WO2021132908A1 - Ccm 공진형 컨버터의 커패시터 전압 제어 시스템, 및 커패시터 전압 제어 시스템을 포함하는 ccm 공진형 컨버터 - Google Patents

Ccm 공진형 컨버터의 커패시터 전압 제어 시스템, 및 커패시터 전압 제어 시스템을 포함하는 ccm 공진형 컨버터 Download PDF

Info

Publication number
WO2021132908A1
WO2021132908A1 PCT/KR2020/017117 KR2020017117W WO2021132908A1 WO 2021132908 A1 WO2021132908 A1 WO 2021132908A1 KR 2020017117 W KR2020017117 W KR 2020017117W WO 2021132908 A1 WO2021132908 A1 WO 2021132908A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switching frequency
ccm
resonant converter
charging
Prior art date
Application number
PCT/KR2020/017117
Other languages
English (en)
French (fr)
Inventor
장성록
안석호
이병준
김형석
유찬훈
Original Assignee
한국전기연구원
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원, 포항공과대학교 산학협력단 filed Critical 한국전기연구원
Publication of WO2021132908A1 publication Critical patent/WO2021132908A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a capacitor voltage control system, and more particularly, to a system for precisely controlling a charging voltage of a capacitor using a CCM resonant converter.
  • a method basically used for controlling the charging voltage of a high-precision capacitor is a method of separately placing a small-capacity high-precision capacitor charger together with a large-capacity charger as shown in FIGS. 1 and 2 .
  • 1 and 2 are diagrams schematically illustrating the concepts of a series configuration high-precision charging method and a parallel configuration high-precision charging method, respectively.
  • the large-capacity charger is turned off and charging is performed only through the high-precision charger, thereby maintaining the charging voltage constant every time it is charged.
  • FIGS. 4 and 5 are views illustrating a resonant current and a charging voltage in a charging method of a DCM resonant converter method and a charging method of a CCM resonant converter method, respectively.
  • a high-precision charger configuration is required because the resolution of the charging voltage is determined by the shape of the resonant current determined by the parameters of the resonant tank. Do.
  • a method of increasing the precision of the charging voltage by allowing a hard-switching operation may be considered, but heat generation of the device becomes severe and the efficiency decreases, which may cause a problem in the reliability of the power supply.
  • the CCM resonant converter (Continuous Conduction Mode resonant converter) also determines the resolution of the charging voltage by the resonant current as in FIG. 5 , but the precision can be improved by controlling the switching frequency. However, it is necessary to design a controller capable of high-precision charging voltage control while maintaining soft switching.
  • the present invention has been devised to solve the above-mentioned conventional problems, and while maintaining soft switching of the resonant converter, it provides a voltage control system for a resonant converter that allows to quickly and accurately control the charge state of a capacitor. aim to
  • the capacitor voltage control system of the CCM resonant converter includes a voltage measuring unit, a voltage controlling unit, a switching frequency modulating unit, and a switching frequency selecting unit.
  • the voltage measuring unit measures the voltage of the capacitor at the output terminal of the CCM resonant converter
  • the voltage controller generates a charge control signal for the CCM resonant converter using the measured voltage of the capacitor
  • the switching frequency modulator measures the CCM according to the charge control signal.
  • the precision charging frequency may be the maximum switching frequency of the switch.
  • the precision charging reference voltage may be set by applying a preset precision charging coefficient to a preset control reference voltage.
  • it may further include a charge end signal output unit for outputting a charge end signal to the switching frequency selector according to the measured capacitor voltage.
  • the charging termination signal output unit may output a charging termination signal when the measured capacitor voltage reaches a preset control reference voltage.
  • the charging termination signal output unit may stop outputting the charging termination signal when the measured capacitor voltage reaches a preset charging restart reference voltage.
  • the precise restart reference voltage may be set by applying a preset charge restart coefficient to the control reference voltage.
  • the switching frequency selector may select the basic switching frequency as the switching frequency of the switch when the charging end signal is output.
  • the CCM resonant converter includes a capacitor voltage control system.
  • the capacitor voltage control system includes a voltage measuring unit that measures the voltage of the capacitor at the output stage of the CCM resonant converter, a voltage controller that generates a charge control signal for the CCM resonant converter using the measured voltage of the capacitor, and a CCM according to the charge control signal.
  • a switching frequency modulator that generates a basic switching frequency in the switch included in the inverter of the resonant converter, selects the basic switching frequency as the switching frequency of the switch when the measured capacitor voltage is less than a preset precision charging reference voltage, and a switching frequency selector configured to select a preset precision charging frequency as a switching frequency of the switch when the capacitor voltage is greater than a preset precision charging reference voltage.
  • the present invention by applying different switching frequencies to the CCM resonant converter according to the degree of charge of the capacitor, it is possible to quickly and accurately control the state of charge of the capacitor while maintaining soft switching of the resonant converter.
  • 1 and 2 are diagrams schematically illustrating the concepts of a series configuration high-precision charging scheme and a parallel configuration high-precision charging scheme, respectively.
  • FIG. 3 is a conceptual diagram of a resonant converter.
  • FIGS. 4 and 5 are diagrams illustrating a resonant current and a charging voltage in a charging method of a DCM resonant converter method and a charging method of a CCM resonant converter method, respectively.
  • FIG. 6 is a schematic block diagram of a CCM resonant converter according to an embodiment of the present invention.
  • E.O.C. E.O.C. according to the measured voltage at the signal generator.
  • FIG. 8 and 9 are graphs showing the resonant current and the charging voltage according to the switching frequency of the CCM resonant converter of FIG. 6 .
  • FIG. 6 is a schematic block diagram of a CCM resonant converter including a capacitor voltage control system according to an embodiment of the present invention.
  • the CCM resonant converter includes a high-frequency inverter 210 , a resonant tank 220 , a transformer 230 , a rectifier circuit 240 , an output stage capacitor 250 , and a capacitor voltage control system 100 . .
  • a high frequency inverter (High Frequency Inverter; 210) is a configuration implemented as a half-bridge or full-bridge inverter for converting DC to high-frequency AC
  • a resonant tank (220) is a configuration for soft switching based on a resonance circuit
  • a transformer Reference numeral 230 denotes a configuration for step-up and step-down
  • the rectifier circuit 240 is a configuration of a rectifier for charging the capacitor 250 by converting high-frequency AC back to DC.
  • the capacitor voltage control system 100 is again the high-precision sensing unit 110, E.O.C. It includes a signal generator 120 , a switching frequency selection unit 130 , a voltage controller 140 , and a switching frequency modulation unit 150 .
  • the high-precision sensing unit 110 is a circuit for sensing the charging voltage without being affected by an external environment (temperature and humidity, etc.).
  • Vreal is a sensing voltage
  • Vref is a charging command voltage
  • Voltage Controller is a controller for charging voltage control
  • Switching Frequency Modulation is a switching frequency modulation circuit (switching frequency generation circuit proportional to Vcontrol signal) for charging voltage control.
  • E.O.C. The signal generating unit 120, when the sensed charging voltage is equal to the command value, high E.O.C. It generates a signal, and when the charging voltage falls below a certain voltage (M*Vref) than the setpoint, low E.O.C. generate a signal.
  • M*Vref a certain voltage
  • the coefficient M reflected in the charging voltage command value may be preset by a user or the like.
  • 7 shows E.O.C. E.O.C. according to the measured voltage in the signal generator. It is a diagram showing a hysteresis curve of a signal.
  • Switching Frequency Selection unit is a circuit that finally determines the switching frequency delivered to the inverter, E.O.C.
  • the fsw,control frequency is transmitted for fast, high-capacity charging.
  • the coefficient K reflected in the charging voltage command value may also be preset by a user or the like.
  • fse,max is transmitted for high-precision control of the charging voltage. Also, after charging is completed, the E.O.C. To maintain the charging voltage at which the signal becomes high, the fsw,control signal is again transferred to the inverter.
  • switching frequency selection unit Switching Frequency Selection; 130
  • E.O.C switching Frequency Selection
  • the present invention uses a feature that can reduce the width of the charging voltage rise at each switching at a high switching frequency as shown in the resonant current and charging voltage graph according to the switching frequency of the CCM resonant converter shown in FIGS. 8 and 9 . will be.
  • FIG. 8 and 9 are graphs illustrating a resonance current and a charging voltage according to a switching frequency of the CCM resonant converter of FIG. 6 .
  • FIG. 8 shows the basic switching frequency
  • FIG. 9 shows the CCM mode of the resonant converter at the maximum switching frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

CCM 공진형 컨버터의 커패시터 전압 제어 시스템은, 전압 측정부, 전압 제어부, 스위칭 주파수 변조부, 및 스위칭 주파수 선택부를 포함한다. 전압 측정부는 CCM 공진형 컨버터의 출력단에 연결된 커패시터의 전압을 측정하고, 전압 제어부는 측정된 커패시터의 전압을 이용하여 CCM 공진형 컨버터에 대한 충전 제어 신호를 생성하고, 스위칭 주파수 변조부는 충전 제어 신호에 따라 CCM 공진형 컨버터의 인버터에 포함된 스위치에서의 기본 스위칭 주파수를 생성하며, 스위칭 주파수 선택부는 측정된 커패시터 전압이 미리 설정된 정밀 충전 기준 전압보다 작은 경우 기본 스위칭 주파수를 스위치의 스위칭 주파수로 선택하고, 측정된 커패시터 전압이 미리 설정된 정밀 충전 기준 전압보다 큰 경우 미리 설정된 정밀 충전 주파수를 스위치의 스위칭 주파수로 선택한다.

Description

CCM 공진형 컨버터의 커패시터 전압 제어 시스템, 및 커패시터 전압 제어 시스템을 포함하는 CCM 공진형 컨버터
본 발명은 커패시터 전압 제어 시스템에 관한 것으로서, 더욱 상세하게는 CCM 공진형 컨버터를 이용하여 커패시터의 충전 전압을 정밀하게 제어하기 위한 시스템에 관한 것이다.
종래, 고정밀 커패시터의 충전전압 제어를 위해 기본적으로 사용되는 방식은 도 1 및 도 2에 도시된 바와 같이 대용량 충전기와 함께 소용량 고정밀 커패시터 충전기를 별도로 두는 방식이다. 도 1 및 도 2는 각각 직렬 구성 고정밀 충전 방식 및 병렬 구성 고정밀 충전 방식의 개념을 개략적으로 도시한 도면이다.
이러한 방식에서는, 커패시터 전압이 일정 충전전압 이상이 되면 대용량 충전기를 오프시키고 고정밀 충전기만을 통해서 충전을 진행하여 매번 충전할 때마다 충전 전압을 일정하게 유지한다.
하지만, 이와 같은 방식에서는 두 대의 충전기를 개별적으로 설계 및 제어해야 하기 때문에, 충전기의 부피, 가격, 신뢰성 등에 대한 문제가 발생한다. 보다 구체적으로, 도 1의 직렬구성방식에서는, 접지로부터 플로팅된 전원 설계 및 제어가 필요하며, 도 2의 병렬구성방식에서는, 두 충전기 모두 정격 충전 전압 이상의 내전압을 갖도록 설계가 필요하다.
한편, 대부분의 고전압, 대용량 커패시터 충전기는 고효율화를 위해 소프트 스위칭 기반의 공진형 컨버터 방식을 이용하고 있으며, 두 가지 대표적인 방식은 도 4 및 도 5와 같다.
도 3은 공진형 컨버터의 개념도이고, 도 4 및 도 5는 각각 DCM 공진형 컨버터 방식의 충전 방식과 CCM 공진형 컨버터 방식의 충전 방식에서의 공진 전류와 충전 전압을 도시한 도면이다.
도 4에 도시된 바와 같이, DCM 공진형 컨버터(Discontinuous Conduction Mode 공진형 컨버터)의 경우에는 공진탱크의 파라미터에 의해 결정되는 공진전류 모양에 의해 충전전압의 resolution이 결정되기 때문에 고정밀 충전기 구성이 별도로 필요하다.
하드스위칭 동작을 허용하여 충전전압의 정밀도를 높이는 방식이 고려될 수 있으나, 소자의 발열이 심해지고 효율이 떨어져 전원의 신뢰성에 문제가 될 수가 있다.
CCM 공진형 컨버터(Continuous Conduction Mode 공진형 컨버터) 역시 도 5에서와 같이 공진전류에 의해 충전전압의 resolution이 결정되지만, 스위칭 주파수 제어를 통해 정밀도를 향상시킬 수 있다. 다만, 소프트 스위칭을 유지하면서 고정밀 충전전압 제어가 가능한 제어기 설계가 필요하다.
본 발명은 상술한 종래의 문제점을 해결하기 위해 안출된 것으로서, 공진형 컨버터의 소프트 스위칭을 유지하면서도, 신속하고 정확하게 커패시터의 충전 상태를 제어할 수 있도록 해 주는 공진형 컨버터의 전압 제어 시스템을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해 본 발명에 따른 CCM 공진형 컨버터의 커패시터 전압 제어 시스템은, 전압 측정부, 전압 제어부, 스위칭 주파수 변조부, 및 스위칭 주파수 선택부를 포함한다.
전압 측정부는 CCM 공진형 컨버터의 출력단 커패시터의 전압을 측정하고, 전압 제어부는 측정된 커패시터의 전압을 이용하여 CCM 공진형 컨버터에 대한 충전 제어 신호를 생성하고, 스위칭 주파수 변조부는 충전 제어 신호에 따라 CCM 공진형 컨버터의 인버터에 포함된 스위치에서의 기본 스위칭 주파수를 생성하며, 스위칭 주파수 선택부는 측정된 커패시터 전압이 미리 설정된 정밀 충전 기준 전압보다 작은 경우 기본 스위칭 주파수를 스위치의 스위칭 주파수로 선택하고, 측정된 커패시터 전압이 미리 설정된 정밀 충전 기준 전압보다 큰 경우 미리 설정된 정밀 충전 주파수를 스위치의 스위칭 주파수로 선택한다.
이와 같은 구성에 의하면, 커패시터의 충전 정도에 따라 CCM 공진형 컨버터에 서로 다른 스위칭 주파수를 적용함으로써, 공진형 컨버터의 소프트 스위칭을 유지하면서도, 신속하고 정확하게 커패시터의 충전 상태를 제어할 수 있게 된다.
이때, 정밀 충전 주파수는 스위치의 최대 스위칭 주파수일 수 있다.
또한, 정밀 충전 기준 전압은 미리 설정된 제어 기준 전압에 미리 설정된 정밀 충전 계수를 적용하여 설정될 수 있다.
또한, 측정된 커패시터 전압에 따라 스위칭 주파수 선택부에 충전 종료 신호를 출력하는 충전 종료 신호 출력부를 더 포함할 수 있다.
이때, 충전 종료 신호 출력부는 측정된 커패시터 전압이 미리 설정된 제어 기준 전압에 도달하는 경우 충전 종료 신호를 출력할 수 있다.
또한, 충전 종료 신호 출력부는 측정된 커패시터 전압이 미리 설정된 충전 재개 기준 전압에 도달하는 경우 충전 종료 신호의 출력을 중단할 수 있다.
또한, 정밀 재개 기준 전압은 제어 기준 전압에 미리 설정된 충전 재개 계수를 적용하여 설정될 수 있다.
또한, 스위칭 주파수 선택부는 충전 종료 신호가 출력되는 경우 기본 스위칭 주파수를 스위치의 스위칭 주파수로 선택할 수 있다.
또한, 본 발명에 따른 CCM 공진형 컨버터는 커패시터 전압 제어 시스템을 포함한다. 커패시터 전압 제어 시스템은 CCM 공진형 컨버터의 출력단 커패시터의 전압을 측정하는 전압 측정부, 측정된 커패시터의 전압을 이용하여 CCM 공진형 컨버터에 대한 충전 제어 신호를 생성하는 전압 제어부, 충전 제어 신호에 따라 CCM 공진형 컨버터의 인버터에 포함된 스위치에서의 기본 스위칭 주파수를 생성하는 스위칭 주파수 변조부, 측정된 커패시터 전압이 미리 설정된 정밀 충전 기준 전압보다 작은 경우 기본 스위칭 주파수를 스위치의 스위칭 주파수로 선택하고, 측정된 커패시터 전압이 미리 설정된 정밀 충전 기준 전압보다 큰 경우 미리 설정된 정밀 충전 주파수를 스위치의 스위칭 주파수로 선택하는 스위칭 주파수 선택부를 포함한다.
본 발명에 의하면, 커패시터의 충전 정도에 따라 CCM 공진형 컨버터에 서로 다른 스위칭 주파수를 적용함으로써, 공진형 컨버터의 소프트 스위칭을 유지하면서도, 신속하고 정확하게 커패시터의 충전 상태를 제어할 수 있게 된다.
도 1 및 도 2는 각각 직렬 구성 고정밀 충전 방식 및 병렬 구성 고정밀 충전 방식의 개념을 개략적으로 도시한 도면.
도 3은 공진형 컨버터의 개념도.
도 4 및 도 5는 각각 DCM 공진형 컨버터 방식의 충전 방식과 CCM 공진형 컨버터 방식의 충전 방식에서의 공진 전류와 충전 전압을 도시한 도면.
도 6은 본 발명의 일 실시예에 따른 CCM 공진형 컨버터의 개략적인 블록도.
도 7은 E.O.C. 신호 발생부에서의 측정 전압에 따른 E.O.C. 신호의 히스테리시스 곡선을 도시한 도면.
도 8 및 도 9는 도 6의 CCM 공진형 컨버터의 스위칭 주파수에 따른 공진전류 및 충전전압을 도시한 그래프.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다.
도 6은 본 발명의 일 실시예에 따른 커패시터 전압 제어 시스템을 포함하는 CCM 공진형 컨버터의 개략적인 블록도이다. 도 6에서, CCM 공진형 컨버터는 고주파 인버터(210), 공진 탱크(220), 변압기(230), 정류 회로(240), 출력단 커패시터(250), 및 커패시터 전압 제어 시스템(100)을 포함하고 있다.
고주파 인버터(High Frequency Inverter; 210)는 DC로부터 고주파 AC로 변환하기 위한 하프브릿지 혹은 풀브릿지 인버터로 구현된 구성이고, 공진 탱크(Resonant Tank; 220)는 공진회로 기반 소프트 스위칭을 위한 구성이며, 변압기(230)는 승압 및 강압을 위한 구성이고, 정류회로(240)는 고주파 AC를 다시 DC로 변환하여 커패시터(250)를 충전하기 위한 정류기의 구성이다.
도 6에서, 커패시터 전압 제어 시스템(100)은 다시 고정밀 센싱부(110), E.O.C. 신호 발생부(120), 스위칭 주파수 선택부(Switching Frequency Selection; 130), 전압 제어부(Voltage Controller; 140), 및 스위칭 주파수 변조부(Switching Frequency Modulation; 150)를 포함한다.
고정밀 센싱부(110)는 충전전압을 외부 환경(온도 및 습도 등)에 영향 없이 센싱하기 위한 회로이다. 도 6에서, Vreal은 센싱 전압, Vref는 충전 지령 전압, Voltage Controller는 충전전압 제어를 위한 제어기, Switching Frequency Modulation은 충전전압 제어를 위한 스위칭 주파수 변조 회로(Vcontrol 신호에 비례하는 스위칭 주파수 발생 회로)를 각각 의미한다.
E.O.C. 신호 발생부(120)는, 센싱된 충전전압이 지령치와 같아지면 high E.O.C. 신호를 발생시키며, 충전전압이 지령치보다 일정 전압 이하(M*Vref)로 떨어지는 경우 low E.O.C. 신호를 발생한다. 이때, 충전전압 지령치에 반영되는 계수 M은 사용자 등에 의해 미리 설정될 수 있다. 도 7은 E.O.C. 신호 발생부에서 측정 전압에 따른 E.O.C. 신호의 히스테리시스 곡선을 도시한 도면이다.
스위칭 주파수 선택부(Switching Frequency Selection; 130)는 최종적으로 인버터에 전달되는 스위칭 주파수를 결정하는 회로로서, E.O.C. 신호가 low이고 실제 충전 전압이 지령치의 일정전압 이하(K*Vref)인 경우, 빠른 고속 대용량 충전을 위해 fsw,control 주파수를 전달한다. 이때, 충전전압 지령치에 반영되는 계수 K 역시 사용자 등에 의해 미리 설정될 수 있다.
또한, 실제 충전 전압이 일정전압 이상인 경우 충전전압 고정밀 제어를 위해 fse,max를 전달한다. 또한, 충전을 완료하고 E.O.C. 신호가 high가 되는 충전전압 유지를 위해 다시 fsw,control 신호를 인버터로 전달한다.
Figure PCTKR2020017117-appb-I000001
또한, 스위칭 주파수 선택부(Switching Frequency Selection; 130)는, E.O.C. 신호가 high인 경우에는, 마찬가지로 충전전압 유지를 위해 fsw,control 신호를 인버터로 전달한다.
Figure PCTKR2020017117-appb-I000002
정리하면, 본 발명은 도 8 및 도 9에 도시된 CCM 공진형 컨버터 스위칭 주파수에 따른 공진전류 및 충전전압 그래프에서와 같이 높은 스위칭 주파수에서 매 스위칭시의 충전전압 상승 폭을 줄일 수 있는 특징을 이용한 것이다.
도 8 및 도 9는 도 6의 CCM 공진형 컨버터의 스위칭 주파수에 따른 공진전류 및 충전전압을 도시한 그래프이다. 도 8은 기본 스위칭 주파수, 도 9는 최대 스위칭 주파수에서의 공진형 컨버터의 CCM 모드를 각각 도시하고 있다.
실제 충전전압이 지령치보다 많이 낮은 경우 낮은 스위칭 주파수 동작을 통해 대용량 고속 충전을 수행하고, 실제 충전전압이 지령치와 가까워졌을 때 스위칭 주파수를 최대로 키워 고정밀 충전을 수행한다.
본 발명에 의하면, 하나의 장비로 고정밀 충전이 가능하며, 소프트 스위칭을 유지할 수 있기 때문에 고효율 동작 및 신뢰성 확보를 할 수 있게 된다.
본 발명이 비록 일부 바람직한 실시예에 의해 설명되었지만, 본 발명의 범위는 이에 의해 제한되어서는 아니 되고, 특허청구범위에 의해 뒷받침되는 상기 실시예의 변형이나 개량에도 미쳐야할 것이다.

Claims (9)

  1. CCM 공진형 컨버터의 출력단 커패시터의 전압을 측정하는 전압 측정부;
    측정된 상기 커패시터의 전압을 이용하여 상기 커패시터에 대한 충전 제어 신호를 생성하는 전압 제어부;
    상기 충전 제어 신호에 따라 상기 CCM 공진형 컨버터의 인버터에 포함된 스위치에서의 스위칭 주파수를 생성하는 스위칭 주파수 변조부; 및
    상기 측정된 커패시터 전압이 미리 설정된 정밀 충전 기준 전압보다 작은 경우 미리 설정된 기본 스위칭 주파수를 상기 스위칭 주파수로 선택하고, 측정된 커패시터 전압이 상기 정밀 충전 기준 전압보다 큰 경우 상기 기본 스위칭 주파수보다 크도록 설정된 정밀 충전 주파수를 상기 스위칭 주파수로 선택하는 스위칭 주파수 선택부를 포함하는 것을 특징으로 하는 CCM 공진형 컨버터의 커패시터 전압 제어 시스템.
  2. 청구항 1에 있어서,
    상기 정밀 충전 주파수는 상기 스위치의 최대 스위칭 주파수인 것을 특징으로 하는 CCM 공진형 컨버터의 커패시터 전압 제어 시스템.
  3. 청구항 1에 있어서,
    상기 측정된 커패시터 전압에 따라 상기 스위칭 주파수 선택부에 충전 종료 신호를 출력하는 충전 종료 신호 출력부를 더 포함하는 것을 특징으로 하는 CCM 공진형 컨버터의 커패시터 전압 제어 시스템.
  4. 청구항 3에 있어서,
    상기 충전 종료 신호 출력부는 상기 측정된 커패시터 전압이 미리 설정된 제어 기준 전압에 도달하는 경우 상기 충전 종료 신호를 출력하는 것을 특징으로 하는 CCM 공진형 컨버터의 커패시터 전압 제어 시스템.
  5. 청구항 4에 있어서,
    상기 정밀 충전 기준 전압은 상기 제어 기준 전압에 미리 설정된 정밀 충전 계수를 적용하여 상기 제어 기준 전압보다 작도록 설정되는 것을 특징으로 하는 CCM 공진형 컨버터의 커패시터 전압 제어 시스템.
  6. 청구항 5에 있어서,
    상기 충전 종료 신호 출력부는 상기 측정된 커패시터 전압이 미리 설정된 충전 재개 기준 전압에 도달하는 경우 상기 충전 종료 신호의 출력을 중단하는 것을 특징으로 하는 CCM 공진형 컨버터의 커패시터 전압 제어 시스템.
  7. 청구항 6에 있어서,
    상기 충전 재개 기준 전압은 상기 제어 기준 전압에 미리 설정된 충전 재개 계수를 적용하여 상기 제어 기준 전압보다 작도록 설정되는 것을 특징으로 하는 CCM 공진형 컨버터의 커패시터 전압 제어 시스템.
  8. 청구항 7에 있어서,
    상기 스위칭 주파수 선택부는 상기 충전 종료 신호가 출력되는 경우 상기 기본 스위칭 주파수를 상기 스위칭 주파수로 선택하는 것을 특징으로 하는 CCM 공진형 컨버터의 커패시터 전압 제어 시스템.
  9. 커패시터 전압 제어 시스템을 포함하는 CCM 공진형 컨버터로서,
    상기 커패시터 전압 제어 시스템은,
    상기 CCM 공진형 컨버터의 출력단에 연결된 커패시터의 전압을 측정하는 전압 측정부;
    측정된 상기 커패시터의 전압을 이용하여 상기 커패시터에 대한 충전 제어 신호를 생성하는 전압 제어부;
    상기 충전 제어 신호에 따라 상기 CCM 공진형 컨버터의 인버터에 포함된 스위치에서의 스위칭 주파수를 생성하는 스위칭 주파수 변조부; 및
    상기 측정된 커패시터 전압이 미리 설정된 정밀 충전 기준 전압보다 작은 경우 미리 설정된 기본 스위칭 주파수를 상기 스위칭 주파수로 선택하고, 측정된 커패시터 전압이 상기 정밀 충전 기준 전압보다 큰 경우 상기 기본 스위칭 주파수보다 크도록 설정된 정밀 충전 주파수를 상기 스위칭 주파수로 선택하는 스위칭 주파수 선택부를 포함하는 것을 특징으로 하는 커패시터 전압 제어 시스템을 포함하는 CCM 공진형 컨버터.
PCT/KR2020/017117 2019-12-24 2020-11-27 Ccm 공진형 컨버터의 커패시터 전압 제어 시스템, 및 커패시터 전압 제어 시스템을 포함하는 ccm 공진형 컨버터 WO2021132908A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0174059 2019-12-24
KR1020190174059A KR20210081782A (ko) 2019-12-24 2019-12-24 Ccm 공진형 컨버터의 커패시터 전압 제어 시스템, 및 커패시터 전압 제어 시스템을 포함하는 ccm 공진형 컨버터

Publications (1)

Publication Number Publication Date
WO2021132908A1 true WO2021132908A1 (ko) 2021-07-01

Family

ID=76573042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017117 WO2021132908A1 (ko) 2019-12-24 2020-11-27 Ccm 공진형 컨버터의 커패시터 전압 제어 시스템, 및 커패시터 전압 제어 시스템을 포함하는 ccm 공진형 컨버터

Country Status (2)

Country Link
KR (1) KR20210081782A (ko)
WO (1) WO2021132908A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09307165A (ja) * 1996-05-17 1997-11-28 Meidensha Corp 充電器
CN1700560A (zh) * 2004-04-21 2005-11-23 美国凹凸微系有限公司 对容性负载充电的电路和控制方法
JP2006230124A (ja) * 2005-02-18 2006-08-31 Nippon Denji Sokki Kk 着磁器用電源
JP2009060003A (ja) * 2007-09-03 2009-03-19 Dmt:Kk 着磁電源
KR20130083537A (ko) * 2012-01-13 2013-07-23 삼성전기주식회사 전원 공급 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101385979B1 (ko) 2012-11-26 2014-04-16 한국전기연구원 효율 개선 및 정류부의 전압 밸런싱을 위한 회로를 가지는 공진형 컨버터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09307165A (ja) * 1996-05-17 1997-11-28 Meidensha Corp 充電器
CN1700560A (zh) * 2004-04-21 2005-11-23 美国凹凸微系有限公司 对容性负载充电的电路和控制方法
JP2006230124A (ja) * 2005-02-18 2006-08-31 Nippon Denji Sokki Kk 着磁器用電源
JP2009060003A (ja) * 2007-09-03 2009-03-19 Dmt:Kk 着磁電源
KR20130083537A (ko) * 2012-01-13 2013-07-23 삼성전기주식회사 전원 공급 장치

Also Published As

Publication number Publication date
KR20210081782A (ko) 2021-07-02

Similar Documents

Publication Publication Date Title
JP5786330B2 (ja) 放電制御装置及び放電制御方法
CN1123107C (zh) 进行功率传输及电平转换的电源、电源电路和电源系统
WO2016048030A1 (en) Wireless power transmitter and wireless power receiver
US9190915B2 (en) Electric-power conversion device
CN212588110U (zh) 充放电系统
WO2018147544A1 (ko) 전력 변환 장치 및 이를 포함하는 배터리의 충전 시스템
WO2015072652A1 (ko) 다중 배터리 충전기 및 그 제어방법
WO2021241831A1 (ko) 전기자동차용 obc 및 ldc 결합 일체형 전력 변환 회로
CN106329689A (zh) 一种适配器及其实现充电的方法
CN110048514A (zh) 基于原边反馈控制器的无线功率传输系统
WO2021132908A1 (ko) Ccm 공진형 컨버터의 커패시터 전압 제어 시스템, 및 커패시터 전압 제어 시스템을 포함하는 ccm 공진형 컨버터
CN100401616C (zh) 便携式电子设备的电源管理电路及电子设备
GB2341247A (en) AC adapter and power supply system
KR100322859B1 (ko) 복수개의 이차전지 고속충전 방법 및 장치
JP2005529578A (ja) Dc−dcコンバータ
WO2010074434A2 (ko) 플라즈마 환경설비에 이용되는 고압 전원 장치 및 그 제어방법
WO2013162134A1 (ko) 에너지 저장장치용 충방전 전력변환장치 및 그 제어방법
CN206807111U (zh) 用电设备及其功率控制装置
WO2018038398A1 (ko) 펄스 전원 보상 장치 및 이를 포함하는 고전압 펄스 전원 시스템.
WO2023038190A1 (ko) 초기 충전 컨버터
CN201656537U (zh) 蓄电池充电器
WO2018088688A1 (ko) 에너지 저장 장치
WO2021091190A1 (ko) Ess 장치를 이용한 충전장치
TWI739064B (zh) 直流輸出不斷電電源供應器
CN217282331U (zh) 一种双独立充电电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907022

Country of ref document: EP

Kind code of ref document: A1