WO2021131791A1 - 超電導限流器の冷却システム、超電導限流器及び超電導限流器の冷却システムの制御方法 - Google Patents

超電導限流器の冷却システム、超電導限流器及び超電導限流器の冷却システムの制御方法 Download PDF

Info

Publication number
WO2021131791A1
WO2021131791A1 PCT/JP2020/046273 JP2020046273W WO2021131791A1 WO 2021131791 A1 WO2021131791 A1 WO 2021131791A1 JP 2020046273 W JP2020046273 W JP 2020046273W WO 2021131791 A1 WO2021131791 A1 WO 2021131791A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
superconducting current
current limiter
phase portion
condenser
Prior art date
Application number
PCT/JP2020/046273
Other languages
English (en)
French (fr)
Inventor
直子 仲村
孝之 小暮
雅人 野口
旭 小室
紀之 上岡
田中 稔
Original Assignee
株式会社前川製作所
株式会社鈴木商館
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所, 株式会社鈴木商館 filed Critical 株式会社前川製作所
Priority to CN202080064084.9A priority Critical patent/CN114402403B/zh
Publication of WO2021131791A1 publication Critical patent/WO2021131791A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/023Current limitation using superconducting elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/30Devices switchable between superconducting and normal states
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/81Containers; Mountings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • This disclosure relates to a control method for a cooling system for a superconducting current limiter, a superconducting current limiter, and a cooling system for a superconducting current limiter.
  • the power cable system using a superconducting cable circulates a cryogenic refrigerant such as liquid nitrogen along the axial direction of the superconducting cable to cool the superconducting cable and maintain the superconducting state.
  • a cryogenic refrigerant such as liquid nitrogen
  • a current limiter with the function of instantly shutting off the current is required.
  • Patent Document 1 discloses a cooling system in which a superconducting cable and a superconducting current limiter are combined and kept at a temperature equal to or lower than the SN transition temperature (critical temperature).
  • the superconducting current limiter is a device that suppresses current by utilizing the electric resistance generated when the superconducting state is broken and the state is changed to the normal conducting state.
  • Patent Document 2 discloses an example provided with a dedicated refrigerator for cooling the superconducting current limiting element constituting the superconducting current limiting device.
  • the superconducting current limiter needs to quickly return to the superconducting state when the superconducting state is broken and transitions to the normal conducting state, but the cooling load increases momentarily when returning from the normal conducting state to the superconducting state. Therefore, it must be possible to return quickly against this.
  • the superconducting cable is cooled from the critical temperature to a cooling temperature with a safe range below the critical temperature so as not to exceed the critical temperature during operation.
  • the superconducting current limiting device is cooled to a temperature close to the critical temperature because when a short-circuit current exceeding the rated current is generated in the superconducting cable, the superconducting current limiting element must be immediately transferred to suppress the short-circuit current. Will be done.
  • the cooling temperatures of the two are different, it is usually considered that even when the two are used in combination, a dedicated refrigerator must be provided for each. Therefore, the cooling system may be complicated and expensive.
  • the present disclosure has been made in view of the above-mentioned problems, and an object of the present disclosure is to enable a quick recovery at a low cost and at the time of transition of a superconducting current limiting device.
  • the cooling system of the superconducting current limiting device communicates with the gas phase portion of the refrigerant tank in which the first refrigerant for cooling the superconducting current limiting element is stored or the gas phase portion.
  • a condenser arranged in the space and a liquid return flow path for returning the condensed liquid liquefied by the condenser to the liquid phase portion of the refrigerant tank are provided.
  • the superconducting current limiting device includes a superconducting current limiting element, a refrigerant tank in which a first refrigerant for cooling the superconducting current limiting element is stored, and a cooling system for the superconducting current limiting device described above. To be equipped.
  • control method of the cooling system of the superconducting current limiting device is in the gas phase portion of the refrigerant tank in which the first refrigerant for cooling the superconducting current limiting element is stored or in a space communicating with the gas phase portion.
  • a method for controlling a cooling system of a superconducting current limiter which includes a condenser to be arranged, a liquid return flow path for returning the condensed liquid liquefied by the condenser to the liquid phase portion of the refrigerant tank, and the above.
  • a pressure detection step for detecting the pressure value of the gas phase portion of the refrigerant tank or the space communicating with the gas phase portion, and a flow rate control step for controlling the flow rate of the second refrigerant flowing into the condenser according to the pressure value. And prepare.
  • the superconducting current limiter and its cooling system since a refrigerator dedicated to the superconducting current limiter is not required, simplification and cost reduction can be achieved, quick recovery after transfer is possible, and a condenser.
  • the superconducting current limiter can be cooled to a desired temperature suitable for its cooling.
  • the control method of the cooling system of the superconducting current limiter it is possible to improve the responsiveness of the superconducting current limiter when a short-circuit current equal to or larger than the rated current flows through the superconducting cable.
  • expressions such as “same”, “equal”, and “homogeneous” that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range in which the same effect can be obtained.
  • the shape including the part and the like shall also be represented.
  • the expressions “equipped”, “equipped”, “equipped”, “included”, or “have” one component are not exclusive expressions that exclude the existence of other components.
  • FIG. 1 is a system diagram in which the superconducting current limiter according to one embodiment is applied to a power cable system using a superconducting cable.
  • a refrigerator 20 a reservoir 22, and a refrigerant pump 24 are provided in a circulation path 12 in which the refrigerant r2 (second refrigerant) circulates, and the refrigerant r2 is cooled to an extremely low temperature, for example, liquid nitrogen.
  • a part of the circulation path 12 is arranged along the axial direction of the superconducting cable 16, and the superconducting cable 16 is cooled to the superconducting state by the refrigerant flowing through the circulation path 12.
  • the branch path 14 branches from the circulation path 12, and the branch path 14 bypasses the superconducting cable 16 and is connected to the reservoir 22 via the superconducting current limiter 18.
  • the superconducting current limiting device 18 stores the superconducting current limiting element 50 and the refrigerant r1 (first refrigerant) for cooling the superconducting current limiting element 50.
  • the refrigerant tank 52 and the cooling system 30 of the superconducting current limiter 18 are provided.
  • the superconducting current limiting element 50 is immersed in the liquid phase portion L of the refrigerant r1 to be cooled.
  • the cooling system 30 (30a, 30b) of the superconducting current limiter has a gas phase portion G or air of the refrigerant r1 formed inside the refrigerant tank 52.
  • the condenser 31 (31a, 31b) is arranged in the space S communicating with the phase portion G.
  • the refrigerant r1 that cools the superconducting current limiting device 18 partially evaporates due to the heat received from the superconducting current limiting element 50.
  • the refrigerant r2 and the evaporated refrigerant r1 exchange heat, and the refrigerant r1 is cooled and condensed.
  • the liquefied condensate is returned to the liquid phase portion L of the refrigerant tank 52 through the liquid return flow path 32.
  • the amount of recondensation in the condenser 31 can be increased by quickly returning the refrigerant r1 recondensed in the condenser 31 from the liquid return flow path 32 to the refrigerant tank 52. Therefore, since recondensation can be performed efficiently, it is possible to quickly recover against the cooling load that momentarily increases at the time of transition.
  • the cooling system 30 is basically composed of the condenser 31 and the liquid return flow path 32, and does not require a refrigerator dedicated to the superconducting current limiter, so that the cost can be simplified and reduced.
  • the amount of recondensation of the refrigerant r1 can be controlled by adjusting the flow rate of the refrigerant r2 that cools the refrigerant r1 with the condenser 31. Since the gas phase portion G or the communicating space S is in a saturated state, the pressure (saturation pressure) of the gas phase portion G or the communicating space S can be controlled by controlling the amount of recondensation of the refrigerant r1.
  • the temperature (saturation temperature) of the refrigerant r1 in the gas phase portion G or the communicating space S can be controlled.
  • the liquid phase portion L of the refrigerant r1 can be controlled to a temperature suitable for cooling the superconducting current limiter 18.
  • the superconducting cable 16 is maintained at a cooling temperature having a safe range from the critical temperature so as not to exceed the critical temperature.
  • the superconducting current limiter 18 is cooled to a temperature close to the critical temperature in order to immediately cut off the short-circuit current. Therefore, the cooling temperatures of both are different. Therefore, it is usually considered that even when both are used in combination, a dedicated refrigerator must be provided for each.
  • the refrigerator 20 can control the refrigerant r2 to a cooling temperature suitable for the superconducting cable 16 and the refrigerant r1 to a cooling temperature suitable for the superconducting current limiter 18.
  • the superconducting cable 16 is not affected by the flow rate or fluid pressure of the refrigerant r2 that passes through the superconducting cable 16 and flows into the reservoir 22.
  • the flow rate of the refrigerant r2 required for the cooling load can be returned from the condenser 31 to the reservoir 22.
  • the reservoir 22 is provided at the confluence of the circulation path 12 and the branch path 14. Then, the refrigerant r2 in the branch path 14 is returned to the gas phase portion of the reservoir 22. If the circulation path 12 and the branch path 14 merge on the upstream side of the reservoir 22, the refrigerant r2 may flow back from the circulation path 12 where the flow rate of the refrigerant r2 is large to the branch path 14. According to this embodiment, the refrigerant r2 flowing through the branch path 14 is returned to the gas phase portion of the reservoir 22, so there is no risk of this.
  • the condenser 31 (31a) since the condenser 31 (31a) is arranged in the gas phase portion G of the refrigerant tank 52, the condensate of the refrigerant r1 liquefied by the condenser 31 (31a) is vaporized by gravity. It falls directly from the phase portion G to the liquid surface of the liquid phase portion L. Therefore, in this embodiment, it can be considered that the liquid return flow path 32 is formed in the gas phase portion G. Since the condenser 31 (31a) is arranged in the gas phase portion G, a housing or the like is not required. Therefore, the cooling system 30 (30a) can be simplified and reduced in cost.
  • liquid nitrogen is used as the refrigerant r1 and the refrigerant r2.
  • liquid nitrogen having a temperature of 67 K suitable for cooling the superconducting cable 16 is supplied to the superconducting cable 16 and the condenser 31.
  • the liquid phase portion L of the refrigerant r1 is controlled to a temperature close to 77K, which is the boiling point of liquid nitrogen.
  • the condenser 31 (31b) is arranged above the refrigerant tank 52. Then, the liquid return flow path 32 is configured to drop the condensed liquid condensed by the condenser 31 (31b) onto the liquid phase portion L of the refrigerant tank 52. Since the condenser 31 (31b) is arranged above the refrigerant tank 52, the recondensed refrigerant r1 automatically returns to the liquid phase portion L of the refrigerant tank 52 by gravity. Therefore, the power for returning the recondensed refrigerant r1 to the refrigerant tank 52 becomes unnecessary.
  • the condenser 31 (31b) includes a housing 34 provided above the refrigerant tank 52.
  • the liquid return flow path 32 includes a communication pipe 35 that communicates the inside of the housing 34 with the inside of the refrigerant tank 52, and the lower end portion 35a of the communication pipe 35 projects downward from the ceiling surface 54 of the refrigerant tank 52. It is configured as follows.
  • the refrigerant r1 recondensed by the condenser 31 (31b) falls down to the lower end 35a through the communication pipe 35. Therefore, the recondensed refrigerant r1 can be dropped to the vicinity of the liquid level of the liquid phase portion L of the refrigerant r1 stored in the refrigerant tank 52 through the communication pipe 35.
  • the communication pipe 35 By passing through the communication pipe 35, contact with the gas phase portion G can be avoided, and as a result, re-evaporation during the fall can be suppressed.
  • the condensate may revaporize.
  • the condenser 31 (31b) shown in FIG. 3 is arranged above the upper surface of the refrigerant tank 52 via the communication pipe 35, but in another embodiment, the housing 34 is placed in contact with the upper surface of the refrigerant tank 52. It may be arranged so as to be placed.
  • the condenser 31 (31a, 31b) includes a heat exchanger 36 that exchanges heat between the refrigerant r1 and the refrigerant r2, and further supplies the heat exchanger 36.
  • a flow rate adjusting valve 38 for controlling the flow rate of the refrigerant r2 to be generated is provided.
  • the flow rate of the refrigerant r2 supplied to the heat exchanger 36 can be controlled by controlling the opening degree of the flow rate adjusting valve 38, thereby reducing the amount of condensation of the refrigerant r1 that is heat exchanged with the refrigerant r2. Can be controlled.
  • the pressure (saturation pressure) of the refrigerant tank 52 can be controlled by controlling the amount of condensation of the refrigerant r1.
  • the saturation pressure it is possible to control the saturation temperature uniquely corresponding to the saturation pressure.
  • the refrigerant r1 can be controlled to a temperature suitable for cooling the superconducting current limiting element 50.
  • the heat exchanger 36 is composed of a heat exchange pipe provided in the gas phase portion G of the refrigerant tank 52 or the communication space S.
  • the refrigerant r2 flows inside the heat exchange pipe, the gas phase portion G of the refrigerant r1 is formed on the outside of the heat exchange pipe, and the refrigerant r1 and the refrigerant r2 indirectly exchange heat via the heat exchange pipe. Therefore, the gas phase portion G or the communication space S can form a closed space and can maintain a saturated state.
  • these temperatures can be controlled by controlling the pressure in the gas phase portion G or the communication space S, so that the cooling temperature of the superconducting current limiting element 50 can be controlled to a temperature close to the critical temperature.
  • the flow rate adjusting valve 38 is provided in the branch path 14 on the upstream side of the condenser 31, but instead, it is provided in the branch path 14 on the downstream side of the condenser 31. You may. Further, in one embodiment, as shown in FIGS. 2 and 3, the pipes constituting the circulation path 12 and the branch path 14 are covered with a heat insulating layer 44 so that heat does not enter from the outside. Further, the liquid level of the liquid phase portion L stored inside the refrigerant tank 52 can be detected by the liquid level gauge 56. This makes it possible to grasp the amount of the refrigerant liquid in the liquid phase portion L.
  • a pressure sensor 40 for detecting the pressure in the gas phase portion G of the refrigerant tank 52 or the communication space S of the condenser 31 (31b) is provided.
  • the detected value of the pressure sensor 40 is sent to the control unit 42, and the control unit 42 controls the opening degree of the flow rate adjusting valve 38 based on the detected value of the pressure sensor 40. Since the gas phase portion G and the communication space S of the refrigerant tank 52 are in a saturated state, it is possible to obtain the temperature (saturation temperature) of the gas phase portion G or the communication space S by detecting these pressures (saturation pressure). it can. Therefore, by controlling the pressure in the gas phase portion G or the communication space S, the refrigerant r1 can be accurately controlled to a temperature suitable for cooling the superconducting current limiting element 50.
  • control unit 42 is configured to control the temperature of the refrigerant r1 to a temperature within a set range close to the transition temperature of the superconducting current limiter 18.
  • the responsiveness of the superconducting current limiter 18 when a short-circuit current exceeding the rated current flows through the superconducting cable 16 and the transition occurs. Can be enhanced.
  • the superconducting current limiting device 18 is provided with the cooling system 30 having the above configuration, it is possible to quickly recover from the cooling load that momentarily increases when the superconducting cable 16 is transferred, and the condenser 31 is provided.
  • the temperature of the liquid phase portion L of the refrigerant r1 can be controlled, whereby the superconducting current limiting element 50 can be cooled to a desired temperature suitable for the cooling.
  • the control method of the cooling system of the superconducting current limiter first detects the pressure value of the gas phase portion G or the communication space S of the refrigerant tank 52 (pressure detection step S10). ..
  • the flow rate of the refrigerant r2 flowing into the condenser 31 is controlled according to the detected pressure value (flow rate control step S12).
  • the gas phase portion G or the communication space S of the refrigerant tank 52 can be set as the target pressure, so that the cooling temperature of the superconducting current limiting element 50 is controlled to a temperature close to the transition temperature by the liquid phase portion L of the refrigerant tank 52. it can. This makes it possible to improve the responsiveness of the superconducting current limiter 18 when a short-circuit current equal to or larger than the rated current flows through the superconducting cable 16.
  • the refrigerant r1 is maintained in a saturated state inside the refrigerant tank 52.
  • the flow rate of the refrigerant r2 flowing into the condenser 31 is controlled so that the refrigerant r1 in the refrigerant tank 52 has a target pressure Pg uniquely corresponding to the cooling target temperature Tg. ..
  • the pressure of the refrigerant r1 in the refrigerant tank 52 which is easy to control as a control parameter, is targeted, and the flow rate of the refrigerant r2 flowing into the condenser 31 is controlled so that the pressure of the refrigerant r1 becomes the target pressure Pg. It is possible to accurately control the cooling target temperature Tg of the refrigerant r1 that uniquely corresponds to the above.
  • FIG. 4 describes an example of a method of controlling the pressure of the gas phase portion G or the communication space S by controlling the opening degree of the flow rate adjusting valve 38 in the embodiment shown in FIG. 2 or FIG.
  • reference numeral V indicates an opening degree (%) of the flow rate adjusting valve 38.
  • the target pressure Pg of the gas phase portion G or the communication space S is set within the range of the pressure widths P1 to P2.
  • an object of pressure control is to cool the liquid temperature of the refrigerant r1 stored for cooling the superconducting current limiting element 50 included in the superconducting current limiting device 18 to a cooling target temperature Tg.
  • the target pressure Pg of the pressure value corresponding to the saturation pressure can be within the range of P1 ⁇ target pressure Pg ⁇ P2.
  • the temperature T1 is the lower limit of the cooling target temperature Tg, and the pressure P1 is a pressure uniquely corresponding to the temperature T1 under the saturated state.
  • the temperature T2 is an upper limit value of the cooling target temperature Tg, and the pressure P2 is a pressure uniquely corresponding to the temperature T2 under the saturated state.
  • the pressure sensor 40 detects the pressure value P in the gas phase portion G or the communication space S (step S10).
  • the pressure value P falls below the target pressure Pg (pressure widths P1 to P2) (P ⁇ P1) (step 12a)
  • the pressure of the refrigerant r1 drops and the liquid temperature of the refrigerant r1 is low.
  • the opening degree V of the flow rate adjusting valve 38 is reduced to reduce the flow rate of the refrigerant r1 flowing into the condenser 31 (step S14a).
  • the opening degree V of the flow rate adjusting valve 38 remains constant (step S14b).
  • step S12c When the pressure value P increases (P2 ⁇ P) (step S12c), the liquid temperature of the refrigerant r1 rises due to the increase in the pressure of the refrigerant r1, so that the opening V of the flow rate adjusting valve 38 is increased and flows into the condenser 31.
  • the flow rate of the refrigerant r2 to be generated is increased (step S14c).
  • the pressure of the gas phase portion G or the communication space S can be maintained at the target pressure Pg. Further, the target pressure Pg can be set near the atmospheric pressure.
  • the cooling system (30) of the superconducting current limiting device is the gas phase of the refrigerant tank (52) in which the first liquidator (r1) for cooling the superconducting current limiting element (50) is stored.
  • the condenser (31 (31a, 31b)) arranged in the part (G) or the space (S) communicating with the gas phase part (G) and the condensate liquefied by the condenser (31) are used as the refrigerant.
  • a liquid return flow path (32) for returning to the liquid phase portion (L) of the tank (52) is provided.
  • the first refrigerant partially evaporated by receiving heat from the superconducting current limiting element is recondensed by the condenser, and the recondensed first refrigerant is the liquid.
  • the amount of recondensation can be increased by quickly returning to the refrigerant tank from the return flow path. Therefore, since recondensation can be performed efficiently, it is possible to quickly recover against the cooling load that momentarily increases at the time of transition.
  • the cooling system according to the present disclosure is basically composed of the condenser and the liquid return flow path, and does not require a refrigerator dedicated to the superconducting current limiter, so that the cost can be reduced. Further, by adjusting the flow rate of the second refrigerant that cools the first refrigerant with the condenser, the temperature of the first refrigerant after recondensing can be controlled, so that the temperature of the first refrigerant is suitable for cooling the superconducting current limiter. Can be controlled.
  • the cooling system (30) of the superconducting current limiter according to another aspect is the cooling system of the superconducting current limiter according to (1), and the condenser (31) is the refrigerant tank (52).
  • the liquid return flow path (32) is configured to drop the condensed liquid onto the liquid phase portion (L) of the refrigerant tank (52).
  • the condenser since the condenser is arranged above the refrigerant tank, the recondensed first refrigerant automatically returns to the liquid phase portion of the refrigerant tank by gravity. Therefore, the power for returning the recondensed first refrigerant to the refrigerant tank becomes unnecessary.
  • the cooling system (30) for the superconducting current limiter according to still another aspect is the cooling system for the superconducting current limiter according to (2), and the condenser (31 (31b)) is the above.
  • the communication pipe (35) is provided with a housing (34) provided above the refrigerant tank (52) and a communication pipe (35) for communicating between the housing (34) and the refrigerant tank (52). ) Is configured to project downward from the ceiling surface (54) of the refrigerant tank (52).
  • the first refrigerant recondensed by the condenser falls through the communication pipe to the vicinity of the liquid level of the liquid phase portion of the first refrigerant stored in the refrigerant tank, so that the communication pipe is used. It is possible to avoid contact with the gas phase part by transmitting. As a result, re-evaporation during the fall can be suppressed.
  • the cooling system for the superconducting current limiter is the cooling system (30) for the superconducting current limiter according to any one of (1) to (3), and the condenser (31).
  • a flow control valve (38) for controlling the flow rate is provided.
  • the flow rate of the second refrigerant supplied to the heat exchanger can be controlled by the flow rate adjusting valve. Therefore, by controlling the flow rate of the second refrigerant, the flow rate of the first refrigerant in the condenser can be regenerated. The amount of condensation can be controlled. Thereby, the saturation pressure of the saturated refrigerant tank and the saturation temperature uniquely corresponding to the saturation pressure can be controlled. Therefore, the liquid phase portion of the first refrigerant can be controlled to a temperature suitable for cooling the superconducting current limiter.
  • the cooling system (30) for the superconducting current limiter according to still another aspect is the cooling system for the superconducting current limiter according to (4), and the gas phase portion (52) of the refrigerant tank (52).
  • a pressure sensor (40) for detecting the pressure in the space (S) communicating with the gas phase portion (G) or the gas phase portion (G), and the flow rate adjusting valve (38) based on the detection value of the pressure sensor (40). ) Is provided with a control unit (42) for controlling the opening degree.
  • the saturation pressure of the saturated gas phase portion or the space communicating with the gas phase portion is controlled. it can.
  • the saturation pressure By controlling the saturation pressure, the saturation temperature of the first refrigerant in the refrigerant tank can be controlled with high accuracy.
  • the liquid phase portion of the first refrigerant can be accurately controlled to a temperature suitable for cooling the superconducting current limiting element.
  • the cooling system (30) of the superconducting current limiter is the cooling system of the superconducting current limiter according to (5), and the control unit (42) is the first refrigerant. It is configured to control the temperature of (r1) to a temperature within a set range close to the transition temperature.
  • the superconducting current limiter when used in combination with a power cable system using a superconducting cable, the superconducting current limiter is transferred when a short-circuit current exceeding the rated current flows through the superconducting cable. Responsiveness can be enhanced. Further, as described above, the superconducting cable can be cooled to a temperature suitable for the superconducting cable by the second refrigerant, and the flow rate of the second refrigerant that cools the first refrigerant is adjusted by the condenser, so that the second refrigerant after recondensation is performed. The temperature of one refrigerant can be controlled, and the first refrigerant can be controlled to a temperature suitable for cooling the superconducting current limiter.
  • the superconducting current limiting device (18) is a refrigerant in which a superconducting current limiting element (50) and a first refrigerant (r1) for cooling the superconducting current limiting element (50) are stored.
  • the tank (52) and the cooling system (30) according to any one of (1) to (6) are provided.
  • the superconducting current limiter is provided with the cooling system having the above configuration, it is possible to efficiently recondense the first refrigerant evaporated in the condenser, so that it is quick after the transition.
  • the superconducting current limiter is suitable for cooling because the temperature of the gas phase part of the first refrigerant can be controlled by adjusting the flow rate of the second refrigerant that cools the first refrigerant with the condenser while enabling recovery. Can be cooled to a desired temperature.
  • the method for controlling the cooling system of the superconducting current limiting device is the gas phase portion of the refrigerant tank (52) in which the first refrigerant (r1) for cooling the superconducting current limiting element (50) is stored.
  • the condenser (31) arranged in the space (S) communicating with (G) or the gas phase portion (G) and the condensed liquid liquefied by the condenser (31) are liquid in the refrigerant tank (52).
  • a method for controlling a cooling system of a superconducting current limiter including a liquid return flow path (32) for returning to the phase portion (L), which is a gas phase portion (G) of the refrigerant tank (52) or the gas.
  • the pressure detection step (S10) for detecting the pressure value of the space (S) communicating with the phase portion (G) and the flow rate of the second refrigerant (r2) flowing into the condenser (31) according to the pressure value.
  • a flow control step (S12) for controlling is provided.
  • the gas phase portion of the refrigerant tank or the space communicating with the gas phase portion can be set as the target pressure, so that the cooling temperature of the superconducting current limiter is changed by the liquid phase portion of the refrigerant tank to the transition temperature. It can be controlled to a temperature close to. This makes it possible to improve the responsiveness of the superconducting current limiter when a short-circuit current exceeding the rated current flows through the superconducting cable.
  • the method for controlling the cooling system of the superconducting current limiter is the method for controlling the cooling system according to (8), and the inside of the refrigerant tank (52) is the first refrigerant (r1). Is maintained in a saturated state, and in the flow control step (S12), the first refrigerant (r1) in the refrigerant tank (52) has a target pressure Pg uniquely corresponding to the cooling target temperature Tg. The flow rate of the second refrigerant (r2) flowing into the condenser (31) is controlled.
  • the pressure of the first refrigerant in the refrigerant tank which is easy to control as a control parameter, is targeted, and the flow rate of the second refrigerant flowing into the condenser is controlled so that the pressure becomes the target pressure Pg. Therefore, it is possible to accurately control the cooling target temperature Tg of the first refrigerant that uniquely corresponds to the target pressure Pg.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

一実施形態に係る超電導限流器の冷却システムは、超電導限流素子を冷却するための第1冷媒が貯留される冷媒タンクの気相部又は該気相部に連通する空間に配置される凝縮器と、前記凝縮器で液化された凝縮液を前記冷媒タンクの液相部に戻すための液戻し流路と、を備える。

Description

超電導限流器の冷却システム、超電導限流器及び超電導限流器の冷却システムの制御方法
 本開示は、超電導限流器の冷却システム、超電導限流器及び超電導限流器の冷却システムの制御方法に関する。
 超電導ケーブルを用いた電力ケーブルシステムは、超電導ケーブルの軸線方向に沿って液体窒素などの極低温冷媒を循環させて超電導ケーブルを冷却し、超電導状態を維持している。万一の事故時など、定格電流以上の過大な電流が電力系統に流れ、常電導状態に転移しようとした時、瞬時に電流を遮断する機能をもった限流器が必要となるが、従来、超電導ケーブルと限流器とを組み合せて使用された例はあまり見当たらない。
 特許文献1(特に図35)には、超電導ケーブルと超電導限流器とを組み合わせ、これらをSN転移温度(臨界温度)以下の温度に保持するための冷却システムが開示されている。超電導限流器は、超電導状態が破れて常電導状態に転移した時発生する電気抵抗を利用して電流を抑制する装置である。特許文献2には、超電導限流器を構成する超電導限流素子を冷却するための専用の冷凍機を備えた例が開示されている。
国際公開第99/62127号(図35) 特開2007-317884号公報
 超電導限流器は、超電導状態が破れて常電導状態に転移した際に、速やかに超電導状態に復帰する必要があるが、常電導状態から超電導状態に復帰する際に瞬間的に冷却負荷が高まるため、これに抗して速やかな復帰を可能にしなければならない。
 超電導ケーブルは、運転中臨界温度を超えないように臨界温度未満で臨界温度から安全幅をもたせた冷却温度に冷却される。一方、超電導限流器は、超電導ケーブルに定格電流以上の短絡電流が発生した時、超電導限流素子が即座に転移して短絡電流を抑制する必要があるために、臨界温度に近い温度に冷却される。このように、両者は冷却温度が異なるために、通常、両者を組み合わせて使用する場合でも、夫々専用の冷凍機を設けざるを得ないと考えられている。そのため、冷却システムが複雑かつ高コストとなるおそれがある。
 本開示は、上述する問題点に鑑みてなされたもので、低コストでかつ超電導限流器の転移時に速やかな復帰を可能にすることを目的とする。
 上記目的を達成するため、本開示に係る超電導限流器の冷却システムは、超電導限流素子を冷却するための第1冷媒が貯留される冷媒タンクの気相部又は該気相部に連通する空間に配置される凝縮器と、前記凝縮器で液化された凝縮液を前記冷媒タンクの液相部に戻すための液戻し流路と、を備える。
 また、本開示に係る超電導限流器は、超電導限流素子と、前記超電導限流素子を冷却するための第1冷媒が貯留される冷媒タンクと、上述の超電導限流器の冷却システムと、を備える。
 さらに、本開示に係る超電導限流器の冷却システムの制御方法は、超電導限流素子を冷却するための第1冷媒が貯留される冷媒タンクの気相部又は該気相部に連通する空間に配置される凝縮器と、前記凝縮器で液化された凝縮液を前記冷媒タンクの液相部に戻すための液戻し流路と、備える超電導限流器の冷却システムの制御方法であって、前記冷媒タンクの気相部又は該気相部に連通する空間の圧力値を検出する圧力検出ステップと、前記圧力値に応じて前記凝縮器に流入する前記第2冷媒の流量を制御する流量制御ステップと、備える。
 本開示に係る超電導限流器及びその冷却システムによれば、超電導限流器専用の冷凍機が不要であるので簡素化かつ低コスト化できると共に、転移後に速やかな復帰を可能にし、かつ凝縮器における第1冷媒の再凝縮量を制御することで、超電導限流器をその冷却に適した所望の温度に冷却できる。また、超電導限流器の冷却システムの制御方法によれば、超電導ケーブルに定格電流以上の短絡電流が流れた時の超電導限流器の応答性を高めることができる。
一実施形態に係る超電導限流器を超電導ケーブルに用いた電力ケーブルシステムに適用した系統図である。 一実施形態に係る超電導限流器の冷却システムの断面図である。 一実施形態に係る超電導限流器の冷却システムの断面図である。 一実施形態に係る超電導限流器の冷却システムの制御方法の工程図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 図1は、一実施形態に係る超電導限流器を、超電導ケーブルを用いた電力ケーブルシステムに適用した系統図である。電力ケーブルシステム10は、冷媒r2(第2冷媒)が循環する循環路12に、冷凍機20、リザーバ22及び冷媒ポンプ24が設けられ、極低温に冷却された、例えば液体窒素のような冷媒r2が循環路12を循環する。循環路12の一部は、超電導ケーブル16の軸線方向に沿って配置され、超電導ケーブル16は、循環路12を流れる冷媒によって超電導状態に冷却される。超電導ケーブル16の上流側で分岐路14が循環路12から分岐し、分岐路14は超電導ケーブル16をバイパスして超電導限流器18を経由し、リザーバ22に接続される。
 万一の事故時など、定格電流以上の過大な電流が電力系統に流れ、超電導ケーブル16及び超電導限流器18の超電導状態が破れ、常電導状態に転移すると、超電導限流器18は、転移時に発生する電気抵抗を利用して超電導ケーブル16を流れる電流を抑制又は遮断する。
 一実施形態に係る超電導限流器18は、図2又は図3に示すように、超電導限流素子50と、超電導限流素子50を冷却するための冷媒r1(第1冷媒)が貯留される冷媒タンク52と、超電導限流器18の冷却システム30と、を備える。超電導限流素子50は冷媒r1の液相部Lに浸漬されて冷却される。
 幾つかの実施形態に係る超電導限流器の冷却システム30(30a、30b)は、図2又は図3に示すように、冷媒タンク52の内部に形成された冷媒r1の気相部G又は気相部Gに連通する空間Sに凝縮器31(31a、31b)が配置されている。超電導限流器18の作動中、超電導限流器18を冷却する冷媒r1は、超電導限流素子50からの受熱で一部が蒸発する。凝縮器31では、冷媒r2と蒸発した冷媒r1とが熱交換し、冷媒r1が冷却されて凝縮する。液化した凝縮液は液戻し流路32を通って冷媒タンク52の液相部Lに戻される。このように、凝縮器31で再凝縮した冷媒r1を液戻し流路32から冷媒タンク52に速やかに戻すことで、凝縮器31における再凝縮量を増加できる。従って、再凝縮を効率的に行うことができるので、転移時に瞬間的に高まる冷却負荷に抗して速やかな復帰が可能になる。
 また、冷却システム30は、基本的に凝縮器31及び液戻し流路32とで構成され、超電導限流器専用の冷凍機を必要としないので簡素化かつ低コスト化できる。さらに、凝縮器31で冷媒r1を冷却する冷媒r2の流量を調整することで、冷媒r1の再凝縮量を制御できる。気相部G又は連通空間Sは飽和状態となっているため、冷媒r1の再凝縮量を制御することで、気相部G又は連通空間Sの圧力(飽和圧力)を制御でき、さらに、気相部G又は連通空間Sの圧力を制御することで、気相部G又は連通空間Sの冷媒r1の温度(飽和温度)を制御できる。これによって、冷媒r1の液相部Lを超電導限流器18の冷却に適した温度に制御できる。
 電力ケーブルシステム10において、超電導ケーブル16は、臨界温度を超えないように臨界温度から安全幅をもたせた冷却温度に保持される。一方、超電導限流器18は、超電導ケーブル16に定格電流以上の短絡電流が発生した時、即座に短絡電流を遮断するために、臨界温度に近い温度に冷却される。従って、両者の冷却温度は異なる。従って、通常、両者を組み合わせて使用する場合でも、夫々専用の冷凍機を設けざるを得ないと考えられている。これに対し、本実施形態によれば、冷凍機20によって冷媒r2を超電導ケーブル16に適した冷却温度に制御できると共に、冷媒r1を超電導限流器18に適した冷却温度に制御できる。
 超電導ケーブル16に定格電流以上の短絡電流が流れると、超電導限流器18に含まれる超電導限流素子50が転移し、電気的抵抗が生じることで加熱され、超電導限流素子50を冷却する冷媒r1の圧力が上昇する。冷媒r1の圧力上昇に対して、凝縮器31に流入する冷媒r2の流量を増大させて、冷媒r1の温度上昇を防いでいる。この場合でも、図1に示す電力ケーブルシステム10では、リザーバ22を備えているため、超電導ケーブル16を通過してリザーバ22に流入する冷媒r2の流量や流体圧力に影響されず、超電導ケーブル16の冷却負荷に必要な冷媒r2の流量を凝縮器31からリザーバ22に戻すことができる。
 一実施形態では、リザーバ22は循環路12と分岐路14との合流点に設けられる。そして、分岐路14の冷媒r2はリザーバ22の気相部に戻される。仮に、リザーバ22の上流側で循環路12と分岐路14とが合流すると、冷媒r2の流量が多い循環路12から分岐路14に冷媒r2が逆流するおそれがある。この実施形態によれば、分岐路14を流れる冷媒r2はリザーバ22の気相部に戻されるため、そのおそれはない。
 なお、図2に示す実施形態では、凝縮器31(31a)は冷媒タンク52の気相部Gに配置されているので、凝縮器31(31a)で液化した冷媒r1の凝縮液は重力により気相部Gから直接液相部Lの液面に落下する。従って、この実施形態では、液戻し流路32は気相部Gに形成されているとみなすことができる。凝縮器31(31a)は、気相部Gに配置されるため、ハウジングなどを必要としない。従って、冷却システム30(30a)を簡素化かつ低コスト化できる。
 例えば、冷媒r1及び冷媒r2として液体窒素が用いられる。超電導ケーブル16及び凝縮器31に、例えば、超電導ケーブル16の冷却に適した温度67Kの液体窒素が供給される。超電導限流器18では、冷媒タンク52が例えば大気圧に保持されるとき、冷媒r1の液相部Lは液体窒素の沸点である77K近くの温度に制御される。
 一実施形態では、図3に示すように、凝縮器31(31b)は、冷媒タンク52の上方に配置される。そして、液戻し流路32は、凝縮器31(31b)で凝縮した凝縮液を冷媒タンク52の液相部Lに滴下させるように構成される。凝縮器31(31b)が冷媒タンク52の上方に配置されるため、再凝縮した冷媒r1は重力で冷媒タンク52の液相部Lに自動的に戻る。そのため、再凝縮した冷媒r1を冷媒タンク52に戻すための動力が不要になる。
 一実施形態では、図3に示すように、凝縮器31(31b)は、冷媒タンク52の上方に設けられたハウジング34を備えている。そして、液戻し流路32として、ハウジング34の内部と冷媒タンク52の内部とを連通させる連通管35を備え、連通管35の下端部35aは冷媒タンク52の天井面54よりも下方へ突出するように構成されている。凝縮器31(31b)で再凝縮した冷媒r1は、連通管35を伝って下端部35aまで落下する。そのため、再凝縮した冷媒r1は、連通管35を伝って冷媒タンク52に貯留された冷媒r1の液相部Lの液面近傍まで落下させることができる。連通管35を伝うことで、気相部Gとの接触を避けることができ、これによって、落下途中での再蒸発を抑制できる。連通管35の下端部35aが冷媒タンク52の天井面54よりも下方へ突出するように構成されていないとき、凝縮液が再気化するおそれがある。
 図3に示す凝縮器31(31b)は、連通管35を介して冷媒タンク52の上面より上方に配置されているが、別な実施形態では、ハウジング34を冷媒タンク52の上面に接して載置するように配置してもよい。
 一実施形態では、図2及び図3に示すように、凝縮器31(31a、31b)は、冷媒r1と冷媒r2とを熱交換する熱交換器36を備え、さらに、熱交換器36に供給される冷媒r2の流量を制御する流量調整弁38を備えている。この実施形態では、流量調整弁38の開度を制御することで、熱交換器36に供給される冷媒r2の流量を制御でき、これによって、冷媒r2と熱交換される冷媒r1の凝縮量を制御できる。冷媒タンク52は密閉構造を有する容器であり、冷媒タンク52の内部は飽和状態になっているため、冷媒r1の凝縮量を制御することで、冷媒タンク52の圧力(飽和圧力)を制御できる。該飽和圧力を制御することで該飽和圧力から一義的に対応する飽和温度を制御できる。これによって、冷媒r1を超電導限流素子50の冷却に適した温度に制御できる。
 図2及び図3に示す実施形態では、熱交換器36は、冷媒タンク52の気相部G又は連通空間Sに設けられた熱交換管で構成されている。該熱交換管の内部を冷媒r2が流れ、該熱交換管の外側は冷媒r1の気相部Gが形成され、冷媒r1と冷媒r2とは該熱交換管を介して間接熱交換される。そのため、気相部G又は連通空間Sは密閉空間を形成でき、飽和状態を保持できる。これによって、気相部G又は連通空間Sの圧力を制御することで、これらの温度制御が可能になるため、超電導限流素子50の冷却温度を臨界温度に近い温度に制御できる。
 図2又は図3に示す実施形態では、流量調整弁38は凝縮器31の上流側の分岐路14に設けられているが、代わりに、凝縮器31の下流側の分岐路14に設けるようにしてもよい。
 また、一実施形態では、図2及び図3に示すように、循環路12及び分岐路14を構成する配管は、外側から熱が侵入しないように、断熱層44で被覆されている。また、冷媒タンク52の内部に貯留した液相部Lの液面は液面計56によって検出できる。これによって、液相部Lの冷媒液量の把握が可能になる。
 一実施形態では、図2又は図3に示すように、冷媒タンク52の気相部G又は凝縮器31(31b)の連通空間Sの圧力を検出するための圧力センサ40が設けられている。圧力センサ40の検出値は制御部42に送られ、制御部42は、圧力センサ40の検出値に基づいて流量調整弁38の開度を制御する。冷媒タンク52の気相部G及び連通空間Sは飽和状態であるので、これらの圧力(飽和圧力)を検出することで、気相部G又は連通空間Sの温度(飽和温度)を求めることができる。従って、気相部G又は連通空間Sの圧力を制御することで、冷媒r1を超電導限流素子50の冷却に適した温度に精度良く制御できる。
 一実施形態では、制御部42は、冷媒r1の温度を超電導限流器18の転移温度に近い設定範囲内温度に制御するように構成される。超電導限流器18が超電導ケーブル16を用いた電力ケーブルシステム10に組み合せて使用される場合に、超電導ケーブル16に定格電流以上の短絡電流が流れて転移した時の超電導限流器18の応答性を高めることができる。
 また、超電導限流器18は、上記構成の冷却システム30を備えているので、超電導ケーブル16の転移時に瞬間的に高まる冷却負荷に抗して、速やかな復帰を可能にすると共に、凝縮器31で冷媒r1を冷却する冷媒r2の流量を調整することで、冷媒r1の液相部Lの温度を制御でき、これによって、超電導限流素子50をその冷却に適した所望の温度に冷却できる。
 一実施形態に係る超電導限流器の冷却システムの制御方法は、図4に示すように、まず、冷媒タンク52の気相部G又は連通空間Sの圧力値を検出する(圧力検出ステップS10)。次に、検出した圧力値に応じて凝縮器31に流入する冷媒r2の流量を制御する(流量制御ステップS12)。これによって、冷媒タンク52の気相部G又は連通空間Sを目標圧力とすることができるので、冷媒タンク52の液相部Lによって超電導限流素子50の冷却温度を転移温度に近い温度に制御できる。これによって、超電導ケーブル16に定格電流以上の短絡電流が流れた時の超電導限流器18の応答性を高めることができる。
 冷媒タンク52の内部は冷媒r1が飽和状態に維持されている。一実施形態では、流量制御ステップS12において、冷媒タンク52内の冷媒r1が冷却目標温度Tgに一義的に対応する目標圧力Pgとなるように、凝縮器31に流入する冷媒r2の流量を制御する。制御パラメータとして制御しやすい冷媒タンク52内の冷媒r1の圧力を対象とし、冷媒r1の圧力が目標圧力Pgとなるように、凝縮器31に流入する冷媒r2の流量を制御するので、目標圧力Pgに一義的に対応する冷媒r1の冷却目標温度Tgに精度良く制御できる。
 図4は、図2又は図3に示す実施形態において、流量調整弁38の開度制御によって気相部G又は連通空間Sの圧力を制御する方法の一例を説明する。なお、図4において、符号Vは流量調整弁38の開度(%)を示す。この制御例では、気相部G又は連通空間Sの目標圧力Pgを圧力幅P1~P2の範囲内としている。
 ここで圧力制御の目的は、超電導限流器18に含まれる超電導限流素子50を冷却するために貯留される冷媒r1の液温を、冷却目標温度Tgに冷却することにある。冷媒r1の冷却目標温度TgをT1≦冷却目標温度Tg≦T2の範囲内とすると、飽和圧力に相当する圧力値の目標圧力PgはP1≦目標圧力Pg≦P2の範囲内とすることができる。温度T1は冷却目標温度Tgの下限値であり、圧力P1は飽和状態下で温度T1に一義的に対応する圧力である。また、温度T2は冷却目標温度Tgの上限値であり、圧力P2は飽和状態下で温度T2に一義的に対応する圧力である。
 なお、図4において、圧力センサ40の検出値P、目標圧力Pg(圧力幅P1~P2)及び制御時の圧力値P1、P2の関係、及び流量調整弁38の開度V(%)の範囲は、次のとおりである。
   目標圧力:P1≦Pg≦P2
   目標圧力を下回る条件:P<P1
   目標圧力を上回る条件:P2<P
     0≦V≦100
 まず、圧力センサ40により気相部G又は連通空間Sの圧力値Pを検出する(ステップS10)。次に、圧力値Pが目標圧力Pg(圧力幅P1~P2)を下回って減少したとき(P<P1)(ステップ12a)、冷媒r1の圧力が降下して冷媒r1の液温が低いので、流量調整弁38の開度Vを減少させ、凝縮器31に流入する冷媒r1の流量を低減する(ステップS14a)。圧力値Pが目標圧力Pgの範囲(P1≦Pg≦P2)内で安定しているとき(ステップS12b)、流量調整弁38の開度Vは一定のまま変化させない(ステップS14b)。圧力値Pが増加したとき(P2<P)(ステップS12c)、冷媒r1の圧力上昇で冷媒r1の液温が高くなるので、流量調整弁38の開度Vを増加させ、凝縮器31に流入する冷媒r2の流量を増加させる(ステップS14c)。このような操作を行うことで、気相部G又は連通空間Sの圧力を目標圧力Pgに保持できる。また、目標圧力Pgを大気圧付近に設定することができる。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
 (1)一つの態様に係る超電導限流器の冷却システム(30)は、超電導限流素子(50)を冷却するための第1冷媒(r1)が貯留される冷媒タンク(52)の気相部(G)又は該気相部(G)に連通する空間(S)に配置される凝縮器(31(31a、31b))と、前記凝縮器(31)で液化された凝縮液を前記冷媒タンク(52)の液相部(L)に戻すための液戻し流路(32)と、を備える。
 このような構成によれば、超電導限流器の作動中、超電導限流素子からの受熱で一部が蒸発した第1冷媒を上記凝縮器で再凝縮し、再凝縮した第1冷媒を上記液戻し流路から冷媒タンクに速やかに戻すことで、再凝縮量を増加できる。従って、再凝縮を効率的に行うことができるので、転移時に瞬間的に高まる冷却負荷に抗して速やかな復帰が可能になる。
 また、本開示に係る冷却システムは、基本的に上記凝縮器及び上記液戻し流路とで構成され、超電導限流器専用の冷凍機を必要としないので低コスト化できる。さらに、凝縮器で第1冷媒を冷却する第2冷媒の流量を調整することで、再凝縮後の第1冷媒の温度を制御できるので、第1冷媒を超電導限流器の冷却に適した温度に制御できる。
 (2)別な態様に係る超電導限流器の冷却システム(30)は、(1)に記載の超電導限流器の冷却システムであって、前記凝縮器(31)は前記冷媒タンク(52)の上方に配置され、前記液戻し流路(32)は、前記凝縮液を前記冷媒タンク(52)の前記液相部(L)に滴下させるように構成される。
 このような構成によれば、凝縮器が冷媒タンクの上方に配置されるため、再凝縮した第1冷媒は重力で冷媒タンクの液相部に自動的に戻る。そのため、再凝縮した第1冷媒を冷媒タンクに戻すための動力が不要になる。
 (3)さらに別な態様に係る超電導限流器の冷却システム(30)は、(2)に記載の超電導限流器の冷却システムであって、前記凝縮器(31(31b))は、前記冷媒タンク(52)の上方に設けられたハウジング(34)と、前記ハウジング(34)と前記冷媒タンク(52)との間を連通させる連通管(35)と、を備え、前記連通管(35)の下端(35a)が前記冷媒タンク(52)の天井面(54)よりも下方へ突出するように構成される。
 このような構成によれば、凝縮器で再凝縮した第1冷媒は、上記連通管を伝って冷媒タンクに貯留された第1冷媒の液相部の液面近傍まで落下するため、該連通管を伝うことで気相部との接触を避けることができる。これによって、落下途中での再蒸発を抑制できる。
 (4)さらに別な態様に係る超電導限流器の冷却システムは、(1)乃至(3)の何れかに記載の超電導限流器の冷却システム(30)であって、前記凝縮器(31)は、前記第1冷媒(r1)と第2冷媒(r2)とを熱交換する熱交換器(36)を含み、前記熱交換器(36)に供給される前記第1冷媒(r1)の流量を制御する流量調整弁(38)を備える。
 このような構成によれば、上記熱交換器に供給される第2冷媒の流量を上記流量調整弁で制御できるため、第2冷媒の流量を制御することで、凝縮器における第1冷媒の再凝縮量を制御できる。これによって、飽和状態にある冷媒タンクの飽和圧力及び該飽和圧力に一義的に対応する飽和温度を制御できる。そのため、第1冷媒の液相部を超電導限流器の冷却に適した温度に制御できる。
 (5)さらに別な態様に係る超電導限流器の冷却システム(30)は、(4)に記載の超電導限流器の冷却システムであって、前記冷媒タンク(52)の前記気相部(G)又は前記気相部(G)に連通する前記空間(S)の圧力を検出するための圧力センサ(40)と、前記圧力センサ(40)の検出値に基づいて前記流量調整弁(38)の開度を制御する制御部(42)と、を備える。
 このような構成によれば、上記圧力センサの検出値に基づいて流量調整弁の開度を制御することで、飽和状態にある気相部又は該気相部に連通する空間の飽和圧力を制御できる。該飽和圧力を制御することで、冷媒タンク内の第1冷媒の飽和温度を精度良く制御できる。これによって、第1冷媒の液相部を超電導限流素子の冷却に適した温度に精度良く制御できる。
 (6)さらに別な態様に係る超電導限流器の冷却システム(30)は、(5)に記載の超電導限流器の冷却システムであって、前記制御部(42)は、前記第1冷媒(r1)の温度を転移温度に近い設定範囲内温度に制御するように構成される。
 このような構成によれば、超電導限流器が超電導ケーブルを用いた電力ケーブルシステムに組み合せて使用される場合に、超電導ケーブルに定格電流以上の短絡電流が流れて転移した時の超電導限流器の応答性を高めることができる。また、上述のように、第2冷媒によって超電導ケーブルを超電導ケーブルに適した温度に冷却できると共に、凝縮器で第1冷媒を冷却する第2冷媒の流量を調整することで、再凝縮後の第1冷媒の温度を制御し、第1冷媒を超電導限流器の冷却に適した温度に制御できる。
 (7)一つの態様に係る超電導限流器(18)は、超電導限流素子(50)と、前記超電導限流素子(50)を冷却するための第1冷媒(r1)が貯留される冷媒タンク(52)と、(1)乃至(6)の何れかに記載の冷却システム(30)と、を備える。
 このような構成によれば、超電導限流器は、上記構成の冷却システムを備えているので、凝縮器において蒸発した第1冷媒の再凝縮を効率的に行うことができるので、転移後に速やかな復帰を可能にすると共に、凝縮器で第1冷媒を冷却する第2冷媒の流量を調整することで、第1冷媒の気相部の温度を制御できるので、超電導限流器をその冷却に適した所望の温度に冷却できる。
 (8)本開示に係る超電導限流器の冷却システムの制御方法は、超電導限流素子(50)を冷却するための第1冷媒(r1)が貯留される冷媒タンク(52)の気相部(G)又は該気相部(G)に連通する空間(S)に配置される凝縮器(31)と、前記凝縮器(31)で液化された凝縮液を前記冷媒タンク(52)の液相部(L)に戻すための液戻し流路(32)と、を備える超電導限流器の冷却システムの制御方法であって、前記冷媒タンク(52)の気相部(G)又は該気相部(G)に連通する空間(S)の圧力値を検出する圧力検出ステップ(S10)と、前記圧力値に応じて前記凝縮器(31)に流入する第2冷媒(r2)の流量を制御する流量制御ステップ(S12)と、を備える。
 このような構成によれば、冷媒タンクの気相部又は該気相部に連通する空間を目標圧力とすることができるので、冷媒タンクの液相部によって超電導限流器の冷却温度を転移温度に近い温度に制御できる。これによって、超電導ケーブルに定格電流以上の短絡電流が流れた時の超電導限流器の応答性を高めることができる。
 (9)一態様に係る超電導限流器の冷却システムの制御方法は、(8)に記載の冷却システムの制御方法であって、前記冷媒タンク(52)の内部は前記第1冷媒(r1)が飽和状態に維持され、前記流量制御ステップ(S12)において、前記冷媒タンク(52)内の前記第1冷媒(r1)が冷却目標温度Tgに一義的に対応する目標圧力Pgとなるように、前記凝縮器(31)に流入する第2冷媒(r2)の流量を制御する。
 このような構成によれば、制御パラメータとして制御しやすい冷媒タンク内の第1冷媒の圧力を対象とし、該圧力が目標圧力Pgとなるように、凝縮器に流入する第2冷媒の流量を制御するので、目標圧力Pgに一義的に対応する第1冷媒の冷却目標温度Tgに精度良く制御できる。
 10  電力ケーブルシステム
 12  循環路
 14  分岐路
 16  超電導ケーブル
 18  超電導限流器
 20  冷凍機
 22  リザーバ
 24  冷媒ポンプ
 30(30a、30b)  冷却システム
 31(31a、31b)  凝縮器
 32  液戻し流路
 34  ハウジング
 35  連通管
  35a  下端部
 36  熱交換器
 38  流量調整弁
 40  圧力センサ
 42  制御部
 44  断熱層
 50  超電導限流素子
 52  冷媒タンク
 54  天井面
 56  液面計
 r1  冷媒(第1冷媒)
 r2  冷媒(第2冷媒)
 G   気相部
 L   液相部
 S   連通空間

Claims (9)

  1.  超電導限流素子を冷却するための第1冷媒が貯留される冷媒タンクの気相部又は該気相部に連通する空間に配置される凝縮器と、
     前記凝縮器で液化された凝縮液を前記冷媒タンクの液相部に戻すための液戻し流路と、
    を備える超電導限流器の冷却システム。
  2.  前記凝縮器は前記冷媒タンクの上方に配置され、
     前記液戻し流路は、前記凝縮液を前記冷媒タンクの前記液相部に滴下させるように構成された請求項1に記載の超電導限流器の冷却システム。
  3.  前記凝縮器は、
      前記冷媒タンクの上方に設けられたハウジングと、
      前記ハウジングと前記冷媒タンクとの間を連通させる連通管と、
    を備え、
     前記連通管の下端が前記冷媒タンクの天井面よりも下方へ突出するように構成された請求項2に記載の超電導限流器の冷却システム。
  4.  前記凝縮器は、前記第1冷媒と第2冷媒とを熱交換する熱交換器を含み、前記熱交換器に供給される前記第2冷媒の流量を制御する流量調整弁を備えた請求項1乃至3の何れか一項に記載の超電導限流器の冷却システム。
  5.  前記気相部又は前記気相部に連通する前記空間の圧力を検出するための圧力センサと、
     前記圧力センサの検出値に基づいて前記流量調整弁の開度を制御する制御部と、
    を備える請求項4に記載の超電導限流器の冷却システム。
  6.  前記制御部は、前記第1冷媒の温度を前記超電導限流器の転移温度に近い温度に制御するように構成された請求項5に記載の超電導限流器の冷却システム。
  7.  超電導限流素子と、
     前記超電導限流素子を冷却するための第1冷媒が貯留される冷媒タンクと、
     請求項1乃至6の何れか一項に記載の超電導限流器の冷却システムと、
    を備える超電導限流器。
  8.  超電導限流素子を冷却するための第1冷媒が貯留される冷媒タンクの気相部又は該気相部に連通する空間に配置される凝縮器と、
     前記凝縮器で液化された凝縮液を前記冷媒タンクの液相部に戻すための液戻し流路と、
    を備える超電導限流器の冷却システムの制御方法であって、
     前記冷媒タンクの気相部又は該気相部に連通する空間の圧力値を検出する圧力検出ステップと、
     前記圧力値に応じて前記凝縮器に流入する第2冷媒の流量を制御する流量制御ステップと、
    を備える超電導限流器の冷却システムの制御方法。
  9.  前記冷媒タンクの内部は前記第1冷媒が飽和状態に維持され、
     前記流量制御ステップにおいて、前記冷媒タンク内の前記第1冷媒が冷却目標温度Tgに一義的に対応する目標圧力Pgとなるように、前記凝縮器に流入する前記第2冷媒の流量を制御する請求項8に記載の超電導限流器の冷却システムの制御方法。
     
PCT/JP2020/046273 2019-12-25 2020-12-11 超電導限流器の冷却システム、超電導限流器及び超電導限流器の冷却システムの制御方法 WO2021131791A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080064084.9A CN114402403B (zh) 2019-12-25 2020-12-11 超导限流器的冷却系统、超导限流器及超导限流器的冷却系统的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-234129 2019-12-25
JP2019234129A JP2021103729A (ja) 2019-12-25 2019-12-25 超電導限流器の冷却システム、超電導限流器及び超電導限流器の冷却システムの制御方法

Publications (1)

Publication Number Publication Date
WO2021131791A1 true WO2021131791A1 (ja) 2021-07-01

Family

ID=76576056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046273 WO2021131791A1 (ja) 2019-12-25 2020-12-11 超電導限流器の冷却システム、超電導限流器及び超電導限流器の冷却システムの制御方法

Country Status (3)

Country Link
JP (1) JP2021103729A (ja)
CN (1) CN114402403B (ja)
WO (1) WO2021131791A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450266A (en) * 1991-03-04 1995-09-12 The Boc Group Plc Superconducting fault current limiter
JP2007273740A (ja) * 2006-03-31 2007-10-18 Toshiba Corp 超電導装置
JP2009283679A (ja) * 2008-05-22 2009-12-03 Toshiba Corp 冷却容器および超電導装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19750760A1 (de) * 1997-11-11 1999-05-12 Siemens Ag Strombegrenzungseinrichtung für Schaltnetze

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450266A (en) * 1991-03-04 1995-09-12 The Boc Group Plc Superconducting fault current limiter
JP2007273740A (ja) * 2006-03-31 2007-10-18 Toshiba Corp 超電導装置
JP2009283679A (ja) * 2008-05-22 2009-12-03 Toshiba Corp 冷却容器および超電導装置

Also Published As

Publication number Publication date
JP2021103729A (ja) 2021-07-15
CN114402403B (zh) 2024-05-03
CN114402403A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
CA2917035C (en) Device for cooling a consumer with a super-cooled liquid in a cooling circuit
EP1850354B1 (en) Circulation cooling system for cryogenic cable
WO2015001940A1 (ja) 冷熱回収機能付きガス気化装置及び冷熱回収装置
CN103538722B (zh) 冷却单元的功率电子器件的热耗散
JP2013088031A (ja) 冷却システムとその制御方法
US20050145371A1 (en) Thermal solution for electronics cooling using a heat pipe in combination with active loop solution
JP4724063B2 (ja) 低温装置
EP3443263B1 (en) Device for generating fog and operating method of such device
WO2021131791A1 (ja) 超電導限流器の冷却システム、超電導限流器及び超電導限流器の冷却システムの制御方法
KR101558839B1 (ko) 초전도 한류기 복원 시스템 및 방법
WO2021131783A1 (ja) 冷却システム及び冷却システムの制御方法
KR101558840B1 (ko) 극저온 압력용기 가압 시스템
JP6371881B1 (ja) ガス冷却システム
Xi et al. Study on the operation safety of HTS current leads in EAST device
US10544995B2 (en) Capillary pump assisted heat pipe
KR102565929B1 (ko) 냉각 장치
Jeong et al. Experimental investigation on the detachable thermosiphon for conduction-cooled superconducting magnets
JP4046060B2 (ja) 極低温ケーブルの循環冷却システム
Berg et al. Simple 100 A current leads for low duty cycle use
Buyanov How the material of a resistive part of a high-temperature superconductor current lead influences cryocoolant heat load
JP2002022327A (ja) ブライン供給装置
JP2002089984A (ja) 超流動ヘリウム発生装置の制御方法
JP2013064574A (ja) 吸収式冷凍機
JP2009243697A (ja) 極低温冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904684

Country of ref document: EP

Kind code of ref document: A1