WO2021134438A1 - 一种去除水溶性磷酸根的方法及其用途 - Google Patents

一种去除水溶性磷酸根的方法及其用途 Download PDF

Info

Publication number
WO2021134438A1
WO2021134438A1 PCT/CN2019/130405 CN2019130405W WO2021134438A1 WO 2021134438 A1 WO2021134438 A1 WO 2021134438A1 CN 2019130405 W CN2019130405 W CN 2019130405W WO 2021134438 A1 WO2021134438 A1 WO 2021134438A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
removing water
treated
soluble phosphate
precipitate
Prior art date
Application number
PCT/CN2019/130405
Other languages
English (en)
French (fr)
Inventor
梁丁文
张琦
戴柱
张冬民
Original Assignee
邦泰生物工程(深圳)有限公司
邦泰合盛生物科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邦泰生物工程(深圳)有限公司, 邦泰合盛生物科技(深圳)有限公司 filed Critical 邦泰生物工程(深圳)有限公司
Priority to PCT/CN2019/130405 priority Critical patent/WO2021134438A1/zh
Priority to CN201980042275.2A priority patent/CN112384526B/zh
Publication of WO2021134438A1 publication Critical patent/WO2021134438A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane
    • C07J9/005Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane containing a carboxylic function directly attached or attached by a chain containing only carbon atoms to the cyclopenta[a]hydrophenanthrene skeleton

Definitions

  • the invention relates to the technical field of impurity removal methods in industrial production processes, in particular to a method for removing water-soluble phosphate radicals in industrial production and uses thereof.
  • Phosphate is an inorganic ion that is inevitably produced in the daily production process of chemical companies, biomedicine, food industry and other industries.
  • the existence of these phosphates will harm human health on the one hand, for example, cause urinary stones after entering the human body.
  • Diseases such as kidney stones and kidney failure, on the other hand, will pollute the environment.
  • untreated industrial wastewater containing phosphate roots causes eutrophication of the water body, and even enters the human body through the food chain and harms the human body. health. Therefore, it is necessary to treat phosphate roots in the production process to eliminate factors that endanger health and pollute the environment from the source.
  • the anionic resin purification method is generally suitable for the treatment of solutions with low phosphorus content, and the treatment capacity is limited, and the removal rate of phosphate is often low. Most of the resins also need to be activated and regenerated, the process is cumbersome, and a lot of waste water is generated.
  • the purpose of the present invention is to provide a new method for removing water-soluble phosphate suitable for industrial applications, aiming to solve the low yield and treatment of the existing methods for removing phosphate.
  • Technical problems such as low efficiency and low phosphate removal rate.
  • the present invention provides a method for removing water-soluble phosphate, the method comprising: adding alkaline earth metal ions and ammonium ions to the solution to be treated or adding alkaline earth metal ions and ammonium ions to the solution to be treated Ammonium ion substance, adjust the pH value of the solution until the precipitate precipitates, and then remove the precipitate from the solution.
  • the pH of the solution is adjusted to 7-9.
  • the method for adjusting the pH value of the solution is: adjusting the pH value of the solution twice in succession, and the pH value of the second time is higher than the pH value of the first time .
  • the above-mentioned method for removing water-soluble phosphate includes the following steps:
  • step (1) is preferably to first add alkaline earth metal ions or substances that can generate alkaline earth metal ions in the solution to be treated, and then add ammonium after being dissolved. Ions or substances that can generate ammonium ions. This operation can avoid the excessive fluctuation of the pH value in the solution, which may affect the target product, especially the alkali unstable product.
  • the temperature of the solution is kept constant at 1-45°C.
  • the solution to be treated refers to an aqueous solution containing phosphate, which can be the final product solution of any water-soluble product in industrial production, such as NAD, NADH, NADP, NADPH, NMN, etc.
  • Enzyme reaction solution produced by biological enzyme catalysis of water-soluble coenzyme products.
  • the amount of alkaline earth metal ion added or generated is 1-2 times the molar amount of phosphate in the solution to be treated.
  • the amount of ammonium ion added or generated is 1-2 times the molar amount of phosphate in the solution to be treated.
  • the alkaline earth metal ion is preferably magnesium ion, calcium ion or barium ion.
  • the alkaline earth metal ion is preferably magnesium ion.
  • the magnesium ion is derived from at least one of magnesium chloride, magnesium hydroxide, magnesium carbonate, magnesium nitrate and magnesium sulfate.
  • the magnesium ions are derived from magnesium chloride, magnesium hydroxide or magnesium carbonate.
  • the use of these three sources of magnesium ions can avoid the introduction of difficult-to-remove anionic impurities and facilitate subsequent follow-ups. deal with.
  • the calcium ion is derived from at least one of calcium chloride, calcium hydroxide, calcium carbonate and calcium nitrate.
  • the calcium ions are derived from calcium chloride, calcium hydroxide or calcium carbonate.
  • the use of these three sources of calcium ions can avoid the introduction of difficult-to-remove anionic impurities. Facilitate subsequent processing.
  • the barium ion is derived from at least one of barium chloride, barium hydroxide, barium carbonate, and barium nitrate.
  • the barium ions are derived from barium chloride, barium hydroxide or barium carbonate, and the use of these three sources of barium ions can avoid the introduction of difficult-to-remove anionic impurities. Facilitate subsequent processing.
  • the ammonium ion is preferably derived from at least one of ammonia, ammonium chloride, ammonium carbonate and ammonium nitrate.
  • the ammonium ions are derived from ammonia or ammonium chloride. Using these two sources of ammonium ions can avoid the introduction of difficult-to-remove anionic impurities and facilitate subsequent processing.
  • the pH value of the solution will affect the precipitation rate and the particle size of the precipitated particles. If the precipitation rate is too fast, the particle size of the precipitated particles will be too small and subsequent filtration will be slower; If the rate is too slow, it will take too long. Considering the relationship between time loss and particle size in a balanced manner, it is preferable to adjust the pH value of the solution in step (2) to 7.5-7.7, and to adjust the pH value of the solution in step (3) to 8.4-8.6.
  • the pH value of the solution is adjusted by adding sodium hydroxide or potassium hydroxide, which has a wide range of sources and does not introduce difficult to remove Impurity ions.
  • the concentration of sodium hydroxide or potassium hydroxide used in step (2) and step (3) of the method for removing water-soluble phosphate radicals provided by the present invention for adjusting the pH of the solution is 3-6 mol/L If the concentration is too high, the product will degrade, and if the concentration is too low, the adjustment will be too slow.
  • the method of removing the precipitate from the solution can be any physical method that can separate the solid phase and the liquid phase in the solution, such as filtration, Centrifugal separation, etc., currently common filtration separation methods are all suitable for the present invention.
  • the method for water-soluble phosphate also includes: adding seed crystals of the precipitate to the solution to be treated before the precipitate is formed.
  • the size of the particle size of the added seed crystal will affect the particle size of the precipitate particles. More preferably, in the above-mentioned method for removing water-soluble phosphate provided by the present invention, the particle size of the seed crystal added to the precipitate is 50-100 Micrometers.
  • the amount of seed crystals added to the precipitate is 1% of the molar amount of phosphate in the solution to be treated.
  • the above-mentioned method for removing water-soluble phosphate provided by the present invention further includes the following steps: (5) performing nanofiltration treatment on the solution after removing the precipitate in step (4). Through this step, the excess alkaline earth metal ions and ammonium ions and the anions introduced therewith can be removed.
  • nanofiltration treatment refers to a pressure-driven membrane separation process between reverse osmosis and ultrafiltration. It uses nanofiltration membrane as the filter medium.
  • the pore size of the nanofiltration membrane is about a few nanometers, allowing solvent molecules or Some solutes or low-valent ions with relatively small molecular masses penetrate to achieve the effect of separation and concentration.
  • the molecular weight cut-off of the nanofiltration membrane used in the nanofiltration process is 100-200.
  • the present invention also provides a new application of the above-mentioned method for removing water-soluble phosphate, that is, applying the above-mentioned method for removing water-soluble phosphate to the production of water-soluble coenzymes for removing water-soluble coenzymes in the production process.
  • the generated impurity phosphate ion is, applying the above-mentioned method for removing water-soluble phosphate to the production of water-soluble coenzymes for removing water-soluble coenzymes in the production process.
  • the water-soluble coenzyme is preferably oxidized ⁇ -nicotinamide adenine dinucleotide phosphate.
  • the method for removing water-soluble phosphate provided by the present invention has the following advantages:
  • the process of the method provided by the present invention is simple and easy to control, and the entire process conditions are mild, and will not cause the degradation of unstable products such as coenzymes;
  • the method provided by the present invention can effectively remove water-soluble phosphate ions, and the generated phosphoric acid precipitate particles are large, the subsequent filtration speed is fast, and the time is short.
  • the phosphate removal effect of the method provided by the present invention is as follows: ,
  • the one-step precipitation method can reduce the phosphate content below 10mmol/L, and the two-step precipitation method can reduce the phosphate content below 1mmol/L;
  • the method provided by the present invention is applied to the industrial production process of coenzyme, and the coenzyme product will not be adsorbed, so the yield of the product will not be affected;
  • the method provided by the present invention produces no waste water during the entire process, does not cause pollution to the environment, and can convert phosphate ions into higher value-added magnesium ammonium phosphate precipitates, which can be recycled and used as fertilizers, both Saving resources can increase a portion of income.
  • Treatment object The NADP enzymatic reaction solution produced by Bangtai Bioengineering (Shenzhen) Co., Ltd. using the biological enzyme catalysis method (using NAD as the substrate and using NAD kinase to catalyze the production of NADP).
  • the content of NADP in the solution is measured to be 0.05 mol/ L, the content of phosphate ion is 0.03mol/L.
  • Treatment object The NADP enzymatic reaction solution produced by Bangtai Bioengineering (Shenzhen) Co., Ltd. using the biological enzyme catalysis method (using NAD as the substrate and using NAD kinase to catalyze the production of NADP).
  • the content of NADP in the solution is measured to be 0.05 mol/ L, the content of phosphate ion is 0.03mol/L.
  • Treatment object The NADP enzymatic reaction solution produced by Bangtai Bioengineering (Shenzhen) Co., Ltd. using the biological enzyme catalysis method (using NAD as the substrate and using NAD kinase to catalyze the production of NADP).
  • the content of NADP in the solution is measured to be 0.05 mol/ L, the content of phosphate ion is 0.03mol/L.
  • Treatment object The NADP enzymatic reaction solution produced by Bangtai Bioengineering (Shenzhen) Co., Ltd. using the biological enzyme catalysis method (using NAD as the substrate and using NAD kinase to catalyze the production of NADP).
  • the content of NADP in the solution is measured to be 0.05 mol/ L, the content of phosphate ion is 0.03mol/L.
  • Treatment object The NADP enzymatic reaction solution produced by Bangtai Bioengineering (Shenzhen) Co., Ltd. using the biological enzyme catalysis method (using NAD as the substrate and using NAD kinase to catalyze the production of NADP).
  • the content of NADP in the solution is measured to be 0.05 mol/ L, the content of phosphate ion is 0.03mol/L.
  • Treatment object The NADP enzymatic reaction solution produced by Bangtai Bioengineering (Shenzhen) Co., Ltd. using the biological enzyme catalysis method (using NAD as the substrate and using NAD kinase to catalyze the production of NADP).
  • the content of NADP in the solution is measured to be 0.05 mol/ L, the content of phosphate ion is 0.03mol/L.
  • Treatment object The NADP enzymatic reaction solution produced by Bangtai Bioengineering (Shenzhen) Co., Ltd. using the biological enzyme catalysis method (using NAD as the substrate and using NAD kinase to catalyze the production of NADP).
  • the content of NADP in the solution is measured to be 0.05 mol/ L, the content of phosphate ion is 0.03mol/L.
  • Treatment object The NADP enzymatic reaction solution produced by Bangtai Bioengineering (Shenzhen) Co., Ltd. using the biological enzyme catalysis method (using NAD as the substrate and using NAD kinase to catalyze the production of NADP).
  • the content of NADP in the solution is measured to be 0.05 mol/ L, the content of phosphate ion is 0.03mol/L.
  • the filtrate is sent to the nanofiltration device for nanofiltration treatment.
  • the molecular weight cut-off of the nanofiltration membrane is 200. Collect the nanofiltrate and measure the nanofiltrate.
  • the content of NADP is 0.2mol/L, and the content of phosphate ion is 0.0001mol/L. Chloride ions, magnesium ions and ammonium ions were not detected in the nanofiltration concentrate.
  • Treatment object The NADP enzymatic reaction solution produced by Bangtai Bioengineering (Shenzhen) Co., Ltd. using biological enzyme catalysis (using NAD as a substrate and using NAD kinase to catalyze the production of NADP).
  • the content of NADP in the solution is measured to be 0.1 mol/ L, the content of phosphate ion is 0.15 mol/L.
  • Treatment object The NADP enzymatic reaction solution produced by Bangtai Bioengineering (Shenzhen) Co., Ltd. using biological enzyme catalysis (using NAD as a substrate and using NAD kinase to catalyze the production of NADP).
  • the content of NADP in the solution is measured to be 0.1 mol/ L, the content of phosphate ion is 0.15 mol/L.
  • Treatment object The NADP enzymatic reaction solution produced by Bangtai Bioengineering (Shenzhen) Co., Ltd. using the biological enzyme catalysis method (using NAD as the substrate and using NAD kinase to catalyze the production of NADP).
  • the content of NADP in the solution is measured to be 0.05 mol/ L, the content of phosphate ion is 0.03mol/L.
  • Treatment object The NAD enzyme reaction solution produced by Bangtai Bioengineering (Shenzhen) Co., Ltd. using the biological enzyme catalysis method (using ATP and NMN as substrates).
  • the content of NAD in the solution is measured to be 0.06mol/L, phosphate ion The content is 0.05mol/L.

Abstract

一种去除水溶性磷酸根的方法及其用途,该方法包括:向待处理溶液中加入碱土金属离子和铵离子或者加入可在所述待处理溶液中生成碱土金属离子和铵离子的物质,调节溶液pH值至沉淀物析出,然后将沉淀物从溶液中去除。该用途是指将该方法应用于水溶性辅酶的生产中,用于去除水溶性辅酶生产过程中所产生的杂质磷酸根离子。该方法工艺简单、条件温和、耗时短、去除率高且不会影响产品的收率。

Description

一种去除水溶性磷酸根的方法及其用途 技术领域
本发明涉及工业生产过程中除杂方法的技术领域,特别涉及一种去除工业生产中的水溶性磷酸根的方法及其用途。
背景技术
磷酸根是目前化工企业、生物医药、食品工业等行业的日常生产过程中不可避免会产生的无机离子,这些磷酸根的存在,一方面会对人体健康造成危害,譬如,进入人体后引起尿结石、肾结石和肾衰竭等疾病,另一方面会对环境造成污染,譬如,含有磷酸根的工业废水未经处理排放后引起水体富营养化,甚至通过食物链的途径最终又进入人体内从而危害人体健康。因此,在生产过程中有必要对磷酸根进行处理,从源头杜绝危害健康和污染环境的因素。
为了在生产过程中去除磷酸根,目前相关行业较多采用钙离子沉淀法或者阴离子树脂纯化法,这两种方法虽然能在很大程度上解决磷酸根存在的困扰,但同时又存在一定的弊端。譬如,采用钙离子沉淀法时,如若原料、中间产物或者目的产物中含有磷酸基团,则钙离子往往会和这些磷酸基团相结合而生成沉淀,从而导致目的产物的收率降低,另外,磷酸钙沉淀的粒径较细,会导致后续过滤困难,并且磷酸钙沉淀还会对目的产物有很强的吸附作用,会进一步导致收率降低。而阴离子树脂纯化法则一般适用于处理含磷量较低的溶液,且处理量有限,往往磷酸根去除率低,其树脂也大多需要进行活化及再生处理,工序繁琐,并且会有大量废水产生。
技术问题
鉴于现有技术存在的上述不足,本发明的目的在于提供一种适于工业应用的去除水溶性磷酸根的新方法,旨在解决现有的去除磷酸根的方法所存在的收率低、处理效率低、磷酸根去除率低等技术问题。
技术解决方案
为实现上述目的,本发明提供了一种去除水溶性磷酸根的方法,该方法包括:向待处理溶液中加入碱土金属离子和铵离子或者加入可在所述待处理溶液中生成碱土金属离子和铵离子的物质,调节溶液pH值至沉淀物析出,然后将沉淀物从溶液中去除。
优选地,调节溶液pH值为7-9。
优选地,本发明提供的上述去除水溶性磷酸根的方法中,调节溶液pH值的方法为:分先后两次调节溶液的pH值,并且第二次的pH值高于第一次的pH值。
优选地,本发明提供的上述去除水溶性磷酸根的方法包括以下步骤:
(1)向待处理溶液中加入碱土金属离子和铵离子或者加入可在待处理溶液中生成碱土金属离子和铵离子的物质;
(2)调节溶液的pH值为7-8,等待沉淀物析出;
(3)待沉淀物不再析出后,再调节溶液的pH值为8-9;
(4)待沉淀物再次不再析出后,将沉淀物从溶液中去除。
本发明提供的上述去除水溶性磷酸根的方法中,步骤(1)优选为先向待处理溶液中加入碱土金属离子或者可在待处理溶液中生成碱土金属离子的物质,待溶解后再加入铵离子或者可生成铵离子的物质。如此操作可避免因溶液中的pH值过度波动而对目的产物特别是碱不稳定产物造成影响。
优选地,本发明提供的上述去除水溶性磷酸根的方法中,保持溶液的温度恒定在1-45℃。
从维持最低能耗以及保持产品最佳稳定性的角度考虑,本发明提供的上述去除水溶性磷酸根的方法中,更优选地保持溶液的温度恒定在10-25℃。
本发明提供的上述去除水溶性磷酸根的方法中,待处理溶液是指含有磷酸根的水溶液,可以是工业生产中任何水溶性产品的终产物溶液,如NAD、NADH、NADP、NADPH、NMN等水溶性辅酶产品的生物酶催化生产的酶反应液。
优选地,本发明提供的上述去除水溶性磷酸根的方法中,碱土金属离子的加入量或生成量为待处理溶液中磷酸根摩尔量的1-2倍。
优选地,本发明提供的上述去除水溶性磷酸根的方法中,铵离子的加入量或生成量为待处理溶液中磷酸根摩尔量的1-2倍。
本发明提供的上述去除水溶性磷酸根的方法中,碱土金属离子优选为镁离子、钙离子或钡离子。
本发明提供的上述去除水溶性磷酸根的方法中,碱土金属离子优选为镁离子。
更优选地,本发明提供的上述去除水溶性磷酸根的方法中,镁离子来源于氯化镁、氢氧化镁、碳酸镁、硝酸镁和硫酸镁中的至少一种。
更优选地,本发明提供的上述去除水溶性磷酸根的方法中,镁离子来源于氯化镁、氢氧化镁或碳酸镁,使用这三种来源的镁离子可避免引入难以去除的阴离子杂质,便于后续处理。
更优选地,本发明提供的上述去除水溶性磷酸根的方法中,钙离子来源于氯化钙、氢氧化钙、碳酸钙和硝酸钙中的至少一种。
更优选地,本发明提供的上述去除水溶性磷酸根的方法中,钙离子来源于氯化钙、氢氧化钙或碳酸钙,使用这三种来源的钙离子可避免引入难以去除的阴离子杂质,便于后续处理。
更优选地,本发明提供的上述去除水溶性磷酸根的方法中,钡离子来源于氯化钡、氢氧化钡、碳酸钡和硝酸钡中的至少一种。
更优选地,本发明提供的上述去除水溶性磷酸根的方法中,钡离子来源于氯化钡、氢氧化钡或碳酸钡,使用这三种来源的钡离子可避免引入难以去除的阴离子杂质,便于后续处理。
本发明提供的上述去除水溶性磷酸根的方法中,铵离子优选来源于氨水、氯化铵、碳酸铵和硝酸铵中的至少一种。
更优选地,本发明提供的上述去除水溶性磷酸根的方法中,铵离子来源于氨水或氯化铵,使用这两种种来源的铵离子可避免引入难以去除的阴离子杂质,便于后续处理。
本发明提供的上述去除水溶性磷酸根的方法中,溶液的pH值会影响沉淀析出的速率以及沉淀颗粒的粒径,析出速率太快,则沉淀颗粒粒径太小,后续过滤较慢;析出速率太慢,则耗时太长。均衡考虑时间损耗及粒径大小的关系,优选将步骤(2)中的溶液的pH值调节为7.5-7.7,将步骤(3)中的溶液的pH值调节为8.4-8.6。
优选地,本发明提供的上述去除水溶性磷酸根的方法的步骤(2)和步骤(3)中,通过加入氢氧化钠或氢氧化钾调节溶液的pH值,来源广泛且不会引入难以去除的杂质离子。
更优选地,本发明提供的上述去除水溶性磷酸根的方法的步骤(2)和步骤(3)中调节溶液的pH值所使用的氢氧化钠或氢氧化钾的浓度为3-6mol/L,浓度过高则会导致产物降解,过低则调节太慢。
本发明提供的上述去除水溶性磷酸根的方法的步骤(4)中,将沉淀物从溶液中去除的方法可以是任何能够将溶液中的固相和液相进行分离的物理方法,如过滤、离心分离等,目前常见的过滤分离方法均适用于本发明。
当待处理溶液中的磷酸根的含量超过0.1mol/L时,往往析出的沉淀物颗粒的粒径较小,导致后续过滤速度缓慢且易造成堵塞,因此,优选地,本发明提供的上述去除水溶性磷酸根的方法还包括:在沉淀物生成之前,先向待处理溶液中加入沉淀物的晶种。
加入晶种的粒径的大小会对沉淀物颗粒的粒径造成影响,更优选地,本发明提供的上述去除水溶性磷酸根的方法中,加入沉淀物的晶种的粒径为50-100微米。
更优选地,本发明提供的上述去除水溶性磷酸根的方法中,加入沉淀物的晶种的量为待处理溶液中磷酸根摩尔量的1%。
优选地,本发明提供的上述去除水溶性磷酸根的方法还包括以下步骤:(5)对步骤(4)去除沉淀物后的溶液进行纳滤处理。通过该步骤可以将加入过量的碱土金属离子和铵离子以及随之引入的阴离子除去。
所谓纳滤处理,是指一种介于反渗透和超滤之间的压力驱动膜分离过程,其以纳滤膜为过滤介质,纳滤膜的孔径范围在几个纳米左右,允许溶剂分子或某些相对分子质量较小的溶质或低价离子透过,从而达到分离和浓缩的效果。
更优选地,本发明提供的上述去除水溶性磷酸根的方法的步骤(5)中,纳滤处理过程中使用的纳滤膜的截留分子量为100-200。
另外,本发明还提供了上述去除水溶性磷酸根的方法的一种新用途,即,将上述去除水溶性磷酸根的方法应用于水溶性辅酶的生产中,用于去除水溶性辅酶生产过程中所产生的杂质磷酸根离子。
本发明提供的上述去除水溶性磷酸根的方法的一种新用途中,水溶性辅酶优选为氧化型β-烟酰胺腺嘌呤二核苷酸磷酸。
有益效果
与现有技术相比,本发明提供的去除水溶性磷酸根的方法具有以下优点:
1、本发明提供的方法工艺简单易控制,整个过程条件温和,不会导致不稳定产品如辅酶的降解;
2、本发明提供的方法能够有效去除水溶性磷酸根离子,且生成的磷酸沉淀物颗粒较大,后续过滤速度快、用时短,经实践证实,本发明提供的方法的磷酸根的去除效果为,一步沉淀法可将磷酸根含量降至10mmol/L以下,两步沉淀法可将磷酸根含量降至1mmol/L以下;
3、本发明提供的方法应用于辅酶的工业化生产过程中,不会吸附辅酶产品,因而不会影响产品的收率;
4、本发明提供的方法整个工艺过程中没有废水产生,不会对环境造成污染,并且可将磷酸根离子转化成附加值更高的磷酸铵镁沉淀,该沉淀可以回收利用作为肥料使用,既节约资源又能增加一部分收入。
本发明的实施方式
下面结合具体实施例对本发明做进一步的详细说明,以下实施例是对本发明的解释,本发明并不局限于以下实施例。
实施例1
处理对象:邦泰生物工程(深圳)有限公司采用生物酶催化法(以NAD为底物,用NAD激酶催化生产NADP)生产得到的NADP的酶反应溶液,测得溶液中NADP的含量为0.05mol/L,磷酸根离子的含量为0.03mol/L。
取1L待处理溶液,控制溶液温度恒定在15℃,向溶液中加入终浓度为0.05mol/L的氯化镁和终浓度为0.05mol/L的氨水,用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至7-8,并维持pH值在7-8范围内1小时。用10mm布氏漏斗过滤待处理溶液,过滤耗时约2min,收集滤液,滤渣回收利用,测得滤液中NADP的含量为0.05mol/L,磷酸根离子的含量为0.008mol/L。
实施例2
处理对象:邦泰生物工程(深圳)有限公司采用生物酶催化法(以NAD为底物,用NAD激酶催化生产NADP)生产得到的NADP的酶反应溶液,测得溶液中NADP的含量为0.05mol/L,磷酸根离子的含量为0.03mol/L。
取1L待处理溶液,控制溶液温度恒定在15℃,向溶液中加入终浓度为0.05mol/L的氯化镁和终浓度为0.05mol/L的氨水,用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至8-9,并维持pH值在8-9范围内1小时。用10mm布氏漏斗过滤待处理溶液,过滤耗时约2min,收集滤液,滤渣回收利用,测得滤液中NADP的含量为0.05mol/L,磷酸根离子的含量为0.006mol/L。
实施例3
处理对象:邦泰生物工程(深圳)有限公司采用生物酶催化法(以NAD为底物,用NAD激酶催化生产NADP)生产得到的NADP的酶反应溶液,测得溶液中NADP的含量为0.05mol/L,磷酸根离子的含量为0.03mol/L。
取1L待处理溶液,控制溶液温度恒定在15℃,向溶液中加入终浓度为0.05mol/L的氯化镁和终浓度为0.05mol/L的氨水,用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至7.5-7.7,并维持pH值在7.5-7.7半小时,然后再用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至8.4-8.6,并维持pH值在8.4-8.6半小时。用10mm布氏漏斗过滤待处理溶液,过滤耗时约3min,收集滤液,滤渣回收利用,测得滤液中NADP的含量为0.05mol/L,磷酸根离子的含量为0.0005mol/L。
实施例4
处理对象:邦泰生物工程(深圳)有限公司采用生物酶催化法(以NAD为底物,用NAD激酶催化生产NADP)生产得到的NADP的酶反应溶液,测得溶液中NADP的含量为0.05mol/L,磷酸根离子的含量为0.03mol/L。
取1L待处理溶液,控制溶液温度恒定在15℃,向溶液中加入终浓度为0.04mol/L的氯化镁和终浓度为0.04mol/L的氨水,用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至7.5-7.7,并维持pH值在7.5-7.7半小时,然后再用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至8.4-8.6,并维持pH值在8.4-8.6半小时。用10mm布氏漏斗过滤待处理溶液,过滤耗时约3min,收集滤液,滤渣回收利用,测得滤液中NADP的含量为0.05mol/L,磷酸根离子的含量为0.0007mol/L。
实施例5
处理对象:邦泰生物工程(深圳)有限公司采用生物酶催化法(以NAD为底物,用NAD激酶催化生产NADP)生产得到的NADP的酶反应溶液,测得溶液中NADP的含量为0.05mol/L,磷酸根离子的含量为0.03mol/L。
取1L待处理溶液,控制溶液温度恒定在15℃,向溶液中加入终浓度为0.06mol/L的氯化镁和终浓度为0.06mol/L的氨水,用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至7.5-7.7,并维持pH值在7.5-7.7半小时,然后再用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至8.4-8.6,并维持pH值在8.4-8.6半小时。用10mm布氏漏斗过滤待处理溶液,过滤耗时约3min,收集滤液,滤渣回收利用,测得滤液中NADP的含量为0.05mol/L,磷酸根离子的含量为0.0003mol/L。
实施例6
处理对象:邦泰生物工程(深圳)有限公司采用生物酶催化法(以NAD为底物,用NAD激酶催化生产NADP)生产得到的NADP的酶反应溶液,测得溶液中NADP的含量为0.05mol/L,磷酸根离子的含量为0.03mol/L。
取1L待处理溶液,控制溶液温度恒定在10℃,向溶液中加入终浓度为0.05mol/L的氢氧化钡和终浓度为0.05mol/L的氢氧化铵,用3mol/L的氢氧化钾溶液调节待处理溶液的pH值至7.5-7.7,并维持pH值在7.5-7.7半小时,然后再用3mol/L的氢氧化钠溶液调节待处理溶液的pH值至8.4-8.6,并维持pH值在8.4-8.6半小时。用10mm布氏漏斗过滤待处理溶液,过滤耗时约3min,收集滤液,滤渣回收利用,测得滤液中NADP的含量为0.05mol/L,磷酸根离子的含量为0.0003mol/L。
实施例7
处理对象:邦泰生物工程(深圳)有限公司采用生物酶催化法(以NAD为底物,用NAD激酶催化生产NADP)生产得到的NADP的酶反应溶液,测得溶液中NADP的含量为0.05mol/L,磷酸根离子的含量为0.03mol/L。
取1L待处理溶液,控制溶液温度恒定在45℃,向溶液中加入终浓度为0.05mol/L的氯化钡和终浓度为0.05mol/L的氯化铵,用6mol/L的氢氧化钾溶液调节待处理溶液的pH值至7.5-7.7,并维持pH值在7.5-7.7半小时,然后再用6mol/L的氢氧化钾溶液调节待处理溶液的pH值至8.4-8.6,并维持pH值在8.4-8.6半小时。用10mm布氏漏斗过滤待处理溶液,过滤耗时约3min,收集滤液,滤渣回收利用,测得滤液中NADP的含量为0.05mol/L,磷酸根离子的含量为0.0003mol/L。
实施例8
处理对象:邦泰生物工程(深圳)有限公司采用生物酶催化法(以NAD为底物,用NAD激酶催化生产NADP)生产得到的NADP的酶反应溶液,测得溶液中NADP的含量为0.05mol/L,磷酸根离子的含量为0.03mol/L。
取1L待处理溶液,控制溶液温度恒定在25℃,向溶液中加入终浓度为0.05mol/L的氯化镁和终浓度为0.05mol/L的氯化铵,用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至7.5-7.7,并维持pH值在7.5-7.7半小时,然后再用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至8.4-8.6,并维持pH值在8.4-8.6半小时。用10mm布氏漏斗过滤待处理溶液,过滤耗时约3min,滤渣回收利用,收集滤液,滤液送入纳滤装置进行纳滤处理,纳滤膜截留分子量为200,收集纳滤液,测得纳滤液中NADP的含量为0.2mol/L,磷酸根离子的含量为0.0001mol/L。纳滤浓缩液中未检测到氯离子以及镁离子和铵离子。
实施例9
处理对象:邦泰生物工程(深圳)有限公司采用生物酶催化法(以NAD为底物,用NAD激酶催化生产NADP)生产得到的NADP的酶反应溶液,测得溶液中NADP的含量为0.1mol/L,磷酸根离子的含量为0.15mol/L。
取1L待处理溶液,控制溶液温度恒定在15℃,向溶液中加入终浓度为0.25mol/L的氢氧化镁和终浓度为0.25mol/L的氨水,用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至7.5-7.7,并维持pH值在7.5-7.7半小时,然后再用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至8.4-8.6,并维持pH值在8.4-8.6半小时。用10mm布氏漏斗过滤待处理溶液,整个过滤过程进行缓慢,且多次发生堵塞,更换滤纸后继续过滤,耗时约20min,收集滤液,滤渣回收利用,测得滤液中NADP的含量为0.1mol/L,磷酸根离子的含量为0.0007mol/L。
实施例10
处理对象:邦泰生物工程(深圳)有限公司采用生物酶催化法(以NAD为底物,用NAD激酶催化生产NADP)生产得到的NADP的酶反应溶液,测得溶液中NADP的含量为0.1mol/L,磷酸根离子的含量为0.15mol/L。
取1L待处理溶液,加入0.015mol粒径为75微米的磷酸铵镁作为晶种,控制溶液温度恒定在15℃,向溶液中加入终浓度为0.25mol/L的氢氧化镁和终浓度为0.25mol/L的氨水,用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至7.5-7.7,并维持pH值在7.5-7.7半小时,然后再用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至8.4-8.6,并维持pH值在8.4-8.6半小时。用10mm布氏漏斗过滤待处理溶液,过滤耗时约5min,收集滤液,滤渣回收利用,测得滤液中NADP的含量为0.1mol/L,磷酸根离子的含量为0.0007mol/L。
实施例11
处理对象:邦泰生物工程(深圳)有限公司采用生物酶催化法(以NAD为底物,用NAD激酶催化生产NADP)生产得到的NADP的酶反应溶液,测得溶液中NADP的含量为0.05mol/L,磷酸根离子的含量为0.03mol/L。
取1L待处理溶液,控制溶液温度恒定在15℃,向溶液中加入终浓度为0.05mol/L的硝酸镁和终浓度为0.05mol/L的氯化铵,用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至7.5-7.7,并维持pH值在7.5-7.7半小时,然后再用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至8.4-8.6,并维持pH值在8.4-8.6半小时。用10mm布氏漏斗过滤待处理溶液,过滤耗时约3min,收集滤液,滤渣回收利用,测得滤液中NADP的含量为0.05mol/L,磷酸根离子的含量为0.0006mol/L。
实施例12
处理对象:邦泰生物工程(深圳)有限公司采用生物酶催化法(用ATP和NMN为底物)生产得到的NAD的酶反应溶液,测得溶液中NAD的含量为0.06mol/L,磷酸根离子的含量为0.05mol/L。
取1L待处理溶液,控制溶液温度恒定在15℃,向溶液中加入终浓度为0.075mol/L的氯化镁和终浓度为0.075mol/L的氨水,用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至7.5-7.7,并维持pH值在7.5-7.7半小时,然后再用4mol/L的氢氧化钠溶液调节待处理溶液的pH值至8.4-8.6,并维持pH值在8.4-8.6半小时。用10mm布氏漏斗过滤待处理溶液,过滤耗时约5min,收集滤液,滤渣回收利用,测得滤液中NAD的含量为0.075mol/L,磷酸根离子的含量为0.0009mol/L。

Claims (15)

  1. 一种去除水溶性磷酸根的方法,其特征在于,所述方法包括:向待处理溶液中加入碱土金属离子和铵离子或者加入可在所述待处理溶液中生成碱土金属离子和铵离子的物质,调节溶液pH值至沉淀物析出,然后将沉淀物从溶液中去除。
  2. 根据权利要求1所述的去除水溶性磷酸根的方法,其特征在于所述调节溶液pH值的方法为:分先后两次调节溶液的pH值,并且第二次的pH值高于第一次的pH值。
  3. 根据权利要求2所述的去除水溶性磷酸根的方法,其特征在于,所述方法包括以下步骤:
    (1)向待处理溶液中加入碱土金属离子和铵离子或者加入可在所述待处理溶液中生成碱土金属离子和铵离子的物质;
    (2)调节溶液的pH值为7-8,等待沉淀物析出;
    (3)待沉淀物不再析出后,再调节溶液的pH值为8-9;
    (4)待沉淀物再次不再析出后,将沉淀物从溶液中去除。
  4. 根据权利要求3所述的去除水溶性磷酸根的方法,其特征在于,步骤(1)的加入顺序为:先加入所述碱土金属离子或者可在所述待处理溶液中生成碱土金属离子的物质,待溶解后再加入所述铵离子或者可在所述待处理溶液中生成铵离子的物质。
  5. 根据权利要求1至4任一项所述的去除水溶性磷酸根的方法,其特征在于:保持所述待处理溶液的温度恒定在1-45℃。
  6. 根据权利要求1至4任一项所述的去除水溶性磷酸根的方法,其特征在于:所述碱土金属离子为镁离子、钙离子或钡离子。
  7. 根据权利要求6所述的去除水溶性磷酸根的方法,其特征在于:所述镁离子来源于氯化镁、氢氧化镁、碳酸镁、硝酸镁和硫酸镁中的至少一种。
  8. 根据权利要求6所述的去除水溶性磷酸根的方法,其特征在于:所述钙离子来源于氯化钙、氢氧化钙、碳酸钙和硝酸钙中的至少一种。
  9. 根据权利要求6所述的去除水溶性磷酸根的方法,其特征在于:所述钡离子来源于氯化钡、氢氧化钡、碳酸钡和硝酸钡中的至少一种。
  10. 根据权利要求1至4任一项所述的去除水溶性磷酸根的方法,其特征在于:所述铵离子来源于氨水、氯化铵、碳酸铵和硝酸铵中的至少一种。
  11. 根据权利要求1至4任一项所述的去除水溶性磷酸根的方法,其特征在于,所述方法还包括:在沉淀物生成之前,先向所述待处理溶液中加入所述沉淀物的晶种。
  12. 根据权利要求11所述的去除水溶性磷酸根的方法,其特征在于:所述沉淀物的晶种的粒径为50-100微米。
  13. 根据权利要求1至4任一项所述的去除水溶性磷酸根的方法,其特征在于,所述方法还包括以下步骤:(5)对步骤(4)去除沉淀物后的溶液进行纳滤处理。
  14. 权利要求1至4任一项所述的去除水溶性磷酸根的方法在水溶性辅酶的生产中的应用。
  15. 根据权利要求12所述的应用,其特征在于:所述水溶性辅酶为氧化型β-烟酰胺腺嘌呤二核苷酸磷酸。
PCT/CN2019/130405 2019-12-31 2019-12-31 一种去除水溶性磷酸根的方法及其用途 WO2021134438A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/130405 WO2021134438A1 (zh) 2019-12-31 2019-12-31 一种去除水溶性磷酸根的方法及其用途
CN201980042275.2A CN112384526B (zh) 2019-12-31 2019-12-31 一种去除水溶性磷酸根的方法及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130405 WO2021134438A1 (zh) 2019-12-31 2019-12-31 一种去除水溶性磷酸根的方法及其用途

Publications (1)

Publication Number Publication Date
WO2021134438A1 true WO2021134438A1 (zh) 2021-07-08

Family

ID=74586600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130405 WO2021134438A1 (zh) 2019-12-31 2019-12-31 一种去除水溶性磷酸根的方法及其用途

Country Status (2)

Country Link
CN (1) CN112384526B (zh)
WO (1) WO2021134438A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012030857A2 (en) * 2010-08-30 2012-03-08 Multiform Harvest, Inc. Methods and systems for recovering phosphorus from wastewater including digestate recycle
CN102826641A (zh) * 2011-06-17 2012-12-19 中国石油化工股份有限公司 一种有机磷生产废水的处理方法
CN104876993A (zh) * 2015-05-19 2015-09-02 邦泰生物工程(深圳)有限公司 一种氧化型β-烟酰胺腺嘌呤二核苷酸磷酸的纯化方法
CN105772484A (zh) * 2016-03-23 2016-07-20 武汉纺织大学 一种城市生活污泥焚烧灰渣无害化处理技术及磷化合物的回收方法
CN110563218A (zh) * 2019-08-15 2019-12-13 广州科城环保科技有限公司 一种从化学镍废液中回收磷资源的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104058496B (zh) * 2014-05-30 2016-02-10 安徽国星生物化学有限公司 一种含磷废水的处理工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012030857A2 (en) * 2010-08-30 2012-03-08 Multiform Harvest, Inc. Methods and systems for recovering phosphorus from wastewater including digestate recycle
CN102826641A (zh) * 2011-06-17 2012-12-19 中国石油化工股份有限公司 一种有机磷生产废水的处理方法
CN104876993A (zh) * 2015-05-19 2015-09-02 邦泰生物工程(深圳)有限公司 一种氧化型β-烟酰胺腺嘌呤二核苷酸磷酸的纯化方法
CN105772484A (zh) * 2016-03-23 2016-07-20 武汉纺织大学 一种城市生活污泥焚烧灰渣无害化处理技术及磷化合物的回收方法
CN110563218A (zh) * 2019-08-15 2019-12-13 广州科城环保科技有限公司 一种从化学镍废液中回收磷资源的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAO LING-YUN,ZHOU RONG-MIN,ZHOU FANG,LI FENG: "A Reaction Condition Optimization for Phosphorus Removal from Wastewater by Magnesium Ammonium Phosphate Sedimentation", INDUSTRIAL WATER & WASTEWATER, vol. 39, no. 1, 28 February 2008 (2008-02-28), pages 58 - 61, XP055826850, ISSN: 1009-2455 *
JIANSEN WANG; YONGHUI SONG; PENG YUAN; JIANFENG PENG; MAOHONG FAN: "Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery", CHEMOSPHERE, vol. 65, no. 7, 1 November 2006 (2006-11-01), pages 1182 - 1187, XP027904346, ISSN: 0045-6535, DOI: 10.1016/j.chemosphere.2006.03.062 *
WANG, J. ; SONG, Y. ; YUAN, P. ; PENG, J. ; FAN, M.: "Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery.", CHEMOSPHERE., vol. 65, no. 7, 1 November 2006 (2006-11-01), pages 1182 - 1187, XP027904346, ISSN: 0045-6535, DOI: 10.1016/j.chemosphere.2006.03.062 *

Also Published As

Publication number Publication date
CN112384526A (zh) 2021-02-19
CN112384526B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
CN109850927B (zh) 一种制取高纯氢氧化锂的方法
CN113135954B (zh) 一种利用玉米浸泡水制备植酸钙和乳酸钙的工艺方法
JP2005139156A (ja) コハク酸モノアンモニウム塩の製造法
WO2021134438A1 (zh) 一种去除水溶性磷酸根的方法及其用途
CN108773924B (zh) 克拉维酸萃残液中有效成分的综合回收方法
CN109467242B (zh) 节约碱用量的线路板综合废水处理及铜回收工艺
CN112607890B (zh) 一种含钙、镁离子高含盐水零排放水处理工艺
JPS5928484A (ja) L−アミノ酸の単離方法
CN106565050A (zh) 一种叶酸废水处理工艺
CN109607916A (zh) 一种多晶硅高盐废水处理及资源化工艺
CN108558908B (zh) 一种头孢他啶母液的除盐方法及头孢他啶的制备方法
CN211920886U (zh) 一种利用膜分离技术制备电池级碳酸锂的装置
CN115259516A (zh) 一种磷酸铁废水零排放处理系统及工艺
CN111065644B (zh) 一种制备高纯度nad的方法
CN111268702A (zh) 一种利用膜分离技术制备电池级碳酸锂的方法及装置
WO2007119369A1 (ja) アミノ酸の精製方法
CN103408638A (zh) 一种万古霉素结晶的制备工艺
JP4581160B2 (ja) リン含有水の処理方法
JP7350886B2 (ja) 水処理装置
CN114890629B (zh) 一种高盐废水资源化回收利用的方法
JP2804005B2 (ja) L−アスパラギン酸の製造方法
CN117736122A (zh) 精氨酸发酵液的分离纯化方法
JPS60133893A (ja) L−フエニルアラニンの製造方法
CN110407388B (zh) 一种谷氨酸浓缩等电提取废液的资源化处理方法
TWI653196B (zh) 以流體化床結晶技術合成均質含鋁結晶物之方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958481

Country of ref document: EP

Kind code of ref document: A1