-16 玉林伟镍科技矿冶有限公司 含镍残积矿的浸出工艺
CN101418379A (zh) * 2008-12-11 2009-04-29 昆明晶石矿冶有限公司 一种氧化镍矿密闭浸出提取镍钴的方法
CN109837386A (zh) * 2019-03-13 2019-06-04 荆门市格林美新材料有限公司 一种红土镍矿的浸出方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114854987A (zh) * 2022-07-11 2022-08-05 中国恩菲工程技术有限公司 红土镍矿酸浸除铁铝溶液的镍钴沉淀方法
CN114854987B (zh) * 2022-07-11 2022-09-20 中国恩菲工程技术有限公司 红土镍矿酸浸除铁铝溶液的镍钴沉淀方法

Also Published As

Publication number Publication date
CN111100985B (zh) 2021-05-18
CN111100985A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
CN112357899B (zh) 一种废旧磷酸铁锂电池的综合回收利用方法
WO2022062675A1 (zh) 一种废旧锂电池正极材料的回收方法
CN112551498A (zh) 一种磷酸铁锂提锂后磷铁渣的回收方法
CN114394582B (zh) 一种从提锂后磷铁渣再生为磷酸铁的方法
CA3038604C (en) Nickel powder manufacturing method
CN101974683A (zh) 高铁硫化锌精矿通过两段加压酸浸产出中上清溶液的方法
CN109797283B (zh) 一种含硅氢氧化镍钴的盐酸浸出方法
CN112320781A (zh) 一种磷酸铁锂废料提锂残渣再生磷酸铁的方法
WO2021134515A1 (zh) 一种电池级Ni-Co-Mn混合液和电池级Mn溶液的制备方法
WO2021134516A1 (zh) 一种含钠铵废液应用于红土镍矿的综合处理方法
KR102016817B1 (ko) 리튬 이온 2차전지의 폐 양극재를 재활용하여 전구체 원료를 회수하는 방법
WO2020062145A1 (zh) 硫化铜精矿的氧压浸出方法及铜冶炼方法
CN106746402B (zh) 处理除砷污泥的方法
CN114976337A (zh) 一种报废磷酸铁锂综合回收的方法
CN105039727B (zh) 一种从超低含量NdFeB废渣中回收稀土的工艺方法
KR102228192B1 (ko) 폐 전극재를 재생하여 니켈(Ni)-코발트(Co)-망간(Mn) 복합 황산염 용액을 제조하는 방법
CN112430736A (zh) 一种从废旧锂离子电池中回收锂的方法
CN111100991A (zh) 一种基于高温氧压的镍湿法精炼尾渣的处理方法
CN115323181B (zh) 一种钙化提钒尾渣回收钒的方法
CN112678782B (zh) 一种硫化钡连续浸取工艺
JP7091909B2 (ja) ニッケル粉の製造方法
CN117623261A (zh) 一种红土镍矿盐酸浸出液超声强化制备磷酸铁锂正极材料前驱体的方法
CN117693603A (zh) 应用于锂电池全链条一体化的废旧锂电池的回收方法
CN117327917A (zh) 从低冰镍中提取镍元素的方法
KR101630947B1 (ko) 산 투입 조절에 의해 향상된 니켈의 산 침출 방법 및 이를 이용한 페로니켈의 회수방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958088

Country of ref document: EP

Kind code of ref document: A1