WO2021131367A1 - Method for manufacturing optical laminate - Google Patents

Method for manufacturing optical laminate Download PDF

Info

Publication number
WO2021131367A1
WO2021131367A1 PCT/JP2020/042027 JP2020042027W WO2021131367A1 WO 2021131367 A1 WO2021131367 A1 WO 2021131367A1 JP 2020042027 W JP2020042027 W JP 2020042027W WO 2021131367 A1 WO2021131367 A1 WO 2021131367A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
retardation
adhesive layer
film
active energy
Prior art date
Application number
PCT/JP2020/042027
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 慎也
光 出▲崎▼
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202080087282.7A priority Critical patent/CN114846371A/en
Priority to KR1020227025191A priority patent/KR20220117920A/en
Publication of WO2021131367A1 publication Critical patent/WO2021131367A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1253Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives curable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/55Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a method for manufacturing an optical laminate, and also relates to an optical laminate.
  • an optical laminate in which a polarizing element (linear polarizing element) and a retardation layer are combined is used for the purpose of preventing reflection of external light by a metal electrode.
  • a polarizing element and a retardation layer formed of a polymerizable liquid crystal compound are laminated via an ultraviolet curable adhesive layer, and the adhesive is irradiated with ultraviolet rays. It is described that the layer is cured to produce an elliptical polarizing plate.
  • a conventional optical laminate produced by adhering an optical film containing a polarizer and a retardation layer formed of a polymerizable liquid crystal compound with an active energy ray-curable adhesive or an adhesive has a radius of curvature.
  • fine wrinkles hereinafter, also referred to as “wrinkle defects”
  • the optical laminate is required to be less likely to cause wrinkle defects even if it is bent with a small radius of curvature.
  • the present invention is an optical laminate including an optical film and a retardation layer including a cured product layer of a polymerizable liquid crystal compound, and an optical laminate in which wrinkle defects are unlikely to occur even when curved with a small radius of curvature, and a method for producing the same. Is to provide.
  • the present invention provides a method for producing an optical laminate and an optical laminate shown below.
  • a method for manufacturing an optical laminate which is a method for manufacturing an optical laminate.
  • the optical laminate includes an optical film, a cured adhesive layer which is a cured product layer of an active energy ray-curable adhesive, and a retardation layer including a cured product layer of a polymerizable liquid crystal compound in this order.
  • the manufacturing method is A step of laminating the optical film, the active energy ray-curable adhesive layer, and the retardation layer so that the active energy ray-curable adhesive layer and the retardation layer are in contact with each other.
  • a method for manufacturing an optical laminate which is a method for manufacturing an optical laminate.
  • the optical laminate includes an optical film, a cured adhesive layer which is a cured product layer of an active energy ray-curable adhesive, and a retardation layer including a cured product layer of a polymerizable liquid crystal compound in this order.
  • the manufacturing method is A step of preparing a laminated body including a base film and the retardation layer laminated in contact with the base film, and A step of peeling the base film from the retardation layer at a peeling rate of 50 m / min or more, A step of laminating an optical film on the peeled surface of the retardation layer after peeling the base film via an active energy ray-curable adhesive layer.
  • the step of curing the active energy ray-curable adhesive layer to form the cured adhesive layer and A method for manufacturing an optical laminate, which comprises the above in this order.
  • the optical film, the active energy ray-curable adhesive layer, and the retardation layer are laminated so that the linear polarizer and the active energy ray-curable adhesive layer are in contact with each other.
  • An optical film, a cured adhesive layer which is a cured product layer of an active energy ray-curable adhesive, and a retardation layer including a cured product layer of a polymerizable liquid crystal compound are provided in this order. The cured adhesive layer and the retardation layer are in contact with each other.
  • the surfaces of the retardation layer on the cured adhesive layer side are as follows (a) to (d):
  • (A) Arithmetic mean roughness Sa is 0.065 ⁇ m or more.
  • (B) The root mean square height Sq is 0.085 ⁇ m or more.
  • (C) The development area ratio Sdr of the interface is 0.2% or more.
  • [6] The optical laminate according to [5], wherein the optical film contains a linear polarizer.
  • an optical laminate comprising an optical film and a retardation layer including a cured product layer of a polymerizable liquid crystal compound, which is less likely to cause wrinkle defects even when curved with a small radius of curvature, and a method for producing the same. Can be done.
  • FIG. It is schematic cross-sectional view which shows an example of the layer structure of the laminated body obtained by the laminating step in Embodiment 1.
  • FIG. It is the schematic sectional drawing which shows an example of the layer structure of an optical laminate.
  • FIG. It is schematic cross-sectional view which shows an example of the layer structure of the laminated body prepared in the preparation process in Embodiment 2.
  • FIG. It is a schematic cross-sectional view which shows an example of the layer structure of a linear polarizing plate.
  • It is the schematic sectional drawing which shows an example of the layer structure of the retardation laminated body.
  • It is the schematic sectional drawing which shows the other example of the layer structure of an optical laminate.
  • It is the schematic sectional drawing which shows still another example of the layer structure of an optical laminate.
  • It is a schematic diagram explaining the evaluation method of a wrinkle defect. It is a schematic diagram explaining the direction of the absorption axis and the slow phase axis in an optical laminate.
  • the optical laminate produced by the production method according to the present invention includes an optical film and a cured adhesive layer which is a cured product layer of an active energy ray-curable adhesive (hereinafter, also simply referred to as "cured adhesive layer”). And a retardation layer (hereinafter, also simply referred to as “phase difference layer”) including a cured product layer of the polymerizable liquid crystal compound are provided in this order.
  • cured adhesive layer a cured adhesive layer of an active energy ray-curable adhesive
  • phase difference layer a retardation layer including a cured product layer of the polymerizable liquid crystal compound
  • a long material may be used as the film or layer used in each step, and each step may be continuously performed, or a single-wafered material may be used as the film or layer used in each step, and each step. May be performed discontinuously.
  • the single-leaved material may be cut from a long material.
  • the method for producing an optical laminate according to the present embodiment includes the following steps in the order described.
  • [Laminating process] The following (1) to (3): (1) Hold at a temperature of 30 ° C. or higher for 2 hours or longer.
  • FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of the laminated body obtained by the laminating step in the present embodiment.
  • the laminating step is a step of laminating the optical film 10 and the retardation layer 30 via the active energy ray-curable adhesive layer 20 (hereinafter, also simply referred to as “adhesive layer”).
  • the active energy ray-curable adhesive layer means a layer composed of the active energy ray-curable adhesive.
  • the active energy ray-curable adhesive one having an ability to bond the retardation layer 30 and the optical film 10 is used.
  • the optical film 10, the adhesive layer 20, and the retardation layer 30 are laminated so that the adhesive layer 20 and the retardation layer 30 are in contact with each other. Further, the optical film 10, the adhesive layer 20, and the retardation layer 30 are preferably laminated so that the optical film 10 and the adhesive layer 20 are in contact with each other.
  • the adhesive layer 20 is formed on one or more surfaces selected from the adhesive surface of the optical film 10 and the adhesive surface of the retardation layer 30, and the optical film 10 and the retardation layer 30 are formed via the adhesive layer 20. It can be carried out by laminating and.
  • the adhesive layer 20 can be formed by applying an active energy ray-curable adhesive to the adhesive surface by a known coating method.
  • the thickness of the adhesive layer 20 is usually 0.5 ⁇ m or more and 50 ⁇ m or less, from the viewpoint of suppressing wrinkle defects, and from the viewpoint of adhesiveness between the optical film 10 and the retardation layer 30. From the viewpoint of thinning the obtained optical laminate, the thickness is preferably 1 ⁇ m or more and 30 ⁇ m or less, and more preferably 2 ⁇ m or more and 20 ⁇ m or less.
  • plasma treatment, corona treatment, ultraviolet irradiation treatment, and frame (flame) are applied to one or more surfaces selected from the adhesive surface of the optical film 10 and the adhesive surface of the retardation layer 30.
  • Surface activation treatment such as treatment and saponification treatment may be performed. By this surface activation treatment, the adhesiveness between the optical film 10 and the retardation layer 30 can be enhanced.
  • the optical film 10 may be a single-layer structure film or a multi-layer structure film.
  • Examples of the optical film 10 include a linear polarizing plate and the like.
  • the linear polarizing plate is an optical element containing at least a linear polarizing element, and may include a linear polarizing element and a thermoplastic resin film or the like attached to at least one surface thereof.
  • the linear polarizing element contained in the linear polarizing plate is preferably in contact with the adhesive layer 20 in the laminated body obtained by the laminating step.
  • the optical film 10 and the active energy ray-curable adhesive will be described in more detail in the section ⁇ Optical laminate> described later.
  • the retardation layer 30 includes a cured product layer of a polymerizable liquid crystal compound, and exhibits optical anisotropy according to the type of liquid crystal compound used to form the layer.
  • the cured product layer of this polymerizable liquid crystal compound is also referred to as a “phase difference expression layer”.
  • the retardation layer 30 may be composed of a retardation expression layer, or may include a retardation expression layer and an orientation layer.
  • another one or more layers may be laminated in advance on the retardation layer 30 which is bonded to the optical film 10 via the adhesive layer 20 before the laminating step.
  • a retardation layer laminate including the retardation layer 30 and another retardation layer may be prepared in advance, and the retardation layer laminate may be bonded to the optical film 10 via the adhesive layer 20.
  • the retardation layer, the retardation expression layer, the alignment layer, the retardation layer laminate and the like will be described in more detail in the section ⁇ Optical laminate> described later.
  • the holding step is a step of holding the laminated body obtained by the laminating step under specific conditions.
  • the specific mode of holding is not particularly limited, and examples thereof include allowing the laminate to stand under the specific conditions.
  • the above specific conditions are as follows (1) to (3): (1) Hold at a temperature of 30 ° C. or higher for 2 hours or longer. (2) Hold for 2 hours or more under vibration conditions, (3) It is a condition that satisfies any one or more of holding for 48 hours or more.
  • the manufacturing method according to the present embodiment including the laminating step and the holding step, it is possible to manufacture an optical laminated body which is less likely to cause wrinkle defects even if it is curved with a small radius of curvature. This is presumed to be due to the following reasons.
  • the laminating step brings the retardation layer 30 into contact with the adhesive layer 20 before curing, and this state is maintained under the above specific conditions in the subsequent holding step. Since the active energy ray-curable adhesive before curing exerts an adhesive force on the retardation layer 30 after curing, it is recognized that an interaction with the retardation layer 30 acts.
  • the contact surface of the retardation layer 30 with the adhesive (Surface X shown in FIG. 1) is considered to be rough. Such roughness of the surface of the retardation layer 30 improves the adhesion with the adhesive layer 20.
  • the adhesive force is improved, the cured adhesive layer (adhesive layer after curing) and the retardation layer 30 are integrally deformed when the optical laminate is curved, so that the occurrence of wrinkle defects is suppressed. It is thought that it will be easier to do.
  • the manufacturing method according to the present embodiment is also advantageous in suppressing rainbow unevenness, which will be described later, in the obtained optical laminate.
  • the holding temperature under the above condition (1) is 30 ° C. or higher, preferably 35 ° C. or higher, more preferably 38 ° C. or higher, still more preferably 40, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects. It is above °C.
  • the holding temperature is usually 55 ° C. or lower, and is preferably 50 ° C. or lower because the change in the water content can be reduced after the holding step is completed.
  • the holding time under the above condition (1) depends on the holding temperature, but is usually 2 hours or more, and is preferably 3 hours or more, more preferably 3 hours or more, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects. It is 4 hours or more, more preferably 5 hours or more.
  • the holding time depends on the holding temperature, but usually less than 48 hours is sufficient.
  • the holding time may be 48 hours or more, but in this case, the holding step satisfies the conditions (1) and (3).
  • the vibration applied to the laminated body under the above condition (2) can be performed, for example, by placing the laminated body on a vibration source.
  • the vibration source is not particularly limited as long as it can vibrate with a constant period and a constant amplitude, and a vibration generator may be used, for example, it may rotate at a constant rotation speed.
  • a rotating device such as an electric motor that can be used may be used, or a transformer or the like that can carry an alternating current may be used.
  • the frequency of the vibration is preferably 5 Hz or higher, more preferably 10 Hz or higher, from the viewpoint of suppressing the occurrence of wrinkle defects.
  • the frequency of the vibration is preferably 50 Hz or less, more preferably 40 Hz or less, from the viewpoint of suppressing the occurrence of so-called floating in which the layers constituting the laminated body are partially separated from each other.
  • the amplitude of the vibration is preferably 0.5 mm or more, more preferably 1 mm or more, from the viewpoint of suppressing the occurrence of wrinkle defects.
  • the amplitude of the vibration is preferably 30 mm or less, more preferably 10 mm or less, from the viewpoint of suppressing the occurrence of so-called floating in which the layers constituting the laminated body are partially separated from each other.
  • the holding temperature under the above condition (2) is not particularly limited, but is usually 5 ° C. or higher, preferably 10 ° C. or higher, more preferably 15 ° C. or higher, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects. Yes, more preferably 20 ° C. or higher.
  • the holding temperature may be 30 ° C. or higher, but in this case, the holding step satisfies the conditions (1) and (2).
  • the holding temperature is usually 55 ° C. or lower, and is preferably 50 ° C. or lower because the change in the water content can be reduced even after the holding step is completed.
  • the holding time under the above condition (2) depends on the holding temperature, but is usually 2 hours or more, and is preferably 3 hours or more, more preferably 3 hours or more, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects. It is 4 hours or more, more preferably 5 hours or more.
  • the holding time depends on the holding temperature, but usually less than 48 hours is sufficient.
  • the holding time may be 48 hours or more, but in this case, the holding step satisfies the conditions (2) and (3).
  • the holding temperature under the above condition (3) is not particularly limited, but is usually 5 ° C. or higher, preferably 10 ° C. or higher, more preferably 15 ° C. or higher, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects. Yes, more preferably 20 ° C. or higher.
  • the holding temperature may be 30 ° C. or higher, but in this case, the holding step satisfies the conditions (1) and (3).
  • the holding temperature is usually 55 ° C. or lower, and is preferably 50 ° C. or lower from the viewpoint that the change in the water content can be reduced even after the holding step is completed.
  • the holding time under the above condition (3) depends on the holding temperature, but is usually 48 hours or more, and is preferably 54 hours or more, more preferably 54 hours or more, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects. It is 66 hours or more, more preferably 72 hours or more.
  • the holding time depends on the holding temperature, but usually 120 hours or less is sufficient.
  • the relative humidity of the environment in which the laminate is held is, for example, 20% RH or more and 80% RH or less, preferably 30% RH or more and 70% RH or less. is there.
  • an optical laminate can be obtained by curing the adhesive layer 20 by irradiation with active energy rays to form a cured adhesive layer 20a.
  • the type of active energy ray to be irradiated is appropriately selected according to the sensitive wavelength of the curable component contained in the active energy ray-curable adhesive constituting the adhesive layer 20 and the like.
  • the active energy ray is preferably ultraviolet light.
  • the method for producing an optical laminate according to the present embodiment includes the following steps in the order described.
  • a step of preparing a laminate including a base film and a retardation layer laminated in contact with the base film [preparation step]
  • a step of peeling the base film from the retardation layer at a peeling speed of 50 m / min or more [peeling step]
  • the process of laminating optical films [lamination process]
  • a step of curing an active energy ray-curable adhesive layer to form a cured adhesive layer [curing step].
  • the retardation layer 30 includes a retardation expression layer (cured product layer of a polymerizable liquid crystal compound), and may be composed of a retardation expression layer or a retardation expression layer. It may include a layer and an orientation layer. Therefore, the laminate including the base film and the retardation layer laminated in contact with the base film prepared in this step has, for example, a layer structure of a base film / alignment layer / retardation expression layer. It may have a layer structure of a base film / retardation layer.
  • FIG. 3 is a schematic cross-sectional view showing an example of the layer structure of the laminated body prepared in the preparation step in the present embodiment.
  • the laminate shown in FIG. 3 has a layer structure of a base film 41 / an alignment layer 32 / a retardation expression layer 31, and an example in which the retardation layer 30 is composed of a retardation expression layer 31 and an alignment layer 32.
  • the laminate prepared in this step one commercially available product or a combination of a plurality of commercially available products may be used.
  • the laminate prepared in this step may include a base film and a retardation layer laminated in contact with the base film, and is not limited to the example of FIG.
  • One or two or more layers other than the base film 41 and the retardation layer 30 may be laminated on the laminate.
  • a retardation layer laminate including the base film 41, the retardation layer 30, and another retardation layer may be prepared in this step.
  • the base film, the retardation layer, the retardation expression layer, the alignment layer, the retardation layer laminate and the like will be described in more detail in the section ⁇ Optical laminate> described later.
  • This step is a step of peeling the base film 41 from the retardation layer 30 at a peeling speed of 50 m / min or more.
  • the peeling speed is preferably 60 m / min or more, more preferably 70 m / min or more, still more preferably 80 m / min or more, and particularly preferably 80 m / min or more, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects. It is 90 m / min or more.
  • the peeling speed is usually 150 m / min or less, and preferably 120 m / min or less from the viewpoint of preventing breakage of the base film.
  • the peeling angle of the base film 41 with respect to the laminate from which the base film 41 is peeled is usually larger than 90 degrees and 180 degrees or less. From the viewpoint of facilitating the peeling of the base film 41, the peeling angle is preferably 120 degrees or more and 180 degrees or less.
  • the peeling angle refers to an angle formed by the surface direction or transport direction of the laminated body when the base film 41 is peeled off and the surface direction or transport direction of the base film 41 to be peeled off.
  • the alignment layer 32 is peeled off together with the base film 41.
  • the surface of the phase difference developing layer 31 is exposed on the surface of the laminate by this step.
  • the alignment layer 32 remains on the laminate side without being peeled off, the surface of the alignment layer 32 is exposed on the surface of the laminate.
  • the laminate prepared in the preparatory step has the base film 41 and the retardation layer 31 and does not have the alignment layer 32, the surface of the retardation layer 31 is on the surface of the laminate by this step. Is exposed.
  • the optical film 10, the adhesive layer 20, and the retardation layer 30 are laminated so that the adhesive layer 20 and the retardation layer 30 are in contact with each other. Further, the optical film 10, the adhesive layer 20, and the retardation layer 30 are preferably laminated so that the optical film 10 and the adhesive layer 20 are in contact with each other.
  • the adhesive layer 20 is formed on one or more surfaces selected from the adhesive surface of the optical film 10 and the adhesive surface (peeling surface) of the retardation layer 30, and the adhesive layer 20 is interposed with the optical film 10. It can be carried out by laminating the retardation layer 30.
  • the adhesive layer 20 can be formed by applying an active energy ray-curable adhesive to the adhesive surface by a known coating method.
  • the thickness of the adhesive layer 20 is usually 0.5 ⁇ m or more and 50 ⁇ m or less, from the viewpoint of suppressing wrinkle defects, and from the viewpoint of adhesiveness between the optical film 10 and the retardation layer 30. From the viewpoint of thinning the obtained optical laminate, the thickness is preferably 1 ⁇ m or more and 30 ⁇ m or less, and more preferably 2 ⁇ m or more and 20 ⁇ m or less.
  • one or more surfaces selected from the adhesive surface of the optical film 10 and the adhesive surface (peeling surface) of the retardation layer 30 are subjected to plasma treatment, corona treatment, ultraviolet irradiation treatment, etc. in advance.
  • Surface activation treatment such as frame (flame) treatment and saponification treatment may be performed. By this surface activation treatment, the adhesiveness between the optical film 10 and the retardation layer 30 can be enhanced.
  • the optical film 10 may be a single-layer structure film or a multi-layer structure film.
  • Examples of the optical film 10 include a linear polarizing plate and the like.
  • the linear polarizing element contained in the linear polarizing plate is preferably in contact with the adhesive layer 20 in the laminated body obtained by the laminating step.
  • the optical film 10 and the active energy ray-curable adhesive will be described in more detail in the section ⁇ Optical laminate> described later.
  • the manufacturing method according to the present embodiment including the peeling step and the laminating step, it is possible to manufacture an optical laminated body which is less likely to cause wrinkle defects even if it is curved with a small radius of curvature. This is presumed to be due to the following reasons.
  • the surface (peeling surface) of the retardation layer 30 after peeling is roughened. Such roughness of the surface of the retardation layer 30 improves the adhesive force with the adhesive layer 20 when the adhesive layer 20 is laminated and brought into contact with the surface in the subsequent laminating step.
  • the cured adhesive layer (adhesive layer after curing) and the retardation layer 30 are integrally deformed when the optical laminate is curved, so that the occurrence of wrinkle defects is suppressed. It is thought that it will be easier to do.
  • the manufacturing method according to the present embodiment is also advantageous in suppressing rainbow unevenness, which will be described later, in the obtained optical laminate.
  • the peeling speed of the base film 41 is controlled as a means for roughening the surface of the retardation layer 30.
  • a base film having at least one surface roughened in advance is used, and a retardation layer 30 is formed on the roughened surface to prepare the surface. It may be a laminate prepared in the process.
  • the surface of the base film 41 can be roughened by a method of rubbing the surface or the like.
  • the adhesive layer 20 is cured by irradiation with active energy rays to form a cured adhesive layer 20a, whereby an optical laminate having the same layer structure as in FIG. 2 can be obtained. it can.
  • the description of the curing step of the first embodiment is quoted.
  • the optical laminate according to the present invention is a cured adhesive which is a cured product layer of an optical film 10 and an active energy ray-curable adhesive.
  • the layer 20a and the retardation layer 30 including the retardation expression layer (cured product layer of the polymerizable liquid crystal compound) are provided in this order.
  • the optical laminate can be suitably applied to an image display device such as an organic EL display device.
  • the cured adhesive layer 20a and the retardation layer 30 are in contact with each other.
  • the optical film 10 and the cured adhesive layer 20a are preferably in contact with each other.
  • the surface (surface Xa in FIG. 2) on the curing adhesive layer 20a side of the retardation layer 30 has the following (a) to (d):
  • (C) The development area ratio Sdr of the interface is 0.2% or more.
  • Arithmetic mean roughness Sa, square root mean square root height Sq, interface development area ratio Sdr, and root mean square slope Sdq are all indicators of surface roughness, and are based on ISO 25178 [Examples]. It is measured by the method described in the section.
  • the optical laminate according to the present invention satisfies any one or more of the above (a) to (d), wrinkle defects are unlikely to occur even if it is curved with a small radius of curvature. This is because the adhesion between the cured adhesive layer 20a and the retardation layer 30 is improved by the roughness of the surface of the retardation layer 30 on the side of the curing adhesive layer 20a, and therefore, the phase difference between the curing adhesive layer 20 and the curing adhesive layer 20a. It is considered that the layer 30 is because the optical laminate is integrally deformed when it is curved.
  • an optical laminate satisfying any one or more of the above (a) to (d) is advantageous in that rainbow unevenness can be suppressed in the reflected light when viewed from the surface of the optical film 10 side.
  • the ability to suppress rainbow unevenness is advantageous in improving the visibility of the optical laminate when it is applied to an image display device such as an organic EL display device.
  • An optical laminate satisfying any one or more of the above (a) to (d) can suppress rainbow unevenness because the reflected light generated by the light incident inside the optical laminate is reflected at the interface of each layer. This is thought to be because interference can be suppressed.
  • An optical laminate satisfying any one or more of the above (a) to (d) can be suitably produced by the production method according to the present invention described in the above section ⁇ Method for producing an optical laminate>.
  • the optical laminate preferably satisfies any two or more of the above (a) to (d), and more preferably the above (a) to (a). Any 3 or more of (d) is satisfied, and more preferably all of the above (a) to (d) are satisfied.
  • the arithmetic mean roughness Sa in (a) above is preferably 0.067 ⁇ m or more, more preferably 0.070 ⁇ m or more, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects and rainbow unevenness.
  • the arithmetic mean roughness Sa is usually 0.200 ⁇ m or less, and is preferably 0.150 ⁇ m or less from the viewpoint of reducing the internal haze of the optical laminate to ensure transparency and maintaining light transmittance.
  • the root mean square height Sq in (b) above is preferably 0.087 ⁇ m or more, more preferably 0.090 ⁇ m or more, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects and rainbow unevenness.
  • the root mean square height Sq is usually 0.250 ⁇ m or less, and is preferably 0.200 ⁇ m or less from the viewpoint of reducing the internal haze of the optical laminate to ensure transparency and maintaining light transmittance.
  • the development area ratio Sdr of the interface in (c) above is preferably 0.25% or more, more preferably 0.3% or more, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects and rainbow unevenness. ..
  • the development area ratio Sdr of the interface is usually 1.20% or less, and is preferably 1.10% or less from the viewpoint of reducing the internal haze of the optical laminate to ensure transparency and maintaining light transmittance. is there.
  • the root mean square slope Sdq in (d) above is preferably 0.070 or more, more preferably 0.072 or more, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects and rainbow unevenness.
  • the root mean square slope Sdq is usually 0.180 or less, and is preferably 0.160 or less from the viewpoint of reducing the internal haze of the optical laminate to ensure transparency and maintaining light transmittance.
  • the optical film 10 may be a single-layer structure film or a multi-layer structure film.
  • the optical film 10 include a linear polarizing plate and a linear polarizer.
  • the linear polarizing plate is an optical element containing at least a linear polarizing element, and may further include a thermoplastic resin film or the like attached to at least one surface of the linear polarizing element.
  • the linear polarized light refers to an optical element having a property of transmitting linearly polarized light having a vibrating surface orthogonal to the absorption axis when unpolarized light is incident.
  • the linear polarizer may be, for example, one in which a polyvinyl alcohol resin film is oriented and a dichroic dye such as iodine is adsorbed and oriented.
  • the linear polarizer may be a monolayer polyvinyl alcohol resin film (polyvinyl alcohol molecules contained in the polyvinyl alcohol resin film oriented) with a bicolor dye adsorbed or oriented, and may be formed on the base film. It may be a laminated film having two or more layers provided with a polyvinyl alcohol resin layer in which a color dye is adsorbed and oriented.
  • Such linear polarizers can be produced by various methods known in the art.
  • the thickness of the linear polarizer in which the dichroic dye is adsorbed and oriented on the single-layer polyvinyl alcohol resin film is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and further preferably 10 ⁇ m or less.
  • the linear polarizer may be a cured film obtained by orienting a dichroic dye on a polymerizable liquid crystal compound and polymerizing the polymerizable liquid crystal compound.
  • the linear polarizer is usually dried by applying a composition containing a polymerizable liquid crystal compound and a bicolor dye on a base film made of a thermoplastic resin film or the like or an alignment layer provided on the base film.
  • a composition containing a polymerizable liquid crystal compound and a bicolor dye on a base film made of a thermoplastic resin film or the like or an alignment layer provided on the base film.
  • active energy rays such as ultraviolet rays.
  • the laminate of the base film and the linear polarizing element (cured film) thus obtained can be used as a linear polarizing plate.
  • the thickness of the base film for forming the cured film is not particularly limited, but generally, from the viewpoint of workability such as strength and handleability, it is preferably 1 ⁇ m or more and 300 ⁇ m or less, and more preferably 10 ⁇ m or more and 200 ⁇ m or less. It is more preferably 30 ⁇ m or more and 120 ⁇ m or less.
  • thermoplastic resin film bonded to at least one surface of the linear polarizer examples include a polyolefin resin such as polyethylene and polypropylene; a cyclic polyolefin resin such as a norbornene polymer; polyethylene terephthalate and polyethylene.
  • Polyester resin such as naphthalate; (meth) acrylic acid resin such as methyl poly (meth) acrylate; cellulose ester resin such as triacetyl cellulose, diacetyl cellulose and cellulose acetate propionate; polyvinyl alcohol and polyvinyl acetate Vinyl alcohol-based resins such as; polycarbonate-based resins; polystyrene-based resins; polyarylate-based resins; polysulfone-based resins; polyether sulfone-based resins; polyamide-based resins; polyimide-based resins; polyether ketone-based resins; polyphenylene sulfide-based resins; polyphenylene.
  • Examples thereof include an oxide-based resin and a resin film composed of a mixture thereof, a copolymer and the like.
  • resins it is preferable to use any one of cyclic polyolefin-based resin, polyester-based resin, cellulose ester-based resin and (meth) acrylic acid-based resin, or a mixture thereof.
  • (meth) acrylic acid means "at least one kind of acrylic acid and methacrylic acid”.
  • the thermoplastic resin film may be a single layer obtained by mixing one kind or two or more kinds of resin materials, or may have a multilayer structure of two or more layers. When having a multi-layer structure, the resins constituting each layer may be the same or different from each other. Any additive may be added to the thermoplastic resin film. Examples of the additive include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a mold release agent, an antioxidant, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a coloring agent.
  • the thickness of the thermoplastic resin film is preferably 2 ⁇ m or more and 300 ⁇ m or less, more preferably 5 ⁇ m or more and 200 ⁇ m or less, and further, from the viewpoint of thinning and flexibility of the optical laminate and the durability of the optical laminate. It is preferably 5 ⁇ m or more and 100 ⁇ m or less, more preferably 5 ⁇ m or more and 50 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the thermoplastic resin film can be laminated on the linear polarizer via an adhesive layer.
  • the adhesive forming the adhesive layer include water-based adhesives and active energy ray-curable adhesives.
  • the water-based adhesive include a polyvinyl alcohol-based resin aqueous solution, a water-based two-component urethane-based emulsion adhesive, and the like.
  • the active energy ray-curable adhesive is an adhesive that cures by irradiating with active energy rays such as ultraviolet rays, and includes, for example, a polymerizable compound and a photopolymerizable initiator, a photoreactive resin, and a binder. Examples thereof include those containing a resin and a photoreactive cross-linking agent.
  • Examples of the polymerizable compound include photopolymerizable monomers such as a photocurable epoxy monomer, a photocurable (meth) acrylic monomer, and a photocurable urethane monomer, and oligomers derived from these monomers. ..
  • Examples of the photopolymerization initiator include substances that generate active species such as neutral radicals, anion radicals, and cationic radicals by irradiating them with active energy rays such as ultraviolet rays.
  • the linear polarizing plate can further include a film or layer other than the above.
  • Other films or layers include a protective film laminated on the surface of the linear polarizing plate; a reflective film placed at an appropriate position on the linear polarizing plate, a transflective reflective film, an optical compensation film, a film with an antiglare function, and the like. Examples include a retardation film.
  • the linear polarizing plate is preferably a single-protective polarizing plate in which a thermoplastic resin film is bonded to only one surface of the linear polarizing element, as shown in FIG.
  • the linear polarizing plate is a single-protective polarizing plate
  • the thickness thereof is thin, and as a result, the thickness of the optical laminate can be reduced. Therefore, for example, the organic EL display device provided with the optical laminate of the present invention can be easily applied as a flexible organic EL display device capable of bending, bending, winding, and the like.
  • the optical film 10 is a single-protective polarizing plate, it is preferable that the linear polarizer is in contact with the cured adhesive layer 20a in the optical laminate.
  • the curing adhesive layer 20a is a cured product layer of an active energy ray-curable adhesive.
  • the cured adhesive layer 20a can be formed by curing the active energy ray-curable adhesive layer (adhesive layer) 20 formed in the above-mentioned laminating step in the curing step.
  • the active energy ray-curable adhesive the same one as the active energy ray-curable adhesive described in the above [2] can be used.
  • the thickness of the cured adhesive layer 20a is usually 0.5 ⁇ m or more and 50 ⁇ m or less, from the viewpoint of suppressing wrinkle defects, from the viewpoint of adhesiveness between the optical film 10 and the retardation layer 30, and obtaining. From the viewpoint of thinning the optical laminate, the thickness is preferably 1 ⁇ m or more and 30 ⁇ m or less, and more preferably 2 ⁇ m or more and 20 ⁇ m or less.
  • phase difference layer 30 includes a retardation expression layer 31 which is a cured product layer of a polymerizable liquid crystal compound, and may further include an alignment layer 32.
  • the retardation expression layer 31 is formed by using a polymerizable liquid crystal compound, and a known polymerizable liquid crystal compound can be used.
  • the type of the polymerizable liquid crystal compound is not particularly limited, and a rod-shaped liquid crystal compound, a disk-shaped liquid crystal compound, and a mixture thereof can be used.
  • the polymerizable liquid crystal compound for forming the 1/4 wave plate having a reverse wavelength dispersibility is preferably a rod-shaped liquid crystal compound, for example, the polymerizable liquid crystal compound described in JP-A-2011-207765.
  • a composition for forming a retardation expression layer containing a polymerizable liquid crystal compound, a solvent, and various additives as necessary is applied onto the alignment layer 32 to form a coating film, and the coating film is cured.
  • the retardation expression layer 31 which is a cured product layer of the polymerizable liquid crystal compound can be formed.
  • the retardation expression layer forming composition may be directly applied onto the base film to form a coating film, and the coating film may be stretched together with the base film to form the retardation expression layer 31.
  • the thickness of the retardation expression layer 31 is usually 0.1 ⁇ m or more and 10 ⁇ m or less, preferably 0.2 ⁇ m or more and 5 ⁇ m or less.
  • the composition for forming a retardation layer may contain a polymerization initiator, a reactive additive, a leveling agent, a polymerization inhibitor and the like in addition to the above-mentioned polymerizable liquid crystal compound and solvent.
  • a polymerizable liquid crystal compound the solvent, the polymerization initiator, the reactive additive, the leveling agent, the polymerization inhibitor and the like, known ones can be appropriately used.
  • the leveling agent that may be contained in the composition for forming the retardation expression layer and the retardation expression layer include a leveling agent containing an organically modified silicone oil as a main component and a leveling agent containing a polyacrylate compound as a main component.
  • leveling agents containing a fluorine atom-containing compound such as perfluoroalkyl as a main component.
  • the main component refers to the component having the largest amount of all the components contained in the leveling agent.
  • the content of the leveling agent in the composition for forming the retardation layer is preferably 0.01 parts by mass or more and 5 parts by mass or less, and more preferably 0.1 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. It is 3 parts by mass or less.
  • the alignment layer 32 which may be included in the retardation layer 30, is a layer having an orientation restricting force for aligning the polymerizable liquid crystal compound contained in the liquid crystal layer formed on the retarding layer 30 in a desired direction.
  • the oriented layer 32 include an oriented polymer layer formed of an oriented polymer, a photo-oriented polymer layer formed of a photo-aligned polymer, and a grub-aligned layer having a concavo-convex pattern and a plurality of grubs (grooves) on the layer surface. be able to.
  • the thickness of the alignment layer 32 is usually 10 nm or more and 500 nm or less, preferably 10 nm or more and 200 nm or less.
  • the oriented polymer layer can be formed by applying a composition in which the oriented polymer is dissolved in a solvent to the base film 41 to remove the solvent, and if necessary, performing a rubbing treatment.
  • the orientation regulating force can be arbitrarily adjusted depending on the surface condition of the orientation polymer and the rubbing conditions.
  • the photooriented polymer layer can be formed by applying a composition containing a polymer or monomer having a photoreactive group and a solvent to the base film 41 and irradiating it with polarized light.
  • the orientation-regulating force can be arbitrarily adjusted depending on the polarization irradiation conditions for the photo-orientation polymer.
  • the grub alignment layer is active on a plate-shaped master having grooves on the surface, for example, a method of forming a concavo-convex pattern by exposure, development, etc. through an exposure mask having a pattern-shaped slit on the surface of a photosensitive polyimide film.
  • the base film 41 a resin film having the same structure as the above-mentioned thermoplastic resin film can be used.
  • the thickness of the base film 41 is not particularly limited, but generally, from the viewpoint of workability such as strength and handleability, it is preferably 1 ⁇ m or more and 300 ⁇ m or less, more preferably 10 ⁇ m or more and 200 ⁇ m or less, and further preferably 30 ⁇ m or more. It is 120 ⁇ m or less.
  • Any additive may be added to the base film 41. Examples of the additive include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a mold release agent, an antioxidant, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a coloring agent.
  • the retardation layer 30 and others are used as the retardation layer 30.
  • a retardation layer laminate including the retardation layer and the retardation layer laminate of the above may be used.
  • FIG. 5 is a schematic cross-sectional view showing an example of the layer structure of the retardation laminate.
  • the retardation laminate shown in FIG. 5 includes a base film 41, an alignment layer 32, a retardation expression layer 31, an adhesive layer 61, a retardation development layer 71, an alignment layer 72, and a base film 42 in this order.
  • the retardation layer 31 and the alignment layer 32 can be the retardation layer 30 which is bonded to the optical film 10 via the curing adhesive layer 20a in the optical laminate.
  • the retardation laminate shown in FIG. 5 may not have at least one of the alignment layer 32 and the alignment layer 72.
  • the combination of the retardation layer 31 and the retardation layer 71 is, for example, a combination of a 1/2 wave plate and a 1/4 wave plate, or an inverse wavelength dispersibility. It is a combination of the 1/4 wave plate and the positive C plate. In the case of a combination of the 1/2 wave plate and the 1/4 wave plate, it is preferable that the retardation expression layer 31 arranged on the side closer to the optical film 10 in the optical laminate is the 1/2 wave plate.
  • FIG. 6 shows an example of the layer structure of the optical laminate manufactured when the retardation laminate shown in FIG. 5 is used in the lamination step of the first embodiment or the second embodiment according to the method for manufacturing the optical laminate. It is a schematic cross-sectional view which shows.
  • the optical laminate shown in FIG. 6 may not have at least one of the alignment layer 32 and the alignment layer 72.
  • the retardation laminate shown in FIG. 5 includes, for example, a laminate having a layer structure of a base film 41 / alignment layer 32 / retardation expression layer 31 and a substrate film 42 / alignment layer 72 / retardation expression layer 71. It can be manufactured by preparing or preparing a laminate having the above-mentioned layer structure and laminating these laminates via the adhesive layer 61.
  • Examples of the adhesive forming the adhesive layer 61 include a water-based adhesive and an active energy ray-curable adhesive. As these adhesives, the same adhesives as those described above that can be used for bonding the linear polarizer and the thermoplastic resin film can be used. An adhesive layer can also be used as the adhesive layer 61.
  • the pressure-sensitive adhesive composition for forming the pressure-sensitive adhesive layer is a composition in which a (meth) acrylic resin, a styrene resin, a silicone resin or the like is used as a base polymer, and a cross-linking agent such as an isocyanate compound, an epoxy compound or an aziridine compound is added. Can be mentioned.
  • the adhesive layer 61 is preferably a cured product layer of an active energy ray-curable adhesive such as an ultraviolet curable adhesive from the viewpoint of more effectively suppressing the occurrence of wrinkle defects.
  • FIG. 7 is a schematic cross-sectional view showing an example of the layer structure of the optical laminate having the pressure-sensitive adhesive layer 80.
  • the optical laminate shown in FIG. 7 can be manufactured, for example, by peeling the base film 42 from the optical laminate shown in FIG. 6 and laminating an adhesive layer on the peeled surface. A separate film may be laminated on the outer surface of the pressure-sensitive adhesive layer.
  • Example 1 (1) Preparation of Linear Polarizing Plate A linear polarizer [thickness: 8 ⁇ m], which is a uniaxially stretched film formed by adsorbing and orienting iodine on a polyvinyl alcohol-based resin film, was prepared. A first thermoplastic resin film is laminated on one surface of the linear polarizer via a polyvinyl alcohol-based adhesive, and a second thermoplastic resin film is laminated on the other surface of the linear polarizer, and a pair of patches is attached. A laminate having a layer structure of a first thermoplastic resin film / polyvinyl alcohol-based adhesive layer / linear polarizer / second thermoplastic resin film was obtained by passing it between the joint rolls. No adhesive is interposed between the linear polarizer and the second thermoplastic resin film, and the second thermoplastic resin film is releasably laminated on the linear polarizer.
  • thermoplastic resin film Clear hard coat film manufactured by Nippon Paper Industries Co., Ltd.
  • Product name "COP20ST-HC” film in which a clear hard coat layer is formed on a cyclic polyolefin resin film, thickness: 25 ⁇ m
  • -Second thermoplastic resin film Triacetyl cellulose (TAC) film manufactured by FUJIFILM Corporation, trade name "Fujitac” (thickness: 80 ⁇ m)
  • the obtained laminate was heat-treated at 80 ° C. for 300 seconds using a hot air dryer to dry the polyvinyl alcohol-based adhesive layer to obtain a linear polarizing plate.
  • Phase difference film which is a 1/2 wave plate 1: Trade name "QL FILM QL AA 318" manufactured by FUJIFILM Corporation (base film 1 which is a TAC film having a thickness of 80 ⁇ m and the orientation formed on the base film 1).
  • base film 1 which is a TAC film having a thickness of 80 ⁇ m and the orientation formed on the base film 1).
  • Phase difference film 2 1/4 wave plate: Trade name "QL FILM QL AB 318" manufactured by FUJIFILM Corporation (base film 2 which is a TAC film with a thickness of 80 ⁇ m and the orientation formed on the substrate film 2).
  • ⁇ Active energy ray-curable adhesive 1 Cationic polymerizable UV-curable high-refractive index adhesive
  • the surface of the retardation expression layer 1 of the retardation film 1 and the surface of the retardation expression layer 2 of the retardation film 2 were subjected to corona treatment.
  • the active energy ray-curable adhesive 1 is applied to each of the corona-treated surfaces of these retardation films using a bar coater so that the total thickness of the adhesive layer after curing is 1.5 ⁇ m, and then the retardation is achieved.
  • the film 1 and the retardation film 2 are overlapped and passed between a pair of bonding rolls, and the base film 1 / alignment layer 1 / retardation expression layer 1 / active energy ray-curable adhesive 1 layer / retardation expression
  • a laminate having a layer structure of layer 2 / alignment layer 2 / base film 2 was obtained.
  • the obtained laminate is irradiated with ultraviolet rays so that the integrated light intensity is 250 mJ / cm 2 (UVB) using an ultraviolet irradiation device (the lamp uses a "D valve” manufactured by Fusion UV Systems).
  • UVB ultraviolet irradiation device
  • the layer of the active energy ray-curable adhesive 1 was cured by the above method to obtain a retardation layer laminate.
  • a straight line is formed.
  • the polarizing plate and the retardation layer laminate are laminated and passed between a pair of bonding rolls to form a layer of a first thermoplastic resin film / polyvinyl alcohol-based adhesive layer / linear polarizer / active energy ray-curable adhesive 2.
  • a laminate having a layer structure of / retardation layer 1 / cured product layer of active energy ray-curable adhesive 1 / retardation layer 2 / alignment layer 2 / base film 2 was obtained.
  • active energy ray-curable adhesive 2 Cationic polymerizable UV-curable adhesive
  • the obtained laminate was placed in a constant temperature and humidity chamber and held (standing) for 5 hours in an environment at a temperature of 40 ° C. (holding step).
  • the relative humidity in the holding step was 55% RH (same for other examples and comparative examples).
  • the laminated body is irradiated with ultraviolet rays so that the integrated light amount becomes 400 mJ / cm 2 (UVB) using an ultraviolet irradiation device (the lamp uses an "H valve” manufactured by Fusion UV Systems).
  • the layer of the active energy ray-curable adhesive 2 was cured to obtain an optical laminate 1.
  • the environment at the time of ultraviolet irradiation was a temperature of 23 ° C. and a relative humidity of 55% RH (the same applies to other examples and comparative examples).
  • the angle of the phase-advancing axis SL1 of the phase difference developing layer 1 (1/2 wavelength plate) with respect to the absorption axis PL of the linear polarizer is 75 °, and the phase difference expressing layer 2 (1 /).
  • the angle of the phase-advancing axis SL2 of the 4-wave plate) was 15 °.
  • the optical laminate 1 functioned as a circularly polarizing plate.
  • Optical Laminated Body 2 (Lamination of Adhesive Layer on Optical Laminated Body 1)
  • the sheet-shaped adhesive 1 shown below was prepared.
  • -Sheet-like adhesive 1 Transfer-type non-carrier film ((meth) acrylic adhesive layer [thickness: 15 ⁇ m], a lightly peelable film laminated on one surface, and laminated on the other surface. Laminated film with a heavy-release film)
  • the base film 2 contained in the optical laminate 1 obtained in (3) above was peeled off together with the alignment layer 2, and the lightly peelable film contained in the sheet-like adhesive 1 was peeled off. Corona treatment was applied to the surface of the retardation developing layer 2 exposed by peeling the base film 2 and the surface of the pressure-sensitive adhesive layer exposed by peeling the lightly peelable film.
  • the alignment layer 2 was peeled off together with the base film 2.
  • the optical laminate 1 and the sheet-like adhesive 1 are laminated and passed between a pair of bonding rolls to pass a first thermoplastic resin film / polyvinyl alcohol-based adhesive layer / linear polarizer / active energy ray-curable adhesive 2 Obtained an optical laminate 2 having a layer structure of a cured product layer / retardation developing layer 1 / cured product layer of active energy ray-curable adhesive 1 / retardation developing layer 2 / adhesive layer / double peelable film. ..
  • Example 2 In the holding step, the optical laminate 1 was held in the same manner as in Example 1 except that the laminate was attached to the inner wall with a constant temperature and humidity chamber and held (standing) for 5 hours in a vibration environment having a frequency of 10 Hz and an amplitude of 1 mm. Made. The temperature environment in the holding step was 23 ° C. Further, the optical laminate 2 was produced in the same manner as in Example 1 except that the optical laminate 1 was used.
  • Example 3 In the holding step, the optical laminated body 1 was produced in the same manner as in Example 1 except that the laminated body was placed in a constant temperature and humidity chamber and held (standing) for 3 days in an environment of a temperature of 23 ° C. The relative humidity in the holding step was 55% RH. Further, the optical laminate 2 was produced in the same manner as in Example 1 except that the optical laminate 1 was used.
  • Example 4 (1) Preparation of Linear Polarizing Plate A linear polarizing plate was produced in the same manner as in Example 1.
  • the optical laminated body 1 was produced in the same manner as in Example 1 except that the laminated body was placed in a constant temperature and humidity chamber and held (standing) for 5 hours in an environment of a temperature of 23 ° C.
  • the relative humidity in the holding step was 55% RH.
  • the optical laminate 2 was produced in the same manner as in Example 1 except that the optical laminate 1 was used.
  • ⁇ Comparative example 3> Preparation of a linearly polarizing plate with an adhesive layer A linearly polarizing plate was produced in the same manner as in Example 1. In addition, the sheet-shaped adhesive 2 shown below was prepared.
  • -Sheet-like pressure-sensitive adhesive 2 A transfer-type non-carrier film ((meth) acrylic pressure-sensitive adhesive layer [thickness: 5 ⁇ m], a lightly peelable film laminated on one surface, and laminated on the other surface. Laminated film with a heavy-release film)
  • the second thermoplastic resin film of the linear polarizing plate was peeled off, and the lightly peelable film of the sheet-like pressure-sensitive adhesive 2 was peeled off. Corona treatment was applied to the surface of the linear polarizer exposed by peeling the second thermoplastic resin film and the surface of the pressure-sensitive adhesive layer exposed by peeling the lightly peelable film. After that, the sheet-like adhesive 2 from which the lightly peelable film was peeled off was laminated on the surface (corona-treated surface) of the linear polarizer on the corona-treated surface side, and the first thermoplastic resin film / polyvinyl alcohol-based adhesive layer was laminated. A linear polarizing plate with an adhesive layer having a layer structure of / linear polarizer / adhesive layer / double-release film was obtained.
  • the retardation layer laminate is laminated on the corona-treated surface of the linear polarizing plate with the pressure-sensitive adhesive layer on the corona-treated surface side, and the first thermoplastic resin film / polyvinyl alcohol-based adhesive layer / linear polarizer / pressure-sensitive adhesive is used.
  • An optical laminate 1 having a layer structure of a layer / retardation developing layer 1 / cured product layer of active energy ray-curable adhesive 1 / retardation developing layer 2 / base film 2 was obtained.
  • This test piece has a layer structure of a cured product layer of the sex adhesive 2 / a retardation developing layer 1 / a cured product layer of the active energy ray-curable adhesive 1 / a retardation developing layer 2 / an adhesive layer / an acrylic plate (black). ].
  • This test piece is exposed to light from the first thermoplastic resin film side, conforms to ISO 25178, and is subjected to a layer cross-section analysis mode by a scanning white interference microscope "VertScan" (Hitachi is manufactured by TechScience Co., Ltd.).
  • test piece (rectangle) having a length of 50 mm (long side) and a width of 15 mm (short side) with the absorption axis of the linear polarizer as the length direction was cut out from the optical laminate 1.
  • the test piece (S) is curved so that the two short sides (S1) face each other to form a curved portion (C) at the center in the long side direction, and while maintaining this state.
  • Curvature diameter (R) of the curved portion of the test piece by reducing the distance between the two glass plates (G) while holding between the two glass plates (flat plates) (G) arranged parallel to each other.
  • the reduction step and the expansion step are repeated 10 times in the same manner as above except that the curvature diameter R of the bent portion is further set to 4 mm for the same test piece.
  • the test was conducted. If no wrinkle defect occurs in the test piece after the 4 mm bending test, the reduction step and the expansion step are repeated 10 times in the same manner as above except that the curvature diameter R of the bent portion is further set to 3 mm for the same test piece. The test was conducted. If no wrinkle defect occurs in the test piece after the 3 mm bending test, the reduction step and the expansion step are repeated 10 times in the same manner as above except that the curvature diameter R of the bent portion is further set to 2 mm for the same test piece. The test was conducted.
  • the portion of the test piece wound around the mandrel was visually observed, and the resistance to wrinkle defects was evaluated according to the following criteria.
  • the results are shown in Table 1.
  • B No wrinkle defect was observed even after starting from the 10 mm bending test and completing the 3 mm bending test, but when the 2 mm bending test was continued, wrinkle defects occurred.
  • C No wrinkle defect was observed even after starting from the 10 mm bending test and completing the 4 mm bending test, but when the 3 mm bending test was continued, wrinkle defects occurred.
  • the absorption axis (PL) of the linear polarizer, the phase advance axis (SL1) of the retardation expression layer 1 and the phase advance axis (SL2) of the retardation expression layer 2 in each test piece are viewed from the linear polarizer side. It was as shown in FIG. That is, the absorption axis (PL) is + 135 ° with respect to the short side, and the phase advance axis (SL1) is the short side, assuming that the counterclockwise direction is positive (+) when viewed from the first thermoplastic resin film side (linear polarizer side).
  • the phase advance axis (SL2) was + 60 ° with respect to the short side.
  • Each test piece functions as a circularly polarizing plate.
  • the obtained evaluation laminate was placed in a room with a fluorescent lamp.
  • the position of the fluorescent lamp was 250 mm above the black acrylic plate.
  • the reflected light of the light from the fluorescent lamp was visually observed from the surface (the surface on the glass plate side) side of the evaluation laminate, and the resistance to rainbow unevenness was evaluated according to the following criteria.
  • the results are shown in Table 1.
  • the reflected light of the light from the fluorescent lamp means the light emitted from the glass plate side by reflecting the light from the fluorescent lamp incident on the inside of the optical laminate 2 at the interface of each layer.
  • B Very slight rainbow unevenness is observed in the reflected light.
  • C Rainbow unevenness is observed in the reflected light (rainbow unevenness is observed more clearly than B).

Abstract

[Problem] To provide a method for manufacturing an optical laminate which comprises: an optical film; and a retardation layer including a cured material layer formed of a polymerizable liquid crystal compound, and which is less likely to cause wrinkle defects even when curved with a small radius of curvature. [Solution] Provided is a method for manufacturing an optical laminate which comprises, in the following order, an optical film, a cured adhesive layer which is a cured material layer formed of an active energy ray-curable adhesive, and a retardation layer including a cured material layer formed of a polymerizable liquid crystal compound, the method comprising, in the following order: a step for laminating the optical film, the active energy ray-curable adhesive layer, and the retardation layer so that the active energy ray-curable adhesive layer is in contact with the retardation layer; a step for holding the laminate under conditions satisfying at least one among (1) holding at a temperature of at least 30ºC for at least 2 hours, (2) holding for at least 2 hours under vibration conditions, and (3) holding for at least 48 hours; and a step for curing the active energy ray-curable adhesive layer to form a cured adhesive layer.

Description

光学積層体の製造方法Manufacturing method of optical laminate
 本発明は、光学積層体の製造方法に関し、光学積層体にも関する。 The present invention relates to a method for manufacturing an optical laminate, and also relates to an optical laminate.
 有機EL表示装置等の画像表示装置では、金属電極による外光反射の防止等を目的として、偏光子(直線偏光子)と位相差層とを組み合わせた光学積層体(楕円偏光板)が用いられることがある。例えば特開2018-017996号公報(特許文献1)には、紫外線硬化性接着剤層を介して偏光子と重合性液晶化合物から形成される位相差層とを積層し、紫外線照射によって該接着剤層を硬化させて、楕円偏光板を製造することが記載されている。 In an image display device such as an organic EL display device, an optical laminate (elliptic polarizing plate) in which a polarizing element (linear polarizing element) and a retardation layer are combined is used for the purpose of preventing reflection of external light by a metal electrode. Sometimes. For example, in Japanese Patent Application Laid-Open No. 2018-017996 (Patent Document 1), a polarizing element and a retardation layer formed of a polymerizable liquid crystal compound are laminated via an ultraviolet curable adhesive layer, and the adhesive is irradiated with ultraviolet rays. It is described that the layer is cured to produce an elliptical polarizing plate.
特開2018-017996号公報JP-A-2018-017996
 偏光子を含む光学フィルム等と重合性液晶化合物から形成される位相差層とを活性エネルギー線硬化性接着剤又は粘着剤を用いて接着することにより作製した従来の光学積層体は、曲率半径が徐々に小さくなるように湾曲させていくと、比較的大きな曲率半径の段階であっても、上記位相差層に微細な皺(以下、「皺欠陥」ともいう。)を生じやすい傾向にあった。湾曲可能、さらには折り曲げ可能な画像表示装置などへの適用を考慮した場合、上記光学積層体には、小さな曲率半径で湾曲させても皺欠陥を生じにくいことが求められる。 A conventional optical laminate produced by adhering an optical film containing a polarizer and a retardation layer formed of a polymerizable liquid crystal compound with an active energy ray-curable adhesive or an adhesive has a radius of curvature. When it is curved so as to be gradually reduced, fine wrinkles (hereinafter, also referred to as “wrinkle defects”) tend to occur in the retardation layer even at a stage having a relatively large radius of curvature. .. Considering application to a bendable or bendable image display device or the like, the optical laminate is required to be less likely to cause wrinkle defects even if it is bent with a small radius of curvature.
 本発明は、光学フィルムと重合性液晶化合物の硬化物層を含む位相差層とを備える光学積層体であって、小さな曲率半径で湾曲させても皺欠陥を生じにくい光学積層体及びその製造方法を提供することにある。 The present invention is an optical laminate including an optical film and a retardation layer including a cured product layer of a polymerizable liquid crystal compound, and an optical laminate in which wrinkle defects are unlikely to occur even when curved with a small radius of curvature, and a method for producing the same. Is to provide.
 本発明は、以下に示す光学積層体の製造方法及び光学積層体を提供する。
 〔1〕 光学積層体の製造方法であって、
 前記光学積層体は、光学フィルムと、活性エネルギー線硬化性接着剤の硬化物層である硬化接着剤層と、重合性液晶化合物の硬化物層を含む位相差層とをこの順に備え、
 前記製造方法は、
 前記光学フィルムと、活性エネルギー線硬化性接着剤層と、前記位相差層とを、前記活性エネルギー線硬化性接着剤層と前記位相差層とが接するように積層する工程と、
 下記(1)~(3):
 (1)30℃以上の温度で2時間以上保持する、
 (2)振動条件下で2時間以上保持する、
 (3)48時間以上保持する
のいずれか1以上を満たす条件下で保持する工程と、
 前記活性エネルギー線硬化性接着剤層を硬化させて前記硬化接着剤層を形成する工程と、
をこの順に含む、光学積層体の製造方法。
 〔2〕 光学積層体の製造方法であって、
 前記光学積層体は、光学フィルムと、活性エネルギー線硬化性接着剤の硬化物層である硬化接着剤層と、重合性液晶化合物の硬化物層を含む位相差層とをこの順に備え、
 前記製造方法は、
 基材フィルムと、これに接して積層される前記位相差層とを含む積層体を用意する工程と、
 50m/分以上の剥離速度で前記位相差層から前記基材フィルムを剥離する工程と、
 前記基材フィルムを剥離した後の前記位相差層の剥離面に、活性エネルギー線硬化性接着剤層を介して光学フィルムを積層する工程と、
 前記活性エネルギー線硬化性接着剤層を硬化させて前記硬化接着剤層を形成する工程と、
をこの順に含む、光学積層体の製造方法。
 〔3〕 前記光学フィルムが直線偏光子を含む、〔1〕又は〔2〕に記載の光学積層体の製造方法。
 〔4〕 前記積層工程において、前記光学フィルムと、活性エネルギー線硬化性接着剤層と、前記位相差層とを、前記直線偏光子と前記活性エネルギー線硬化性接着剤層とが接するように積層する、〔3〕に記載の光学積層体の製造方法。
 〔5〕 光学フィルムと、活性エネルギー線硬化性接着剤の硬化物層である硬化接着剤層と、重合性液晶化合物の硬化物層を含む位相差層とをこの順に備え、
 前記硬化接着剤層と前記位相差層とは接しており、
 前記位相差層における前記硬化接着剤層側の表面は、下記(a)~(d):
 (a)算術平均粗さSaが0.065μm以上である、
 (b)二乗平均平方根高さSqが0.085μm以上である、
 (c)界面の展開面積比Sdrが0.2%以上である、
 (d)二法平均平方根傾斜Sdqが0.065以上である
のいずれか1以上を満たす、光学積層体。
 〔6〕 前記光学フィルムが直線偏光子を含む、〔5〕に記載の光学積層体。
 〔7〕 前記直線偏光子と前記硬化接着剤層とが接している、〔6〕に記載の光学積層体。
The present invention provides a method for producing an optical laminate and an optical laminate shown below.
[1] A method for manufacturing an optical laminate, which is a method for manufacturing an optical laminate.
The optical laminate includes an optical film, a cured adhesive layer which is a cured product layer of an active energy ray-curable adhesive, and a retardation layer including a cured product layer of a polymerizable liquid crystal compound in this order.
The manufacturing method is
A step of laminating the optical film, the active energy ray-curable adhesive layer, and the retardation layer so that the active energy ray-curable adhesive layer and the retardation layer are in contact with each other.
The following (1) to (3):
(1) Hold at a temperature of 30 ° C. or higher for 2 hours or longer.
(2) Hold for 2 hours or more under vibration conditions,
(3) A step of holding under the condition of satisfying any one or more of holding for 48 hours or more, and
The step of curing the active energy ray-curable adhesive layer to form the cured adhesive layer, and
A method for manufacturing an optical laminate, which comprises the above in this order.
[2] A method for manufacturing an optical laminate, which is a method for manufacturing an optical laminate.
The optical laminate includes an optical film, a cured adhesive layer which is a cured product layer of an active energy ray-curable adhesive, and a retardation layer including a cured product layer of a polymerizable liquid crystal compound in this order.
The manufacturing method is
A step of preparing a laminated body including a base film and the retardation layer laminated in contact with the base film, and
A step of peeling the base film from the retardation layer at a peeling rate of 50 m / min or more,
A step of laminating an optical film on the peeled surface of the retardation layer after peeling the base film via an active energy ray-curable adhesive layer.
The step of curing the active energy ray-curable adhesive layer to form the cured adhesive layer, and
A method for manufacturing an optical laminate, which comprises the above in this order.
[3] The method for producing an optical laminate according to [1] or [2], wherein the optical film contains a linear polarizer.
[4] In the laminating step, the optical film, the active energy ray-curable adhesive layer, and the retardation layer are laminated so that the linear polarizer and the active energy ray-curable adhesive layer are in contact with each other. The method for producing an optical laminate according to [3].
[5] An optical film, a cured adhesive layer which is a cured product layer of an active energy ray-curable adhesive, and a retardation layer including a cured product layer of a polymerizable liquid crystal compound are provided in this order.
The cured adhesive layer and the retardation layer are in contact with each other.
The surfaces of the retardation layer on the cured adhesive layer side are as follows (a) to (d):
(A) Arithmetic mean roughness Sa is 0.065 μm or more.
(B) The root mean square height Sq is 0.085 μm or more.
(C) The development area ratio Sdr of the interface is 0.2% or more.
(D) An optical laminate satisfying any one or more of the root mean square slope Sdq of 0.065 or more.
[6] The optical laminate according to [5], wherein the optical film contains a linear polarizer.
[7] The optical laminate according to [6], wherein the linear polarizer and the curing adhesive layer are in contact with each other.
 光学フィルムと重合性液晶化合物の硬化物層を含む位相差層とを備える光学積層体であって、小さな曲率半径で湾曲させても皺欠陥を生じにくい光学積層体及びその製造方法を提供することができる。 Provided is an optical laminate comprising an optical film and a retardation layer including a cured product layer of a polymerizable liquid crystal compound, which is less likely to cause wrinkle defects even when curved with a small radius of curvature, and a method for producing the same. Can be done.
実施形態1における積層工程によって得られる積層体の層構成の一例を示す概略断面図である。It is schematic cross-sectional view which shows an example of the layer structure of the laminated body obtained by the laminating step in Embodiment 1. FIG. 光学積層体の層構成の一例を示す概略断面図である。It is the schematic sectional drawing which shows an example of the layer structure of an optical laminate. 実施形態2における準備工程で用意される積層体の層構成の一例を示す概略断面図である。It is schematic cross-sectional view which shows an example of the layer structure of the laminated body prepared in the preparation process in Embodiment 2. FIG. 直線偏光板の層構成の一例を示す概略断面図である。It is a schematic cross-sectional view which shows an example of the layer structure of a linear polarizing plate. 位相差積層体の層構成の一例を示す概略断面図である。It is the schematic sectional drawing which shows an example of the layer structure of the retardation laminated body. 光学積層体の層構成の他の例を示す概略断面図である。It is the schematic sectional drawing which shows the other example of the layer structure of an optical laminate. 光学積層体の層構成のさらに他の例を示す概略断面図である。It is the schematic sectional drawing which shows still another example of the layer structure of an optical laminate. 皺欠陥の評価方法を説明する模式図である。It is a schematic diagram explaining the evaluation method of a wrinkle defect. 光学積層体における吸収軸及び遅相軸の方向を説明する模式図である。It is a schematic diagram explaining the direction of the absorption axis and the slow phase axis in an optical laminate.
 <光学積層体の製造方法>
 本発明に係る製造方法によって製造される光学積層体は、光学フィルムと、活性エネルギー線硬化性接着剤の硬化物層である硬化接着剤層(以下、単に「硬化接着剤層」ともいう。)と、重合性液晶化合物の硬化物層を含む位相差層(以下、単に「位相差層」ともいう。)とをこの順に備えるものである。
 本発明に係る製造方法によって製造される光学積層体は、有機EL表示装置等の画像表示装置に好適に適用することができる。
<Manufacturing method of optical laminate>
The optical laminate produced by the production method according to the present invention includes an optical film and a cured adhesive layer which is a cured product layer of an active energy ray-curable adhesive (hereinafter, also simply referred to as "cured adhesive layer"). And a retardation layer (hereinafter, also simply referred to as “phase difference layer”) including a cured product layer of the polymerizable liquid crystal compound are provided in this order.
The optical laminate produced by the production method according to the present invention can be suitably applied to an image display device such as an organic EL display device.
 以下、図面を参照して本発明に係る光学積層体の製造方法の実施形態について説明する。以下に示す各実施形態は任意に組み合わされてもよい。図面はいずれも概略図であり、実際の寸法を表していないことがある。
 以下に示す各実施形態において、各工程に用いるフィルム又は層として長尺物を用い、各工程を連続的に行ってもよいし、各工程に用いるフィルム又は層として枚葉物を用い、各工程を非連続的に行ってもよい。枚葉物は、長尺物から裁断したものであってよい。
Hereinafter, embodiments of a method for manufacturing an optical laminate according to the present invention will be described with reference to the drawings. Each of the embodiments shown below may be arbitrarily combined. All drawings are schematic views and may not represent actual dimensions.
In each of the embodiments shown below, a long material may be used as the film or layer used in each step, and each step may be continuously performed, or a single-wafered material may be used as the film or layer used in each step, and each step. May be performed discontinuously. The single-leaved material may be cut from a long material.
 [実施形態1]
 本実施形態に係る光学積層体の製造方法は、下記の工程を記載順に含む。
 光学フィルムと、活性エネルギー線硬化性接着剤層と、重合性液晶化合物の硬化物層を含む位相差層とを、活性エネルギー線硬化性接着剤層と位相差層とが接するように積層する工程〔積層工程〕、
 下記(1)~(3):
 (1)30℃以上の温度で2時間以上保持する、
 (2)振動条件下で2時間以上保持する、
 (3)48時間以上保持する
のいずれか1以上を満たす条件下で保持する工程〔保持工程〕、及び
 活性エネルギー線硬化性接着剤層を硬化させて硬化接着剤層を形成する工程〔硬化工程〕。
[Embodiment 1]
The method for producing an optical laminate according to the present embodiment includes the following steps in the order described.
A step of laminating an optical film, an active energy ray-curable adhesive layer, and a retardation layer including a cured product layer of a polymerizable liquid crystal compound so that the active energy ray-curable adhesive layer and the retardation layer are in contact with each other. [Laminating process],
The following (1) to (3):
(1) Hold at a temperature of 30 ° C. or higher for 2 hours or longer.
(2) Hold for 2 hours or more under vibration conditions,
(3) A step of holding under the condition of satisfying any one or more of holding for 48 hours or more [holding step], and a step of curing the active energy ray-curable adhesive layer to form a cured adhesive layer [curing step]. ].
 〔1〕積層工程
 図1は、本実施形態における積層工程によって得られる積層体の層構成の一例を示す概略断面図である。積層工程は、光学フィルム10と位相差層30とを、活性エネルギー線硬化性接着剤層20(以下、単に「接着剤層」ともいう。)を介して積層する工程である。本明細書において活性エネルギー線硬化性接着剤層とは、活性エネルギー線硬化性接着剤で構成される層をいう。活性エネルギー線硬化性接着剤としては、位相差層30及び光学フィルム10を接着する能力を有するものが用いられる。
[1] Laminating Step FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of the laminated body obtained by the laminating step in the present embodiment. The laminating step is a step of laminating the optical film 10 and the retardation layer 30 via the active energy ray-curable adhesive layer 20 (hereinafter, also simply referred to as “adhesive layer”). In the present specification, the active energy ray-curable adhesive layer means a layer composed of the active energy ray-curable adhesive. As the active energy ray-curable adhesive, one having an ability to bond the retardation layer 30 and the optical film 10 is used.
 積層工程において、光学フィルム10と接着剤層20と位相差層30とは、接着剤層20と位相差層30とが接するように積層される。また、光学フィルム10と接着剤層20と位相差層30とは、好ましくは、光学フィルム10と接着剤層20とが接するように積層される。 In the laminating step, the optical film 10, the adhesive layer 20, and the retardation layer 30 are laminated so that the adhesive layer 20 and the retardation layer 30 are in contact with each other. Further, the optical film 10, the adhesive layer 20, and the retardation layer 30 are preferably laminated so that the optical film 10 and the adhesive layer 20 are in contact with each other.
 積層工程は、光学フィルム10の接着面及び位相差層30の接着面から選択される1以上の面に接着剤層20を形成し、接着剤層20を介して光学フィルム10と位相差層30とを積層することによって実施することができる。接着剤層20は、公知の塗工方法によって接着面に活性エネルギー線硬化性接着剤を塗工することによって形成できる。
 積層工程によって得られる積層体において、接着剤層20の厚みは、通常0.5μm以上50μm以下であり、皺欠陥を抑制する観点、光学フィルム10と位相差層30との間の接着性の観点、及び得られる光学積層体の薄型化の観点から、好ましくは1μm以上30μm以下、より好ましくは2μm以上20μm以下である。
In the laminating step, the adhesive layer 20 is formed on one or more surfaces selected from the adhesive surface of the optical film 10 and the adhesive surface of the retardation layer 30, and the optical film 10 and the retardation layer 30 are formed via the adhesive layer 20. It can be carried out by laminating and. The adhesive layer 20 can be formed by applying an active energy ray-curable adhesive to the adhesive surface by a known coating method.
In the laminated body obtained by the laminating step, the thickness of the adhesive layer 20 is usually 0.5 μm or more and 50 μm or less, from the viewpoint of suppressing wrinkle defects, and from the viewpoint of adhesiveness between the optical film 10 and the retardation layer 30. From the viewpoint of thinning the obtained optical laminate, the thickness is preferably 1 μm or more and 30 μm or less, and more preferably 2 μm or more and 20 μm or less.
 光学フィルム10の接着面及び位相差層30の接着面から選択される1以上の面には、接着剤層20を形成する前に、あらかじめプラズマ処理、コロナ処理、紫外線照射処理、フレーム(火炎)処理、ケン化処理のような表面活性化処理を行ってもよい。この表面活性化処理により、光学フィルム10と位相差層30との接着性を高め得る。 Before forming the adhesive layer 20, plasma treatment, corona treatment, ultraviolet irradiation treatment, and frame (flame) are applied to one or more surfaces selected from the adhesive surface of the optical film 10 and the adhesive surface of the retardation layer 30. Surface activation treatment such as treatment and saponification treatment may be performed. By this surface activation treatment, the adhesiveness between the optical film 10 and the retardation layer 30 can be enhanced.
 光学フィルム10は、単層構造のフィルムであってもよいし、多層構造のフィルムであってもよい。光学フィルム10としては、例えば、直線偏光板等を挙げることができる。
本明細書において直線偏光板とは、少なくとも直線偏光子を含む光学素子であり、直線偏光子とその少なくとも一方の面に貼合される熱可塑性樹脂フィルム等とを含んでいてもよい。
 光学フィルム10が直線偏光板である場合、積層工程によって得られる積層体において、好ましくは、直線偏光板に含まれる直線偏光子と接着剤層20とが接している。
 光学フィルム10及び活性エネルギー線硬化性接着剤については、後掲の<光学積層体>の項でより詳細に説明する。
The optical film 10 may be a single-layer structure film or a multi-layer structure film. Examples of the optical film 10 include a linear polarizing plate and the like.
In the present specification, the linear polarizing plate is an optical element containing at least a linear polarizing element, and may include a linear polarizing element and a thermoplastic resin film or the like attached to at least one surface thereof.
When the optical film 10 is a linear polarizing plate, the linear polarizing element contained in the linear polarizing plate is preferably in contact with the adhesive layer 20 in the laminated body obtained by the laminating step.
The optical film 10 and the active energy ray-curable adhesive will be described in more detail in the section <Optical laminate> described later.
 位相差層30は、重合性液晶化合物の硬化物層を含み、該層の形成に用いる液晶化合物の種類に応じた光学異方性を示す。以下、この重合性液晶化合物の硬化物層を「位相差発現層」ともいう。
 本明細書において位相差層30は、位相差発現層からなっていてもよいし、位相差発現層と配向層とを含んでいてもよい。
The retardation layer 30 includes a cured product layer of a polymerizable liquid crystal compound, and exhibits optical anisotropy according to the type of liquid crystal compound used to form the layer. Hereinafter, the cured product layer of this polymerizable liquid crystal compound is also referred to as a “phase difference expression layer”.
In the present specification, the retardation layer 30 may be composed of a retardation expression layer, or may include a retardation expression layer and an orientation layer.
 積層工程において、接着剤層20を介して光学フィルム10と貼合される位相差層30には、積層工程の前にあらかじめ他の1又は2以上の層が積層されていてもよい。例えば、位相差層30と他の位相差層とを含む位相差層積層体をあらかじめ作製しておき、この位相差層積層体を接着剤層20を介して光学フィルム10に貼合してもよい。
 位相差層、位相差発現層、配向層及び位相差層積層体等については、後掲の<光学積層体>の項でより詳細に説明する。
In the laminating step, another one or more layers may be laminated in advance on the retardation layer 30 which is bonded to the optical film 10 via the adhesive layer 20 before the laminating step. For example, a retardation layer laminate including the retardation layer 30 and another retardation layer may be prepared in advance, and the retardation layer laminate may be bonded to the optical film 10 via the adhesive layer 20. Good.
The retardation layer, the retardation expression layer, the alignment layer, the retardation layer laminate and the like will be described in more detail in the section <Optical laminate> described later.
 〔2〕保持工程
 保持工程は、積層工程によって得られた積層体を特定の条件下に保持する工程である。
保持する際の具体的態様は特に制限されないが、上記特定の条件下に上記積層体を静置することが挙げられる。
[2] Holding Step The holding step is a step of holding the laminated body obtained by the laminating step under specific conditions.
The specific mode of holding is not particularly limited, and examples thereof include allowing the laminate to stand under the specific conditions.
 上記特定の条件下とは、下記(1)~(3):
 (1)30℃以上の温度で2時間以上保持する、
 (2)振動条件下で2時間以上保持する、
 (3)48時間以上保持する
のいずれか1以上を満たす条件下である。
The above specific conditions are as follows (1) to (3):
(1) Hold at a temperature of 30 ° C. or higher for 2 hours or longer.
(2) Hold for 2 hours or more under vibration conditions,
(3) It is a condition that satisfies any one or more of holding for 48 hours or more.
 上記積層工程及び保持工程を含む本実施形態に係る製造方法によれば、小さな曲率半径で湾曲させても皺欠陥を生じにくい光学積層体を製造することが可能となる。これは、次の理由によるものと推定される。
 積層工程によって硬化前の接着剤層20に位相差層30が接触した状態となり、続く保持工程において上記特定の条件下でこの状態が保持される。硬化前の活性エネルギー線硬化性接着剤は、硬化後は位相差層30に対して接着力を発揮することから、位相差層30との間に相互作用が働くと認められる。位相差層30との間に相互作用が働く活性エネルギー線硬化性接着剤が上記特定の条件下で位相差層30に接触する状態が続くと、位相差層30の該接着剤との接触面(図1に示される表面X)が荒れると考えられる。このような位相差層30の表面の荒れは、接着剤層20との密着力を向上させる。
 上記密着力が向上すると、硬化接着剤層(硬化後の接着剤層)と位相差層30とは、光学積層体を湾曲させたときに一体となって変形するため、皺欠陥の発生が抑制されやすくなるものと考えられる。
 本実施形態に係る製造方法は、得られる光学積層体において、後述する虹ムラを抑制するうえでも有利である。
According to the manufacturing method according to the present embodiment including the laminating step and the holding step, it is possible to manufacture an optical laminated body which is less likely to cause wrinkle defects even if it is curved with a small radius of curvature. This is presumed to be due to the following reasons.
The laminating step brings the retardation layer 30 into contact with the adhesive layer 20 before curing, and this state is maintained under the above specific conditions in the subsequent holding step. Since the active energy ray-curable adhesive before curing exerts an adhesive force on the retardation layer 30 after curing, it is recognized that an interaction with the retardation layer 30 acts. When the active energy ray-curable adhesive that interacts with the retardation layer 30 continues to be in contact with the retardation layer 30 under the above specific conditions, the contact surface of the retardation layer 30 with the adhesive. (Surface X shown in FIG. 1) is considered to be rough. Such roughness of the surface of the retardation layer 30 improves the adhesion with the adhesive layer 20.
When the adhesive force is improved, the cured adhesive layer (adhesive layer after curing) and the retardation layer 30 are integrally deformed when the optical laminate is curved, so that the occurrence of wrinkle defects is suppressed. It is thought that it will be easier to do.
The manufacturing method according to the present embodiment is also advantageous in suppressing rainbow unevenness, which will be described later, in the obtained optical laminate.
 上記条件(1)における保持温度は30℃以上であり、皺欠陥の発生をより効果的に抑制する観点から、好ましくは35℃以上であり、より好ましくは38℃以上であり、さらに好ましくは40℃以上である。該保持温度は、通常55℃以下であり、保持工程を終了した後に水分の含有量の変化を少なくし得ることから、好ましくは50℃以下である。 The holding temperature under the above condition (1) is 30 ° C. or higher, preferably 35 ° C. or higher, more preferably 38 ° C. or higher, still more preferably 40, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects. It is above ℃. The holding temperature is usually 55 ° C. or lower, and is preferably 50 ° C. or lower because the change in the water content can be reduced after the holding step is completed.
 上記条件(1)における保持時間は、保持温度にも依存するが、通常2時間以上であり、皺欠陥の発生をより効果的に抑制する観点から、好ましくは3時間以上であり、より好ましくは4時間以上であり、さらに好ましくは5時間以上である。該保持時間は、保持温度にも依存するが、通常48時間未満で十分である。なお、該保持時間は48時間以上であってもよいが、この場合、保持工程は、条件(1)及び(3)を満たすこととなる。 The holding time under the above condition (1) depends on the holding temperature, but is usually 2 hours or more, and is preferably 3 hours or more, more preferably 3 hours or more, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects. It is 4 hours or more, more preferably 5 hours or more. The holding time depends on the holding temperature, but usually less than 48 hours is sufficient. The holding time may be 48 hours or more, but in this case, the holding step satisfies the conditions (1) and (3).
 上記条件(2)における積層体に対する振動付与は、例えば、振動源に積層体を載置することにより行うことができる。振動源としては、一定の周期及び一定の振幅で振動することができるものであれば特に限定されるものではなく、振動発生器を用いてもよいし、例えば一定の回転数で回転することができる電動モーター等の回転機器を用いてもよいし、交流電流を通電することができるトランス等を用いてもよい。
 該振動の周波数は、皺欠陥の発生を抑制する観点から、好ましくは5Hz以上であり、より好ましくは10Hz以上である。該振動の周波数は、積層体を構成する各層が互いに部分的に剥離する、いわゆる浮きの発生を抑制する観点から、好ましくは50Hz以下であり、より好ましくは40Hz以下である。
 該振動の振幅は、皺欠陥の発生を抑制する観点から、好ましくは0.5mm以上であり、より好ましくは1mm以上である。該振動の振幅は、積層体を構成する各層が互いに部分的に剥離する、いわゆる浮きの発生を抑制する観点から、好ましくは30mm以下であり、より好ましくは10mm以下である。
The vibration applied to the laminated body under the above condition (2) can be performed, for example, by placing the laminated body on a vibration source. The vibration source is not particularly limited as long as it can vibrate with a constant period and a constant amplitude, and a vibration generator may be used, for example, it may rotate at a constant rotation speed. A rotating device such as an electric motor that can be used may be used, or a transformer or the like that can carry an alternating current may be used.
The frequency of the vibration is preferably 5 Hz or higher, more preferably 10 Hz or higher, from the viewpoint of suppressing the occurrence of wrinkle defects. The frequency of the vibration is preferably 50 Hz or less, more preferably 40 Hz or less, from the viewpoint of suppressing the occurrence of so-called floating in which the layers constituting the laminated body are partially separated from each other.
The amplitude of the vibration is preferably 0.5 mm or more, more preferably 1 mm or more, from the viewpoint of suppressing the occurrence of wrinkle defects. The amplitude of the vibration is preferably 30 mm or less, more preferably 10 mm or less, from the viewpoint of suppressing the occurrence of so-called floating in which the layers constituting the laminated body are partially separated from each other.
 上記条件(2)における保持温度は特に制限されないが、通常5℃以上であり、皺欠陥の発生をより効果的に抑制する観点から、好ましくは10℃以上であり、より好ましくは15℃以上であり、さらに好ましくは20℃以上である。該保持温度は、30℃以上であってもよいが、この場合、保持工程は、条件(1)及び(2)を満たすこととなる。該保持温度は、通常55℃以下であり、保持工程を終了した後にも水分の含有量の変化を少なくし得ることから、好ましくは50℃以下である。 The holding temperature under the above condition (2) is not particularly limited, but is usually 5 ° C. or higher, preferably 10 ° C. or higher, more preferably 15 ° C. or higher, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects. Yes, more preferably 20 ° C. or higher. The holding temperature may be 30 ° C. or higher, but in this case, the holding step satisfies the conditions (1) and (2). The holding temperature is usually 55 ° C. or lower, and is preferably 50 ° C. or lower because the change in the water content can be reduced even after the holding step is completed.
 上記条件(2)における保持時間は、保持温度にも依存するが、通常2時間以上であり、皺欠陥の発生をより効果的に抑制する観点から、好ましくは3時間以上であり、より好ましくは4時間以上であり、さらに好ましくは5時間以上である。該保持時間は、保持温度にも依存するが、通常48時間未満で十分である。なお、該保持時間は48時間以上であってもよいが、この場合、保持工程は、条件(2)及び(3)を満たすこととなる。 The holding time under the above condition (2) depends on the holding temperature, but is usually 2 hours or more, and is preferably 3 hours or more, more preferably 3 hours or more, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects. It is 4 hours or more, more preferably 5 hours or more. The holding time depends on the holding temperature, but usually less than 48 hours is sufficient. The holding time may be 48 hours or more, but in this case, the holding step satisfies the conditions (2) and (3).
 上記条件(3)における保持温度は特に制限されないが、通常5℃以上であり、皺欠陥の発生をより効果的に抑制する観点から、好ましくは10℃以上であり、より好ましくは15℃以上であり、さらに好ましくは20℃以上である。該保持温度は、30℃以上であってもよいが、この場合、保持工程は、条件(1)及び(3)を満たすこととなる。該保持温度は、通常55℃以下であり、保持工程を終了した後にも水分の含有量の変化を少なくし得ること観点から、好ましくは50℃以下である。 The holding temperature under the above condition (3) is not particularly limited, but is usually 5 ° C. or higher, preferably 10 ° C. or higher, more preferably 15 ° C. or higher, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects. Yes, more preferably 20 ° C. or higher. The holding temperature may be 30 ° C. or higher, but in this case, the holding step satisfies the conditions (1) and (3). The holding temperature is usually 55 ° C. or lower, and is preferably 50 ° C. or lower from the viewpoint that the change in the water content can be reduced even after the holding step is completed.
 上記条件(3)における保持時間は、保持温度にも依存するが、通常48時間以上であり、皺欠陥の発生をより効果的に抑制する観点から、好ましくは54時間以上であり、より好ましくは66時間以上であり、さらに好ましくは72時間以上である。該保持時間は、保持温度にも依存するが、通常120時間以下で十分である。 The holding time under the above condition (3) depends on the holding temperature, but is usually 48 hours or more, and is preferably 54 hours or more, more preferably 54 hours or more, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects. It is 66 hours or more, more preferably 72 hours or more. The holding time depends on the holding temperature, but usually 120 hours or less is sufficient.
 上記(1)~(3)のいずれの条件においても、積層体が保持される環境の相対湿度は、例えば20%RH以上80%RH以下であり、好ましくは30%RH以上70%RH以下である。 Under any of the above conditions (1) to (3), the relative humidity of the environment in which the laminate is held is, for example, 20% RH or more and 80% RH or less, preferably 30% RH or more and 70% RH or less. is there.
 〔3〕硬化工程
 図2を参照して、本工程において、活性エネルギー線の照射により接着剤層20を硬化させて硬化接着剤層20aを形成することによって光学積層体を得ることができる。照射する活性エネルギー線の種類は、接着剤層20を構成する活性エネルギー線硬化性接着剤に含まれる硬化性成分の感応波長等に応じて適切に選択される。活性エネルギー線は、好ましくは紫外線である。
[3] Curing Step With reference to FIG. 2, in this step, an optical laminate can be obtained by curing the adhesive layer 20 by irradiation with active energy rays to form a cured adhesive layer 20a. The type of active energy ray to be irradiated is appropriately selected according to the sensitive wavelength of the curable component contained in the active energy ray-curable adhesive constituting the adhesive layer 20 and the like. The active energy ray is preferably ultraviolet light.
 [実施形態2]
 本実施形態に係る光学積層体の製造方法は、下記の工程を記載順に含む。
 基材フィルムと、これに接して積層される位相差層とを含む積層体を用意する工程〔準備工程〕、
 50m/分以上の剥離速度で位相差層から基材フィルムを剥離する工程〔剥離工程〕、 基材フィルムを剥離した後の位相差層の剥離面に、活性エネルギー線硬化性接着剤層を介して光学フィルムを積層する工程〔積層工程〕、
 活性エネルギー線硬化性接着剤層を硬化させて硬化接着剤層を形成する工程〔硬化工程〕。
[Embodiment 2]
The method for producing an optical laminate according to the present embodiment includes the following steps in the order described.
A step of preparing a laminate including a base film and a retardation layer laminated in contact with the base film [preparation step],
A step of peeling the base film from the retardation layer at a peeling speed of 50 m / min or more [peeling step], via an active energy ray-curable adhesive layer on the peeled surface of the retardation layer after peeling the base film. The process of laminating optical films [lamination process],
A step of curing an active energy ray-curable adhesive layer to form a cured adhesive layer [curing step].
 〔1〕準備工程
 上述のように、位相差層30は位相差発現層(重合性液晶化合物の硬化物層)を含むものであり、位相差発現層からなっていてもよいし、位相差発現層と配向層とを含んでいてもよい。したがって、本工程において用意される、基材フィルムと、これに接して積層される位相差層とを含む積層体は、例えば、基材フィルム/配向層/位相差発現層の層構成を有していてもよいし、基材フィルム/位相差発現層の層構成を有していてもよい。
[1] Preparation Step As described above, the retardation layer 30 includes a retardation expression layer (cured product layer of a polymerizable liquid crystal compound), and may be composed of a retardation expression layer or a retardation expression layer. It may include a layer and an orientation layer. Therefore, the laminate including the base film and the retardation layer laminated in contact with the base film prepared in this step has, for example, a layer structure of a base film / alignment layer / retardation expression layer. It may have a layer structure of a base film / retardation layer.
 図3は、本実施形態における準備工程で用意される積層体の層構成の一例を示す概略断面図である。図3に示される積層体は、基材フィルム41/配向層32/位相差発現層31の層構成を有しており、位相差層30が位相差発現層31と配向層32とからなる例である。本工程において用意される積層体として、一つの市販品又は複数の市販品の組み合わせが用いられてもよい。 FIG. 3 is a schematic cross-sectional view showing an example of the layer structure of the laminated body prepared in the preparation step in the present embodiment. The laminate shown in FIG. 3 has a layer structure of a base film 41 / an alignment layer 32 / a retardation expression layer 31, and an example in which the retardation layer 30 is composed of a retardation expression layer 31 and an alignment layer 32. Is. As the laminate prepared in this step, one commercially available product or a combination of a plurality of commercially available products may be used.
 本工程において用意される積層体は、基材フィルムと、これに接して積層される位相差層とを含んでいればよく、図3の例に限定されるものではない。該積層体には、基材フィルム41及び位相差層30以外の他の1又は2以上の層が積層されていてもよい。例えば、基材フィルム41と位相差層30と他の位相差層とを含む位相差層積層体が本工程で用意されてもよい。
 基材フィルム、位相差層、位相差発現層、配向層及び位相差層積層体等については、後掲の<光学積層体>の項でより詳細に説明する。
The laminate prepared in this step may include a base film and a retardation layer laminated in contact with the base film, and is not limited to the example of FIG. One or two or more layers other than the base film 41 and the retardation layer 30 may be laminated on the laminate. For example, a retardation layer laminate including the base film 41, the retardation layer 30, and another retardation layer may be prepared in this step.
The base film, the retardation layer, the retardation expression layer, the alignment layer, the retardation layer laminate and the like will be described in more detail in the section <Optical laminate> described later.
 〔2〕剥離工程
 本工程は、50m/分以上の剥離速度で位相差層30から基材フィルム41を剥離する工程である。
 剥離速度は、皺欠陥の発生をより効果的に抑制する観点から、好ましくは60m/分以上であり、より好ましくは70m/分以上であり、さらに好ましくは80m/分以上であり、特に好ましくは90m/分以上である。剥離速度は、通常150m/分以下であり、基材フィルムの破断防止の観点から、好ましくは120m/分以下である。
[2] Peeling Step This step is a step of peeling the base film 41 from the retardation layer 30 at a peeling speed of 50 m / min or more.
The peeling speed is preferably 60 m / min or more, more preferably 70 m / min or more, still more preferably 80 m / min or more, and particularly preferably 80 m / min or more, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects. It is 90 m / min or more. The peeling speed is usually 150 m / min or less, and preferably 120 m / min or less from the viewpoint of preventing breakage of the base film.
 基材フィルム41が剥離される積層体に対する基材フィルム41の剥離角度は、通常90度より大きく180度以下である。基材フィルム41の剥離をより容易にする観点から、剥離角度は、好ましくは120度以上180度以下である。
 剥離角度とは、基材フィルム41が剥離されるときの積層体の面方向又は搬送方向と、剥離される基材フィルム41の面方向又は搬送方向とがなす角度をいう。
The peeling angle of the base film 41 with respect to the laminate from which the base film 41 is peeled is usually larger than 90 degrees and 180 degrees or less. From the viewpoint of facilitating the peeling of the base film 41, the peeling angle is preferably 120 degrees or more and 180 degrees or less.
The peeling angle refers to an angle formed by the surface direction or transport direction of the laminated body when the base film 41 is peeled off and the surface direction or transport direction of the base film 41 to be peeled off.
 準備工程で用意される積層体が基材フィルム41と配向層32と位相差発現層31とを有する場合において、基材フィルム41の剥離の際、基材フィルム41とともに配向層32が剥離される場合は、本工程により、積層体の表面に位相差発現層31の表面が露出する。配向層32が剥離されずに積層体側に残存する場合には、積層体の表面に配向層32の表面が露出する。
 準備工程で用意される積層体が基材フィルム41と位相差発現層31とを有し、配向層32を有しない場合においては、本工程により、積層体の表面に位相差発現層31の表面が露出する。
When the laminate prepared in the preparation step has the base film 41, the alignment layer 32, and the retardation expression layer 31, when the base film 41 is peeled off, the alignment layer 32 is peeled off together with the base film 41. In this case, the surface of the phase difference developing layer 31 is exposed on the surface of the laminate by this step. When the alignment layer 32 remains on the laminate side without being peeled off, the surface of the alignment layer 32 is exposed on the surface of the laminate.
When the laminate prepared in the preparatory step has the base film 41 and the retardation layer 31 and does not have the alignment layer 32, the surface of the retardation layer 31 is on the surface of the laminate by this step. Is exposed.
 〔3〕積層工程
 本工程は、基材フィルム41を剥離した後の位相差層30の剥離面(露出面)に、活性エネルギー線硬化性接着剤層(接着剤層)20を介して光学フィルム10を積層する工程である。本工程により、図1に示される層構成と同様の層構成を得る。上記剥離面は、配向層32の表面又は位相差発現層31の表面であり得る。活性エネルギー線硬化性接着剤としては、位相差層30及び光学フィルム10を接着する能力を有するものが用いられる。
[3] Laminating Step In this step, an optical film is formed on the peeled surface (exposed surface) of the retardation layer 30 after the base film 41 is peeled off, via the active energy ray-curable adhesive layer (adhesive layer) 20. This is a step of laminating 10. By this step, a layer structure similar to the layer structure shown in FIG. 1 is obtained. The peeled surface may be the surface of the alignment layer 32 or the surface of the retardation expression layer 31. As the active energy ray-curable adhesive, one having an ability to bond the retardation layer 30 and the optical film 10 is used.
 積層工程において、光学フィルム10と接着剤層20と位相差層30とは、接着剤層20と位相差層30とが接するように積層される。また、光学フィルム10と接着剤層20と位相差層30とは、好ましくは、光学フィルム10と接着剤層20とが接するように積層される。 In the laminating step, the optical film 10, the adhesive layer 20, and the retardation layer 30 are laminated so that the adhesive layer 20 and the retardation layer 30 are in contact with each other. Further, the optical film 10, the adhesive layer 20, and the retardation layer 30 are preferably laminated so that the optical film 10 and the adhesive layer 20 are in contact with each other.
 積層工程は、光学フィルム10の接着面及び位相差層30の接着面(剥離面)から選択される1以上の面に接着剤層20を形成し、接着剤層20を介して光学フィルム10と位相差層30とを積層することによって実施することができる。接着剤層20は、公知の塗工方法によって接着面に活性エネルギー線硬化性接着剤を塗工することによって形成できる。
 積層工程によって得られる積層体において、接着剤層20の厚みは、通常0.5μm以上50μm以下であり、皺欠陥を抑制する観点、光学フィルム10と位相差層30との間の接着性の観点、及び得られる光学積層体の薄型化の観点から、好ましくは1μm以上30μm以下、より好ましくは2μm以上20μm以下である。
In the laminating step, the adhesive layer 20 is formed on one or more surfaces selected from the adhesive surface of the optical film 10 and the adhesive surface (peeling surface) of the retardation layer 30, and the adhesive layer 20 is interposed with the optical film 10. It can be carried out by laminating the retardation layer 30. The adhesive layer 20 can be formed by applying an active energy ray-curable adhesive to the adhesive surface by a known coating method.
In the laminated body obtained by the laminating step, the thickness of the adhesive layer 20 is usually 0.5 μm or more and 50 μm or less, from the viewpoint of suppressing wrinkle defects, and from the viewpoint of adhesiveness between the optical film 10 and the retardation layer 30. From the viewpoint of thinning the obtained optical laminate, the thickness is preferably 1 μm or more and 30 μm or less, and more preferably 2 μm or more and 20 μm or less.
 光学フィルム10の接着面及び位相差層30の接着面(剥離面)から選択される1以上の面には、接着剤層20を形成する前に、あらかじめプラズマ処理、コロナ処理、紫外線照射処理、フレーム(火炎)処理、ケン化処理のような表面活性化処理を行ってもよい。
この表面活性化処理により、光学フィルム10と位相差層30との接着性を高め得る。
Before forming the adhesive layer 20, one or more surfaces selected from the adhesive surface of the optical film 10 and the adhesive surface (peeling surface) of the retardation layer 30 are subjected to plasma treatment, corona treatment, ultraviolet irradiation treatment, etc. in advance. Surface activation treatment such as frame (flame) treatment and saponification treatment may be performed.
By this surface activation treatment, the adhesiveness between the optical film 10 and the retardation layer 30 can be enhanced.
 光学フィルム10は、単層構造のフィルムであってもよいし、多層構造のフィルムであってもよい。光学フィルム10としては、例えば、直線偏光板等を挙げることができる。
 光学フィルム10が直線偏光板である場合、積層工程によって得られる積層体において、好ましくは、直線偏光板に含まれる直線偏光子と接着剤層20とが接している。
 光学フィルム10及び活性エネルギー線硬化性接着剤については、後掲の<光学積層体>の項でより詳細に説明する。
The optical film 10 may be a single-layer structure film or a multi-layer structure film. Examples of the optical film 10 include a linear polarizing plate and the like.
When the optical film 10 is a linear polarizing plate, the linear polarizing element contained in the linear polarizing plate is preferably in contact with the adhesive layer 20 in the laminated body obtained by the laminating step.
The optical film 10 and the active energy ray-curable adhesive will be described in more detail in the section <Optical laminate> described later.
 上記剥離工程及び積層工程を含む本実施形態に係る製造方法によれば、小さな曲率半径で湾曲させても皺欠陥を生じにくい光学積層体を製造することが可能となる。これは、次の理由によるものと推定される。
 剥離工程において50m/分以上の剥離速度で位相差層30から基材フィルム41を剥離すると、剥離後の位相差層30の表面(剥離面)が荒れる。このような位相差層30の表面の荒れは、続く積層工程において該表面に接着剤層20を積層・接触させたときに接着剤層20との密着力を向上させる。
 上記密着力が向上すると、硬化接着剤層(硬化後の接着剤層)と位相差層30とは、光学積層体を湾曲させたときに一体となって変形するため、皺欠陥の発生が抑制されやすくなるものと考えられる。
 本実施形態に係る製造方法は、得られる光学積層体において、後述する虹ムラを抑制するうえでも有利である。
According to the manufacturing method according to the present embodiment including the peeling step and the laminating step, it is possible to manufacture an optical laminated body which is less likely to cause wrinkle defects even if it is curved with a small radius of curvature. This is presumed to be due to the following reasons.
When the base film 41 is peeled from the retardation layer 30 at a peeling speed of 50 m / min or more in the peeling step, the surface (peeling surface) of the retardation layer 30 after peeling is roughened. Such roughness of the surface of the retardation layer 30 improves the adhesive force with the adhesive layer 20 when the adhesive layer 20 is laminated and brought into contact with the surface in the subsequent laminating step.
When the adhesive force is improved, the cured adhesive layer (adhesive layer after curing) and the retardation layer 30 are integrally deformed when the optical laminate is curved, so that the occurrence of wrinkle defects is suppressed. It is thought that it will be easier to do.
The manufacturing method according to the present embodiment is also advantageous in suppressing rainbow unevenness, which will be described later, in the obtained optical laminate.
 本実施形態では、位相差層30の表面を粗面化するための手段として、基材フィルム41の剥離速度を制御している。粗面化するための他の手段としては、例えば、あらかじめ少なくとも一方の面が粗面化されている基材フィルムを用い、この粗面化された面に位相差層30を形成して、準備工程において用意される積層体としてもよい。
 基材フィルム41の表面の粗面化は、該表面を摩擦する方法等により実施できる。
In the present embodiment, the peeling speed of the base film 41 is controlled as a means for roughening the surface of the retardation layer 30. As another means for roughening, for example, a base film having at least one surface roughened in advance is used, and a retardation layer 30 is formed on the roughened surface to prepare the surface. It may be a laminate prepared in the process.
The surface of the base film 41 can be roughened by a method of rubbing the surface or the like.
 〔4〕硬化工程
 本工程において、活性エネルギー線の照射により接着剤層20を硬化させて硬化接着剤層20aを形成することによって、図2と同様の層構成を有する光学積層体を得ることができる。本工程については、実施形態1の硬化工程についての記述が引用される。
[4] Curing Step In this step, the adhesive layer 20 is cured by irradiation with active energy rays to form a cured adhesive layer 20a, whereby an optical laminate having the same layer structure as in FIG. 2 can be obtained. it can. For this step, the description of the curing step of the first embodiment is quoted.
 <光学積層体>
 図2を参照して、本発明に係る光学積層体(以下、単に「光学積層体」ともいう。)は、光学フィルム10と、活性エネルギー線硬化性接着剤の硬化物層である硬化接着剤層20aと、位相差発現層(重合性液晶化合物の硬化物層)を含む位相差層30とをこの順に備える。
 光学積層体は、有機EL表示装置等の画像表示装置に好適に適用することができる。
<Optical laminate>
With reference to FIG. 2, the optical laminate according to the present invention (hereinafter, also simply referred to as “optical laminate”) is a cured adhesive which is a cured product layer of an optical film 10 and an active energy ray-curable adhesive. The layer 20a and the retardation layer 30 including the retardation expression layer (cured product layer of the polymerizable liquid crystal compound) are provided in this order.
The optical laminate can be suitably applied to an image display device such as an organic EL display device.
 光学積層体において、硬化接着剤層20aと位相差層30とは接している。光学積層体において、好ましくは、光学フィルム10と硬化接着剤層20aとは接している。 In the optical laminate, the cured adhesive layer 20a and the retardation layer 30 are in contact with each other. In the optical laminate, the optical film 10 and the cured adhesive layer 20a are preferably in contact with each other.
 光学積層体は、位相差層30における硬化接着剤層20a側の表面(図2における表面Xa)が、下記(a)~(d):
 (a)算術平均粗さSaが0.065μm以上である、
 (b)二乗平均平方根高さSqが0.085μm以上である、
 (c)界面の展開面積比Sdrが0.2%以上である、
 (d)二法平均平方根傾斜Sdqが0.065以上である
のいずれか1以上を満たす。
In the optical laminate, the surface (surface Xa in FIG. 2) on the curing adhesive layer 20a side of the retardation layer 30 has the following (a) to (d):
(A) Arithmetic mean roughness Sa is 0.065 μm or more.
(B) The root mean square height Sq is 0.085 μm or more.
(C) The development area ratio Sdr of the interface is 0.2% or more.
(D) Satisfy any one or more of the root mean square slope Sdq of 0.065 or more.
 算術平均粗さSa、二乗平均平方根高さSq、界面の展開面積比Sdr及び二法平均平方根傾斜Sdqはいずれも面の粗さを表す指標であり、ISO 25178に準拠して、[実施例]の項に記載の方法によって測定される。 Arithmetic mean roughness Sa, square root mean square root height Sq, interface development area ratio Sdr, and root mean square slope Sdq are all indicators of surface roughness, and are based on ISO 25178 [Examples]. It is measured by the method described in the section.
 本発明に係る光学積層体は、上記(a)~(d)のいずれか1以上を満たしているため、小さな曲率半径で湾曲させても皺欠陥を生じにくい。これは、位相差層30における硬化接着剤層20a側の表面の粗さにより硬化接着剤層20aと位相差層30との密着力が向上しており、したがって、硬化接着剤層20と位相差層30とは、光学積層体を湾曲させたときに一体となって変形するためであると考えられる。 Since the optical laminate according to the present invention satisfies any one or more of the above (a) to (d), wrinkle defects are unlikely to occur even if it is curved with a small radius of curvature. This is because the adhesion between the cured adhesive layer 20a and the retardation layer 30 is improved by the roughness of the surface of the retardation layer 30 on the side of the curing adhesive layer 20a, and therefore, the phase difference between the curing adhesive layer 20 and the curing adhesive layer 20a. It is considered that the layer 30 is because the optical laminate is integrally deformed when it is curved.
 また、上記(a)~(d)のいずれか1以上を満たす光学積層体は、その光学フィルム10側の表面からみたときの反射光において虹ムラを抑制できる点で有利である。虹ムラを抑制できることは、光学積層体を有機EL表示装置等の画像表示装置に適用したときの該装置の視認性を向上させるうえで有利である。
 上記(a)~(d)のいずれか1以上を満たす光学積層体が虹ムラを抑制できるのは、光学積層体の内部に入射した光が各層の界面で反射することによって生じる反射光同士の干渉を抑制できるためであると考えられる。
Further, an optical laminate satisfying any one or more of the above (a) to (d) is advantageous in that rainbow unevenness can be suppressed in the reflected light when viewed from the surface of the optical film 10 side. The ability to suppress rainbow unevenness is advantageous in improving the visibility of the optical laminate when it is applied to an image display device such as an organic EL display device.
An optical laminate satisfying any one or more of the above (a) to (d) can suppress rainbow unevenness because the reflected light generated by the light incident inside the optical laminate is reflected at the interface of each layer. This is thought to be because interference can be suppressed.
 上記(a)~(d)のいずれか1以上を満たす光学積層体は、上記<光学積層体の製造方法>の項に記載される本発明に係る製造方法によって好適に製造することができる。 An optical laminate satisfying any one or more of the above (a) to (d) can be suitably produced by the production method according to the present invention described in the above section <Method for producing an optical laminate>.
 皺欠陥の発生及び虹ムラをより効果的に抑制する観点から、光学積層体は、好ましくは、上記(a)~(d)のいずれか2以上を満たし、より好ましくは、上記(a)~(d)のいずれか3以上を満たし、さらに好ましくは、上記(a)~(d)のすべてを満たす。 From the viewpoint of more effectively suppressing the occurrence of wrinkle defects and rainbow unevenness, the optical laminate preferably satisfies any two or more of the above (a) to (d), and more preferably the above (a) to (a). Any 3 or more of (d) is satisfied, and more preferably all of the above (a) to (d) are satisfied.
 上記(a)における算術平均粗さSaは、皺欠陥の発生及び虹ムラをより効果的に抑制する観点から、好ましくは0.067μm以上であり、より好ましくは0.070μm以上である。算術平均粗さSaは、通常0.200μm以下であり、光学積層体の内部ヘイズを小さくして透明性を確保し、光線透過率を保持する観点から、好ましくは0.150μm以下である。 The arithmetic mean roughness Sa in (a) above is preferably 0.067 μm or more, more preferably 0.070 μm or more, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects and rainbow unevenness. The arithmetic mean roughness Sa is usually 0.200 μm or less, and is preferably 0.150 μm or less from the viewpoint of reducing the internal haze of the optical laminate to ensure transparency and maintaining light transmittance.
 上記(b)における二乗平均平方根高さSqは、皺欠陥の発生及び虹ムラをより効果的に抑制する観点から、好ましくは0.087μm以上であり、より好ましくは0.090μm以上である。二乗平均平方根高さSqは、通常0.250μm以下であり、光学積層体の内部ヘイズを小さくして透明性を確保し、光線透過率を保持する観点から、好ましくは0.200μm以下である。 The root mean square height Sq in (b) above is preferably 0.087 μm or more, more preferably 0.090 μm or more, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects and rainbow unevenness. The root mean square height Sq is usually 0.250 μm or less, and is preferably 0.200 μm or less from the viewpoint of reducing the internal haze of the optical laminate to ensure transparency and maintaining light transmittance.
 上記(c)における界面の展開面積比Sdrは、皺欠陥の発生及び虹ムラをより効果的に抑制する観点から、好ましくは0.25%以上であり、より好ましくは0.3%以上である。界面の展開面積比Sdrは、通常1.20%以下であり、光学積層体の内部ヘイズを小さくして透明性を確保し、光線透過率を保持する観点から、好ましくは1.10%以下である。 The development area ratio Sdr of the interface in (c) above is preferably 0.25% or more, more preferably 0.3% or more, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects and rainbow unevenness. .. The development area ratio Sdr of the interface is usually 1.20% or less, and is preferably 1.10% or less from the viewpoint of reducing the internal haze of the optical laminate to ensure transparency and maintaining light transmittance. is there.
 上記(d)における二法平均平方根傾斜Sdqは、皺欠陥の発生及び虹ムラをより効果的に抑制する観点から、好ましくは0.070以上であり、より好ましくは0.072以上である。二法平均平方根傾斜Sdqは、通常0.180以下であり、光学積層体の内部ヘイズを小さくして透明性を確保し、光線透過率を保持する観点から、好ましくは0.160以下である。 The root mean square slope Sdq in (d) above is preferably 0.070 or more, more preferably 0.072 or more, from the viewpoint of more effectively suppressing the occurrence of wrinkle defects and rainbow unevenness. The root mean square slope Sdq is usually 0.180 or less, and is preferably 0.160 or less from the viewpoint of reducing the internal haze of the optical laminate to ensure transparency and maintaining light transmittance.
 以下、光学積層体を構成する又は構成し得る要素について説明する。
 〔1〕光学フィルム
 上述のように、光学フィルム10は、単層構造のフィルムであってもよいし、多層構造のフィルムであってもよい。
 光学フィルム10としては、例えば、直線偏光板、直線偏光子等を挙げることができる。
Hereinafter, the elements that form or may form the optical laminate will be described.
[1] Optical film As described above, the optical film 10 may be a single-layer structure film or a multi-layer structure film.
Examples of the optical film 10 include a linear polarizing plate and a linear polarizer.
 〔2〕直線偏光板
 直線偏光板は、少なくとも直線偏光子を含む光学素子であり、直線偏光子の少なくとも一方の面に貼合される熱可塑性樹脂フィルム等をさらに含んでいてもよい。直線偏光子とは、無偏光の光を入射させたとき、吸収軸に直交する振動面をもつ直線偏光を透過させる性質を有する光学素子をいう。
[2] Linear Polarizing Plate The linear polarizing plate is an optical element containing at least a linear polarizing element, and may further include a thermoplastic resin film or the like attached to at least one surface of the linear polarizing element. The linear polarized light refers to an optical element having a property of transmitting linearly polarized light having a vibrating surface orthogonal to the absorption axis when unpolarized light is incident.
 直線偏光子は、例えば、ポリビニルアルコール樹脂フィルムを配向させたものに、ヨウ素等の二色性色素を吸着配向させたものであってよい。直線偏光子は、単層のポリビニルアルコール樹脂フィルム(ポリビニルアルコール樹脂フィルムに含まれるポリビニルアルコール分子が配向したもの)に二色性色素が吸着配向したものであってもよく、基材フィルム上に二色性色素が吸着配向したポリビニルアルコール樹脂層を設けた二層以上の積層フィルムであってもよい。このような直線偏光子は、本技術分野で公知の種々の方法によって製造することができる。
 単層のポリビニルアルコール樹脂フィルムに二色性色素が吸着配向してなる直線偏光子の厚みは、好ましくは20μm以下であり、より好ましくは15μm以下であり、さらに好ましくは10μm以下である。
The linear polarizer may be, for example, one in which a polyvinyl alcohol resin film is oriented and a dichroic dye such as iodine is adsorbed and oriented. The linear polarizer may be a monolayer polyvinyl alcohol resin film (polyvinyl alcohol molecules contained in the polyvinyl alcohol resin film oriented) with a bicolor dye adsorbed or oriented, and may be formed on the base film. It may be a laminated film having two or more layers provided with a polyvinyl alcohol resin layer in which a color dye is adsorbed and oriented. Such linear polarizers can be produced by various methods known in the art.
The thickness of the linear polarizer in which the dichroic dye is adsorbed and oriented on the single-layer polyvinyl alcohol resin film is preferably 20 μm or less, more preferably 15 μm or less, and further preferably 10 μm or less.
 直線偏光子は、重合性液晶化合物に二色性色素を配向させ、重合性液晶化合物を重合させた硬化膜であってもよい。該直線偏光子は、通常、熱可塑性樹脂フィルム等からなる基材フィルム、又はこの上に設けられた配向層上に、重合性液晶化合物及び二色性色素を含む組成物を塗工して乾燥し、紫外線等の活性エネルギー線照射により、塗工膜に含まれる重合性液晶化合物を重合させて硬化させることで得ることができる。このようにして得られた基材フィルムと直線偏光子(硬化膜)との積層体は、直線偏光板として用いることができる。 The linear polarizer may be a cured film obtained by orienting a dichroic dye on a polymerizable liquid crystal compound and polymerizing the polymerizable liquid crystal compound. The linear polarizer is usually dried by applying a composition containing a polymerizable liquid crystal compound and a bicolor dye on a base film made of a thermoplastic resin film or the like or an alignment layer provided on the base film. However, it can be obtained by polymerizing and curing the polymerizable liquid crystal compound contained in the coating film by irradiation with active energy rays such as ultraviolet rays. The laminate of the base film and the linear polarizing element (cured film) thus obtained can be used as a linear polarizing plate.
 上記の硬化膜を形成するための基材フィルムの厚みは特に限定されないが、一般には強度や取扱い性等の作業性の観点から、好ましくは1μm以上300μm以下であり、より好ましくは10μm以上200μm以下であり、さらに好ましくは30μm以上120μm以下である。 The thickness of the base film for forming the cured film is not particularly limited, but generally, from the viewpoint of workability such as strength and handleability, it is preferably 1 μm or more and 300 μm or less, and more preferably 10 μm or more and 200 μm or less. It is more preferably 30 μm or more and 120 μm or less.
 直線偏光板において、直線偏光子の少なくとも一方の面に貼合される熱可塑性樹脂フィルムとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ノルボルネン系ポリマー等の環状ポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリ(メタ)アクリル酸メチル等の(メタ)アクリル酸系樹脂;トリアセチルセルロース、ジアセチルセルロース及びセルロースアセテートプロピオネート等のセルロースエステル系樹脂;ポリビニルアルコール及びポリ酢酸ビニル等のビニルアルコール系樹脂;ポリカーボネート系樹脂;ポリスチレン系樹脂;ポリアリレート系樹脂;ポリスルホン系樹脂;ポリエーテルスルホン系樹脂;ポリアミド系樹脂;ポリイミド系樹脂;ポリエーテルケトン系樹脂;ポリフェニレンスルフィド系樹脂;ポリフェニレンオキシド系樹脂、及びこれらの混合物、共重合物等から構成される樹脂フィルムが挙げられる。
 上記樹脂のうち、環状ポリオレフィン系樹脂、ポリエステル系樹脂、セルロースエステル系樹脂及び(メタ)アクリル酸系樹脂のいずれか又はこれらの混合物を用いることが好ましい。
 なお、「(メタ)アクリル酸」とは、「アクリル酸及びメタクリル酸の少なくとも1種」を意味する。
In the linear polarizing plate, examples of the thermoplastic resin film bonded to at least one surface of the linear polarizer include a polyolefin resin such as polyethylene and polypropylene; a cyclic polyolefin resin such as a norbornene polymer; polyethylene terephthalate and polyethylene. Polyester resin such as naphthalate; (meth) acrylic acid resin such as methyl poly (meth) acrylate; cellulose ester resin such as triacetyl cellulose, diacetyl cellulose and cellulose acetate propionate; polyvinyl alcohol and polyvinyl acetate Vinyl alcohol-based resins such as; polycarbonate-based resins; polystyrene-based resins; polyarylate-based resins; polysulfone-based resins; polyether sulfone-based resins; polyamide-based resins; polyimide-based resins; polyether ketone-based resins; polyphenylene sulfide-based resins; polyphenylene. Examples thereof include an oxide-based resin and a resin film composed of a mixture thereof, a copolymer and the like.
Among the above resins, it is preferable to use any one of cyclic polyolefin-based resin, polyester-based resin, cellulose ester-based resin and (meth) acrylic acid-based resin, or a mixture thereof.
In addition, "(meth) acrylic acid" means "at least one kind of acrylic acid and methacrylic acid".
 熱可塑性樹脂フィルムは、樹脂材料を1種又は2種以上を混合した単層であってもよく、2層以上の多層構造を有していてもよい。多層構造を有する場合、各層を構成する樹脂は互いに同じであってもよく異なっていてもよい。
 熱可塑性樹脂フィルムには、任意の添加剤が添加されていてもよい。添加剤としては、例えば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、及び着色剤等が挙げられる。
The thermoplastic resin film may be a single layer obtained by mixing one kind or two or more kinds of resin materials, or may have a multilayer structure of two or more layers. When having a multi-layer structure, the resins constituting each layer may be the same or different from each other.
Any additive may be added to the thermoplastic resin film. Examples of the additive include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a mold release agent, an antioxidant, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a coloring agent.
 熱可塑性樹脂フィルムの厚みは、光学積層体の薄型化及びフレキシブル性の観点及び光学積層体の耐久性の観点から、好ましくは2μm以上300μm以下であり、より好ましくは5μm以上200μm以下であり、さらに好ましくは5μm以上100μm以下であり、なおさらに好ましくは5μm以上50μm以下であり、特に好ましくは5μm以上30μm以下である。 The thickness of the thermoplastic resin film is preferably 2 μm or more and 300 μm or less, more preferably 5 μm or more and 200 μm or less, and further, from the viewpoint of thinning and flexibility of the optical laminate and the durability of the optical laminate. It is preferably 5 μm or more and 100 μm or less, more preferably 5 μm or more and 50 μm or less, and particularly preferably 5 μm or more and 30 μm or less.
 熱可塑性樹脂フィルムは、接着層を介して直線偏光子に積層することができる。
 接着層を形成する接着剤としては、例えば、水系接着剤、活性エネルギー線硬化性接着剤等が挙げられる。
 水系接着剤としては、例えばポリビニルアルコール系樹脂水溶液、水系二液型ウレタン系エマルジョン接着剤等を挙げることができる。
 活性エネルギー線硬化性接着剤は、紫外線等の活性エネルギー線を照射することによって硬化する接着剤であり、例えば重合性化合物及び光重合性開始剤を含むもの、光反応性樹脂を含むもの、バインダー樹脂及び光反応性架橋剤を含むもの等を挙げることができる。上記重合性化合物としては、光硬化性エポキシ系モノマー、光硬化性(メタ)アクリル系モノマー、光硬化性ウレタン系モノマー等の光重合性モノマーや、これらモノマーに由来するオリゴマー等を挙げることができる。上記光重合開始剤としては、紫外線等の活性エネルギー線を照射して中性ラジカル、アニオンラジカル、カチオンラジカルといった活性種を発生する物質を含むものを挙げることができる。
The thermoplastic resin film can be laminated on the linear polarizer via an adhesive layer.
Examples of the adhesive forming the adhesive layer include water-based adhesives and active energy ray-curable adhesives.
Examples of the water-based adhesive include a polyvinyl alcohol-based resin aqueous solution, a water-based two-component urethane-based emulsion adhesive, and the like.
The active energy ray-curable adhesive is an adhesive that cures by irradiating with active energy rays such as ultraviolet rays, and includes, for example, a polymerizable compound and a photopolymerizable initiator, a photoreactive resin, and a binder. Examples thereof include those containing a resin and a photoreactive cross-linking agent. Examples of the polymerizable compound include photopolymerizable monomers such as a photocurable epoxy monomer, a photocurable (meth) acrylic monomer, and a photocurable urethane monomer, and oligomers derived from these monomers. .. Examples of the photopolymerization initiator include substances that generate active species such as neutral radicals, anion radicals, and cationic radicals by irradiating them with active energy rays such as ultraviolet rays.
 直線偏光板は、上記以外の他のフィルム又は層をさらに含むことができる。他のフィルム又は層としては、直線偏光板の表面に積層されるプロテクトフィルム;直線偏光板の適宜の位置に配置される反射フィルム、半透過型反射フィルム、光学補償フィルム、防眩機能付きフィルム、位相差フィルム等が挙げられる。 The linear polarizing plate can further include a film or layer other than the above. Other films or layers include a protective film laminated on the surface of the linear polarizing plate; a reflective film placed at an appropriate position on the linear polarizing plate, a transflective reflective film, an optical compensation film, a film with an antiglare function, and the like. Examples include a retardation film.
 直線偏光板は、好ましくは、図4に示されるような、直線偏光子の一方の面のみに熱可塑性樹脂フィルムを貼合した片保護偏光板である。直線偏光板が片保護偏光板であると、その厚みは薄いものであるので、結果として、光学積層体の厚みを薄くできる。そのため、例えば、本発明の光学積層体を備えた有機EL表示装置は、屈曲や折曲げ、巻回し等が可能なフレキシブル有機EL表示装置として適用しやすくなる。
 光学フィルム10が片保護偏光板である場合、光学積層体において直線偏光子は、硬化接着剤層20aと接していることが好ましい。
The linear polarizing plate is preferably a single-protective polarizing plate in which a thermoplastic resin film is bonded to only one surface of the linear polarizing element, as shown in FIG. When the linear polarizing plate is a single-protective polarizing plate, the thickness thereof is thin, and as a result, the thickness of the optical laminate can be reduced. Therefore, for example, the organic EL display device provided with the optical laminate of the present invention can be easily applied as a flexible organic EL display device capable of bending, bending, winding, and the like.
When the optical film 10 is a single-protective polarizing plate, it is preferable that the linear polarizer is in contact with the cured adhesive layer 20a in the optical laminate.
 〔3〕硬化接着剤層
 硬化接着剤層20aは、活性エネルギー線硬化性接着剤の硬化物層である。硬化接着剤層20aは、上述の積層工程において形成される活性エネルギー線硬化性接着剤層(接着剤層)20を硬化工程において硬化させることによって形成することができる。
 該活性エネルギー線硬化性接着剤としては、上記〔2〕で述べた活性エネルギー線硬化性接着剤と同様のものを用いることができる。
[3] Curing Adhesive Layer The curing adhesive layer 20a is a cured product layer of an active energy ray-curable adhesive. The cured adhesive layer 20a can be formed by curing the active energy ray-curable adhesive layer (adhesive layer) 20 formed in the above-mentioned laminating step in the curing step.
As the active energy ray-curable adhesive, the same one as the active energy ray-curable adhesive described in the above [2] can be used.
 光学積層体において、硬化接着剤層20aの厚みは、通常0.5μm以上50μm以下であり、皺欠陥を抑制する観点、光学フィルム10と位相差層30との間の接着性の観点、及び得られる光学積層体の薄型化の観点から、好ましくは1μm以上30μm以下、より好ましくは2μm以上20μm以下である。 In the optical laminate, the thickness of the cured adhesive layer 20a is usually 0.5 μm or more and 50 μm or less, from the viewpoint of suppressing wrinkle defects, from the viewpoint of adhesiveness between the optical film 10 and the retardation layer 30, and obtaining. From the viewpoint of thinning the optical laminate, the thickness is preferably 1 μm or more and 30 μm or less, and more preferably 2 μm or more and 20 μm or less.
 〔4〕位相差層
 位相差層30は、重合性液晶化合物の硬化物層である位相差発現層31を含み、配向層32をさらに含んでいてもよい。
[4] Phase Difference Layer The phase difference layer 30 includes a retardation expression layer 31 which is a cured product layer of a polymerizable liquid crystal compound, and may further include an alignment layer 32.
 位相差発現層31は、重合性液晶化合物を用いて形成したものであり、この重合性液晶化合物としては公知のものを使用できる。重合性液晶化合物の種類は特に限定されず、棒状液晶化合物、円盤状液晶化合物、及びこれらの混合物を用いることができる。逆波長分散性の1/4波長板を形成するための重合性液晶化合物は棒状液晶化合物、例えば、特開2011-207765号公報に記載の重合性液晶化合物であることが好ましい。 The retardation expression layer 31 is formed by using a polymerizable liquid crystal compound, and a known polymerizable liquid crystal compound can be used. The type of the polymerizable liquid crystal compound is not particularly limited, and a rod-shaped liquid crystal compound, a disk-shaped liquid crystal compound, and a mixture thereof can be used. The polymerizable liquid crystal compound for forming the 1/4 wave plate having a reverse wavelength dispersibility is preferably a rod-shaped liquid crystal compound, for example, the polymerizable liquid crystal compound described in JP-A-2011-207765.
 重合性液晶化合物及び溶剤、並びに必要に応じて各種添加剤を含む位相差発現層形成用組成物を、配向層32上に塗布して塗膜を形成し、この塗膜を硬化させることによって、重合性液晶化合物の硬化物層である位相差発現層31を形成することができる。あるいは、基材フィルム上に位相差発現層形成用組成物を直接塗布して塗膜を形成し、この塗膜を基材フィルムとともに延伸することによって位相差発現層31を形成してもよい。
 位相差発現層31の厚みは、通常0.1μm以上10μm以下であり、好ましくは0.2μm以上5μm以下である。
A composition for forming a retardation expression layer containing a polymerizable liquid crystal compound, a solvent, and various additives as necessary is applied onto the alignment layer 32 to form a coating film, and the coating film is cured. The retardation expression layer 31 which is a cured product layer of the polymerizable liquid crystal compound can be formed. Alternatively, the retardation expression layer forming composition may be directly applied onto the base film to form a coating film, and the coating film may be stretched together with the base film to form the retardation expression layer 31.
The thickness of the retardation expression layer 31 is usually 0.1 μm or more and 10 μm or less, preferably 0.2 μm or more and 5 μm or less.
 位相差発現層形成用組成物は、上記した重合性液晶化合物及び溶剤の他に、重合開始剤、反応性添加剤、レベリング剤、重合禁止剤等を含んでいてもよい。重合性液晶化合物、溶剤、重合開始剤、反応性添加剤、レベリング剤、重合禁止剤等は、公知のものを適宜用いることができる。
 位相差発現層形成用組成物及び位相差発現層に含まれていてもよいレベリング剤としては、例えば、有機変性シリコーンオイルを主成分とするレベリング剤、ポリアクリレート化合物を主成分とするレベリング剤、パーフルオロアルキル等のフッ素原子含有化合物を主成分とするレベリング剤等を挙げることができる。主成分とは、レベリング剤に含まれる全成分のうち、最も配合量が多い成分をいう。位相差発現層形成用組成物におけるレベリング剤の含有量は、重合性液晶化合物100質量部に対して、好ましくは0.01質量部以上5質量部以下であり、より好ましくは0.1質量部以上3質量部以下である。
The composition for forming a retardation layer may contain a polymerization initiator, a reactive additive, a leveling agent, a polymerization inhibitor and the like in addition to the above-mentioned polymerizable liquid crystal compound and solvent. As the polymerizable liquid crystal compound, the solvent, the polymerization initiator, the reactive additive, the leveling agent, the polymerization inhibitor and the like, known ones can be appropriately used.
Examples of the leveling agent that may be contained in the composition for forming the retardation expression layer and the retardation expression layer include a leveling agent containing an organically modified silicone oil as a main component and a leveling agent containing a polyacrylate compound as a main component. Examples thereof include leveling agents containing a fluorine atom-containing compound such as perfluoroalkyl as a main component. The main component refers to the component having the largest amount of all the components contained in the leveling agent. The content of the leveling agent in the composition for forming the retardation layer is preferably 0.01 parts by mass or more and 5 parts by mass or less, and more preferably 0.1 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. It is 3 parts by mass or less.
 位相差層30に含まれていてもよい配向層32は、その上に形成される液晶層に含まれる重合性液晶化合物を所望の方向に液晶配向させる配向規制力を有する層である。配向層32としては、配向性ポリマーで形成された配向性ポリマー層、光配向ポリマーで形成された光配向性ポリマー層、層表面に凹凸パターンや複数のグルブ(溝)を有するグルブ配向層を挙げることができる。
 配向層32の厚みは、通常10nm以上500nm以下であり、好ましくは10nm以上200nm以下である。
The alignment layer 32, which may be included in the retardation layer 30, is a layer having an orientation restricting force for aligning the polymerizable liquid crystal compound contained in the liquid crystal layer formed on the retarding layer 30 in a desired direction. Examples of the oriented layer 32 include an oriented polymer layer formed of an oriented polymer, a photo-oriented polymer layer formed of a photo-aligned polymer, and a grub-aligned layer having a concavo-convex pattern and a plurality of grubs (grooves) on the layer surface. be able to.
The thickness of the alignment layer 32 is usually 10 nm or more and 500 nm or less, preferably 10 nm or more and 200 nm or less.
 配向性ポリマー層は、配向性ポリマーを溶剤に溶解した組成物を基材フィルム41に塗布して溶剤を除去し、必要に応じてラビング処理を施して形成することができる。この場合、配向規制力は、配向性ポリマーの表面状態やラビング条件によって任意に調整することが可能である。 The oriented polymer layer can be formed by applying a composition in which the oriented polymer is dissolved in a solvent to the base film 41 to remove the solvent, and if necessary, performing a rubbing treatment. In this case, the orientation regulating force can be arbitrarily adjusted depending on the surface condition of the orientation polymer and the rubbing conditions.
 光配向性ポリマー層は、光反応性基を有するポリマー又はモノマーと溶剤とを含む組成物を基材フィルム41に塗布し、偏光を照射することによって形成することができる。この場合、配向規制力は、光配向性ポリマー層では、光配向性ポリマーに対する偏光照射条件等によって任意に調整することが可能である。 The photooriented polymer layer can be formed by applying a composition containing a polymer or monomer having a photoreactive group and a solvent to the base film 41 and irradiating it with polarized light. In this case, in the photo-alignment polymer layer, the orientation-regulating force can be arbitrarily adjusted depending on the polarization irradiation conditions for the photo-orientation polymer.
 グルブ配向層は、例えば感光性ポリイミド膜表面にパターン形状のスリットを有する露光用マスクを介して露光、現像等を行って凹凸パターンを形成する方法、表面に溝を有する板状の原盤に、活性エネルギー線硬化性樹脂の未硬化の層を形成し、この層を基材フィルム41に転写して硬化する方法、基材フィルム41に活性エネルギー線硬化性樹脂の未硬化の層を形成し、この層に、凹凸を有するロール状の原盤を押し当てる等により凹凸を形成して硬化させる方法等によって形成することができる。 The grub alignment layer is active on a plate-shaped master having grooves on the surface, for example, a method of forming a concavo-convex pattern by exposure, development, etc. through an exposure mask having a pattern-shaped slit on the surface of a photosensitive polyimide film. A method of forming an uncured layer of an energy ray-curable resin, transferring this layer to a base film 41 and curing it, forming an uncured layer of an active energy ray-curable resin on the base film 41, and this It can be formed by a method of forming irregularities and hardening them by pressing a roll-shaped master having irregularities against the layer.
 基材フィルム41としては、上述の熱可塑性樹脂フィルムと同様の構成を有する樹脂フィルムを用いることができる。
 基材フィルム41の厚みは特に限定されないが、一般には強度や取扱い性等の作業性の観点から、好ましくは1μm以上300μm以下であり、より好ましくは10μm以上200μm以下であり、さらに好ましくは30μm以上120μm以下である。
 基材フィルム41には、任意の添加剤が添加されていてもよい。添加剤としては、例えば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、及び着色剤等が挙げられる。
As the base film 41, a resin film having the same structure as the above-mentioned thermoplastic resin film can be used.
The thickness of the base film 41 is not particularly limited, but generally, from the viewpoint of workability such as strength and handleability, it is preferably 1 μm or more and 300 μm or less, more preferably 10 μm or more and 200 μm or less, and further preferably 30 μm or more. It is 120 μm or less.
Any additive may be added to the base film 41. Examples of the additive include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a mold release agent, an antioxidant, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a coloring agent.
 〔5〕位相差層積層体
 上述のように、光学積層体の製造方法に係る第1実施形態の積層工程及び第2実施形態の準備工程では、位相差層30として、位相差層30と他の位相差層とを含む位相差層積層体とを含む位相差層積層体を用いてもよい。
[5] Laminated Layers As described above, in the laminating step of the first embodiment and the preparatory step of the second embodiment related to the method for manufacturing an optical laminated body, the retardation layer 30 and others are used as the retardation layer 30. A retardation layer laminate including the retardation layer and the retardation layer laminate of the above may be used.
 図5は、位相差積層体の層構成の一例を示す概略断面図である。図5に示される位相差積層体は、基材フィルム41、配向層32、位相差発現層31、接着層61、位相差発現層71、配向層72、基材フィルム42をこの順に含む。図5に示される位相差積層体において、位相差発現層31及び配向層32が、光学積層体において光学フィルム10と硬化接着剤層20aを介して貼合される位相差層30となり得る。
 図5に示される位相差積層体において、配向層32及び配向層72の少なくともいずれか一方を有していなくてもよい。
FIG. 5 is a schematic cross-sectional view showing an example of the layer structure of the retardation laminate. The retardation laminate shown in FIG. 5 includes a base film 41, an alignment layer 32, a retardation expression layer 31, an adhesive layer 61, a retardation development layer 71, an alignment layer 72, and a base film 42 in this order. In the retardation layer shown in FIG. 5, the retardation layer 31 and the alignment layer 32 can be the retardation layer 30 which is bonded to the optical film 10 via the curing adhesive layer 20a in the optical laminate.
The retardation laminate shown in FIG. 5 may not have at least one of the alignment layer 32 and the alignment layer 72.
 図5に示される位相差積層体において、位相差発現層31と位相差発現層71との組み合わせは、例えば、1/2波長板と1/4波長板との組み合わせ、又は、逆波長分散性の1/4波長板とポジティブCプレートとの組み合わせである。
 1/2波長板と1/4波長板との組み合わせである場合において、光学積層体において光学フィルム10により近い側に配置される位相差発現層31が1/2波長板であることが好ましい。
In the retardation laminate shown in FIG. 5, the combination of the retardation layer 31 and the retardation layer 71 is, for example, a combination of a 1/2 wave plate and a 1/4 wave plate, or an inverse wavelength dispersibility. It is a combination of the 1/4 wave plate and the positive C plate.
In the case of a combination of the 1/2 wave plate and the 1/4 wave plate, it is preferable that the retardation expression layer 31 arranged on the side closer to the optical film 10 in the optical laminate is the 1/2 wave plate.
 光学積層体の製造方法に係る第1実施形態又は第2実施形態の積層工程において図5に示される位相差積層体が使用される場合、該位相差積層体は、基材フィルム41が剥離された後に、接着剤層20を介して光学フィルム10に積層される。
 図6は、光学積層体の製造方法に係る第1実施形態又は第2実施形態の積層工程において図5に示される位相差積層体を使用したときに製造される光学積層体の層構成の一例を示す概略断面図である。図6に示される光学積層体において、配向層32及び配向層72の少なくともいずれか一方を有していなくてもよい。
When the retardation laminate shown in FIG. 5 is used in the lamination step of the first embodiment or the second embodiment according to the method for manufacturing an optical laminate, the base film 41 is peeled off from the retardation laminate. After that, it is laminated on the optical film 10 via the adhesive layer 20.
FIG. 6 shows an example of the layer structure of the optical laminate manufactured when the retardation laminate shown in FIG. 5 is used in the lamination step of the first embodiment or the second embodiment according to the method for manufacturing the optical laminate. It is a schematic cross-sectional view which shows. The optical laminate shown in FIG. 6 may not have at least one of the alignment layer 32 and the alignment layer 72.
 図5に示される位相差積層体は、例えば、基材フィルム41/配向層32/位相差発現層31の層構成を有する積層体と、基材フィルム42/配向層72/位相差発現層71の層構成を有する積層体とを作製又は用意し、これらの積層体を接着層61を介して貼合することによって製造することができる。 The retardation laminate shown in FIG. 5 includes, for example, a laminate having a layer structure of a base film 41 / alignment layer 32 / retardation expression layer 31 and a substrate film 42 / alignment layer 72 / retardation expression layer 71. It can be manufactured by preparing or preparing a laminate having the above-mentioned layer structure and laminating these laminates via the adhesive layer 61.
 接着層61を形成する接着剤としては、例えば、水系接着剤、活性エネルギー線硬化性接着剤等が挙げられる。これらの接着剤としては、直線偏光子と熱可塑性樹脂フィルムとの貼合に用いることができる上述の接着剤と同様のものを用いることができる。
 接着層61として、粘着剤層を用いることもできる。粘着剤層を形成する粘着剤組成物としては、(メタ)アクリル系樹脂、スチレン系樹脂、シリコーン系樹脂等をベースポリマーとし、イソシアネート化合物、エポキシ化合物、アジリジン化合物等の架橋剤を加えた組成物を挙げることができる。
Examples of the adhesive forming the adhesive layer 61 include a water-based adhesive and an active energy ray-curable adhesive. As these adhesives, the same adhesives as those described above that can be used for bonding the linear polarizer and the thermoplastic resin film can be used.
An adhesive layer can also be used as the adhesive layer 61. The pressure-sensitive adhesive composition for forming the pressure-sensitive adhesive layer is a composition in which a (meth) acrylic resin, a styrene resin, a silicone resin or the like is used as a base polymer, and a cross-linking agent such as an isocyanate compound, an epoxy compound or an aziridine compound is added. Can be mentioned.
 接着層61は、皺欠陥の発生をより効果的に抑制する観点から、好ましくは、紫外線硬化性接着剤等の活性エネルギー線硬化型接着剤の硬化物層である。 The adhesive layer 61 is preferably a cured product layer of an active energy ray-curable adhesive such as an ultraviolet curable adhesive from the viewpoint of more effectively suppressing the occurrence of wrinkle defects.
 〔6〕粘着剤層
 光学積層体は、粘着剤層をさらに含むことができる。図7は、粘着剤層80を有する光学積層体の層構成の一例を示す概略断面図である。
 図7に示される光学積層体は、例えば、図6に示される光学積層体から基材フィルム42を剥離し、その剥離面に粘着剤層を積層することによって製造することができる。粘着剤層の外側の面にセパレートフィルムを積層してもよい。
[6] Adhesive Layer The optical laminate may further include an adhesive layer. FIG. 7 is a schematic cross-sectional view showing an example of the layer structure of the optical laminate having the pressure-sensitive adhesive layer 80.
The optical laminate shown in FIG. 7 can be manufactured, for example, by peeling the base film 42 from the optical laminate shown in FIG. 6 and laminating an adhesive layer on the peeled surface. A separate film may be laminated on the outer surface of the pressure-sensitive adhesive layer.
 以下、実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these examples.
 <実施例1>
 (1)直線偏光板の作製
 ポリビニルアルコール系樹脂フィルムにヨウ素を吸着・配向させてなる一軸延伸フィルムである直線偏光子〔厚み:8μm〕を準備した。
 上記直線偏光子の一方の面にポリビニルアルコール系接着剤を介して第1熱可塑性樹脂フィルムを積層するとともに、上記直線偏光子の他方の面に第2熱可塑性樹脂フィルムを積層し、一対の貼合ロール間に通して、第1熱可塑性樹脂フィルム/ポリビニルアルコール系接着剤層/直線偏光子/第2熱可塑性樹脂フィルムの層構成を有する積層体を得た。
直線偏光子と第2熱可塑性樹脂フィルムとの間には接着剤は介在しておらず、第2熱可塑性樹脂フィルムは、剥離可能に直線偏光子に積層されている。
<Example 1>
(1) Preparation of Linear Polarizing Plate A linear polarizer [thickness: 8 μm], which is a uniaxially stretched film formed by adsorbing and orienting iodine on a polyvinyl alcohol-based resin film, was prepared.
A first thermoplastic resin film is laminated on one surface of the linear polarizer via a polyvinyl alcohol-based adhesive, and a second thermoplastic resin film is laminated on the other surface of the linear polarizer, and a pair of patches is attached. A laminate having a layer structure of a first thermoplastic resin film / polyvinyl alcohol-based adhesive layer / linear polarizer / second thermoplastic resin film was obtained by passing it between the joint rolls.
No adhesive is interposed between the linear polarizer and the second thermoplastic resin film, and the second thermoplastic resin film is releasably laminated on the linear polarizer.
 第1熱可塑性樹脂フィルム及び第2熱可塑性樹脂フィルムとしては下記のものを用いた。
・第1熱可塑性樹脂フィルム:日本製紙(株)製のクリアハードコートフィルムである商品名「COP20ST-HC」(環状ポリオレフィン系樹脂フィルム上にクリアハードコート層が形成されているフィルム、厚み:25μm)
・第2熱可塑性樹脂フィルム:富士フイルム(株)製のトリアセチルセルロース(TAC)フィルムである商品名「フジタック」(厚み:80μm)
The following were used as the first thermoplastic resin film and the second thermoplastic resin film.
-First thermoplastic resin film: Clear hard coat film manufactured by Nippon Paper Industries Co., Ltd. Product name "COP20ST-HC" (film in which a clear hard coat layer is formed on a cyclic polyolefin resin film, thickness: 25 μm )
-Second thermoplastic resin film: Triacetyl cellulose (TAC) film manufactured by FUJIFILM Corporation, trade name "Fujitac" (thickness: 80 μm)
 得られた積層体に対して、熱風乾燥機を用いて80℃、300秒間の加熱処理を行うことによりポリビニルアルコール系接着剤層を乾燥させて直線偏光板を得た。 The obtained laminate was heat-treated at 80 ° C. for 300 seconds using a hot air dryer to dry the polyvinyl alcohol-based adhesive layer to obtain a linear polarizing plate.
 (2)位相差層積層体の作製
 下記に示す位相差フィルム1及び2、並びに、活性エネルギー線硬化性接着剤1を用意した。
・1/2波長板である位相差フィルム1:富士フイルム(株)製の商品名「QL FILM QL AA 318」(厚み80μmのTACフィルムである基材フィルム1と、その上に形成される配向層1と、その上に形成される重合性液晶化合物の硬化物層(単層)である位相差発現層1(面内位相差値235nm)とから構成される総厚み2μmの位相差フィルム)
・1/4波長板である位相差フィルム2:富士フイルム(株)製の商品名「QL FILM QL AB 318」(厚み80μmのTACフィルムである基材フィルム2と、その上に形成される配向層2と、その上に形成される重合性液晶化合物の硬化物層(単層)である位相差発現層2(面内位相差値120nm)とから構成される総厚み1μmの位相差フィルム)
・活性エネルギー線硬化性接着剤1:カチオン重合性の紫外線硬化性高屈折率接着剤
(2) Preparation of Laminated Phase Difference Layer The retardation films 1 and 2 shown below and the active energy ray-curable adhesive 1 were prepared.
・ Phase difference film which is a 1/2 wave plate 1: Trade name "QL FILM QL AA 318" manufactured by FUJIFILM Corporation (base film 1 which is a TAC film having a thickness of 80 μm and the orientation formed on the base film 1). A retardation film having a total thickness of 2 μm composed of a layer 1 and a retardation expression layer 1 (in-plane retardation value 235 nm) which is a cured product layer (single layer) of a polymerizable liquid crystal compound formed on the layer 1).
Phase difference film 2: 1/4 wave plate: Trade name "QL FILM QL AB 318" manufactured by FUJIFILM Corporation (base film 2 which is a TAC film with a thickness of 80 μm and the orientation formed on the substrate film 2). A retardation film having a total thickness of 1 μm composed of a layer 2 and a retardation expression layer 2 (in-plane retardation value 120 nm) which is a cured product layer (single layer) of a polymerizable liquid crystal compound formed on the layer 2).
・ Active energy ray-curable adhesive 1: Cationic polymerizable UV-curable high-refractive index adhesive
 位相差フィルム1が有する位相差発現層1の表面及び位相差フィルム2が有する位相差発現層2の表面にコロナ処理を施した。これらの位相差フィルムのそれぞれのコロナ処理面に上記活性エネルギー線硬化性接着剤1をバーコータを用いて、接着剤層の硬化後の総厚みが1.5μmとなるように塗布した後、位相差フィルム1及び位相差フィルム2を重ね合わせ、一対の貼合ロール間に通して、基材フィルム1/配向層1/位相差発現層1/活性エネルギー線硬化性接着剤1の層/位相差発現層2/配向層2/基材フィルム2の層構成を有する積層体を得た。 The surface of the retardation expression layer 1 of the retardation film 1 and the surface of the retardation expression layer 2 of the retardation film 2 were subjected to corona treatment. The active energy ray-curable adhesive 1 is applied to each of the corona-treated surfaces of these retardation films using a bar coater so that the total thickness of the adhesive layer after curing is 1.5 μm, and then the retardation is achieved. The film 1 and the retardation film 2 are overlapped and passed between a pair of bonding rolls, and the base film 1 / alignment layer 1 / retardation expression layer 1 / active energy ray-curable adhesive 1 layer / retardation expression A laminate having a layer structure of layer 2 / alignment layer 2 / base film 2 was obtained.
 得られた積層体に対し、紫外線照射装置(ランプはフュージョンUVシステムズ社製の「Dバルブ」を使用〕を用いて積算光量が250mJ/cm(UVB))となるように紫外線を照射することによって活性エネルギー線硬化性接着剤1の層を硬化させて、位相差層積層体を得た。 The obtained laminate is irradiated with ultraviolet rays so that the integrated light intensity is 250 mJ / cm 2 (UVB) using an ultraviolet irradiation device (the lamp uses a "D valve" manufactured by Fusion UV Systems). The layer of the active energy ray-curable adhesive 1 was cured by the above method to obtain a retardation layer laminate.
 (3)光学積層体1の作製
 上記(1)で得られた直線偏光板が有する第2熱可塑性樹脂フィルムを剥離するとともに、上記(2)で得られた位相差層積層体が有する基材フィルム1を配向層1とともに25m/分の剥離速度で剥離した。基材フィルム1が剥離される位相差層積層体に対する基材フィルム1の剥離角度は180度とした。
 第2熱可塑性樹脂フィルムの剥離によって露出した直線偏光子の表面及び基材フィルム1の剥離によって露出した位相差発現層1の表面にコロナ処理を施した。
 なお、配向層1は、基材フィルム1とともに剥離除去された。
(3) Preparation of Optical Laminated Body 1 The second thermoplastic resin film of the linearly polarizing plate obtained in (1) above is peeled off, and the base material of the retardation layer laminated body obtained in (2) above is peeled off. The film 1 was peeled together with the alignment layer 1 at a peeling rate of 25 m / min. The peeling angle of the base film 1 with respect to the retardation layer laminate from which the base film 1 is peeled was set to 180 degrees.
Corona treatment was applied to the surface of the linear polarizer exposed by the peeling of the second thermoplastic resin film and the surface of the retardation developing layer 1 exposed by the peeling of the base film 1.
The alignment layer 1 was peeled off together with the base film 1.
 直線偏光板及び位相差層積層体のそれぞれのコロナ処理面に活性エネルギー線硬化性接着剤2をバーコータを用いて、接着剤層の硬化後の総厚みが2μmとなるように塗布した後、直線偏光板及び位相差層積層体を重ね合わせ、一対の貼合ロール間に通して、第1熱可塑性樹脂フィルム/ポリビニルアルコール系接着剤層/直線偏光子/活性エネルギー線硬化性接着剤2の層/位相差発現層1/活性エネルギー線硬化性接着剤1の硬化物層/位相差発現層2/配向層2/基材フィルム2の層構成を有する積層体を得た。 After applying the active energy ray-curable adhesive 2 to the corona-treated surfaces of the linear polarizing plate and the retardation layer laminate using a bar coater so that the total thickness of the adhesive layer after curing is 2 μm, a straight line is formed. The polarizing plate and the retardation layer laminate are laminated and passed between a pair of bonding rolls to form a layer of a first thermoplastic resin film / polyvinyl alcohol-based adhesive layer / linear polarizer / active energy ray-curable adhesive 2. A laminate having a layer structure of / retardation layer 1 / cured product layer of active energy ray-curable adhesive 1 / retardation layer 2 / alignment layer 2 / base film 2 was obtained.
 活性エネルギー線硬化性接着剤2としては下記のものを用いた。
・活性エネルギー線硬化性接着剤2:カチオン重合性の紫外線硬化性接着剤
The following was used as the active energy ray-curable adhesive 2.
-Active energy ray-curable adhesive 2: Cationic polymerizable UV-curable adhesive
 得られた積層体を恒温恒湿槽に入れ、温度40℃の環境下で5時間保持(静置)した(保持工程)。保持工程における相対湿度は55%RHであった(他の実施例及び比較例も同じ)。 The obtained laminate was placed in a constant temperature and humidity chamber and held (standing) for 5 hours in an environment at a temperature of 40 ° C. (holding step). The relative humidity in the holding step was 55% RH (same for other examples and comparative examples).
 その後、積層体に対し、紫外線照射装置(ランプはフュージョンUVシステムズ社製の「Hバルブ」を使用〕を用いて積算光量が400mJ/cm(UVB))となるように紫外線を照射することによって活性エネルギー線硬化性接着剤2の層を硬化させて、光学積層体1を得た。紫外線照射時の環境は、温度23℃相対湿度55%RHとした(他の実施例及び比較例も同じ)。
 得られた光学積層体1は、直線偏光子の吸収軸PLに対する位相差発現層1(1/2波長板)の進相軸SL1の角度が75°であり、位相差発現層2(1/4波長板)の進相軸SL2の角度が15°であった。この光学積層体1は、円偏光板として機能するものであった。
After that, the laminated body is irradiated with ultraviolet rays so that the integrated light amount becomes 400 mJ / cm 2 (UVB) using an ultraviolet irradiation device (the lamp uses an "H valve" manufactured by Fusion UV Systems). The layer of the active energy ray-curable adhesive 2 was cured to obtain an optical laminate 1. The environment at the time of ultraviolet irradiation was a temperature of 23 ° C. and a relative humidity of 55% RH (the same applies to other examples and comparative examples).
In the obtained optical laminate 1, the angle of the phase-advancing axis SL1 of the phase difference developing layer 1 (1/2 wavelength plate) with respect to the absorption axis PL of the linear polarizer is 75 °, and the phase difference expressing layer 2 (1 /). The angle of the phase-advancing axis SL2 of the 4-wave plate) was 15 °. The optical laminate 1 functioned as a circularly polarizing plate.
 (4)光学積層体2の作製(光学積層体1への粘着剤層の積層)
 下記に示すシート状粘着剤1を用意した。
・シート状粘着剤1:転写型ノンキャリアフィルム((メタ)アクリル系粘着剤層〔厚み:15μm〕と、その一方の面に積層される軽剥離性フィルムと、その他方の面に積層される重剥離性フィルムとを有する積層フィルム)
(4) Fabrication of Optical Laminated Body 2 (Lamination of Adhesive Layer on Optical Laminated Body 1)
The sheet-shaped adhesive 1 shown below was prepared.
-Sheet-like adhesive 1: Transfer-type non-carrier film ((meth) acrylic adhesive layer [thickness: 15 μm], a lightly peelable film laminated on one surface, and laminated on the other surface. Laminated film with a heavy-release film)
 上記(3)で得られた光学積層体1が有する基材フィルム2を配向層2とともに剥離するとともに、シート状粘着剤1が有する軽剥離性フィルムを剥離した。基材フィルム2の剥離によって露出した位相差発現層2の表面及び軽剥離性フィルムの剥離によって露出した粘着剤層の表面にコロナ処理を施した。
 なお、配向層2は、基材フィルム2とともに剥離除去された。
The base film 2 contained in the optical laminate 1 obtained in (3) above was peeled off together with the alignment layer 2, and the lightly peelable film contained in the sheet-like adhesive 1 was peeled off. Corona treatment was applied to the surface of the retardation developing layer 2 exposed by peeling the base film 2 and the surface of the pressure-sensitive adhesive layer exposed by peeling the lightly peelable film.
The alignment layer 2 was peeled off together with the base film 2.
 光学積層体1及びシート状粘着剤1を重ね合わせ、一対の貼合ロール間に通して、第1熱可塑性樹脂フィルム/ポリビニルアルコール系接着剤層/直線偏光子/活性エネルギー線硬化性接着剤2の硬化物層/位相差発現層1/活性エネルギー線硬化性接着剤1の硬化物層/位相差発現層2/粘着剤層/重剥離性フィルムの層構成を有する光学積層体2を得た。 The optical laminate 1 and the sheet-like adhesive 1 are laminated and passed between a pair of bonding rolls to pass a first thermoplastic resin film / polyvinyl alcohol-based adhesive layer / linear polarizer / active energy ray-curable adhesive 2 Obtained an optical laminate 2 having a layer structure of a cured product layer / retardation developing layer 1 / cured product layer of active energy ray-curable adhesive 1 / retardation developing layer 2 / adhesive layer / double peelable film. ..
 <実施例2>
 保持工程において、積層体を恒温恒湿槽を内壁に貼付し、周波数10Hz、振幅1mmの振動環境下で5時間保持(静置)したこと以外は実施例1と同様にして光学積層体1を作製した。保持工程における温度環境は23℃であった。また、この光学積層体1を用いたこと以外は実施例1と同様にして光学積層体2を作製した。
<Example 2>
In the holding step, the optical laminate 1 was held in the same manner as in Example 1 except that the laminate was attached to the inner wall with a constant temperature and humidity chamber and held (standing) for 5 hours in a vibration environment having a frequency of 10 Hz and an amplitude of 1 mm. Made. The temperature environment in the holding step was 23 ° C. Further, the optical laminate 2 was produced in the same manner as in Example 1 except that the optical laminate 1 was used.
 <実施例3>
 保持工程において、積層体を恒温恒湿槽に入れ、温度23℃の環境下で3日間保持(静置)したこと以外は実施例1と同様にして光学積層体1を作製した。保持工程における相対湿度は55%RHであった。また、この光学積層体1を用いたこと以外は実施例1と同様にして光学積層体2を作製した。
<Example 3>
In the holding step, the optical laminated body 1 was produced in the same manner as in Example 1 except that the laminated body was placed in a constant temperature and humidity chamber and held (standing) for 3 days in an environment of a temperature of 23 ° C. The relative humidity in the holding step was 55% RH. Further, the optical laminate 2 was produced in the same manner as in Example 1 except that the optical laminate 1 was used.
 <実施例4>
 (1)直線偏光板の作製
 実施例1と同様にして直線偏光板を作製した。
<Example 4>
(1) Preparation of Linear Polarizing Plate A linear polarizing plate was produced in the same manner as in Example 1.
 (2)位相差層積層体の作製
 実施例1と同様にして位相差層積層体を作製した。
(2) Preparation of Phase Difference Layer Laminated Body A retardation layer laminate was produced in the same manner as in Example 1.
 (3)光学積層体1の作製
 上記(1)で得られた直線偏光板が有する第2熱可塑性樹脂フィルムを配向層1とともに剥離するとともに、上記(2)で得られた位相差層積層体が有する基材フィルム1を90m/分の剥離速度で剥離した。基材フィルム1が剥離される位相差層積層体に対する基材フィルム1の剥離角度は180度とした。
 これ以降は、保持工程を実施しなかったこと以外は実施例1と同様にして光学積層体1を作製した。
(3) Preparation of Optical Laminated Body 1 The second thermoplastic resin film of the linearly polarizing plate obtained in (1) above is peeled off together with the alignment layer 1, and the retardation layer laminated body obtained in (2) above is peeled off. The base film 1 contained in the film was peeled off at a peeling rate of 90 m / min. The peeling angle of the base film 1 with respect to the retardation layer laminate from which the base film 1 is peeled was set to 180 degrees.
After that, the optical laminate 1 was produced in the same manner as in Example 1 except that the holding step was not performed.
 (4)光学積層体2の作製(光学積層体1への粘着剤層の積層)
 上記(3)で得られた光学積層体1を用いたこと以外は実施例1と同様にして光学積層体2を作製した。
(4) Fabrication of Optical Laminated Body 2 (Lamination of Adhesive Layer on Optical Laminated Body 1)
An optical laminate 2 was produced in the same manner as in Example 1 except that the optical laminate 1 obtained in (3) above was used.
 <比較例1>
 保持工程において、積層体を恒温恒湿槽に入れ、温度23℃の環境下で5時間保持(静置)したこと以外は実施例1と同様にして光学積層体1を作製した。保持工程における相対湿度は55%RHであった。また、この光学積層体1を用いたこと以外は実施例1と同様にして光学積層体2を作製した。
<Comparative example 1>
In the holding step, the optical laminated body 1 was produced in the same manner as in Example 1 except that the laminated body was placed in a constant temperature and humidity chamber and held (standing) for 5 hours in an environment of a temperature of 23 ° C. The relative humidity in the holding step was 55% RH. Further, the optical laminate 2 was produced in the same manner as in Example 1 except that the optical laminate 1 was used.
 <比較例2>
 保持工程を実施することになく、第1熱可塑性樹脂フィルム/ポリビニルアルコール系接着剤層/直線偏光子/活性エネルギー線硬化性接着剤2の層/位相差発現層1/活性エネルギー線硬化性接着剤1の硬化物層/位相差発現層2/基材フィルム2の層構成を有する積層体を得た後、すぐさま紫外線を照射することによって活性エネルギー線硬化性接着剤2の層を硬化させたこと以外は実施例1と同様にして光学積層体1を作製した。また、この光学積層体1を用いたこと以外は実施例1と同様にして光学積層体2を作製した。
<Comparative example 2>
First thermoplastic resin film / polyvinyl alcohol-based adhesive layer / linear polarizer / active energy ray-curable adhesive 2 layer / retardation developing layer 1 / active energy ray-curable adhesive without carrying out a holding step After obtaining a laminated body having a layer structure of a cured product layer of the agent 1, a retardation expressing layer 2 and a base film 2, the layer of the active energy ray-curable adhesive 2 was cured by immediately irradiating with ultraviolet rays. An optical laminate 1 was produced in the same manner as in Example 1 except for the above. Further, the optical laminate 2 was produced in the same manner as in Example 1 except that the optical laminate 1 was used.
 <比較例3>
 (1)粘着剤層付直線偏光板の作製
 実施例1と同様にして直線偏光板を作製した。
 また、下記に示すシート状粘着剤2を用意した。
・シート状粘着剤2:転写型ノンキャリアフィルム((メタ)アクリル系粘着剤層〔厚み:5μm〕と、その一方の面に積層される軽剥離性フィルムと、その他方の面に積層される重剥離性フィルムとを有する積層フィルム)
<Comparative example 3>
(1) Preparation of a linearly polarizing plate with an adhesive layer A linearly polarizing plate was produced in the same manner as in Example 1.
In addition, the sheet-shaped adhesive 2 shown below was prepared.
-Sheet-like pressure-sensitive adhesive 2: A transfer-type non-carrier film ((meth) acrylic pressure-sensitive adhesive layer [thickness: 5 μm], a lightly peelable film laminated on one surface, and laminated on the other surface. Laminated film with a heavy-release film)
 直線偏光板が有する第2熱可塑性樹脂フィルムを剥離するとともに、シート状粘着剤2が有する軽剥離性フィルムを剥離した。第2熱可塑性樹脂フィルムの剥離によって露出した直線偏光子の表面及び軽剥離性フィルムの剥離によって露出した粘着剤層の表面にコロナ処理を施した。
 その後、直線偏光子の表面(コロナ処理面)に軽剥離性フィルムが剥離されたシート状粘着剤2をそのコロナ処理面側で積層して、第1熱可塑性樹脂フィルム/ポリビニルアルコール系接着剤層/直線偏光子/粘着剤層/重剥離性フィルムの層構成を有する粘着剤層付直線偏光板を得た。
The second thermoplastic resin film of the linear polarizing plate was peeled off, and the lightly peelable film of the sheet-like pressure-sensitive adhesive 2 was peeled off. Corona treatment was applied to the surface of the linear polarizer exposed by peeling the second thermoplastic resin film and the surface of the pressure-sensitive adhesive layer exposed by peeling the lightly peelable film.
After that, the sheet-like adhesive 2 from which the lightly peelable film was peeled off was laminated on the surface (corona-treated surface) of the linear polarizer on the corona-treated surface side, and the first thermoplastic resin film / polyvinyl alcohol-based adhesive layer was laminated. A linear polarizing plate with an adhesive layer having a layer structure of / linear polarizer / adhesive layer / double-release film was obtained.
 (2)位相差層積層体の作製
 実施例1と同様にして位相差層積層体を作製した。
(2) Preparation of Phase Difference Layer Laminated Body A retardation layer laminate was produced in the same manner as in Example 1.
 (3)光学積層体1の作製
 上記(1)で得られた粘着剤層付直線偏光板が有する重剥離性フィルムを剥離するとともに、上記(2)で得られた位相差層積層体が有する基材フィルム1を配向層1とともに25m/分の剥離速度で剥離した。基材フィルム1が剥離される位相差層積層体に対する基材フィルム1の剥離角度は180度とした。
 重剥離性フィルムの剥離によって露出した粘着剤層の表面及び基材フィルム1の剥離によって露出した位相差発現層1の表面にコロナ処理を施した。
 なお、配向層1は、基材フィルム1とともに剥離除去された。
(3) Preparation of Optical Laminated Body 1 The heavy-release film of the linearly polarizing plate with an adhesive layer obtained in (1) above is peeled off, and the retardation layer laminated body obtained in (2) above has. The base film 1 was peeled together with the alignment layer 1 at a peeling rate of 25 m / min. The peeling angle of the base film 1 with respect to the retardation layer laminate from which the base film 1 is peeled was set to 180 degrees.
Corona treatment was applied to the surface of the pressure-sensitive adhesive layer exposed by peeling the heavy-release film and the surface of the retardation-developing layer 1 exposed by peeling the base film 1.
The alignment layer 1 was peeled off together with the base film 1.
 その後、粘着剤層付直線偏光板のコロナ処理面に位相差層積層体をそのコロナ処理面側で積層して、第1熱可塑性樹脂フィルム/ポリビニルアルコール系接着剤層/直線偏光子/粘着剤層/位相差発現層1/活性エネルギー線硬化性接着剤1の硬化物層/位相差発現層2/基材フィルム2の層構成を有する光学積層体1を得た。 After that, the retardation layer laminate is laminated on the corona-treated surface of the linear polarizing plate with the pressure-sensitive adhesive layer on the corona-treated surface side, and the first thermoplastic resin film / polyvinyl alcohol-based adhesive layer / linear polarizer / pressure-sensitive adhesive is used. An optical laminate 1 having a layer structure of a layer / retardation developing layer 1 / cured product layer of active energy ray-curable adhesive 1 / retardation developing layer 2 / base film 2 was obtained.
 (4)光学積層体2の作製(光学積層体1への粘着剤層の積層)
 上記(3)で得られた光学積層体1を用いたこと以外は実施例1と同様にして光学積層体2を作製した。
(4) Fabrication of Optical Laminated Body 2 (Lamination of Adhesive Layer on Optical Laminated Body 1)
An optical laminate 2 was produced in the same manner as in Example 1 except that the optical laminate 1 obtained in (3) above was used.
 [測定・評価]
 (1)面粗さの測定
 光学積層体2から直線偏光子の吸収軸を長さ方向とする長さ50mm(長辺)、幅15mmの矩形状の積層体片を切り出し、重剥離性フィルムを剥離して粘着剤層を露出させ、露出した粘着剤層でアクリル板(黒色)に貼り付けて試験片〔第1熱可塑性樹脂フィルム/ポリビニルアルコール系接着剤層/直線偏光子/活性エネルギー線硬化性接着剤2の硬化物層/位相差発現層1/活性エネルギー線硬化性接着剤1の硬化物層/位相差発現層2/粘着剤層/アクリル板(黒色)の層構成を有する。〕とした。この試験片に第1熱可塑性樹脂フィルム側から光を当てて、ISO 25178に準拠し、走査型白色干渉顕微鏡「VertScan」(日立はテクサイエンス社製)により層断面解析モードで、光学積層体1が有する位相差層(位相差発現層1)における直線偏光子側の表面の算術平均粗さSa、二乗平均平方根高さSq、界面の展開面積比Sdr、及び、二法平均平方根傾斜Sdqを測定した。結果を表1に示す。測定条件は以下のとおりであった。
 カメラ   :ソニー社製「XCL-32」
 対物レンズ :5CTI
 鏡胴    :1.0X
 ズームレンズ:1X
 光源    :530White
 測定デバイス:ピエゾ
 測定モード :Wave
[Measurement / evaluation]
(1) Measurement of Surface Roughness A rectangular laminate piece having a length of 50 mm (long side) and a width of 15 mm with the absorption axis of the linear polarizer as the length direction is cut out from the optical laminate 2 to form a heavy-release film. The adhesive layer is peeled off to expose it, and the exposed adhesive layer is attached to an acrylic plate (black) to form a test piece [first thermoplastic resin film / polyvinyl alcohol-based adhesive layer / linear polarizer / active energy ray curing. It has a layer structure of a cured product layer of the sex adhesive 2 / a retardation developing layer 1 / a cured product layer of the active energy ray-curable adhesive 1 / a retardation developing layer 2 / an adhesive layer / an acrylic plate (black). ]. This test piece is exposed to light from the first thermoplastic resin film side, conforms to ISO 25178, and is subjected to a layer cross-section analysis mode by a scanning white interference microscope "VertScan" (Hitachi is manufactured by TechScience Co., Ltd.). Measures the arithmetic average roughness Sa, the square mean square root height Sq, the developing area ratio Sdr of the interface, and the root mean square slope Sdq of the surface on the linear polarizer side in the retardation layer (phase contrast expression layer 1). did. The results are shown in Table 1. The measurement conditions were as follows.
Camera: Sony "XCL-32"
Objective lens: 5CTI
Lens barrel: 1.0X
Zoom lens: 1X
Light source: 530 White
Measurement device: Piezo Measurement mode: Wave
 (2)皺欠陥の評価
 光学積層体1から、直線偏光子の吸収軸を長さ方向とする長さ50mm(長辺)、幅15mm(短辺)の試験片(矩形)を切り出した。
 図8に示すように、この試験片(S)を2つの短辺(S1)同士が互いに向き合うように湾曲させて長辺方向中央部に湾曲部(C)を形成し、この状態を保ちながら互いに平行に配置された2枚のガラス板(平板状)(G)の間に保持しながら、2枚のガラス板(G)の間隔を縮小することにより試験片の湾曲部の曲率直径(R)が10mmとなるまで狭める縮小工程と、次いで湾曲状態が解消するまで2枚のガラス板の間隔を拡げる拡張工程とを10回繰り返す10mm屈曲試験を行った。なお、試験片(S)の2つの短辺(S1)はそれぞれガラス板(G)に固定した。
 10mm屈曲試験後に試験片に皺欠陥が生じなかった場合は、同じ試験片について更に屈曲部の曲率直径Rを5mmとすること以外は上記と同様に縮小工程と拡張工程とを10回繰り返す5mm屈曲試験を行った。
 5mm屈曲試験後に試験片に皺欠陥が生じなかった場合は、同じ試験片について更に屈曲部の曲率直径Rを4mmとすること以外は上記と同様に縮小工程と拡張工程とを10回繰り返す4mm屈曲試験を行った。
 4mm屈曲試験後に試験片に皺欠陥が生じなかった場合は、同じ試験片について更に屈曲部の曲率直径Rを3mmとすること以外は上記と同様に縮小工程と拡張工程とを10回繰り返す3mm屈曲試験を行った。
 3mm屈曲試験後に試験片に皺欠陥が生じなかった場合は、同じ試験片について更に屈曲部の曲率直径Rを2mmとすること以外は上記と同様に縮小工程と拡張工程とを10回繰り返す2mm屈曲試験を行った。
(2) Evaluation of Wrinkle Defects A test piece (rectangle) having a length of 50 mm (long side) and a width of 15 mm (short side) with the absorption axis of the linear polarizer as the length direction was cut out from the optical laminate 1.
As shown in FIG. 8, the test piece (S) is curved so that the two short sides (S1) face each other to form a curved portion (C) at the center in the long side direction, and while maintaining this state. Curvature diameter (R) of the curved portion of the test piece by reducing the distance between the two glass plates (G) while holding between the two glass plates (flat plates) (G) arranged parallel to each other. ) Was reduced to 10 mm, and then an expansion step of widening the distance between the two glass plates until the bending state was eliminated was repeated 10 times to perform a 10 mm bending test. The two short sides (S1) of the test piece (S) were fixed to the glass plate (G), respectively.
If no wrinkle defect occurs in the test piece after the 10 mm bending test, the reduction step and the expansion step are repeated 10 times in the same manner as above except that the curvature diameter R of the bent portion is further set to 5 mm for the same test piece. The test was conducted.
If no wrinkle defect occurs in the test piece after the 5 mm bending test, the reduction step and the expansion step are repeated 10 times in the same manner as above except that the curvature diameter R of the bent portion is further set to 4 mm for the same test piece. The test was conducted.
If no wrinkle defect occurs in the test piece after the 4 mm bending test, the reduction step and the expansion step are repeated 10 times in the same manner as above except that the curvature diameter R of the bent portion is further set to 3 mm for the same test piece. The test was conducted.
If no wrinkle defect occurs in the test piece after the 3 mm bending test, the reduction step and the expansion step are repeated 10 times in the same manner as above except that the curvature diameter R of the bent portion is further set to 2 mm for the same test piece. The test was conducted.
 試験片における心棒への巻き掛け部分を目視にて観察し、皺欠陥の生じにくさを下記の基準に従って評価した。結果を表1に示す。
 A:10mm屈曲試験からスタートし、2mm屈曲試験を終えても皺欠陥が認められない。
 B:10mm屈曲試験からスタートし、3mm屈曲試験を終えても皺欠陥は認められなかったが、引き続き2mm屈曲試験を行うと、皺欠陥が発生した。
 C:10mm屈曲試験からスタートし、4mm屈曲試験を終えても皺欠陥は認められなかったが、引き続き3mm屈曲試験を行うと、皺欠陥が発生した。
The portion of the test piece wound around the mandrel was visually observed, and the resistance to wrinkle defects was evaluated according to the following criteria. The results are shown in Table 1.
A: No wrinkle defect is observed even after starting from the 10 mm bending test and finishing the 2 mm bending test.
B: No wrinkle defect was observed even after starting from the 10 mm bending test and completing the 3 mm bending test, but when the 2 mm bending test was continued, wrinkle defects occurred.
C: No wrinkle defect was observed even after starting from the 10 mm bending test and completing the 4 mm bending test, but when the 3 mm bending test was continued, wrinkle defects occurred.
 なお、各試験片における直線偏光子の吸収軸(PL)、位相差発現層1の進相軸(SL1)及び位相差発現層2の進相軸(SL2)は、直線偏光子側から見て図9に示すとおりであった。すなわち、第1熱可塑性樹脂フィルム側(直線偏光子側)から見て左回りを正(+)として、吸収軸(PL)は短辺に対して+135°、進相軸(SL1)は短辺に対して+60°、進相軸(SL2)は短辺に対して+120°であった。各試験片は円偏光板として機能するものである。 The absorption axis (PL) of the linear polarizer, the phase advance axis (SL1) of the retardation expression layer 1 and the phase advance axis (SL2) of the retardation expression layer 2 in each test piece are viewed from the linear polarizer side. It was as shown in FIG. That is, the absorption axis (PL) is + 135 ° with respect to the short side, and the phase advance axis (SL1) is the short side, assuming that the counterclockwise direction is positive (+) when viewed from the first thermoplastic resin film side (linear polarizer side). The phase advance axis (SL2) was + 60 ° with respect to the short side. Each test piece functions as a circularly polarizing plate.
 (3)虹ムラの評価
 光学積層体2から、縦100mm×横100mmのサイズの試験片(矩形)を切り出した。この試験片から重剥離性フィルムを剥離し、露出した粘着剤層を用いて平坦な黒色アクリル板に貼合した。また、光学積層体2の最上層である第1熱可塑性樹脂フィルム上に水膜を介してガラス板〔コーニング社製の無アルカリガラス「イーグルXG」、厚み0.7mm〕を積層し、評価用積層体とした。
(3) Evaluation of Rainbow Unevenness A test piece (rectangle) having a size of 100 mm in length × 100 mm in width was cut out from the optical laminate 2. The heavy-release film was peeled off from this test piece and bonded to a flat black acrylic plate using an exposed adhesive layer. Further, a glass plate [Non-alkali glass "Eagle XG" manufactured by Corning Inc., thickness 0.7 mm] is laminated on the first thermoplastic resin film, which is the uppermost layer of the optical laminate 2, via a water film for evaluation. It was made into a laminated body.
 得られた評価用積層体を蛍光灯の点いた室内に置いた。蛍光灯の位置は、黒色アクリル板から250mmの高さとした。この状態で、蛍光灯からの光の反射光を評価用積層体の表面(ガラス板側の表面)側から目視で観察し、虹ムラの生じにくさを下記の基準に従って評価した。結果を表1に示す。蛍光灯からの光の反射光とは、光学積層体2の内部に入射した蛍光灯からの光が各層の界面で反射することによってガラス板側から出射する光を意味している。
 A:反射光に虹ムラが認められない。
 B:反射光にごくわずかに虹ムラが認められる。
 C:反射光に虹ムラが認められる(Bよりも明確に虹ムラが認められる)。
The obtained evaluation laminate was placed in a room with a fluorescent lamp. The position of the fluorescent lamp was 250 mm above the black acrylic plate. In this state, the reflected light of the light from the fluorescent lamp was visually observed from the surface (the surface on the glass plate side) side of the evaluation laminate, and the resistance to rainbow unevenness was evaluated according to the following criteria. The results are shown in Table 1. The reflected light of the light from the fluorescent lamp means the light emitted from the glass plate side by reflecting the light from the fluorescent lamp incident on the inside of the optical laminate 2 at the interface of each layer.
A: No rainbow unevenness is observed in the reflected light.
B: Very slight rainbow unevenness is observed in the reflected light.
C: Rainbow unevenness is observed in the reflected light (rainbow unevenness is observed more clearly than B).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 10 光学フィルム、
 20 活性エネルギー線硬化性接着剤層(接着剤層)、
 20a 硬化接着剤層、
 30 位相差層、
 31 位相差発現層、
 32 配向層、
 41 基材フィルム、
 42 基材フィルム、
 50 直線偏光子、
 51 接着層、
 52 熱可塑性樹脂フィルム、
 61 接着層、
 71 位相差発現層、
 72 配向層、
 80 粘着剤層。
10 Optical film,
20 Active energy ray-curable adhesive layer (adhesive layer),
20a hardened adhesive layer,
30 phase difference layer,
31 Phase difference expression layer,
32 Orientation layer,
41 Base film,
42 base film,
50 linear polarizer,
51 Adhesive layer,
52 Thermoplastic resin film,
61 Adhesive layer,
71 Phase difference expression layer,
72 Orientation layer,
80 Adhesive layer.

Claims (7)

  1.  光学積層体の製造方法であって、
     前記光学積層体は、光学フィルムと、活性エネルギー線硬化性接着剤の硬化物層である硬化接着剤層と、重合性液晶化合物の硬化物層を含む位相差層とをこの順に備え、
     前記製造方法は、
     前記光学フィルムと、活性エネルギー線硬化性接着剤層と、前記位相差層とを、前記活性エネルギー線硬化性接着剤層と前記位相差層とが接するように積層する工程と、
     下記(1)~(3):
     (1)30℃以上の温度で2時間以上保持する、
     (2)振動条件下で2時間以上保持する、
     (3)48時間以上保持する
    のいずれか1以上を満たす条件下で保持する工程と、
     前記活性エネルギー線硬化性接着剤層を硬化させて前記硬化接着剤層を形成する工程と、
    をこの順に含む、光学積層体の製造方法。
    A method for manufacturing an optical laminate,
    The optical laminate includes an optical film, a cured adhesive layer which is a cured product layer of an active energy ray-curable adhesive, and a retardation layer including a cured product layer of a polymerizable liquid crystal compound in this order.
    The manufacturing method is
    A step of laminating the optical film, the active energy ray-curable adhesive layer, and the retardation layer so that the active energy ray-curable adhesive layer and the retardation layer are in contact with each other.
    The following (1) to (3):
    (1) Hold at a temperature of 30 ° C. or higher for 2 hours or longer.
    (2) Hold for 2 hours or more under vibration conditions,
    (3) A step of holding under the condition of satisfying any one or more of holding for 48 hours or more, and
    The step of curing the active energy ray-curable adhesive layer to form the cured adhesive layer, and
    A method for manufacturing an optical laminate, which comprises the above in this order.
  2.  光学積層体の製造方法であって、
     前記光学積層体は、光学フィルムと、活性エネルギー線硬化性接着剤の硬化物層である硬化接着剤層と、重合性液晶化合物の硬化物層を含む位相差層とをこの順に備え、
     前記製造方法は、
     基材フィルムと、これに接して積層される前記位相差層とを含む積層体を用意する工程と、
     50m/分以上の剥離速度で前記位相差層から前記基材フィルムを剥離する工程と、
     前記基材フィルムを剥離した後の前記位相差層の剥離面に、活性エネルギー線硬化性接着剤層を介して光学フィルムを積層する工程と、
     前記活性エネルギー線硬化性接着剤層を硬化させて前記硬化接着剤層を形成する工程と、
    をこの順に含む、光学積層体の製造方法。
    A method for manufacturing an optical laminate,
    The optical laminate includes an optical film, a cured adhesive layer which is a cured product layer of an active energy ray-curable adhesive, and a retardation layer including a cured product layer of a polymerizable liquid crystal compound in this order.
    The manufacturing method is
    A step of preparing a laminated body including a base film and the retardation layer laminated in contact with the base film, and
    A step of peeling the base film from the retardation layer at a peeling rate of 50 m / min or more,
    A step of laminating an optical film on the peeled surface of the retardation layer after peeling the base film via an active energy ray-curable adhesive layer.
    The step of curing the active energy ray-curable adhesive layer to form the cured adhesive layer, and
    A method for manufacturing an optical laminate, which comprises the above in this order.
  3.  前記光学フィルムが直線偏光子を含む、請求項1又は2に記載の光学積層体の製造方法。 The method for producing an optical laminate according to claim 1 or 2, wherein the optical film contains a linear polarizer.
  4.  前記積層工程において、前記光学フィルムと、活性エネルギー線硬化性接着剤層と、前記位相差層とを、前記直線偏光子と前記活性エネルギー線硬化性接着剤層とが接するように積層する、請求項3に記載の光学積層体の製造方法。 In the laminating step, the optical film, the active energy ray-curable adhesive layer, and the retardation layer are laminated so that the linear polarizer and the active energy ray-curable adhesive layer are in contact with each other. Item 3. The method for producing an optical laminate according to Item 3.
  5.  光学フィルムと、活性エネルギー線硬化性接着剤の硬化物層である硬化接着剤層と、重合性液晶化合物の硬化物層を含む位相差層とをこの順に備え、
     前記硬化接着剤層と前記位相差層とは接しており、
     前記位相差層における前記硬化接着剤層側の表面は、下記(a)~(d):
     (a)算術平均粗さSaが0.065μm以上である、
     (b)二乗平均平方根高さSqが0.085μm以上である、
     (c)界面の展開面積比Sdrが0.2%以上である、
     (d)二法平均平方根傾斜Sdqが0.065以上である
    のいずれか1以上を満たす、光学積層体。
    An optical film, a cured adhesive layer which is a cured product layer of an active energy ray-curable adhesive, and a retardation layer including a cured product layer of a polymerizable liquid crystal compound are provided in this order.
    The cured adhesive layer and the retardation layer are in contact with each other.
    The surfaces of the retardation layer on the cured adhesive layer side are as follows (a) to (d):
    (A) Arithmetic mean roughness Sa is 0.065 μm or more.
    (B) The root mean square height Sq is 0.085 μm or more.
    (C) The development area ratio Sdr of the interface is 0.2% or more.
    (D) An optical laminate satisfying any one or more of the root mean square slope Sdq of 0.065 or more.
  6.  前記光学フィルムが直線偏光子を含む、請求項5に記載の光学積層体。 The optical laminate according to claim 5, wherein the optical film contains a linear polarizer.
  7.  前記直線偏光子と前記硬化接着剤層とが接している、請求項6に記載の光学積層体。 The optical laminate according to claim 6, wherein the linear polarizer and the cured adhesive layer are in contact with each other.
PCT/JP2020/042027 2019-12-23 2020-11-11 Method for manufacturing optical laminate WO2021131367A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080087282.7A CN114846371A (en) 2019-12-23 2020-11-11 Method for manufacturing optical laminate
KR1020227025191A KR20220117920A (en) 2019-12-23 2020-11-11 Manufacturing method of optical laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-231313 2019-12-23
JP2019231313A JP7406977B2 (en) 2019-12-23 2019-12-23 Method for manufacturing optical laminates

Publications (1)

Publication Number Publication Date
WO2021131367A1 true WO2021131367A1 (en) 2021-07-01

Family

ID=76541595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042027 WO2021131367A1 (en) 2019-12-23 2020-11-11 Method for manufacturing optical laminate

Country Status (5)

Country Link
JP (1) JP7406977B2 (en)
KR (1) KR20220117920A (en)
CN (1) CN114846371A (en)
TW (1) TW202126489A (en)
WO (1) WO2021131367A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7484682B2 (en) 2020-12-02 2024-05-16 王子ホールディングス株式会社 Biaxially oriented polypropylene film, metal layer integrated polypropylene film, film capacitor, and film roll

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230256719A1 (en) 2022-02-11 2023-08-17 Chang Chun Petrochemical Co., Ltd. Polymer film and uses of the same
TWI802267B (en) * 2022-02-11 2023-05-11 長春石油化學股份有限公司 Polymer film and uses of the same
WO2024038769A1 (en) * 2022-08-16 2024-02-22 ソニーグループ株式会社 Nanostructure, method for producing nanostructure, film, and structure provided with film

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235045A (en) * 2001-02-09 2002-08-23 Dainippon Printing Co Ltd Method for producing composite substrate
JP2008001893A (en) * 2006-05-24 2008-01-10 Fujifilm Corp Cellulose acylate film, production method of cellulose acylate film, optical compensation film, polarizing plate and liquid crystal display device
JP2009019172A (en) * 2007-07-13 2009-01-29 Lintec Corp Pressure-sensitive adhesive, pressure-sensitive adhesive sheet and optical film with pressure-sensitive adhesive
WO2011058904A1 (en) * 2009-11-13 2011-05-19 日本ゼオン株式会社 Optical member, production method, polarizing plate composite, and liquid crystal display device
JP2012153901A (en) * 2012-05-07 2012-08-16 Lintec Corp Pressure-sensitive adhesive, pressure-sensitive adhesive sheet and optical film with pressure-sensitive adhesive
JP2012247620A (en) * 2011-05-27 2012-12-13 Nitto Denko Corp Polarizing plate with retardation layer
JP2013126728A (en) * 2011-12-19 2013-06-27 Konica Minolta Advanced Layers Inc Method of manufacturing optical film
WO2015046399A1 (en) * 2013-09-27 2015-04-02 富士フイルム株式会社 Polarizing plate fabrication method
JP2015084074A (en) * 2013-03-14 2015-04-30 大日本印刷株式会社 Retardation film
JP2018009150A (en) * 2016-06-28 2018-01-18 大日本印刷株式会社 Side-chain liquid crystal polymer, liquid crystal composition, retardation film, method for manufacturing retardation film, laminate for transfer, optical member, method for manufacturing optical member, and display device
JP2018116306A (en) * 2018-04-03 2018-07-26 大日本印刷株式会社 Transfer laminate for optical film
JP2019050954A (en) * 2017-09-14 2019-04-04 株式会社三共 Game machine
JP2020140010A (en) * 2019-02-27 2020-09-03 住友化学株式会社 Laminate and display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017996A (en) 2016-07-29 2018-02-01 日東電工株式会社 Polarizing plate with retardation layer and organic EL display device
JP2019060964A (en) 2017-09-25 2019-04-18 シャープ株式会社 Liquid crystal display device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235045A (en) * 2001-02-09 2002-08-23 Dainippon Printing Co Ltd Method for producing composite substrate
JP2008001893A (en) * 2006-05-24 2008-01-10 Fujifilm Corp Cellulose acylate film, production method of cellulose acylate film, optical compensation film, polarizing plate and liquid crystal display device
JP2009019172A (en) * 2007-07-13 2009-01-29 Lintec Corp Pressure-sensitive adhesive, pressure-sensitive adhesive sheet and optical film with pressure-sensitive adhesive
WO2011058904A1 (en) * 2009-11-13 2011-05-19 日本ゼオン株式会社 Optical member, production method, polarizing plate composite, and liquid crystal display device
JP2012247620A (en) * 2011-05-27 2012-12-13 Nitto Denko Corp Polarizing plate with retardation layer
JP2013126728A (en) * 2011-12-19 2013-06-27 Konica Minolta Advanced Layers Inc Method of manufacturing optical film
JP2012153901A (en) * 2012-05-07 2012-08-16 Lintec Corp Pressure-sensitive adhesive, pressure-sensitive adhesive sheet and optical film with pressure-sensitive adhesive
JP2015084074A (en) * 2013-03-14 2015-04-30 大日本印刷株式会社 Retardation film
WO2015046399A1 (en) * 2013-09-27 2015-04-02 富士フイルム株式会社 Polarizing plate fabrication method
JP2018009150A (en) * 2016-06-28 2018-01-18 大日本印刷株式会社 Side-chain liquid crystal polymer, liquid crystal composition, retardation film, method for manufacturing retardation film, laminate for transfer, optical member, method for manufacturing optical member, and display device
JP2019050954A (en) * 2017-09-14 2019-04-04 株式会社三共 Game machine
JP2018116306A (en) * 2018-04-03 2018-07-26 大日本印刷株式会社 Transfer laminate for optical film
JP2020140010A (en) * 2019-02-27 2020-09-03 住友化学株式会社 Laminate and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7484682B2 (en) 2020-12-02 2024-05-16 王子ホールディングス株式会社 Biaxially oriented polypropylene film, metal layer integrated polypropylene film, film capacitor, and film roll

Also Published As

Publication number Publication date
JP7406977B2 (en) 2023-12-28
TW202126489A (en) 2021-07-16
JP2021099436A (en) 2021-07-01
CN114846371A (en) 2022-08-02
KR20220117920A (en) 2022-08-24

Similar Documents

Publication Publication Date Title
WO2021131367A1 (en) Method for manufacturing optical laminate
TWI626100B (en) A method of making polarizer whose end face is processed
JP2020126226A (en) Polarizing plate and display device
JP6662992B2 (en) Manufacturing method of circularly polarizing plate
TW201939076A (en) Circular polarizing plate
JP2009109993A (en) Set of polarizing plate, liquid crystal panel using the same, and liquid crystal display device
TWI707165B (en) Polarizing plate
TWI657916B (en) Method of producing end-surface processed polarizing plate
JP2024054876A (en) Polarizing plate and display device
TW201736146A (en) Optical film manufacturing method
WO2010067896A1 (en) Method for manufacturing composite polarizing plate
TW202016582A (en) Circularly polarizing plate and display device
KR20170101809A (en) Polarizing plate set and liquid crystal panel
JP2009157343A (en) Polarizing plate and liquid crystal display using the same
JP2019151099A (en) Laminate film
JP2023126676A (en) Polarizing plate
JP2019204121A (en) Retardation film and optical laminate
JP2022173305A (en) Circular polarizing plate
TWI726116B (en) Polarizing plate set and liquid crystal panel
TWI816795B (en) Method for manufacturing optical laminate
JP2010072091A (en) Polarizing plate
JP7251941B2 (en) optical film
JP2019159198A (en) Method of manufacturing optical laminate and method of manufacturing optical laminate with adhesive layers
WO2022137922A1 (en) Production method for laminate equipped with surface protection film, and laminate
TW202124143A (en) Circular polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227025191

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906652

Country of ref document: EP

Kind code of ref document: A1