WO2021132536A1 - プロスタグランジンの製造方法 - Google Patents

プロスタグランジンの製造方法 Download PDF

Info

Publication number
WO2021132536A1
WO2021132536A1 PCT/JP2020/048629 JP2020048629W WO2021132536A1 WO 2021132536 A1 WO2021132536 A1 WO 2021132536A1 JP 2020048629 W JP2020048629 W JP 2020048629W WO 2021132536 A1 WO2021132536 A1 WO 2021132536A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
unsaturated fatty
cyclooxygenase
fatty acid
acid
Prior art date
Application number
PCT/JP2020/048629
Other languages
English (en)
French (fr)
Inventor
栄虎 山村
順 小川
晃規 安藤
Original Assignee
協和ファーマケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和ファーマケミカル株式会社 filed Critical 協和ファーマケミカル株式会社
Priority to US17/788,289 priority Critical patent/US20230042760A1/en
Priority to EP20907000.2A priority patent/EP4083222A4/en
Priority to JP2021567651A priority patent/JP7296485B2/ja
Priority to CN202080074116.3A priority patent/CN114599791A/zh
Publication of WO2021132536A1 publication Critical patent/WO2021132536A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P31/00Preparation of compounds containing a five-membered ring having two side-chains in ortho position to each other, and having at least one oxygen atom directly bound to the ring in ortho position to one of the side-chains, one side-chain containing, not directly bound to the ring, a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, and the other side-chain having at least one oxygen atom bound in gamma-position to the ring, e.g. prostaglandins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Definitions

  • the present invention relates to a method for producing prostaglandins.
  • an object of the present invention is to produce prostaglandins in high yield.
  • the method for producing a prostaglandin according to the present invention includes a step of reacting an unsaturated fatty acid with cyclooxygenase in the presence of a reducing agent.
  • the reducing agent may be one or more reducing agents selected from the group consisting of a reducing agent containing divalent Sn, Na 2 SO 3 , Na 2 S 2 O 3 , Na 2 S 2 O 4, and KI. It may be one or more reducing agents selected from the group consisting of a reducing agent containing divalent Sn and KI, and may be selected from the group consisting of SnCl 2 , SnSO 4 , Sn 2 P 2 O 7 , and Sn C 2 O 4. It may be one or more reducing agents.
  • the reducing agent may be one or more reducing agents selected from the group consisting of Na 2 SO 3 , Na 2 S 2 O 3 , and Na 2 S 2 O 4.
  • Unsaturated fatty acids may be unsaturated fatty acids having 16 or more carbon chains and one or more double bonds, such as arachidonic acid, dihomo- ⁇ -linolenic acid, and all cis-5,8,11,14.
  • 17-Eicosapentaenoic acid may be one or more unsaturated fatty acids selected from the group.
  • the step of reacting an unsaturated fatty acid with cyclooxygenase in the presence of a reducing agent may be carried out at a pH of 6 to 12.5.
  • the step of reacting an unsaturated fatty acid with a cyclooxygenase in the presence of a reducing agent may include a step of adding an unsaturated fatty acid to a mixture of the cyclooxygenase and the reducing agent, and the mixture of the cyclooxygenase and the reducing agent is with respect to the cyclooxygenase. It may be obtained by adding a reducing agent.
  • Cyclooxygenase may be derived from red algae or mammals. The red algae may be Gracilaria and the mammal may be a human, a sheep, or a cow.
  • the step of reacting an unsaturated fatty acid with cyclooxygenase in the presence of a reducing agent comprises contacting the unsaturated fatty acid with a cell expressing cyclooxygenase or an extract thereof, or an isolated cyclooxygenase in the presence of a reducing agent. Is fine.
  • prostaglandins can be produced in high yield.
  • the oxidation reaction is carried out in the presence of a reducing agent, either the oxidation reaction or the reduction reaction does not proceed, and the yield of the target product is lowered. It is surprising that gin can be produced in high yield.
  • the method for producing a prostaglandin according to the present invention includes a step of reacting an unsaturated fatty acid with cyclooxygenase in the presence of a reducing agent.
  • the unsaturated fatty acid may be a single unsaturated fatty acid or a combination of two or more unsaturated fatty acids.
  • the unsaturated fatty acid may be an unsaturated fatty acid having 16 or more carbon atoms or 18 or more carbon atoms and having one or more double bonds.
  • Examples of unsaturated fatty acids include arachidonic acid (ARA), dihomo- ⁇ -linolenic acid (DGLA), all cis-5,8,11,14,17-eicosapentaenoic acid (EPA), and docosapentaenoic acid (DPA).
  • ARA arachidonic acid
  • DGLA dihomo- ⁇ -linolenic acid
  • EPA all cis-5,8,11,14,17-eicosapentaenoic acid
  • DPA docosapentaenoic acid
  • Docosapentaenoic acid (DHA), all-cis-8,11,14,17-eicosapentaenoic acid (ETA) and other unsaturated fatty acids that have been conventionally used in the production of prostaglandins can be used.
  • PGF 2 ⁇ or PGE 2 is obtained from ARA
  • PGF 1 ⁇ or PGE 1 is obtained from DGLA
  • PGF 3 ⁇ or PGE 3 is obtained from EPA.
  • saturated fatty acids may be added together with unsaturated fatty acids. That is, the step of reacting the unsaturated fatty acid with cyclooxygenase can be carried out in the presence of a reducing agent and the saturated fatty acid.
  • the reducing agent is not particularly limited, and a known reducing agent can be used.
  • the reducing agent may be a single reducing agent or a combination of two or more kinds of reducing agents.
  • the reducing agent is, for example, a reducing agent containing divalent Sn, Na 2 SO 3 , Na 2 S 2 O 3 , Na 2 S 2 O 4 , KI, NaHSO 3 , or K 2 S 2 O 3 , or any of these. It may be a combination.
  • the reducing agent containing divalent Sn may be, for example, SnCl 2 , SnSO 4 , Sn 2 P 2 O 7 , SnC 2 O 4 , or SnO, or a combination thereof.
  • the reducing agent is preferably a reducing agent containing divalent Sn or KI, and more preferably divalent. It is a reducing agent containing Sn, more preferably SnCl 2 , SnSO 4 , Sn 2 P 2 O 7 , or Sn C 2 O 4 , and particularly preferably SnCl 2 . From the viewpoint of selectively obtaining PGEs such as PGE 2 , PGE 1 , and PGE 3 in high yield, the reducing agent is preferably Na 2 SO 3 , Na 2 S 2 O 3 , or Na 2 S 2 O 4 Is.
  • the cyclooxygenase may be a single cyclooxygenase or a combination of two or more cyclooxygenases.
  • the origin of cyclooxygenase (COX) is not particularly limited, and cyclooxygenase may be, for example, cyclooxygenase derived from a microorganism, a plant, or an animal.
  • the animal may be, for example, a mammal. Mammals may be, for example, humans, sheep, or cows.
  • the plant may be, for example, red algae.
  • the red algae may be, for example, Gracilaria.
  • the step of reacting an unsaturated fatty acid with cyclooxygenase in the presence of a reducing agent comprises contacting the unsaturated fatty acid with a cell expressing cyclooxygenase or an extract thereof, or an isolated cyclooxygenase in the presence of a reducing agent. Is fine.
  • a cell expressing cyclooxygenase or an extract thereof By contacting a cell expressing cyclooxygenase or an extract thereof with an unsaturated fatty acid, the cyclooxygenase in the cell or extract reacts with the unsaturated fatty acid.
  • the cell expressing cyclooxygenase may be a cell expressing endogenous or exogenous cyclooxygenase.
  • the cell expressing exogenous cyclooxygenase is not particularly limited as long as it is a host capable of expressing COX, and may be, for example, Escherichia coli expressing cyclooxygenase (GvCOX) derived from Gracilaria.
  • the cell expressing the endogenous cyclooxygenase may be, for example, a Gracilaria cell.
  • the step of reacting an unsaturated fatty acid with a cyclooxygenase in the presence of a reducing agent is a step of reacting the unsaturated fatty acid with a plant containing an unsaturated fatty acid and a cell expressing the cyclooxygenase or an extract thereof, more specifically, Ogonori or its extraction. It may include contact with an object.
  • the initial concentration of the unsaturated fatty acid in the reaction solution containing the unsaturated fatty acid, the reducing agent and the cyclooxygenase is, for example, 0.0001 to 400 g / L, 0.01 to 100 g / L, or 0.1 to 10 g / L. It may be L. In the present specification, the initial concentration is the concentration immediately after the start of the reaction.
  • the initial concentration of the reducing agent in the reaction solution containing the unsaturated fatty acid, the reducing agent and cyclooxygenase may be, for example, 0.0001 to 800 mM, 0.1 to 400 mM, or 1 to 200 mM.
  • the initial concentration of cyclooxygenase in the reaction solution containing the unsaturated fatty acid, the reducing agent and the cyclooxygenase is, for example, 0.1 mg / L to 100 g / L, 1 mg / L to 10 g / L, or 10 mg / L to 1 g / L. It may be L.
  • the reaction can be carried out in water or an aqueous solution.
  • aqueous solution examples include acetic acid buffer (pH 4 to 5), potassium phosphate buffer (KPB, pH 6 to 7), Tris-Cl buffer (pH 8 to 10), borate buffer (pH 11 to 13), and phosphorus.
  • a buffer solution such as a sodium acid buffer solution (NaP, pH 6 to 7), a formate buffer solution (pH 3 to 4), and an ammonia buffer solution (pH 9 to 10) can be used.
  • a buffer solution may not be used as long as the pH can be maintained stable, and the aqueous solution may be, for example, salt water.
  • the pH of the reaction solution (that is, the pH at the time of reaction) may be 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 11 or more, or 12 or more, and is 12.5 or less, 12 or less, 11 or less. It may be 10 or less, 9 or less, 8 or less, or 7 or less.
  • the pH of the reaction solution is preferably 6 to 12.5, more preferably 7 to 12 or 7 to 12.5, still more preferably 8 to 12 or 8 to 12.5, and particularly preferably 9. ⁇ 12.
  • the temperature of the reaction solution (that is, the temperature of the reaction) is not particularly limited as long as it does not inactivate cyclooxygenase, and may be, for example, ⁇ 10 to 90 ° C., 5 to 70 ° C., or 20 to 40 ° C.
  • the reaction time depends on the reaction rate of the enzyme reaction, but may be, for example, 30 seconds to 98 hours, 10 minutes to 24 hours, or 30 minutes to 4 hours.
  • the order in which the unsaturated fatty acid, the reducing agent, and the cyclooxygenase are added may be, for example, as follows: Unsaturated fatty acids and reducing agents may be added to the reaction vessel containing cyclooxygenase, more specifically cyclooxygenase, in any order. Unsaturated fatty acids and cyclooxygenase may be added to the reducing agent, more specifically, the reaction vessel containing the reducing agent, in any order.
  • Cyclooxygenase and a reducing agent may be added in this order to a reaction vessel containing unsaturated fatty acids, more specifically unsaturated fatty acids.
  • a reducing agent is added to a mixed solution of an unsaturated fatty acid and cyclooxygenase, the reducing agent is immediately after mixing the unsaturated fatty acid and cyclooxygenase (for example, from the viewpoint of producing prostaglandins in a high yield). It is preferable to add the unsaturated fatty acid and cyclooxygenase within 5 seconds after mixing.
  • an unsaturated fatty acid to the mixture of cyclooxygenase and the reducing agent, and more specifically, the reducing agent is added to the reaction vessel containing cyclooxygenase, more specifically, cyclooxygenase. And unsaturated fatty acids are more preferably added in this order.
  • the reaction vessel is not particularly limited, and conventionally known reaction vessels such as microtubes, centrifuge tubes, flasks, beakers, and stainless steel tanks can be used.
  • the method for producing a prostaglandin according to the present invention may further include a step of reacting cyclooxygenase with an unsaturated fatty acid in the presence of a reducing agent, followed by a step of separating cyclooxygenase from the reaction solution, and / Alternatively, a step of extracting the prostaglandin from the reaction solution and a step of purifying the extracted prostaglandin may be further included.
  • the method for separating cyclooxygenase is not particularly limited, and a known method can be used.
  • the method for extracting and purifying prostaglandins is not particularly limited, and known methods can be used.
  • prostaglandins can be purified by column chromatography after extraction with an organic solvent such as ethyl acetate.
  • the GvCOX gene optimized for the codon of Escherichia coli was inserted into the NcoI-BamHI site of the Escherichia coli expression vector pET-28a (Novagen) to construct a plasmid pGVCOX1.
  • the optimized GvCOX gene can be described, for example, in Biotechnol. Lett. 36 (2014) 2193-2198.
  • Reagents such as restriction enzymes and modifying enzymes used for constructing the plasmid were purchased from Toyobo Co., Ltd.
  • ECOS® Competent E.I. Cori BL21 (DE3) was purchased from Fuji Film Wako Pure Chemical Industries, Ltd., and pGVCOX1 was prepared according to the instructions. Introduced in colli BL21 (DE3), E.I. colli BL21 (DE3) / pGVCOX1 was prepared.
  • E. E. coli BL21 (DE3) / pGVCOX1 was inoculated into 5 mL of LB medium (1% tryptone, 0.5% yeast extract, 1% sodium chloride) containing 50 mg / L kanamycin, and cultured with shaking at 28 ° C. for 24 hours. .. Inoculate 2.5 mL of the culture solution into 100 mL of LB medium containing 50 mg / L kanamycin and 0.1 mM isopropyl- ⁇ -thiogalactopyranoside (IPTG, Nacalai Tesque, Inc.) and shake at 20 ° C. for 24 hours. It was cultured. 2.5 mL of the culture solution was centrifuged, and the supernatant was removed to obtain GvCOX gene-expressing cells.
  • LB medium 1% tryptone, 0.5% yeast extract, 1% sodium chloride
  • Reducing agents include 5 mM SnCl 2 , 5 mM SnSO 4 , 20 mM Sn 2 P 2 O 7 , 20 mM SnC 2 O 4 , 5 mM Na 2 SO 3 , 5 mM Na 2 S 2 O 3 , 5 mM Na. 2 S 2 O 4 or 5 mM KI was used.
  • unsaturated fatty acid matrix
  • arachidonic acid Sigma-Aldrich
  • DGLA Tokyo Chemical Industry Co., Ltd.
  • EPA Tokyo Chemical Industry Co., Ltd.
  • the above concentration is the final concentration in the mixed solution.
  • the mixed solution was shaken at 20 ° C. for 60 minutes. Moreover, for comparison, the same reaction was carried out without adding a reducing agent (reference example). After completion of the reaction, 1N HCl was added to the reaction solution to adjust the pH to 3.0.
  • PGF / PGE indicates the mass ratio of PGF to PGE
  • PGE / PGF indicates the mass ratio of PGE to PGF.
  • Control experiment pET-28a was subjected to E.I. Introduced into colli BL21 (DE3), E.I. color BL21 (DE3) / pET-28a was obtained. Instead of GvCOX gene-expressing cells, E. coli. When the experiments (2) to (4) were carried out using colli BL21 (DE3) / pET-28a, no prostaglandin was detected.
  • GvCOX extract E.I. Colli BL21 (DE3) / pGVCOX1 was inoculated into 5 mL of LB medium containing 50 mg / L of kanamycin and cultured with shaking at 28 ° C. for 24 hours. 2.5 mL of the culture solution was inoculated into 100 mL of LB medium containing 50 mg / L kanamycin and 0.1 mM IPTG, and cultured with shaking at 20 ° C. for 24 hours. The culture broth was centrifuged and the supernatant was removed.
  • the obtained cells were suspended in 10 mL of 50 mM Tris-Cl (pH 8.0), crushed using Ultrasonic Homogenizer US-300 (manufactured by Nippon Seiki Seisakusho Co., Ltd.), and extracted from GvCOX gene-expressing cells (extract of GvCOX gene-expressing cells). GvCOX extract) was obtained.
  • Prostaglandins were produced and analyzed in the same manner as in Test Examples 1-1 (2) to (4) except that 0.25 mL of GvCOX extract was used instead of the GvCOX gene-expressing cells.
  • As the buffer solution the same buffer solution as in Test Example 1-1 was used.
  • As the reducing agent SnCl 2 , SnSO 4 , or Na 2 SO 3 having a final concentration of 5 mM was used.
  • Arachidonic acid was used as the unsaturated fatty acid. The results are shown in Table 2.
  • the unsaturated fatty acid 0.1 g / L ARA, 0.1 g / L DGLA, or 0.1 g / L EPA was used.
  • the above concentration is the final concentration in the mixed solution.
  • the mixture was reacted at 37 ° C. for 60 minutes.
  • the same reaction was carried out without adding a reducing agent (reference example).
  • 1N HCl was added to the reaction solution to adjust the pH to 3.0.
  • Prostaglandin was prepared in the same manner as in Test Example 1-3 except that Human PTGS1 / COX-1 (Funakoshi Co., Ltd.) was used instead of COX-1 derived from sheep and the type of reducing agent was changed. Manufactured and analyzed. Specifically, Tris-Cl (pH 8.0) was used as a buffer solution, 0.1 mM SnCl 2 or 0.1 mM SnSO 4 was used as a reducing agent, and arachidonic acid was used as an unsaturated fatty acid. The results are shown in Table 4.
  • Test Example 3-1 Prostaglandins were produced and analyzed in the same manner as in Test Examples 1-1 (2) and (4) except that the final concentrations of the buffer solution and the reducing agent were changed. Specifically, 100 mM Tris-Cl (pH 8.0) is used as a buffer solution , and 10 mM SnCl 2 , 10 mM SnSO 4 , 25 mM Sn 2 P 2 O 7 , or 25 mM SnC 2 O 4 as a reducing agent. Was used, and 1 g / L of arachidonic acid was used as the unsaturated fatty acid. The above concentration is the final concentration in the mixed solution.
  • Test Example 3-2 Prostaglandins were produced and analyzed in the same manner as in Test Example 3-1 except that the composition and preparation method of the mixture were changed as follows: buffer solution, reducing agent suspended in water, arachidonic acid. , And GvCOX gene-expressing cells suspended in buffer were added to the microtube in this order and stirred, and GvCOX gene-expressing cells, 25 mM reducing agent, 2.5 g / L arachidonic acid, and 100 mM Tris- A 0.5 mL mixture consisting of Cl (pH 8.0) was obtained.
  • Test Example 3-3 (Comparative Example) Prostaglandins were produced and analyzed in the same manner as in Test Examples 1-1 (3) and (4) except that the final concentrations of the buffer solution and the reducing agent were changed. Specifically, 100 mM Tris-Cl (pH 8.0) is used as a buffer solution , and 10 mM SnCl 2 , 10 mM SnSO 4 , 25 mM Sn 2 P 2 O 7 , or 25 mM SnC 2 O 4 as a reducing agent. Was used, and 1 g / L of arachidonic acid was used as the unsaturated fatty acid. The above concentration is the final concentration in the mixed solution.
  • Test Example 3-Results The results of Test Examples 3-1 to 3-3 are shown in Table 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明に係るプロスタグランジンの製造方法は、還元剤存在下、不飽和脂肪酸にシクロオキシゲナーゼを反応させる工程を備える。本発明によれば、プロスタグランジンを高収率で製造することができる。

Description

プロスタグランジンの製造方法
 本発明は、プロスタグランジンを製造する方法に関する。
 従来、プロスタグランジン(PG)の製造方法として、シクロオキシゲナーゼ(COX)に不飽和脂肪酸を反応(酸化反応)させてPGG及び/又はPGHを生成させ、PGG及び/又はPGHに還元剤SnClを反応(還元反応)させてプロスタグランジンを生成させる、二段階の方法が知られている(例えば、特許文献1及び非特許文献2)
特開平6-90788号公報
Applied Microbiol Biotechnol,Vol.91(2011)1121-1129
 従来の方法で得られたプロスタグランジンの収率は必ずしも高くなかった。そこで、本発明は、プロスタグランジンを高収率で製造することを目的とする。
 本発明に係るプロスタグランジンの製造方法は、還元剤存在下、不飽和脂肪酸にシクロオキシゲナーゼを反応させる工程を備える。還元剤は、二価のSnを含む還元剤、NaSO、Na、Na、及びKIからなる群より選ばれる1以上の還元剤であってよく、二価のSnを含む還元剤及びKIからなる群より選ばれる1以上の還元剤であってよく、SnCl、SnSO、Sn、及びSnCからなる群より選ばれる1以上の還元剤であってよい。あるいは、還元剤は、NaSO、Na、及びNaからなる群より選ばれる1以上の還元剤であってよい。不飽和脂肪酸は、炭素鎖数16以上でありかつ1以上の二重結合を有する不飽和脂肪酸であってよく、アラキドン酸、ジホモ-γ-リノレン酸、及びall cis-5,8,11,14,17-エイコサペンタエン酸からなる群より選ばれる1以上の不飽和脂肪酸であってよい。還元剤存在下、不飽和脂肪酸にシクロオキシゲナーゼを反応させる工程は、6~12.5のpHで行われてよい。還元剤存在下、不飽和脂肪酸にシクロオキシゲナーゼを反応させる工程は、シクロオキシゲナーゼと還元剤との混合物に対して不飽和脂肪酸を加える工程を含んでよく、シクロオキシゲナーゼと還元剤との混合物は、シクロオキシゲナーゼに対して還元剤を加えることにより得てもよい。シクロオキシゲナーゼは、紅藻又は哺乳類に由来してよい。紅藻は、オゴノリであってよく、哺乳類は、ヒト、ヒツジ、又はウシであってよい。還元剤存在下、不飽和脂肪酸にシクロオキシゲナーゼを反応させる工程は、還元剤存在下、不飽和脂肪酸と、シクロオキシゲナーゼを発現する細胞若しくはその抽出物、又は単離されたシクロオキシゲナーゼと、を接触させることを含んでよい。
 還元剤存在下、不飽和脂肪酸にシクロオキシゲナーゼを反応させる本発明の方法によれば、プロスタグランジンを高収率で製造することができる。還元剤存在下で酸化反応を行うと、酸化反応又は還元反応のいずれかが進行せず、目的産物の収率が低下するというのが従来の技術常識であったため、本発明の方法によりプロスタグランジンを高収率で製造することができることは、驚くべきことである。
 本発明に係るプロスタグランジンの製造方法は、還元剤存在下、不飽和脂肪酸にシクロオキシゲナーゼを反応させる工程を備える。
 不飽和脂肪酸は、単一の不飽和脂肪酸であってもよく、2種以上の不飽和脂肪酸の組合せであってもよい。不飽和脂肪酸は、炭素数16以上又は18以上であり、かつ1以上の二重結合を有する不飽和脂肪酸であってよい。不飽和脂肪酸としては、例えば、アラキドン酸(ARA)、ジホモ-γ-リノレン酸(DGLA)、all cis-5,8,11,14,17-エイコサペンタエン酸(EPA)、ドコサペンタエン酸(DPA)、ドコサヘキサエン酸(DHA)、all-cis-8,11,14,17-エイコサテトラエン酸(ETA)等、従来プロスタグランジンの製造に用いられてきた不飽和脂肪酸を用いることができる。ARAからはPGF2α又はPGEが得られ、DGLAからはPGF1α又はPGEが得られ、EPAからはPGF3α又はPGEが得られる。反応を促進する観点から、不飽和脂肪酸とともに飽和脂肪酸を加えてもよい。すなわち、不飽和脂肪酸にシクロオキシゲナーゼを反応させる工程は、還元剤及び飽和脂肪酸存在下で行うことができる。
 還元剤は、特に限定されず、公知の還元剤を使用することができる。還元剤は、単一の還元剤であってもよく、2種以上の還元剤の組合せであってもよい。還元剤は、例えば、二価のSnを含む還元剤、NaSO、Na、Na、KI、NaHSO、若しくはK、又はこれらの組合せであってよい。二価のSnを含む還元剤は、例えば、SnCl、SnSO、Sn、SnC、若しくはSnO、又はこれらの組合せであってよい。PGF2α、PGF1α、PGF3α等のPGFを選択的にかつ高収率で得る観点からは、還元剤は、好ましくは二価のSnを含む還元剤又はKIであり、より好ましくは二価のSnを含む還元剤であり、さらに好ましくはSnCl、SnSO、Sn、又はSnCであり、特に好ましくはSnClである。PGE、PGE、PGE等のPGEを選択的にかつ高収率で得る観点からは、還元剤は、好ましくはNaSO、Na、又はNaである。
 シクロオキシゲナーゼは、単一のシクロオキシゲナーゼであってもよく、2種以上のシクロオキシゲナーゼの組合せであってもよい。シクロオキシゲナーゼ(COX)の由来は特に限定されず、シクロオキシゲナーゼは例えば、微生物、植物、又は動物に由来するシクロオキシゲナーゼであってよい。動物は、例えば、哺乳類であってよい。哺乳類は、例えば、ヒト、ヒツジ、又はウシであってよい。植物は、例えば紅藻であってよい。紅藻は、例えば、オゴノリであってよい。還元剤存在下、不飽和脂肪酸にシクロオキシゲナーゼを反応させる工程は、還元剤存在下、不飽和脂肪酸と、シクロオキシゲナーゼを発現する細胞若しくはその抽出物、又は単離されたシクロオキシゲナーゼと、を接触させることを含んでよい。シクロオキシゲナーゼを発現する細胞又はその抽出物を不飽和脂肪酸と接触させることで、該細胞又は抽出物中のシクロオキシゲナーゼが不飽和脂肪酸と反応する。シクロオキシゲナーゼを発現する細胞は、内在性又は外来性シクロオキシゲナーゼを発現する細胞であってよい。外来性シクロオキシゲナーゼを発現する細胞は、COXを発現可能な宿主であれば特に限定されず、例えば、オゴノリ由来のシクロオキシゲナーゼ(GvCOX)を発現する大腸菌であってもよい。内在性シクロオキシゲナーゼを発現する細胞は、例えば、オゴノリの細胞であってよい。あるいは、還元剤存在下、不飽和脂肪酸にシクロオキシゲナーゼを反応させる工程は、還元剤存在下、不飽和脂肪酸と、シクロオキシゲナーゼを発現する細胞を含む植物又はその抽出物、より具体的にはオゴノリ又はその抽出物とを接触させることを含んでよい。
 不飽和脂肪酸と、還元剤と、シクロオキシゲナーゼとを含む反応液中の不飽和脂肪酸の初期濃度は、例えば、0.0001~400g/L、0.01~100g/L、又は0.1~10g/Lであってよい。本明細書中、初期濃度とは、反応開始直後における濃度のことである。
 不飽和脂肪酸と、還元剤と、シクロオキシゲナーゼとを含む反応液中の還元剤の初期濃度は、例えば、0.0001~800mM、0.1~400mM、又は1~200mMであってよい。
 不飽和脂肪酸と、還元剤と、シクロオキシゲナーゼとを含む反応液中のシクロオキシゲナーゼの初期濃度は、例えば、0.1mg/L~100g/L、1mg/L~10g/L、又は10mg/L~1g/Lであってよい。
 還元剤存在下、不飽和脂肪酸にシクロオキシゲナーゼを反応させる工程において、反応は、水又は水溶液中で行うことができる。水溶液としては、例えば、酢酸緩衝液(pH4~5)、リン酸カリウム緩衝液(KPB、pH6~7)、Tris-Cl緩衝液(pH8~10)、ホウ酸緩衝液(pH11~13)、リン酸ナトリウム緩衝液(NaP、pH6~7)、ギ酸緩衝液(pH3~4)、アンモニア緩衝液(pH9~10)等の緩衝液を用いることができる。pHを安定に維持できれば緩衝液を用いなくてもよく、水溶液は、例えば塩水であってもよい。
 反応液のpH(すなわち、反応時のpH)は、6以上、7以上、8以上、9以上、10以上、11以上、又は12以上であってよく、12.5以下、12以下、11以下、10以下、9以下、8以下、又は7以下であってよい。反応液のpHは、好ましくは6~12.5であり、より好ましくは7~12又は7~12.5であり、さらに好ましくは8~12又は8~12.5であり、特に好ましくは9~12である。
 反応液の温度(すなわち、反応の温度)は、シクロオキシゲナーゼが失活しない温度であれば特に限定されず、例えば、-10~90℃、5~70℃、又は20~40℃であってよい。
 反応時間は、酵素反応の反応速度にもよるが、例えば、30秒~98時間、10分~24時間、又は30分~4時間であってよい。
 還元剤存在下、不飽和脂肪酸にシクロオキシゲナーゼを反応させる工程において、不飽和脂肪酸、還元剤、及びシクロオキシゲナーゼを加える順番は、例えば次のとおりであってよい:
 シクロオキシゲナーゼ、より具体的にはシクロオキシゲナーゼを含む反応容器に対して、不飽和脂肪酸及び還元剤を任意の順番で加えてもよいし、
 還元剤、より具体的には還元剤を含む反応容器に対して、不飽和脂肪酸及びシクロオキシゲナーゼを任意の順番で加えてもよいし、
 不飽和脂肪酸、より具体的には不飽和脂肪酸を含む反応容器に対して、シクロオキシゲナーゼ及び還元剤をこの順番で加えてもよい。ただし、不飽和脂肪酸とシクロオキシゲナーゼとの混合液に対して還元剤を加える場合、プロスタグランジンを高収率で製造する観点から、還元剤は、不飽和脂肪酸とシクロオキシゲナーゼとを混合した直後(例えば、不飽和脂肪酸とシクロオキシゲナーゼとを混合してから5秒以内)に加えることが好ましい。また、PGF又はPGEを選択的に得る観点から、シクロオキシゲナーゼと還元剤との混合物に対して不飽和脂肪酸を加えることが好ましく、シクロオキシゲナーゼ、より具体的にはシクロオキシゲナーゼを含む反応容器に対して、還元剤及び不飽和脂肪酸をこの順番で加えることがより好ましい。反応容器は特に限定されず、マイクロチューブ、遠沈管、フラスコ、ビーカー、ステンレスタンク等、従来公知の反応容器を使用することができる。
 一実施形態において、本発明に係るプロスタグランジンの製造方法は、還元剤存在下、不飽和脂肪酸にシクロオキシゲナーゼを反応させる工程の後に、反応液からシクロオキシゲナーゼを分離する工程をさらに含んでもよく、かつ/又は反応液からプロスタグランジンを抽出する工程と、抽出されたプロスタグランジンを精製する工程とをさらに含んでもよい。シクロオキシゲナーゼを分離する方法は特に限定されず、公知の方法を利用することができる。プロスタグランジンを抽出及び精製する方法は特に限定されず、公知の方法を利用することができる。例えば、プロスタグランジンは、酢酸エチル等の有機溶媒で抽出した後、カラムクロマトグラフィーにより精製することができる。
[試験例1-1]
 E.coli BL21(DE3)/pGVCOX1を用いて、以下のようにプロスタグランジンを製造及び分析した。
(1)遺伝子発現菌体の作製
 大腸菌のコドンに最適化したGvCOX遺伝子を、大腸菌発現ベクターpET-28a(ノバジェン社)のNcoI-BamHIサイトに挿入し、プラスミドpGVCOX1を構築した。最適化したGvCOX遺伝子は、例えば、Biotechnol.Lett.36(2014)2193-2198に記載される。基本的な遺伝子組換え技術については、「Molecular cloning(1989):a laboratory manual.2nd ed. New York,NY:Cold Spring Laboratory.」に従った。プラスミドの構築に使用した制限酵素、修飾酵素等の試薬は、東洋紡株式会社から購入し、説明書に従って使用した。ECOS(登録商標)コンピテントE.coli BL21(DE3)を富士フィルム和光純薬株式会社より購入し、説明書に従ってpGVCOX1をE.coli BL21(DE3)に導入し、E.coli BL21(DE3)/pGVCOX1を作製した。
 E.coli BL21(DE3)/pGVCOX1を、50mg/Lのカナマイシンを含む5mLのLB培地(1%トリプトン、0.5%酵母エキス、1%塩化ナトリウム)に植菌し、28℃で24時間振盪培養した。培養液2.5mLを、50mg/Lのカナマイシンと0.1mMのイソプロピル-β-チオガラクトピラノシド(IPTG、ナカライテスク株式会社)を含むLB培地100mLに植菌し、20℃で24時間振盪培養した。培養液2.5mLを遠心分離し、上清を取り除いて、GvCOX遺伝子発現菌体を得た。
(2)プロスタグランジンの製造(実施例)
 緩衝液に懸濁されたGvCOX遺伝子発現菌体、水に懸濁された還元剤、及び不飽和脂肪酸をこの順にマイクロチューブに加えて攪拌し、GvCOX遺伝子発現菌体、還元剤、1g/Lの不飽和脂肪酸、及び50mMの緩衝液からなる0.5mLの混合液を得た。緩衝液としては、Tris-Cl(pH8.0)を用いた。還元剤としては、5mMのSnCl、5mMのSnSO、20mMのSn、20mMのSnC、5mMのNaSO、5mMのNa、5mMのNa、又は5mMのKIを用いた。不飽和脂肪酸(基質)としては、アラキドン酸(シグマ-アルドリッチ社)、DGLA(東京化成工業株式会社)、又はEPA(東京化成工業株式会社)を用いた。上記濃度は、混合液中での終濃度である。混合液を20℃で60分間振盪反応させた。また、比較のために、還元剤を加えずに同様の反応を行った(参考例)。反応終了後、1NのHClを反応液に加えてpHを3.0に調整した。
(3)プロスタグランジンの製造(比較例)
 緩衝液に懸濁されたGvCOX遺伝子発現菌体と、不飽和脂肪酸とをこの順にマイクロチューブに加え、GvCOX遺伝子発現菌体、1g/Lの不飽和脂肪酸、及び50mM緩衝液からなる0.5mLの混合液を得た。混合液を20℃で60分間振盪反応させた。反応終了後、1NのHClを反応液に加えてpHを3.0にし、還元剤をさらに加えた。緩衝液、還元剤、及び不飽和脂肪酸としては、(2)で用いた緩衝液、還元剤、及び不飽和脂肪酸と同じものを用いた。
(4)プロスタグランジンの分析
 酢酸エチルを用いて(2)又は(3)の反応液から反応生成物を抽出した。ダイヤフラム真空ポンプを付けたロータリーエバポレーターを用いて抽出液から有機溶剤を取り除いた。得られた析出物をエタノールで溶解し、LC-MSにより以下の条件で分析した(参考:Bioscience, Biotechnology, and Biochemistry,Volume 83(2019)774-780,DOI:10.1080/09168451.2018.1562880)。
<LC-MS分析条件>
 使用機器:LC-MS2020(株式会社島津製作所製)
 カラム:5C18-AR-II COSMOSIL(R) packed column,4.6mm i.d.x150mm(ナカライテスク株式会社製)
 カラム温度:40℃
 溶離液A:0.1%(v/v)ギ酸水溶液
 溶離液B:0.1%(v/v)ギ酸/アセトニトリル
 グラジエント溶離(溶離液B濃度):20%~40%(10分間)、40%~100%(10分間)、100%(25分間)
 流量:0.2mL/min
 モード:ネガティブモード
 ヒートブロック温度:200℃
 脱溶媒ライン温度:250℃
 ネブライザーガス流量:1.5L/min
 結果を表1に示す。本明細書中、PGF/PGEはPGEに対するPGFの質量比を示し、PGE/PGFはPGFに対するPGEの質量比を示す。不飽和脂肪酸としてARA、DGLA、及びEPAを用いた場合、それぞれPGF2α及びPGE、PGF1α及びPGE、並びにPGF及びPGE3が得られた。
Figure JPOXMLDOC01-appb-T000001
(5)対照実験
 pET-28aをE.coli BL21(DE3)に導入して、E.coli BL21(DE3)/pET-28aを得た。GvCOX遺伝子発現菌体のかわりにE.coli BL21(DE3)/pET-28aを用いて(2)~(4)の実験を行ったところ、プロスタグランジンは検出されなかった。
[試験例1-2]
 E.coli BL21(DE3)/pGVCOX1の抽出液を用いて、以下のようにプロスタグランジンを製造及び分析した。
(1)GvCOX抽出液の調製
 試験例1-1に記載の方法で作製したE.coli BL21(DE3)/pGVCOX1を、50mg/Lのカナマイシンを含む5mLのLB培地に植菌し、28℃で24時間振盪培養した。培養液2.5mLを、50mg/Lのカナマイシンと0.1mMのIPTGとを含むLB培地100mLに植菌し、20℃で24時間振盪培養した。培養液を遠心分離し、上清を取り除いた。得られた菌体を10mLの50mM Tris-Cl(pH8.0)に懸濁し、ウルトラソニックホモジナイザーUS-300(株式会社日本精機製作所製)を用いて破砕し、GvCOX遺伝子発現菌体の抽出液(GvCOX抽出液)を得た。
(2)プロスタグランジンの製造及び分析(実施例及び比較例)
 GvCOX遺伝子発現菌体の代わりに0.25mLのGvCOX抽出液を用いたこと以外は試験例1-1の(2)~(4)と同様にして、プロスタグランジンを製造及び分析した。緩衝液としては、試験例1-1と同じ緩衝液を用いた。還元剤としては、終濃度で5mMのSnCl、SnSO、又はNaSOを用いた。不飽和脂肪酸としてはアラキドン酸を用いた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(3)対照実験
 GvCOX抽出液のかわりにE.coli BL21(DE3)/pET-28aを用いて(2)の実験を行ったところ、プロスタグランジンは検出されなかった。
[試験例1-3]
 ヒツジ由来のCOX-1を用いて、以下のようにプロスタグランジンを製造及び分析した。
(1)プロスタグランジンの製造(実施例)
 ヒツジ由来のCOX-1(フナコシ株式会社)、水に懸濁された還元剤、及び不飽和脂肪酸をこの順にマイクロチューブに加えて攪拌し、5μgのヒツジ由来のCOX-1、還元剤、不飽和脂肪酸、及び50mMの緩衝液からなる0.5mLの混合液を得た。緩衝液としては、Tris-Cl(pH8.0)を用いた。還元剤としては、0.1mMのSnCl、5mMのNaSO、5mMのNa、又は5mMのNaを用いた。不飽和脂肪酸としては、0.1g/LのARA、0.1g/LのDGLA、又は0.1g/LのEPAを用いた。上記濃度は、混合液中での終濃度である。混合液を37℃で60分間反応させた。また、比較のために、還元剤を加えずに同様の反応を行った(参考例)。反応終了後、1NのHClを反応液に加えてpHを3.0に調整した。
(2)プロスタグランジンの製造(比較例)
 ヒツジ由来のCOX-1(フナコシ株式会社)及び不飽和脂肪酸をこの順にマイクロチューブに加えて攪拌し、5μgのヒツジ由来のCOX-1、不飽和脂肪酸、及び50mMの緩衝液からなる0.5mLの混合液を得た。混合液を37℃で60分間反応させた。反応終了後、1NのHClを反応液に加えてpHを3.0に調整し、還元剤をさらに加えた。緩衝液、還元剤、及び不飽和脂肪酸としては、(1)で用いた緩衝液、還元剤、及び不飽和脂肪酸と同じものを用いた。
(3)プロスタグランジンの分析
 試験例1-1の(4)と同様にして、(1)及び(2)の反応液中のプロスタグランジンを分析した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
(4)対照実験
 COX-1を用いずに(1)~(3)の実験を行ったところ、プロスタグランジンは検出されなかった。
[試験例1-4]
 以下のように、ヒト由来のCOX-1を用いてプロスタグランジンを製造及び分析した。
(1)プロスタグランジンの製造及び分析(実施例及び比較例)
 ヒツジ由来のCOX-1の代わりHuman PTGS1/COX-1(フナコシ株式会社)を用いたこと、及び、還元剤の種類を変更したこと以外は試験例1-3と同様にして、プロスタグランジンを製造及び分析した。具体的には、緩衝液としてTris-Cl(pH8.0)を用い、還元剤として0.1mMのSnCl又は0.1mMのSnSOを用い、不飽和脂肪酸としてアラキドン酸を用いた。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
(2)対照実験
 Human PTGS1/COX-1を用いずに(1)の実験を行ったところ、プロスタグランジンは検出されなかった。
[試験例1-結果]
 還元剤の存在下でシクロオキシゲナーゼと不飽和脂肪酸とを反応させた実施例では、高収率でプロスタグランジンを得ることができた。また、還元剤として二価のSnを含む還元剤又はKIを用いた場合は、PGF(PGF2α、PGF1α、又はPGF3α)が選択的に得られた。一方、還元剤として、NaSO、Na、又はNaを用いた場合は、PGE(PGE、PGE、又はPGE)が選択的に得られた。
[試験例2]
 緩衝液として、終濃度100mMの酢酸緩衝液(pH4.0又は5.0)、KPB(pH6.0又は7.0)、Tris-Cl緩衝液(pH8.0、9.0、又は10.0)、又はホウ酸緩衝液(pH11.0、12.0、12.5、又は13.0)を用いたこと、及び、還元剤の終濃度を変更したこと以外は試験例1-1の(2)及び(4)と同様にして、プロスタグランジンを製造及び分析した。具体的には、還元剤として5mMのSnCl、5mMのSnSO、25mMのSnSO、又は25mMのSnCを用い、不飽和脂肪酸としてアラキドン酸を用いた。上記濃度は、混合液中での終濃度である。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
[試験例2-結果]
 特定のpH範囲で反応を行うことにより、より高収率でプロスタグランジンを得ることができた。
[試験例3-1](実施例)
 緩衝液及び還元剤の終濃度を変更した以外は、試験例1-1の(2)及び(4)と同様にして、プロスタグランジンを製造及び分析した。具体的には、緩衝液として100mMのTris-Cl(pH8.0)を用い、還元剤として10mMのSnCl、10mMのSnSO、25mMのSn、又は25mMのSnCを用い、不飽和脂肪酸として1g/Lのアラキドン酸を用いた。上記濃度は、混合液中での終濃度である。
[試験例3-2](実施例)
 混合液の組成及び調製方法を次のように変更した以外は、試験例3-1と同様にして、プロスタグランジンを製造及び分析した:緩衝液、水に懸濁された還元剤、アラキドン酸、及び緩衝液に懸濁されたGvCOX遺伝子発現菌体をこの順にマイクロチューブに加えて攪拌し、GvCOX遺伝子発現菌体、25mMの還元剤、2.5g/Lのアラキドン酸、及び100mMのTris-Cl(pH8.0)からなる0.5mLの混合液を得た。
[試験例3-3](比較例)
 緩衝液及び還元剤の終濃度を変更した以外は、試験例1-1の(3)及び(4)と同様にして、プロスタグランジンを製造及び分析した。具体的には、緩衝液として100mMのTris-Cl(pH8.0)を用い、還元剤として10mMのSnCl、10mMのSnSO、25mMのSn、又は25mMのSnCを用い、不飽和脂肪酸として1g/Lのアラキドン酸を用いた。上記濃度は、混合液中での終濃度である。
[試験例3-結果]
 試験例3-1~3-3の結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 GvCOX遺伝子発現菌体、還元剤、及びアラキドン酸をこの順で加えた場合、還元剤、アラキドン酸、及びGvCOX遺伝子発現菌体をこの順で加えた場合と比べて、PGF2αがより選択的に得られた。

Claims (13)

  1.  還元剤存在下、不飽和脂肪酸にシクロオキシゲナーゼを反応させる工程を備える、プロスタグランジンの製造方法。
  2.  還元剤が、二価のSnを含む還元剤、NaSO、Na、Na、及びKIからなる群より選ばれる1以上の還元剤である、請求項1に記載の方法。
  3.  還元剤が、二価のSnを含む還元剤及びKIからなる群より選ばれる1以上の還元剤である、請求項2に記載の方法。
  4.  還元剤が、SnCl、SnSO、Sn、及びSnCからなる群より選ばれる1以上の還元剤である、請求項3に記載の方法。
  5.  還元剤が、NaSO、Na、及びNaからなる群より選ばれる1以上の還元剤である、請求項2に記載の方法。
  6.  不飽和脂肪酸が、炭素数16以上であり、かつ1以上の二重結合を有する不飽和脂肪酸である、請求項1~5のいずれか一項に記載の方法。
  7.  炭素数16以上であり、かつ1以上の二重結合を有する不飽和脂肪酸が、アラキドン酸、ジホモ-γ-リノレン酸、及びall cis-5,8,11,14,17-エイコサペンタエン酸からなる群より選ばれる1以上の不飽和脂肪酸である、請求項6に記載の方法。
  8.  還元剤存在下、不飽和脂肪酸にシクロオキシゲナーゼを反応させる工程が、6~12.5のpHで行われる、請求項1~7のいずれか一項に記載の方法。
  9.  還元剤存在下、不飽和脂肪酸にシクロオキシゲナーゼを反応させる工程が、
     シクロオキシゲナーゼと還元剤との混合物に対して不飽和脂肪酸を加える工程を含む、請求項1~8のいずれか一項に記載の方法。
  10.  シクロオキシゲナーゼと還元剤との混合物が、シクロオキシゲナーゼに対して還元剤を加えることにより得られる、請求項9に記載の方法。
  11.  シクロオキシゲナーゼが、紅藻又は哺乳類に由来する、請求項1~10のいずれか一項に記載の方法。
  12.  紅藻がオゴノリであり、哺乳類が、ヒト、ヒツジ、又はウシである、請求項11に記載の方法。
  13.  還元剤存在下、不飽和脂肪酸にシクロオキシゲナーゼを反応させる工程が、還元剤存在下、不飽和脂肪酸と、シクロオキシゲナーゼを発現する細胞若しくはその抽出物、又は単離されたシクロオキシゲナーゼと、を接触させることを含む、請求項1~12のいずれか一項に記載の方法。
PCT/JP2020/048629 2019-12-26 2020-12-25 プロスタグランジンの製造方法 WO2021132536A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/788,289 US20230042760A1 (en) 2019-12-26 2020-12-25 Prostaglandin production method
EP20907000.2A EP4083222A4 (en) 2019-12-26 2020-12-25 METHOD FOR THE PRODUCTION OF PROSTAGLANDIN
JP2021567651A JP7296485B2 (ja) 2019-12-26 2020-12-25 プロスタグランジンの製造方法
CN202080074116.3A CN114599791A (zh) 2019-12-26 2020-12-25 前列腺素的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019236747 2019-12-26
JP2019-236747 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021132536A1 true WO2021132536A1 (ja) 2021-07-01

Family

ID=76575958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048629 WO2021132536A1 (ja) 2019-12-26 2020-12-25 プロスタグランジンの製造方法

Country Status (5)

Country Link
US (1) US20230042760A1 (ja)
EP (1) EP4083222A4 (ja)
JP (1) JP7296485B2 (ja)
CN (1) CN114599791A (ja)
WO (1) WO2021132536A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254091A (en) * 1975-10-30 1977-05-02 Toray Ind Inc Production of prostaglandins
JPH0690788A (ja) 1992-09-14 1994-04-05 Lion Corp プロスタグランジンeの製造方法
JP2007070335A (ja) * 2005-08-08 2007-03-22 Toagosei Co Ltd 5−リポキシゲナーゼ阻害剤
JP2012125229A (ja) * 2010-11-24 2012-07-05 Ishikawa Prefectural Public Univ Corp オゴノリ由来のシクロオキシゲナーゼの遺伝子及び該遺伝子を利用するプロスタグランジン類生産方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1182136A (zh) * 1996-11-12 1998-05-20 蔡海德 前列腺素e1原料药生产工艺
KR100796459B1 (ko) * 2006-10-10 2008-01-21 재단법인서울대학교산학협력재단 항염, 항알레르기 및 항천식 활성을 갖는 지방산 글리세롤유도체 및 이를 유효성분으로 함유하는 조성물
CN105316384A (zh) * 2015-11-23 2016-02-10 哈药集团生物工程有限公司 一种前列腺素e1的合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254091A (en) * 1975-10-30 1977-05-02 Toray Ind Inc Production of prostaglandins
JPH0690788A (ja) 1992-09-14 1994-04-05 Lion Corp プロスタグランジンeの製造方法
JP2007070335A (ja) * 2005-08-08 2007-03-22 Toagosei Co Ltd 5−リポキシゲナーゼ阻害剤
JP2012125229A (ja) * 2010-11-24 2012-07-05 Ishikawa Prefectural Public Univ Corp オゴノリ由来のシクロオキシゲナーゼの遺伝子及び該遺伝子を利用するプロスタグランジン類生産方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPLIED MICROBIOL BIOTECHNOL, vol. 91, 2011, pages 1121 - 1129
BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY, vol. 83, 2019, pages 774 - 780
BIOTECHNOL. LETT., vol. 36, 2014, pages 2193 - 2198
See also references of EP4083222A4

Also Published As

Publication number Publication date
EP4083222A4 (en) 2024-06-12
EP4083222A1 (en) 2022-11-02
JPWO2021132536A1 (ja) 2021-07-01
CN114599791A (zh) 2022-06-07
US20230042760A1 (en) 2023-02-09
JP7296485B2 (ja) 2023-06-22

Similar Documents

Publication Publication Date Title
CN110804577B (zh) 一种高效生产2’-岩藻糖基乳糖的重组菌的构建方法及其应用
CN105229152B (zh) 利用微生物的d-手性肌醇的生产方法
FR2796082A1 (fr) Procede de production d'oligosaccharides
US8399217B2 (en) High density growth of T7 expression strains with auto-induction option
JP2016528904A (ja) アシルアミノ酸を製造するための方法
US12049655B2 (en) Construction method and application of microorganism capable of realizing high production of lacto-N-tetrose
WO2023103578A1 (en) A genetically engineered bacterium and a preparation method and use thereof
Yi et al. Biosynthesis of myo-inositol in Escherichia coli by engineering myo-inositol-1-phosphate pathway
WO2021132536A1 (ja) プロスタグランジンの製造方法
AU2018344883B2 (en) Cellular transport system for transferring a sulfonic acid construct carrying a cargo into the cytoplasm of a cell
CN116536341A (zh) 一种构建高产γ-氨基丁酸重组大肠杆菌的方法及生产γ-氨基丁酸的方法
Ham et al. Application of l-glutamate oxidase from Streptomyces sp. X119-6 with catalase (KatE) to whole-cell systems for glutaric acid production in Escherichia coli
CN114277068B (zh) 一种r-3-羟基丁酸乙酯微生物发酵制备方法
AU2011355209A1 (en) Enzymatic synthesis of active pharmaceutical ingredient and intermediates thereof
CN116144620A (zh) 一种通过解脂耶氏酵母体外催化合成PGF2α的方法
US20230392112A1 (en) Genetically modified microorganism for producing 3-hydroxyadipic acid and/or alpha-hydromuconic acid, and method for producing chemical product
US20240175062A1 (en) Lipoxygenase-based recombinant microorganisms, and method forpreparing hydroxy fatty acids and secondary fatty alcohols using same
Würges et al. Enzyme-assisted physicochemical enantioseparation processes: Part I. Production and characterization of a recombinant amino acid racemase
FR3118773A1 (fr) Production de sucres par aldolisation periplasmique
JP2006503559A (ja) D−マンニトールを製造するための方法並びに微生物
JP4586149B2 (ja) プロモーターおよびその活性化方法
EP1137784A1 (fr) Methode d'isolement et de selection de genes codant pour des enzymes, et milieu de culture approprie
CN117925744B (zh) 非核糖体肽合成酶在生产脱羧肌肽中的应用
EP4344401A1 (en) A genetically engineered bacterium and its application in the preparation of sialyllactose
JP2023144366A (ja) 3-ヒドロキシアジピン酸および/またはα-ヒドロムコン酸を生産するための遺伝子改変微生物および当該化学品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020907000

Country of ref document: EP

Effective date: 20220726