WO2021131805A1 - タービンロータ材料 - Google Patents
タービンロータ材料 Download PDFInfo
- Publication number
- WO2021131805A1 WO2021131805A1 PCT/JP2020/046338 JP2020046338W WO2021131805A1 WO 2021131805 A1 WO2021131805 A1 WO 2021131805A1 JP 2020046338 W JP2020046338 W JP 2020046338W WO 2021131805 A1 WO2021131805 A1 WO 2021131805A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- content
- turbine rotor
- less
- rotor material
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/28—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G4/00—Devices for producing mechanical power from geothermal energy
- F03G4/033—Devices for producing mechanical power from geothermal energy having a Rankine cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/40—Heat treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/17—Alloys
- F05D2300/171—Steel alloys
Definitions
- the present disclosure relates to turbine rotor materials. This disclosure claims priority based on Japanese Patent Application No. 2019-234468 filed on December 25, 2019, the contents of which are incorporated herein by reference.
- geothermal power generation power generation using steam superheated by geothermal heat as a heat source
- the steam used as a heat source often contains a corrosive gas typified by hydrogen sulfide. Therefore, the turbine rotor of the generator used in geothermal power generation is required to have corrosion resistance against corrosive gas contained in steam.
- corrosive gas is likely to concentrate in the turbine casing where drying and wetting are repeated alternately due to temperature changes caused by the start and stop of the plant.
- the blade groove of the turbine rotor is stress-concentrated during operation. Therefore, as described above, the phenomenon of stress corrosion cracking is likely to occur in the blade groove of the turbine rotor in the portion where the corrosive gas is likely to be concentrated. When stress corrosion cracking occurs, it leads to damage to the turbine rotor. Therefore, as a material for the turbine rotor, a material that is less likely to cause stress corrosion cracking is required.
- the alloy material for the turbine rotor may be simply referred to as the "turbine rotor material" in the following description.
- high- and low-pressure integrated turbine rotors that generate electricity using steam produced by steam power generation boilers and exhaust heat recovery boilers for gas turbine combined power generation are also being increased in size. ing. Even for high- and low-voltage integrated turbine rotors, it is necessary to ensure the ease of quenching when the size is increased.
- the low pressure part of the high and low pressure integrated turbine rotor there is a part where drying and wetting are repeated alternately like the geothermal turbine rotor.
- the trace components of water used for steam power generation and gas turbine combined cycle are controlled, and the amount of corrosive gas components contained in the generated steam is extremely small.
- the trace component include Na ion, Cl ion, sulfate ion, silica and the like.
- stress corrosion cracking occurs in the blade groove as in the case of geothermal turbines, such as when water management is inappropriate or when seawater used for cooling steam leaks.
- the high and low pressure integrated turbine rotor also has high resistance to the above-mentioned stress corrosion cracking.
- Patent Document 1 The demand for larger turbine rotors is increasing year by year.
- a large rotor having a body diameter of 1600 mm is assumed, but in recent years, a larger turbine rotor has been demanded.
- the turbine rotor material that has both easy quenching treatment and resistance to stress corrosion cracking.
- the present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a turbine rotor material capable of achieving both ease of quenching and corrosion resistance.
- the turbine rotor material according to the present disclosure has a carbon content of 0.18% by mass or more and 0.28% by mass or less, and a silicon content of 0% by mass or more and 0.25% by mass or less.
- Manganese content is 0.10% by mass or more and 1.20% by mass or less
- Nickel content is 0.50% by mass or more and 1.20% by mass or less
- Chromium content is 1.80% by mass or more.
- FIG. 1 is a schematic view showing a test piece used for the SCC test.
- FIG. 2 is a schematic diagram showing a test method for the SCC test.
- FIG. 3 is a schematic view showing a crack generated in a test piece in the SCC test.
- the turbine rotor material according to the present disclosure has a carbon content of 0.18% by mass or more and 0.28% by mass or less, a silicon content of 0% by mass or more and 0.25% by mass or less, and a manganese content of 0. 10% by mass or more and 1.20% by mass or less, nickel content is 0.50% by mass or more and 1.20% by mass or less, chromium content is 1.80% by mass or more and 2.80% by mass or less, molybdenum content
- the ratio is 0.40% by mass or more and 1.50% by mass or less, the vanadium content is more than 0.35% by mass and 0.45% by mass or less, and the tungsten content is 0.40% by mass or more and 1.10% by mass.
- the rest is an alloy consisting of iron and unavoidable impurities.
- the turbine rotor material of the present disclosure having the above composition is an alloy material that is easy to quench and has excellent corrosion resistance.
- the "quenching process” means a process in which the turbine rotor material is heated to a temperature equal to or higher than the transformation point temperature and then rapidly cooled.
- Turbine rotor materials exhibit an austenite phase at temperatures above the transformation point, but in the process of rapid cooling, they transform into fine needle-like structures called martensite and bainite, increasing their strength.
- “Easy quenching” means that a softened phase called a ferrite phase is unlikely to occur even when cooled at a slower speed. Here, more specifically, it means the property that a ferrite phase is unlikely to occur in the central portion of the hardened turbine rotor material.
- the property of facilitating quenching treatment may be referred to as “hardenability”.
- “Highly hardenable” means that it has a strong property of facilitating the quenching process.
- stress corrosion cracking resistance means resistance to stress corrosion cracking. More specifically, “stress corrosion cracking resistance” means resistance to a phenomenon in which tensile stress is applied to a material and the material is cracked due to the corrosive action of a specific environment.
- stress corrosion cracking resistance means resistance to a phenomenon in which tensile stress is applied to a material and the material is cracked due to the corrosive action of a specific environment.
- the carbon (C) content in the turbine rotor material of the present disclosure is 0.18% by mass or more and 0.28% by mass or less.
- C is useful for enhancing hardenability of steel and ensuring mechanical strength.
- the C content is 0.18% by mass or more, and the required hardenability and mechanical properties can be obtained.
- the content of C is preferably 0.20% by mass or more.
- C generally tends to be easily concentrated in the molten metal during solidification in the ingot-forming process. Therefore, if the low alloy steel contains more C than necessary, the content of C in the ingot tends to increase from the initial stage of solidification to the final stage of solidification when the ingot is continuously produced in the ingot formation process. As a result, when the C content is high, it becomes difficult to obtain a low alloy steel having homogeneous characteristics.
- the turbine rotor material of the present disclosure when the C content is 0.28% by mass or less, sufficient toughness and high stress corrosion cracking resistance can be ensured. Further, when the C content is 0.28% by mass or less, it becomes easy to manufacture a turbine rotor material having homogeneous characteristics.
- the content of C is preferably 0.25% by mass or less.
- the upper limit value and the lower limit value of the C content in the turbine rotor material of the present disclosure can be arbitrarily combined.
- the content of C is preferably 0.20% by mass or more and 0.25% by mass or less.
- the content of silicon (Si) in the turbine rotor material of the present disclosure is 0% by mass or more and 0.25% by mass or less.
- Si is useful as a deoxidizer in low alloy steel.
- the toughness tends to decrease.
- the Si content in the turbine rotor material of the present disclosure is 0.25% by mass or less, preferably 0.15% by mass or less.
- the minimum value of the Si content is 0% by mass.
- the content of manganese (Mn) in the turbine rotor material of the present disclosure is 0.10% by mass or more and 1.20% by mass or less.
- Mn is useful for ensuring the hardenability of low alloy steel. Further, Mn is useful as a deoxidizer for low alloy steel and suppresses cracking during hot forging. In the turbine rotor material of the present disclosure, the Mn content is 0.10% by mass or more, and these effects are effectively exhibited.
- the Mn content is preferably 0.50% by mass or more.
- Mn tends to reduce the toughness of low alloy steel.
- the Mn content is 1.20% by mass or less, and the required toughness can be obtained.
- the Mn content is preferably 1.00% by mass or less.
- the upper limit value and the lower limit value of the Mn content in the turbine rotor material of the present disclosure can be arbitrarily combined.
- the Mn content is preferably 0.50% by mass or more and 1.00% by mass or less.
- the content of nickel (Ni) in the turbine rotor material of the present disclosure is 0.50% by mass or more and 1.20% by mass or less.
- Ni is useful for ensuring the hardenability of low alloy steel. Ni also enhances the toughness of low alloy steels. In the turbine rotor material of the present disclosure, the Ni content is 0.50% by mass or more, and these effects are effectively exhibited.
- the stress corrosion cracking resistance of low alloy steel tends to decrease.
- the Ni content is 1.20% by mass or less, and the required stress corrosion cracking resistance can be ensured.
- the content of chromium (Cr) in the turbine rotor material is 1.80% by mass or more and 2.80% by mass or less.
- Cr is useful for ensuring the hardenability of low alloy steel. Also, Cr combines with C to produce carbides. The resulting Cr carbides improve the strength of the low alloy steel. Further, Cr has an effect of suppressing stress corrosion cracking by being dissolved in the matrix. In the turbine rotor material of the present disclosure, the Cr content is 1.80% by mass or more, and these effects are effectively exhibited.
- the Cr content is preferably 2.00% by mass or more.
- the cracks tend to grow faster when stress corrosion cracking occurs in the low alloy steel. This is because, as a result of the increased corrosion resistance of the low alloy steel, once a crack occurs in the low alloy steel, the tip of the crack is not corroded and maintains a sharp pointed shape, and stress concentration on the tip of the crack is maintained. caused by.
- a high Cr content is advantageous in order to suppress the occurrence of stress corrosion cracking itself, and a high Cr content is disadvantageous in order to suppress the growth of the generated cracks. become.
- the Cr content is 2.80% by mass or less, the growth of cracks at the time of cracking is suppressed, and the desired stress corrosion cracking resistance cracking characteristics can be obtained.
- the Cr content is preferably 2.50% by mass or less.
- the upper limit and lower limit of the Cr content in the turbine rotor material of the present disclosure can be arbitrarily combined.
- the Cr content is preferably 2.00% by mass or more and 2.50% by mass or less.
- the content of molybdenum (Mo) in the turbine rotor material of the present disclosure is 0.30% by mass or more and 1.20% by mass or less.
- Mo is useful for ensuring the hardenability of low alloy steel. Mo also combines with C to produce carbides. The resulting Mo carbides improve the strength of the low alloy steel. In the turbine rotor material of the present disclosure, the Mo content is 0.50% by mass or more, and these effects are effectively exhibited.
- Mo tends to reduce the toughness of the low alloy steel as the content of the low alloy steel increases. Further, since Mo is an expensive element, the material cost tends to increase as the content of Mo in the turbine rotor material increases.
- V vanadium
- the Mo content is 1.20% by mass or less, and the required toughness can be ensured. Further, in the turbine rotor material of the present disclosure, since the content of Mo is 1.20% by mass or less, it is difficult to inhibit the formation of carbides of V.
- the Mo content is preferably 1.00% by mass or less.
- the upper limit and lower limit of the Mo content in the turbine rotor material of the present disclosure can be arbitrarily combined.
- the Mo content is preferably 0.50% by mass or more and 1.00% by mass or less.
- the content of vanadium (V) in the turbine rotor material of the present disclosure is more than 0.35% by mass and 0.43% by mass or less.
- V is useful for ensuring the hardenability of low alloy steel.
- V also combines with C to produce carbides.
- the resulting V carbides improve the strength of the low alloy steel.
- V is precipitated as V-carbide (matched V-carbide) matched to the matrix at the time of tempering in the quenching process.
- V-carbide matched to the matrix at the time of tempering in the quenching process.
- the resulting V-carbide traps hydrogen generated by corrosion of the material and improves stress corrosion cracking resistance.
- V-carbide that did not dissolve in the matrix during quenching suppresses the grain growth (coarseness) of the matrix of the turbine rotor material, and improves toughness and stress corrosion cracking resistance.
- the V content is 0.15% by mass or more and 0.3% by mass or less.
- the V content exceeds 0.35% by mass in order to sufficiently secure the amount of V carbide so that it can play the above two roles.
- V tends to decrease toughness as the content in low alloy steel increases.
- the V content is 0.43% by mass or less, and the required toughness can be ensured.
- stress corrosion cracking of low alloy steel is considered to occur by the following mechanism.
- There are various theories about the behavior of hydrogen involved in stress corrosion cracking but it is thought that, for example, the accumulated hydrogen accelerates the generation and growth of cracks by reducing the atomic bonding force of the matrix metal.
- the turbine rotor material of the present disclosure has a large amount of matched V carbide in the material structure by containing V at the above-mentioned content. It is believed that this matched V-carbide traps hydrogen invading the structure of the turbine rotor material and suppresses the accumulation of hydrogen at the tip of the crack. As a result, even when the turbine rotor material is exposed to a corrosive environment such as geothermal steam with stress acting on it, it is considered that the generation and growth of cracks are delayed, that is, the stress corrosion cracking resistance is enhanced.
- the content of tungsten (W) in the turbine rotor material of the present disclosure is 0.40% by mass or more and 1.10% by mass or less.
- W is useful for increasing the creep strength of low alloy steel. Further, as the content of W in the low alloy steel increases, the stress corrosion cracking resistance of the low alloy steel tends to be improved. In particular, in the turbine rotor material of the present disclosure, when the W content is 0.40 mass or more, the effect of improving the stress corrosion cracking resistance is effectively exhibited.
- the content of W in the low alloy steel increases, the hardenability tends to decrease and the toughness tends to decrease.
- the W content is 1.10% by mass or less, and the required hardenability and toughness can be ensured.
- the W content is preferably 0.80% by mass or less.
- the turbine rotor material of the present disclosure may contain niobium (Nb) in an amount of 0.01% by mass or more and 0.15% by mass or less.
- Nb is useful for ensuring the hardenability of low alloy steel. Nb also combines with C to produce carbides. The generated carbide of Nb does not completely dissolve at the quenching temperature of the low alloy steel, and has a function of suppressing coarsening of matrix crystal grains as in V. In order to impart these functions, the Nb content of the turbine rotor material of the present disclosure is preferably 0.01% by mass or more.
- the toughness of Nb tends to decrease as the content of Nb in low alloy steel increases.
- the content of Nb is 0.15% by mass or less, and toughness can be ensured even when Nb is added.
- the phosphorus (P) content in the turbine rotor material of the present disclosure is 0% by mass or more and 0.02% by mass or less.
- the sulfur (S) content in the turbine rotor material of the present disclosure is 0% by mass or more and 0.01% by mass or less.
- Both P and S are impurities brought in from the steelmaking raw material, and are harmful impurities that form phosphide and sulfide in the steel material and significantly reduce the toughness of the steel material. Therefore, the lower the P content and the S content, the better the characteristics are expected.
- the content of P is preferably 0.01% by mass or less, more preferably undetectable (0% by mass), with an upper limit of 0.02% by mass.
- the content of S is preferably 0.005% by mass or less, more preferably undetectable (0% by mass), with an upper limit of 0.01% by mass.
- the turbine rotor material of the present disclosure by making the ratio of the Mo content to the V content less than twice, the amount of matching V carbides in the turbine rotor material is secured and the stress corrosion cracking resistance is improved. It is easy to secure and is preferable.
- the turbine rotor material of the present disclosure has a carbon content of 0.20% by mass or more and 0.25% by mass or less, a silicon content of 0% by mass or more and 0.25% by mass or less, and a manganese content of 0.50.
- Mass% or more and 1.00% by mass or less nickel content of 0.50% by mass or more and 0.90% by mass or less, chromium content of 2.00% by mass or more and 2.50% by mass or less, molybdenum content Is 0.50% by mass or more and 1.00% by mass or less
- the vanadium content is more than 0.35% by mass and 0.40% by mass or less
- the tungsten content is 0.40% by mass or more and 0.80% by mass or less. It is preferable that the balance is composed of iron and unavoidable impurities.
- the turbine rotor material of the present disclosure has high hardenability.
- the hardenability of the turbine rotor material of the present disclosure is evaluated by determining the cooling rate of the central part of the turbine rotor material at the time of quenching by simulation, and evaluating the test piece subjected to the same cooling as the obtained result by the pro-eutectoid ferrite ratio.
- the ferrite structure looks whiter than the surrounding structure when the metal structure is magnified and observed with a microscope. Therefore, the presence of the ferrite structure can be grasped by microscopic observation.
- the primordial ferrite ratio is the ratio (percentage) of the area of the structure that appears white in the photograph to the area of the entire imaging range of one photograph in the magnified photograph in which the metal structure is imaged at a magnification of 100 times using an optical microscope. To do.
- the simulation to obtain the cooling rate of the central part of the turbine rotor material, set the simulation conditions assuming a turbine rotor material equivalent to ⁇ 1900 mm.
- the simulation can be performed using general thermal analysis software, and the specific heat, thermal conductivity, and transformation point of each metal constituting the turbine rotor material are used as physical constants.
- the turbine rotor material of the present disclosure has high stress corrosion cracking resistance.
- FIG. 1 is a schematic view showing a test piece used for the SCC test.
- FIG. 2 is a schematic diagram showing a test method for the SCC test.
- FIG. 3 is a schematic view showing a crack generated in a test piece in the SCC test.
- test piece A is supported at three points by using the jig X. Further, a deflection amount equivalent to 0.2% proof stress, which is appropriate as a turbine rotor material, is applied to the vicinity of the V notch of the test piece.
- the crack propagation velocity is calculated from the correspondence between the crack length and the test time.
- the obtained crack propagation velocity is used as an index of stress corrosion cracking resistance. Turbine rotor materials with a slower crack propagation rate are evaluated to have higher stress corrosion cracking resistance.
- the turbine rotor material of the present disclosure preferably exhibits high toughness in order to ensure the strength of the turbine rotor to be manufactured.
- Toughness is evaluated by performing a Charpy impact test at room temperature according to JIS Z 2242.
- the turbine rotor material of the present disclosure can be manufactured by a manufacturing process similar to that of a normal turbine rotor material manufacturing method. First, in a melting furnace, the above-mentioned bullions of each element are melted and mixed to obtain a molten metal having the above-mentioned chemical composition.
- the molten metal is degassed and inclusions are removed, and then poured into a mold to be cooled.
- quenching treatment is performed to obtain the turbine rotor material.
- the turbine rotor material of the present disclosure is manufactured as follows, for example. First, iron and alloy components as raw materials are melted and refined in an arc furnace or the like, and molten metal whose ratio of each metal is adjusted to the same ratio as the content in the alloy is poured into a mold and solidified to form an ingot.
- the obtained ingot is hot-forged and hot-molded into a shape close to that of a turbine rotor, and then a normalizing process for promoting homogenization of the structure, a quenching process for obtaining the required mechanical properties, and a tempering process. And so on.
- the turbine rotor material of the present disclosure is manufactured.
- the above-mentioned melting, hot forging, and heat treatment methods can use commonly known methods used in the production of low alloy steel, and are not particularly limited.
- the amount of matched V-carbide defines a suitable range in consideration of the strength and toughness of the turbine rotor material.
- the turbine rotor material according to the first aspect has a carbon content of 0.18% by mass or more and 0.28% by mass or less, a silicon content of 0% by mass or more and 0.25% by mass or less, and manganese.
- the content is 0.10% by mass or more and 1.20% by mass or less
- the nickel content is 0.50% by mass or more and 1.20% by mass or less
- the chromium content is 1.80% by mass or more and 2.80% by mass.
- the molybdenum content is 0.40% by mass or more and 1.50% by mass or less
- the vanadium content is more than 0.35% by mass and 0.45% by mass or less
- the tungsten content is 0.40% by mass or more. It is 1.10% by mass or less, and the balance is composed of iron and unavoidable impurities.
- the number of matched V carbides generated in the structure is increased, and the stress corrosion cracking resistance is enhanced.
- the amount of the matched V carbide is defined in a suitable range in consideration of the strength and toughness of the turbine rotor material. Therefore, according to the turbine rotor material having the above configuration, both the ease of quenching treatment and the stress corrosion cracking resistance can be achieved at the same time.
- the turbine rotor material according to the second aspect has a niobium content of 0.01% by mass or more and 0.15% by mass or less.
- the Nb carbide is dissolved in the matrix, and the effect of enhancing hardenability can be expected.
- the toughness of the turbine rotor material can be ensured because the matrix crystal grains are prevented from becoming coarse due to heating accompanying quenching.
- the turbine rotor material according to the third aspect has a molybdenum content of 2 times or less the vanadium addition rate.
- the obtained ingot was hot forged with a forging ratio of 3 or more and 16 or less, and then the ingot was heated to 1010 ° C. and subjected to normalizing treatment.
- the turbine rotor material equivalent to ⁇ 1900 mm was quenched, and the cooling rates of the surface layer and the center of the turbine rotor material were obtained by simulation.
- the cooling rate of the obtained surface layer portion was set as the cooling condition of "steel ingot A”
- the cooling rate of the central portion was set as the cooling condition of "steel ingot B”.
- the simulation can be performed using general thermal analysis software, and the specific heat, thermal conductivity, and transformation point of each metal constituting the turbine rotor material are used as physical constants.
- each of the steel ingots A and B was heated to a temperature at which the proof stress was 730 ⁇ 20 MPa and tempered to obtain a turbine rotor material.
- the turbine rotor material obtained from the steel ingot A was used for the evaluation of stress corrosion cracking property described later.
- the turbine rotor material obtained from the ingot B was used for evaluation of the proeutectoid ferrite ratio and toughness described later.
- Comparative Example 1 satisfies the components of the DIN standard material (2.2CrMoNiWV8-8).
- the ferrite structure looks whiter than the surrounding structure when the metal structure is magnified and observed with a microscope. Therefore, the presence of the ferrite structure can be grasped by microscopic observation.
- the primordial ferrite ratio is the ratio (percentage) of the area of the structure that appears white in the photograph to the area of the entire imaging range of one photograph in the magnified photograph in which the metal structure is imaged at a magnification of 100 times using an optical microscope. did.
- the turbine rotor material having a proeutectoid ferrite ratio of "0" was evaluated as a non-defective product. Further, the turbine rotor material having an amount of proeutectoid ferrite larger than 0 was evaluated as a defective product.
- the toughness of the turbine rotor material was evaluated by performing a Charpy impact test at room temperature (20 ° C.) according to JIS Z 2242 using a test piece of the turbine rotor material obtained from steel ingot B. The Charpy impact test was performed three times using a test piece provided with a 2 mm V notch, and the average value of the measured values at three points was used as the evaluation result of toughness.
- the turbine rotor material with the required shock absorption energy of 50 J or more was evaluated as a good product. Further, the turbine rotor material having a shock absorption energy of less than 50 J was evaluated as a defective product.
- test piece A was supported at three points using the jig X. Further, a deflection amount equivalent to 0.2% proof stress, which is appropriate as a turbine rotor material, was applied to the vicinity of the V notch of the test piece.
- the crack propagation velocity is obtained from the correspondence between the crack length and the test time, and is used as an index of stress corrosion cracking resistance. It was evaluated that the turbine rotor material with a slower crack propagation rate has higher stress corrosion cracking resistance.
- the crack propagation velocity of each test piece was evaluated using the ratio (hereinafter referred to as relative ratio) of the DIN standard material of Comparative Example 1 to the crack propagation velocity.
- the evaluation results of stress corrosion cracking resistance were evaluated to be equivalent to those of Comparative Example 1 for materials having a relative ratio of 0.75 or more and 1.25 or less in consideration of variations in data. Further, the material having a relative ratio smaller than 0.75 was evaluated as a non-defective product because the crack propagation rate was significantly slower than that of Comparative Example 1. Further, the material having a relative ratio larger than 1.25 was evaluated as a defective product because the crack propagation speed was significantly faster than that of Comparative Example 1.
- Examples 1 to 10 included in the turbine rotor material of the present disclosure are materials having both stress corrosion cracking resistance and hardenability.
- the turbine rotor materials of Examples 2 to 5, 7 and 8 had a Mo content of 2 times or less of the V content and were excellent in stress corrosion cracking resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
炭素の含有率が0.18質量%以上0.28質量%以下、ケイ素の含有率が0質量%以上0.25質量%以下、マンガンの含有率が0.10質量%以上1.20質量%以下、ニッケルの含有率が0.50質量%以上1.20質量%以下、クロムの含有率が1.80質量%以上2.80質量%以下、モリブデンの含有率が0.40質量%以上1.50質量%以下、バナジウムの含有率が0.35質量%を超え0.45質量%以下、タングステンの含有率が0.40質量%以上1.10質量%以下であり、残部が鉄と不可避的不純物とからなるタービンロータ材料。
Description
本開示は、タービンロータ材料に関する。
本開示は、2019年12月25日に出願された日本国特願2019-234468号に基づき優先権を主張し、その内容をここに援用する。
本開示は、2019年12月25日に出願された日本国特願2019-234468号に基づき優先権を主張し、その内容をここに援用する。
近年、安定性と持続性のある再生可能エネルギーとして、地熱の有効利用が検討されている。エネルギーとして地熱を利用する方法として、代表的には、地熱で過熱された蒸気を熱源として利用した発電(以下、地熱発電と称する)が知られている。
熱源として用いる蒸気は、硫化水素に代表される腐蝕性の気体を含むことが多い。そのため、地熱発電で用いる発電機のタービンロータは、蒸気に含まれる腐蝕性の気体に対する耐食性が求められる。
特に、プラントの発進およびプラントの停止に伴う温度変化に起因して、タービンケーシング内において、乾燥と湿潤とが交互に繰り返される部位では、腐食性の気体が濃縮しやすい。さらに、タービンロータの翼溝は、運転中に応力が集中する。そのため、上述のように腐食性の気体が濃縮しやすい部位では、タービンロータの翼溝に応力腐食割れという現象が生じやすい。応力腐食割れが生じると、タービンロータの破損に繋がることから、タービンロータの材料として、応力腐食割れが生じにくい材料が求められている。
また近年では、地熱発電の高効率化や発電量の増加を目的として、タービンロータの大型化が求められている。タービンロータが大型化すると、タービンロータ製造時において、ロータの表面から中心部まで均質な焼入れが困難となりやすい。
そこで近年では、従来の地熱発電用のタービンロータ用の材料として開発された1%CrMoV鋼に替えて、地熱発電用のタービンロータに適した合金の検討がなされている(例えば、特許文献1参照)。
タービンロータ用の合金材料のことを、以下の説明では単に「タービンロータ材料」と称することがある。
また、地熱発電用タービンロータの他に、汽力発電用ボイラやガスタービン複合発電の排熱回収ボイラで作られた蒸気を利用して発電する高低圧一体型タービンロータにおいても、大型化が進められている。高低圧一体型タービンロータにおいても、大型化した際の焼入れ処理の容易さについては担保する必要がある。
また、高低圧一体型タービンロータの低圧部には、地熱タービンロータ同様、乾燥と湿潤とが交互に繰り返される部位が存在する。汽力発電やガスタービン複合発電に使用される水は、微量成分が管理されており、発生する蒸気中に含まれる腐蝕性の気体成分は極端に少ない。微量成分としては、Naイオン、Clイオン、硫酸イオン、シリカなどが挙げられる。しかし、水の管理が不適切である場合や、蒸気の冷却に用いる海水が漏水した場合など、地熱タービンと同様に翼溝に応力腐食割れが発生する事例が確認されている。
さらに、長期間安定して使用可能とするため、高低圧一体型タービンロータにおいても上述のような応力腐食割れに対して高い耐性を有することが好ましい。
タービンロータの大型化の要求は、年々高まっている。上記特許文献1では胴径1600mmの大型ロータを想定しているが、近年ではさらに大型のタービンロータが求められている。このようなタービンロータの大型化に対応するため、焼入れ処理が容易であることと、応力腐食割れに対する耐性とを両立するタービンロータ材料は、未だ改良の余地がある。
本開示はこのような事情に鑑みてなされたものであって、焼入れ処理の容易さと、耐腐食性とを両立可能なタービンロータ材料を提供することを目的とする。
上記の課題を解決するため、本開示に係るタービンロータ材料は、炭素の含有率が0.18質量%以上0.28質量%以下、ケイ素の含有率が0質量%以上0.25質量%以下、マンガンの含有率が0.10質量%以上1.20質量%以下、ニッケルの含有率が0.50質量%以上1.20質量%以下、クロムの含有率が1.80質量%以上2.80質量%以下、モリブデンの含有率が0.40質量%以上1.50質量%以下、バナジウムの含有率が0.35質量%を超え0.45質量%以下、タングステンの含有率が0.40質量%以上1.10質量%以下であり、残部が鉄と不可避的不純物とからなる。
本開示によれば、焼入れ処理の容易さと、耐腐食性とを両立可能なタービンロータ材料を提供することができる。
本開示に係るタービンロータ材料は、炭素の含有率が0.18質量%以上0.28質量%以下、ケイ素の含有率が0質量%以上0.25質量%以下、マンガンの含有率が0.10質量%以上1.20質量%以下、ニッケルの含有率が0.50質量%以上1.20質量%以下、クロムの含有率が1.80質量%以上2.80質量%以下、モリブデンの含有率が0.40質量%以上1.50質量%以下、バナジウムの含有率が0.35質量%を超え0.45質量%以下、タングステンの含有率が0.40質量%以上1.10質量%以下であり、残部が鉄と不可避的不純物とからなる合金である。
従来知られたタービンロータ材料では、タービンロータを大型化した際に、種々の課題が生じる。
例えば、φ1900mm程度の大型のタービンロータを製造することを想定した場合、タービンロータ材料として1%CrMoV鋼を用いると、焼入れ処理においてロータ表面から中心部まで均質な焼入れが困難である。具体的には、焼入れ処理時に冷却速度が遅くなるロータの中心部分にフェライト相(軟質相)が出るため、強度や靭性を確保できなくなりやすい。
一方、上記組成を有する本開示のタービンロータ材料は、焼入れ処理が容易であり、かつ耐腐食性に優れた合金材料となる。
なお、「焼入れ処理」とは、タービンロータ材料を変態点温度以上に加熱したのち、急激に冷却する処理を意味する。タービンロータ材料は、変態点以上の温度ではオーステナイト相を呈するが、急激に冷却する過程でマルテンサイトやベイナイトと呼ばれる微細針状組織に変態し、強度が上昇する。
「焼入れ処理が容易」とは、より遅い速度で冷却してもフェライト相と呼ばれる軟化相が生じにくいことを意味する。ここでは、より具体的に、焼入れ後のタービンロータ材料において、中心部分にフェライト相が生じにくい性質を意味する。
また、以下の説明においては、「焼入れ処理が容易となる性質」のことを「焼入れ性」と称することがある。
「焼入れ性が高い」とは、焼入れ処理が容易となる性質が強いことを意味する。
「焼入れ性が高い」とは、焼入れ処理が容易となる性質が強いことを意味する。
また、「耐応力腐食割れ性」とは、応力腐食割れに対する耐性のことを意味する。より具体的には、「耐応力腐食割れ性」とは、材料に引張応力が加わり、合わせて特定の環境の腐食作用によって材料に割れが発生する現象に対する耐性を意味する。
以下、本開示のタービンロータ材料について順に説明する。
以下、本開示のタービンロータ材料について順に説明する。
(炭素含有率について)
本開示のタービンロータ材料における炭素(C)の含有率は、0.18質量%以上0.28質量%以下である。
本開示のタービンロータ材料における炭素(C)の含有率は、0.18質量%以上0.28質量%以下である。
一般に、Cは、鋼の焼入れ性を高めるとともに、機械的強度を確保するために有用である。本開示のタービンロータ材料においては、Cの含有率が0.18質量%以上であり、必要とする焼入れ性および機械的特性を得られる。
特に、上記Cの含有率は、0.20質量%以上が好ましい。
特に、上記Cの含有率は、0.20質量%以上が好ましい。
一方で、Cが過剰に添加された低合金鋼は、靭性が低下する傾向にある。
また、低合金鋼のCの含有率が高いと、低合金鋼を焼戻したときにクロム(Cr)の炭化物が多く生じやすく、低合金鋼のマトリクス中に固溶するCrの量が減少しやすい。この場合、低合金鋼の耐応力腐食割れ性が悪化しやすい。
さらに、Cは、一般的に造塊工程における凝固時に、溶融金属中に濃縮しやすい傾向にある。そのため、低合金鋼に必要以上のCが含まれると、造塊工程において連続的にインゴットを製造する際、凝固の初期から凝固の終期に向かってインゴット中のCの含有率が増加しやすい。その結果、Cの含有率が高いと、均質な特性を持つ低合金鋼が得られにくくなる。
対して、本開示のタービンロータ材料においては、Cの含有率が0.28質量%以下であることにより、充分な靭性と、高い耐応力腐食割れ性とを確保することができる。さらに、Cの含有率が0.28質量%以下であることにより、均質な特性を有するタービンロータ材料を製造しやすくなる。
特に、上記Cの含有率は、0.25質量%以下が好ましい。
本開示のタービンロータ材料におけるCの含有率の上限値と下限値とは、任意に組み合わせることができる。上記Cの含有率は、0.20質量%以上0.25質量%以下が好ましい。
(ケイ素含有率について)
本開示のタービンロータ材料におけるケイ素(Si)の含有率は、0質量%以上0.25質量%以下である。
本開示のタービンロータ材料におけるケイ素(Si)の含有率は、0質量%以上0.25質量%以下である。
Siは、低合金鋼における脱酸剤として有用である。一方で、Siは、低合金鋼に多量に添加すると、靭性が低下する傾向がある。
そのため、本開示のタービンロータ材料におけるSiの含有率は、0.25質量%以下であり、0.15質量%以下が好ましい。Siの含有率の最小値は、0質量%である。
(マンガン含有率について)
本開示のタービンロータ材料におけるマンガン(Mn)の含有率は、0.10質量%以上1.20質量%以下である。
本開示のタービンロータ材料におけるマンガン(Mn)の含有率は、0.10質量%以上1.20質量%以下である。
Mnは、低合金鋼の焼入れ性を確保するために有用である。また、Mnは、低合金鋼の脱酸剤として有用であり、熱間鍛造時の割れを抑制する。本開示のタービンロータ材料においては、Mnの含有率が0.10質量%以上であり、これらの効果が有効に表れる。
特に、上記Mnの含有率は、0.50質量%以上が好ましい。
一方、Mnは、低合金鋼の靭性を低下させる傾向がある。本開示のタービンロータ材料においては、Mnの含有率が1.20質量%以下であり、必要とする靭性が得られる。
特に、上記Mnの含有率は、1.00質量%以下が好ましい。
本開示のタービンロータ材料におけるMnの含有率の上限値と下限値とは、任意に組み合わせることができる。上記Mnの含有率は、0.50質量%以上1.00質量%以下が好ましい。
(ニッケル含有率について)
本開示のタービンロータ材料におけるニッケル(Ni)の含有率は、0.50質量%以上1.20質量%以下である。
本開示のタービンロータ材料におけるニッケル(Ni)の含有率は、0.50質量%以上1.20質量%以下である。
Niは、低合金鋼の焼入れ性を確保するために有用である。また、Niは、低合金鋼の靭性を高める。本開示のタービンロータ材料においては、Niの含有率が0.50質量%以上であり、これらの効果が有効に表れる。
一方、Niは、低合金鋼における含有率が高まると、低合金鋼の耐応力腐食割れ性を低下させる傾向がある。本開示のタービンロータ材料においては、Niの含有率が1.20質量%以下であり、必要とする耐応力腐食割れ性を確保できる。
(クロム含有率について)
タービンロータ材料におけるクロム(Cr)の含有率は、1.80質量%以上2.80質量%以下である。
タービンロータ材料におけるクロム(Cr)の含有率は、1.80質量%以上2.80質量%以下である。
Crは、低合金鋼の焼入れ性を確保するために有用である。また、Crは、Cと結びついて炭化物を生じる。生じるCrの炭化物は、低合金鋼の強度を向上させる。さらに、Crは、マトリクスに固溶して、応力腐食割れを抑制する効果を有する。本開示のタービンロータ材料においては、Crの含有率が1.80質量%以上であり、これらの効果が有効に表れる。
特に、上記Crの含有率は、2.00質量%以上が好ましい。
一方、Crは、低合金鋼における含有率が高まると、低合金鋼に応力腐食割れが生じた場合に、亀裂の進展が速くなる傾向がある。これは、低合金鋼の耐食性が高まった結果、ひとたび低合金鋼に亀裂が生じると、亀裂の先端が腐食されず鋭くとがった形状を維持し、亀裂の先端への応力集中が維持されることに起因する。
すなわち、低合金鋼においては、応力腐食割れの発生自体を抑制するためにはCr含有量は高い方が有利であり、発生した亀裂の進展を抑制するためにはCr含有量が高い方が不利になる。
本開示のタービンロータ材料においては、Crの含有率が2.80質量%以下であり、亀裂発生時の亀裂の進展を抑制して、所望の耐応力腐食割れ特性が得られる。
特に、上記Crの含有率は、2.50質量%以下が好ましい。
本開示のタービンロータ材料におけるCrの含有率の上限値と下限値とは、任意に組み合わせることができる。上記Crの含有率は、2.00質量%以上2.50質量%以下が好ましい。
(モリブデン含有率について)
本開示のタービンロータ材料におけるモリブデン(Mo)の含有率は、0.30質量%以上1.20質量%以下である。
本開示のタービンロータ材料におけるモリブデン(Mo)の含有率は、0.30質量%以上1.20質量%以下である。
Moは、低合金鋼の焼入れ性を確保するために有用である。また、Moは、Cと結びついて炭化物を生じる。生じるMoの炭化物は、低合金鋼の強度を向上させる。本開示のタービンロータ材料においては、Moの含有率が0.50質量%以上であり、これらの効果が有効に表れる。
一方、Moは、低合金鋼における含有率が高まると、低合金鋼の靭性を低下させる傾向がある。また、Moは高価な元素であるため、タービンロータ材料におけるMoの含有率が高まると、材料コストが増加しやすい。
さらに、Moは、低合金鋼における含有率が高まると、焼き戻した時にバナジウム(V)の炭化物の形成を阻害する傾向がある。後述するように、Vの炭化物は、耐応力腐食割れ性を高める効果がある。
本開示のタービンロータ材料においては、Moの含有率が1.20質量%以下であり、必要とする靭性を確保できる。また、本開示のタービンロータ材料においては、Moの含有率が1.20質量%以下であることにより、Vの炭化物の生成を阻害しにくい。
特に、上記Moの含有率は、1.00質量%以下であることが好ましい。
本開示のタービンロータ材料におけるMoの含有率の上限値と下限値とは、任意に組み合わせることができる。上記Moの含有率は、0.50質量%以上1.00質量%以下が好ましい。
(バナジウム含有率について)
本開示のタービンロータ材料におけるバナジウム(V)の含有率は、0.35質量%を超え0.43質量%以下である。
本開示のタービンロータ材料におけるバナジウム(V)の含有率は、0.35質量%を超え0.43質量%以下である。
Vは、低合金鋼の焼入れ性を確保するために有用である。また、Vは、Cと結びついて炭化物を生じる。生じるVの炭化物は、低合金鋼の強度を向上させる。
また、Vは、焼入れ処理の焼戻し時に、マトリクスに整合したV炭化物(整合V炭化物)として析出する。生じるV炭化物は、材料の腐食により生じる水素を捕捉し、耐応力腐食割れ性を向上させる。
さらに、焼入れ時にマトリックスに固溶しなかったV炭化物は、タービンロータ材料のマトリクスの結晶粒成長(粗大化)を抑制し、靭性および耐応力腐食割れ性を向上させる。
通常知られたV添加鋼では、Vの含有率は、0.15質量%以上0.3質量%以下である。これに対し、本開示のタービンロータ材料では、上記2種の役割を果たすことができるようV炭化物の量を十分に確保するため、Vの含有率が0.35質量%を超えている。
一方、Vは、低合金鋼における含有率が高まると、靭性を低下させる傾向がある。本開示のタービンロータ材料においては、Vの含有率が0.43質量%以下であり、必要とする靭性を確保できる。
一般に、低合金鋼の応力腐食割れは、以下のメカニズムで生じると考えられている。
まず、低合金鋼が腐食環境下に暴露されると、低合金鋼と腐食性の物質との反応(腐食反応)により水素が発生する。発生した水素は、低合金鋼のマトリクスに取り込まれる。マトリクス中の水素は、マトリクス中に拡散しながら、低合金鋼において応力が集中する箇所に集積する。応力腐食割れに関与する水素の挙動については諸説があるが、例えば集積した水素がマトリックス金属の原子間結合力を低下させることで亀裂の発生および進展を加速すると考えられている。
まず、低合金鋼が腐食環境下に暴露されると、低合金鋼と腐食性の物質との反応(腐食反応)により水素が発生する。発生した水素は、低合金鋼のマトリクスに取り込まれる。マトリクス中の水素は、マトリクス中に拡散しながら、低合金鋼において応力が集中する箇所に集積する。応力腐食割れに関与する水素の挙動については諸説があるが、例えば集積した水素がマトリックス金属の原子間結合力を低下させることで亀裂の発生および進展を加速すると考えられている。
対して、本開示のタービンロータ材料は、上述の含有率でVを含むことにより、材料組織内に多くの整合V炭化物を有する。この整合V炭化物は、タービンロータ材料の組織内に侵入する水素を捕捉し、亀裂の先端部に水素が集まることを抑制すると考えられる。これにより、タービンロータ材料に応力が作用する状態で地熱蒸気等の腐食環境に曝露した場合にも、亀裂の発生および進展が遅延する、すなわち耐応力腐食割れ性が高まると考えられる。
(タングステン含有率について)
本開示のタービンロータ材料におけるタングステン(W)の含有率は、0.40質量%以上1.10質量%以下である。
本開示のタービンロータ材料におけるタングステン(W)の含有率は、0.40質量%以上1.10質量%以下である。
Wは、低合金鋼のクリープ強度を高めるために有用である。また、Wは、低合金鋼における含有率が高まると、低合金鋼の耐応力腐食割れ性を向上させる傾向がある。特に、本開示のタービンロータ材料においては、Wの含有率が0.40質量以上であることで、耐応力腐食割れ性を向上させる効果が有効に表れる。
一方、Wは、低合金鋼における含有率が高まると、焼入れ性を低下させる傾向があり、また靭性を低下させる傾向がある。本開示のタービンロータ材料においては、Wの含有率が1.10質量%以下であり、必要とする焼入れ性と靭性とを確保できる。
特に、上記Wの含有率は0.80質量%以下が好ましい。
(ニオブ含有率について)
本開示のタービンロータ材料は、ニオブ(Nb)が、0.01質量%以上0.15質量%以下含有していてもよい。
本開示のタービンロータ材料は、ニオブ(Nb)が、0.01質量%以上0.15質量%以下含有していてもよい。
Nbは、低合金鋼の焼入れ性を確保するために有用である。また、Nbは、Cと結びついて炭化物を生じる。生じるNbの炭化物は、低合金鋼の焼入れ温度において完全に固溶せず、Vと同様にマトリクス結晶粒の粗大化を抑制する機能を有する。これらの機能を付与するため、本開示のタービンロータ材料のNbの含有率は、0.01質量%以上が好ましい。
一方、Nbは、低合金鋼における含有率が高まると、靭性を低下させる傾向がある。本開示のタービンロータ材料においては、Nbの含有率が0.15質量%以下であり、Nbを添加する場合にも靭性を確保できる。
(リン、硫黄含有率について)
本開示のタービンロータ材料におけるリン(P)の含有率は、0質量%以上0.02質量%以下である。
本開示のタービンロータ材料におけるリン(P)の含有率は、0質量%以上0.02質量%以下である。
本開示のタービンロータ材料における硫黄(S)の含有率は、0質量%以上0.01質量%以下である。
P、Sは共に製鋼原料から持ち込まれる不純物であり、鋼材の中で燐化物や硫化物を形成して鋼材の靱性を著しく低下させる有害な不純物である。そのため、Pの含有率およびSの含有率は低いほど良好な特性が期待される。
このためPの含有率は、0.02質量%を上限として、0.01質量%以下が好ましく、検出不能(0質量%)であることがより好ましい。
同様に、Sの含有率は、0.01質量%を上限として、0.005質量%以下が好ましく、検出不能(0質量%)であることがより好ましい。
(不可避的不純物について)
本開示のタービンロータ材料においては、上述した各元素のほか、窒素(N)、酸素(O)、銅(Cu)、砒素(As)、アンチモン(Sb)、錫(Sn)等、鉄鋼材料に一般的に含まれる不可避的不純物に関しては、不可避的に含まれる含有率において存在を許容するものとする。
本開示のタービンロータ材料においては、上述した各元素のほか、窒素(N)、酸素(O)、銅(Cu)、砒素(As)、アンチモン(Sb)、錫(Sn)等、鉄鋼材料に一般的に含まれる不可避的不純物に関しては、不可避的に含まれる含有率において存在を許容するものとする。
(モリブデン含有率とバナジウム含有率の比)
上述したように、Mo量が多くなると、焼き戻した時に、耐応力腐食割れ性を高める効果があるバナジウム(V)の炭化物の形成が阻害されやすい。
上述したように、Mo量が多くなると、焼き戻した時に、耐応力腐食割れ性を高める効果があるバナジウム(V)の炭化物の形成が阻害されやすい。
そのため、本開示のタービンロータ材料においては、Mo含有率とVの含有率との比が2倍以下にすることで、タービンロータ材料中の整合V炭化物量を確保して耐応力腐食割れ性を確保しやすく、好ましい。
(好ましい態様)
本開示のタービンロータ材料は、炭素の含有率が0.20質量%以上0.25質量%以下、ケイ素の含有率が0質量%以上0.25質量%以下、マンガンの含有率が0.50質量%以上1.00質量%以下、ニッケルの含有率が0.50質量%以上0.90質量%以下、クロムの含有率が2.00質量%以上2.50質量%以下、モリブデンの含有率が0.50質量%以上1.00質量%以下、バナジウムの含有率が0.35質量%を超え0.40質量%以下、タングステンの含有率が0.40質量%以上0.80質量%以下であり、残部が鉄と不可避的不純物とからなることが好ましい。
本開示のタービンロータ材料は、炭素の含有率が0.20質量%以上0.25質量%以下、ケイ素の含有率が0質量%以上0.25質量%以下、マンガンの含有率が0.50質量%以上1.00質量%以下、ニッケルの含有率が0.50質量%以上0.90質量%以下、クロムの含有率が2.00質量%以上2.50質量%以下、モリブデンの含有率が0.50質量%以上1.00質量%以下、バナジウムの含有率が0.35質量%を超え0.40質量%以下、タングステンの含有率が0.40質量%以上0.80質量%以下であり、残部が鉄と不可避的不純物とからなることが好ましい。
(焼入れ性)
上述したように、本開示のタービンロータ材料は、焼入れ性が高い。
本開示のタービンロータ材料の焼入れ性は、焼入れ時のタービンロータ材料中心部の冷却速度をシミュレーションで求め、得られた結果と同じ冷却を行った試験片について、初析フェライト率により評価する。
上述したように、本開示のタービンロータ材料は、焼入れ性が高い。
本開示のタービンロータ材料の焼入れ性は、焼入れ時のタービンロータ材料中心部の冷却速度をシミュレーションで求め、得られた結果と同じ冷却を行った試験片について、初析フェライト率により評価する。
フェライト組織は、金属組織を顕微鏡で拡大観察したときに、周囲の組織と比べ白く見える。そのため、顕微鏡観察によりフェライト組織の存在を把握することができる。
初析フェライト率は、光学顕微鏡を用い拡大倍率100倍で金属組織を撮像した拡大写真において、一つの写真の撮像範囲全体の面積に対する、写真に写った白く見える組織の面積の比率(百分率)とする。
タービンロータ材料中心部の冷却速度を求めるシミュレーションにあたっては、φ1900mm相当のタービンロータ材料を想定したシミュレーション条件を設定する。また、シミュレーションは、一般的な熱解析ソフトを用いて行うことができ、タービンロータ材料を構成する各金属の比熱、熱伝導率、変態点を物理定数として用いる。
(耐応力腐食割れ性)
また、本開示のタービンロータ材料は、耐応力腐食割れ性が高い。
また、本開示のタービンロータ材料は、耐応力腐食割れ性が高い。
本開示のタービンロータ材料の耐応力腐食割れ性は、「Proceedings 23rd NZ Geothermal Workshop 2001 p137-142」に記載されている試験(SCC試験)にて確認する。
図1は、SCC試験に用いる試験片を示す模式図である。図2は、SCC試験の試験方法を示す模式図である。図3は、SCC試験において試験片に生じる亀裂を示す模式図である。
図1は、SCC試験に用いる試験片を示す模式図である。図2は、SCC試験の試験方法を示す模式図である。図3は、SCC試験において試験片に生じる亀裂を示す模式図である。
まず、本開示のタービンロータ材料を用いて、図1に示す試験片を複数本作製する。試験片は108mm×8mm×5mm(加工精度±0.02mm)であり、108mm×5mmの面の長手方向中央に、深さ1,25mm、角度45°、先端のR=0.2のVノッチを有する。
次いで、実地熱蒸気を流した試験槽に作製した複数本の試験片を挿入して、試験片を地熱蒸気に曝露する。その際、図2に示すように、治具Xを用いて試験片Aを3点支持する。また、試験片のVノッチ付近に、タービンロータ材料として適正な0.2%耐力相当のたわみ量を負荷する。
次いで、試験片を試験槽から定期的に取り出す。図3に示すように、試験片には、応力腐食割れの程度に応じてVノッチ先端から試験片内部に向かって亀裂が生じる。
次いで、取り出した試験片を切断して、亀裂長さ(L)を計測する。亀裂長さと試験時間との対応関係から、亀裂伝播速度を求める。求められた亀裂伝播速度を、耐応力腐食割れ性の指標とする。亀裂伝播速度が遅いタービンロータ材料ほど、耐応力腐食割れ性が高いと評価する。
(靭性)
また、本開示のタービンロータ材料は、製造するタービンロータの強度を担保するため、高い靭性を示すことが好ましい。
また、本開示のタービンロータ材料は、製造するタービンロータの強度を担保するため、高い靭性を示すことが好ましい。
靭性は、JIS Z 2242に従って、室温でのシャルピー衝撃試験を行い評価する。
(タービンロータ材料の製造方法)
本開示のタービンロータ材料は、通常のタービンロータ材料の製造方法と同様の製造工程によって製造することができる。
まず、溶解炉において上述した各元素の地金を溶解しながら混合し、上述の化学組成を有する溶湯を得る。
本開示のタービンロータ材料は、通常のタービンロータ材料の製造方法と同様の製造工程によって製造することができる。
まず、溶解炉において上述した各元素の地金を溶解しながら混合し、上述の化学組成を有する溶湯を得る。
次いで、必要に応じて溶湯に脱ガス処理や介在物除去処理を行った後、鋳型に流し込んで冷却する。
次いで、タービンロータの形状に加工した後、焼入れ処理を行うことで、タービンロータ材料が得られる。
その他、本開示のタービンロータ材料は、例えば以下のように製造する。
まず、アーク炉等で原料となる鉄や合金成分を溶解および精錬し、各金属の比率を合金における含有率と同比率に調整した溶融金属を金型に流し込み、固化させてインゴットとする。
まず、アーク炉等で原料となる鉄や合金成分を溶解および精錬し、各金属の比率を合金における含有率と同比率に調整した溶融金属を金型に流し込み、固化させてインゴットとする。
その後、得られたインゴットを、熱間鍛造およびタービンロータに近い形状へ熱間成型し、さらに組織の均質化を進める焼ならし処理、必要な機械的特性を得るための焼入れ処理、焼き戻し処理等の熱処理を行う。これにより、本開示のタービンロータ材料が製造される。
上述した溶解、熱間鍛造、熱処理の各手法は、低合金鋼の製造に採用される通常知られた手法を用いることができ、特に限定するものではない。
(作用効果)
本開示のタービンロータ材料においては、通常知られたV添加鋼よりもVの含有率を高めることにより、組織内に生じる整合V炭化物を増やし、耐応力腐食割れ性を高めている。
本開示のタービンロータ材料においては、通常知られたV添加鋼よりもVの含有率を高めることにより、組織内に生じる整合V炭化物を増やし、耐応力腐食割れ性を高めている。
また、整合V炭化物の量は、タービンロータ材料の強度や靭性も考慮した上で、好適な範囲を規定している。
そのため、以上のような構成のタービンロータ材料によれば、焼入れ処理の容易さと、耐応力腐食割れ性とを両立可能となる。
<付記>
本開示のタービンロータ材料は、例えば以下のように把握される。
本開示のタービンロータ材料は、例えば以下のように把握される。
[1]第1の態様に係るタービンロータ材料は、炭素の含有率が0.18質量%以上0.28質量%以下、ケイ素の含有率が0質量%以上0.25質量%以下、マンガンの含有率が0.10質量%以上1.20質量%以下、ニッケルの含有率が0.50質量%以上1.20質量%以下、クロムの含有率が1.80質量%以上2.80質量%以下、モリブデンの含有率が0.40質量%以上1.50質量%以下、バナジウムの含有率が0.35質量%を超え0.45質量%以下、タングステンの含有率が0.40質量%以上1.10質量%以下であり、残部が鉄と不可避的不純物とからなる。
上記態様によれば、通常知られたV添加鋼よりもVの含有率を高めることにより、組織内に生じる整合V炭化物を増やし、耐応力腐食割れ性を高めている。また、整合V炭化物の量は、タービンロータ材料の強度や靭性も考慮した上で、好適な範囲を規定している。
そのため、以上のような構成のタービンロータ材料によれば、焼入れ処理の容易さと、耐応力腐食割れ性とを両立可能となる。
そのため、以上のような構成のタービンロータ材料によれば、焼入れ処理の容易さと、耐応力腐食割れ性とを両立可能となる。
[2]第2の態様に係るタービンロータ材料は、ニオブの含有率が0.01質量%以上0.15質量%以下である。
上記態様によれば、上述の含有率でニオブを含むことにより、マトリクスにNb炭化物が固溶し、焼入れ性を高める効果が期待できる。また、焼入れに伴う加熱でマトリクス結晶粒が粗大化する事を抑制するため、タービンロータ材料の靭性を確保できる。
[3]第3の態様に係るタービンロータ材料は、モリブデンの含有率がバナジウム添加率の2倍以下である。
上記態様によれば、Mo含有率とVの含有率との比が2倍以下にすることで、タービンロータ材料中の整合V炭化物量を確保して耐応力腐食割れ性を確保しやすくなる。
以下に本開示を実施例により説明するが、本開示はこれらの実施例に限定されるものではない。
各実施例、比較例のタービンロータ材料について、真空誘導加熱炉を用いて表1,2に示す化学成分を有する50kg鋼塊を作製した。鋼塊の作製時には、VCD(Vacuum Carbon Degassing/真空カーボン脱ガス)を実施した。
次いで、得られた鋼塊に鍛錬比3以上16以下の熱間鍛造を施した後、鋼塊を1010℃に加熱して焼ならし処理を行った。
次いで、鋼塊を930℃に加熱したのち、焼入れ処理として、φ1900mmのタービンロータ材料の表層部及び中心部を模した2種類の冷却を行った。表層部を模した冷却を行った鋼塊を「鋼塊A」、中心部を模した冷却を行った鋼塊を「鋼塊B」とする。
焼入れ処理に先立って、φ1900mm相当のタービンロータ材料を焼入れすることを想定し、タービンロータ材料の表層部および中心部の冷却速度をシミュレーションで求めた。得られた表層部の冷却速度を「鋼塊A」の冷却条件とし、中心部の冷却速度を、「鋼塊B」の冷却条件とした。シミュレーションは、一般的な熱解析ソフトを用いて行うことができ、タービンロータ材料を構成する各金属の比熱、熱伝導率、変態点を物理定数として用いる。
次いで、各鋼塊A、Bについて、耐力が730±20MPaとなるような温度に加熱して焼き戻し処理を行い、タービンロータ材料を得た。
鋼塊Aから得られたタービンロータ材料は、後述する応力腐食割れ性の評価に用いた。
鋼塊Bから得られたタービンロータ材料は、後述する初析フェライト率及び靭性の評価に用いた。
鋼塊Bから得られたタービンロータ材料は、後述する初析フェライト率及び靭性の評価に用いた。
なお、比較例1の組成は、DIN規格材(2.2CrMoNiWV8-8)の成分を満たす。
得られた各タービンロータ材料について、下記評価を行った。
(評価1:焼入れ性)
上述の鋼塊Bについて初析フェライト率を求め、焼入れ性を評価した。
上述の鋼塊Bについて初析フェライト率を求め、焼入れ性を評価した。
フェライト組織は、金属組織を顕微鏡で拡大観察したときに、周囲の組織と比べ白く見える。そのため、顕微鏡観察によりフェライト組織の存在を把握することができる。
初析フェライト率は、光学顕微鏡を用い拡大倍率100倍で金属組織を撮像した拡大写真において、一つの写真の撮像範囲全体の面積に対する、写真に写った白く見える組織の面積の比率(百分率)とした。
初析フェライト率が「0」であるタービンロータ材料は、良品として評価した。
また、初析フェライト量が0より大きいタービンロータ材料は、不良品として評価した。
また、初析フェライト量が0より大きいタービンロータ材料は、不良品として評価した。
評価結果について、表3,4に示す。
(評価2:靭性)
タービンロータ材料の靭性は、鋼塊Bから得られたタービンロータ材料の試験片を用い、JIS Z 2242に従って、室温(20℃)でのシャルピー衝撃試験を行い評価した。シャルピー衝撃試験は、2mmVノッチを設けた試験片を用いて3回行い、3点の測定値の平均値を靭性の評価結果とした。
タービンロータ材料の靭性は、鋼塊Bから得られたタービンロータ材料の試験片を用い、JIS Z 2242に従って、室温(20℃)でのシャルピー衝撃試験を行い評価した。シャルピー衝撃試験は、2mmVノッチを設けた試験片を用いて3回行い、3点の測定値の平均値を靭性の評価結果とした。
求められる衝撃吸収エネルギーが50J以上であるタービンロータ材料は、良品として評価した。
また、衝撃吸収エネルギーが50J未満であるタービンロータ材料は、不良品として評価した。
また、衝撃吸収エネルギーが50J未満であるタービンロータ材料は、不良品として評価した。
評価結果について、表3,4に示す。
(評価3:耐応力腐食割れ性)
評価1および評価2において良品と判断されたタービンロータ材料について、鋼塊Aから得られたタービンロータ材料の試験片を用い、耐応力腐食割れ性を評価した。
評価1および評価2において良品と判断されたタービンロータ材料について、鋼塊Aから得られたタービンロータ材料の試験片を用い、耐応力腐食割れ性を評価した。
タービンロータ材料の耐応力腐食割れ性は、「Proceedings 23rd NZ Geothermal Workshop 2001 p137-142」に記載されている試験(SCC試験)にて確認した。
まず、タービンロータ材料を用いて、図1に示す試験片を複数本作製した。試験片は108mm×8mm×5mm(加工精度±0.02mm)であり、108mm×5mmの面の長手方向中央に、深さ1,25mm、角度45°、先端のR=0.2のVノッチを有する。
次いで、実地熱蒸気を流した試験槽に作製した複数本の試験片を挿入して、試験片を地熱蒸気に曝露した。その際、図2に示すように、治具Xを用いて試験片Aを3点支持した。また、試験片のVノッチ付近に、タービンロータ材料として適正な0.2%耐力相当のたわみ量を負荷した。
次いで、試験片を試験槽から定期的に取り出し、取り出した試験片を切断して、亀裂長さ(L)を計測した。亀裂長さと試験時間との対応関係から亀裂伝播速度を求め、耐応力腐食割れ性の指標とする。亀裂伝播速度が遅いタービンロータ材料ほど、耐応力腐食割れ性が高いと評価した。
本実施例においては、各試験片の亀裂伝播速度について、比較例1のDIN規格材の亀裂伝播速度に対する比率(以下、相対比と称する)を用いて評価した。
耐応力腐食割れ性の評価結果は、データのばらつきを考慮し、相対比が0.75以上1.25以下の材料は、比較例1と同等と評価した。
また、相対比が0.75よりも小さい材料は、亀裂伝播速度が比較例1よりも優位に遅く、良品であると評価した。
また、相対比が1.25よりも大きい材料は、亀裂伝播速度が比較例1よりも優位に早く、不良品である評価した。
また、相対比が0.75よりも小さい材料は、亀裂伝播速度が比較例1よりも優位に遅く、良品であると評価した。
また、相対比が1.25よりも大きい材料は、亀裂伝播速度が比較例1よりも優位に早く、不良品である評価した。
評価結果について、表3,4に示す。
表3,4においては、評価結果を以下のように示す。
◎:亀裂伝播速度の相対比が0.50未満
〇:亀裂伝播速度の相対比が0.50以上0.75未満
△:亀裂伝播速度の相対比が0.75以上1.25以下
×:亀裂伝播速度の相対比が1.25を超える
表3,4においては、評価結果を以下のように示す。
◎:亀裂伝播速度の相対比が0.50未満
〇:亀裂伝播速度の相対比が0.50以上0.75未満
△:亀裂伝播速度の相対比が0.75以上1.25以下
×:亀裂伝播速度の相対比が1.25を超える
また、表3,4に示す「総合評価」の欄には、評価1~3において良品と評価された材料は「〇」、評価1~3のいずれか1つでも不良品と評価された材料は「×」と記載している。
評価の結果、本開示のタービンロータ材料に含まれる実施例1~10は、耐応力腐食割れ性、焼入れ性を両立する材料であることが分かった。
また、実施例2~5、7,8のタービンロータ材料は、Mo含有率がV含有率の2倍以下であり、耐応力腐食割れ性に優れていることが分かった。
以上の結果から、本開示のタービンロータ材料が有用であることが確かめられた。
Claims (3)
- 炭素の含有率が0.18質量%以上0.28質量%以下、
ケイ素の含有率が0質量%以上0.25質量%以下、
マンガンの含有率が0.10質量%以上1.20質量%以下、
ニッケルの含有率が0.50質量%以上1.20質量%以下、
クロムの含有率が1.80質量%以上2.80質量%以下、
モリブデンの含有率が0.40質量%以上1.50質量%以下、
バナジウムの含有率が0.35質量%を超え0.45質量%以下、
タングステンの含有率が0.40質量%以上1.10質量%以下であり、
残部が鉄と不可避的不純物とからなるタービンロータ材料。 - ニオブの含有率が0.01質量%以上0.15質量%以下である請求項1に記載のタービンロータ材料。
- モリブデンの含有率がバナジウム添加率の2倍以下である請求項1または2に記載のタービンロータ材料。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112020006308.9T DE112020006308T5 (de) | 2019-12-25 | 2020-12-11 | Turbinenrotormaterial |
CN202080074996.4A CN114667361A (zh) | 2019-12-25 | 2020-12-11 | 涡轮转子材料 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-234468 | 2019-12-25 | ||
JP2019234468A JP7315454B2 (ja) | 2019-12-25 | 2019-12-25 | タービンロータ材料 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021131805A1 true WO2021131805A1 (ja) | 2021-07-01 |
Family
ID=76574408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/046338 WO2021131805A1 (ja) | 2019-12-25 | 2020-12-11 | タービンロータ材料 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7315454B2 (ja) |
CN (1) | CN114667361A (ja) |
DE (1) | DE112020006308T5 (ja) |
WO (1) | WO2021131805A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0219425A (ja) * | 1988-07-05 | 1990-01-23 | Toshiba Corp | タービンロータの製造方法 |
JPH06256893A (ja) * | 1993-03-04 | 1994-09-13 | Mitsubishi Heavy Ind Ltd | 高温強度に優れた高靭性低合金鋼 |
JP2015078426A (ja) * | 2013-09-13 | 2015-04-23 | 株式会社東芝 | 蒸気タービン用ロータの製造方法 |
WO2015163226A1 (ja) * | 2014-04-23 | 2015-10-29 | 日本鋳鍛鋼株式会社 | 地熱発電用タービンロータ材及びその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0849434B8 (en) * | 1989-02-03 | 2005-08-10 | Hitachi, Ltd. | Combined generator system |
JPH0941076A (ja) * | 1995-08-02 | 1997-02-10 | Mitsubishi Heavy Ind Ltd | 高強度・高靱性低合金鋼 |
JP3510606B2 (ja) * | 2001-05-17 | 2004-03-29 | 三菱重工業株式会社 | 高低圧一体型タービンロータ及びその製造方法 |
JP4288304B1 (ja) * | 2008-10-08 | 2009-07-01 | 三菱重工業株式会社 | タービンロータ及びタービンロータの製造方法 |
CN102676923A (zh) * | 2012-05-29 | 2012-09-19 | 上海大学 | 一种超高热导率热冲压模具用钢及其制备方法 |
CN103667967B (zh) * | 2013-12-28 | 2016-03-30 | 无锡透平叶片有限公司 | 一种超超临界汽轮机转子用耐热钢 |
-
2019
- 2019-12-25 JP JP2019234468A patent/JP7315454B2/ja active Active
-
2020
- 2020-12-11 CN CN202080074996.4A patent/CN114667361A/zh active Pending
- 2020-12-11 WO PCT/JP2020/046338 patent/WO2021131805A1/ja active Application Filing
- 2020-12-11 DE DE112020006308.9T patent/DE112020006308T5/de active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0219425A (ja) * | 1988-07-05 | 1990-01-23 | Toshiba Corp | タービンロータの製造方法 |
JPH06256893A (ja) * | 1993-03-04 | 1994-09-13 | Mitsubishi Heavy Ind Ltd | 高温強度に優れた高靭性低合金鋼 |
JP2015078426A (ja) * | 2013-09-13 | 2015-04-23 | 株式会社東芝 | 蒸気タービン用ロータの製造方法 |
WO2015163226A1 (ja) * | 2014-04-23 | 2015-10-29 | 日本鋳鍛鋼株式会社 | 地熱発電用タービンロータ材及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2021102802A (ja) | 2021-07-15 |
DE112020006308T5 (de) | 2022-12-01 |
CN114667361A (zh) | 2022-06-24 |
JP7315454B2 (ja) | 2023-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5528986B2 (ja) | 析出硬化型マルテンサイト系ステンレス鋼およびそれを用いた蒸気タービン部材 | |
JP6479527B2 (ja) | 酸洗性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用線材、並びにボルト | |
JP5409708B2 (ja) | 析出硬化型マルテンサイト系ステンレス鋼と、それを用いた蒸気タービン長翼 | |
US8747733B2 (en) | Precipitation hardenable martensitic stainless steel and steam turbine blade using the same | |
JP6111763B2 (ja) | 強度及び靭性に優れた蒸気タービンブレード用鋼 | |
KR20190046729A (ko) | 지열 발전 터빈 로터용 저합금강 및 지열 발전 터빈 로터용 저합금 물질, 및 이들의 제조 방법 | |
JP5343923B2 (ja) | 時効硬化性鋼および機械部品の製造方法 | |
JP6049331B2 (ja) | 蒸気タービンの動翼、蒸気タービンの動翼の製造方法および蒸気タービン | |
JP3439197B2 (ja) | 低合金耐熱鋼及びその熱処理方法並びにタービンロータ | |
JP5974623B2 (ja) | 時効硬化型ベイナイト非調質鋼 | |
JP5018863B2 (ja) | 耐アルカリ性に優れた二相ステンレス鋼 | |
WO2015050152A1 (ja) | 時効硬化性鋼 | |
JP5664371B2 (ja) | 時効硬化性鋼および機械部品の製造方法 | |
JP2012172243A (ja) | 靭性に優れる高張力鋼板とその製造方法 | |
JPWO2019059240A1 (ja) | ガスタービンディスク材及びその熱処理方法 | |
JP5869739B1 (ja) | 地熱発電用タービンロータ材及びその製造方法 | |
JPS60427B2 (ja) | 冷間鍛造性のすぐれた快削鋼 | |
JP3955719B2 (ja) | 耐熱鋼、耐熱鋼の熱処理方法および耐熱鋼部品 | |
WO2021131805A1 (ja) | タービンロータ材料 | |
JP6317566B2 (ja) | 析出硬化型マルテンサイト系ステンレス鋼、該ステンレス鋼を用いたタービン部材、および該タービン部材を用いたタービン | |
JP3900847B2 (ja) | フェライト系耐熱鋼の加工方法 | |
JP3905739B2 (ja) | タービンロータ用12Cr合金鋼、その製造方法及びタービンロータ | |
JP2019026874A (ja) | 高周波焼入れ部品用素材 | |
WO2015050151A1 (ja) | 時効硬化性鋼 | |
JP2017128775A (ja) | ステンレス鋼およびステンレス鋼管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20904825 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20904825 Country of ref document: EP Kind code of ref document: A1 |