WO2021133032A1 - 개질된 감마탄소 골격 화합물 및 이의 제조방법 - Google Patents

개질된 감마탄소 골격 화합물 및 이의 제조방법 Download PDF

Info

Publication number
WO2021133032A1
WO2021133032A1 PCT/KR2020/018907 KR2020018907W WO2021133032A1 WO 2021133032 A1 WO2021133032 A1 WO 2021133032A1 KR 2020018907 W KR2020018907 W KR 2020018907W WO 2021133032 A1 WO2021133032 A1 WO 2021133032A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
alkyl
protecting group
compound
carbon skeleton
Prior art date
Application number
PCT/KR2020/018907
Other languages
English (en)
French (fr)
Inventor
박희경
김용태
전주현
정진우
서병우
홍인석
Original Assignee
주식회사 시선바이오머티리얼스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200179802A external-priority patent/KR20210082091A/ko
Application filed by 주식회사 시선바이오머티리얼스 filed Critical 주식회사 시선바이오머티리얼스
Publication of WO2021133032A1 publication Critical patent/WO2021133032A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a modified gamma carbon skeleton compound and a method for preparing the same, and more particularly, to a compound having a gamma carbon skeleton modified by introducing a negative charge to gamma carbon, and a method for preparing the same.
  • PNA Peptide nucleic acid
  • peptide nucleic acid monomer for easily synthesizing a negatively charged PNA probe.
  • the previously reported peptide nucleic acid monomer for synthesizing negatively charged PNA is an Fmoc-based monomer (Bull. Korean Chem. Soc. 2010, Vol. 31, No. 7) Fmoc gamma modified monomer.
  • Fmoc-based monomer Bull. Korean Chem. Soc. 2010, Vol. 31, No. 7
  • Fmoc gamma modified monomer When synthesizing a PNA oligomer introduced with , there is a problem that the overall synthesis yield is poor due to transacylation problems.
  • the present invention provides a modified gamma carbon skeleton compound that has a controlled protecting group on gamma carbon and can be mass-produced with surprisingly improved purity and yield through a simple process and a method for preparing the same.
  • the present invention provides a modified gamma carbon skeleton compound that has a controlled protecting group and can prepare an intermediate of a peptide nucleic acid oligomer with extremely improved purity and yield in a simple process, the modified gamma carbon skeleton compound of the present invention is It is represented by formula (1).
  • R 1 is a protecting group, hydrogen, C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, C 6 -C 12 aryl, C 6 -C 12 arylC 1 -C 6 alkyl or haloC 1 -C 6 alkyl; ;
  • R is a protecting group, hydrogen or -COCH 2 -NB, NB is a nucleobase;
  • PG is a protecting group
  • n is an integer from 0 to 4.
  • R 1 is a protecting group or C 1 -C 6 alkyl
  • R is a protecting group or hydrogen
  • n may be an integer of 0 to 2.
  • the nucleic acid base according to an embodiment of the present invention is adenine, cytosine, 5-methylcytosine, guanine, thymine, uracil, purine, 2,6-diaminopurine, N 4 N 4 -ethanocytosine, N 6 N 6 -ethano-2,6-diaminopurine, 5-(C3-C6)-alkynyluracil, 5-(C3-C6)-alkynyl-cytosine, 5-(1-propargylamino)uracil, 5 -(1-propargylamino)cytosine, phenoxazine, 9-aminoethoxyphenoxazine, 5-fluorouracil, pseudoisocytosine, 5-(hydroxymethyl)uracil, 5-aminouracil, pseudouracil, dihydro Uracil, 5-(C1-C6)-Alkyluracil, 5-(C1-C6)-al
  • the protecting groups of R 1 , R and PG are each independently benzyl, benzyloxy, allyloxy, tert-butyloxycarbonyl, di(tert-butyloxycarbonyl), cyclohexyl, benzyloxy carbonyl (Cbz), 9-fluorenylmethyloxycarbonyl (Fmoc), monomethoxytrityl (Mmt), dimethoxytrityl (Dmt) or benzothiazole-2-sulfonyl (Bts) .
  • Chemical Formula 1 according to an embodiment of the present invention may be represented by Chemical Formula 2 below.
  • R 1 is a protecting group, hydrogen, C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, C 6 -C 12 aryl, C 6 -C 12 arylC 1 -C 6 alkyl or haloC 1 -C 6 alkyl;
  • R is a protecting group, hydrogen or -COCH 2 -NB, NB is a nucleobase;
  • Boc is a tert-butyloxycarbonyl group, and n is an integer from 0 to 3.
  • R 1 may be C 1 -C 6 alkyl.
  • the present invention also provides a method for preparing the modified gamma-carbon skeleton compound of the present invention, the method for preparing the modified gamma-carbon skeleton compound of the present invention comprises:
  • R 1 is a protecting group, hydrogen, C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, C 6 -C 12 aryl, C 6 -C 12 arylC 1 -C 6 alkyl or haloC 1 -C 6 alkyl;
  • R is a protecting group, hydrogen or -COCH 2 -NB, NB is a nucleobase;
  • PG is a protecting group
  • n is an integer from 0 to 4.
  • the reducing agent and the compound of Formula 4 according to an embodiment of the present invention may be included in an amount of 1.0 to 2.0 moles per 1 mole of the compound of Formula 5.
  • Formula 3 according to an embodiment of the present invention may be prepared by reacting a reducing agent with Formula 5 below.
  • R 11 is hydrogen or C 1 -C 6 alkyl
  • Z is -CONR 12 - or C 1 -C 6 alkylene, R 12 is hydrogen or C 1 -C 6 alkyl;
  • PG is a protecting group
  • n is an integer from 0 to 4.
  • the modified gamma-carbon skeleton compound of the present invention has a specific protecting group controlled on gamma-carbon, the production of by-products when preparing a peptide nucleic acid oligomer using the modified gamma-carbon oligomer is suppressed, and thus a peptide nucleic acid oligomer can be prepared in high yield.
  • the modified gamma-carbon backbone compound of the present invention is a compound of a backbone having a specific protecting group controlled on gamma-carbon, and the selectivity of stereoisomers is very high when preparing a peptide nucleic acid oligomer using the compound.
  • the modified gamma carbon skeleton compound of the present invention has a controlled specific protecting group, there is less influence to and from other protecting groups other than the controlled specific protecting group, so the generation of by-products is small, and the other protecting group is stable during deprotection. Therefore, it is possible to mass-produce with high purity and yield when preparing peptide nucleic acid oligomers.
  • the method for preparing the modified gamma carbon skeleton compound of the present invention is very advantageous for commercial application because it has high purity and high yield and can be mass-produced.
  • gamma carbon backbone refers to a modified functional group located at the gamma carbon of a compound backbone as indicated below.
  • protecting group is a functional group for protecting a specific functional group, for example, an amine or carboxylic acid group in an organic reaction, and any functional group within a range that can be recognized by those skilled in the art of organic synthesis is possible, and the amine protecting group is Specific examples include Fmoc (fluorenylmethoxycarbonyl), Boc (tert-butyloxycarbonyl), Cbz (benzyloxycarbonyl), Bhoc, allyloxycarbonyl (Alloc), acetyl, benzoyl, benzyl, Carbamate, It may be p-Methoxybenzyl, 3,4-Dimethoxybenzyl, p-methoxyphenyl, Tosyl, trichloroethyl chloroformate, Sulfonamides, or isobutyryl.
  • Fmoc fluorenylmethoxycarbonyl
  • Boc tert-butyloxycarbonyl
  • Cbz benzyloxycarbony
  • alkyl means a saturated straight-chain or branched acyclic hydrocarbon having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms (if the number of carbon atoms is not particularly limited).
  • “Lower alkyl” means straight-chain or branched alkyl having 1 to 4 carbon atoms.
  • saturated straight chain alkyls are -methyl, -ethyl, -n-propyl, -n-butyl, -n-pentyl, -n-hexyl, -n-heptyl, -n-octyl, -n-nonyl and -n- contains decyl
  • saturated branched alkyl is -isopropyl, -sec-butyl, -isobutyl, -tert-butyl, isopentyl, 2-methylhexyl, 3-methylbutyl, 2-methylpentyl, 3- Methylpentyl, 4-methylpentyl, 2-methylhexyl, 3-methylhexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2-methylhexyl, 3-methylhexyl, 4-methylpentyl, 2-methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-
  • C 1-6 alkyl means alkyl having 1 to 6 carbon atoms.
  • halogen and “halo” refer to fluorine, chlorine, bromine or iodine.
  • aryl refers to a carbocyclic aromatic group containing 5 to 10 ring atoms. Representative examples include phenyl, tolyl, xylyl, naphthyl, tetrahydronaphthyl, anthracenyl, fluorenyl, indenyl, azulenyl, etc. including, but not limited to. Carbocyclic aromatic groups may be optionally substituted.
  • cycloalkyl refers to a monocyclic or polycyclic saturated ring having carbon and hydrogen atoms and no carbon-carbon multiple bonds.
  • cycloalkyl groups include, but are not limited to, (C3-C10)cycloalkyl (eg, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl). Cycloalkyl groups may be optionally substituted.
  • the cycloalkyl group is a monocyclic or bicyclic ring (ring).
  • arylalkyl refers to one or more hydrogens of alkyl being substituted with aryl, and includes benzyl and the like.
  • haloalkyl refers to an alkyl group in which one or more hydrogen atoms bonded to the carbons of the alkyl are substituted with a halogen atom.
  • haloalkyl is -CF 3 , -CHF 2 , -CH 2 F, -CBr 3 , -CHBr 2 , -CH 2 Br, -CC1 3 , -CHC1 2 , -CH 2 CI, -CI 3 , -CHI 2 , -CH 2 I, -CH 2 -CF 3 , -CH 2 -CHF 2 , -CH 2 -CH 2 F, -CH 2 -CBr 3 , -CH 2 -CHBr 2 , -CH 2 -CH 2 Br, -CH 2 -CC1 3 , -CH 2 -CHC1 2 , -CH 2 -CH 2 CI, -CH 2 -CI 3 , -CH 2 -CI 3
  • the present invention provides a modified gamma carbon skeleton compound capable of preparing a peptide nucleic acid oligomer with high purity and yield by introducing a negative charge having a cyclohexyl group, which is a specific protecting group, to gamma carbon, and the modified gamma carbon skeleton of the present invention
  • the compound is represented by the following formula (1).
  • R 1 is a protecting group, hydrogen, C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, C 6 -C 12 aryl, C 6 -C 12 arylC 1 -C 6 alkyl or haloC 1 -C 6 alkyl; ;
  • R is a protecting group, hydrogen or -COCH 2 -NB, NB is a nucleobase;
  • PG is a protecting group
  • n is an integer from 0 to 4.
  • the modified gamma carbon skeleton compound according to an embodiment of the present invention has a hexyl group as a controlled protecting group, so that a modified gamma carbon skeleton compound as a specific stereoisomer can be prepared with a high ee value.
  • the modified gamma carbon skeleton compound having a protecting group with a cyclohexyl group according to an embodiment of the present invention is deprotected under strong acid conditions, various protecting groups can be introduced into PG and R, and it is very stable to various reducing agents and oxidizing agents, so it is easy It is possible to prepare peptide nucleic acid oligomers.
  • the modified gamma carbon skeleton compound in which a functional group having a negative charge protected by a cyclohexyl group is introduced into the gamma carbon of the present invention has the advantage that it is possible to easily mass-produce a peptide nucleic acid oligomer with a simple process and high yield and purity.
  • the modified gamma carbon skeleton compound of the present invention in which a cyclohexyl group, which is a specific protecting group, is introduced to the gamma carbon represented by Chemical Formula 1 of the present invention is a conventional Bull. Korean Chem. Soc. 2010, Vol. 31, No. 7, it can be easily prepared with significantly improved yield and purity compared to the case where the t-Bu group is introduced as a protecting group, and has the advantage that it can be prepared under mild conditions.
  • the nucleic acid base according to an embodiment of the present invention is adenine, cytosine, 5-methylcytosine, guanine, thymine, uracil, purine, 2,6-diaminopurine, N 4 N 4 -ethanocytosine, N 6 N 6 -ethano-2,6-diaminopurine, 5-(C3-C6)-alkynyluracil, 5-(C3-C6)-alkynyl-cytosine, 5-(1-propargylamino)uracil, 5 -(1-propargylamino)cytosine, phenoxazine, 9-aminoethoxyphenoxazine, 5-fluorouracil, pseudoisocytosine, 5-(hydroxymethyl)uracil, 5-aminouracil, pseudouracil, dihydro Uracil, 5-(C1-C6)-Alkyluracil, 5-(C1-C6)-al
  • R 1 may be a protecting group or C 1 -C 6 alkyl, more preferably R 1 may be C 1 -C 6 alkyl, more preferably C 1 -C 4 alkyl.
  • R may be a protecting group or hydrogen, more preferably hydrogen.
  • n is an integer of 0 to 3, and more preferably an integer of 0 to 2.
  • R 1 is a protecting group or C 1 -C 6 alkyl
  • R is a protecting group or hydrogen
  • n may be an integer of 0 to 2.
  • R may be a nucleic acid base with or without a protecting group.
  • PG according to an embodiment of the present invention is not limited to a protecting group, but any protecting group that is deprotected under acid treatment is possible, and preferably Boc.
  • the protecting groups of R 1 , R and PG are benzyl, benzyloxy, allyloxy, tert-butyloxycarbonyl (Boc), di (tert-butyloxycarbonyl), cyclohexyl, Benzyloxycarbonyl (Cbz), 9-fluorenylmethyloxycarbonyl (Fmoc), monomethoxytrityl (Mmt), dimethoxytrityl (Dmt) or benzothiazol-2-sulfonyl (Bts)yl and more preferably alkyl, hydrogen or Boc.
  • Chemical Formula 1 according to an embodiment of the present invention may be represented by Chemical Formula 2 below.
  • R 1 is a protecting group, hydrogen, C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, C 6 -C 12 aryl, C 6 -C 12 arylC 1 -C 6 alkyl or haloC 1 -C 6 alkyl;
  • R is a protecting group, hydrogen or -COCH 2 -NB, NB is a nucleobase;
  • Boc is a tert-butyloxycarbonyl group, and n is an integer from 0 to 3.
  • a negatively charged functional group employing cyclohexyl as a protecting group is introduced and Boc is introduced as a protecting group of an amine. It is possible to mass-produce peptide nucleic acid oligomers with high purity and yield due to the ease of deprotection during manufacture, which produces less by-products.
  • the modified gamma carbon skeleton compound represented by Formula 2 of the present invention is more environmentally friendly and easy to purchase as a starting material compared to other protecting groups, and even when R is hydrogen, a cyclization reaction that occurs due to deprotection of the protecting group does not occur. Thus, it is possible to prepare a peptide nucleic acid oligomer having excellent yield and purity.
  • the t-Bu group is a more stable protecting group than the cyclohexyl group of the present invention
  • the protecting group is a t-Bu group
  • it is debolated under the same conditions as the debolation and reaction of the Boc-protecting group.
  • the Fmoc protecting group is generally used.
  • the yield was low due to transacylation, and the purity was also very low due to the increase in the production of by-products.
  • R 1 may be C 1 -C 4 alkyl, more preferably C 1 -C 2 alkyl.
  • R 1 is C 1 -C 6 alkyl
  • R is hydrogen or -COCH 2 -NB
  • NB is a nucleobase
  • n may be an integer from 0 to 1.
  • the modified gamma carbon skeleton compound according to an embodiment of the present invention may be represented by the following Chemical Formula 2-1.
  • n is an integer of 0 to 1.
  • the present invention provides a method for preparing a modified gamma carbon skeleton compound represented by Formula 1 according to an embodiment of the present invention, wherein the method for preparing the modified gamma carbon skeleton compound of the present invention comprises the following formula and reacting a compound of Formula 3 with a compound of Formula 4 or a salt of a compound of Formula 4 to prepare a modified gamma carbon skeleton compound represented by Formula 1 below.
  • R 1 is a protecting group, hydrogen, C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, C 6 -C 12 aryl, C 6 -C 12 arylC 1 -C 6 alkyl or haloC 1 -C 6 alkyl;
  • R is a protecting group, hydrogen or -COCH 2 -NB, NB is a nucleobase;
  • PG is a protecting group
  • n is an integer from 0 to 4.
  • the reducing agent according to an embodiment of the present invention and the compound of Formula 4 may be included in an amount of 1.0 to 2.0 moles, more preferably 1.2 to 1.7 moles, based on 1 mole of the compound of Formula 5.
  • Chemical formula 3 may be prepared by any method recognized by those skilled in the art, and preferably may be prepared by reacting a reducing agent with the following Chemical Formula 5.
  • R 11 is hydrogen or C 1 -C 6 alkyl
  • Z is -CONR 12 - or C 1 -C 6 alkylene, R 12 is hydrogen or C 1 -C 6 alkyl;
  • PG is a protecting group
  • n is an integer from 0 to 4.
  • R 11 when R 11 is hydrogen in Formula 5, Z is -CONR 12 -, R 12 may be hydrogen or C 1 -C 6 alkyl, and preferably R 12 may be hydrogen.
  • Z may be C 1 -C 6 alkylene, more preferably C 1 -C 4 alkylene.
  • the reducing agent according to an embodiment of the present invention can be any reducing agent that can be used within a range that can be recognized by those skilled in the art, and there is no limitation, but LiAlH 4 , SIBX (Stabilized IBX (2-iodoxybenzoic acid)), NaBH 4 And NaBH(OAc) 3 It may be one or two or more selected from.
  • Chemical Formula 5 according to an embodiment of the present invention may be prepared by reducing Chemical Formula 6 or reacting Chemical Formula 6 with an amine compound.
  • Chemical Formula 5 may be prepared by reducing Chemical Formula 6 with an appropriate reducing agent, and may be prepared by a coupling reaction using Chemical Formula 6 and an appropriate amine compound in the presence of a coupling reagent, but There is no limitation.
  • the amine compound according to an embodiment of the present invention may be a primary, secondary, or tertiary amine compound, and a quaternary amine salt is also possible.
  • Coupling reagents can be used within the range recognized by those skilled in the art, EDC (1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide), HATU (1- [Bis (dimethylamino) methylene] -1H-1,2 , 3-triazolo [4,5-b ] pyridinium 3-oxide hexafluorophosphate), PyBOP ((benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate), HBTU ((2- (1 H -benzotriazol-1-yl) -1,1 ,3,3-tetramethyluronium hexafluorophosphate), DIC (1,3-Diisopropylcarbodiimide), and the
  • the organic solvent was purchased from Novabiochem, Alfa aesar, SAMCHUN CHEMICALS, Junsei chemicals co., Ltd, DUKSAN reagents chemical, and was used without further purification.
  • 1 H-NMR analysis of the synthesized compound was performed using a Bruker 400 or 500 MHz at room temperature, and the ratio of MeCN containing 0.1% TFA to water containing 0.1% TFA as an HPLC (waters 1525 binary hplc pump) eluent was Using a solvent of 5:95, gradually change the ratio of the developing solvent to change the ratio of MeCN containing 0.1% TFA to water containing 0.1% TFA to 20:80 for 20 minutes and then 0.1% TFA for 10 minutes Using a solvent in which the ratio of MeCN containing TFA to water containing 0.1% of TFA was 95:5 was analyzed by a column heater 60 o C method.
  • the solvent was removed by distillation under reduced pressure. After dissolving in 750 mL of 1M KSHO4 in 75 g of yellow viscous oil from which the solvent has been removed, 750 mL of diethyl ether was added, stirred for 10 minutes, and the ether layer was removed. This process was repeated 3 times. After cooling the temperature of the water layer to 0 to 5 °C sat. The sodiumbicarbonate solution was slowly added to adjust the pH to 6.5 to 7. After extracting the product by adding 8 L of diethyl ether to the water layer again, 75 g of transparent viscous oil was obtained by removing the solvent.

Abstract

본 발명은 개질된 감마 탄소 골격 화합물 및 이의 제조방법을 제공하는 것으로, 본 발명의 개질된 감마 탄소 골격 화합물은 제어된 특정한 보호기를 가지는 작용기를 도입함으로써 높은 수율 및 순도로 펩타이드 핵산 모노머를 제조할 수 있어, 펩타이드 핵산 올리고머의 대량생산이 가능하다.

Description

개질된 감마탄소 골격 화합물 및 이의 제조방법
본 발명은 개질된 감마탄소 골격 화합물 및 이의 제조방법에 관한 것으로, 보다 상세하게는 감마탄소에 음전하가 도입되어 개질된 감마탄소 골격의 화합물 및 이의 제조방법을 제공한다.
펩타이드 핵산(PNA)는 현재 산업적으로 유전자 진단분야에서 활발히 이용되고 있으며, 유전자 치료제로 상용하기 위해 많은 연구자들이 끊임없이 연구하고 있다.
일반적인(변형되지 않은, normal) PNA를 사용할 경우 물성이 좋지 않은 단점을 가지고 있는 것으로 알려져 있다.
즉, normal PNA에서는 용해도 및 응집 문제가 흔하게 발생하기 때문에 많은 연구자들은 이를 보안하기 위하여 단량체의 감마 위치에 친수성 작용기를 도입하여 상기와 같은 문제를 보안하려고 연구하고 있다.
뿐만 아니라 감마 위치의 친수성 작용기가 도입되면서 비대칭탄소(chiral carbon)가 동시에 도입되어 유전자와의 결합력을 조절할 수 있으며, 표적유전자와의 선택적 결합능력도 증가시킬 수 있다(Chembiochem. 2015 Jan 19;16(2):209-13).
특히 음전하가 도입된 PNA probe를 사용할 경우 FMCA(fluorescence melting curve analysis)기반의 유전자 진단 분야에서 resolution 이 향상되어 진단분야에서 매우 유용하게 사용될 수 있어, 음전하의 도입이 매우 중요하다 (WO2015152446A1).
따라서 음전하가 도입된 PNA 프로브를 용이하게 합성가능하기위한 펩타이드 핵산 단량체의 제공은 아주 중요하다. 하지만 음전하가 도입된 PNA를 합성하기 위한 기존 보고되어 있는 펩타이드 핵산 단량체는 Fmoc 기반의 단량체(Bull. Korean Chem. Soc. 2010, Vol. 31, No. 7)Fmoc gamma modified monomer)로 이를 이용하여 음전하가 도입된 PNA oligomer 를 합성할 경우 trans acylation 문제로 전반적인 합성수율이 좋지 않은 문제점이 발생한다. 반면 Boc gamma modified monomer(또는 산조건에서 탈보화되는 보호기, mmt 등)를 이용하여 음전하가 도입된 PNA oligomer 를 합성할 경우 상대적으로 높은 수율로 PNA oligomer의 제조 가능한 장점이 있어 Boc chemistry 기반의 음전하가 도입된 gamma modified monomer 및 이의 산업적 대량생산이 가능한 제조방법이 요구된다.
따라서 목적하는 PNA를 단순한 공정으로 높은 순도 및 수율로 효율적으로 제조할 수 있는 PNA 단량체의 제조방법이 요구된다.
본 발명은 감마 탄소에 제어된 보호기를 가져 간단한 공정으로 놀랍도록 향상된 순도 및 수율로 대량생산이 가능한 개질된 감마탄소 골격 화합물 및 이를 제조하는 방법을 제공한다.
본 발명은 제어된 보호기를 가져 단순한 공정으로, 극히 향상된 순도 및 수율로 펩타이드 핵산 올리고머의 중간체를 제조할 수 있는 개질된 감마탄소 골격 화합물을 제공하는 것으로, 본 발명의 개질된 감마탄소 골격 화합물은 하기 화학식 1로 표시된다.
[화학식 1]
Figure PCTKR2020018907-appb-img-000001
(상기 화학식 1에서,
R 1은 보호기, 수소, C 1-C 6알킬, C 3-C 6시클로알킬, C 6-C 12아릴, C 6-C 12아릴C 1-C 6알킬 또는 할로C 1-C 6알킬이며;
R은 보호기, 수소 또는 -COCH 2-NB이며, NB는 핵산염기이며;
PG는 보호기이며,
n은 0 내지 4의 정수이다.)
바람직하게 본 발명의 일 실시예에 따른 화학식 1에서 R 1은 보호기 또는 C 1-C 6알킬이고, R은 보호기 또는 수소이며, n은 0 내지 2의 정수일 수 있다.
바람직하게 본 발명의 일 실시예에 따른 핵산염기는 아데닌, 시토신, 5-메틸시토신, 구아닌, 티민,우라실, 푸린, 2,6-디아미노푸린,N 4N 4-에타노시토신, N 6N 6-에타노-2,6-디아미노푸린, 5-(C3-C6)-알키닐우라실, 5-(C3-C6)-알키닐-시토신, 5-(1-프로파길아미노)우라실, 5-(1-프로파길아미노)시토신, 페녹사진, 9-아미노에톡시페녹사진, 5-플루오로우라실, 슈도이소시토신, 5-(하이드록시메틸)우라실, 5-아미노우라실, 슈도우라실, 디하이드로우라실, 5-(C1-C6)-알킬우라실, 5-(C1-C6)-알킬-시토신, 5-(C2-C6)-알케닐시토신, 5-플루오로시토신, 5-클로로우라실, 5-클로로시토신, 5-브로모우라실, 5-브로모시토신, 7-데아자아데닌, 7-데아자구아닌, 8-아자푸린, 7-데아자-7-치환된푸린, 사이오우라실 또는 인공핵산염기일 수 있다.
본 발명의 일 실시예에 따른 R 1, R 및 PG의 보호기는 서로 독립적으로 벤질, 벤질옥시, 알릴옥시, tert-부틸옥시카보닐, 디(tert-부틸옥시카보닐), 시클로헥실, 벤질옥시카보닐(Cbz), 9-플루오레닐메틸옥시카르보닐(Fmoc), 모노메톡시트리틸(Mmt), 디메톡시트리틸(Dmt) 또는 벤조티아졸-2-술포닐(Bts)일 수 있다.
바람직하게 본 발명의 일 실시예에 따른 화학식 1은 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2020018907-appb-img-000002
(상기 화학식 2에서,
R 1은 보호기, 수소, C 1-C 6알킬, C 3-C 6시클로알킬, C 6-C 12아릴, C 6-C 12아릴C 1-C 6알킬 또는 할로C1-C6알킬이며;
R은 보호기, 수소 또는 -COCH 2-NB이며, NB는 핵산염기이며;
Boc는 tert-부틸옥시카보닐기이며, n은 0 내지 3의 정수이다.)
본 발명의 일 실시예에 따른 화학식 2에서 R 1은 C 1-C 6알킬일 수 있다.
또한 본 발명은 본 발명의 개질된 감마탄소 골격 화합물의 제조방법을 제공하는 것으로, 본 발명의 개질된 감마탄소 골격 화합물의 제조방법은,
환원제 존재 하, 하기 화학식 3의 화합물과 하기 화학식 4의 화합물 또는 하기 화학식 4의 화합물의 염을 반응시켜 하기 화학식 1로 표시되는 감마탄소 골격 화합물을 제조하는 단계;를 포함한다.
[화학식 1]
Figure PCTKR2020018907-appb-img-000003
[화학식 3]
Figure PCTKR2020018907-appb-img-000004
[화학식 4]
Figure PCTKR2020018907-appb-img-000005
(상기 화학식 1, 3 및 4에서,
R 1은 보호기, 수소, C 1-C 6알킬, C 3-C 6시클로알킬, C 6-C 12아릴, C 6-C 12아릴C 1-C 6알킬 또는 할로C1-C6알킬이며;
R은 보호기, 수소 또는 -COCH 2-NB이며, NB는 핵산염기이며;
PG는 보호기이며,
n은 0 내지 4의 정수이다.)
바람직하게 본 발명의 일 실시예에 따른 환원제 및 화학식 4의 화합물은 화학식 5의 화합물, 1몰에 대해 1.0 내지 2.0몰로 포함될 수 있다.
본 발명의 일 실시예에 따른 화학식 3은 환원제와 하기 화학식 5를 반응시켜제조되는 것일 수 있다.
[화학식 5]
Figure PCTKR2020018907-appb-img-000006
(화학식 5에서,
R 11은 수소 또는 C 1-C 6알킬이며;
Z는 -CONR 12- 또는 C 1-C 6알킬렌이며, R 12는 수소 또는 C 1-C 6알킬이며;
PG는 보호기이며,
n은 0 내지 4의 정수이다.)
본 발명의 개질된 감마탄소 골격 화합물은 감마탄소에 제어된 특정한 보호기를 가짐으로써 이를 이용한 펩타이드 핵산 올리고머 제조 시 부산물의 생성이 억제되어 높은 수율로 펩타이드 핵산 올리고머를 제조할 수 있다.
뿐만 아니라 본 발명의 개질된 감마탄소 골격 화합물은 감마탄소에 제어된 특정한 보호기를 가지는 골격의 화합물로 이를 이용한 펩타이드 핵산 올리고머 제조 시 입체이성질체의 선택성이 매우 높다.
또한 본 발명의 개질된 감마탄소 골격 화합물은 제어된 특정한 보호기를 가짐으로써 상기 제어된 특정한 보호기 외의 다른 보호기와 주고받는 영향이 적어 부산물의 생성이 적고, 하나의 탈보호화 시에 다른 하나의 보호기는 안정하여 펩타이드 핵산 올리고머 제조 시 높은 순도 및 수율로 대량생산이 가능하다.
따라서 본 발명의 개질된 감마탄소 골격 화합물의 제조방법은 순도 및 수율이 높고 대량생산이 가능해 상업적 적용에 매우 유리하다.
이하 본 발명의 개질된 감마탄소 골격 화합물, 이의 제조방법에 대하여 상술하나, 이때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
본 명세서에 사용된 용어 "감마탄소 골격"은 하기에서 표시된 바와 같이 화합물 골격의 감마탄소에 위치한 개질된 작용기를 의미한다.
Figure PCTKR2020018907-appb-img-000007
본 명세서에 사용된 용어 "보호기"는 유기반응에서 특정한 작용기, 일례로아민 또는 카르복실산기를 보호하기위한 작용기로 유기합성분야의 당업자가 인식할 수 있는 범위의 작용기라면 모두 가능하며, 아민 보호기의 구체적인 일례로 Fmoc(플루오레닐메톡시카보닐), Boc(3급-부틸옥시카보닐), Cbz(벤질옥시카보닐), Bhoc, 알릴옥시카르보닐(Alloc), acetyl, benzoyl, benzyl, Carbamate, p-Methoxybenzyl, 3,4-Dimethoxybenzyl, p-methoxyphenyl, Tosyl, trichloroethyl chloroformate, Sulfonamides, isobutyryl 일 수 있다.
본 명세서에서 사용된 용어 "알킬"은 (탄소수가 특별히 한정되지 않은 경우) 탄소수 1 내지 10, 바람직하게 탄소수 1 내지 6을 가진 포화된 직쇄상 또는 분지상의 비-고리(cyclic) 탄화수소를 의미한다. "저급 알킬"은 탄소수가 1 내지 4인 직쇄상 또는 분지상 알킬을 의미한다. 대표적인 포화 직쇄상 알킬은 -메틸, -에틸, -n-프로필, -n-부틸, -n-펜틸, -n-헥실, -n-헵틸, -n-옥틸, -n-노닐 과 -n-데실을 포함하고, 반면에 포화 분지상 알킬은 -이소프로필, -sec-부틸, -이소부틸, -tert-부틸, 이소펜틸, 2-메틸헥실, 3-메틸부틸, 2-메틸펜틸, 3-메틸펜틸, 4-메틸펜틸, 2-메틸헥실, 3-메틸헥실, 2-메틸펜틸, 3-메틸펜틸, 4-메틸펜틸, 2-메틸헥실, 3-메틸헥실, 4-메틸헥실, 5- 메틸헥실, 2,3-디메틸부틸, 2,3-디메틸펜틸, 2,4-디메틸펜틸, 2,3-디메틸헥실, 2,4-디메틸헥실, 2,5-디메틸헥실, 2,2-디메틸펜틸, 2,2-디메틸헥실, 3,3-디메틸펜틸, 3,3-디메틸헥실, 4,4-디메틸헥실, 2-에틸펜틸, 3-에틸펜틸, 2-데틸헥실, 3-에틸헥실, 4-에틸헥실, 2-메틸-2-에틸펜틸, 2-메틸-3-에틸펜틸, 2-메틸-4-에틸펜틸, 2-메틸-2-에틸헥실, 2-메틸-3-에틸헥실, 2-메틸-4-에틸헥실, 2,2-디에틸펜틸, 3,3-디에틸헥실, 2,2-디에틸헥실, 및 3,3-디에틸헥실을 포함한다.
본 명세서에서 "C 1-6"와 같이 기재될 경우 이는 탄소수가 1 내지 6개임을 의미한다. 예를 들어, C 1-6알킬은 탄소 수가 1 내지 6인 알킬을 의미한다.
본 명세서에서 사용된 용어 "할로겐" 및 "할로"는 플루오린, 클로린, 브로민 또는 아이오딘을 의미한다.
본 명세서에서 사용된 용어 "아릴"은 5 내지 10의 고리 원자를 함유하는 탄소고리 방향족 그룹을 의미한다. 대표적인 예는 페닐, 톨일(tolyl), 자이릴(xylyl), 나프틸, 테트라하이드로나프틸, 안트라세닐(anthracenyl), 플루오레닐(fluorenyl), 인데닐(indenyl), 아주레닐(azulenyl) 등을 포함하나 이에 한정되는 것은 아니다. 탄소고리 방향족 그룹은 선택적으로 치환될 수 있다.
본 명세서에서 사용된 용어 "시클로알킬(cycloalkyl)"은 탄소 및 수소 원자를 가지며 탄소-탄소 다중 결합을 가지지 않는 모노사이클릭 또는 폴리시클릭 포화 고리(ring)를 의미한다. 시클로알킬 그룹의 예는 (C3-C10)시클로알킬(예를 들어, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실 및 시클로헵틸)을 포함하나 이에 한정되는 것은 아니다. 시클로알킬 그룹은 선택적으로 치환될 수 있다. 일 실시예에서, 시클로알킬 그룹은 모노시클릭 또는 바이시클릭 링(고리)이다.
본 명세서에서 사용된 용어 "아릴아킬"은 알킬의 하나 이상의 수소가 아릴로 치환된 것으로, 벤질 등이 포함된다.
본 명세서에서 사용된 용어 "할로알킬"은 알킬의 탄소에 결합된 하나이상의 수소 원자가 할로겐 원자로 치환된 알킬 그룹을 의미한다. 예를 들어, 할로알킬은 -CF 3, -CHF 2, -CH 2F, -CBr 3, -CHBr 2, -CH 2Br, -CC1 3, -CHC1 2, -CH 2CI, -CI 3, -CHI 2, -CH 2I, -CH 2-CF 3, -CH 2-CHF 2, -CH 2-CH 2F, -CH 2-CBr 3, -CH 2-CHBr 2, -CH 2-CH 2Br, -CH 2-CC1 3, -CH 2-CHC1 2, -CH 2-CH 2CI, -CH 2-CI 3, -CH 2-CHI 2, -CH 2-CH 2I, 및 이와 유사한 것을 포함한다. 여기에서 알킬 및 할로겐은 위에서 정의된 것과 같다.
본 발명은 감마탄소에 특정한 보호기인 시클로헥실기를 가지는 음전하를 도입하여 높은 순도 및 수율로 펩타이드 핵산 올리고머를 제조할 수 있는 개질된 감마탄소 골격 화합물을 제공하는 것으로, 본 발명의 개질된 감마탄소 골격 화합물은 하기 화학식 1로 표시된다.
[화학식 1]
Figure PCTKR2020018907-appb-img-000008
(상기 화학식 1에서,
R 1은 보호기, 수소, C 1-C 6알킬, C 3-C 6시클로알킬, C 6-C 12아릴, C 6-C 12아릴C 1-C 6알킬 또는 할로C 1-C 6알킬이며;
R은 보호기, 수소 또는 -COCH 2-NB이며, NB는 핵산염기이며;
PG는 보호기이며,
n은 0 내지 4의 정수이다.)
본 발명의 일 실시예에 따른 개질된 감마탄소 골격 화합물은 R 1O(C=O)를 가지는 화합물 골격의 감마 탄소에 음전하를 도입하기위한 보호기로 시클로헥실기를 가짐으로써 이를 이용한 펩타이드 핵산 올리고머 제조 시 부생성물의 발생이 적은 동시에 수율 및 순도가 높은 펩타이드 핵산 올리고머를 제조할 수 있다.
나아가 본 발명의 일 실시예에 따른 개질된 감마탄소 골격 화합물은 제어된 보호기인 헥실기를 가짐으로써 높은 ee값으로 특정 입체이성질체인 개질된 감마탄소 골격 화합물을 제조할 수 있다.
더구나 본 발명의 일 실시예에 따른 시클로헥실기를 보호기를 가진 개질된 감마탄소 골격 화합물은 강산 조건하에서 탈보호되기 때문에 PG 및 R에 다양한 보호기가 도입 가능할 뿐만 아니라 다양한 환원제 및 산화제에 매우 안정하여 용이하게 펩타이드 핵산 올리고머를 제조할 수 있다.
따라서 본 발명의 감마 탄소에 시클로헥실기로 보호화된 음전하를 가지는 작용기가 도입된 개질된 감마탄소 골격 화합물은 간단한 공정과 높은 수율 및 순도로 펩타이드 핵산 올리고머를 용이하게 대량생산이 가능한 장점을 가진다.
본 발명의 화학식 1로 표시되는 감마탄소에 특정한 보호기인 시클로헥실기를 도입한 본 발명의 개질된 감마탄소 골격 화합물은 종래의 Bull. Korean Chem. Soc. 2010, Vol. 31, No. 7에서 t-Bu기를 보호기로 도입한 경우와 대비하여 현저하게 향상된 수율 및 순도로 용이하게 제조될 수 있으며, 온화한 조건에서 제조될 수 있는 장점을 가진다.
바람직하게 본 발명의 일 실시예에 따른 핵산 염기는 아데닌, 시토신, 5-메틸시토신, 구아닌, 티민,우라실, 푸린, 2,6-디아미노푸린,N 4N 4-에타노시토신, N 6N 6-에타노-2,6-디아미노푸린, 5-(C3-C6)-알키닐우라실, 5-(C3-C6)-알키닐-시토신, 5-(1-프로파길아미노)우라실, 5-(1-프로파길아미노)시토신, 페녹사진, 9-아미노에톡시페녹사진, 5-플루오로우라실, 슈도이소시토신, 5-(하이드록시메틸)우라실, 5-아미노우라실, 슈도우라실, 디하이드로우라실, 5-(C1-C6)-알킬우라실, 5-(C1-C6)-알킬-시토신, 5-(C2-C6)-알케닐시토신, 5-플루오로시토신, 5-클로로우라실, 5-클로로시토신, 5-브로모우라실, 5-브로모시토신, 7-데아자아데닌, 7-데아자구아닌, 8-아자푸린, 7-데아자-7-치환된푸린, 사이오우라실 또는 인공핵산염기일 수 있으나, 이에 한정이 있는 것은 아니다.
바람직하게 본 발명의 일 실시예에 따른 화학식 1에서 R 1은 보호기 또는 C 1-C 6알킬일 수 있으며, 보다 바람직하게 R 1은 C 1-C 6알킬일 수 있으며, 보다 좋기로는 C 1-C 4알킬일 수 있다.
바람직하게 본 발명의 일 실시예에 따른 화학식 1에서 R은 보호기 또는 수소일 수 있으며, 보다 바람직하게는 수소일 수 있다.
바람직하게 본 발명의 일 실시예에 따른 화학식 1에서 n은 0 내지 3의 정수이며, 보다 바람직하게 0 내지 2의 정수일 수 있다.
보다 바람직하게 본 발명의 일 실시예에 따른 화학식 1에서 R 1은 보호기 또는 C 1-C 6알킬이고, R은 보호기 또는 수소이며, n은 0 내지 2의 정수일 수 있다.
바람직하게 본 발명의 일 실시예에 따른 화학식 1에서 R은 보호기를 포함하거나 포함하지 않은 핵산염기일 수 있다.
바람직하게 본 발명의 일 실시예에 따른 PG는 보호기로 한정이 있는 것은 아니나, 산처리하에서 탈보호화되는 보호기라면 모두 가능하며, 바람직하게 Boc일 수 있다.
바람직하게 본 발명의 일 실시예에 따른 R 1, R 및 PG의 보호기는 벤질, 벤질옥시, 알릴옥시, tert-부틸옥시카보닐(Boc), 디(tert-부틸옥시카보닐), 시클로헥실, 벤질옥시카보닐(Cbz), 9-플루오레닐메틸옥시카르보닐(Fmoc), 모노메톡시트리틸(Mmt), 디메톡시트리틸(Dmt) 또는 벤조티아졸-2-술포닐(Bts)일 수 있으며, 보다 바람직하게는 알킬, 수소 또는 Boc 일 수 있다.
바람직하게 본 발명의 일 실시예에 따른 화학식 1은 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2020018907-appb-img-000009
(상기 화학식 2에서,
R 1은 보호기, 수소, C 1-C 6알킬, C 3-C 6시클로알킬, C 6-C 12아릴, C 6-C 12아릴C 1-C 6알킬 또는 할로C1-C6알킬이며;
R은 보호기, 수소 또는 -COCH 2-NB이며, NB는 핵산염기이며;
Boc는 tert-부틸옥시카보닐기이며, n은 0 내지 3의 정수이다.)
본 발명의 개질된 감마탄소 골격의 화합물의 감마탄소에 음전하를 도입하기위해 시클로헥실를 보호기를 채용한 음전하 작용기를 도입하고 아민의 보호기로 Boc을 도입함으로써 양보호기 간의 상호작용이 적어 펩타이드 핵산 올리고머의 제조 시 탈보호화가 용이하여 부산물이 생성이 적어 높은 순도 및 수율로 펩타이드 핵산 올리고머의 대량생산이 가능하다.
더구나 본 발명의 화학식 2로 표시되는 개질된 감마탄소 골격 화합물은 다른 보호기와 대비하여 출발물질의 상업적 구입이 용이하고 보다 친환경적이며, R이 수소인 경우에도 보호기가 탈보호화되어 일어나는 고리화반응이 일어나지 않아 수율 및 순도가 우수한 펩타이드 핵산 올리고머를 제조할 수 있다.
보다 구체적으로 t-Bu기가 본 발명의 시클로헥실기보다 안정한 보호기이나, 보호기가 t-Bu기는인 경우 Boc-보호기의 탈보화와 반응과 동일한 조건화에서 탈보화됨으로 t-Bu기를 보호기로 사용할 경우 이와 동시에 존재하는 보호기로는 일반통상적으로 Fmoc 보호기를 사용한다. 그러나, PNA 올리고머 제조시 t-Bu 보호기와 Fmoc 보호기가 동시에 존재하는 경우 transacylation으로 인해 수율이 낮으며, 부생성물의 생성이 증가하여 순도 또한 매우 낮은 것을 발견하였다. 또한 당업자라면 Fmoc chemistry 대비 Boc chemistry를 이용하여 PNA 올리고머를 합성할 경우 전반적인 crude purity 증가하는 것은 너무나 자명한 것으로, 본 발명자들은 상기의 문제를 해결하면서도 Boc chemistry에서의 PNA 올리고머를 제조하기위한 골격 화합물을 연구하던 중 음전하가 도입된 감마탄소의 음전하 보호기로 시클로헥실을 도입하여 이러한 문제를 해결할 수 있음을 발견하여 본 발명을 완성하였다.
바람직하게 본 발명의 일 실시예에 따른 화학식 2에서 R 1은 C 1-C 4알킬일 수 있으며, 보다 바람직하게는 C 1-C 2알킬일 수 있다.
보다 바람직하게 상기 화학식 2에서, R 1은 C 1-C 6알킬이며; R은 수소 또는 -COCH 2-NB이며, NB는 핵산염기이며; n은 0 내지 1의 정수일 수 있다.
바람직하게 본 발명의 일 실시예에 따른 개질된 감마탄소 골격 화합물은 하기 화학식 2-1일 수 있다.
[화학식 2-1]
Figure PCTKR2020018907-appb-img-000010
(상기 화학식 2-1에서 n은 0 내지 1의 정수이다.)
또한 본 발명은 본 발명의 일 실시예에 따른 화학식 1로 표시되는 개질된 감마탄소 골격 화합물의 제조방법을 제공하는 것으로, 본 발명의 개질된 감마탄소 골격 화합물의 제조방법은 환원제 존재 하, 하기 화학식 3의 화합물과 하기 화학식 4의 화합물 또는 하기 화학식 4의 화합물의 염을 반응시켜 하기 화학식 1로 표시되는 개질된 감마탄소 골격 화합물을 제조하는 단계;를 포함한다.
[화학식 1]
Figure PCTKR2020018907-appb-img-000011
[화학식 3]
Figure PCTKR2020018907-appb-img-000012
[화학식 4]
Figure PCTKR2020018907-appb-img-000013
(상기 화학식 1, 3 및 4에서,
R 1은 보호기, 수소, C 1-C 6알킬, C 3-C 6시클로알킬, C 6-C 12아릴, C 6-C 12아릴C 1-C 6알킬 또는 할로C1-C6알킬이며;
R은 보호기, 수소 또는 -COCH 2-NB이며, NB는 핵산염기이며;
PG는 보호기이며,
n은 0 내지 4의 정수이다.)
바람직하게 본 발명의 일 실시예에 따른 환원제 및 화학식 4의 화합물은 화학식 5의 화합물, 1몰에 대해 1.0 내지 2.0몰로 포함될 수 있으며, 보다 바람직하게는 1.2 내지 1.7몰로 포함될 수 있다.
본 발명의 일 실시예에 따른 화학식 3은 당업자가 인식할 수 있는 모든 방법으로 제조될 수 있으며, 바람직하게 환원제 및 하기 화학식 5를 반응시켜 제조되는 것일 수 있다.
[화학식 5]
Figure PCTKR2020018907-appb-img-000014
(화학식 5에서,
R 11은 수소 또는 C 1-C 6알킬이며;
Z는 -CONR 12- 또는 C 1-C 6알킬렌이며, R 12는 수소 또는 C 1-C 6알킬이며;
PG는 보호기이며,
n은 0 내지 4의 정수이다.)
바람직하게 화학식 5에서 R 11이 수소일 경우 Z는 -CONR 12-이며, R 12는 수소 또는 C 1-C 6알킬일 수 있으며, 바람직하게 R 12는 수소일 수 있다.
바람직하게 화학식 5에서 R 11이 C 1-C 6알킬일 경우 Z는 C 1-C 6알킬렌일 수 있으며, 보다 바람직하게는 C 1-C 4알킬렌일 수 있다.
본 발명의 일 실시예에 따른 환원제는 당업자가 인식할 수 있는 범위내에서 사용가능한 환원제라면 모두 가능하며, 한정이 있는 것은 아니나, LiAlH 4, SIBX(Stabilized IBX(2-iodoxybenzoic acid)), NaBH 4 및 NaBH(OAc) 3에서 선택되는 하나 또는 둘 이상일 수 있다. 바람직하게 본 발명의 일 실시예에 따른 화학식 5는 하기 화학식 6을 환원시키거나 화학식 6과 아민 화합물과 반응시켜 제조되는 것일 수 있다.
[화학식 6]
Figure PCTKR2020018907-appb-img-000015
(상기 화학식 6에서 PG는 보호기이며, n은 0 내지 4의 정수이다.)
구체적으로 본 발명의 일 실시예에 따른 화학식 5는 상기 화학식 6을 적절한 환원제로 환원시켜 제조할 수 있으며, 커플링 시약 존재 하 화학식 6과 적절한 아민 화합물을 이용한 커플링반응으로 제조할 수 있으나, 이에 한정이 있는 것은 아니다.
발명의 일 실시예에 따른 아민 화합물은 1차, 2차 또는 3차 아민 화합물일 수 있으며, 4차 아민염도 가능하다. 커플링 시약은 당업자가 인식할 수 있는 범위내에서 사용가능하며, EDC(1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide), HATU (1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate), PyBOP((benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate), HBTU((2-(1 H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate), DIC(1,3-Diisopropylcarbodiimide) 등을 들 수 있으나, 이에 한정이 있는 것은 아니다.
이하 실시예를 통하여 본 발명을 구체적으로 설명하지만, 하기의 실시예에 의하여 본 발명의 범주가 본 발명을 한정하는 것은 아니다.
반응에 사용된 물질 유기용매는 Novabiochem, Alfa aesar, SAMCHUN CHEMICALS, Junsei chemicals co.,Ltd, DUKSAN reagents chemical 등에서 구입하여 사용하였으며 별도의 추가 정제없이 사용하였다. 합성된 화합물의 1H-NMR 분석은 상온에서 Bruker 400 또는 500 MHz을 사용하여 수행하였고 HPLC(waters 1525 Binary hplc pump) 전개용매로 TFA 0.1%가 포함된 MeCN: TFA 0.1%가 포함된 물의 비율이 5:95인 용매를 사용하여 점차 전개용매의 비율을 변화시켜 TFA 0.1%가 포함된 MeCN: TFA 0.1%가 포함된 물의 비율을 20:80으로 20분동안 변화시키고 이후 10분동안은 TFA 0.1%가 포함된 MeCN: TFA 0.1%가 포함된 물의 비율이 95:5인 용매를 사용하여, column heater 60 oC 방법으로 분석하였다.
[실시예 1] 개질된 감마탄소 골격 화합물의 제조
화합물 3의 합성
Figure PCTKR2020018907-appb-img-000016
화합물 1을 사용한 것을 제외하고 Bull. Korean Chem. Soc. 2010, Vol. 31, No. 7와동일한 방법으로 화합물 3을 제조하였다.
화합물 4의 합성
Figure PCTKR2020018907-appb-img-000017
화합물 3[Boc-Glu(OcHex)-CHO] 78g을 DCE(dichloroethane) 550 mL에 용해한 후, Glycine methyl ester HCl salt 47g을 투입한 후 10 분 동안 교반시켰다. 이후 ice bath를 이용하여 반응용액의 온도를 5 내지 10℃로 냉각시켰다. 여기에 DIEA 65 mL를 천천히 투입하여 5분간 교반시킨 후 Acetic acid 15 mL를 투입하여 5분간 교반시켰다. Sodium triacetoxyborohydride 79g을 천천히 투입한 후 1시간 동안 교반시키면서 TLC 모니터링을 통하여 반응 종료를 확인하였다(EA 100 %; rf 0.3, ninhydrin 염색법). 반응완료를 확인한 후 감압증류하여 용매를 제거하였다. 용매가 제거된 노란색 점성의 오일 75g에 1M KSHO4 750 mL 에 용해 후, Diethyl ether 750 mL를 투입하여 10 분 동안 교반 후 Ether 층을 제거하였다. 이 과정을 3회 반복 하였다. 물층의 온도를 0 내지 5℃로 냉각한 후 sat. sodiumbicarbonate 용액을 천천히 투입하여 pH 6.5 내지 7 로 맞추어 주었다. 물층에 다시 Diethyl ether 8 L 를 투입하여 product를 추출 후 용매를 제거 하여 투명한 점성의 Oil 75g을 수득 하였다.
1H NMR (400 MHz, CDCl 3) δ 4.75 (td, J = 8.9, 4.0 Hz, 2H), 3.73 (s, 3H), 3.65 (s, 1H), 3.46 (d, J = 17.4 Hz, 1H), 3.38 (d, J = 17.4 Hz, 1H), 2.67 (qd, J = 12.2, 5.6 Hz, 2H), 2.37 (t, J = 7.6 Hz, 2H), 1.92 - 1.78 (m, 3H), 1.76 - 1.67 (m, 3H), 1.64 (s, 1H), 1.59 - 1.50 (m, 1H), 1.49 - 1.21 (m, 14H).
13C NMR (101 MHz, CDCl 3) δ 172.89, 172.86, 155.78, 79.23, 77.23, 72.74, 53.07, 51.74, 50.82, 50.26, 48.24, 31.64, 31.62, 31.42, 28.38 (3C), 25.38, 23.77.
[실시예 2] Monomer(화합물 5(Boc-Glu(OcHex)-A(Z)-OMe)의 제조
의 합성
화합물 4를 이용하여 Bull. Korean Chem. Soc. 2010, Vol. 31, No. 7와 동일한 방법으로하기와 같이 PNA monomer를 제조하였다.
Figure PCTKR2020018907-appb-img-000018
2-[6-(phenylmethoxycarbonylamino)purin-9-yl]acetic acid 4.00 g(12.2 mmol)을 dry N,N-dimethylformamide(DMF) 80 mL에 녹였다. O-(1H-Benzotriazol-1-yl-N,N,N’,N’-tetramethyluroniumhexafluorophosphate) (HBTU) 6.95 g(18.3 mmol)을 넣고, 화합물 4, 4.72 g(12.2 mmol)을 넣은 후 0 ℃에서 N,N-Diisopropylethylamine(DIEA) 6.39 mL (36.7 mmol)을 적가 후 30분 동안 교반 하였다. TLC(전개액 : 5% MeOH/MC) 를 이용하여 반응 종결을 확인 하고, Dichloromethane(MC) 80 mL를 넣었다. 유기층을 포화된 NaHCO 3, 0.5 M HCl 로 씻어준 후 Sodium sulfate를 투입하여 물을 제거하고 농축하였다. Silca-column chromatography(용리액 : 5% MeOH/MC)로 정제하여 흰 고체생성물 Boc-Glu(OcHex)-A(Z)-OMe를 얻었다.( 7 g, 82.3 %) (M+1, 696.54)

Claims (9)

  1. 하기 화학식 1로 표시되는 개질된 감마탄소 골격 화합물.
    [화학식 1]
    Figure PCTKR2020018907-appb-img-000019
    상기 화학식 1에서,
    R 1은 보호기, 수소, C 1-C 6알킬, C 3-C 6시클로알킬, C 6-C 12아릴, C 6-C 12아릴C 1-C 6알킬 또는 할로C 1-C 6알킬이며;
    R은 보호기, 수소 또는 -COCH 2-NB이며, NB는 핵산염기이며;
    PG는 보호기이며,
    n은 0 내지 4의 정수이다.
  2. 제 1항에 있어서,
    상기 화학식 1에서 R 1은 보호기 또는 C 1-C 6알킬이고, R은 보호기 또는 수소이며, n은 0 내지 2의 정수인 개질된 감마탄소 골격 화합물.
  3. 제 1항에 있어서,
    상기 핵산염기는 아데닌, 시토신, 5-메틸시토신, 구아닌, 티민,우라실, 푸린, 2,6-디아미노푸린,N 4N 4-에타노시토신, N 6N 6-에타노-2,6-디아미노푸린, 5-(C3-C6)-알키닐우라실, 5-(C3-C6)-알키닐-시토신, 5-(1-프로파길아미노)우라실, 5-(1-프로파길아미노)시토신, 페녹사진, 9-아미노에톡시페녹사진, 5-플루오로우라실, 슈도이소시토신, 5-(하이드록시메틸)우라실, 5-아미노우라실, 슈도우라실, 디하이드로우라실, 5-(C1-C6)-알킬우라실, 5-(C1-C6)-알킬-시토신, 5-(C2-C6)-알케닐시토신, 5-플루오로시토신, 5-클로로우라실, 5-클로로시토신, 5-브로모우라실, 5-브로모시토신, 7-데아자아데닌, 7-데아자구아닌, 8-아자푸린, 7-데아자-7-치환된푸린, 사이오우라실 또는 인공핵산염기인 개질된 감마탄소 골격 화합물.
  4. 제 1항에 있어서,
    상기 R 1, R 및 PG의 보호기는 벤질, 벤질옥시, 알릴옥시, tert-부틸옥시카보닐, 디(tert-부틸옥시카보닐), 시클로헥실, 벤질옥시카보닐(Cbz), 9-플루오레닐메틸옥시카르보닐(Fmoc), 모노메톡시트리틸(Mmt), 디메톡시트리틸(Dmt) 또는 벤조티아졸-2-술포닐(Bts)인 개질된 감마탄소 골격 화합물.
  5. 제 1항에 있어서,
    상기 화학식 1은 하기 화학식 2로 표시되는 개질된 감마탄소 골격 화합물.
    [화학식 2]
    Figure PCTKR2020018907-appb-img-000020
    상기 화학식 2에서,
    R 1은 보호기, 수소, C 1-C 6알킬, C 3-C 6시클로알킬, C 6-C 12아릴, C 6-C 12아릴C 1-C 6알킬 또는 할로C 1-C 6알킬이며;
    R은 보호기, 수소 또는 -COCH 2-NB이며, NB는 핵산염기이며;
    Boc는 tert-부틸옥시카보닐기이며, n은 0 내지 3의 정수이다.
  6. 제 5항에 있어서,
    상기 화학식 2에서, R 1은 C 1-C 6알킬인 개질된 감마탄소 골격 화합물.
  7. 환원제 존재 하, 하기 화학식 3의 화합물과 하기 화학식 4의 화합물 또는 하기 화학식 4의 화합물의 염을 반응시켜 하기 화학식 1로 표시되는 개질된 감마탄소 골격 화합물을 제조하는 단계;를 포함하는 화학식 1로 표시되는 개질된 감마탄소 골격 화합물의 제조방법.
    [화학식 1]
    Figure PCTKR2020018907-appb-img-000021
    [화학식 3]
    Figure PCTKR2020018907-appb-img-000022
    [화학식 4]
    Figure PCTKR2020018907-appb-img-000023
    상기 화학식 1, 3 및 4에서,
    R 1은 보호기, 수소, C 1-C 6알킬, C 3-C 6시클로알킬, C 6-C 12아릴, C 6-C 12아릴C 1-C 6알킬 또는 할로C 1-C 6알킬이며;
    R은 보호기, 수소 또는 -COCH 2-NB이며, NB는 핵산염기이며;
    PG는 보호기이며,
    n은 0 내지 4의 정수이다.
  8. 제 7항에 있어서
    상기 환원제 및 화학식 4의 화합물은 화학식 5의 화합물, 1몰에 대해 1.0 내지 2.0몰로 포함되는 개질된 감마탄소 골격 화합물의 제조방법.
  9. 제 7항에 있어서
    상기 화학식 3은 환원제 및 하기 화학식 5를 반응시켜 제조되는 것인 개질된 감마탄소 골격 화합물의 제조방법.
    [화학식 5]
    Figure PCTKR2020018907-appb-img-000024
    화학식 5에서,
    R 11은 수소 또는 C 1-C 6알킬이며;
    Z는 -CONR 12- 또는 C 1-C 6알킬렌이며, R 12는 수소 또는 C 1-C 6알킬이며;
    PG는 보호기이며,
    n은 0 내지 4의 정수이다.
PCT/KR2020/018907 2019-12-24 2020-12-22 개질된 감마탄소 골격 화합물 및 이의 제조방법 WO2021133032A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190174391 2019-12-24
KR10-2019-0174391 2019-12-24
KR10-2020-0179802 2020-12-21
KR1020200179802A KR20210082091A (ko) 2019-12-24 2020-12-21 개질된 감마탄소 골격 화합물 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2021133032A1 true WO2021133032A1 (ko) 2021-07-01

Family

ID=76575636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018907 WO2021133032A1 (ko) 2019-12-24 2020-12-22 개질된 감마탄소 골격 화합물 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2021133032A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030042180A (ko) * 2001-11-21 2003-05-28 주식회사 파나진 펩타이드 핵산의 골격을 제조하는 방법
KR20030084444A (ko) * 2002-04-26 2003-11-01 주식회사 파나진 Pna 올리고머를 합성하기 위한 신규한 단량체 및 그의제조방법
WO2012138955A2 (en) * 2011-04-08 2012-10-11 Ly Danith H CONFORMATIONALLY-PREORGANIZED, MiniPEG-CONTAINING GAMMA-PEPTIDE NUCLEIC ACIDS
KR20190139890A (ko) * 2017-03-23 2019-12-18 트루코드 진 리페어, 인크. 직교로 보호된 에스테르 모이어티를 갖는 펩타이드 핵산(pna) 단량체

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030042180A (ko) * 2001-11-21 2003-05-28 주식회사 파나진 펩타이드 핵산의 골격을 제조하는 방법
KR20030084444A (ko) * 2002-04-26 2003-11-01 주식회사 파나진 Pna 올리고머를 합성하기 위한 신규한 단량체 및 그의제조방법
WO2012138955A2 (en) * 2011-04-08 2012-10-11 Ly Danith H CONFORMATIONALLY-PREORGANIZED, MiniPEG-CONTAINING GAMMA-PEPTIDE NUCLEIC ACIDS
KR20190139890A (ko) * 2017-03-23 2019-12-18 트루코드 진 리페어, 인크. 직교로 보호된 에스테르 모이어티를 갖는 펩타이드 핵산(pna) 단량체

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ENGLUND ETHAN A; APPELLA DANIEL H: "Synthesis of gamma-substituted peptide nucleic acids: A new place to attach fluorophores without affecting DNA binding", ORGANIC LETTERS, vol. 7, no. 16, 1 August 2005 (2005-08-01), US, pages 3465 - 3467, XP008144826, ISSN: 1523-7060 *

Similar Documents

Publication Publication Date Title
KR910000897B1 (ko) 레베카마이신 동족체
Atwal et al. Substituted 1, 4-dihydropyrimidines. 3. Synthesis of selectively functionalized 2-hetero-1, 4-dihydropyrimidines
CA1288431C (en) N9-cyclopentyl-substituted adenine derivatives
JP2011084573A (ja) 固体支持体上での標識化オリゴヌクレオチドおよびアナログの合成のための方法および組成物
US20040006077A1 (en) Thiazine and oxazine derivatives as MMP-13 inhibitors
HU199809B (en) Process for producing aminomethyl-4,5-dihydroisoxazole derivatives and pharmaceutical compositions comprising same
JPH01265100A (ja) 2―置換アデノシン誘導体
McKeen et al. Synthesis of fluorophore and quencher monomers for use in Scorpion primers and nucleic acid structural probes
US6362329B1 (en) Process to prepare pyrimidine nucleosides
WO2021133032A1 (ko) 개질된 감마탄소 골격 화합물 및 이의 제조방법
KR20210082091A (ko) 개질된 감마탄소 골격 화합물 및 이의 제조방법
Maag et al. Oligodeoxynucleotide probes with multiple labels linked to the 4′-position of thymidine monomers: Excellent duplex stability and detection sensitivity
US5250676A (en) Process for the preparation of 3-substituted-2-azetidinones
US6303799B1 (en) Polynucleotide crosslinking agents
US4474947A (en) Benzazolides and their employment in phosphate ester oligonucleotide synthesis processes
US6252082B1 (en) Pyridone derivatives, their preparation and their use as synthesis intermediates
JPH10114788A (ja) Dna/pnaコ・オリゴマーの構築用ブロツク
WO2015060657A1 (en) A method for preparing an intermediate of iopromide
JPS5841896A (ja) 保護されたヌクレオチドを脱シアノエチル化する方法
EP0523080B1 (en) 2,3'-o-cyclocytidines, and process for production thereof
JPH11503713A (ja) ペプチド核酸合成用のグアニンシントンと、その調製方法
WO2023101115A1 (ko) 고순도의 1-(1-(2-벤질페녹시)프로판-2-일)-2-메틸피페리딘 단일 이성질체의 제조방법
JP2000503993A (ja) N―(3―アミノ―4―クロロフェニル)アシルアミドの製造方法
US5767270A (en) Acylation of nucleosides with N-acyl tetrazole
Lee et al. An Effective Acylation of Cephalosporins Using 1-Methanesulfonyloxy-6-trifluoromethylbenzotriazole $^\dag$

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905896

Country of ref document: EP

Kind code of ref document: A1