WO2021132514A1 - 作業機 - Google Patents

作業機 Download PDF

Info

Publication number
WO2021132514A1
WO2021132514A1 PCT/JP2020/048557 JP2020048557W WO2021132514A1 WO 2021132514 A1 WO2021132514 A1 WO 2021132514A1 JP 2020048557 W JP2020048557 W JP 2020048557W WO 2021132514 A1 WO2021132514 A1 WO 2021132514A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
hydraulic
load
oil
Prior art date
Application number
PCT/JP2020/048557
Other languages
English (en)
French (fr)
Inventor
啓司 堀井
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019238285A external-priority patent/JP7263229B2/ja
Priority claimed from JP2019238290A external-priority patent/JP7263230B2/ja
Priority claimed from JP2019238286A external-priority patent/JP2021105328A/ja
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to EP20906822.0A priority Critical patent/EP4083337A4/en
Priority to CN202080082377.XA priority patent/CN114746612B/zh
Publication of WO2021132514A1 publication Critical patent/WO2021132514A1/ja
Priority to US17/840,235 priority patent/US20230021137A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/162Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for giving priority to particular servomotors or users
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/963Arrangements on backhoes for alternate use of different tools
    • E02F3/964Arrangements on backhoes for alternate use of different tools of several tools mounted on one machine
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2095Control of electric, electro-mechanical or mechanical equipment not otherwise provided for, e.g. ventilators, electro-driven fans
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/163Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for sharing the pump output equally amongst users or groups of users, e.g. using anti-saturation, pressure compensation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30555Inlet and outlet of the pressure compensating valve being connected to the directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • F15B2211/30595Assemblies of multiple valves having multiple valves for multiple output members with additional valves between the groups of valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3111Neutral or centre positions the pump port being closed in the centre position, e.g. so-called closed centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/351Flow control by regulating means in feed line, i.e. meter-in control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40507Flow control characterised by the type of flow control means or valve with constant throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/75Control of speed of the output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/78Control of multiple output members
    • F15B2211/781Control of multiple output members one or more output members having priority
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/8613Control during or prevention of abnormal conditions the abnormal condition being oscillations

Definitions

  • the present invention relates to a working machine.
  • the working machine disclosed in Patent Document 1 includes a plurality of hydraulic actuators and a plurality of direction switching valves corresponding to the plurality of hydraulic actuators. Each directional control valve switches the direction of hydraulic fluid with respect to the corresponding hydraulic actuator.
  • the working machine disclosed in Patent Document 2 includes a hydraulic actuator that operates according to the amount of operation of an operating member, a pump that discharges hydraulic oil that operates the hydraulic actuator, and hydraulic oil that is discharged from the pump. It is equipped with a relief valve that regulates the pressure of.
  • the working machine disclosed in Patent Document 2 is equipped with working tools and has a machine body capable of turning around the vertical axis. Further, a plurality of hydraulic actuators are provided in the work machine, and each hydraulic actuator is controlled by a control valve. Each control valve has a pressure compensating valve that acts as a load regulator between hydraulic actuators when a plurality of control valves are used.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2017-115992
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2012-67459
  • the high load hydraulic actuator having a high working pressure and the low load hydraulic actuator having a lower working pressure than the high load hydraulic actuator are operated in combination, and the low load hydraulic actuator is used independently.
  • the operating speed of the low-load hydraulic actuator may change depending on when it is operated.
  • the relief valve disclosed in Patent Document 2 the relief set pressure, which is the specified pressure, is constant. Therefore, there is a problem that the start shock of the hydraulic actuator is large when the operating member is suddenly operated.
  • the work tool drive actuator which is a hydraulic actuator for driving the work tool
  • the work tool drive actuator operates by the relief pressure.
  • the swivel motor which is a hydraulic actuator that swivels the aircraft, operates at low pressure.
  • the control system creates a pseudo load with the pressure compensating valve of the swivel control valve that controls the swivel motor to align the loads between the hydraulic actuators. Then, the temperature of the hydraulic oil flowing in the section on the swivel side becomes high, which may deteriorate the components of the swivel motor.
  • the work machine includes a plurality of hydraulic actuators, a plurality of direction switching valves provided corresponding to the plurality of hydraulic actuators and switching the direction of hydraulic oil with respect to the hydraulic actuators, and the plurality of hydraulic pressures.
  • the low of the actuators when the high-load hydraulic actuator having a high operating pressure and the low-load hydraulic actuator having a lower operating pressure than the high-load hydraulic actuator are operated in combination and when the low-load hydraulic actuator is operated independently.
  • a pseudo load forming portion for forming a pseudo load on the direction switching valve on the low load side that switches the direction of the hydraulic oil with respect to the low load hydraulic actuator is provided. There is.
  • the direction switching valve on the low load side has a flow path for flowing hydraulic oil toward the low load hydraulic actuator, and the pseudo load forming portion is configured by a throttle provided in the flow path. ..
  • a first control valve which is a control valve for controlling the high load hydraulic actuator and has a pressure compensating valve for setting a constant pressure difference between the pressure of the introduced hydraulic oil and the pressure of the output hydraulic oil.
  • a control valve that controls the low-load hydraulic actuator and prioritizes the flow rate of hydraulic oil output to the low-load hydraulic actuator via the low-load side direction switching valve and the low-load side direction switching valve. It is provided with a second control valve having a flow rate priority valve.
  • the flow rate priority valve has a first position for increasing the flow rate of the hydraulic oil output from the directional switching valve on the low load side and a first position for decreasing the flow rate of the hydraulic oil output from the directional switching valve on the low load side.
  • a spool that can move between two positions and a pressing member that presses the spool toward the first position are included, and the direction switching valve on the low load side is a hydraulic oil on one side of the low load hydraulic actuator.
  • the pseudo load forming portion includes the first flow passage, which is the flow path through which the hydraulic oil flows, and the second flow passage, which is the flow path through which the hydraulic oil flows to the other side of the low load hydraulic actuator.
  • the first throttle which is the throttle provided on the road
  • the second throttle which is the throttle provided on the second flow passage
  • the direction switching valve on the low load side is a connecting oil passage connecting the pump port to which the hydraulic oil is supplied, the output port for outputting the hydraulic oil to the flow rate priority valve, and the pump port and the output port.
  • a flow path throttle provided in the connecting oil passage, and the pressure loss due to the first throttle and the pressure loss due to the second throttle are larger than the pressure loss due to the flow path throttle.
  • the high-load hydraulic actuator is composed of the boom cylinder
  • the low-load hydraulic actuator is composed of the swivel motor.
  • the differential pressure between the variable displacement pump that discharges the hydraulic oil that operates the plurality of hydraulic actuators and the discharge pressure of the pump minus the maximum load pressure among the plurality of hydraulic actuators is set to a constant pressure. It is equipped with a load sensing system that controls the pump.
  • the working machine includes an operating member, a hydraulic actuator that operates according to the operating amount of the operating member, a pump that discharges hydraulic oil that operates the hydraulic actuator, and the pump.
  • the relief control unit includes a variable relief valve that can change the pressure of the discharged hydraulic oil and a relief control unit that controls a relief set pressure that is a pressure specified by the variable relief valve. The relief set pressure is changed according to the amount of operation of the operating member.
  • the relief control unit sets the relief set pressure to one of a plurality of set values, and gradually raises the set value of the relief set pressure according to an increase in the amount of operation of the operating member. .. Further, the relief control unit defines the relief set pressure when the operating member is not operated as the first set value, and after operating the operating member, sets the relief set pressure at the first set value within a predetermined time. It is changed to a second set value higher than the second set value, and when the operation amount of the operating member exceeds a predetermined amount, it is changed to a third set value higher than the second set value.
  • the relief control unit changes the relief set pressure to the third set value. Further, the plurality of modes having different set values of the relief set pressure are provided, and the set values of the maximum pressure of the relief set pressure are different in the plurality of modes.
  • the plurality of modes include a first mode in which the maximum relief set pressure setting value is the highest, a second mode in which the maximum relief set pressure setting value is lower than the first mode, and a relief set pressure.
  • the set value of the maximum pressure includes the third mode which is lower than the second mode, and the relief set pressure when the operating member in the first mode, the second mode, and the third mode is not operated is the same set value. Is.
  • an oil temperature sensor that detects the oil temperature of the hydraulic oil and a mode in which the maximum set value of the relief set pressure among the plurality of modes is the highest when the oil temperature is lower than the first predetermined temperature. It is provided with an automatic switching unit that switches to and returns to the original mode when the oil temperature becomes higher than the second predetermined temperature, which is higher than the first predetermined temperature.
  • a plurality of the hydraulic actuators are provided, the pump is configured to have a variable capacitance type, and the differential pressure obtained by subtracting the maximum load pressure among the plurality of hydraulic actuators from the discharge pressure of the pump is set to a constant pressure. It is equipped with a load sensing system that controls the pump.
  • the work machine includes a machine body, a swing motor that swivels and drives the machine body, a work tool mounted on the machine body, and a work tool drive actuator that drives the work tool.
  • a hydraulic circuit that supplies and discharges hydraulic oil to the swivel motor and the work tool actuator, a main relief valve that relieves the hydraulic oil when the pressure of the hydraulic oil in the hydraulic circuit exceeds a set pressure, and the work tool.
  • the overload control includes a variable overload relief valve that relieves the hydraulic oil when the pressure of the hydraulic oil of the drive actuator exceeds a predetermined value, and an overload control unit that controls the variable overload relief valve. The unit reduces the relief set pressure of the variable overload relief valve when the aircraft turns in the relief state in which the main relief valve is relieving.
  • an operation detection unit for detecting the operation of the operation member for operating the work tool and a work tool operation detection unit for detecting the operation of the work tool are provided, and the overload control unit is the operation member.
  • the overload control unit is the operation member.
  • an actuator control valve for controlling the work tool drive actuator is provided, and when the overload control unit reduces the relief set pressure of the variable overload relief valve, the spool stroke of the actuator control valve is reduced to a predetermined amount. It is equipped with a stroke limiting part that limits to. Further, the actuator control valve is operated by the pilot pressure, and when the pilot pressure acting on the actuator control valve is higher than the threshold value, the stroke limiting unit limits the stroke by lowering the pilot pressure to the threshold value.
  • a plurality of hydraulic actuators including a swivel motor for swiveling the machine body and the work tool drive actuator, a pump for discharging hydraulic oil to be supplied to the plurality of hydraulic actuators, and the plurality of hydraulic actuators from the discharge pressure of the pump. It is provided with a load sensing system that controls the pump so that the differential pressure obtained by subtracting the maximum load pressure is made constant.
  • the pseudo load forming portion creates a pseudo load in the direction switching valve on the low load side in advance to increase the operating pressure of the low load hydraulic actuator, whereby the high load hydraulic actuator and the low load are generated. It is possible to reduce the pressure difference when the hydraulic actuator is combined with the hydraulic actuator. As a result, it is possible to suppress a change in the operating speed of the low-load hydraulic actuator when the high-load hydraulic actuator and the low-load hydraulic actuator are operated in combination and when the low-load hydraulic actuator is operated independently.
  • the relief set pressure when the operating member is not operated can be suppressed to a low level.
  • the relief set pressure rises from a place where the pressure is low, so that the start shock of the hydraulic actuator can be suppressed.
  • the temperature of the hydraulic oil flowing to the turning side is reduced by reducing the relief set pressure of the variable overload relief valve. The rise can be suppressed.
  • FIG. 1 is a schematic side view showing the overall configuration of the work machine 1 according to the present embodiment.
  • FIG. 2 is a schematic plan view of the working machine 1.
  • a backhoe which is a swivel work machine
  • the working machine is not limited to the backhoe, and may be a tractor, a wheel loader, a combine, or the like.
  • the working machine 1 includes a traveling body 1A and a working device 4 equipped on the traveling body 1A.
  • the traveling body 1A includes a traveling device 3, a machine body (swivel table) 2 mounted on the traveling device 3, and a cabin 5 mounted on the machine body 2.
  • a driver's seat (seat) 6 on which an operator (driver) is seated is provided in the cabin 5.
  • the driver's seat 6 is mounted on the aircraft 2, and the cabin 5 surrounds the driver's seat 6. That is, the cabin 5 is a driver's seat protection device.
  • the driver's seat protection device may be a canopy.
  • the front side (direction of arrow A1 in FIGS. 1 and 2) of the operator seated in the driver's seat 6 of the work machine 1 is forward, and the rear side of the operator (direction of arrow A2 in FIGS. 1 and 2) is rear.
  • the left side of the driver (direction of arrow A3 in FIG. 1) will be described as the left side, and the right side of the operator (direction of arrow A4 in FIG. 1) will be described as the right side.
  • the horizontal direction which is a direction orthogonal to the front-rear direction K1
  • the machine body width direction K2 width direction of the machine body 2.
  • the direction from the central portion to the right portion or the left portion in the width direction of the machine body 2 will be described as the outside of the machine body (outside of the body width direction K2). That is, the outer side of the machine body is the direction K2 in the width direction of the machine body and away from the center in the width direction of the body body 2.
  • the direction opposite to the outside of the machine body will be described as the inside of the machine body (inside of the body width direction K2). That is, the inside of the machine is the direction K2 in the width direction of the machine and approaches the center in the width direction of the body 2.
  • the traveling device 3 is a device that supports the body 2 so as to travel.
  • the traveling device 3 has a traveling frame 3A, a first traveling device 3L provided on the left side of the traveling frame 3A, and a second traveling device 3R provided on the right side of the traveling frame 3A.
  • the first traveling device 3L and the second traveling device 3R are crawler type traveling devices.
  • the first traveling device 3L is driven by the first traveling motor ML.
  • the second traveling device 3R is driven by the second traveling motor MR.
  • the first traveling motor ML and the second traveling motor MR are composed of a hydraulic motor (hydraulic actuator).
  • a dozer device 7 is attached to the front portion of the traveling device 3.
  • the dozer device 7 is driven by the dozer cylinder C1.
  • the dozer cylinder C1 is composed of a hydraulic cylinder (hydraulic actuator), and the blade 7A of the dozer device 7 is raised and lowered by expanding and contracting the dozer cylinder C1.
  • the airframe 2 is rotatably supported on a traveling frame 3A via a swivel bearing 8 around a swivel axis (vertical axis) X1.
  • the swivel axis X1 is an axis extending in the vertical direction passing through the center of the swivel bearing 8.
  • the cabin 5 is mounted on one side (left side) of the body 2 in the width direction K2.
  • the cabin 5 is arranged closer to one side (left side) of the body width direction K2 than the center line Y1 extending through the turning axis X1 and extending in the front-rear direction K1.
  • the cabin 5 is provided near the front portion of the airframe 2.
  • the prime mover E1 is mounted on the other side (right side) of the width direction K2 of the machine body 2.
  • the prime mover E1 is mounted vertically on the machine body 2.
  • the vertical installation means that the axial center of the crankshaft of the prime mover E1 is arranged so as to extend in the front-rear direction.
  • the prime mover E1 is arranged closer to the other side (right side) of the body width direction K2 than the center line Y1.
  • the prime mover E1 is a diesel engine.
  • the prime mover E1 may be a gasoline engine or an electric motor, or may be a hybrid type having an engine and an electric motor.
  • a pressure oil supply unit 18 is provided at the rear of the prime mover E1.
  • the pressure oil supply unit 18 is driven by the power of the prime mover E1 to pressurize and discharge the hydraulic oil used in the hydraulic drive unit.
  • the hydraulic drive unit is, for example, a hydraulic actuator mounted on the work machine 1.
  • a radiator R1, an oil cooler O1 and a condenser D1 are arranged in front of the prime mover E1 and mounted on the machine body 2.
  • the radiator R1 is a cooling device (first cooling device) for cooling the cooling water (fluid) of the prime mover E1
  • the oil cooler O1 is a cooling device (second cooling device) for cooling the hydraulic oil (fluid).
  • the condenser D1 is a cooling device (condenser) for cooling the refrigerant (fluid) of the air conditioner (air conditioner) equipped in the work machine 1.
  • a cooling fan F1 that generates cooling air for cooling the prime mover E1 is provided between the radiator R1 and the prime mover E1.
  • the cooling fan F1 is driven by the power of the prime mover E1 to generate cooling air flowing from the front to the rear.
  • the airframe 2 has a substrate (hereinafter, referred to as a swivel substrate) 9 that swivels around a swivel axis X1.
  • the swivel substrate 9 is formed of a steel plate or the like and constitutes the bottom portion of the machine body 2.
  • the prime mover E1 is mounted on the swivel board 9.
  • Vertical ribs 9L and 9R which are reinforcing members, are provided on the center side of the upper surface of the swivel substrate 9 from the front portion to the rear portion.
  • the vertical ribs 9L are arranged on one side from the center of the body 2 in the width direction K2, and the vertical ribs 9R are arranged on the other side.
  • the swivel substrate 9 is provided with a member or the like for supporting an object such as a device mounted on the machine body 2, so that a swivel frame serving as a skeleton of the machine body 2 is configured.
  • the horizontal perimeter of the swivel frame is covered by a swivel cover.
  • a weight 10 is provided at the rear of the machine body 2.
  • the weight 10 is arranged at the rear part of the machine body 2, and the lower part is attached to the swivel board 9.
  • a fuel tank T1 and a hydraulic oil tank T2 arranged side by side along the body width direction K2 are mounted on the rear portion of the machine body 2.
  • the fuel tank T1 is a tank for storing the fuel of the prime mover E1.
  • the hydraulic oil tank T2 is a tank for storing hydraulic oil.
  • a swivel motor MT is arranged at the front of the swivel board 9 (airframe 2) and at the center of the body width direction K2, and the swivel motor MT causes the swivel board 9 to rotate around the swivel axis X1. It is swiveled.
  • the swivel motor MT is a hydraulic motor (hydraulic actuator).
  • a swivel joint (hydraulic device) S1 is provided at the swivel axis X1 position.
  • the swivel joint S1 is a hydraulic device for circulating hydraulic oil, and is a rotary joint (rotary joint) for circulating hydraulic oil between the hydraulic device on the machine body 2 side and the hydraulic device on the traveling device 3 side.
  • a swivel motor MT is arranged in front of the swivel joint S1.
  • a control valve (hydraulic device) CV is arranged behind the swivel joint S1.
  • the control valve CV is a sectional type compound control valve (hydraulic device) having a plurality of control valves (valves) stacked and connected in the vertical direction.
  • a control device U1 is provided below the cabin 5.
  • a control device 1B for controlling the work machine 1 is provided in the cabin 5, a control device 1B for controlling the work machine 1 is provided.
  • the control device 1B is installed in front of the driver's seat 6.
  • the driver's seat 6 and the control device 1B constitute the driver's unit 1C.
  • the airframe 2 has a support bracket 13 at a front portion slightly to the right of the center in the airframe width direction K2.
  • the support bracket 13 is fixed to the front portion of the vertical ribs 9L and 9R, and is provided so as to project forward from the machine body 2.
  • the swing bracket 14 is placed around the vertical axis (the axis extending in the vertical direction) via the swing shaft 14A. It is mounted so that it can swing. Therefore, the swing bracket 14 can rotate in the body width direction K2 (horizontally about the swing shaft 14A). As shown in FIG. 1, at least a part of the swing bracket 14 overlaps with the center line Y1 when the boom 15 described later is facing the front direction (forward) of the machine body in front of the turning axis X1. It is placed in position. Further, the center line Y1 is located between the line Y2 in the front-rear direction passing through the axis (swing axis) X2 of the swing shaft 14A and the right side surface of the cabin 5 (substantially in the center).
  • the work device 4 is rotatably supported around the swing axis X2 on the swing bracket 14 (machine 2).
  • the working device 4 has a boom 15, an arm 16, and a working tool (bucket) 17.
  • the base of the boom 15 is pivotally supported above the swing bracket 14 via a pivot.
  • the base of the boom 15 is pivotally attached to the upper part of the swing bracket 14 around the horizontal axis (the axis extending in the width direction K2 of the machine) while the boom 15 faces the front of the machine. There is.
  • the boom 15 can swing in the vertical direction.
  • the boom 15 is bent so that the central portion in the longitudinal direction is convex rearward at the highest position shown in FIG.
  • the arm 16 is pivotally supported on the tip end side of the boom 15 via a pivot axis. Specifically, the arm 16 is pivotally attached to the boom 15 so as to be rotatable around the center of the horizontal axis in a state where the boom 15 faces the front direction of the machine body. As a result, the arm 16 can swing in the front-rear direction K1 or in the up-down direction. Further, the arm 16 can swing in a direction closer to the boom 15 (cloud direction) and in a direction away from the boom 15 (dump direction).
  • the work tool 17 is pivotally supported on the tip end side of the arm 16 via a pivot axis. Specifically, the work tool 17 is pivotally attached to the arm 16 so as to be rotatable around the center of the horizontal axis in a state where the boom 15 faces the front direction of the machine body. As a result, the work tool 17 can swing in the direction closer to the arm 16 (cloud direction) and in the direction away from the arm 16 (dump direction). Further, a bucket as a working tool 17 is provided on the arm 16 so that a squeeze operation and a dump operation can be performed.
  • the squeeze operation is an operation of swinging the work tool 17 in a direction closer to the boom 15, and is an operation of scooping earth and sand, for example.
  • the dump operation is an operation of swinging the work tool 17 in a direction away from the boom 15, for example, an operation of dropping (discharging) scooped earth and sand.
  • work tools such as pallet forks and mania forks, and hydraulic actuators such as grapples, hydraulic crushers, angle blooms, earth augers, snow blowers, sweepers, mowers, and hydraulic breakers. It is possible to attach a work tool (hydraulic attachment) that has.
  • the swing bracket 14 can swing by expanding and contracting the swing cylinder C2 provided in the machine body 2.
  • the boom 15 can swing by expanding and contracting the boom cylinder C3.
  • the arm 16 can swing by expanding and contracting the arm cylinder C4.
  • the work tool 17 can swing by expanding and contracting the work tool cylinder (bucket cylinder) C5.
  • the swing cylinder C2, the boom cylinder C3, the arm cylinder C4, and the work tool cylinder C5 are composed of a hydraulic cylinder (hydraulic actuator).
  • the hydraulic system includes a control valve CV, a pressure oil supply unit 18, and a flow rate control unit 19.
  • the control valve CV includes control valves V1 to V10 for controlling various hydraulic actuators ML, MR, MT, and C1 to C6, an inlet block B2 for taking in pressure oil, and a pair of outlet blocks B1 and B3 for discharging oil in one direction. It is arranged and aggregated.
  • the control valve CV includes a first outlet block B1, a work tool control valve V1 for controlling the work tool cylinder C5, a boom control valve V2 for controlling the boom cylinder C3, and a dozer cylinder C1.
  • Valve V5 second control valve V6 for dozer that controls dozer cylinder C1, arm control valve V7 that controls arm cylinder C4, swing control valve V8 that controls swing motor MT, swing control valve V9 that controls swing cylinder C2,
  • the SP control valve V10 and the second outlet block B3 that control the hydraulic actuator C6 mounted on the hydraulic attachment are arranged in order (arranged in order from the right in FIG. 3). And these are connected to each other.
  • each control valve V1 to V10 is configured by incorporating a direction switching valve DV1 to DV10 and a pressure compensator valve (compensator valve) V11 in the valve body.
  • the direction switching valves DV1 to DV10 are valves that switch the direction of the hydraulic oil with respect to the hydraulic actuators ML, MR, MT, and C1 to C6 to be controlled.
  • the pressure compensating valve V11 is provided on the lower side of the pressure oil supply to the directional control valves DV1 to DV10 and on the upper side of the pressure oil supply to the hydraulic actuators ML, MR, MT, C1 to C6 to be controlled.
  • the pressure compensation valve V11 functions as a load adjustment between the hydraulic actuators ML, MR, MT, and C1 to C6 when a plurality of the control valves V1 to V10 are used.
  • a first relief valve V12 and a first unload valve V13 are incorporated in the first outlet block B1, and a traveling independent valve V14 is incorporated in the inlet block B2.
  • the first relief valve V12 is a main relief valve that regulates the pressure of the hydraulic oil discharged from the first pressure oil discharge port P1 described later.
  • the traveling independent valve V14 is composed of a linear-acting spool type switching valve and a pilot-operated switching valve that is switched by pilot pressure.
  • a second relief valve V15 and a second unload valve V16 are incorporated in the second outlet block B3.
  • the second relief valve V15 is a main relief valve that regulates the pressure of the hydraulic oil discharged from the second pressure oil discharge port P2, which will be described later.
  • Each direction switching valve DV1 to DV10 is composed of a linear motion spool type switching valve. Further, the directional switching valves DV1 to DV10 are control valves that are electrically controlled by the control device U1. Specifically, as the direction switching valves DV1 to DV10, for example, a pilot type solenoid valve is adopted.
  • the pilot type solenoid valve is a valve that controls the flow of hydraulic oil by moving the spool by the pilot pressure controlled by the solenoid.
  • the solenoids of the direction switching valves DV1 to DV10 are connected to the control device U1 and switch in each direction by the pilot pressure according to the command signal (current value) transmitted from the control device U1.
  • the valves DV1 to DV10 are switched.
  • an operating member 41 (first operating tool 41A to seventh operating tool 41G) for operating the direction switching valves DV1 to DV10 is connected to the control device U1.
  • the control device U1 transmits a current value corresponding to the amount of operation of the operating member 41 to the solenoids of the directional switching valves DV1 to DV10 to be operated.
  • the first operating tool 41A, the second operating tool 41B, the third operating tool 41C, and the seventh operating tool 41G are provided on, for example, the control device 1B, and are handles and levers that are gripped and operated by an operator seated in the driver's seat 6. Consists of. Further, the fourth operating tool 41D, the fifth operating tool 41E, and the sixth operating tool 41F are provided on the floor in front of the driver's seat 6, for example, and are composed of pedals operated by the operator's stepping operation.
  • the first operating tool 41A can operate two operation targets equipped on the work machine 1, for example, can operate the direction switching valve DV8 (the machine body 2 can be swiveled) and operates the direction switching valve DV7. It is possible (the arm 16 can be swung). Further, the first operating tool 41A has a sensor 42 (first sensor 42A) that detects the operating direction and the operating amount. The first sensor 42A is connected to the control device U1. The control device U1 controls the swivel control valve V8 and the arm control valve V7 based on the detection signal from the first sensor 42A.
  • the second operating tool 41B can also operate two operation targets equipped on the work machine 1, for example, the direction switching valve DV2 can be operated (the boom 15 can be swung) and the direction switching valve DV1 can be operated. It can be operated (the work tool 17 can be swung). Further, the second operating tool 41B has a sensor (operation detecting unit) 42 (second sensor 42B) that detects the operating direction and the operating amount.
  • the configuration of the second sensor 42B is not particularly limited, but for example, a potentiometer or the like can be used.
  • the second sensor 42B is connected to the control device U1.
  • the control device U1 controls the boom control valve V2 and the work tool control valve V1 based on the detection signal from the second sensor 42B.
  • the third operating tool 41C can operate the directional switching valve DV3 and the directional switching valve DV6 (the dozer device 7 can be operated). Further, the third operating tool 41C has a sensor 42 (third sensor 42C) that detects the operating direction and the operating amount.
  • the third sensor 42C is connected to the control device U1.
  • the control device U1 controls the first control valve V3 for the dozer and the second control valve V6 for the dozer based on the detection signal from the third sensor 42C.
  • the fourth operating tool 41D can operate the direction switching valve DV9 (the swing bracket 14 can be operated). Further, the fourth operating tool 41D has a sensor 42 (fourth sensor 42D) that detects the operating direction and the operating amount. The fourth sensor 42D is connected to the control device U1. The control device U1 controls the swing control valve V9 based on the detection signal from the fourth sensor 42D.
  • the fifth operating tool 41E can operate the direction switching valve DV5 (the first traveling device 3L can be operated). Further, the fifth operating tool 41E has a sensor 42 (fifth sensor 42E) that detects the operating direction and the operating amount. The fifth sensor 42E is connected to the control device U1. The control device U1 controls the first travel control valve V5 based on the detection signal from the fifth sensor 42E.
  • the sixth operating tool 41F can operate the direction switching valve DV4 (the second traveling device 3R can be operated). Further, the sixth operating tool 41F has a sensor 42 (sixth sensor 42F) that detects the operating direction and the operating amount. The sixth sensor 42F is connected to the control device U1. The control device U1 controls the second travel control valve V4 based on the detection signal from the sixth sensor 42F.
  • the seventh operating tool 41G can operate the direction switching valve DV10 (the hydraulic attachment as a working tool can be operated). Further, the seventh operating tool 41G has a sensor 42 (seventh sensor 42G) that detects the operating direction and the operating amount.
  • the seventh sensor 42G is connected to the control device U1.
  • the control device U1 controls the SP control valve V4 based on the detection signal from the seventh sensor 42G.
  • the first sensor 42A to the seventh sensor 42G are composed of, for example, a position sensor or the like.
  • the spools of the direction switching valves DV1 to DV10 are moved in proportion to the amount of operation of each operating member 41 that operates the direction switching valves DV1 to DV10, and are proportional to the amount of movement of the direction switching valves DV1 to DV10. It is configured to supply the amount of hydraulic oil to be controlled to the hydraulic actuators ML, MR, MT, C1 to C6 to be controlled, and the operating speed of the operating target (controlled target) is proportional to the operating amount of each operating member 41. Is said to be shiftable.
  • the hydraulic pump as the pressure oil supply source in this hydraulic system includes the first pump 21 for supplying the hydraulic oil that operates the hydraulic actuators ML, MR, MT, C1 to C6, and the signal pressure oil such as the pilot pressure and the detection signal. It is equipped with a second pump 22 for supplying the above.
  • the first pump 21 and the second pump 22 are provided in the pressure oil supply unit 18 and are driven by the prime mover E1.
  • the first pump 21 is composed of a swash plate type variable displacement axial pump having a function of an equal flow rate double pump that discharges an equal amount of hydraulic oil from two independent pressure oil discharge ports P1 and P2. ing.
  • the first pump 21 employs a split-flow type hydraulic pump having a mechanism for alternately discharging hydraulic oil from one piston / cylinder barrel kit to the discharge grooves formed inside and outside the valve plate.
  • first pressure oil discharge port P1 One pressure oil discharge port discharged from the first pump 21 is referred to as a first pressure oil discharge port P1, and the other pressure oil discharge port is referred to as a second pressure oil discharge port P2.
  • the pressure oil discharge ports discharged from the hydraulic pumps having two pump functions are the first and second pressure oil discharge ports P1 and P2, but one of the two separately formed hydraulic pumps.
  • the pressure oil discharge port of the hydraulic pump may be the first pressure oil discharge port, and the pressure oil discharge port of the other hydraulic pump may be the second pressure oil discharge port.
  • the pressure oil supply unit 18 is equipped with a pressing piston 23 that presses the swash plate of the first pump 21, and a flow rate compensation piston 24 that controls the swash plate of the first pump 21.
  • the first pump 21 is configured such that the swash plate is pressed in a direction of increasing the pump flow rate via the pressing piston 23 by the self-pressure of the first pump 21, and also counteracts the pressing force of the pressing piston 23.
  • the discharge flow rate of the first pump 21 is controlled by controlling the pressure acting on the flow rate compensating piston 24, which is configured to act on the swash plate by the flow rate compensating piston 24.
  • the first pump 21 discharges the maximum flow rate with the swash plate angle set to MAX.
  • the flow rate control unit 19 controls the swash plate of the first pump 21, and the swash plate control of the first pump 21 is equipped with a pressure acting on the flow rate compensating piston 24 in the flow rate control unit 19. This is done by controlling the flow rate compensating valve V17.
  • the pressure oil supply unit 18 is provided with a spring 25 and a spool 26 for controlling the pump horse force (torque) of the first pump 21, and the discharge pressure of the first pump 21 is a preset pressure. Then, the first pump 21 is configured to limit the horsepower (torque) absorbed from the prime mover E1.
  • the second pump 22 is composed of a constant-capacity gear pump, and the discharged oil of the second pump 22 is discharged from the third pressure oil discharge port P3.
  • the first pressure oil discharge port P1 is connected to the inlet block B2 via the first discharge path a, and the second pressure oil discharge port P2 is connected to the inlet block B2 via the second discharge path b.
  • the first discharge path a is connected to the first pressure oil supply path d, and the first pressure oil supply path d is from the inlet block B2 to the valve body of the second travel control valve V4 ⁇ the valve of the first control valve V3 for the dozer. It is formed so as to reach the first outlet block B1 via the body ⁇ the valve body of the boom control valve V2 ⁇ the valve body of the work tool control valve V1, and is branched (at the end of the flow path) at the first outlet block B1. It is connected to the first relief valve V12 and the first unload valve V13.
  • the hydraulic oil can be supplied via f.
  • the first relief valve V12 and the first unload valve V13 are connected to the drain oil passage g.
  • the drain oil passage g is from the first outlet block B1 to the valve body of the work tool control valve V1 ⁇ the valve body of the boom control valve V2 ⁇ the valve body of the first control valve V3 for the dozer ⁇ the valve body of the second travel control valve V4 ⁇ Inlet block B2 ⁇ Valve body of first travel control valve V5 ⁇ Valve body of second control valve V6 for dozer ⁇ Valve body of arm control valve V7 ⁇ Valve body of swing control valve V8 ⁇ Valve body of swing control valve V9 ⁇ SP It is formed so as to reach the second outlet block B3 via the valve body of the control valve V10.
  • the hydraulic oil flowing through the drain oil passage g is discharged from the second outlet block B3 to the hydraulic oil tank T2.
  • the second discharge path b is connected to the second pressure oil supply path e.
  • the second pressure oil supply path e is from the inlet block B2 to the valve body of the first traveling control valve V5 ⁇ the valve body of the second control valve V6 for the dozer ⁇ the valve body of the arm control valve V7 ⁇ the valve body of the swivel control valve V8 ⁇ swing It is formed so as to reach the second outlet block B3 via the valve body of the control valve V9 ⁇ the valve body of the SP control valve V10, and is branched at the second outlet block B3 (at the end of the flow path) to reach the second outlet block B3. It is connected to the relief valve V15 and the second unload valve V16.
  • the hydraulic oil supplied to the control valves V1 to V10 is supplied to and discharged from the hydraulic actuators ML, MR, MT, and C1 to C6. That is, the hydraulic system has a hydraulic circuit for supplying and discharging hydraulic oil to each of the hydraulic actuators ML, MR, MT, and C1 to C6.
  • the second relief valve V15 and the second unload valve V16 are connected to the drain oil passage g.
  • the first pressure oil supply path d and the second pressure oil supply path e are connected to each other in the inlet block B2 via a communication passage j that crosses the traveling independent valve V14.
  • the traveling independent valve V14 is freely switchable between an independent position 27 that shuts off the pressure oil flow in the communication passage j and a confluence position 28 that allows the pressure oil flow in the communication passage j.
  • the hydraulic oil from the first pressure oil discharge port P1 becomes the respective direction switching valves DV4 and DV3 of the second traveling control valve V4 and the first control valve V3 for the dozer.
  • the hydraulic oil from the second pressure oil discharge port P2 can be supplied to the first traveling control valve V5 and the direction switching valves DV5 and DV6 of the second control valve V6 for the dozer, so that the first pressure can be supplied.
  • the hydraulic oil from the oil discharge port P1 is not supplied to the first travel control valve V5 and the second control valve V6 for the dozer, and the hydraulic oil from the second pressure oil discharge port P2 is supplied to the second travel control valve V4. It is not supplied to the first control valve V3 for the dozer.
  • the traveling independent valve V14 when the traveling independent valve V14 is switched to the merging position 28, the hydraulic oil from the first pressure oil discharge port P1 and the hydraulic oil from the second pressure oil discharge port P2 are merged, and the control valves V1 to V10 It can be supplied to the direction switching valves DV1 to DV10.
  • the third pressure oil discharge port P3 is connected to the inlet block B2 via the third discharge passage m, and the third discharge passage m is branched into a first branch oil passage m1 and a second branch oil passage m2 on the way. Is connected to the inlet block B2.
  • the first branch oil passage m1 is connected to the pressure receiving portion 14a on one side of the traveling independent valve V14 via the first signal oil passage n1, and the second branch oil passage m2 is connected to the traveling independent valve via the second signal oil passage n2. It is connected to the pressure receiving portion 14b on the other side of the V14.
  • the first detection oil passage r1 is connected to the first signal oil passage n1, and the second detection oil passage r2 is connected to the second signal oil passage n2.
  • the first detection oil passage r1 is the direction switching valve DV6 of the second control valve V6 for the dozer ⁇ the direction switching valve DV5 of the first traveling control valve V5 ⁇ the direction switching of the second traveling control valve V4 from the first signal oil passage n1.
  • the valve DV4 is connected to the drain oil passage g via the direction switching valve DV3 of the first control valve V3 for the dozer.
  • the second detection oil passage r2 is from the second signal oil passage n2 to the direction switching valve DV10 of the SP control valve V10 ⁇ the direction switching valve DV9 of the swing control valve V9 ⁇ the direction switching valve DV8 of the swing control valve V8 ⁇ the arm control valve V7.
  • Direction switching valve DV7 Direction switching valve DV6 of the second control valve V6 for the dozer
  • Direction switching valve DV5 of the first traveling control valve V5 Direction switching valve DV4 of the second traveling control valve V4 ⁇
  • First control valve V3 for the dozer It is connected to the drain oil passage g via the direction switching valve DV3 ⁇ the direction switching valve DV2 of the boom control valve V2 ⁇ the direction switching valve DV1 of the work tool control valve V1.
  • the traveling independent valve V14 is held at the merging position 28 by the force of a spring when the direction switching valves DV1 to DV10 of the control valves V1 to V10 are neutral. Then, when any of the direction switching valves DV of the second travel control valve V4, the first travel control valve V5, the first control valve V3 for the dozer, and the second control valve V6 for the dozer is operated from the neutral position, Pressure is applied to the first detection oil passage r1 and the first signal oil passage n1, and the traveling independent valve V14 is switched from the merging position 28 to the independent position 27.
  • the hydraulic oil from the first pressure oil discharge port P1 is the second traveling control valve V4, the dozer.
  • the hydraulic oil supplied to each direction switching valve DV of the first control valve V3 for use and hydraulic oil from the second pressure oil discharge port P2 is the direction switching valve DV of the first travel control valve V5 and the first control valve V3 for the dozer. Is supplied to.
  • pressure is applied to the second detection oil passage r2 and the second signal oil passage n2, and the traveling independent valve V14 is switched from the independent position 27 to the merging position 28.
  • the traveling independent valve V14 is at the merging position 28.
  • this hydraulic system is provided with an auto idling control system (AI system) that automatically operates the accelerator device of the prime mover E1.
  • AI system includes an AI switch (pressure switch) 29 connected to a first branch oil passage m1 and a second branch oil passage m2 of the third discharge passage m via a sensing oil passage s and a shuttle valve V18, and a prime mover.
  • An electric actuator for controlling the governor of E1 and a control device for controlling the electric actuator are provided, and the AI switch 29 is connected to the control device.
  • a pressure is applied to the first branch oil passage m1 or the second branch oil passage m2, and this pressure is applied to the AI switch.
  • the AI switch 29 is pressure-sensitive when sensed by 29. Then, a command signal is output from the control device to the electric actuator or the like, and the electric actuator or the like automatically controls the accelerator so as to raise the accelerator to the set accelerator position.
  • the load sensing system of the present embodiment includes pressure compensating valves V11 provided in each of the control valves V1 to V10, a flow rate compensating piston 24 for controlling the swash plate of the first pump 21, and a flow rate equipped in the flow rate control unit 19. It has a compensation valve V17, the first and second relief valves V12 and V15, and the first and second unload valves V13 and V16.
  • the load sensing system of the present embodiment employs an after-orifice type load sensing system in which the pressure compensating valve V11 is provided on the lower side of the pressure oil supply to the direction switching valves DV1 to DV10.
  • the load sensing system when a plurality of hydraulic actuators ML, MR, MT, C1 to C6 equipped in the work machine 1 are operated at the same time, the load between the hydraulic actuators ML, MR, MT, C1 to C6 is applied.
  • the pressure compensation valve V11 functions as the adjustment of the pressure, causing the control valves V1 to V10 on the low load pressure side to generate a pressure loss corresponding to the pressure difference from the maximum load pressure, and the direction switching valves DV1 to DV10 regardless of the magnitude of the load. It is possible to flow (distribute) the flow rate according to the operation amount of the spool.
  • the load sensing system controls the discharge amount of the first pump 21 according to the load pressure of each of the hydraulic actuators ML, MR, MT, C1 to C6 mounted on the work machine 1, and is required for the load. By discharging the hydraulic power from the first pump 21, it is possible to save power and improve operability.
  • the load sensing system of this embodiment will be described in more detail.
  • the PLS signal oil passage w that transmits the highest load pressure among the load pressures of the control valves V1 to V10 as the PLS signal pressure to the flow rate compensation valve V17 and the discharge pressure of the first pump 21 are PPS. It has a PPS signal oil passage x that is transmitted to the flow rate compensation valve V17 as a signal pressure.
  • the PLS signal oil passage w is from the first outlet block B1 to the valve body of the work tool control valve V1 ⁇ the valve body of the boom control valve V2 ⁇ the valve body of the first control valve V3 for the dozer ⁇ the valve body of the second travel control valve V4.
  • the valve body of the control valve V9 ⁇ the valve body of the SP control valve V10 ⁇ the second outlet block B3 is provided, and the PLS signal oil passage w is provided in each control valve via the load transmission line y to the pressure compensation valve V11. It is connected.
  • the PLS signal oil passage w is connected from the second outlet block B3 to one side of the spool of the flow rate compensation valve V17, and the PPS signal pressure acts on one side of the spool of the flow rate compensation valve V17. Further, the PLS signal oil passage w is connected to the first unload valve V13 and the drain oil passage g in the first outlet block B1, and is connected to the second unload valve V16 and the drain oil passage g in the second outlet block B3. ing.
  • the traveling independent valve V14 When the traveling independent valve V14 is at the merging position 28, the line w1 from the traveling independent valve V14 to the first outlet block B1 and the line w2 from the traveling independent valve V14 to the second outlet block B3 in the PLS signal oil passage w.
  • the traveling independent valve V14 When the traveling independent valve V14 is switched from the merging position 28 to the independent position 27, the traveling independent valve V14 shuts off the PLS signal oil passage w.
  • the PLS signal oil passage w has a line w1 on the side where hydraulic oil is supplied from the first pressure oil discharge port P1 and a second pressure oil discharge port P2. It is divided into the line w2 on the side to which the pressure oil is supplied.
  • the PPS signal oil passage x is provided from the traveling independent valve V14 to the other side of the spool of the flow compensation valve V17, and the PPS signal oil passage x is the second pressure when the traveling independent valve V14 is at the merging position 28.
  • the PPS signal pressure (discharge pressure of the first pump 21) acts on the other side of the spool of the flow rate compensating valve V17 while being communicated with the oil supply passage e via the connecting oil passage z, and the traveling independent valve V14 is in an independent position.
  • the PPS signal oil passage x communicates with the drain oil passage g via the escape oil passage q, and the PPS signal pressure becomes zero.
  • a spring 30 for applying a control differential pressure to the flow rate compensation valve V17 and a differential pressure piston 31 are provided on one side of the spool of the flow rate compensation valve V17.
  • the traveling independent valve V14 is at the merging position 28, and at this time, the first pressure oil supply path d.
  • the flow path end side of the second unload valve V13 is blocked by the first unload valve V13, and the flow path end side of the second pressure oil supply path e is blocked by the second unload valve V16.
  • the first pump 21 When the discharge pressure (PPS signal pressure) of the first pump 21 rises and the difference between the PPS signal pressure and the PLS signal pressure (which is zero at this time) becomes larger than the control differential pressure, the first pump 21 The flow rate is controlled in the direction of reducing the discharge amount, and the first and second unload valves V16 are opened to drop the discharge oil from the first pump 21 into the hydraulic oil tank T2.
  • the discharge pressure of the first pump 21 is the pressure set by the first and second unload valves V13 and V16, and the discharge flow rate of the first pump 21 is the minimum discharge amount.
  • the traveling independent valve V14 is at the merging position 28, and the maximum load pressure acting on the operated hydraulic actuators ML, MR, MT, C1 to C6 becomes the PLS signal pressure, and the PPS signal pressure-PLS signal.
  • the discharge pressure (discharge flow rate) of the first pump 21 is automatically controlled so that the pressure becomes the control differential pressure (so that the difference between the PPS signal pressure and the PLS signal pressure is maintained at the set value). That is, when the unload flow rate via the first and second unload valves V13 and V16 becomes zero, the discharge flow rate of the first pump 21 starts to increase, and the first one is adjusted according to the operation amount of the operated control valve.
  • the entire amount of discharged oil of the pump 21 flows to the operated hydraulic actuators ML, MR, MT, C1 to C6.
  • the pressure compensation valve V11 makes the front-rear differential pressure of the spools of the direction switching valves DV1 to DV10 of the operated control valves V1 to V10 constant, and acts on the operated hydraulic actuators ML, MR, MT, C1 to C6. Regardless of the difference in the magnitude of the load, the discharge flow rate of the first pump 21 is divided into the operated hydraulic actuators ML, MR, MT, and C1 to C6 in an amount corresponding to the operation amount.
  • the traveling independent valve V14 is switched to the independent position 27, the communication independent valve V14 shuts off the communication passage j and the PLS signal oil passage w, and the PPS signal oil passage x is an escape oil passage. It communicates with the drain oil passage g via q, and the PPS signal pressure becomes zero. Therefore, the hydraulic oil from the first pressure oil discharge port P1 flows to the second travel control valve V4 and the first control valve V3 for the dozer, and does not flow to the first travel control valve V5 and the second control valve V6 for the dozer.
  • the hydraulic oil from the second pressure oil discharge port P2 flows to the first traveling control valve V5 and the second control valve V6 for the dozer, and does not flow to the traveling right control valve V4 and the first control valve V3 for the dozer. Further, since the PPS signal pressure is zero, the first pump 21 discharges the maximum flow rate with the swash plate angle set to MAX.
  • the hydraulic oil is evenly distributed from the first pressure oil supply path d and the second pressure oil supply path e by the first control valve V3 for the dozer and the second control valve V6 for the dozer. Since it is taken out and sent to the dozer cylinder C1, it is possible to ensure the traveling straightness of the working machine 1. Further, when the work machine 1 is turned to the left or right, the pressure compensation valve V11 controls the flow distribution, so that the load applied to the traveling motors ML and MR is high and the load applied to the dozer cylinder C1 is low.
  • the hydraulic oil from the first pressure oil discharge port P1 is supplied to the second travel control valve V4, and the hydraulic oil from the second pressure oil discharge port P2 is first traveled. Since it is possible to maintain an independent circuit configuration in which the control valve V5 is supplied independently and the hydraulic oil from the first and second pressure oil discharge ports P1 and P2 is evenly drained, it is supplied to the left and right traveling motors ML and MR. The pressure oil supply flow rate is secured, and the turn performance can be secured.
  • the dozer control valve when there is one dozer control valve that controls the dozer cylinder, the dozer control valve is provided so that hydraulic oil is supplied from either the first pressure oil supply path or the second pressure oil supply path.
  • the pressure loss of the pressure oil supply system on the side where the control valve for the dozer is provided is large and the movement becomes slow (specifically, the pressure oil supply system from the first pressure oil discharge port P1).
  • a control valve for a dozer When a control valve for a dozer is provided in the door, it moves when turning left while operating the dozer device 7, but when turning right while operating the dozer device 7, the movement is slow when the dozer device 7 is operated. Become).
  • the control of splitting and discharging excess hydraulic oil from the unload valves V13 and V16 to the hydraulic oil tank T2 is controlled by the pressure oil supply system from the first pressure oil discharge port P1 and the pressure from the second pressure oil discharge port P2. It can be performed independently in each circuit of the oil supply system, and the function of the pressure compensation valve V11 can be ensured.
  • the traveling independent valve V14 when driving only the traveling body 1A or only the dozer device 7, the traveling independent valve V14 is switched to the independent position 27 and the traveling independent valve V14 switches to the independent position 27 as in the case where the earthwork is performed by the dozer device 7 while traveling.
  • the communication passage j and the PLS signal oil passage w are cut off, and the PPS signal oil passage x communicates with the drain oil passage g via the escape oil passage, so that the PPS signal pressure becomes zero.
  • the traveling motors ML and MR are arranged from the first pump 21. It is possible to reduce the pressure loss (pressure loss) in the hydraulic pipeline leading to the above.
  • the first pump 21 employs a split flow type hydraulic pump, and the discharge flow rate from the first pressure oil discharge port P1 and the second pressure oil discharge port P2. Since the discharge flow rate from the pump 21 cannot be controlled independently, the discharge flow rate of the first pump 21 when the first hydraulic oil supply path d and the second hydraulic oil supply path e are made independent (when they are not merged).
  • each hydraulic pump is configured to independently control and discharge only the required flow rate even when the traveling independent valve V14 is in the independent position 27 (in this case).
  • the two hydraulic pumps may be controlled to discharge the maximum flow rate at the same time when they merge).
  • the traveling independent valve V14 it is conceivable to configure the traveling independent valve V14 to be at the merging position 28 when only the dozer device 7 is operated, but then, when the dozer device 7 is operated while traveling, the traveling independent valve V14 A third detection oil passage for detecting that the direction switching valves DV3 and DV6 of the control valves V3 and V6 for the dozer have been operated must be provided in order to hold the dozer at the independent position 27.
  • the configuration is complicated, in the present embodiment, it is configured to detect that the traveling control valves V4 and V5 and / or the dozer control valves V3 and V6 are operated in the first detection oil passage r1. ,
  • the circuit configuration of the detection circuit can be simplified.
  • the traveling control valves V4 and V5 and the dozer control valves V3 and V6 are arranged side by side, and one traveling control valve V4 and one dozer control valve are arranged side by side. Since V3, the other traveling control valve V5, and the other dozer control valve V6 are arranged with the traveling independent valve V14 interposed therebetween, the traveling control valves V4, V5 and / or the dozer control valves V3, V6 It is possible to simplify the circuit configuration of the detection circuit that detects that the operation has been performed.
  • control valves V1 to V10 and the inlet block B2 is not limited to the arrangement shown in the figure, and may be applied to one of the pressure oil supply systems from the two independent pressure oil discharge ports P1 and P2.
  • One running control valve V4, V5, one dozer control valve V3, V6, and one outlet block B1, B3 are provided, and the other running control valve V4, V5 and the other are provided in the other pressure oil supply system.
  • the arrangement of the other control valves V1, V2 and V7 to 10 is not particularly limited.
  • the order of the control valves V1 to V10 in the arrangement direction is not limited.
  • the first relief valve V12 and the second relief valve V15 are configured by an electromagnetic variable relief valve.
  • the first relief valve V12 and the second relief valve V15 (variable relief valve) specify that the pressure of the hydraulic oil discharged from the first pump 21 (pump) can be changed.
  • the relief set pressure which is the set pressure defined (set) by the first relief valve V12 and the second relief valve V15, is referred to as a main relief pressure.
  • the solenoid V12a of the first relief valve V12 and the solenoid V15a of the second relief valve V15 are connected to the control device U1. That is, the first relief valve V12 and the second relief valve V15 are controlled by the control device U1.
  • the working machine 1 has a plurality of modes for changing the main relief pressure.
  • the plurality of modes are a first mode (hard mode), a second mode (normal mode), and a third mode (soft mode).
  • the hard mode is a mode for performing standard work
  • the normal mode is a mode for performing light work
  • the soft mode is a mode for performing leveling work.
  • a mode changeover switch 43 is connected to the control device U1. Further, the control device U1 has a mode switching unit Ua for switching the mode. The mode switching unit Ua switches the mode between the hard mode, the normal mode, and the soft mode by operating the mode switching switch 43.
  • FIG. 9 is a diagram showing the set values of the main relief pressure for each mode
  • FIG. 10 is a diagram showing changes in the main relief pressure with the main relief pressure on the vertical axis and time on the horizontal axis. ..
  • the set value of the main relief pressure shown in FIG. 9 is an example, and is not limited and can be changed in various ways.
  • the current value transmitted from the control device U1 to the solenoids of the direction switching valves DV1 to DV10 according to the operation amount of the operation member 41 is referred to as a command current value.
  • a command current value the current value transmitted from the control device U1 to the solenoids of the direction switching valves DV1 to DV10 according to the operation amount of the operation member 41.
  • the control device U1 has a relief control unit Ub.
  • the relief control unit Ub changes the main relief pressure (relief set pressure) to a plurality of set values according to the amount of operation of the operating member 41. Specifically, the relief control unit Ub gradually raises the set value of the relief set pressure according to the increase in the operation amount of the operation member 41.
  • the control of the relief set pressure by the relief control unit Ub will be described in more detail with reference to FIGS. 9 and 10.
  • each mode has a plurality of set values.
  • the plurality of set values have a first set value P # A, a second set value P # B, and a third set value P # C.
  • the first set value P # A is a set value of the relief set pressure when the operating member 41 is not operated (when all the operating members 41 are not operated), and is 15.0 MPa. That is, the initial pressure of the main relief pressure is 15.0 MPa. Further, in the present embodiment, the first set value P # A is 15.0 MPa in all of the hard mode, the normal mode, and the soft mode.
  • the second set value P # B is a set value within a range in which the operation amount of the operation member 41 does not exceed a predetermined amount. Specifically, the second set value P # B does not exceed a predetermined position (intermediate position) between the start position (neutral position) and the end position (full operation position) of the operation range of the operation member 41. It is a set value when 41 is operated.
  • the start end position is a position where the operation member 41 is not operated (non-operation position), and the end position is a position where the operation member 41 is operated to the maximum.
  • the second set value P # B is highest in the hard mode, lower in the normal mode than in the hard mode, and lower in the soft mode than in the normal mode. Specifically, the second set value P # B in the hard mode is 24.5 MPa, the second set value P # B in the normal mode is 20.6 MPa, and the second set value P # B in the soft mode is. It is 15.0 MPa.
  • the third set value P # C is a set value when the operating amount of the operating member 41 is operated in excess of a predetermined amount. Specifically, the third set value P # C is a set value when the operating member 41 is operated within a range exceeding a predetermined position between the start end position and the ending position of the operating member 41.
  • the third set value P # C is highest in the hard mode, lower in the normal mode than in the hard mode, and lower in the soft mode than in the normal mode.
  • the third set value P # C in the hard mode is 27.4 MPa
  • the third set value P # C in the normal mode is 24.5 MPa
  • the third set value P # C in the soft mode is. It is 15.0 MPa.
  • the soft mode is 15.0 MPa for all of the first set value P # A, the second set value P # B, and the third set value P # C.
  • the threshold value Ip is a current value for operating the direction switching valves DV1 to DV10, and is a current value at a predetermined position (intermediate position) between the start end position and the end position of the operation member 41.
  • the threshold value Ip is the pilot pressure for operating the direction switching valves DV1 to DV10, and is described by the threshold value Ip1 which is the pilot pressure corresponding to the threshold value Ip.
  • the maximum pilot pressure is set to the threshold value Ip1 (command current value is set) within a predetermined time t1 after operating any of the operating members 41.
  • the threshold value Ip command current value is set
  • the main relief pressure increases from the first set value P # A to the second set value P # B in proportion to the passage of time. If the maximum pilot pressure exceeds the threshold Ip1 after the main relief pressure is changed from the first set value P # A to the second set value P # B, the main relief pressure is the second set value P. It switches from #B to the third set value P # C.
  • the main relief pressure is switched from the third set value P # C to the second set value P # B.
  • the main relief pressure is switched from the second set value P # B to the first set value P # A.
  • the main relief pressure is as shown in FIG. Switches to the third set value P # C while rising from the first set value P # A to the second set value P # B. If the second set value P # B is set to the same value as the value of the third set value P # C and the threshold value Ip1 is equal to or higher than the maximum pilot pressure standing on the directional switching valves DV1 to DV10, the directional switching valves DV1 to DV10 are used.
  • the setting of the maximum main relief pressure can be delayed for a certain period of time regardless of the pilot input.
  • the hard mode may be fixed at 27.4 MPa. That is, in the case of the hard mode, the first set value P # A, the second set value P # B, and the third set value P # C may all be 27.4 MPa.
  • the first set value P # A, the second set value P # B, and the third set value P # C are all 15.0 MPa.
  • the main relief pressure from a low position of 15.0 MPa when operating the operating member 41, for example, when raising or lowering the boom 15, turning the machine body 2, or driving the traveling device 3.
  • the start of movement is relaxed (the starting shock becomes gentle), and the shock at the time of starting can be suppressed.
  • the third set value P # C of the main relief pressure is higher than that in the normal mode, so that a high ability is exhibited when the operation target is the operation in which the main relief pressure becomes the maximum pressure. be able to.
  • the third set value P # C of the main relief pressure is lower than that in the hard mode, so that the load acting on the members constituting the operation target can be reduced and the durability is improved. Can be improved.
  • the work machine 1 may perform ground leveling work.
  • the ground leveling work for example, when the work tool 17 is used to level the ground while swinging the boom 15 and the arm 16, when the work tool 17 is used to turn the machine 2 and the work tool 17 is used to level the ground, the work machine 1 is moved forward and backward by the traveling device 3.
  • the dozer device 7 may be used to level the ground while advancing the work machine 1.
  • the main relief pressure is lower than in the hard mode and normal mode, so by selecting the soft mode, it is easy to level the ground when performing ground leveling work. That is, since the load sensing system controls the flow rate, in the conventional case (when the main relief pressure is fixed and set to a high pressure), the operation target moves sensitively even when the operation member 41 is finely operated. In the present embodiment, the sensitivity peculiar to the load sensing system can be reduced by selecting the soft mode, which facilitates leveling. In addition, since the force is not more than necessary, it is easy to perform ground leveling work. Further, it is possible to suppress the occurrence of a problem in the movement of the operation target.
  • the operating member 41 may be composed of a pilot valve, and the directional switching valves DV1 to DV10 may be configured by a pilot operating switching valve operated by the pilot pressure output from the operating member 41.
  • the pilot valve is a control valve that outputs a pilot pressure according to the amount of operation and operates another valve with the output pilot pressure.
  • the pilot-operated switching valve is a switching valve that is directly operated by the pilot pressure from the pilot valve.
  • the main relief pressure when the operation member 41 is composed of the pilot valve and the directional switching valves DV1 to DV10 are composed of the operation member 41 pilot operation switching valve is as follows.
  • the AI switch 29 detects that the operation member 41 has been operated.
  • the first set value P # A is 15.0 MPa.
  • the AI switch 29 detects that any one or more of the operating members 41 have been operated, the main relief pressure is changed from the first set value P # A to the second set value P # B after a predetermined time t1. To do. Also in this case, as shown in FIG. 10, the value increases from the first set value P # A to the second set value P # B in proportion to the passage of time.
  • the predetermined time t1 is 0.5 sec in all of the hard mode, the normal mode, and the soft mode.
  • the control device U1 when changing from the second set value P # B to the third set value P # C, for example, by detecting the pressure output from the operating member (pilot valve) 41, the control device U1 Can be made to grasp the operation amount of the operation member 41. That is, when it is detected that the operating member 41 is being operated in the middle range of the operating range, the main relief pressure is maintained at the second set value P # B, and the operating member 41 is at the end position (full) of the operating range. When it is detected that the operation is performed at the operation position), the main relief pressure is changed to the third set value P # C.
  • the detection that the operation member (pilot valve) 41 has been operated may be detected by the pilot pressure output from the operation member 41.
  • a part of the direction switching valves DV1 to DV10 mounted on the work machine 1 may be composed of a pilot type solenoid valve, and the other part may be composed of a pilot operation switching valve.
  • the directional switching valves DV1, DV2, DV7, and DV8 for operating the machine body 2 and the working device 4 are composed of pilot type solenoid valves, and the directional switching valves DV3 to DV6, DV9, and DV10 for operating other operation targets are provided. , It may be configured by a pilot operation switching valve.
  • a part of the directional control valves DV1 to DV10 is composed of a pilot type solenoid valve and the other part is composed of a pilot operation switching valve, both the pilot type solenoid valve and the pilot operation switching valve are operated. In this case, the main relief pressure is given priority over the set value shown in FIG.
  • the directional switching valve DV1 for operating the machine body 2 and the working device 4 , DV2, DV7, DV8 are composed of pilot type electromagnetic valves
  • direction switching valves DV4 and DV5 for operating the traveling device 3 are composed of pilot operation switching valves
  • the working machine 1 has an oil temperature sensor 44 that detects the oil temperature of the hydraulic oil.
  • the oil temperature sensor 44 is, for example, a sensor that detects the oil temperature of the hydraulic oil on the suction side of the first pump 21 (for example, the hydraulic oil in the hydraulic oil tank T2).
  • the oil temperature sensor 44 is connected to the control device U1.
  • the control device U1 can acquire the detection information of the oil temperature sensor 44.
  • the control device U1 has an automatic switching unit Uc that automatically switches the mode according to the oil temperature of the hydraulic oil. When the automatic switching unit Uc determines that the oil temperature is a low temperature of the first predetermined temperature or less (for example, -10 ° C or less), the automatic switching unit Uc selects the normal mode or the soft mode regardless of the mode selection. Also automatically switches to hard mode. After that, when the oil temperature is determined to be room temperature (for example, 0 ° C or higher) equal to or higher than the second predetermined temperature, the automatic switching unit Uc automatically returns to the selected original mode.
  • the hydraulic pressure that operates the hydraulic actuators ML, MR, MT, and C1 to C6 increases due to the pressure loss of the hydraulic oil flowing through the hydraulic hose, and the speed decreases when the main relief pressure is low. If the normal mode or soft mode is selected, the speed of the operation target will decrease. In such a case, by automatically switching to the hard mode, it is possible to automatically avoid the speed reduction after startup at a low temperature without the operator manually switching the mode to the hard mode.
  • the work machine 1 operates the operating member 41, the hydraulic actuators ML, MR, MT, C1 to C6 that operate according to the amount of operation of the operating member 41, and the hydraulic actuators ML, MR, MT, C1 to C6.
  • a relief control unit Ub for controlling the relief set pressure is provided, and the relief control unit Ub changes the relief set pressure according to the amount of operation of the operating member 41.
  • the relief set pressure when the operating member 41 is not operated can be suppressed to a low level.
  • the relief set pressure rises from a place where the relief set pressure is low, so that the start shock of the hydraulic actuators ML, MR, MT, and C1 to C6 can be suppressed.
  • the relief control unit Ub sets the relief set pressure to one of a plurality of set values, and gradually raises the set value of the relief set pressure according to the increase in the operation amount of the operating member 41.
  • the relief set pressure when the operating member 41 is not operated can be suppressed to a low level, and the start-up shock of the hydraulic actuators ML, MR, MT, C1 to C6 can be suppressed.
  • the relief control unit Ub defines the relief set pressure when the operating member 41 is not operated as the first set value P # A, and after operating the operating member 41, first sets the relief set pressure at a predetermined time t1. Change to the second set value P # B, which is higher than the value P # A, and change to the third set value P # C, which is higher than the second set value P # B, when the operation amount of the operating member 41 exceeds a predetermined amount. change.
  • the force required for various operations can be set according to the operating amount of the operating member 41. Further, when the operating amount of the operating member 41 exceeds the predetermined amount within the predetermined time t1 after operating the operating member 41, the relief control unit Ub changes the relief set pressure to the third set value P # C. ..
  • the responsiveness can be improved. Further, it includes a plurality of modes having different set values of the relief set pressure, and the plurality of modes have different set values of the maximum relief set pressure. According to this configuration, by switching the mode according to the work type, the work can be performed with the force according to the work type.
  • the plurality of modes are the first mode in which the maximum relief set pressure setting value is the highest, the second mode in which the maximum relief set pressure setting value is lower than the first mode, and the maximum relief set pressure.
  • the set value of the high pressure includes the third mode, which is lower than the second mode, and the relief set pressures of the operating members 41 in the first mode, the second mode, and the third mode when not operated are the same set values. Even with this configuration, it is possible to work with a force according to the work type.
  • the oil temperature sensor 44 that detects the oil temperature of the hydraulic oil and the mode in which the maximum relief set pressure setting value among the plurality of modes is the highest when the oil temperature is lower than the first predetermined temperature is switched. It is provided with an automatic switching unit Uc that returns to the original mode when the oil temperature becomes higher than the second predetermined temperature, which is higher than the first predetermined temperature. According to this configuration, it is possible to automatically avoid the speed reduction after starting at a low temperature without the operator manually switching the mode.
  • the work machine 1 is provided with a plurality of hydraulic actuators ML, MR, MT, C1 to C6, the pump 21 is configured in a variable capacitance type, and a plurality of hydraulic actuators ML, MR, MT, C1 are provided based on the discharge pressure of the pump 21.
  • the pump 21 is provided with a load sensing system that controls the pump 21 so that the differential pressure obtained by subtracting the maximum load pressure from C6 is kept constant.
  • the control valves V1, V2, V6, V7 and V10 are provided with the hydraulic actuators in order to prevent an overload acting on the corresponding hydraulic actuators C1, C3 to C6.
  • An overload relief valve (port relief valve) V19 that defines the maximum pressure (relief set pressure) acting on C1, C3 to C6 is incorporated.
  • the overload relief valve V19 communicating with the port C5a on the bottom side (cloud side) of the work tool cylinder C5 (work tool drive actuator) is an electromagnetic variable overload that can change the relief set pressure. It is composed of a relief valve V19A.
  • the variable overload relief valve V19A is connected to the oil supply / drainage passage 51 connecting the work tool control valve V1 (actuator control valve) and the port C5a on the cloud side of the work tool cylinder C5 via the first connection oil passage 52. ing. Further, the variable overload relief valve V19A is connected to the drain oil passage g via the second connecting oil passage 53.
  • the solenoid V19a of the variable overload relief valve V19A is connected to the control device U1. That is, the control device U1 can control the variable overload relief valve V19A.
  • the control device U1 has a turning detection unit Ud.
  • the turning detection unit Ud detects that the turning control valve V8 (direction switching valve DV8) is being operated, that is, that the aircraft 2 is being turned. Specifically, when the first operating tool 41A is operated in the direction of operating the swivel motor MT, the control device U1 detects the operation signal transmitted from the first operating tool 41A.
  • the fact that the machine body 2 has been swiveled may be detected by a rotation sensor that detects the rotation of the machine body 2 or the rotation of the swivel motor MT.
  • the fact that the machine body 2 has been swiveled can be recognized by the control device U1 (swivel detection unit Ud) by connecting the rotation sensor to the control device U1.
  • the direction switching valve DV8 of the swivel control valve V8 is composed of the pilot operation switching valve, it is detected that the airframe 2 is swiveling by detecting the pilot pressure standing on the pilot operation switching valve. You may.
  • an motion sensor (work tool motion detection unit) 54 is connected to the control device U1.
  • the motion sensor 54 detects whether or not the work tool 17 is operating.
  • the motion sensor 54 includes a potentiometer that directly detects the swing of the work tool 17, a stroke sensor that detects the expansion / contraction state of the work tool cylinder C5, and the like.
  • the control device U1 has a work motion detection unit Ue.
  • the work motion detection unit Ue is caused by the work tool 17 when the operation sensor 54 detects that the work tool 17 is operated by the second operation tool 41B (operation member 41) and the work tool 17 is not operating. It is detected that the main relief valve V12 (V15) is in the relief state (high load work state) in which it is being relieved.
  • the working tool 17 As an example of a high-load working state, when the working tool 17 is a bucket, the working tool 17 is operated in the cloud direction, and the working tool 17 is in a state where the work (rock or the like) is grasped and does not move. At this time, the main relief pressure is controlled to, for example, 24.5 MPa.
  • the control device U1 has an overload control unit Ug.
  • the overload control unit Ug reduces the relief set pressure of the variable overload relief valve V19A when the aircraft 2 turns while the main relief valve V12 (V15) is in the relief state. For example, if the maximum pressure of the cloud-side port C5a of the work tool cylinder C5 defined by the variable overload relief valve V19A is 29.4 MPa, the pressure is lowered to 20.6 MPa, which is lower than the main relief pressure. This number is an example and is not limited.
  • the place where the pseudo load is created becomes a pressure loss and raises the temperature of the hydraulic oil, and the oil temperature of the hydraulic oil flowing to the section on the turning side becomes high.
  • the components (seal members) of the swivel motor MT may be deteriorated.
  • the pressure compensation valve V11 of the turning control valve V8 is reduced by reducing the relief set pressure of the variable overload relief valve V19A.
  • the pseudo load (pseudo pressure loss) generated by is reduced.
  • the work tool 17 may be a work tool other than the bucket.
  • the work tool 17 may be a grapple.
  • the variable overload relief valve V19A is adopted as the overload relief valve V19 of the SP control valve V10. That is, the hydraulic actuator (work tool drive actuator) C6 for opening and closing the gripping tool mounted on the grapple to grip or release the gripping tool is operated by the SP control valve V10. Therefore, of the two overload relief valves V19 of the SP control valve V10, the variable overload relief valve V19A is adopted for the overload relief valve V19 connected to the port on the grip side of the hydraulic actuator C6. That is, when the work tool 17 is a grapple, the relief set of the variable overload relief valve V19A connected to the port on the grip side of the hydraulic actuator C6 when the machine body 2 turns while gripping a work such as wood with the grapple. Reduce pressure.
  • the relief set pressure of the variable overload relief valve V19A is applied. It is decreasing. Therefore, even when the main relief valve V12 (V15) is in the relief state, the relief set pressure of the variable overload relief valve V19A is not reduced when the work tool 17 is operating.
  • an excavation work there is a swivel horizontal excavation work in which the machine 2 is swiveled and the work tool 17 is pressed against a wall or the like while the work tool 17 is swung to excavate.
  • variable overload relief valve V19A If the relief set pressure of the variable overload relief valve V19A is reduced during this work, the force of the work tool 17 is reduced and the excavation force is reduced. Therefore, when performing such swivel lateral excavation work, the relief set pressure of the variable overload relief valve V19A is not reduced, and the force of the work tool 17 is not reduced.
  • the control device U1 has a stroke limiting unit Uh.
  • the stroke limiting unit Uh limits the stroke of the spool V1a of the work tool control valve V1 to a predetermined amount when the overload control unit Ug reduces the relief set pressure of the variable overload relief valve V19A.
  • the spool V10a is limited to a predetermined amount. As a result, the flow rate of the hydraulic oil that is wastefully drained can be reduced, and energy saving can be achieved.
  • variable overload relief valve V19A when the work is gripped by the work tool 17 or the like, the operation member 41 is fully operated, and the total amount of the hydraulic oil flowing from the work tool control valve V1 to the port C5a is variable overload relief valve V19A. It is drained in vain. That is, when the work is being gripped by the work tool 17 or the like (the variable overload relief valve V19A is in the relief state), the relief set pressure of the variable overload relief valve V19A is lowered to reduce the force of the work tool 17. However, since the flow rate of the hydraulic oil remains high, the excess flow rate of the hydraulic oil is reduced by returning the spool V10a by a predetermined amount to save energy.
  • the stroke limitation can be easily performed by limiting the stroke of the spool V10a by the pilot pressure. Can be done. That is, the stroke limiting unit Uh has a threshold value, and when the pilot pressure acting on the work tool control valve V1 (solenoid of the direction switching valve DV1) is higher than the threshold value, the stroke of the spool V10a is reduced to the threshold value. Restrict. The same applies to the SP control valve V10.
  • the above-mentioned work machine 1 includes a machine body 2, a swivel motor MT that swivels and drives the machine body 2, a work tool 17 mounted on the machine body 2, and a work tool drive actuator (work tool cylinder C5) that drives the work tool 17. , Hydraulic actuator C6), hydraulic circuit for supplying and discharging hydraulic oil to swivel motor MT and work tool actuators C5 and C6, and relief of the hydraulic oil when the pressure of the hydraulic oil in the hydraulic circuit exceeds the set pressure.
  • the overload control unit Ug is provided with an overload control unit Ug for controlling the above, and the overload control unit Ug is a variable overload relief valve V19A when the aircraft 2 turns in a relief state in which the main relief valve V12 (V15) is being relieved. Reduce the relief set pressure.
  • the relief set pressure of the variable overload relief valve V19A is not lowered, so that it is possible to prevent the workability of the work using the work tool 17 from being lowered.
  • an actuator control valve (work tool control valve V1, SP control valve V10) for controlling the work tool drive actuators C5 and C6 is provided and the overload control unit Ug reduces the relief set pressure of the variable overload relief valve V19A.
  • a stroke limiting unit Uh that limits the strokes of the spools V1a and V10a of the actuator control valves V1 and V10 to a predetermined amount.
  • the actuator control valves V1 and V10 are operated by the pilot pressure, and the stroke limiting unit Uh limits the stroke by lowering the pilot pressure acting on the actuator control valves V1 and V10 to the threshold value when the pilot pressure acts on the actuator control valves V1 and V10 is higher than the threshold value. To do.
  • the work machine 1 includes a plurality of hydraulic actuators ML, MR, MT, C1 to C6 including a swivel motor MT for turning the machine body 2 and work tool drive actuators C5 and C6, and a plurality of hydraulic actuators ML, MR, MT.
  • the differential pressure between the pump 21 that discharges the hydraulic oil supplied to C1 to C6 and the discharge pressure of the pump 21 minus the maximum load pressure of the plurality of hydraulic actuators ML, MR, MT, and C1 to C6 is set to a constant pressure. It is equipped with a load sensing system that controls the pump 21 as described above.
  • FIG. 13 and 14 show other embodiments.
  • FIG. 13 shows a boom control valve (first control valve) V2.
  • FIG. 14 shows a swivel control valve (second control valve) V8.
  • first differential pressure a predetermined pressure
  • the boom control valve V2 has a direction switching valve DV2 and a pressure compensation valve V11 (V11A).
  • the direction switching valve DV2 can switch the direction of the hydraulic oil toward the boom cylinder (high load hydraulic actuator) C3, and is cut into, for example, a first position 61, a second position 62, and a third position (neutral position) 63. It is an alternative three-position switching valve.
  • the direction switching valve DV2 When the direction switching valve DV2 is in the first position 61, the direction switching valve DV2 switches to the direction in which the hydraulic oil flows to the bottom side of the boom cylinder C3, and the hydraulic oil returned from the rod side of the boom cylinder C3. (Return oil) is switched to the drain oil passage g (hydraulic oil tank T2).
  • the directional control valve DV2 When the directional control valve DV2 is in the second position 62, the directional control valve DV2 drains the hydraulic oil (return oil) returned from the bottom side of the boom cylinder C3 to the drain oil passage g (hydraulic oil tank T2). It switches to the direction of discharging the hydraulic oil, and switches to the direction of flowing the hydraulic oil to the rod side of the boom cylinder C3.
  • the directional control valve DV2 is in the third position 63, the directional control valve DV2 does not supply hydraulic oil to the boom cylinder C3.
  • the pump port 64 of the direction switching valve DV2 is connected to the pressure oil branch passage f branched from the first pressure oil supply passage d.
  • the hydraulic oil discharged from the first pump 21 is supplied to the directional control valve DV2 by the pressure oil branch path f.
  • the directional control valve DV2 and the pressure compensation valve V11A are connected by a connecting oil passage 65.
  • the connecting oil passage 65 includes a first connecting oil passage 65a and a second connecting oil passage 65b.
  • the first connecting oil passage 65a is an oil passage that connects the first output port 66 of the directional control valve DV2 and the introduction port 67 of the pressure compensating valve V11A.
  • the second connecting oil passage 65b is an oil passage that connects the pump port 64 of the directional control valve DV2 and the first output port 66 of the directional switching valve DV2.
  • the second connecting oil passage 65b is formed in the directional control valve DV2.
  • a throttle (flow path throttle) 68 is provided in the second connecting oil passage 65b.
  • the pressure compensation valve V11A and the boom cylinder C3 are connected by a connecting oil passage 69.
  • the connecting oil passage 69 includes a first connecting oil passage 69a, a second connecting oil passage 69b, a third connecting oil passage 69c, and a fourth connecting oil passage 69d.
  • the first connecting oil passage 69a is an oil passage that connects the output port 70 of the pressure compensating valve V11A and the first input port 71 of the directional control valve DV2.
  • the second connecting oil passage 69b is an oil passage that connects the output port 70 of the pressure compensating valve V11A and the second input port 72 of the directional control valve DV2.
  • the third connecting oil passage 69c is an oil passage that connects the second output port 73 of the directional control valve DV2 and the port on the bottom side of the boom cylinder C3.
  • the fourth connecting oil passage 69d is an oil passage that connects the third output port 74 of the directional control valve DV2 and the port on the rod side of the boom cylinder C3.
  • the output port 70 of the pressure compensation valve V11A and the load transmission line y are connected via a check valve 75.
  • the pressure compensation valve V11A is a valve that sets the differential pressure between the pressure of the hydraulic oil introduced into the pressure compensation valve V11A and the pressure of the hydraulic oil output from the pressure compensation valve V11A within a predetermined range (predetermined value).
  • the pressure compensating valve V11A keeps the front-rear differential pressure (the differential pressure between the pressure of the hydraulic oil on the upstream side and the pressure of the hydraulic oil on the downstream side) in the spool of the direction switching valve DV2 constant, so that it can be used during combined operation.
  • the hydraulic oil is divided into an amount according to the amount of operation.
  • the pressure compensation valve V11A has a pressure receiving unit 76a that receives the pressure of the hydraulic oil introduced into the introduction port 67, and a pressure receiving unit 76b that receives the pressure of the hydraulic oil output from the output port 70.
  • the introduction port 67 and the pressure receiving portion 76a are connected by a connecting oil passage 77.
  • the output port 70 and the pressure receiving portion 76b are connected by a connecting oil passage 78.
  • the pressure of the hydraulic oil output from the direction switching valve DV2 toward the pressure compensating valve V11A acts on the pressure receiving portion 76a, and the pressure of the hydraulic oil output from the output port 70 of the pressure compensating valve V11A acts on the pressure receiving portion 76b.
  • the spool 98 of the pressure compensating valve V11A moves according to the pressure difference between the two hydraulic oils, and the opening area of the pressure compensating valve V11A changes.
  • the configuration of the pressure compensation valve V11A of the boom control valve V2 and the connection structure between the pressure compensation valve V11A and the direction switching valve DV2 are the work tool control valve V1, the first control valve V3 for the dozer, the second travel control valve V4, and the second. 1 It is applied to the traveling control valve V5, the second control valve V6 for the dozer, the arm control valve V7, the swing control valve V9, and the SP control valve V10.
  • the discharge amount of the first pump 21 is controlled according to the maximum load pressure during operation of the hydraulic actuators ML, MR, MT, C1 to C6, and the pressure compensation valve V11 described above controls the discharge amount.
  • the pressure of the hydraulic oil supplied to the hydraulic actuators ML, MR, MT and C1 to C6 is compensated.
  • the valve V7, the swing control valve V9, and the SP control valve V10 are control valves having to compensate the pressure of the hydraulic oil, and the swivel control valve V8 is a control valve capable of giving priority to the flow rate of the hydraulic oil.
  • the swivel control valve V8 has a direction switching valve (direction switching valve on the low load side) DV8 and a flow rate priority valve V11B.
  • the direction switching valve DV8 can switch the direction of the hydraulic oil toward the swivel motor (low load hydraulic actuator) MT, and is cut into, for example, the first position 81, the second position 82, and the third position (neutral position) 83. It is an alternative three-position switching valve.
  • the direction switching valve DV8 When the direction switching valve DV8 is in the first position 81, the direction switching valve DV8 switches to the direction in which the hydraulic oil flows to one side of the swivel motor MT, and the hydraulic oil returned from the other side of the swivel motor MT.
  • the flow rate priority valve V11B is a valve that gives priority to the flow rate of hydraulic oil output to the hydraulic actuator by moving the spool 98.
  • the spool 98 of the flow rate priority valve V11B can move between the first position 84a and the second position 84b.
  • the first position 84a is a position for increasing the flow rate of the hydraulic oil output from the directional control valve DV8.
  • the second position 84b is a position for reducing (reducing) the flow rate of the hydraulic oil output from the direction switching valve DV8.
  • the flow rate of the hydraulic oil when the flow rate priority valve V11B is the first position 84a is larger than the flow rate of the hydraulic oil at the intermediate position between the first position 84a and the second position 84b, and the second position 84b In the case of, the flow rate of hydraulic oil is small.
  • the flow rate priority valve V11B has a pressing member 85, a first pressure receiving portion 86, and a second pressure receiving portion 87.
  • the pressing member 85 is a member provided on the first position 84a side.
  • the pressing member 85 presses the spool 98 of the flow rate priority valve V11B toward the first position 84a, that is, the open side.
  • the pressing member 85 is composed of, for example, a spring.
  • the force that presses the spool 98 to the first position 84a that is, the set pressure (second differential pressure) of the flow rate priority valve V11B when the spool 98 has a full stroke (when the area is maximum) is the PPS signal pressure-PLS.
  • the first differential pressure which is the differential pressure from the signal pressure. If the set pressure in the flow rate priority valve V11B (set pressure by the pressing member 85) exceeds the first differential pressure, the flow rate output from the flow rate priority valve V11B may be larger than that in the single operation.
  • the pressing member 85 that presses the spool 98 toward the first position 84a is composed of a spring
  • the spool 98 may be pressed by the pressure of hydraulic oil (pressure of pilot oil).
  • the flow rate priority valve V11B is provided with a pressure receiving portion such as a control pin for pressing the spool 98, and a pilot pressure is applied to the pressure receiving portion.
  • the pilot pressure acting toward the pressure receiving portion may be the pressure of the remote control valve whose pilot pressure changes according to the operating member, or the pressure obtained by reducing the pressure of the remote control valve with the pressure reducing valve.
  • the first pressure receiving unit 86 is a portion that receives the hydraulic oil output from the directional control valve DV8.
  • the second pressure receiving unit 87 is a portion that receives the hydraulic oil discharged from the first pump 21 to the swirl control valve V8.
  • the second pressure receiving portion 87 is a portion that receives the hydraulic oil on the upstream side of the spool 98 of the directional control valve DV8.
  • the flow rate priority valve V11B and the direction switching valve DV8 are connected by a connecting oil passage (second oil passage) 88.
  • the connecting oil passage (second oil passage) 88 includes a first connecting oil passage (connecting oil passage) 88a, a second connecting oil passage (connecting oil passage) 88b, and a third connecting oil passage (connecting oil passage) 88c.
  • the first connecting oil passage 88a is an oil passage that connects the first output port (output port) 66 of the directional control valve DV8 and the introduction port 89 of the flow rate priority valve V11B.
  • the second connecting oil passage 88b is an oil passage that connects the pump port 64 of the directional control valve DV8 and the first output port 66 of the directional switching valve DV8.
  • the second connecting oil passage 88b is formed in the directional control valve DV8.
  • a throttle (flow path throttle) 90 is provided in the second connecting oil passage 88b.
  • the third connecting oil passage 88c is an oil passage that connects the introduction port 89 of the flow rate priority valve V11B and the first pressure receiving portion 86.
  • the pressure loss of the flow path throttle 90 on the first position 81 side and the pressure loss of the flow path throttle 90 on the second position 82 side are set to the same numerical value.
  • the first pressure oil supply passage d and the second pressure receiving portion 87 of the flow rate priority valve V11B are connected by a connecting oil passage (third oil passage) 92.
  • the connecting oil passage (third oil passage) 92 is an oil passage connecting the pressure oil branch passage f of the first pressure oil supply passage d and the second pressure receiving portion 87.
  • the flow rate priority valve V11B and the swivel motor MT are connected by a connecting oil passage 93.
  • the connecting oil passage 93 includes a first connecting oil passage 93a, a second connecting oil passage 93b, a third connecting oil passage 93c, and a fourth connecting oil passage 93d.
  • the first connecting oil passage 93a is an oil passage that connects the output port 91 of the flow rate priority valve V11B and the first input port 71 of the direction switching valve DV8.
  • the second connecting oil passage 93b is an oil passage that connects the output port 91 of the flow rate priority valve V11B and the second input port 72 of the direction switching valve DV8.
  • the third connecting oil passage 93c is an oil passage that connects the second output port 73 of the directional control valve DV8 and the port on one side of the swivel motor MT.
  • the fourth connecting oil passage 93d is an oil passage that connects the third output port 74 of the directional control valve DV8 and the port on the other side of the swivel motor MT.
  • the output port 91 of the flow rate priority valve V11B and the load transmission line y are connected via a check valve 94.
  • the spool 98 of the flow rate priority valve V11B is at the first position by the pressure of the hydraulic oil received by the first pressure receiving unit 86 (the pressure of the hydraulic oil output from the first output port 66 of the direction switching valve DV8) and the pressing member 85. Pressed by 84a. Further, it is pressed to the second position 84b by the pressure of the hydraulic oil received by the second pressure receiving unit 87 (the pressure of the hydraulic oil on the upstream side of the spool of the direction switching valve DV8).
  • the load pressure when the boom cylinder C3 is operating is 10 MPa
  • the load pressure when the swivel motor MT is operating is 3 MPa
  • the flow rate control is assumed that the set pressure of the part 19 is 1.4 MPa.
  • the maximum load pressure of the hydraulic oil is 10 MPa
  • the pressure of the hydraulic oil discharged from the first pump 21 is 11.4 MPa.
  • the spool 98 of the flow rate priority valve V11B moves so as to maintain the set pressure at 1.0 MPa, and the opening area of the flow rate priority valve V11B changes.
  • the flow rate output from the flow rate priority valve V11B is set to be constant.
  • the flow rate priority valve V11B sets the front-rear differential pressure of the direction switching valve DV8 to 1.0 MPa (operates so that a pressure loss of 1.0 MPa occurs), and the swivel motor MT is used regardless of the load of the boom cylinder C3.
  • the hydraulic oil can be flowed preferentially.
  • the flow rate output from the flow rate priority valve V11B can be set to be constant even when the swivel motor MT is operated independently (when other control valves are not operated). That is, the hydraulic oil can be preferentially flowed from the direction switching valve DV8 toward the swivel motor MT.
  • the flow rate priority valve V11B controls the spool 98 by the pressing member 85, for example, when the boom control valve V1 and the swivel control valve V8 are combinedly operated, the flow rate is prioritized by the operating pressure on the boom 15 side. It is conceivable that the spool 98 of the valve V11B may move slightly and the turning speed of the machine body 2 may change slightly. That is, since the operating pressure of the boom cylinder C3 is high while the operating pressure of the swivel motor MT is low, the swivel single operation and the combined operation of the swivel (airframe 2) and the boom 15 are performed by the amount of the pressure difference. The control position of the flow rate priority valve V11B changes slightly from time to time, and the turning speed changes.
  • a pseudo load is formed on the direction switching valve DV8 that switches the direction of the hydraulic oil with respect to the swivel motor MT.
  • the pseudo load forming unit 97 that forms a pseudo load on the direction switching valve DV8 (swivel control valve V8) of the other embodiment is directed to the swivel motor MT to apply hydraulic oil. It is provided in the flow path 96.
  • the first flow passage 96a which is a flow path for flowing hydraulic oil to one side of the swivel motor MT, and the direction switching valve DV8 are in the second position 82.
  • the pseudo load forming portion 97 is composed of throttles 97a and 97b provided in the first flow passage 96a and the second flow passage 96b, respectively. That is, the pseudo load forming unit 97 includes a first throttle 97a provided in the first flow passage 96a and a second throttle 97b provided in the second flow passage 96b.
  • the pressure loss due to the first throttle 97a and the pressure loss due to the second throttle 97b are the same. Further, the pressure loss due to the first throttle 97a and the pressure loss due to the second throttle 97b are larger than the pressure loss due to the throttle 90.
  • a pseudo load is created on the direction switching valve DV8 of the swivel control valve V8 by the first throttle 97a and the second throttle 97b, and the operating pressure of the swivel motor MT is increased from the beginning.
  • the load pressure during operation of the swing motor MT is 3 MPa and the pressure loss caused by the first throttle 97a and the pressure loss caused by the second throttle 97b are 3 MPa, respectively, the load pressure (operating pressure of the swing motor MT).
  • the boom cylinder C3 has been exemplified as the high-load hydraulic actuator, and the swivel motor MT has been exemplified as the low-load hydraulic actuator, but the present invention is not limited thereto.
  • the working machine 1 is provided corresponding to the plurality of hydraulic actuators C3 and MT and the plurality of hydraulic actuators C3 and MT, and the plurality of direction switching valves DV2 and DV8 for switching the direction of the hydraulic oil with respect to the hydraulic actuators C3 and MT.
  • the pseudo load forming unit 97 creates a pseudo load in the direction switching valve DV8 on the low load side in advance to increase the operating pressure of the low load hydraulic actuator MT, thereby forming the high load hydraulic actuator C3. It is possible to reduce the pressure difference when the low load hydraulic actuator MT is combined with the MT. As a result, it is possible to suppress a change in the operating speed of the low-load hydraulic actuator MT when the high-load hydraulic actuator C3 and the low-load hydraulic actuator MT are operated in combination and when the low-load hydraulic actuator MT is operated independently. it can.
  • the direction switching valve DV8 on the low load side has a flow path 96 for flowing hydraulic oil toward the low load hydraulic actuator MT, and the pseudo load forming portion 97 is provided by throttles 97a and 97b provided in the flow path 96. It is configured. According to this configuration, the pseudo load forming portion 97 can be provided on the directional control valve DV8 on the low load side.
  • the first control valve V2 which is a control valve for controlling the high load hydraulic actuator C3 and has a pressure compensating valve V11A for setting a constant difference pressure between the pressure of the introduced hydraulic oil and the pressure of the output hydraulic oil.
  • a second control valve V8 having a priority flow control valve V11B is provided.
  • the hydraulic oil can be preferentially supplied to the low load hydraulic actuator MT.
  • the flow rate priority valve V11B reduces the flow rate of the first position 84a for increasing the flow rate of the hydraulic oil output from the directional switching valve DV8 on the low load side and the flow rate of the hydraulic oil output from the directional switching valve DV8 on the low load side.
  • the low load side direction switching valve DV8 includes a spool 98 that can move between the second position 84b and a pressing member 85 that presses the spool 98 toward the first position 84a.
  • a pseudo load forming unit including a first flow passage 96a, which is a flow path 96 for flowing hydraulic oil on one side, and a second flow passage 96b, which is a flow path 96 for flowing hydraulic oil on the other side of the low load hydraulic actuator MT.
  • 97 includes a first throttle 97a, which is a throttle provided in the first flow passage 96a, and a second throttle 97b, which is a throttle provided in the second flow passage 96b.
  • the flow rate of the hydraulic oil output from the flow rate priority valve V11B fluctuates depending on the setting of the pressing member 85.
  • the control position of the flow rate priority valve V11B can be stabilized, and the speed change of the low load hydraulic actuator MT can be suppressed.
  • the direction switching valve DV8 on the low load side connects the pump port 64 to which the hydraulic oil is supplied, the output port 66 that outputs the hydraulic oil to the flow rate priority valve V11B, and the pump port 64 and the output port 66. It has an oil passage 88b and a flow path throttle 90 provided in the connecting oil passage 88b, and the pressure loss due to the first throttle 97a and the pressure loss due to the second throttle 97a are larger than the pressure loss due to the flow path throttle 90. Is.
  • a pseudo load can be formed on the directional control valve DV8 on the low load side.
  • a body 2 capable of turning around the vertical axis, a swing motor MT for turning the body 2, a boom 15 provided on the front portion of the body 2 so as to swing up and down, and a boom cylinder for swinging the boom 15 up and down.
  • the high-load hydraulic actuator is composed of a boom cylinder C3
  • the low-load hydraulic actuator is composed of a swivel motor MT.
  • variable displacement pump 21 that discharges hydraulic oil that operates a plurality of hydraulic actuators ML, MR, MT, C1 to C6, and a plurality of hydraulic actuators ML, MR, MT, C1 to C6 from the discharge pressure of the pump 21.
  • a load sensing system that controls the pump 21 so that the differential pressure obtained by subtracting the maximum load pressure is made constant may be provided.

Abstract

作動圧の低い低負荷油圧アクチュエータ(MT)の作動速度の速度変化を抑制する。作業機(1)は、複数の油圧アクチュエータと、複数の油圧アクチュエータに対応して設けられ、油圧アクチュエータに対する作動油の方向を切り換える複数の方向切換弁と、複数の油圧アクチュエータのうちの作動圧の高い高負荷油圧アクチュエータ(C3)と該高負荷油圧アクチュエータ(C3)よりも作動圧の低い低負荷油圧アクチュエータ(MT)とを複合操作したときと、低負荷油圧アクチュエータ(MT)を単独操作したときとの低負荷油圧アクチュエータ(MT)の作動速度の速度変化を抑制すべく、低負荷油圧アクチュエータ(MT)に対して作動油の方向を切り換える低負荷側の方向切換弁(DV2)に疑似負荷を形成する疑似負荷形成部(97)と、を備えている。

Description

作業機
 本発明は、作業機に関する。
 従来、特許文献1、2に開示された作業機が知られている。
 特許文献1に開示された作業機は、複数の油圧アクチュエータと、複数の油圧アクチュエータに対応する複数の方向切換弁とを備えている。各方向切換弁は、対応する油圧アクチュエータに対する作動油の方向を切り換える。
 特許文献2に開示された作業機は、操作部材の操作量に応じて作動する油圧アクチュエータを備えていると共に、該油圧アクチュエータを作動させる作動油を吐出するポンプ及び該ポンプから吐出される作動油の圧力を規定するリリーフ弁を備えている。
 また、特許文献2に開示された作業機は、作業具が装備され、縦軸回りに旋回可能な機体を有している。また、作業機には複数の油圧アクチュエータが設けられ、各油圧アクチュエータはそれぞれ制御バルブによって制御される。各制御バルブは、制御バルブのうちの複数を使用したときに、油圧アクチュエータ間の負荷の調整として機能する圧力補償弁を有している。
日本国公開特許公報「特開2017-115992号公報」 日本国公開特許公報「特開2012-67459号公報」
 特許文献1に開示の作業機にあっては、作動圧の高い高負荷油圧アクチュエータと高負荷油圧アクチュエータよりも作動圧の低い低負荷油圧アクチュエータとを複合操作したときと、低負荷油圧アクチュエータを単独操作したときとで、低負荷油圧アクチュエータの作動速度が変化する場合がある。
 特許文献2に開示のリリーフ弁は、規定する圧力であるリリーフセット圧は一定である。そのため、操作部材を急操作した場合に、油圧アクチュエータの起動ショックが大きいという問題がある。
 また、特許文献2に開示の作業機にあっては、作業具を駆動する油圧アクチュエータである作業具駆動アクチュエータがリリーフしたままで、機体を旋回させると、作業具駆動アクチュエータはリリーフ圧で作動し、機体を旋回させる油圧アクチュエータである旋回モータは低圧で作動する。すると、制御システムは、作動油を適正に分流させるために、旋回モータを制御する旋回制御バルブの圧力補償弁で疑似負荷をつくって、油圧アクチュエータ間の負荷を揃える。そうすると、旋回側のセクションに流れる作動油の油温が高くなり、旋回モータの構成部品を劣化させる場合がある。
 本発明は、前記問題点に鑑み、作動圧の低い低負荷油圧アクチュエータの作動速度の速度変化を抑制することを目的とする。
 また、本発明は、油圧アクチュエータの起動ショックを抑制することができる作業機を提供することを目的とする。
 また、本発明は、旋回側に流れる作動油の温度上昇を抑制することができる作業機を提供することを目的とする。
 本発明の一態様に係る作業機は、複数の油圧アクチュエータと、前記複数の油圧アクチュエータに対応して設けられ、前記油圧アクチュエータに対する作動油の方向を切り換える複数の方向切換弁と、前記複数の油圧アクチュエータのうちの作動圧の高い高負荷油圧アクチュエータと該高負荷油圧アクチュエータよりも作動圧の低い低負荷油圧アクチュエータとを複合操作したときと、前記低負荷油圧アクチュエータを単独操作したときとの前記低負荷油圧アクチュエータの作動速度の速度変化を抑制すべく、前記低負荷油圧アクチュエータに対して作動油の方向を切り換える低負荷側の方向切換弁に疑似負荷を形成する疑似負荷形成部と、を備えている。
 また、前記低負荷側の方向切換弁は、前記低負荷油圧アクチュエータに向けて作動油を流す流路を有し、前記疑似負荷形成部は、前記流路に設けられた絞りによって構成されている。
 また、前記高負荷油圧アクチュエータを制御する制御弁であって、導入された作動油の圧力と出力する作動油の圧力との差圧を一定に設定する圧力補償弁を有する第1制御バルブと、前記低負荷油圧アクチュエータを制御する制御弁であって、前記低負荷側の方向切換弁と、前記低負荷側の方向切換弁を介して前記低負荷油圧アクチュエータに出力する作動油の流量を優先する流量優先弁とを有する第2制御バルブと、を備えている。
 また、前記流量優先弁は、前記低負荷側の方向切換弁から出力する作動油の流量を増加させる第1位置と、前記低負荷側の方向切換弁から出力する作動油の流量を減少させる第2位置との間を移動可能なスプールと、前記スプールを第1位置に向けて押圧する押圧部材とを含み、前記低負荷側の方向切換弁は、前記低負荷油圧アクチュエータの一方側に作動油を流す前記流路である第1流通路と、前記低負荷油圧アクチュエータの他方側に作動油を流す前記流路である第2流通路とを含み、前記疑似負荷形成部は、前記第1流通路に設けられた前記絞りである第1絞りと、前記第2流通路に設けられた前記絞りである第2絞りとを含む。
 また、前記低負荷側の方向切換弁は、作動油が供給されるポンプポートと、前記流量優先弁に作動油を出力する出力ポートと、前記ポンプポートと前記出力ポートとを接続する接続油路と、前記接続油路に設けられた流路絞りとを有し、前記第1絞りよる圧力損失と前記第2絞りによる圧力損失とは、前記流路絞りによる圧力損失よりも大である。
 また、縦軸回りに旋回可能な機体と、前記機体を旋回させる旋回モータと、前記機体の前部に上下揺動可能に設けられたブームと、前記ブームを上下揺動させるブームシリンダと、を備え、前記高負荷油圧アクチュエータは、前記ブームシリンダで構成され、前記低負荷油圧アクチュエータは、前記旋回モータで構成される。
 また、前記複数の油圧アクチュエータを作動させる作動油を吐出する可変容量型のポンプと、前記ポンプの吐出圧から前記複数の油圧アクチュエータのうちの最高負荷圧を引いた差圧を一定圧にするように前記ポンプを制御するロードセンシングシステムと、を備えている。
 また、本発明の他の態様に係る作業機は、操作部材と、前記操作部材の操作量に応じて作動する油圧アクチュエータと、前記油圧アクチュエータを作動させる作動油を吐出するポンプと、前記ポンプから吐出される作動油の圧力を変更可能に規定する可変リリーフ弁と、前記可変リリーフ弁で規定される圧力であるリリーフセット圧を制御するリリーフ制御部と、を備え、前記リリーフ制御部は、前記操作部材の操作量に応じて前記リリーフセット圧を変更する。
 また、前記リリーフ制御部は、前記リリーフセット圧を複数の設定値のいずれかに設定し、且つ前記操作部材の操作量の増加に応じて前記リリーフセット圧の設定値を段階的に上げていく。
 また、前記リリーフ制御部は、前記操作部材の非操作時の前記リリーフセット圧を第1設定値に規定し、前記操作部材を操作した後、所定時間で前記リリーフセット圧を前記第1設定値よりも高い第2設定値に変更し、前記操作部材の操作量が所定量を超えたときに前記第2設定値よりも高い第3設定値に変更する。
 また、前記リリーフ制御部は、前記操作部材を操作した後の前記所定時間内に前記操作部材の操作量が前記所定量を超えた場合は、前記リリーフセット圧を第3設定値に変更する。
 また、前記リリーフセット圧の異なる設定値を有する複数のモードを備え、前記複数のモードは、リリーフセット圧の最高圧の設定値が異なる。
 また、前記複数のモードは、リリーフセット圧の最高圧の設定値が最も高い第1モードと、リリーフセット圧の最高圧の設定値が第1モードよりも低い第2モードと、リリーフセット圧の最高圧の設定値が第2モードよりも低い第3モードとを含み、前記第1モード、前記第2モード及び前記第3モードの前記操作部材の非操作時の前記リリーフセット圧が同じ設定値である。
 また、作動油の油温を検出する油温センサと、前記油温が第1所定温度よりも低い場合に前記複数のモードのうちの前記リリーフセット圧の最高圧の設定値が一番高いモードに切り換え、前記油温が前記第1所定温度よりも高い第2所定温度よりも高くなると元のモードに復帰させる自動切換え部と、を備えている。
 また、前記油圧アクチュエータは複数備えられ、前記ポンプは可変容量型に構成され、前記ポンプの吐出圧から前記複数の油圧アクチュエータのうちの最高負荷圧を引いた差圧を一定圧にするように前記ポンプを制御するロードセンシングシステムを備えている。
 また、本発明のさらに他の態様に係る作業機は、機体と、前記機体を旋回駆動する旋回モータと、前記機体に装備される作業具と、前記作業具を駆動する作業具駆動アクチュエータと、前記旋回モータ及び前記作業具アクチュエータに作動油を給排する油圧回路と、前記油圧回路の作動油の圧力が設定圧以上になった際に該作動油をリリーフするメインリリーフ弁と、前記作業具駆動アクチュエータの作動油の圧力が所定以上になった際に該作動油をリリーフする可変オーバーロードリリーフ弁と、前記可変オーバーロードリリーフ弁を制御するオーバーロード制御部と、を備え、前記オーバーロード制御部は、前記メインリリーフ弁がリリーフしているリリーフ状態で前記機体が旋回した場合に、前記可変オーバーロードリリーフ弁のリリーフセット圧を低下させる。
 また、前記作業具を操作する操作部材の動作を検出する操作検出部と、前記作業具の動作を検出する作業具動作検出部と、を備え、前記オーバーロード制御部は、前記操作部材で前記作業具を操作し且つ前記作業具が動作していない状態で前記機体が旋回した場合に、前記可変オーバーロードリリーフ弁のリリーフセット圧を低下させ、前記機体が旋回した場合であっても、前記操作部材で前記作業具を操作していない場合、及び前記作業具が動作している場合には前記可変オーバーロードリリーフ弁のリリーフセット圧を低下させない。
 また、前記作業具駆動アクチュエータを制御するアクチュエータ制御バルブを備え、前記オーバーロード制御部が前記可変オーバーロードリリーフ弁のリリーフセット圧を低下させる際に、前記アクチュエータ制御バルブのスプールのストロークを所定量までに制限するストローク制限部を備えている。
 また、前記アクチュエータ制御バルブは、パイロット圧で操作され、前記ストローク制限部は、前記アクチュエータ制御バルブに作用するパイロット圧が閾値よりも高い場合に、前記閾値まで低下させることで前記ストロークを制限する。
 また、前記機体を旋回させる旋回モータ及び前記作業具駆動アクチュエータを含む複数の油圧アクチュエータと、前記複数の油圧アクチュエータに供給する作動油を吐出するポンプと、前記ポンプの吐出圧から前記複数の油圧アクチュエータのうちの最高負荷圧を引いた差圧を一定圧にするように前記ポンプを制御するロードセンシングシステムとを備えている。
 上記の作業機によれば、疑似負荷形成部によって、低負荷側の方向切換弁に予め疑似負荷をつくって、低負荷油圧アクチュエータの作動圧を上げておくことで、高負荷油圧アクチュエータと低負荷油圧アクチュエータとを複合操作したときの圧力差を減少させることができる。これにより、高負荷油圧アクチュエータと低負荷油圧アクチュエータとを複合操作したときと、低負荷油圧アクチュエータを単独操作したときとの低負荷油圧アクチュエータの作動速度の速度変化を抑制することができる。
 また、上記の作業機によれば、操作部材の非操作時のリリーフセット圧を低く抑えることができる。これにより、操作部材を急操作した場合に、リリーフセット圧が低いところから立ち上がるので、油圧アクチュエータの起動ショックを抑制することができる。
 また、上記の作業機によれば、メインリリーフ弁がリリーフしている状態で機体が旋回した場合に、可変オーバーロードリリーフ弁のリリーフセット圧を低下させることにより、旋回側に流れる作動油の温度上昇を抑制することができる。
作業機の側面図である。 作業機の平面図である。 油圧システムの概略図である。 油圧システムの一部の回路図である。 コントロールバルブの一部の回路図である。 コントロールバルブの他の一部の回路図である。 コントロールバルブの別の一部の回路図である。 制御系の簡略図である。 モードごとのメインリリーフ圧の設定を示す表である。 メインリリーフ圧の変化を示すグラフである。 メインリリーフ圧の変化を示す他のグラフである。 モードごとのメインリリーフ圧の設定を示す他の表である。 圧力補償弁を有する制御弁の詳細な回路を示す図である。 流量優先弁を有する制御弁の詳細な回路を示す図である。
 以下、本発明の一実施形態について、図面を適宜参照しつつ説明する。
 図1は、本実施形態に係る作業機1の全体構成を示す概略側面図である。図2は、作業機1の概略平面図である。本実施形態では、作業機1として旋回作業機であるバックホーが例示されている。なお、作業機としては、バックホーに限定されることはなく、トラクタ、ホイルローダ、コンバイン等であってもよい。
 図1、図2に示すように、作業機1は、走行体1Aと、走行体1Aに装備された作業装置4とを備えている。走行体1Aは、走行装置3と、走行装置3に搭載された機体(旋回台)2と、機体2に搭載されたキャビン5とを有している。
 キャビン5の室内には、オペレータ(運転者)が着座する運転席(座席)6が設けられている。運転席6は機体2に搭載され、キャビン5は運転席6を包囲している。つまり、キャビン5は、運転席保護装置である。運転席保護装置としては、キャノピであってもよい。
 本実施形態においては、作業機1の運転席6に着座したオペレータの前側(図1、図2の矢印A1方向)を前方、オペレータの後側(図1、図2の矢印A2方向)を後方、運転者の左側(図1の矢印A3方向)を左方、オペレータの右側(図1の矢印A4方向)を右方として説明する。
 また、図1に示すように、前後方向K1に直交する方向である水平方向を機体幅方向K2(機体2の幅方向)として説明する。機体2の幅方向の中央部から右部、或いは、左部へ向かう方向を機体外方(機体幅方向K2の外方)として説明する。つまり、機体外方とは、機体幅方向K2であって機体2の幅方向の中心から離れる方向のことである。機体外方とは反対の方向を、機体内方(機体幅方向K2の内方)として説明する。つまり、機体内方とは、機体幅方向K2であって機体2の幅方向の中心に近づく方向である。
 図1、図2に示すように、走行装置3は、機体2を走行可能に支持する装置である。この走行装置3は、走行フレーム3Aと、走行フレーム3Aの左側に設けられた第1走行装置3Lと、走行フレーム3Aの右側に設けられた第2走行装置3Rとを有する。第1走行装置3L及び第2走行装置3Rは、クローラ式の走行装置である。第1走行装置3Lは、第1走行モータMLによって駆動される。第2走行装置3Rは、第2走行モータMRによって駆動される。第1走行モータML及び第2走行モータMRは、油圧モータ(油圧アクチュエータ)によって構成されている。
 走行装置3の前部には、ドーザ装置7が装着されている。ドーザ装置7は、ドーザシリンダC1によって駆動される。詳しくは、ドーザシリンダC1は、油圧シリンダ(油圧アクチュエータ)によって構成され、ドーザシリンダC1を伸縮することによりドーザ装置7のブレード7Aが上げ下げされる。
 図1に示すように、機体2は、走行フレーム3A上に旋回ベアリング8を介して旋回軸心(縦軸)X1回りに旋回可能に支持されている。旋回軸心X1は、旋回ベアリング8の中心を通る上下方向に延伸する軸心である。
 図2に示すように、キャビン5は、機体2の幅方向K2の一側部(左側部)に搭載されている。このキャビン5は、旋回軸心X1を通り且つ前後方向K1に延伸する中央線Y1より機体幅方向K2の一側部(左側部)寄りに配置されている。また、キャビン5は、機体2の前部寄りに設けられている。
 図2に示すように、機体2の幅方向K2の他側部(右側部)には、原動機E1が搭載されている。原動機E1は、機体2に縦置きに搭載されている。縦置きとは、原動機E1のクランク軸の軸心が前後方向に延伸する状態に配置されることである。
 原動機E1は、中央線Y1より機体幅方向K2の他側部(右側部)寄りに配置されている。原動機E1は、ディーゼルエンジンである。なお、原動機E1は、ガソリンエンジン、電動モータであってもよいし、エンジン及び電動モータを有するハイブリッド型であってもよい。
 原動機E1の後部には、圧油供給ユニット18が設けられている。圧油供給ユニット18は、原動機E1の動力によって駆動されて油圧駆動部に使用される作動油を加圧して吐出する。油圧駆動部は、例えば、作業機1に装備された油圧アクチュエータ等である。原動機E1の前方には、ラジエータR1、オイルクーラO1及びコンデンサD1が配置されて機体2に搭載されている。ラジエータR1は、原動機E1の冷却水(流体)を冷却する冷却機器(第1冷却機器)であり、オイルクーラO1は、作動油(流体)を冷却する冷却機器(第2冷却機器)である。また、コンデンサD1は、作業機1に装備された空調装置(エアコンディショナ)の冷媒(流体)を冷却する冷却機器(凝縮器)である。
 ラジエータR1と原動機E1との間には、原動機E1を冷却する冷却風を発生させる冷却ファンF1が設けられている。冷却ファンF1は、原動機E1の動力によって駆動されて前方から後方に流れる冷却風を発生させる。
 図2に示すように、機体2は、旋回軸心X1回りに旋回する基板(以下、旋回基板という)9を有する。旋回基板9は、鋼板等から形成されており、機体2の底部を構成する。原動機E1は、この旋回基板9に搭載されている。旋回基板9の上面の中央側には、補強部材である縦リブ9L,9Rが前部から後部にわたって設けられている。縦リブ9Lは、機体2の幅方向K2の中央から一側寄りに配置され、縦リブ9Rは他側寄りに配置されている。また、旋回基板9に、縦リブ9L,9Rの他、機体2に搭載される機器等の搭載物を支持する部材等が設けられることにより、機体2の骨格となる旋回フレームが構成される。旋回フレームの水平方向の周囲は、旋回カバーによって覆われる。
 機体2の後部には、ウエイト10が設けられている。ウエイト10は、機体2の後部に配置されて下部が旋回基板9に取り付けられている。
 図2に示すように、機体2の後部には、機体幅方向K2に沿って並べて配置された燃料タンクT1及び作動油タンクT2が搭載されている。燃料タンクT1は、原動機E1の燃料を貯留するタンクである。作動油タンクT2は、作動油を貯留するタンクである。
 図2に示すように、旋回基板9(機体2)の前部且つ機体幅方向K2の中央部には、旋回モータMTが配置され、この旋回モータMTによって旋回基板9が旋回軸心X1回りに旋回駆動される。旋回モータMTは、油圧モータ(油圧アクチュエータ)である。旋回軸心X1位置には、スイベルジョイント(油圧機器)S1が設けられている。スイベルジョイントS1は、作動油を流通させる油圧機器であって、機体2側の油圧機器と走行装置3側の油圧機器との間で作動油を流通させる回転継手(ロータリジョイント)である。スイベルジョイントS1の前方に旋回モータMTが配置されている。スイベルジョイントS1の後方にコントロールバルブ(油圧機器)CVが配置されている。コントロールバルブCVは、上下方向に積み重ねて結合された複数の制御弁(バルブ)を有するセクショナルタイプの複合制御弁(油圧機器)である。キャビン5の下方には、制御装置U1が設けられている。
 また、キャビン5内には、作業機1を操縦する操縦装置1Bが設けられている。操縦装置1Bは、運転席6の前方に設置されている。運転席6と操縦装置1Bとで運転部1Cが構成されている。
 図2に示すように、機体2は、機体幅方向K2の中央のやや右寄りの前部に支持ブラケット13を有している。支持ブラケット13は、縦リブ9L,9Rの前部に固定され、機体2から前方に突出状に設けられている。
 図1、図2に示すように、支持ブラケット13の前部(機体2から突出した部分)には、スイング軸14Aを介してスイングブラケット14が縦軸(上下方向に延伸する軸心)回りに揺動可能に取り付けられている。したがって、スイングブラケット14は、機体幅方向K2に(スイング軸14Aを中心として水平方向に)回動可能である。
 図1に示すように、スイングブラケット14は、旋回軸心X1の前方で且つ後述するブーム15が機体正面方向(前方)を向いている状態のときに少なくとも一部が中央線Y1とオーバーラップする位置に配置されている。また、スイング軸14Aの軸心(スイング軸心)X2を通る前後方向の線Y2と、キャビン5の右側面との間(略中央)に中央線Y1が位置している。
 図1に示すように、スイングブラケット14(機体2)には、作業装置4がスイング軸心X2回りに回動可能に支持されている。作業装置4は、ブーム15と、アーム16と、作業具(バケット)17とを有している。ブーム15の基部は、枢軸を介してスイングブラケット14の上部に枢支されている。詳しくは、ブーム15の基部は、ブーム15が機体正面方向を向く状態において、スイングブラケット14の上部に横軸心(機体幅方向K2に延伸する軸心)回りに回動可能に枢着されている。これによって、ブーム15が上下方向に揺動可能とされている。また、ブーム15は、図1に示す最上げ位置において、長手方向の中央部が後方に凸となるように屈曲している。
 アーム16は、ブーム15の先端側に枢軸を介して枢支されている。詳しくは、アーム16は、ブーム15が機体正面方向を向く状態において、該ブーム15に横軸心回りに回動可能に枢着されている。これによって、アーム16は、前後方向K1或いは上下方向に揺動可能とされている。また、アーム16は、ブーム15に対して近接する方向(クラウド方向)及び離反する方向(ダンプ方向)に揺動可能である。
 作業具17は、アーム16の先端側に枢軸を介して枢支されている。詳しくは、作業具17は、ブーム15が機体正面方向を向く状態において、アーム16に横軸心回りに回動可能に枢着されている。これによって、作業具17は、アーム16に対して近接する方向(クラウド方向)及び離反する方向(ダンプ方向)に揺動可能である。また、作業具17としてのバケットは、アーム16に、スクイ動作及びダンプ動作可能に設けられている。スクイ動作とは、作業具17をブーム15に近づける方向に揺動させる動作であり、例えば、土砂等を掬う場合の動作である。また、ダンプ動作とは、作業具17をブーム15から遠ざける方向に揺動させる動作であり、例えば、掬った土砂等を落下(排出)させる場合の動作である。
 なお、作業具17として、バケットの代わりに、パレットフォーク、マニアフォーク等の作業具(アタッチメント)や、グラップル、油圧圧砕機、アングルブルーム、アースオーガ、スノウブロア、スイーパー、モアー、油圧ブレーカ等の油圧アクチュエータを有する作業具(油圧アタッチメント)を取り付け可能である。
 スイングブラケット14は、機体2内に備えられたスイングシリンダC2の伸縮によって揺動可能である。ブーム15は、ブームシリンダC3の伸縮によって揺動可能である。アーム16は、アームシリンダC4の伸縮によって揺動可能である。作業具17は、作業具シリンダ(バケットシリンダ)C5の伸縮によって揺動可能である。スイングシリンダC2、ブームシリンダC3、アームシリンダC4、作業具シリンダC5は、油圧シリンダ(油圧アクチュエータ)によって構成されている。
 次に、図3~図7を参照して作業機1に装備された各種油圧アクチュエータML,MR,MT,C1~C6を作動させるための油圧システムについて説明する。
 油圧システムは、図3に示すように、コントロールバルブCVと、圧油供給ユニット18と、流量制御部19とを有する。
 前記コントロールバルブCVは、各種油圧アクチュエータML,MR,MT,C1~C6を制御する制御バルブV1~V10、圧油取入れ用のインレットブロックB2油排出用の一対のアウトレットブロックB1,B3を一方向に配置して集約してなるものである。
 図3に示すように、コントロールバルブCVは、本実施形態では、第1アウトレットブロックB1、作業具シリンダC5を制御する作業具制御バルブV1、ブームシリンダC3を制御するブーム制御バルブV2、ドーザシリンダC1を制御するドーザ用第1制御バルブV3、第2走行装置3Rの走行モータMRを制御する第2走行制御バルブV4、インレットブロックB2、第1走行装置3Lの走行モータMLを制御する第1走行制御バルブV5、ドーザシリンダC1を制御するドーザ用第2制御バルブV6、アームシリンダC4を制御するアーム制御バルブV7、旋回モータMTを制御する旋回制御バルブV8、スイングシリンダC2を制御するスイング制御バルブV9、作業具17として油圧アタッチメントが取り付けられた場合に該油圧アタッチメントに装備された油圧アクチュエータC6を制御するSP制御バルブV10、第2アウトレットブロックB3を、順に配置(図3においては右から順に配置)すると共にこれらを相互に連結してなる。
 図4~図7に示すように、各制御バルブV1~V10は、バルブボディ内に方向切換弁DV1~DV10と圧力補償弁(コンペンセータバルブ)V11とを組み込んで構成されている。方向切換弁DV1~DV10は、制御対象となる油圧アクチュエータML,MR,MT,C1~C6に対して作動油の方向を切り換える弁である。圧力補償弁V11は、方向切換弁DV1~DV10に対する圧油供給下手側で且つ制御対象となる油圧アクチュエータML,MR,MT,C1~C6に対する圧油供給上手側に配備されている。圧力補償弁V11は、制御バルブV1~V10のうちの複数を使用したときに、油圧アクチュエータML,MR,MT,C1~C6間の負荷の調整として機能する。
 第1アウトレットブロックB1には、第1リリーフ弁V12と第1アンロード弁V13とが組み込まれ、インレットブロックB2には走行独立弁V14が組み込まれている。第1リリーフ弁V12は、後述する第1圧油吐出ポートP1から吐出される作動油の圧力を規定するメインリリーフ弁である。
 走行独立弁V14は、直動スプール形切換弁から構成されていると共にパイロット圧によって切換操作されるパイロット操作切換弁によって構成されている。
 第2アウトレットブロックB3には、第2リリーフ弁V15と第2アンロード弁V16とが組み込まれている。第2リリーフ弁V15は、後述する第2圧油吐出ポートP2から吐出される作動油の圧力を規定するメインリリーフ弁である。
 各方向切換弁DV1~DV10は、直動スプール形切換弁によって構成されている。また、各方向切換弁DV1~DV10は、制御装置U1によって電気的に制御される制御弁である。詳しくは、各方向切換弁DV1~DV10は、例えば、パイロット式の電磁弁が採用される。パイロット式の電磁弁は、ソレノイドによって制御されるパイロット圧によりスプールを動かして作動油の流れを制御する弁である。
 図8に示すように、各方向切換弁DV1~DV10のソレノイドは、制御装置U1に接続されており、制御装置U1から送信される指令信号(電流値)に応じたパイロット圧により、各方向切換弁DV1~DV10が切り換え操作される。また、制御装置U1には、各方向切換弁DV1~DV10を操作する操作部材41(第1操作具41A~第7操作具41G)が接続されている。制御装置U1は、操作部材41の操作量に応じた電流値を操作対象の方向切換弁DV1~DV10のソレノイドに送信する。第1操作具41A、第2操作具41B、第3操作具41C及び第7操作具41Gは、例えば、操縦装置1Bに設けられ、運転席6に着座したオペレータが把持して操作するハンドルやレバーによって構成される。また、第4操作具41D、第5操作具41E及び第6操作具41Fは、例えば、運転席6の前方の床部に設けられ、オペレータの踏み操作によって操作されるペダルによって構成される。
 第1操作具41Aは、作業機1に装備された2つの操作対象を操作可能であり、例えば、方向切換弁DV8を操作可能(機体2を旋回操作可能)であり且つ方向切換弁DV7を操作可能(アーム16を揺動操作可能)である。また、第1操作具41Aは、操作方向及び操作量を検出するセンサ42(第1センサ42A)を有している。第1センサ42Aは、制御装置U1に接続されている。制御装置U1は、第1センサ42Aからの検出信号に基づいて、旋回制御バルブV8及びアーム制御バルブV7を制御する。
 第2操作具41Bも、作業機1に装備された2つの操作対象を操作可能であり、例えば、方向切換弁DV2を操作可能(ブーム15を揺動操作可能)であり且つ方向切換弁DV1を操作可能(作業具17を揺動操作可能)である。また、第2操作具41Bは、操作方向及び操作量を検出するセンサ(操作検出部)42(第2センサ42B)を有している。第2センサ42Bの構成は特に限定されるものではないが、例えば、ポテンショメータ等を用いることができる。第2センサ42Bは、制御装置U1に接続されている。制御装置U1は、第2センサ42Bからの検出信号に基づいて、ブーム制御バルブV2及び作業具制御バルブV1を制御する。
 第3操作具41Cは、方向切換弁DV3及び方向切換弁DV6を操作可能(ドーザ装置7を操作可能)である。また、第3操作具41Cは、操作方向及び操作量を検出するセンサ42(第3センサ42C)を有している。第3センサ42Cは、制御装置U1に接続されている。制御装置U1は、第3センサ42Cからの検出信号に基づいて、ドーザ用第1制御バルブV3及びドーザ用第2制御バルブV6を制御する。
 第4操作具41Dは、方向切換弁DV9を操作可能(スイングブラケット14を操作可能)である。また、第4操作具41Dは、操作方向及び操作量を検出するセンサ42(第4センサ42D)を有している。第4センサ42Dは、制御装置U1に接続されている。制御装置U1は、第4センサ42Dからの検出信号に基づいて、スイング制御バルブV9を制御する。
 第5操作具41Eは、方向切換弁DV5を操作可能(第1走行装置3Lを操作可能)である。また、第5操作具41Eは、操作方向及び操作量を検出するセンサ42(第5センサ42E)を有している。第5センサ42Eは、制御装置U1に接続されている。制御装置U1は、第5センサ42Eからの検出信号に基づいて、第1走行制御バルブV5を制御する。
 第6操作具41Fは、方向切換弁DV4を操作可能(第2走行装置3Rを操作可能)である。また、第6操作具41Fは、操作方向及び操作量を検出するセンサ42(第6センサ42F)を有している。第6センサ42Fは、制御装置U1に接続されている。制御装置U1は、第6センサ42Fからの検出信号に基づいて、第2走行制御バルブV4を制御する。
 第7操作具41Gは、方向切換弁DV10を操作可能(作業具としての油圧アタッチメントを操作可能)である。また、第7操作具41Gは、操作方向及び操作量を検出するセンサ42(第7センサ42G)を有している。第7センサ42Gは、制御装置U1に接続されている。制御装置U1は、第7センサ42Gからの検出信号に基づいて、SP制御バルブV4を制御する。
 第1センサ42A~第7センサ42Gは、例えば、ポジションセンサ等によって構成される。
 各方向切換弁DV1~DV10のスプールは、該各方向切換弁DV1~DV10を操作する各操作部材41の操作量に比例して動かされ、各方向切換弁DV1~DV10が動かされた量に比例する量の作動油を制御対象の油圧アクチュエータML,MR,MT,C1~C6に供給するように構成されており、各操作部材41の操作量に比例して操作対象(制御対象)の作動速度が変速可能とされている。
 この油圧システムにおける圧油供給源としての油圧ポンプは、油圧アクチュエータML,MR,MT,C1~C6を作動させる作動油の供給用の第1ポンプ21と、パイロット圧や検出信号等の信号圧油の供給用の第2ポンプ22とが装備されている。
 これら第1ポンプ21と第2ポンプ22とは、前記圧油供給ユニット18に備えられ、原動機E1によって駆動される。
 前記第1ポンプ21は、本実施形態では、独立した2つの圧油吐出ポートP1,P2から等しい量の作動油を吐出する等流量ダブルポンプの機能を有する斜板形可変容量アキシャルポンプで構成されている。詳しくは、第1ポンプ21は、1つのピストン・シリンダバレルキットからバルブプレートの内外に形成した吐出溝へ交互に作動油を吐き出す機構をもったスプリットフロー式の油圧ポンプが採用されている。
 この第1ポンプ21から吐出される一方の圧油吐出ポートを第1圧油吐出ポートP1といい、他方の圧油吐出ポートを第2圧油吐出ポートP2という。
 なお、本実施形態では、2つのポンプ機能を有する油圧ポンプから吐出される圧油吐出ポートを第1・2圧油吐出ポートP1,P2としているが、別個に形成された2つの油圧ポンプの一方の油圧ポンプの圧油吐出ポートを第1圧油吐出ポートとし、他方の油圧ポンプの圧油吐出ポートを第2圧油吐出ポートとしてもよい。
 また、圧油供給ユニット18には、第1ポンプ21の斜板を押圧する押圧ピストン23と、第1ポンプ21の斜板を制御する流量補償用ピストン24とが装備されている。
 第1ポンプ21は、該第1ポンプ21の自己圧によって押圧ピストン23を介して斜板がポンプ流量を増加する方向に押圧されるよう構成されていると共に、この押圧ピストン23の押圧力に対抗する力を前記流量補償用ピストン24によって斜板に作用させるように構成され、流量補償用ピストン24に作用する圧力を制御することにより、該第1ポンプ21の吐出流量が制御される。
 したがって、流量補償用ピストン24に作用する圧力が抜けると、第1ポンプ21は、斜板角がMAXとなって最大流量を吐出する。
 前記流量制御部19は第1ポンプ21の斜板制御を行うものであり、該第1ポンプ21の斜板制御は、前記流量補償用ピストン24に作用する圧力を、流量制御部19に装備された流量補償用バルブV17を制御することにより行われる。
 また、圧油供給ユニット18には、第1ポンプ21のポンプ馬力(トルク)制御用のバネ25とスプール26とが設けられており、第1ポンプ21の吐出圧が、予め設定していた圧力になると、第1ポンプ21が原動機E1から吸収する馬力(トルク)を制限するよう構成されている。
 前記第2ポンプ22は定容量形のギヤポンプによって構成されており、該第2ポンプ22の吐出油は第3圧油吐出ポートP3から吐出される。
 第1圧油吐出ポートP1は第1吐出路aを介してインレットブロックB2に接続され、第2圧油吐出ポートP2は第2吐出路bを介してインレットブロックB2に接続されている。
 第1吐出路aは第1圧油供給路dに接続され、該第1圧油供給路dは、インレットブロックB2から第2走行制御バルブV4のバルブボディ→ドーザ用第1制御バルブV3のバルブボディ→ブーム制御バルブV2のバルブボディ→作業具制御バルブV1のバルブボディを経て第1アウトレットブロックB1に至るように形成され、該第1アウトレットブロックB1にて(流路終端側にて)分岐されて第1リリーフ弁V12と第1アンロード弁V13とに接続されている。
 前記第1圧油供給路dから第2走行制御バルブV4、ドーザ用第1制御バルブV3、ブーム制御バルブV2、作業具制御バルブV1の各方向切換弁DV4,DV3,DV2,DV1に圧油分岐路fを介して作動油が供給可能とされている。
 第1リリーフ弁V12と第1アンロード弁V13とはドレン油路gに接続されている。ドレン油路gは、第1アウトレットブロックB1から作業具制御バルブV1のバルブボディ→ブーム制御バルブV2のバルブボディ→ドーザ用第1制御バルブV3のバルブボディ→第2走行制御バルブV4のバルブボディ→インレットブロックB2→第1走行制御バルブV5のバルブボディ→ドーザ用第2制御バルブV6のバルブボディ→アーム制御バルブV7のバルブボディ→旋回制御バルブV8のバルブボディ→スイング制御バルブV9のバルブボディ→SP制御バルブV10のバルブボディを経て第2アウトレットブロックB3に至るように形成されている。ドレン油路gを流れる作動油は、第2アウトレットブロックB3から作動油タンクT2へ排出される。
 第2吐出路bは第2圧油供給路eに接続されている。第2圧油供給路eはインレットブロックB2から第1走行制御バルブV5のバルブボディ→ドーザ用第2制御バルブV6のバルブボディ→アーム制御バルブV7のバルブボディ→旋回制御バルブV8のバルブボディ→スイング制御バルブV9のバルブボディ→SP制御バルブV10のバルブボディを経て第2アウトレットブロックB3に至るように形成されると共に、第2アウトレットブロックB3にて(流路終端側にて)分岐されて第2リリーフ弁V15と第2アンロード弁V16とに接続されている。
 前記第2圧油供給路eから第1走行制御バルブV5、ドーザ用第2制御バルブV6、アーム制御バルブV7、旋回制御バルブV8、スイング制御バルブV9、SP制御バルブV10の各方向切換弁DV5,DV6,DV7,DV8,DV9,DV10に圧油分岐路hを介して作動油が供給可能とされている。
 各制御バルブV1~V10に供給された作動油は、各油圧アクチュエータML,MR,MT,C1~C6に対して給排される。つまり、油圧システムは、各油圧アクチュエータML,MR,MT,C1~C6に作動油を給排する油圧回路を有している。
 第2リリーフ弁V15と第2アンロード弁V16とはドレン油路gに接続されている。
 第1圧油供給路dと第2圧油供給路eとは、インレットブロックB2内において、走行独立弁V14を横切る連通路jを介して相互に接続されている。
 走行独立弁V14は、連通路jの圧油流通を遮断する独立位置27と、連通路jの圧油流通を許容する合流位置28とに切換自在とされている。
 走行独立弁V14が独立位置27に切り換えられていると、第1圧油吐出ポートP1からの作動油が第2走行制御バルブV4、ドーザ用第1制御バルブV3の各方向切換弁DV4,DV3に供給可能とされると共に、第2圧油吐出ポートP2からの作動油が第1走行制御バルブV5、ドーザ用第2制御バルブV6の各方向切換弁DV5,DV6に供給可能とされ、第1圧油吐出ポートP1からの作動油が第1走行制御バルブV5、ドーザ用第2制御バルブV6には供給されず、また、第2圧油吐出ポートP2からの作動油が第2走行制御バルブV4、ドーザ用第1制御バルブV3には供給されない。
 また、走行独立弁V14が合流位置28に切り換えられると、第1圧油吐出ポートP1からの作動油と第2圧油吐出ポートP2からの作動油とが合流されて各制御バルブV1~V10の方向切換弁DV1~DV10に供給可能とされる。
 第3圧油吐出ポートP3は第3吐出路mを介してインレットブロックB2に接続され、該第3吐出路mは、途中で第1分岐油路m1と第2分岐油路m2とに分岐されてインレットブロックB2に接続されている。
 第1分岐油路m1は第1信号油路n1を介して走行独立弁V14の一側の受圧部14aに接続され、第2分岐油路m2は第2信号油路n2を介して走行独立弁V14の他側の受圧部14bに接続されている。
 前記第1信号油路n1には第1検出油路r1が接続され、前記第2信号油路n2には第2検出油路r2が接続されている。
 前記第1検出油路r1は、第1信号油路n1からドーザ用第2制御バルブV6の方向切換弁DV6→第1走行制御バルブV5の方向切換弁DV5→第2走行制御バルブV4の方向切換弁DV4→ドーザ用第1制御バルブV3の方向切換弁DV3を経てドレン油路gに接続されている。
 前記第2検出油路r2は、第2信号油路n2からSP制御バルブV10の方向切換弁DV10→スイング制御バルブV9の方向切換弁DV9→旋回制御バルブV8の方向切換弁DV8→アーム制御バルブV7の方向切換弁DV7→ドーザ用第2制御バルブV6の方向切換弁DV6→第1走行制御バルブV5の方向切換弁DV5→第2走行制御バルブV4の方向切換弁DV4→ドーザ用第1制御バルブV3の方向切換弁DV3→ブーム制御バルブV2の方向切換弁DV2→作業具制御バルブV1の方向切換弁DV1を経てドレン油路gに接続されている。
 前記走行独立弁V14は、各制御バルブV1~V10の方向切換弁DV1~DV10が中立である場合は、バネの力によって合流位置28に保持されている。
 そして、第2走行制御バルブV4、第1走行制御バルブV5、ドーザ用第1制御バルブV3、ドーザ用第2制御バルブV6の各方向切換弁DVのいずれかが中立位置から操作されたときに、第1検出油路r1及び第1信号油路n1に圧が立って、走行独立弁V14が合流位置28から独立位置27に切り換えられる。
 したがって、走行のみする場合、走行しながらドーザ装置7を使用する場合、又は、ドーザ装置7のみ使用する場合には、第1圧油吐出ポートP1からの作動油が第2走行制御バルブV4、ドーザ用第1制御バルブV3の各方向切換弁DVに供給され、且つ、第2圧油吐出ポートP2からの作動油が第1走行制御バルブV5、ドーザ用第1制御バルブV3の各方向切換弁DVに供給される。
 このとき、SP制御バルブV10、スイング制御バルブV9、旋回制御バルブV8、アーム制御バルブV7、ブーム制御バルブV2、作業具制御バルブV1の方向切換弁DV10,DV9,DV8,DV7,DV2,DV1のいずれかが中立位置から操作されたときには、第2検出油路r2及び第2信号油路n2に圧が立って、走行独立弁V14が独立位置27から合流位置28に切り換えられる。
 また、各制御バルブV1~V10の方向切換弁DV1~DV10が中立である場合において、SP制御バルブV10、スイング制御バルブV9、旋回制御バルブV8、アーム制御バルブV7、ブーム制御バルブV2、作業具制御バルブV1の方向切換弁DV10,DV9,DV8,DV7,DV2,DV1のいずれかが中立位置から操作されたときにも、走行独立弁V14は合流位置28である。
 したがって、非走行時又は走行時において、ブーム15、アーム16、作業具17、スイングブラケット14、機体2、ドーザ装置7の同時操作が可能とされている。
 また、この油圧システムにあっては、原動機E1のアクセル装置を自動的に操作するオートアイドリング制御システム(AIシステム)が備えられている。
 このAIシステムは、第3吐出路mの第1分岐油路m1と第2分岐油路m2とに感知油路s及びシャトル弁V18を介して接続されたAIスイッチ(圧力スイッチ)29と、原動機E1のガバナを制御する電気アクチュエータと、この電気アクチュエータを制御する制御装置とを備え、前記AIスイッチ29は制御装置に接続されている。
 このAIシステムにあっては、各制御バルブV1~V10の方向切換弁DV1~DV10が中立であるときには、第1分岐油路m1と第2分岐油路m2とに圧が立たないので、AIスイッチ29が感圧作動することがなく、この状態では、ガバナが、予め設定されているアイドリング位置にまでアクセルダウンするよう電気アクチュエータ等によって自動制御される。
 また、制御バルブV1~V10の方向切換弁DV1~DV10のうちのいずれか一つでも操作されると、第1分岐油路m1又は第2分岐油路m2に圧が立ち、この圧がAIスイッチ29によって感知されて該AIスイッチ29が感圧作動する。すると、制御装置から電気アクチュエータ等に指令信号が出され、該電気アクチュエータ等によってガバナが設定されたアクセル位置までアクセルアップするよう自動制御される。
 また、この油圧システムにあってはロードセンシングシステムが採用されている。
 本実施形態のロードセンシングシステムは、各制御バルブV1~V10に設けられた圧力補償弁V11、第1ポンプ21の斜板を制御する流量補償用ピストン24、前記流量制御部19に装備された流量補償用バルブV17、前記第1・2リリーフ弁V12,V15、前記第1・2アンロード弁V13,V16を有する。
 また、本実施形態のロードセンシングシステムは、圧力補償弁V11が方向切換弁DV1~DV10に対する圧油供給下手側に配備されたアフターオリフィス型のロードセンシングシステムが採用されている。
 このロードセンシングシステムにあっては、作業機1に装備された油圧アクチュエータML,MR,MT,C1~C6の複数を同時操作したとき、該油圧アクチュエータML,MR,MT,C1~C6間の負荷の調整として圧力補償弁V11が機能し、低負荷圧側の制御バルブV1~V10に最高負荷圧との差圧分の圧力損失を発生させ、負荷の大きさによらず、方向切換弁DV1~DV10のスプールの操作量に応じた流量を流す(配分する)ことができる。
 また、ロードセンシングシステムは、作業機1に装備された各油圧アクチュエータML,MR,MT,C1~C6の負荷圧に応じて第1ポンプ21の吐出量を制御して、負荷に必要とされる油圧動力を第1ポンプ21から吐出させることにより、動力の節約と操作性を向上することができる。
 本実施形態のロードセンシングシステムをさらに詳しく説明する。
 ロードセンシングシステムは、各制御バルブV1~V10の負荷圧のうちの最高の負荷圧をPLS信号圧として流量補償用バルブV17に伝達するPLS信号油路wと、第1ポンプ21の吐出圧をPPS信号圧として流量補償用バルブV17に伝達するPPS信号油路xとを有する。
 PLS信号油路wは、第1アウトレットブロックB1から作業具制御バルブV1のバルブボディ→ブーム制御バルブV2のバルブボディ→ドーザ用第1制御バルブV3のバルブボディ→第2走行制御バルブV4のバルブボディにわたって設けられると共に、走行独立弁V14を横切って第1走行制御バルブV5のバルブボディ→ドーザ用第2制御バルブV6のバルブボディ→アーム制御バルブV7のバルブボディ→旋回制御バルブV8のバルブボディ→スイング制御バルブV9のバルブボディ→SP制御バルブV10のバルブボディ→第2アウトレットブロックB3にわたって設けられており、該PLS信号油路wは各制御バルブにおいて、圧力補償弁V11に負荷伝達ラインyを介して接続されている。
 また、このPLS信号油路wは、第2アウトレットブロックB3から流量補償用バルブV17のスプールの一側に接続され、PPS信号圧が流量補償用バルブV17のスプールの一側に作用する。
 さらに、PLS信号油路wは、第1アウトレットブロックB1において第1アンロード弁V13とドレン油路gに接続され、第2アウトレットブロックB3において第2アンロード弁V16とドレン油路gに接続されている。
 前記走行独立弁V14が合流位置28にあるときには、PLS信号油路wの、走行独立弁V14から第1アウトレットブロックB1に至るラインw1と、走行独立弁V14から第2アウトレットブロックB3に至るラインw2とが連通しており、走行独立弁V14が合流位置28から独立位置27に切り換えられると、該走行独立弁V14にてPLS信号油路wが遮断される。
 これによって、PLS信号油路wが、走行独立弁V14を独立位置27にしたときに、第1圧油吐出ポートP1から作動油が供給される側のラインw1と、第2圧油吐出ポートP2から圧油が供給される側のラインw2とに分断される。
 PPS信号油路xは、走行独立弁V14から流量補償用バルブV17のスプールの他側にわたって設けられており、該PPS信号油路xは、走行独立弁V14が合流位置28にあるときには第2圧油供給路eに接続油路zを介して連通されていてPPS信号圧(第1ポンプ21の吐出圧)が流量補償用バルブV17のスプールの他側に作用し、走行独立弁V14が独立位置27に切り換えられると、該PPS信号油路xは逃し油路qを介してドレン油路gに連通し、PPS信号圧が零となるよう構成されている。
 また、流量補償用バルブV17のスプールの一側には、該流量補償用バルブV17に制御差圧を与えるバネ30と差圧ピストン31とが設けられている。
 前記構成の油圧システムにあっては、各制御バルブV1~V10の方向切換弁DV1~DV10が中立位置にあるときには走行独立弁V14が合流位置28であり、このとき、第1圧油供給路dの流路終端側が第1アンロード弁V13によってブロックされ且つ第2圧油供給路eの流路終端側が第2アンロード弁V16によってブロックされるようになっている。したがって、第1ポンプ21の吐出圧(PPS信号圧)が上昇し、このPPS信号圧とPLS信号圧(この時は零である)との差が制御差圧よりも大きくなると、第1ポンプ21が吐出量を減少させる方向に流量制御されると共に第1・第2アンロード弁V16が開いて第1ポンプ21からの吐出油を作動油タンクT2に落とす。
 したがって、この状態では、第1ポンプ21の吐出圧は第1・第2アンロード弁V13,V16で設定される圧となり、第1ポンプ21の吐出流量は最小吐出量となる。
 次に、ブームシリンダC3、アームシリンダC4、作業具シリンダC5、スイングシリンダC2、旋回モータMT、油圧アタッチメントのうちのいずれか二つ以上を同時操作する場合、又は、これらの一つ以上と、左右走行モータML,MR、ドーザシリンダC1のうちのいずれか一つ以上とを同時操作する場合について説明する。
 この場合にあっては、走行独立弁V14は合流位置28であり、操作された油圧アクチュエータML,MR,MT,C1~C6に作用する最高負荷圧がPLS信号圧となり、PPS信号圧-PLS信号圧が制御差圧となるように(PPS信号圧とPLS信号圧との差を設定値に維持するように)第1ポンプ21の吐出圧(吐出流量)が自動制御される。
 すなわち、第1・第2アンロード弁V13,V16を介してのアンロード流量が零になると、第1ポンプ21の吐出流量が増加し始め、操作された制御バルブの操作量に応じて第1ポンプ21の吐出油の全量が操作された油圧アクチュエータML,MR,MT,C1~C6に流れる。
 また、圧力補償弁V11によって、操作された制御バルブV1~V10の方向切換弁DV1~DV10のスプールの前後差圧が一定となり、操作された油圧アクチュエータML,MR,MT,C1~C6に作用する負荷の大きさの違いにかかわらず、第1ポンプ21の吐出流量が、操作された各油圧アクチュエータML,MR,MT,C1~C6に対して操作量に応じた量、分流される。
 なお、油圧アクチュエータML,MR,MT,C1~C6の要求流量が第1ポンプ21の最大吐出流量を超える場合は、第1ポンプ21の吐出油は操作された各油圧アクチュエータML,MR,MT,C1~C6に比例配分される。
 前記場合にあっては、効率的なシステムで同時操作(複合操作)が可能となる。
 次に、走行しながらドーザ装置7によって土工作業をする場合について説明する。
 この場合にあっては、走行独立弁V14が独立位置27に切り換えられ、該走行独立弁V14によって、連通路j及びPLS信号油路wが遮断され、また、PPS信号油路xは逃し油路qを介してドレン油路gに連通し、PPS信号圧が零となる。
 したがって、第1圧油吐出ポートP1からの作動油は第2走行制御バルブV4及びドーザ用第1制御バルブV3に流れ、第1走行制御バルブV5及びドーザ用第2制御バルブV6には流れない。また、第2圧油吐出ポートP2からの作動油は第1走行制御バルブV5及びドーザ用第2制御バルブV6に流れ、走行右制御バルブV4及びドーザ用第1制御バルブV3には流れない。さらに、PPS信号圧が零であるので、第1ポンプ21は斜板角がMAXとなって最大流量を吐出する。
 本実施形態の油圧システムにあっては、ドーザ用第1制御バルブV3及びドーザ用第2制御バルブV6によって、第1圧油供給路dと第2圧油供給路eとから作動油が均等に抜き取られてドーザシリンダC1に送られるので、作業機1の走行直進性を確保することができる。
 また、作業機1を左右一方にターンさせる場合にあっては、圧力補償弁V11が分流制御するため、走行モータML,MRにかかる負荷が高く、ドーザシリンダC1にかかる負荷が低くても、設定流量以上の作動油がドーザシリンダC1に流入しないことから、第1圧油吐出ポートP1からの作動油を第2走行制御バルブV4に、第2圧油吐出ポートP2からの作動油を第1走行制御バルブV5に、それぞれ独立して供給するという独立回路構成を維持でき且つ第1、2圧油吐出ポートP1,P2からの作動油が均等に抜き取られるので、左右の走行モータML,MRへの圧油供給流量が確保され、ターン性能を確保することができる。
 例えば、ドーザシリンダを制御するドーザ用制御バルブが1つである場合、該ドーザ用制御バルブは、第1圧油供給路又は第2圧油供給路の一方から作動油が供給されるように設けられるが、この場合、該一方の圧油供給路からドーザシリンダに作動油がとられると、直進走行の場合には斜行するという問題が生じる。また、ターンする場合には、ドーザ用制御バルブを設けた側の圧油供給系統の圧力損失が大きく、動きが遅くなる(具体的には、第1圧油吐出ポートP1からの圧油供給系統にドーザ用制御バルブを設けた場合、ドーザ装置7を操作しながら左ターンする場合では動くが、ドーザ装置7を操作しながら右ターンする場合は、ドーザ装置7を操作した時点で、動きが遅くなる)。
 また、ドーザシリンダを制御するドーザ用制御バルブを1つとし、第1圧油供給路、及び第2圧油供給路の両方から均等にドーザ用制御バルブに作動油を送るように構成することが考えられるが、この場合、直進性を確保することは可能ではあるが、ターン性能が大幅に低下する。
 すなわち、ターン時にあっては、ドーザシリンダに高圧側の圧油供給路から多くの流量の作動油が流入してしまう為にターン性能が大幅に低下するのである。
 また、この場合、第1圧油吐出ポートP1からの作動油か、或いは第2圧油吐出ポートP2からの作動油かのどちらの信号を基準に分流制御するのか、回路構成上決められないので、ロードセンシングシステムの構成が困難になる。
 また、走行しながらドーザ装置7によって土工作業をする場合にあっては、走行独立弁V14が独立位置27になると、PLS信号油路wも遮断されるので、第1圧油吐出ポートP1からの圧油供給系統と第2圧油吐出ポートP2からの圧油供給系統との間で、負荷信号の干渉がなく、作動油を走行用制御バルブV4,V5とドーザ用制御バルブV3,V6とに分流し且つ余剰の作動油をアンロード弁V13,V16から作動油タンクT2へ排出させるという制御を、第1圧油吐出ポートP1からの圧油供給系統、第2圧油吐出ポートP2からの圧油供給系統のそれぞれの回路で独立して行うことができ、圧力補償弁V11の機能を確保することができる。
 また、走行体1Aのみ或いはドーザ装置7のみ駆動する場合も、前記走行しながらドーザ装置7によって土工作業をする場合と同様、走行独立弁V14が独立位置27に切り換えられ、該走行独立弁V14によって、連通路j及びPLS信号油路wが遮断され、また、PPS信号油路xは逃し油路を介してドレン油路gに連通し、PPS信号圧が零となる。
 また、各走行用制御バルブV4,V5を第1ポンプ21の圧油吐出ポートP1,P2からの圧油供給系統の最上流側に配置しているので、第1ポンプ21から走行モータML,MRに至る油圧管路における圧力損失(圧損)の低減を図ることができる。
 なお、前記構成の油圧システムにあっては、第1ポンプ21は、スプリットフロー式の油圧ポンプが採用されていて、第1圧油吐出ポートP1からの吐出流量と、第2圧油吐出ポートP2からの吐出流量とを独立して制御できないものであるので、第1圧油供給路dと第2圧油供給路eとを独立させる際(合流させない場合)において、第1ポンプ21の吐出流量が最大となるように構成しているが、2つの油圧ポンプを設け、この2つの油圧ポンプのうちの一方の油圧ポンプの吐出ポートを第1圧油吐出ポートP1とし、他方の油圧ポンプの吐出ポートを第2圧油吐出ポートP2とする場合は、各油圧ポンプは、走行独立弁V14が独立位置27の場合でも、それぞれ独立に制御して、必要流量のみ吐出させるよう構成される(この場合でも、2つの油圧ポンプが合流時に同時に最大流量を吐出するように制御してもよい)。
 また、ドーザ装置7のみを操作したときに、走行独立弁V14が合流位置28になるように構成することも考えられるが、そうすると、走行しながらドーザ装置7を操作した場合において、走行独立弁V14を独立位置27に保持するために、ドーザ用制御バルブV3,V6の方向切換弁DV3,DV6を操作したことを検出するための第3の検出油路を設けなければならず、検出回路の回路構成構成が複雑化するが、本実施形態では、第1検出油路r1で走行用制御バルブV4,V5及び/又はドーザ用制御バルブV3,V6を操作したことを検出するよう構成しているので、検出回路の回路構成の簡素化を図ることができる。
 また、本実施形態の油圧システムにあっては、走行用制御バルブV4,V5とドーザ用制御バルブV3,V6とを並べて配置し、且つ、一方の走行用制御バルブV4及び一方のドーザ用制御バルブV3と、他方の走行用制御バルブV5及び他方のドーザ用制御バルブV6とを走行独立弁V14を挟んで配置しているので、走行用制御バルブV4,V5及び/又はドーザ用制御バルブV3,V6を操作したことを検出する検出回路の回路構成の簡素化を図ることができる。
 なお、制御バルブV1~V10、インレットブロックB2の配列としては、図例の配列に限定されることはなく、2つの独立した圧油吐出ポートP1,P2からの圧油供給系統のうちの一方に、一方の走行用制御バルブV4,V5及び一方のドーザ用制御バルブV3,V6並びに一方のアウトレットブロックB1,B3を設け、他方の圧油供給系統に、他方の走行用制御バルブV4,V5及び他方のドーザ用制御バルブV3,V6並びに他方のアウトレットブロックB1,B3を設けていれば、その他の制御バルブV1,V2,V7~10の配置は特に限定はされない。
 また、各制御バルブV1~V10の配列方向の順番も限定されることはない。
 図4に示すように、第1リリーフ弁V12及び第2リリーフ弁V15は、電磁式の可変リリーフ弁によって構成されている。第1リリーフ弁V12及び第2リリーフ弁V15(可変リリーフ弁)は、第1ポンプ21(ポンプ)から吐出される作動油の圧力を変更可能に規定する。以下、第1リリーフ弁V12及び第2リリーフ弁V15で規定(設定)される設定圧力であるリリーフセット圧を、メインリリーフ圧という。
 図8に示すように、第1リリーフ弁V12のソレノイドV12aと第2リリーフ弁V15のソレノイドV15aは、制御装置U1に接続されている。つまり、第1リリーフ弁V12及び第2リリーフ弁V15は、制御装置U1によって制御される。
 図9に示すように、作業機1は、メインリリーフ圧を変更する複数のモードを有している。本実施形態では、複数のモードは、第1モード(ハードモード)、第2モード(ノーマルモード)、第3モード(ソフトモード)である。例えば、ハードモードは、標準作業を行うときのモードであり、ノーマルモードは、軽作業を行うときのモードであり、ソフトモードは、整地作業を行うときのモードである。
 図8に示すように、制御装置U1には、モード切換えスイッチ43が接続されている。また、制御装置U1は、モードを切り換えるモード切換え部Uaを有している。モード切換え部Uaは、モード切換えスイッチ43の操作によって、モードをハードモード、ノーマルモード或いはソフトモードに切り換える。
 図9は、モードごとのメインリリーフ圧の設定値を表にした図であり、図10は、メインリリーフ圧の変化を、メインリリーフ圧を縦軸にとり、時間を横軸にとって表した図である。図9に示すメインリリーフ圧の設定値は、一例を示したものであり、限定されることはなく種々変更することができる。
 以下の説明において、制御装置U1から方向切換弁DV1~DV10のソレノイドへ送信される、操作部材41の操作量に応じた電流値を指令電流値と言う。また、複数の油圧アクチュエータML,MR,MT,C1~C6が操作された場合、操作された油圧アクチュエータML,MR,MT,C1~C6に対応する方向切換弁DV1~DV10に立つパイロット圧のうちで一番高いパイロット圧を最高パイロット圧という。1つの油圧アクチュエータML,MR,MT,C1~C6だけが操作された場合は、該操作された油圧アクチュエータML,MR,MT,C1~C6に対応する方向切換弁DV1~DV10に立つパイロット圧が最高パイロット圧である。
 図8に示すように、制御装置U1は、リリーフ制御部Ubを有している。リリーフ制御部Ubは、操作部材41の操作量に応じてメインリリーフ圧(リリーフセット圧)を複数の設定値に変更する。詳しくは、リリーフ制御部Ubは、操作部材41の操作量の増加に応じてリリーフセット圧の設定値を段階的に上げていく。
 以下、リリーフ制御部Ubによるリリーフセット圧の制御について、図9、図10を参照して、さらに詳しく説明する。
 図9に示すように、各モードは、複数の設定値を有している。複数の設定値は、第1設定値P#A、第2設定値P#B及び第3設定値P#Cを有している。第1設定値P#Aは、操作部材41の非操作時(すべての操作部材41を操作していない場合)のリリーフセット圧の設定値であり、15.0MPaである。即ち、メインリリーフ圧の初期圧は、15.0MPaである。また、本実施形態では、第1設定値P#Aは、ハードモード、ノーマルモード及びソフトモード共に15.0MPaである。
 第2設定値P#Bは、操作部材41の操作量が所定量を超えない範囲での設定値である。詳しくは、第2設定値P#Bは、操作部材41の操作範囲の始端位置(中立位置)と終端位置(フル操作位置)との間の所定位置(中間位置)を超えない範囲で操作部材41が操作されるときの設定値である。始端位置とは、操作部材41を操作していない位置(非操作位置)であり、終端位置とは、操作部材41を最大に操作した位置である。第2設定値P#Bは、ハードモードが一番高く、ノーマルモードがハードモードよりも低く、ソフトモードがノーマルモードよりも低い。具体的には、ハードモードの第2設定値P#Bは24.5MPaであり、ノーマルモードの第2設定値P#Bは20.6MPaであり、ソフトモードの第2設定値P#Bは15.0MPaである。
 第3設定値P#Cは、操作部材41の操作量が所定量を超えて操作されたときの設定値である。詳しくは、第3設定値P#Cは、操作部材41の始端位置と終端位置との間の所定位置を超えた範囲で操作部材41が操作されるときの設定値である。第3設定値P#Cは、ハードモードが一番高く、ノーマルモードがハードモードよりも低く、ソフトモードがノーマルモードよりも低い。具体的には、ハードモードの第3設定値P#Cは27.4MPaであり、ノーマルモードの第3設定値P#Cは24.5MPaであり、ソフトモードの第3設定値P#Cは15.0MPaである。本実施形態では、ソフトモードは、第1設定値P#A、第2設定値P#B及び第3設定値P#C共に15.0MPaである。
 次に、図10を参照して、操作部材41の操作に応じたメインリリーフ圧の変化について説明する。本実施形態においては、メインリリーフ圧を第3設定値P#Cに変更するか否かの判定の基準となる閾値Ipを有している。閾値Ipは、各方向切換弁DV1~DV10を操作する電流値であって、操作部材41の始端位置と終端位置との間の所定位置(中間位置)における電流値である。下記の説明においては、閾値Ipは、各方向切換弁DV1~DV10を操作するパイロット圧であって、当該閾値Ipに対応するパイロット圧である閾値Ip1で説明する。
 図10に示すように、モードをハードモード又はノーマルモードに設定している場合において、いずれかの操作部材41を操作した後、所定時間t1内に、最高パイロット圧が閾値Ip1(指令電流値が閾値Ip)を超えない場合には、メインリリーフ圧は、第1設定値P#Aから第2設定値P#Bへ時間経過に比例して上昇する。
 また、メインリリーフ圧が第1設定値P#Aから第2設定値P#Bに変更された後に、最高パイロット圧が閾値Ip1を超えた場合には、メインリリーフ圧は、第2設定値P#Bから第3設定値P#Cに切り換わる。その後、最高パイロット圧が閾値Ip1未満になったときには、メインリリーフ圧は、第3設定値P#Cから第2設定値P#Bに切り換わる。その後、操作された操作部材41のすべてが中立位置に操作されると、メインリリーフ圧は、第2設定値P#Bから第1設定値P#Aに切り換わる。
 また、いずれかの操作部材41を操作した後、所定時間t1未満に、最高パイロット圧が閾値Ip1(指令電流値が閾値Ip)を超えた場合には、図11に示すように、メインリリーフ圧は、第1設定値P#Aから第2設定値P#Bへ上昇している途中で第3設定値P#Cに切り換わる。
 なお、第2設定値P#Bを第3設定値P#Cの数値と同じ数値にし、閾値Ip1を方向切換弁DV1~DV10に立つ最高パイロット圧以上とすれば、方向切換弁DV1~DV10にどのようなパイロット入力があっても一定時間最高メインリリーフ圧の設定を遅延させることができる。
 図9に示すように、所定時間t1は、ハードモードの場合は、所定時間t1=0.5secであり、ノーマルモードの場合は、所定時間t1=1secである。
 なお、第2設定値P#Bから第3設定値P#Cに切り換わる際、第3設定値P#Cから第2設定値P#Bに切り換わる際、第2設定値P#Bから第1設定値P#Aに切り換わる際は、急激に切り換わるようにしているが、時間的変化を付けてもよい。また、ハードモードは、27.4MPaで固定であってもよい。即ち、ハードモードの場合、第1設定値P#A、第2設定値P#B、第3設定値P#Cがともに27.4MPaであってもよい。
 また、ソフトモードを選択している場合にあっては、第1設定値P#A、第2設定値P#B、第3設定値P#Cがともに15.0MPaである。
 操作部材41を操作する際に、メインリリーフ圧を15.0MPaという低いところから立ち上がるようにすることで、例えば、ブーム15を上げ下げする場合や機体2を旋回させる場合や走行装置3を駆動する場合などにおいて、操作部材41を急操作をした場合、動き出しが緩和され(起動ショックが穏やかになり)、起動時のショックを抑制することができる。
 また、ハードモードでは、ノーマルモードに比べてメインリリーフ圧の第3設定値P#Cが高いので、メインリリーフ圧が最高圧になるような動作を操作対象にさせる場合に、高い能力を発揮させることができる。また、逆に、ノーマルモードでは、ハードモードに比べてメインリリーフ圧の第3設定値P#Cが低いので、操作対象を構成する部材等に作用する負荷を低減することができ、耐久性を向上させることができる。
 また、ハードモード、ノーマルモード共に、メインリリーフ圧の第2設定値P#Bが第3設定値P#Cよりも低いので、操作部材41の操作範囲の中間操作域において、ロードセンシングシステム特有の敏感さを低減させることができ、操作部材41を急操作しても操作対象の作動動作によるショックが穏やかになる。
 また、作業機1で整地作業を行う場合がある。整地作業は、例えば、ブーム15やアーム16を揺動させながら作業具17で整地する場合、機体2を旋回させながら作業具17で整地する場合、作業機1を前後進させて走行装置3で整地する場合、作業機1を前進させながらドーザ装置7で整地する場合等がある。
 ソフトモードでは、ハードモード、ノーマルモードに比べて、メインリリーフ圧が低いので、ソフトモードを選択することにより、整地作業をする場合に整地を行いやすい。つまり、ロードセンシングシステムは流量制御であるので、従来の場合(メインリリーフ圧が固定で高い圧に設定されている場合)では、操作部材41を微操作した場合でも、操作対象が敏感に動くが、本実施形態では、ソフトモードを選択することにより、ロードセンシングシステム特有の敏感さを低減させることができ、これにより、整地を行いやすい。また、必要以上に力がでないので、整地作業が行いやすい。さらに、操作対象の動きに不具合が発生するのを抑制することができる。
 上記の実施形態にあっては、操作部材41の操作をセンサ42で検出し、この検出情報に基づいて方向切換弁DV1~DV10を電気的に制御することで操作対象を作動させる場合について説明したが、操作部材41をパイロット弁で構成し、方向切換弁DV1~DV10を、操作部材41から出力されるパイロット圧によって操作されるパイロット操作切換弁によって構成するようにしてもよい。パイロット弁とは、操作量に応じたパイロット圧を出力し、該出力したパイロット圧で他のバルブを操作する制御弁である。パイロット操作切換弁とは、パイロット弁からのパイロット圧で直接操作される切換弁である。
 操作部材41をパイロット弁で構成し、方向切換弁DV1~DV10を、操作部材41パイロット操作切換弁によって構成する場合におけるメインリリーフ圧については、以下のようにする。
 方向切換弁DV1~DV10をパイロット操作切換弁によって構成する場合における操作部材41が操作されたことの検出はAIスイッチ29によって行う。
 図12に示すように、第1設定値P#Aは、15.0MPaである。操作部材41のいずれか1つ以上が操作されたことがAIスイッチ29で検出されると、所定時間t1後に、メインリリーフ圧を第1設定値P#Aから第2設定値P#Bに変更する。この場合も、図10に示すように、第1設定値P#Aから第2設定値P#Bへ時間経過に比例して上昇する。所定時間t1は、ハードモード、ノーマルモード、ソフトモード共に、0.5secである。また、ハードモードの場合は、第2設定値P#B=第3設定値P#C=27.4MPaである。ノーマルモードの場合は、第2設定値P#B=20.6MPa、第3設定値P#C=24.5MPaである。ソフトモードの場合は、第2設定値P#B=第3設定値P#C=24.5MPaである。
 ノーマルモードの場合において、第2設定値P#Bから第3設定値P#Cに変更する場合は、例えば、操作部材(パイロット弁)41から出力される圧力を検出することにより、制御装置U1に操作部材41の操作量を把握させることができる。即ち、操作部材41が操作範囲の中間域で操作されていることを検出しているときには、メインリリーフ圧を第2設定値P#Bに維持し、操作部材41が操作範囲の終端位置(フル操作位置)に操作されたことを検出した場合は、メインリリーフ圧を第3設定値P#Cに変更する。
 なお、ノーマルモードの場合においても、第2設定値P#B=第3設定値P#Cとしてもよい。また、方向切換弁DV1~DV10をパイロット操作切換弁によって構成する場合において、操作部材(パイロット弁)41が操作されたことの検出を操作部材41から出力されるパイロット圧によって検出してもよい。
 また、作業機1に装備される方向切換弁DV1~DV10の一部をパイロット式の電磁弁で構成し、他の一部をパイロット操作切換弁によって構成してもよい。例えば、機体2及び作業装置4を操作する方向切換弁DV1,DV2,DV7,DV8は、パイロット式の電磁弁で構成し、その他の操作対象を操作する方向切換弁DV3~DV6,DV9,DV10を、パイロット操作切換弁によって構成してもよい。方向切換弁DV1~DV10の一部をパイロット式の電磁弁で構成し、他の一部をパイロット操作切換弁によって構成する場合において、パイロット式の電磁弁とパイロット操作切換弁との両方を操作する場合は、メインリリーフ圧を、図12に示す設定値を優先する。
 また、方向切換弁DV1~DV10の一部をパイロット式の電磁弁で構成し、他の一部をパイロット操作切換弁によって構成する場合、例えば、機体2及び作業装置4を操作する方向切換弁DV1,DV2,DV7,DV8をパイロット式の電磁弁で構成し、走行装置3を操作する方向切換弁DV4,DV5をパイロット操作切換弁で構成し、且つソフトモードを選択した場合において、機体2及び作業装置4を操作して整地する場合は必要以上に力がでないようにすることができ、走行する場合は必要な力をだせるようにすることができる。
 図8に示すように、作業機1は、作動油の油温を検出する油温センサ44を有している。油温センサ44は、例えば、第1ポンプ21のサクション側の作動油(例えば、作動油タンクT2内の作動油)の油温を検出するセンサである。油温センサ44は、制御装置U1に接続されている。制御装置U1は、油温センサ44の検出情報を取得可能である。制御装置U1は、作動油の油温に応じてモードを自動的に切り換える自動切換え部Ucを有している。自動切換え部Ucは、油温が第1所定温度以下の低温(例えば、-10°C以下)と判定された場合、モード選択がどこにあっても、つまりノーマルモード又はソフトモードを選択していても自動的にハードモードに切り換える。その後、自動切換え部Ucは、油温が第2所定温度以上の常温(例えば、0°C以上)と判定された場合に、選択されている元のモードに自動的に復帰させる。
 低温時にあっては、油圧ホースを流通する作動油の圧力損失などにより油圧アクチュエータML,MR,MT,C1~C6を作動させる作動油の作動圧が上昇し、メインリリーフ圧が低いと速度が低下する場合があるので、ノーマルモード、ソフトモードを選択しているままでは、操作対象の速度が低下する。このような場合に、自動的にハードモードに切り換わることにより、オペレータがモードをハードモードに手動で切り換えなくても、低温時での起動後の速度低下を自動回避することができる。
 上記作業機1は、操作部材41と、操作部材41の操作量に応じて作動する油圧アクチュエータML,MR,MT,C1~C6と、油圧アクチュエータML,MR,MT,C1~C6を作動させる作動油を吐出するポンプ(第1ポンプ21)と、ポンプ21から吐出される作動油の圧力を変更可能に規定する可変リリーフ弁V12,V15と、可変リリーフ弁V12,V15で規定される圧力であるリリーフセット圧を制御するリリーフ制御部Ubと、を備え、リリーフ制御部Ubは、操作部材41の操作量に応じてリリーフセット圧を変更する。
 この構成によれば、操作部材41の非操作時のリリーフセット圧を低く抑えることができる。これにより、操作部材41を急操作した場合に、リリーフセット圧が低いところから立ち上がるので、油圧アクチュエータML,MR,MT,C1~C6の起動ショックを抑制することができる。
 また、リリーフ制御部Ubは、リリーフセット圧を複数の設定値のいずれかに設定し、且つ操作部材41の操作量の増加に応じてリリーフセット圧の設定値を段階的に上げていく。
 この構成によっても、操作部材41の非操作時のリリーフセット圧を低く抑えることができ、油圧アクチュエータML,MR,MT,C1~C6の起動ショックを抑制することができる。
 また、リリーフ制御部Ubは、操作部材41の非操作時のリリーフセット圧を第1設定値P#Aに規定し、操作部材41を操作した後、所定時間t1でリリーフセット圧を第1設定値P#Aよりも高い第2設定値P#Bに変更し、操作部材41の操作量が所定量を超えたときに第2設定値P#Bよりも高い第3設定値P#Cに変更する。
 この構成によれば、各種作業に必要な力を操作部材41の操作量に応じて設定することができる。
 また、リリーフ制御部Ubは、操作部材41を操作した後の所定時間t1内に操作部材41の操作量が所定量を超えた場合は、リリーフセット圧を第3設定値P#Cに変更する。
 この構成によれば、応答性を良好にすることができる。
 また、リリーフセット圧の異なる設定値を有する複数のモードを備え、複数のモードは、リリーフセット圧の最高圧の設定値が異なる。
 この構成によれば、作業種類に応じてモードを切り換えることにより、作業種類に応じた力で作業をすることができる。
 また、複数のモードは、リリーフセット圧の最高圧の設定値が最も高い第1モードと、リリーフセット圧の最高圧の設定値が第1モードよりも低い第2モードと、リリーフセット圧の最高圧の設定値が第2モードよりも低い第3モードとを含み、第1モード、第2モード及び第3モードの操作部材41の非操作時のリリーフセット圧が同じ設定値である。
 この構成によっても、作業種類に応じた力で作業をすることができる。
 また、作動油の油温を検出する油温センサ44と、油温が第1所定温度よりも低い場合に複数のモードのうちのリリーフセット圧の最高圧の設定値が一番高いモードに切り換え、油温が第1所定温度よりも高い第2所定温度よりも高くなると元のモードに復帰させる自動切換え部Ucと、を備えている。
 この構成によれば、オペレータがモードを手動で切り換えなくても、低温時での起動後の速度低下を自動回避することができる。
 また、作業機1は、油圧アクチュエータML,MR,MT,C1~C6が複数備えられ、ポンプ21が可変容量型に構成され、ポンプ21の吐出圧から複数の油圧アクチュエータML,MR,MT,C1~C6のうちの最高負荷圧を引いた差圧を一定圧にするようにポンプ21を制御するロードセンシングシステムを備えている。
 図5、図6、図7に示すように、制御バルブV1,V2,V6,V7,V10には、対応する油圧アクチュエータC1,C3~C6に作用する過負荷を防止するために、該油圧アクチュエータC1,C3~C6に作用する最高圧力(リリーフセット圧)を規定するオーバーロードリリーフ弁(ポートリリーフ弁)V19が組み込まれている。
 図6に示すように、作業具シリンダC5(作業具駆動アクチュエータ)のボトム側(クラウド側)のポートC5aに連通するオーバーロードリリーフ弁V19は、リリーフセット圧を変更可能な電磁式の可変オーバーロードリリーフ弁V19Aによって構成されている。
 可変オーバーロードリリーフ弁V19Aは、作業具制御バルブV1(アクチュエータ制御バルブ)と作業具シリンダC5のクラウド側のポートC5aとを接続する給排油路51に第1接続油路52を介して接続されている。また、可変オーバーロードリリーフ弁V19Aは、ドレン油路gに第2接続油路53を介して接続されている。
 図8に示すように、可変オーバーロードリリーフ弁V19AのソレノイドV19aは、制御装置U1に接続されている。つまり、制御装置U1は、可変オーバーロードリリーフ弁V19Aを制御可能である。
 図8に示すように、制御装置U1は、旋回検出部Udを有している。旋回検出部Udは、旋回制御バルブV8(方向切換弁DV8)が操作されていること、つまり、機体2を旋回させていることを検出する。詳しくは、第1操作具41Aが旋回モータMTを操作する方向に操作された場合に、第1操作具41Aから送信される操作信号を制御装置U1が取得したことによって検出する。なお、機体2が旋回動作されたことは、機体2の回転又は旋回モータMTの回転を検出する回転センサによって検出するようにしてもよい。この場合、機体2が旋回動作されたことは、前記回転センサを制御装置U1に接続することで、制御装置U1(旋回検出部Ud)に認識させることができる。また、旋回制御バルブV8の方向切換弁DV8がパイロット操作切換弁で構成される場合は、該パイロット操作切換弁に立つパイロット圧を検出することによって機体2が旋回されていることを検出するようにしてもよい。
 図8に示すように、制御装置U1には、動作センサ(作業具動作検出部)54が接続されている。動作センサ54は、作業具17が動作しているか否かの検出を行う。動作センサ54は、作業具17の揺動を直接検出するポテンショメータや、作業具シリンダC5の伸縮状態を検出するストロークセンサ等によって構成される。
 また、制御装置U1は、作業動作検出部Ueを有している。作業動作検出部Ueは、第2操作具41B(操作部材41)で作業具17を操作し且つ作業具17が動作していないことを動作センサ54が検出することで、作業具17に起因してメインリリーフ弁V12(V15)がリリーフしているリリーフ状態(高負荷作業状態)であることを検出する。高負荷作業状態の一例を挙げると、作業具17がバケットの場合に、作業具17をクラウド方向に操作して該作業具17がワーク(岩等)を掴み且つ動かないままの状態である。このとき、メインリリーフ圧は例えば24.5MPaに制御している。
 図8に示すように、制御装置U1は、オーバーロード制御部Ugを有している。オーバーロード制御部Ugは、メインリリーフ弁V12(V15)がリリーフ状態で機体2が旋回した場合に、可変オーバーロードリリーフ弁V19Aのリリーフセット圧を低下させる。例えば、可変オーバーロードリリーフ弁V19Aで規定される作業具シリンダC5のクラウド側のポートC5aの最高圧を29.4MPaとすると、メインリリーフ圧より低い20.6MPaまで低下させる。この数値は、一例であって限定されることはない。
 従来、作業具シリンダC5がリリーフしたままで、機体2を旋回させると、作業具シリンダC5はリリーフ圧で作動し、旋回モータMTは低圧で作動する。すると、ロードセンシングシステムでは、作動油を適正に分流させるために、低圧側である旋回制御バルブV8の圧力補償弁V11で疑似負荷をつくって、油圧アクチュエータ間の負荷を揃える。即ち、負荷が軽いセクションに、負荷が重いセクションに合わせて疑似負荷をつくって負荷を揃える。そうすると、疑似負荷をつくったところが圧損となって作動油の温度をあげてしまい、旋回側のセクションに流れる作動油の油温が高くなる。その結果、旋回モータMTの構成部品(シール部材)を劣化させる場合がある。
 このような場合、即ち、可変オーバーロードリリーフ弁V19Aがリリーフ状態で機体2が旋回した場合に、可変オーバーロードリリーフ弁V19Aのリリーフセット圧を低下させることにより、旋回制御バルブV8の圧力補償弁V11で生成される疑似負荷(疑似圧損)が減少する。これにより、疑似負荷に起因する作動油の油温の上昇を抑制することができる。即ち、旋回モータMTに流れる作動油の油温の上昇を抑えることができる。また、省エネ化を図ることもできる。
 本実施形態では、作業具17がバケットである場合を例に挙げて説明したが、作業具17は、バケット以外の作業具であってもよい。例えば、作業具17はグラップルであってもよい。作業具17がグラップルである場合は、可変オーバーロードリリーフ弁V19Aは、SP制御バルブV10のオーバーロードリリーフ弁V19に採用される。即ち、グラップルに装備された掴み具を開閉して掴み動作または離し動作させるための油圧アクチュエータ(作業具駆動アクチュエータ)C6は、SP制御バルブV10で操作される。したがって、SP制御バルブV10の2つのオーバーロードリリーフ弁V19のうち、油圧アクチュエータC6の掴み側のポートに接続されるオーバーロードリリーフ弁V19に可変オーバーロードリリーフ弁V19Aが採用される。つまり、作業具17がグラップルである場合は、グラップルで木材等のワークを掴みながら機体2が旋回する場合に、油圧アクチュエータC6の掴み側のポートに接続される可変オーバーロードリリーフ弁V19Aのリリーフセット圧を低下させる。
 また、本実施形態では、第2操作具41Bで作業具17を操作し且つ作業具17が動作していないことを動作センサ54が検出した場合に、可変オーバーロードリリーフ弁V19Aのリリーフセット圧を低下させている。そのため、メインリリーフ弁V12(V15)がリリーフ状態である場合であっても、作業具17が動作している場合は、可変オーバーロードリリーフ弁V19Aのリリーフセット圧は低下させない。例えば、掘削作業として、機体2を旋回させて作業具17を壁等に押し当てながら該作業具17を揺動させて掘削する旋回横当て掘削作業がある。この作業を行うときに可変オーバーロードリリーフ弁V19Aのリリーフセット圧を落とすと作業具17の力が落ちて掘削力が低下する。したがって、このような旋回横当て掘削作業をする場合は、可変オーバーロードリリーフ弁V19Aのリリーフセット圧を低下させないで、作業具17の力を落とさないようにしている。
 図8に示すように、制御装置U1は、ストローク制限部Uhを有している。
 ストローク制限部Uhは、オーバーロード制御部Ugが可変オーバーロードリリーフ弁V19Aのリリーフセット圧を低下させる際に、作業具制御バルブV1のスプールV1aのストロークを所定量までに制限する。SP制御バルブV10の場合は、スプールV10aを所定量までに制限する。これにより、無駄にドレンされる作動油の流量を減少させることができ、省エネ化を図ることができる。
 即ち、作業具17などでワークを掴んでいるときは、操作部材41は、フル操作されていて、作業具制御バルブV1からポートC5aへ向けて流れる作動油は、全量が可変オーバーロードリリーフ弁V19Aから無駄にドレンされる。即ち、作業具17などでワークを掴んでいる(可変オーバーロードリリーフ弁V19Aがリリーフ状態である)ときに、可変オーバーロードリリーフ弁V19Aのリリーフセット圧を低下させて作業具17の力を落としているのに、作動油の流量が多いままであるので、スプールV10aを所定量戻すことにより作動油の余分な流量を減らして省エネ化を図っている。
 本実施形態では、作業具制御バルブV1(方向切換弁DV1)は、パイロット圧によってスプールV10aのストロークを制御しているので、パイロット圧によってスプールV10aのストローク制限をすることで、該ストローク制限を容易に行える。即ち、ストローク制限部Uhは、閾値を有し、作業具制御バルブV1(方向切換弁DV1のソレノイド)に作用するパイロット圧が閾値よりも高い場合に、閾値まで低下させることでスプールV10aのストロークを制限する。SP制御バルブV10の場合も同様である。
 また、上記の作業機1は、機体2と、機体2を旋回駆動する旋回モータMTと、機体2に装備される作業具17と、作業具17を駆動する作業具駆動アクチュエータ(作業具シリンダC5,油圧アクチュエータC6)と、旋回モータMT及び作業具アクチュエータC5,C6に作動油を給排する油圧回路と、前記油圧回路の作動油の圧力が設定圧以上になった際に該作動油をリリーフするメインリリーフ弁V12(V15)と、作業具駆動アクチュエータC5,C6の作動油の圧力が所定以上になった際に該作動油をリリーフする可変オーバーロードリリーフ弁V19Aと、可変オーバーロードリリーフ弁V19Aを制御するオーバーロード制御部Ugと、を備え、オーバーロード制御部Ugは、メインリリーフ弁V12(V15)がリリーフしているリリーフ状態で機体2が旋回した場合に、可変オーバーロードリリーフ弁V19Aのリリーフセット圧を低下させる。
 この構成によれば、メインリリーフ弁V12(V15)がリリーフしている状態で機体2が旋回した場合に、可変オーバーロードリリーフ弁V19Aのリリーフセット圧を低下させることにより、旋回側に流れる作動油の温度上昇を抑制することができる。
 また、作業具17を操作する操作部材(第2操作具41B)の動作を検出する操作検出部(第2センサ42B)と、作業具17の動作を検出する作業具動作検出部(動作センサ54)と、を備え、オーバーロード制御部Ugは、操作部材で作業具17を操作し且つ作業具17が動作していない状態で機体2が旋回した場合に、可変オーバーロードリリーフ弁V19Aのリリーフセット圧を低下させ、前記機体が旋回した場合であっても、操作部材で作業具17を操作していない場合、及び作業具17が動作している場合には可変オーバーロードリリーフ弁V19Aのリリーフセット圧を低下させない。
 この構成によれば、作業具17が動作している場合には可変オーバーロードリリーフ弁V19Aのリリーフセット圧を低下させないので、作業具17を用いた作業の作業性が低下することを防止できる。
 また、作業具駆動アクチュエータC5,C6を制御するアクチュエータ制御バルブ(作業具制御バルブV1,SP制御バルブV10)を備え、オーバーロード制御部Ugが可変オーバーロードリリーフ弁V19Aのリリーフセット圧を低下させる際に、アクチュエータ制御バルブV1,V10のスプールV1a,V10aのストロークを所定量までに制限するストローク制限部Uhを備えている。
 この構成によれば、無駄にドレンされる作動油の量を減らして省エネ化を図ることができる。
 また、アクチュエータ制御バルブV1,V10は、パイロット圧で操作され、ストローク制限部Uhは、アクチュエータ制御バルブV1,V10に作用するパイロット圧が閾値よりも高い場合に、閾値まで低下させることでストロークを制限する。
 この構成によれば、ストローク制限部Uhを容易に構成することができる。
 また、作業機1は、機体2を旋回する旋回モータMT及び作業具駆動アクチュエータC5,C6を含む複数の油圧アクチュエータML,MR,MT,C1~C6と、複数の油圧アクチュエータML,MR,MT,C1~C6に供給する作動油を吐出するポンプ21と、ポンプ21の吐出圧から複数の油圧アクチュエータML,MR,MT,C1~C6のうちの最高負荷圧を引いた差圧を一定圧にするようにポンプ21を制御するロードセンシングシステムとを備えている。
 図13、図14は、他の実施形態を示している。図13は、ブーム制御バルブ(第1制御バルブ)V2を示している。図14は、旋回制御バルブ(第2制御バルブ)V8を示している。以下、図13、図14を参照して、他の実施形態について説明する。
 上述したように、ロードセンシングシステムは、PPS信号圧とPLS信号圧との圧力差(PPS信号圧-PLS信号圧:第1差圧)が予め定められた圧力となるように(第1差圧が一定となるように)、第1ポンプ21の斜板の角度を変更し、第1ポンプ21の吐出量を調整する。
 図13に示すように、ブーム制御バルブV2は、方向切換弁DV2と、圧力補償弁V11(V11A)とを有している。方向切換弁DV2は、ブームシリンダ(高負荷油圧アクチュエータ)C3に向かう作動油の方向を切換可能であって、例えば、第1位置61、第2位置62、第3位置(中立位置)63に切り換わる三位置切換弁である。
 方向切換弁DV2が第1位置61である場合には、方向切換弁DV2は、ブームシリンダC3のボトム側に作動油を流す方向に切り換わると共に、ブームシリンダC3のロッド側から戻ってきた作動油(戻り油)をドレン油路g(作動油タンクT2)に排出する方向に切り換わる。また、方向切換弁DV2が第2位置62である場合には、方向切換弁DV2は、ブームシリンダC3のボトム側から戻ってきた作動油(戻り油)をドレン油路g(作動油タンクT2)に排出する方向に切り換わり、ブームシリンダC3のロッド側に作動油を流す方向に切り換わる。方向切換弁DV2が第3位置63である場合には、方向切換弁DV2は、ブームシリンダC3に作動油を供給しない。
  方向切換弁DV2のポンプポート64は、第1圧油供給路dから分岐した圧油分岐路fに接続されている。圧油分岐路fによって、第1ポンプ21から吐出した作動油が当該方向切換弁DV2に供給される。方向切換弁DV2と圧力補償弁V11Aとは、接続油路65により接続されている。接続油路65は、第1接続油路65aと、第2接続油路65bとを含む。第1接続油路65aは、方向切換弁DV2の第1出力ポート66と圧力補償弁V11Aの導入ポート67とを接続する油路である。第2接続油路65bは、方向切換弁DV2のポンプポート64と方向切換弁DV2の第1出力ポート66とを接続する油路である。第2接続油路65bは、方向切換弁DV2に形成されている。第2接続油路65bには、絞り(流路絞り)68が設けられている。
  圧力補償弁V11AとブームシリンダC3とは接続油路69により接続されている。接続油路69は、第1接続油路69aと、第2接続油路69b、第3接続油路69cと、第4接続油路69dとを含む。第1接続油路69aは、圧力補償弁V11Aの出力ポート70と方向切換弁DV2の第1入力ポート71とを接続する油路である。第2接続油路69bは、圧力補償弁V11Aの出力ポート70と方向切換弁DV2の第2入力ポート72とを接続する油路である。第3接続油路69cは、方向切換弁DV2の第2出力ポート73とブームシリンダC3のボトム側のポートを接続する油路である。第4接続油路69dは、方向切換弁DV2の第3出力ポート74とブームシリンダC3のロッド側のポートを接続する油路である。なお、圧力補償弁V11Aの出力ポート70と負荷伝達ラインyとは、逆止弁75を介して接続されている。
  圧力補償弁V11Aは、当該圧力補償弁V11Aに導入された作動油の圧力と当該圧力補償弁V11Aから出力する作動油の圧力との差圧を所定範囲(所定値)に設定する弁である。言い換えれば、圧力補償弁V11Aは、方向切換弁DV2のスプールにおける前後差圧(上流側の作動油の圧力と下流側の作動油の圧力との差圧)を一定とすることで、複合動作時に油圧アクチュエータに作用する負荷の大きさに関わらず、作動油を操作量に応じた量に分流する。詳しくは、圧力補償弁V11Aは、導入ポート67に導入された作動油の圧力を受ける受圧部76aと、出力ポート70から出力する作動油の圧力を受ける受圧部76bとを有している。導入ポート67と受圧部76aとは接続油路77により接続されている。出力ポート70と受圧部76bとは接続油路78により接続されている。
 したがって、方向切換弁DV2から圧力補償弁V11Aに向けて出力した作動油の圧力が受圧部76aに作用すると共に、圧力補償弁V11Aの出力ポート70から出力する作動油の圧力が受圧部76bに作用する。そして、両者の作動油の圧力差に応じて圧力補償弁V11Aのスプール98が移動し、圧力補償弁V11Aの開口面積が変化する。
 上記ブーム制御バルブV2の圧力補償弁V11Aの構成、圧力補償弁V11Aと方向切換弁DV2との接続構造は、作業具制御バルブV1、ドーザ用第1制御バルブV3、第2走行制御バルブV4、第1走行制御バルブV5、ドーザ用第2制御バルブV6、アーム制御バルブV7、スイング制御バルブV9、SP制御バルブV10に適用される。
  さて、油圧システムは、上述したように、油圧アクチュエータML,MR,MT,C1~C6の作動時の最高負荷圧に応じて第1ポンプ21の吐出量が制御され、上述の圧力補償弁V11によって油圧アクチュエータML,MR,MT,C1~C6に供給する作動油の圧力を補償している。
 しかしながら、制御バルブによっては、油圧アクチュエータML,MR,MT,C1~C6に供給する作動油の流量を優先することも必要である。
 この他の実施形態では、作業具制御バルブV1、ブーム制御バルブV2、ドーザ用第1制御バルブV3、第2走行制御バルブV4、第1走行制御バルブV5、ドーザ用第2制御バルブV6、アーム制御バルブV7、スイング制御バルブV9、SP制御バルブV10は、作動油の圧力を補償することを有する制御バルブであり、旋回制御バルブV8は、作動油の流量を優先することができる制御バルブである。
  図14に示すように、旋回制御バルブV8は、方向切換弁(低負荷側の方向切換弁)DV8と、流量優先弁V11Bとを有している。方向切換弁DV8は、旋回モータ(低負荷油圧アクチュエータ)MTへ向かう作動油の方向を切換可能であって、例えば、第1位置81、第2位置82、第3位置(中立位置)83に切り換わる三位置切換弁である。方向切換弁DV8が第1位置81である場合には、方向切換弁DV8は、旋回モータMTの一方側に作動油を流す方向に切り換わると共に、旋回モータMTの他方側から戻ってきた作動油(戻り油)をドレン油路g(作動油タンクT2)に排出する方向に切り換わる。また、方向切換弁DV8が第2位置82である場合には、方向切換弁DV8は、旋回モータMTの他方側に作動油を流す方向に切り換わると共に、旋回モータMTの一方側から戻ってきた作動油(戻り油)をドレン油路g(作動油タンクT2)に排出する方向に切り換わる。方向切換弁DV8が第3位置83である場合には、方向切換弁DV8は、旋回モータMTに作動油を供給しない。
  流量優先弁V11Bは、スプール98を移動することにより油圧アクチュエータに出力する作動油の流量を優先する弁である。流量優先弁V11Bのスプール98は、第1位置84aと、第2位置84bとの間を移動可能である。第1位置84aは、方向切換弁DV8から出力する作動油の流量を増加させる位置である。第2位置84bは、方向切換弁DV8から出力する作動油の流量を低減(減少)させる位置である。即ち、第1位置84aと第2位置84bとの間の中間位置での作動油の流量に比べて、流量優先弁V11Bが第1位置84aの場合の作動油の流量は大きく、第2位置84bの場合の作動油の流量は小さい。
  流量優先弁V11Bは、押圧部材85と、第1受圧部86と、第2受圧部87とを有している。押圧部材85は、第1位置84a側に設けられた部材である。押圧部材85は、流量優先弁V11Bのスプール98を第1位置84a、即ち、開放側へ押圧する。押圧部材85は、例えば、スプリングで構成されている。押圧部材85において、スプール98を第1位置84aへ押圧する力、即ち、スプール98がフルストローク(面積最大時)における流量優先弁V11Bの設定圧(第2差圧)は、PPS信号圧-PLS信号圧との差圧である第1差圧以下に設定する。流量優先弁V11Bにおける設定圧(押圧部材85による設定圧)が、第1差圧を超えてしまうと、流量優先弁V11Bから出力する流量が単独操作時よりも多くなってしまうことがある。
  なお、スプール98を第1位置84aに向けて押圧する押圧部材85を、スプリングで構成したが、作動油の圧力(パイロット油の圧力)でスプール98を押圧してもよい。例えば、流量優先弁V11Bにスプール98を押圧するための制御ピン等の受圧部を設けて、受圧部にパイロット圧を作用させる。受圧部に向けて作用させるパイロット圧は、操作部材に応じてパイロット圧が変化するリモコン弁の圧力であってもよいし、リモコン弁の圧力を減圧弁で減圧した圧力であってもよい。
  第1受圧部86は、方向切換弁DV8から出力した作動油を受圧する部分である。第2受圧部87は、第1ポンプ21から旋回制御バルブV8へ吐出した作動油を受圧する部分である。言い換えれば、第2受圧部87は、方向切換弁DV8のスプール98の上流側の作動油を受圧する部分である。
  流量優先弁V11Bと方向切換弁DV8とは、接続油路(第2油路)88により接続されている。接続油路(第2油路)88は、第1接続油路(接続油路)88aと、第2接続油路(接続油路)88bと、第3接続油路(接続油路)88cとを含む。第1接続油路88aは、方向切換弁DV8の第1出力ポート(出力ポート)66と流量優先弁V11Bの導入ポート89とを接続する油路である。第2接続油路88bは、方向切換弁DV8のポンプポート64と方向切換弁DV8の第1出力ポート66とを接続する油路である。第2接続油路88bは、方向切換弁DV8に形成されている。第2接続油路88bには、絞り(流路絞り)90が設けられている。第3接続油路88cは、流量優先弁V11Bの導入ポート89と第1受圧部86とを接続する油路である。
 なお、第1位置81側の流路絞り90の圧損と第2位置82側の流路絞り90による圧損は、同じ数値に設定されている。
  第1圧油供給路dと流量優先弁V11Bの第2受圧部87とは、接続油路(第3油路)92により接続されている。具体的には、接続油路(第3油路)92は、第1圧油供給路dの圧油分岐路fと第2受圧部87とを接続する油路である。
  流量優先弁V11Bと旋回モータMTとは接続油路93により接続されている。接続油路93は、第1接続油路93aと、第2接続油路93b、第3接続油路93cと、第4接続油路93dとを含む。第1接続油路93aは、流量優先弁V11Bの出力ポート91と方向切換弁DV8の第1入力ポート71とを接続する油路である。第2接続油路93bは、流量優先弁V11Bの出力ポート91と方向切換弁DV8の第2入力ポート72とを接続する油路である。第3接続油路93cは、方向切換弁DV8の第2出力ポート73と旋回モータMTの一方側のポートを接続する油路である。第4接続油路93dは、方向切換弁DV8の第3出力ポート74と旋回モータMTの他方側のポートを接続する油路である。なお、流量優先弁V11Bの出力ポート91と負荷伝達ラインyとは、逆止弁94を介して接続されている。
 したがって、流量優先弁V11Bのスプール98は、第1受圧部86で受圧した作動油の圧力(方向切換弁DV8の第1出力ポート66から出力した作動油の圧力)及び押圧部材85で第1位置84aに押圧される。また、第2受圧部87で受圧した作動油の圧力(方向切換弁DV8のスプールの上流側における作動油の圧力)で第2位置84bに押圧される。
 上記油圧システムによれば、ブームシリンダC3、旋回モータMTを操作した複合操作時において、例えば、ブームシリンダC3の作動時の負荷圧が10MPa、旋回モータMTの作動時の負荷圧が3MPa、流量制御部19の設定圧が1.4MPaであるとする。この場合、作動油の最高負荷圧は10MPaであり、第1ポンプ21から吐出する作動油の圧力は11.4MPaとなる。ここで、流量優先弁V11Bにおける設定圧が1.0MPaであるとすると、設定圧が1.0MPaを維持するように流量優先弁V11Bのスプール98が移動して流量優先弁V11Bの開口面積が変化する。流量優先弁V11Bから出力する流量が一定に設定される。言い換えれば、流量優先弁V11Bによって方向切換弁DV8の前後差圧が1.0MPaに設定され(1.0MPaの圧損が生じるように動作する)、ブームシリンダC3の負荷に関わらず、旋回モータMTに作動油を優先的に流すことができる。
  したがって、圧力補償弁V11を備えた作業機1であっても、所定の制御弁から出力する作動油の流量を確保することができ、単独操作時と複合操作時との旋回速度の変化を少なくすることができる。
  なお、旋回モータMTを単独操作した単独操作時(他の制御弁は操作していないとき)であっても、流量優先弁V11Bから出力する流量を一定に設定することができる。即ち、方向切換弁DV8から旋回モータMTに向けて優先的に作動油を流すことができる。
 しかしながら、上記流量優先弁V11Bは、押圧部材85によってスプール98を制御しているので、例えば、ブーム制御バルブV1と旋回制御バルブV8とを複合操作したときに、ブーム15側の作動圧によって流量優先弁V11Bのスプール98が微妙に動いてしまい、機体2の旋回速度が若干変わる場合が考えられる。つまり、ブームシリンダC3の作動圧が高いのに対して旋回モータMTの作動圧は低いので、その圧力差の分だけ、旋回単独操作のときと旋回(機体2)とブーム15との複合操作のときとで流量優先弁V11Bの制御位置が若干変わり、旋回速度が変わる。
 これを抑制すべく、旋回モータMTに対して作動油の方向を切り換える方向切換弁DV8に疑似負荷を形成している。具体的には、図14に示すように、当該他の実施形態の方向切換弁DV8(旋回制御バルブV8)に疑似負荷を形成する疑似負荷形成部97を、旋回モータMTへ向けて作動油を流す流路96に設けている。流路96は、方向切換弁DV8が第1位置81である場合に、旋回モータMTの一方側に作動油を流す流路である第1流通路96aと、方向切換弁DV8が第2位置82である場合に、旋回モータMTの他方側に作動油を流す流路である第2流通路96bとを含む。疑似負荷形成部97は、第1流通路96aと第2流通路96bとのそれぞれに設けられた絞り97a,97bによって構成されている。即ち、疑似負荷形成部97は、第1流通路96aに設けられた第1の絞り97aと、第2流通路96bに設けられた第2の絞り97bとを含む。第1の絞り97aによる圧損と、第2の絞り97bによる圧損とは、同じである。また、第1の絞り97aによる圧損と、第2の絞り97bによる圧損とは、絞り90による圧損よりも大である。
 上記構成の旋回制御バルブV8にあっては、第1の絞り97a、第2の絞り97bによって旋回制御バルブV8の方向切換弁DV8に疑似負荷をつくって、最初から旋回モータMTの作動圧を上げておくことで、作動圧の高いブームシリンダC3と、負荷の低い旋回モータMTとを複合操作したときに、作動圧のバランスをとることができる。詳しくは、旋回モータMTの作動時の負荷圧が3MPaで、第1の絞り97aによって立つ圧損と第2の絞り97bによって立つ圧損とがそれぞれ3MPaとすると、負荷圧(旋回モータMTの作動圧)が6MPaになる。そして、該負荷圧に合わせて旋回速度を調整しておけば、複合操作したときの圧力差が減る。これにより、流量優先弁V11Bの制御面積変更量が減少し(流量優先弁V11Bで生成される疑似負荷が減少し)、旋回単独操作のときと機体2(旋回)とブーム15とを複合操作したときとの機体2の旋回速度の速度変化を抑制することができる。また、複合操作したときの流量優先弁V11Bの制御位置を安定させることができる。
 上記他の実施形態では、高負荷油圧アクチュエータとしてブームシリンダC3を例示し、低負荷油圧アクチュエータとして旋回モータMTを例示して説明したが、これに限定されることはない。
 また、作業機1は、複数の油圧アクチュエータC3,MTと、複数の油圧アクチュエータC3,MTに対応して設けられ、油圧アクチュエータC3,MTに対する作動油の方向を切り換える複数の方向切換弁DV2,DV8と、複数の油圧アクチュエータC3,MTのうちの作動圧の高い高負荷油圧アクチュエータC3と該高負荷油圧アクチュエータC3よりも作動圧の低い低負荷油圧アクチュエータMTとを複合操作したときと、低負荷油圧アクチュエータMTを単独操作したときとの低負荷油圧アクチュエータMTの作動速度の速度変化を抑制すべく、低負荷油圧アクチュエータMTに対して作動油の方向を切り換える低負荷側の方向切換弁DV8に疑似負荷を形成する疑似負荷形成部97と、を備えている。
 この構成によれば、疑似負荷形成部97によって、低負荷側の方向切換弁DV8に予め疑似負荷をつくって、低負荷油圧アクチュエータMTの作動圧を上げておくことで、高負荷油圧アクチュエータC3と低負荷油圧アクチュエータMTとを複合操作したときの圧力差を減少させることができる。これにより、高負荷油圧アクチュエータC3と低負荷油圧アクチュエータMTとを複合操作したときと、低負荷油圧アクチュエータMTを単独操作したときとの低負荷油圧アクチュエータMTの作動速度の速度変化を抑制することができる。
 また、低負荷側の方向切換弁DV8は、低負荷油圧アクチュエータMTに向けて作動油を流す流路96を有し、疑似負荷形成部97は、流路96に設けられた絞り97a,97bによって構成されている。
 この構成によれば、疑似負荷形成部97を低負荷側の方向切換弁DV8に設けることができる。
 また、高負荷油圧アクチュエータC3を制御する制御弁であって、導入された作動油の圧力と出力する作動油の圧力との差圧を一定に設定する圧力補償弁V11Aを有する第1制御バルブV2と、低負荷油圧アクチュエータMTを制御する制御弁であって、低負荷側の方向切換弁DV8と、低負荷側の方向切換弁DV8を介して低負荷油圧アクチュエータMTに出力する作動油の流量を優先する流量優先弁V11Bとを有する第2制御バルブV8と、を備えている。
 この構成によれば、高負荷油圧アクチュエータC3が圧力補償弁V11Aを備えていても、低負荷油圧アクチュエータMTに対して作動油を優先的に供給することができる。
 また、流量優先弁V11Bは、低負荷側の方向切換弁DV8から出力する作動油の流量を増加させる第1位置84aと、低負荷側の方向切換弁DV8から出力する作動油の流量を減少させる第2位置84bとの間を移動可能なスプール98と、スプール98を第1位置84aに向けて押圧する押圧部材85とを含み、低負荷側の方向切換弁DV8は、低負荷油圧アクチュエータMTの一方側に作動油を流す流路96である第1流通路96aと、低負荷油圧アクチュエータMTの他方側に作動油を流す流路96である第2流通路96bとを含み、疑似負荷形成部97は、第1流通路96aに設けられた絞りである第1絞り97aと、第2流通路96bに設けられた絞りである第2絞り97bとを含む。
 この構成によれば、高負荷油圧アクチュエータC3と低負荷油圧アクチュエータMTとを複合操作したときに、流量優先弁V11Bから出力される作動油の流量が、押圧部材85のセッティングによって変動してしまうのを抑制し、流量優先弁V11Bの制御位置を安定させることができ、低負荷油圧アクチュエータMTの速度変化を抑制することができる。
 また、低負荷側の方向切換弁DV8は、作動油が供給されるポンプポート64と、流量優先弁V11Bに作動油を出力する出力ポート66と、ポンプポート64と出力ポート66とを接続する接続油路88bと、接続油路88bに設けられた流路絞り90とを有し、第1絞り97aよる圧力損失と第2絞り97aによる圧力損失とは、流路絞り90による圧力損失よりも大である。
 この構成によれば、低負荷側の方向切換弁DV8に疑似負荷を形成することができる。
 また、縦軸回りに旋回可能な機体2と、機体2を旋回させる旋回モータMTと、機体2の前部に上下揺動可能に設けられたブーム15と、ブーム15を上下揺動させるブームシリンダC3と、を備え、高負荷油圧アクチュエータは、ブームシリンダC3で構成され、低負荷油圧アクチュエータは、旋回モータMTで構成される。
 この構成によれば、ブームシリンダC3と旋回モータMTとを複合操作したときと、旋回モータMTを単独操作したときとの旋回モータMTの作動速度の速度変化を抑制することができる。
 また、複数の油圧アクチュエータML,MR,MT,C1~C6を作動させる作動油を吐出する可変容量型のポンプ21と、ポンプ21の吐出圧から複数の油圧アクチュエータML,MR,MT,C1~C6のうちの最高負荷圧を引いた差圧を一定圧にするようにポンプ21を制御するロードセンシングシステムを備えていてもよい。
 以上、本発明の一実施形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
  2   機体
 15   ブーム
 21   ポンプ(第1ポンプ)
 64   ポンプポート
 66   出力ポート
 84a  第1位置
 84b  第2位置
 85   押圧部材(スプリング)
 88b  接続油路
 90   流路絞り
 96   流路
 96a  第1流通路
 96b  第2流通路
 97   疑似負荷形成部
 97a  絞り(第1絞り)
 97b  絞り(第2絞り)
 98   スプール
 C1   油圧アクチュエータ(ドーザシリンダ)
 C2   油圧アクチュエータ(スイングシリンダ)
 C3   高負荷油圧アクチュエータ(ブームシリンダ)
 C4   油圧アクチュエータ(アームシリンダ)
 C5   油圧アクチュエータ(作業具シリンダ)
 ML   油圧アクチュエータ(第1走行モータ)
 MR   油圧アクチュエータ(第2走行モータ)
 MT   低負荷油圧アクチュエータ(旋回モータ)
 DV2  低負荷側の方向切換弁
 DV8  方向切換弁
 V2   第1制御バルブ
 V8   第2制御バルブ
 V11A 圧力補償弁
 V11B 流量優先弁

Claims (7)

  1.  複数の油圧アクチュエータと、
     前記複数の油圧アクチュエータに対応して設けられ、前記油圧アクチュエータに対する作動油の方向を切り換える複数の方向切換弁と、
     前記複数の油圧アクチュエータのうちの作動圧の高い高負荷油圧アクチュエータと該高負荷油圧アクチュエータよりも作動圧の低い低負荷油圧アクチュエータとを複合操作したときと、前記低負荷油圧アクチュエータを単独操作したときとの前記低負荷油圧アクチュエータの作動速度の速度変化を抑制すべく、前記低負荷油圧アクチュエータに対して作動油の方向を切り換える低負荷側の方向切換弁に疑似負荷を形成する疑似負荷形成部と、
     を備えている作業機。
  2.  前記低負荷側の方向切換弁は、前記低負荷油圧アクチュエータに向けて作動油を流す流路を有し、
     前記疑似負荷形成部は、前記流路に設けられた絞りによって構成されている請求項1に記載の作業機。
  3.  前記高負荷油圧アクチュエータを制御する制御弁であって、導入された作動油の圧力と出力する作動油の圧力との差圧を一定に設定する圧力補償弁を有する第1制御バルブと、
      前記低負荷油圧アクチュエータを制御する制御弁であって、前記低負荷側の方向切換弁と、前記低負荷側の方向切換弁を介して前記低負荷油圧アクチュエータに出力する作動油の流量を優先する流量優先弁とを有する第2制御バルブと、
      を備えている請求項2に記載の作業機。
  4.  前記流量優先弁は、
     前記低負荷側の方向切換弁から出力する作動油の流量を増加させる第1位置と、前記低負荷側の方向切換弁から出力する作動油の流量を減少させる第2位置との間を移動可能なスプールと、
     前記スプールを第1位置に向けて押圧する押圧部材とを含み、
     前記低負荷側の方向切換弁は、前記低負荷油圧アクチュエータの一方側に作動油を流す前記流路である第1流通路と、前記低負荷油圧アクチュエータの他方側に作動油を流す前記流路である第2流通路とを含み、
     前記疑似負荷形成部は、前記第1流通路に設けられた前記絞りである第1絞りと、前記第2流通路に設けられた前記絞りである第2絞りとを含む請求項3に記載の作業機。
  5.  前記低負荷側の方向切換弁は、作動油が供給されるポンプポートと、前記流量優先弁に作動油を出力する出力ポートと、前記ポンプポートと前記出力ポートとを接続する接続油路と、前記接続油路に設けられた流路絞りとを有し、
     前記第1絞りよる圧力損失と前記第2絞りによる圧力損失とは、前記流路絞りによる圧力損失よりも大である請求項4に記載の作業機。
  6.  縦軸回りに旋回可能な機体と、
     前記機体を旋回させる旋回モータと、
     前記機体の前部に上下揺動可能に設けられたブームと、
     前記ブームを上下揺動させるブームシリンダと、
     を備え、
     前記高負荷油圧アクチュエータは、前記ブームシリンダで構成され、
     前記低負荷油圧アクチュエータは、前記旋回モータで構成される請求項1~5のいずれか1項に記載の作業機。
  7.  前記複数の油圧アクチュエータを作動させる作動油を吐出する可変容量型のポンプと、
     前記ポンプの吐出圧から前記複数の油圧アクチュエータのうちの最高負荷圧を引いた差圧を一定圧にするように前記ポンプを制御するロードセンシングシステムと、
     を備えている請求項1~6のいずれか1項に記載の作業機。
PCT/JP2020/048557 2019-12-27 2020-12-24 作業機 WO2021132514A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20906822.0A EP4083337A4 (en) 2019-12-27 2020-12-24 WORK MACHINE
CN202080082377.XA CN114746612B (zh) 2019-12-27 2020-12-24 作业机
US17/840,235 US20230021137A1 (en) 2019-12-27 2022-06-14 Working machine

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019-238290 2019-12-27
JP2019-238285 2019-12-27
JP2019238285A JP7263229B2 (ja) 2019-12-27 2019-12-27 作業機
JP2019-238286 2019-12-27
JP2019238290A JP7263230B2 (ja) 2019-12-27 2019-12-27 作業機
JP2019238286A JP2021105328A (ja) 2019-12-27 2019-12-27 作業機

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/840,235 Continuation US20230021137A1 (en) 2019-12-27 2022-06-14 Working machine

Publications (1)

Publication Number Publication Date
WO2021132514A1 true WO2021132514A1 (ja) 2021-07-01

Family

ID=76575545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048557 WO2021132514A1 (ja) 2019-12-27 2020-12-24 作業機

Country Status (4)

Country Link
US (1) US20230021137A1 (ja)
EP (1) EP4083337A4 (ja)
CN (1) CN114746612B (ja)
WO (1) WO2021132514A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023110145A1 (en) * 2021-12-14 2023-06-22 Caterpillar Sarl Hydraulic control system in working machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302603A (ja) * 1992-04-27 1993-11-16 Toshiba Mach Co Ltd 再生油圧回路
JPH11117906A (ja) * 1997-10-17 1999-04-27 Nachi Fujikoshi Corp 油圧駆動装置
JP2002031103A (ja) * 2000-07-14 2002-01-31 Hitachi Constr Mach Co Ltd 分流補償付き方向切換弁装置及び油圧回路装置
JP2012067459A (ja) 2010-09-21 2012-04-05 Kubota Corp 作業機の油圧システム
JP2017115992A (ja) 2015-12-24 2017-06-29 株式会社クボタ 作業機の油圧システム
JP2018135926A (ja) * 2017-02-21 2018-08-30 川崎重工業株式会社 油圧システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0031850D0 (en) * 2000-02-24 2001-02-14 Toshiba Machine Co Ltd Hydraulic controller
CN103374937A (zh) * 2012-04-19 2013-10-30 华南理工大学 一种液压挖掘机回转力矩限制装置
JP5849023B2 (ja) * 2012-06-19 2016-01-27 株式会社クボタ 作業機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302603A (ja) * 1992-04-27 1993-11-16 Toshiba Mach Co Ltd 再生油圧回路
JPH11117906A (ja) * 1997-10-17 1999-04-27 Nachi Fujikoshi Corp 油圧駆動装置
JP2002031103A (ja) * 2000-07-14 2002-01-31 Hitachi Constr Mach Co Ltd 分流補償付き方向切換弁装置及び油圧回路装置
JP2012067459A (ja) 2010-09-21 2012-04-05 Kubota Corp 作業機の油圧システム
JP2017115992A (ja) 2015-12-24 2017-06-29 株式会社クボタ 作業機の油圧システム
JP2018135926A (ja) * 2017-02-21 2018-08-30 川崎重工業株式会社 油圧システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4083337A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023110145A1 (en) * 2021-12-14 2023-06-22 Caterpillar Sarl Hydraulic control system in working machine

Also Published As

Publication number Publication date
EP4083337A1 (en) 2022-11-02
CN114746612A (zh) 2022-07-12
EP4083337A4 (en) 2024-01-10
US20230021137A1 (en) 2023-01-19
CN114746612B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
US8701399B2 (en) Hydraulic system for working machine
JP5340032B2 (ja) 作業機
KR101932304B1 (ko) 작업 기계의 유압 구동 장치
CA2679998C (en) Hydraulic power management system
KR101982688B1 (ko) 건설 기계의 유압 구동 장치
JP2005083427A (ja) 建設機械の油圧制御回路
WO2017131189A1 (ja) ショベル
WO2013190726A1 (ja) 作業機
WO2021132514A1 (ja) 作業機
JP5111435B2 (ja) 走行車両
JP2018145984A (ja) 建設機械の油圧駆動装置
JP5286156B2 (ja) 作業機
JP2009167659A (ja) 作業機械の油圧制御回路
US20220154428A1 (en) Hydraulic system in work machine
JP7263229B2 (ja) 作業機
JP7263230B2 (ja) 作業機
JP2021105328A (ja) 作業機
WO2022163303A1 (ja) 作業機
JP7131138B2 (ja) 作業機械の油圧駆動装置
JP6668148B2 (ja) 作業機の油圧システム
EP4286606A1 (en) Work machine
JP3692009B2 (ja) 作業機械の制御装置
JP2022114941A (ja) 作業機
JP2022115075A (ja) 作業機
JP6537995B2 (ja) 作業機の油圧システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020906822

Country of ref document: EP

Effective date: 20220727