WO2010067896A1 - Method for manufacturing composite polarizing plate - Google Patents

Method for manufacturing composite polarizing plate Download PDF

Info

Publication number
WO2010067896A1
WO2010067896A1 PCT/JP2009/071013 JP2009071013W WO2010067896A1 WO 2010067896 A1 WO2010067896 A1 WO 2010067896A1 JP 2009071013 W JP2009071013 W JP 2009071013W WO 2010067896 A1 WO2010067896 A1 WO 2010067896A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing plate
transparent protective
protective film
polarizing
Prior art date
Application number
PCT/JP2009/071013
Other languages
French (fr)
Japanese (ja)
Inventor
松本寿和
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008315497A external-priority patent/JP2010139703A/en
Priority claimed from JP2008315684A external-priority patent/JP2010139729A/en
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2010067896A1 publication Critical patent/WO2010067896A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins

Definitions

  • the present invention relates to a method for producing a composite polarizing plate.
  • Liquid crystal display devices are used in various display devices by taking advantage of features such as low power consumption, low voltage operation, light weight and thinness.
  • This liquid crystal display device is composed of many optical members such as a liquid crystal cell, a polarizing plate, a retardation film, a light collecting sheet, a diffusion film, a light guide plate, and a light reflecting sheet. Therefore, by improving the number of films or sheets constituting these optical members and reducing the film thickness, it is possible to improve the production efficiency and brightness of the liquid crystal display device and to reduce the weight and thickness. Such research is actively conducted.
  • liquid crystal display devices are required to withstand severe durability conditions.
  • the temperature and humidity in the vehicle in which the liquid crystal display device is placed may become very high.
  • the temperature and humidity may be exposed to severe conditions, so that product performance that can withstand use under such severe conditions is required.
  • a polarizing plate which is a component of a liquid crystal display device, usually has a structure in which a transparent protective film is laminated on both sides or one side of a polarizing film.
  • a polarizing film is produced by a method in which a polyvinyl alcohol resin film is uniaxially stretched and dyed with a dichroic dye, then treated with boric acid to cause a crosslinking reaction, and then washed with water and dried.
  • the dichroic dye iodine or a dichroic organic dye is used.
  • a protective film is laminated on both sides or one side of the polarizing film thus obtained to form a polarizing plate, which is used by being incorporated in a liquid crystal display device.
  • a cellulose acetate resin film typified by triacetylrose is often used, and its thickness is usually about 30 to 120 ⁇ m.
  • an adhesive composed of an aqueous solution of a polyvinyl alcohol-based resin is often used for laminating the protective film.
  • a polarizing plate in which a protective film made of triacetyl cellulose is laminated on both sides or one side of a polarizing film on which a dichroic dye is adsorbed and oriented using an adhesive made of an aqueous solution of a polyvinyl alcohol resin is long under wet heat conditions. When used for a long time, there is a problem that the polarizing performance is deteriorated or the protective film and the polarizing film are easily peeled off.
  • JPH08-43812-A describes that, in a polarizing plate in which protective films are laminated on both sides of a polarizing film, at least one of the protective films is composed of a thermoplastic norbornene resin having a retardation film function.
  • JP09-325216-A describes that at least one of the protective layers of the polarizing film is composed of a birefringent film.
  • a styrene resin film has a negative phase difference in which the refractive index in the thickness direction is large because the polarizability of the side chain is larger than the polarizability of the main chain of the styrene resin (it may be negatively polarized). It is being considered as a film.
  • the negative retardation film is larger refractive index in the thickness direction, the refractive indices n x a maximum refractive index direction in the plane (slow axis direction), a direction perpendicular thereto in the plane (fast axis when the refractive index in the direction) and n y, the refractive index in the thickness direction and n z, has a relationship of n z ⁇ n x> n y , (n x -n z) / (n x -n y ) Defined by the Nz coefficient is approximately 0 (zero).
  • styrene resin films have problems in heat resistance, mechanical strength, and chemical resistance, and have not yet been put into practical use.
  • WO99 / 64500 describes that an essentially random copolymer of an aromatic vinyl monomer and ⁇ -olefin, typically styrene, is used as a film, and the film and other polymer layers. It is also suggested to make a multilayer structure.
  • a terpolymer obtained by copolymerizing an acyclic olefin monomer and a cyclic olefin monomer with an aromatic vinyl monomer typified by styrene is used as a retardation film.
  • JP2003-90912-A describes that an alignment film made of a norbornene-based resin and an alignment film made of a styrene-maleic anhydride copolymer resin are laminated through an adhesive layer to form a retardation film.
  • JP 2004-167823-A describes that a polystyrene-based sheet is laminated on a polyolefin-based multilayer film. Furthermore, in JP2006-192637-A, a first layer made of a styrene resin and a second layer made of an acrylic resin composition containing rubber particles are laminated without using an adhesive layer. It describes that it is a retardation film.
  • the width of the styrene resin film cannot be widened.
  • the conventional method for producing a polarizing plate with a retardation film has a problem that the productivity is remarkably reduced. That is, in this case, when a polarizing plate and a retardation film having a smaller width than the polarizing plate are bonded together, a polarizing plate portion where the retardation film is not bonded is generated.
  • the polarizing plate in order to cut the polarizing plate into a predetermined shape to be bonded to the liquid crystal cell, it is usually cut at a right angle or an oblique angle with respect to the longitudinal direction, and then cut again into the predetermined shape.
  • the polarizing plate part where the film is not bonded is discarded. Furthermore, productivity is significantly reduced by adding a polarizing plate portion to which the retardation film is not bonded to the cutting length.
  • the adhesiveness to the polarizing film may be inferior.
  • An object of the present invention is to apply a polarizing plate and a styrene-based resin film, which is formed by laminating a retardation film having a smaller width than the polarizing plate, and having excellent adhesion between the polarizing film and the retardation film. It is in providing the method of manufacturing with good productivity.
  • the present invention includes the following. ⁇ 1> A stretched film having a three-layer structure including a core layer composed of a styrene resin and a skin layer composed of a (meth) acrylic resin composition containing rubber particles, which is laminated on both surfaces of the core layer.
  • Retardation film A polarizing plate with a single-sided transparent protective film having a transparent protective film on one side of the polarizing film, laminated on the retardation film,
  • a method of manufacturing a composite polarizing plate comprising: The following step (A), step (B), step (C), step (D) and step (E) are included, or the following step (A), step (B), step (C), step (F) and A method comprising the step (G).
  • B Single-sided transparent protection
  • C A step of removing the peelable film from the polarizing film surface
  • D One side of the retardation film, and a peelability Step of forming an adhesive layer showing a storage elastic modulus of 0.1 MPa or more at 80 ° C.
  • the method according to ⁇ 1> includes step (A), step (B), step (C), step (D) and step (E) in this order,
  • step (D) the pressure-sensitive adhesive layer is formed on the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the peelable film has been removed.
  • the method includes step (A), step (C), step (D), step (B) and step (E) in this order,
  • step (D) the pressure-sensitive adhesive layer is formed on the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the peelable film has been removed.
  • the method according to ⁇ 1> includes step (A), step (B), step (C) and step (E) in this order, and also includes step (D), In the step (D), the pressure-sensitive adhesive layer is formed on one side of the retardation film.
  • the method according to ⁇ 1> includes step (A), step (B), step (C), step (F) and step (G) in this order,
  • step (F) the resin composition layer is formed on the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the peelable film has been removed.
  • the method according to ⁇ 1> includes step (A), step (B), step (C) and step (G) in this order, and also includes step (F), In the step (F), the resin composition layer is formed on one side of the retardation film.
  • the epoxy compound contains a compound having at least one epoxy group bonded to an alicyclic ring in the molecule.
  • the method according to any one of ⁇ 1> to ⁇ 7> The thickness of the core layer is 10 to 100 ⁇ m, and the thickness of the skin layer is 10 to 100 ⁇ m.
  • the method according to any one of ⁇ 1> to ⁇ 8> The glass transition temperature of the core layer is 120 ° C. or higher, and the glass transition temperature of the skin layer is 120 ° C. or lower.
  • the width of the retardation film is 10% or more smaller than the width of the polarizing plate with a single-sided transparent protective film produced in the step (A).
  • step (A) The method according to any one of ⁇ 1> to ⁇ 10>, In the step (A), the polarizing film and the transparent protective film are bonded using an adhesive containing a polyvinyl alcohol resin or an epoxy resin.
  • the adhesive is a resin composition containing an epoxy compound that is cured by irradiation with active energy rays or heating.
  • Bonding using a resin composition containing the epoxy compound between a polarizing film and a transparent protective film is a resin composition layer containing the epoxy compound on at least one side of the polarizing film and one side of the transparent protective film.
  • the process includes pasting a transparent protective film through the cured layer of the resin composition containing the compound.
  • the method according to ⁇ 12> or ⁇ 13> contains the compound which has 1 or more of epoxy groups couple
  • the transparent protective film has a thickness of 20 to 300 ⁇ m.
  • the pressure-sensitive adhesive layer has a thickness of 1 to 40 ⁇ m.
  • the polarizing plate with a single-sided transparent protective film is cut along the longitudinal direction according to the size of the retardation film before being bonded to the retardation film, and the retardation is obtained.
  • the composite polarizing plate obtained by the present invention is excellent in adhesion between the retardation film and the polarizing film and has high durability performance.
  • the composite polarizing plate obtained by the present invention can be suitably applied to a liquid crystal display device, particularly a liquid crystal display device including a transverse electric field mode liquid crystal cell, that is, an IPS (In-Plane-Switching) cell.
  • a liquid crystal display device particularly a liquid crystal display device including a transverse electric field mode liquid crystal cell, that is, an IPS (In-Plane-Switching) cell.
  • IPS In-Plane-Switching
  • the method for producing a composite polarizing plate of the present invention includes a core layer composed of a styrene resin and a skin layer composed of a (meth) acrylic resin composition containing rubber particles, which is laminated on both surfaces of the core layer.
  • a retardation film comprising a stretched film having a layer structure (skin layer / core layer / skin layer);
  • a method of manufacturing a composite polarizing plate comprising: A method comprising the following step (A), step (B), step (C), step (D) and step (E), The method includes the following step (A), step (B), step (C), step (F) and step (G).
  • B Single-sided transparent protection
  • C A step of removing the peelable film from the polarizing film surface
  • D One side of the retardation film, and a peelability Step of forming an adhesive layer showing a storage elastic modulus of 0.1 MPa or more at 80 ° C.
  • the bonding between the polarizing film of the polarizing plate with a single-sided transparent protective film and the retardation film is performed through an adhesive layer exhibiting a storage elastic modulus of 0.1 MPa or more at 80 ° C.
  • the method including the step (A), the step (B), the step (C), the step (D) and the step (E)), the step (A), the step (B), the step (C ), Step (D) and step (E) in this order.
  • step (D) the pressure-sensitive adhesive layer is formed on the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the peelable film has been removed.
  • step (D) the embodiment (hereinafter sometimes referred to as the first embodiment), step (A), step (C), step (D), step (B) and step (E) are included in this order.
  • the pressure-sensitive adhesive layer is a piece from which the peelable film has been removed.
  • An embodiment (hereinafter, sometimes referred to as a second embodiment) formed on the polarizing film surface of the polarizing plate with a transparent protective film, and the step (A), the step (B), the step (C) and the step (E)
  • the pressure-sensitive adhesive layer may be formed on one side of the retardation film (hereinafter sometimes referred to as a third mode). Can do.
  • a method of performing the bonding of the polarizing film of the polarizing plate with a single-sided transparent protective film and the retardation film via a resin composition layer containing an epoxy compound that is cured by irradiation with active energy rays or heating (step (A), As a preferred embodiment of the step (B), the step (C), the step (F) and the step (G)), the step (A), the step (B), the step (C), the step (F) and the step (G) is included in this order, and in the step (F), the resin composition layer is formed on the polarizing film surface of the polarizing plate with a single-side transparent protective film from which the peelable film has been removed (hereinafter referred to as the fourth).
  • the resin composition Material layer is one side of retardation film Aspect to be formed (hereinafter, sometimes referred to as the fifth embodiment) can be mentioned.
  • Step (A) In the method for producing a composite polarizing plate of the present invention, first, a transparent protective film is bonded to one side of a polarizing film, an adhesive peelable film is bonded to the opposite side, and polarized light with a single-sided transparent protective film is attached. Make a plate.
  • the polarizing film used in the method for producing a composite polarizing plate of the present invention has a function of selectively transmitting linearly polarized light in one direction from natural light.
  • an iodine polarizing film in which iodine is adsorbed and oriented on a polyvinyl alcohol film a dye polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol film, and a dichroic dye in a lyotropic liquid crystal state
  • examples thereof include a coating type polarizing film coated, oriented and fixed.
  • iodine-based polarizing films, dye-based polarizing films, and coating-type polarizing films have a function of selectively transmitting one direction of linearly polarized light from natural light and absorbing the other direction of linearly polarized light. It is called a type polarizing film.
  • the polarizing film used in the production method of the present invention has a function of selectively transmitting one direction of linearly polarized light from natural light and reflecting or scattering another direction of linearly polarized light as well as the above-described absorption polarizing film. What is called a reflective polarizing film or a scattering polarizing film may be used. Moreover, it is not necessarily limited to the polarizing film specifically mentioned here, What is necessary is just to have a function which selectively permeate
  • the polyvinyl alcohol resin used in the polyvinyl alcohol film can be obtained by saponifying a polyvinyl acetate resin.
  • the polyvinyl acetate resin include, in addition to polyvinyl acetate, which is a homopolymer of vinyl acetate, copolymers with other monomers copolymerizable with vinyl acetate.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, unsaturated sulfonic acids, olefins and vinyl ethers.
  • the saponification degree of the polyvinyl alcohol resin is usually 85 to 100 mol%, and more preferably 98 to 100 mol%.
  • the polyvinyl alcohol-based resin may be modified.
  • polyvinyl formal, polyvinyl acetal, and polyvinyl butyral modified with aldehydes are also used.
  • the degree of polymerization of the polyvinyl alcohol-based resin is usually about 1000 to 10,000, and preferably about 1500 to 10,000.
  • a film obtained by forming such a polyvinyl alcohol resin is used as an original film of a polarizing film.
  • the method for forming a polyvinyl alcohol-based resin is not particularly limited, and can be formed by a known method.
  • the thickness of the polyvinyl alcohol-based raw film is not particularly limited, but is, for example, about 2 to 150 ⁇ m.
  • the polarizing film is usually a humidity adjusting step for adjusting the moisture of the raw film made of the polyvinyl alcohol resin as described above, a step of uniaxially stretching the polyvinyl alcohol resin film, and the polyvinyl alcohol resin film with a dichroic dye. It is manufactured through a process of dyeing and adsorbing the dichroic dye, a process of treating the polyvinyl alcohol resin film on which the dichroic dye is adsorbed and oriented with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution.
  • the uniaxial stretching may be performed before the dyeing with the dichroic dye, may be performed simultaneously with the dyeing, or may be performed after the dyeing.
  • the uniaxial stretching may be performed before boric acid treatment or during boric acid treatment.
  • uniaxial stretching it may be uniaxially stretched between rolls having different peripheral speeds, or may be uniaxially stretched using a hot roll.
  • it may be dry stretching such as stretching in the air, or may be wet stretching in which stretching is performed in a state swollen with a solvent.
  • the draw ratio is usually 4 to 8 times.
  • the thickness of the polarizing film obtained by rinsing with water and drying can be, for example, 1 to 50 ⁇ m.
  • the transparent protective film used in the production method of the present invention is preferably made of a material having excellent transparency, mechanical strength, thermal stability, moisture shielding properties, and retardation value stability.
  • a material for transparent protective film is not particularly limited.
  • (meth) acrylic resins such as methyl methacrylate resins, chain olefin resins such as polypropylene resins, and cyclic olefin resins.
  • polyvinyl chloride resin polyvinyl chloride resin, cellulose resin, styrene resin, acrylonitrile / butadiene / styrene resin, acrylonitrile / styrene resin, polyvinyl acetate resin, polyvinylidene chloride resin, polyamide resin, polyacetal resin, Polycarbonate resin, modified polyphenylene ether resin, polybutylene terephthalate resin, polyethylene terephthalate resin, polysulfone resin, polyethersulfone resin, polyarylate resin, polyamideimide resin and polyimide resin And the like.
  • Each of these resins can be used alone or in combination with one or more other types. These resins can also be used after any suitable polymer modification. Examples of the polymer modification include copolymerization, crosslinking, molecular terminal, stereoregularity control, and reaction between different polymers. Modifications such as mixing including the accompanying cases are included.
  • (meth) acrylic resins such as methyl methacrylate resins, chain olefin resins such as polyethylene terephthalate resins and polypropylene resins, and cellulose resins.
  • the methyl methacrylate resin is a polymer containing 50% by weight or more of methyl methacrylate units.
  • the content of methyl methacrylate units is preferably 70% by weight or more, and may be 100% by weight.
  • the polymer having a methyl methacrylate unit of 100% by weight is a methyl methacrylate homopolymer obtained by polymerizing methyl methacrylate alone.
  • This methyl methacrylate resin can be usually obtained by polymerization in the presence of a monofunctional monomer, a polyfunctional monomer, a radical polymerization initiator and a chain transfer agent mainly composed of methyl methacrylate.
  • the monofunctional monomer that can be copolymerized with methyl methacrylate is not particularly limited.
  • the polyfunctional monomer that can be copolymerized with methyl methacrylate is not particularly limited.
  • the epoxy groups of acrylate ones was ring-opening addition; aryl (meth) acrylate; and diaryl compounds such as divinylbenzene.
  • ethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate and neopentyl glycol dimethacrylate are preferably used.
  • the methyl methacrylate resin may be further modified by a reaction between functional groups copolymerized with the resin.
  • a reaction for example, demethanol condensation reaction in the polymer chain of a hydroxyl group of methyl acrylate and methyl 2- (hydroxymethyl) acrylate, carboxyl group of acrylic acid and 2- (hydroxymethyl) acrylic Examples thereof include a dehydration condensation reaction of a hydroxyl group with methyl acid in a polymer chain.
  • methyl methacrylate resins can be easily obtained.
  • Sumipex manufactured by Sumitomo Chemical Co., Ltd.
  • Acrypet manufactured by Mitsubishi Rayon Co., Ltd.
  • Delpet Manufactured by Asahi Kasei Co., Ltd.
  • Parapet manufactured by Kuraray Co., Ltd.
  • acryl viewer manufactured by Nippon Shokubai Co., Ltd.
  • Polyethylene terephthalate resin means a resin in which 80 mol% or more of repeating units are composed of ethylene terephthalate, and may contain other dicarboxylic acid components and diol components.
  • dicarboxylic acid components include, but are not limited to, isophthalic acid, p- ⁇ -oxyethoxybenzoic acid, 4,4′-dicarboxydiphenyl, 4,4′-dicarboxybenzophenone, bis (4-Carboxyphenyl) ethane, adipic acid, sebacic acid and 1,4-dicarboxycyclohexane.
  • diol components are not particularly limited, but propylene glycol, butanediol, neopentyl glycol, diethylene glycol, cyclohexanediol, ethylene oxide adduct of bisphenol A, polyethylene glycol, polypropylene glycol, and polytetramethylene glycol. Can be mentioned.
  • dicarboxylic acid components and diol components can be used in combination with one or more other types as necessary.
  • oxycarboxylic acids such as p-oxybenzoic acid, can also be used together.
  • a dicarboxylic acid component or a diol component containing a small amount of an amide bond, a urethane bond, an ether bond, a carbonate bond, or the like may be used as other copolymerization component.
  • Polyethylene terephthalate resin can be produced by direct polycondensation of terephthalic acid and ethylene glycol (and other dicarboxylic acids or other diols as required), dialkyl esters of terephthalic acid and ethylene glycol (and if necessary) A transesterification reaction with a dialkyl ester of another dicarboxylic acid or other diol), and a polycondensation, and an ethylene glycol ester of terephthalic acid (and other dicarboxylic acids as required) For example, a method of polycondensation of other diol ester) in the presence of a catalyst is employed. Furthermore, solid phase polymerization can be performed as necessary to improve the molecular weight or reduce the low molecular weight components.
  • the polypropylene resin refers to a polymer obtained by polymerizing a chain olefin monomer in which 80% by weight or more of the repeating unit is a propylene monomer among the chain olefin resins. Of these, propylene homopolymer is preferred. Also preferred is a copolymer comprising propylene as a main component and a comonomer copolymerizable therewith at a rate of 1 to 20% by weight, preferably 3 to 10% by weight.
  • ethylene, 1-butene and 1-hexene are preferred as comonomers copolymerizable with propylene.
  • a propylene copolymer obtained by copolymerizing ethylene at a ratio of 3 to 10% by weight is preferable because of relatively excellent transparency.
  • a propylene homopolymer having a component soluble in xylene at 20 ° C. (CXS component) of 1% by weight or less is more preferable, and a propylene homopolymer having a CXS component of 0.5% by weight or less is more preferable.
  • Cellulosic resins are those in which some or all of the hydrogen atoms in the hydroxyl groups of cellulose obtained from raw material cellulose such as cotton linter and wood pulp (hardwood pulp, conifer pulp) are acetyl groups, propionyl groups and / or butyryl groups. It refers to a substituted cellulose organic acid ester or cellulose mixed organic acid ester. Examples include cellulose acetates, propionate esters, butyrate esters, and mixed esters thereof. Among these, a triacetyl cellulose film, a diacetyl cellulose film, a cellulose acetate propionate film, and a cellulose acetate butyrate film are preferable.
  • a method for making such a methyl methacrylate resin, a polyethylene terephthalate resin, a polypropylene resin, a cellulose resin, and the like as a transparent protective film to be bonded to a polarizing film a method corresponding to the resin may be appropriately selected.
  • a resin dissolved in a solvent is cast onto a metal band or drum, and the solvent is cast by removing the solvent by drying, and the resin is heated and kneaded above its melting temperature and extruded from a die, A melt extrusion method for obtaining a film by cooling is employed. In this melt extrusion method, a single layer film may be extruded or a multilayer film may be simultaneously extruded.
  • methyl methacrylate resin films are sold under the trade names of Sumipex (manufactured by Sumitomo Chemical Co., Ltd.), Acrylite (manufactured by Mitsubishi Rayon Co., Ltd.), Acryprene (manufactured by Mitsubishi Rayon Co., Ltd.), Delaglass (Asahi Kasei). (Manufactured by Co., Ltd.), Paragrass (manufactured by Kuraray Co., Ltd.), como glass (manufactured by Kuraray Co., Ltd.) and acryl viewer (manufactured by Nippon Shokubai Co., Ltd.)
  • examples of the polyethylene terephthalate resin film include Novaclear (manufactured by Mitsubishi Chemical Corporation) and Teijin A-PET sheet (manufactured by Teijin Chemicals Ltd.) under the trade names.
  • polypropylene resin film for example, FILMAX CPP film (manufactured by FILMAX), Santox (manufactured by Sun Tox Co., Ltd.), Tosero (manufactured by Tosero Co., Ltd.), Toyobo Pyrene Film ( Toyobo Co., Ltd.), Treffan (Toray Film Processing Co., Ltd.), Nihon Polyace (Nihon Polyace Co., Ltd.) and Dazai FC (Futamura Chemical Co., Ltd.).
  • FILMAX CPP film manufactured by FILMAX
  • Santox manufactured by Sun Tox Co., Ltd.
  • Tosero manufactured by Tosero Co., Ltd.
  • Toyobo Pyrene Film Toyobo Co., Ltd.
  • Treffan Toray Film Processing Co., Ltd.
  • Nihon Polyace Nihon Polyace Co., Ltd.
  • Dazai FC Fazai FC
  • examples of the cellulose resin film include Fujitac TD (manufactured by Fuji Film Co., Ltd.) and Konica Minolta TAC film KC (manufactured by Konica Minolta Opto Co., Ltd.) under the trade names.
  • the antiglare property can be imparted to the transparent protective film used in the present invention.
  • the method for imparting antiglare properties is not particularly limited. For example, a method of mixing inorganic fine particles or organic fine particles into the raw material resin to form a film, the multilayer extrusion described above, and the like.
  • the inorganic fine particles for imparting antiglare properties are not particularly limited.
  • the organic fine particles are not particularly limited.
  • the haze value of the thus obtained transparent protective film with antiglare property is preferably in the range of 6 to 45%.
  • the haze value of the transparent protective film is less than 6%, a sufficient antiglare effect may not appear.
  • the haze value of the transparent protective film exceeds 45%, the screen of the liquid crystal display device using this film may be whitened, resulting in a reduction in image quality.
  • this haze value can be measured using a haze / transmittance meter HM-150 (manufactured by Murakami Color Research Laboratory Co., Ltd.) in accordance with JIS K 7136.
  • a measurement sample in which the film surface is bonded to a glass substrate using an optically transparent adhesive so that the antiglare property-imparting surface becomes the surface Is preferably used.
  • the transparent protective film On the transparent protective film, functional layers such as a conductive layer, a hard coat layer and a low reflection layer can be further laminated. Moreover, the resin composition which has these functions can also be selected for binder resin which comprises a transparent protective film.
  • the transparent protective film is preferably subjected to saponification treatment, corona treatment, plasma treatment and the like prior to bonding with the polarizing film.
  • the thickness of the transparent protective film is not particularly limited, but is usually about 1 to 500 ⁇ m, preferably 20 to 300 ⁇ m, and more preferably 20 to 100 ⁇ m from the viewpoints of strength and handleability. When the thickness is within this range, the polarizing film is mechanically protected, and even when exposed to high temperature and high humidity, the polarizing film does not shrink and stable optical characteristics can be maintained.
  • the adhesive used for bonding the polarizing film and the transparent protective film is not particularly limited.
  • components such as polyvinyl alcohol resins, epoxy resins, urethane resins, cyanoacrylate resins, acrylamide resins (
  • an adhesive (which may be referred to as an adhesive component) may be used (hereinafter also referred to as an adhesive composition).
  • an adhesive which may be referred to as an adhesive component
  • an adhesive composition a water-based adhesive, that is, an adhesive component dissolved in water or dispersed in water is preferably used because the thickness of the adhesive layer can be further reduced.
  • an adhesive composed of a solventless resin composition in which a monomer or an oligomer is reactively cured by heating or irradiation with active energy rays to form an adhesive layer can be mentioned.
  • the water-based adhesive examples include those containing, for example, a polyvinyl alcohol resin, a water-soluble crosslinkable epoxy resin, a urethane resin, or the like as an adhesive component.
  • a polyvinyl alcohol-based resin various known resins used for water-based adhesives can be used.
  • the water-soluble crosslinkable epoxy resin can be obtained, for example, by reacting a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine with a polyamidopolyamine obtained by reacting a dicarboxylic acid such as adipic acid with epichlorohydrin. Mention may be made of polyamide epoxy resins.
  • Examples of such commercially available polyamide epoxy resins include Sumire Resin 650 (manufactured by Sumika Chemtex Co., Ltd.), Sumire Resin 675 (manufactured by Sumika Chemtex Co., Ltd.), and the like.
  • the adhesive composition is further mixed with another water-soluble resin such as a polyvinyl alcohol resin in order to improve coatability and adhesiveness.
  • a polyvinyl alcohol resin such as a polyvinyl alcohol resin
  • the polyvinyl alcohol-based resin include partially saponified polyvinyl alcohol and fully saponified polyvinyl alcohol, modified polyvinyl alcohol such as carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, and amino group-modified polyvinyl alcohol.
  • Alcohol-type resin is mentioned.
  • a saponified product of a copolymer of vinyl acetate and unsaturated carboxylic acid or a salt thereof, that is, carboxyl group-modified polyvinyl alcohol is preferably used.
  • carboxyl group-modified polyvinyl alcohol is preferably used.
  • the “carboxyl group” is a concept including —COOH and a salt thereof.
  • Examples of suitable commercially available carboxyl group-modified polyvinyl alcohol include Kuraray Poval KL-506 (manufactured by Kuraray Co., Ltd.), Kuraray Poval KL-318 (manufactured by Kuraray Co., Ltd.), and Kuraray Poval KL-118 ((Co., Ltd.).
  • An adhesive containing a water-soluble crosslinkable epoxy resin can be prepared by dissolving an epoxy resin and other water-soluble resin such as a polyvinyl alcohol-based resin added as necessary in water.
  • the content of the water-soluble crosslinkable epoxy resin is preferably about 0.2 to 2 parts by weight with respect to 100 parts by weight of water.
  • the blending amount is preferably about 1 to 10 parts by weight, and more preferably about 1 to 5 parts by weight with respect to 100 parts by weight of water.
  • examples of urethane resins that can be suitably used for water-based adhesives include ionomer-type urethane resins, particularly polyester-type ionomer-type urethane resins.
  • the ionomer type is obtained by introducing a small amount of an ionic component (hydrophilic component) into the skeleton constituting the urethane resin.
  • the polyester ionomer type urethane resin is a urethane resin having a polyester skeleton, and a small amount of an ionic component (hydrophilic component) is introduced into the skeleton.
  • Such an ionomer type urethane resin is emulsified directly in water without using an emulsifier and becomes an emulsion, so that it can be suitably used for an aqueous adhesive.
  • polyester ionomer type urethane resins include Hydran AP-20 (Dainippon Ink Chemical Co., Ltd.), Hydran APX-101H (Dainippon Ink Chemical Co., Ltd.), etc. Is also available in the form of an emulsion.
  • an isocyanate-based crosslinking agent is a compound having at least two isocyanato groups (—NCO) in the molecule.
  • polyisocyanate monomers such as methylene diisocyanate and isophorone diisocyanate
  • examples thereof include a trifunctional isocyanurate having a ring formed and a polyisocyanate-modified product such as a burette formed by hydration and decarboxylation of three diisocyanate molecules at each isocyanato group.
  • examples of commercially available isocyanate-based crosslinking agents that can be suitably used include Hydran Assister C-1 (manufactured by Dainippon Ink & Chemicals, Inc.).
  • the urethane resin is preferably dissolved or dispersed in water so that its concentration is about 10 to 70% by weight. It is more preferably up to 50% by weight. Further, when the isocyanate crosslinking agent is blended, the blending amount is appropriately selected so that the isocyanate crosslinking agent is about 5 to 100 parts by weight with respect to 100 parts by weight of the urethane resin.
  • the adhesive is applied to the adhesive surface of the transparent protective film or the polarizing film, and the laminated body of the polarizing film and the transparent protective film is obtained by bonding and drying both. be able to.
  • the adhesive preferably used in the production method of the present invention contains a curable compound that is polymerized by heating or irradiation with active energy rays and a polymerization initiator, and does not contain a significant amount of solvent (hereinafter, It may be described as a curable composition).
  • This curable compound is preferably one that is cured by cationic polymerization from the viewpoint of reactivity, and particularly preferably contains an epoxy compound (epoxy resin).
  • epoxy compound those having no aromatic ring in the molecule are suitably used from the viewpoint of weather resistance, refractive index and the like.
  • An adhesive using an epoxy compound that does not contain an aromatic ring in the molecule is described in, for example, JP-A-2004-245925.
  • epoxy compounds that do not contain an aromatic ring include hydrides of aromatic epoxy compounds, alicyclic epoxy compounds, and aliphatic epoxy compounds.
  • a hydride of an aromatic epoxy compound is obtained by selectively hydrogenating an aromatic epoxy compound to an aromatic ring under pressure in the presence of a catalyst.
  • aromatic epoxy compounds include bisphenol-type epoxy compounds such as bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, and bisphenol S diglycidyl ether; phenol novolac epoxy resins, cresol novolac epoxy resins, hydroxybenzaldehyde phenol novolac Examples thereof include novolak-type epoxy resins such as epoxy resins; and polyfunctional epoxy compounds such as glycidyl ether of tetrahydroxydiphenylmethane, glycidyl ether of tetrahydroxybenzophenone, and epoxidized polyvinylphenol. Of these, hydrogenated diglycidyl ether of bisphenol A is preferred.
  • An alicyclic epoxy compound is a compound having at least one epoxy group in the molecule bonded to an alicyclic ring represented by the following formula.
  • n represents an integer of 2 to 5.
  • a compound in which one or more hydrogen atoms in (CH 2 ) m in this formula are removed and bonded to another chemical structure can be an alicyclic epoxy compound.
  • the hydrogen forming the alicyclic ring may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group.
  • Specific examples of the alicyclic epoxy compound include the following.
  • the aliphatic epoxy compound is a polyglycidyl ether of an aliphatic polyhydric alcohol or an alkylene oxide adduct thereof.
  • Each of the epoxy compounds exemplified here may be used alone or in combination with one or more other compounds.
  • the epoxy equivalent of such an epoxy compound is usually 30 to 3000 g / eq, preferably 50 to 1500 g / eq.
  • the epoxy equivalent is less than 30 g / eq, the flexibility of the transparent protective film after curing may decrease or the adhesive strength may decrease.
  • it exceeds 3000 g / eq the compatibility with other components may decrease.
  • a cationic polymerization initiator is blended in order to cure the epoxy compound by cationic polymerization.
  • the cationic polymerization initiator generates a cationic species or a Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, or by heating, and initiates a polymerization reaction of an epoxy group.
  • active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams
  • a photocationic polymerization initiator that generates cationic species and Lewis acid upon irradiation with active energy rays will be described.
  • Use of a cationic photopolymerization initiator enables curing at room temperature, reduces the need to consider the internal stress due to heat resistance or thermal expansion of the polarizing film, and allows the transparent protective film and the polarizing film to adhere well. it can.
  • a photocationic polymerization initiator acts catalytically by light, it is excellent in storage stability and workability even when mixed with an epoxy compound.
  • Examples of the compound that generates a cationic species or a Lewis acid upon irradiation with active energy rays include onium salts such as aromatic diazonium salts, aromatic iodonium salts, and aromatic sulfonium salts, and iron-allene complexes.
  • onium salts such as aromatic diazonium salts, aromatic iodonium salts, and aromatic sulfonium salts, and iron-allene complexes.
  • aromatic sulfonium salts are particularly preferably used since they have ultraviolet absorption characteristics even in a wavelength region of 300 nm or more, and can provide a cured product having excellent curability and good mechanical strength and adhesive strength.
  • Such a cationic photopolymerization initiator can be easily obtained as a commercial product.
  • Kayrad PCI-220 manufactured by Nippon Kayaku Co., Ltd.
  • Kayrad PCI-620 manufactured by Nippon Kayaku Co., Ltd.
  • trade names respectively.
  • UVI-6990 manufactured by Union Carbide
  • Adekaoptomer SP-150 manufactured by ADEKA
  • Adekaoptomer SP-170 manufactured by ADEKA
  • CI-5102 manufactured by Nippon Soda Co., Ltd.
  • CIT-1370 manufactured by Nippon Soda Co., Ltd.
  • CIT-1682 manufactured by Nippon Soda Co., Ltd.
  • CIP-1866S manufactured by Nippon Soda Co., Ltd.
  • CIP-2048S manufactured by Nippon Soda Co., Ltd.
  • CIP-2064S manufactured by Nippon Soda Co., Ltd.
  • DPI-101 manufactured by Midori Chemical Co., Ltd.
  • DPI-102 manufactured by Midori Chemical Co., Ltd.
  • DPI-103 midor Chemical Co., Ltd.
  • the compounding amount of the cationic photopolymerization initiator is usually 0.5 to 20 parts by weight and preferably 1 to 15 parts by weight with respect to 100 parts by weight of the epoxy compound.
  • a photosensitizer can be used in combination with the curable composition as necessary. By using a photosensitizer, the reactivity is improved and the mechanical strength and adhesive strength of the cured product can be improved.
  • the photosensitizer include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo and diazo compounds, halogen compounds, and photoreducible dyes.
  • the blending amount is usually about 0.1 to 20 parts by weight with 100 parts by weight of the photocationically polymerizable epoxy resin composition.
  • thermal cationic polymerization initiator will be described.
  • the compound that generates a cationic species or a Lewis acid by heating include benzylsulfonium salt, thiophenium salt, thiolanium salt, benzylammonium, pyridinium salt, hydrazinium salt, carboxylic acid ester, sulfonic acid ester, and amine imide.
  • Commercially available products of these thermal cationic polymerization initiators can also be easily obtained.
  • Adeka Opton CP77 (manufactured by ADEKA), Adeka Opton CP66 (manufactured by ADEKA), CI- 2639 (manufactured by Nippon Soda Co., Ltd.), CI-2624 (manufactured by Nippon Soda Co., Ltd.), Sun-Aid SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.), Sun-Aid SI-80L (manufactured by Sanshin Chemical Industry Co., Ltd.) ), Sun Aid SI-100L (manufactured by Sanshin Chemical Industry Co., Ltd.) and the like.
  • the curable composition may further contain a compound that promotes cationic polymerization, such as oxetanes and polyols.
  • the curable composition thus obtained is applied to at least one of the transparent protective film and the polarizing film to form a curable composition layer, and the other polarizing film or transparent protective film is stacked on the curable composition layer
  • the polarizing film and the transparent protective film can be bonded via the cured layer by curing the curable composition layer by irradiation with active energy rays or heating.
  • the method for applying the curable composition to the transparent protective film or the polarizing film For example, various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater are adopted.
  • the thickness of the curable composition layer is usually 1 ⁇ m or more and 50 ⁇ m or less, preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the light source used is not particularly limited, but has a light emission distribution at a wavelength of 400 nm or less, such as a low-pressure mercury lamp, a medium-pressure mercury lamp, High pressure mercury lamps, ultra high pressure mercury lamps, chemical lamps, black light lamps, microwave excited mercury lamps and metal halide lamps.
  • the light irradiation intensity to the curable composition layer is determined by the curability of the composition and is not particularly limited, but the irradiation in the wavelength region effective for the activation of the photocationic polymerization initiator.
  • the strength is preferably 0.1 to 100 mW / cm 2 .
  • the light irradiation intensity to the curable composition layer is less than 0.1 mW / cm 2 , the reaction time becomes too long, and when it exceeds 100 mW / cm 2 , the heat radiated from the lamp and the polymerization of the curable composition The heat generated at the time may cause yellowing of the curable composition or deterioration of the polarizing film.
  • the light irradiation time to the curable composition layer is determined by the curability of the composition and is not particularly limited.
  • the light irradiation time is expressed as a product of irradiation intensity and irradiation time. It is preferable to set the integrated light quantity to be 10 to 5000 mJ / cm 2 .
  • the integrated light quantity to the curable composition layer is less than 10 mJ / cm 2 , the generation of the active species derived from the photocationic polymerization initiator is not sufficient, and the curable composition layer may be insufficiently cured. .
  • the integrated light quantity exceeds 5000 mJ / cm 2 , the irradiation time becomes very long, which is disadvantageous for improving productivity.
  • the curable composition layer When the curable composition layer is cured by heat, it can be heated by a generally known method, and the conditions are not particularly limited, but are usually blended in the curable composition. Heating is performed at a temperature higher than the temperature at which the thermal cationic polymerization initiator generates cationic species and Lewis acid, and the temperature is, for example, about 50 to 200 ° C.
  • the thickness of the cured layer obtained by curing the curable composition layer is usually 50 ⁇ m or less, preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • peelable film As the peelable film having adhesiveness used in the production method of the present invention, a film which has been treated with a low molecular weight pressure-sensitive adhesive so as to be easily peeled can be used.
  • polyesters such as polyethylene terephthalate and polyethylene naphthalate Resin; Cyclic olefin resin; and chain olefin resin such as polyethylene, polypropylene, propylene / ethylene copolymer can be used.
  • a polyethylene terephthalate film, a polypropylene film, and a polyethylene film are preferably used from the viewpoint that the adhesiveness can be adjusted as appropriate and the commercial product is easily available.
  • the peelable film has self-adhesiveness and can be directly bonded to the surface of the polarizing film opposite to the surface to which the transparent protective film is bonded.
  • a polarizing plate with a single-sided transparent protective film in which a transparent protective film is bonded to one side of a polarizing film by an adhesive and a peelable film having adhesiveness is bonded to the opposite side is once a winding device. Is wound around a core such as a vinyl chloride tube.
  • a process of bonding a transparent protective film to a polarizing film and the process of bonding a peelable film to a polarizing film may be performed first, and may be performed simultaneously.
  • a polarizing plate with a single-sided transparent protective film in which a peelable film is bonded to one side produced as described above In a 2nd aspect, the polarizing plate with a single-sided transparent protective film in which the adhesive layer was formed in the single side
  • the width after cutting of the polarizing plate with a single-sided transparent protective film is appropriately set according to the width of the retardation film described later. For example, at least one fragment of the polarizing plate with a single-sided transparent protective film after cutting will be described later. The width is preferably the same as the width of the retardation film.
  • the polarizing plate with a single-sided transparent protective film is cut together with the laminated pressure-sensitive adhesive layer.
  • the method of cutting the polarizing plate with a single-sided transparent protective film is not particularly limited, but usually the rolled-up polarizing plate with a single-sided transparent protective film is fed simultaneously to a slitter (long-direction cutting machine). Then, a method of rewinding the cut pieces is adopted. Further, it is possible to adopt a method in which the polarizing plate cut in accordance with the width of the retardation film is not taken up, and is sequentially sent to the next step.
  • the peelable film is removed from the polarizing plate with the single-sided transparent protective film cut in the step (B).
  • a peelable film is removed from the polarizing plate with a single-sided transparent protective film which is not cut.
  • the pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer has a storage elastic modulus at 80 ° C. of 0.1 MPa or more, preferably 0.15 MPa to 10 MPa.
  • the storage elastic modulus at 80 ° C. is less than 0.1 MPa, there is a problem that bubbles and peeling occur because the dimensional change of the polarizing film that occurs when the high temperature environment and the low temperature environment are repeated cannot be followed. Because. Further, the storage elastic modulus at a temperature of 23 ° C. of this pressure-sensitive adhesive is preferably 0.1 MPa or more, and more preferably 0.2 to 10 MPa.
  • the storage elastic modulus generally tends to be lower as the temperature is higher, if the storage elastic modulus of the material measured at 80 ° C. is 0.1 MPa or more, usually the same material measured at 23 ° C. A storage elastic modulus shows the value beyond it.
  • the pressure-sensitive adhesive is synonymous with a pressure-sensitive adhesive.
  • the storage elastic modulus (dynamic elastic modulus) is a commonly used term for viscoelasticity measurement, and gives a strain or stress that changes (vibrates) over time to a sample. This is a value determined by a method (dynamic viscoelasticity measurement) for measuring the mechanical properties of a sample by measuring the stress or strain generated by. Specifically, when the stress (strain) generated by the sinusoidal strain (stress) applied to the sample is divided into a component having the same phase as the strain (stress) and a component having a phase shifted by 90 degrees, The elastic modulus calculated from the stress (strain) component in phase with the stress.
  • the storage elastic modulus can be measured using a commercially available viscoelasticity measuring device, for example, a dynamic viscoelasticity measuring device (Dynamic Analyzer RDA II: manufactured by REOMETRIC) as shown in the examples described later.
  • a dynamic viscoelasticity measuring device Dynamic Analyzer RDA II: manufactured by REOMETRIC
  • various known temperature control devices such as a circulating thermostat, an electric heater, a Peltier element, and the like are used, and thereby the temperature at the time of measurement can be set.
  • the pressure-sensitive adhesive used in a normal image display device or an optical film applied thereto has a storage elastic modulus of about 0.1 MPa at most, but the pressure-sensitive adhesive used in the production method of the present invention is as described above.
  • the storage elastic modulus is high.
  • a high storage elastic modulus that is, a hard adhesive
  • contraction of the polarizing film sometimes generated can be suppressed. By this action, the composite polarizing plate of the present invention has good durability.
  • the specific high-elasticity adhesive used in the production method of the present invention can be composed of a composition mainly containing components such as acrylic polymer, silicone polymer, polyester, polyurethane, and polyether. . Above all, like acrylic polymer, it has excellent optical transparency, moderate wettability and cohesion, excellent adhesion to the substrate, weather resistance, heat resistance, etc. It is preferable to select and use one that does not cause peeling problems such as floating and peeling under humidifying conditions.
  • a functional group comprising an alkyl ester of acrylic acid having an alkyl group having 20 or less carbon atoms such as a methyl group, an ethyl group and a butyl group, and (meth) acrylic acid or hydroxyethyl (meth) acrylate.
  • the acrylic polymer is not particularly limited, but (meth) acrylic such as butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, etc. Acid ester polymers and copolymer polymers using two or more of these (meth) acrylic esters are preferably used. Moreover, polar monomers may be copolymerized with these acrylic polymers.
  • polar monomers examples include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (meth) acrylamide, and 2-N, N-dimethylaminoethyl (meth). Mention may be made of monomers having a polar functional group such as a carboxyl group, a hydroxyl group, an amide group, an amino group, and an epoxy group, such as acrylate and glycidyl (meth) acrylate.
  • a polar functional group such as a carboxyl group, a hydroxyl group, an amide group, an amino group, and an epoxy group, such as acrylate and glycidyl (meth) acrylate.
  • acrylic polymers can be used alone as a pressure-sensitive adhesive, but are usually a pressure-sensitive adhesive composition containing a crosslinking agent.
  • a crosslinking agent a divalent or polyvalent metal ion that forms a carboxylic acid metal salt with a carboxyl group, a polyamine compound that forms an amide bond with a carboxyl group.
  • examples include polyepoxy compounds and polyol compounds that form an ester bond with a carboxyl group, and polyisocyanate compounds that form an amide bond with a carboxyl group. Of these, polyisocyanate compounds are preferably used.
  • the means for increasing the storage elastic modulus of the pressure-sensitive adhesive is not particularly limited.
  • an oligomer specifically, a urethane acrylate-based oligomer is added to the above-mentioned pressure-sensitive adhesive composition.
  • a method is preferably employed.
  • a method of irradiating and curing an adhesive composition containing such a urethane acrylate oligomer with energy rays is more preferably employed because it has a higher storage elastic modulus.
  • a pressure-sensitive adhesive in which a urethane acrylate oligomer is blended or a pressure-sensitive adhesive with a separator obtained by coating it on a support film (separator) and curing it with ultraviolet rays is known and can be obtained from a pressure-sensitive adhesive manufacturer.
  • the adhesive force, cohesive force, viscosity, elastic modulus, glass transition temperature, etc. of the adhesive if necessary, in addition to the above-described polymer, crosslinking agent and oligomer, it is also possible to add appropriate additives such as natural and synthetic resins, tackifier resins, antioxidants, UV absorbers, dyes, pigments, antifoaming agents, corrosion inhibitors, photopolymerization initiators, etc. it can.
  • the ultraviolet absorber include salicylic acid ester compounds, benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, and nickel complex compounds.
  • the pressure-sensitive adhesive used in the production method of the present invention can be mixed with a light diffusing agent to form a light diffusable pressure-sensitive adhesive.
  • the light diffusing agent used here may be fine particles having a refractive index different from that of the polymer constituting the pressure-sensitive adhesive layer, and fine particles made of an inorganic compound or fine particles made of an organic compound (polymer) can be used.
  • Examples of the fine particles made of an inorganic compound include aluminum oxide (refractive index: 1.76) and silicon oxide (refractive index: 1.45).
  • Examples of the fine particles comprising an organic compound (polymer) include melamine beads (refractive index: 1.57), polymethyl methacrylate beads (refractive index: 1.49), and methyl methacrylate / styrene copolymer resin beads. (Refractive index: 1.50 to 1.59), polycarbonate beads (refractive index: 1.55), polyethylene beads (refractive index: 1.53), polystyrene beads (refractive index: 1.6), polyvinyl chloride beads (Refractive index: 1.46) and silicone resin beads (refractive index: 1.46).
  • the light diffusing agent to be blended is appropriately selected from those having a refractive index of about 1-2. Just choose.
  • the difference in refractive index between the polymer and the light diffusing agent in the composition constituting the pressure-sensitive adhesive layer is usually 0.01 or more, and from the viewpoint of the brightness and visibility of the image display device, 0.01 to 0.00. 5 is preferred.
  • the fine particles used as the light diffusing agent are preferably spherical and those close to monodisperse. For example, fine particles having an average particle size in the range of about 2 to 6 ⁇ m are preferably used.
  • the blending amount of the light diffusing agent is appropriately determined in consideration of the haze value required for the light diffusing pressure-sensitive adhesive layer in which it is blended, the brightness of the image display device to which it is applied, etc.
  • the amount is usually about 3 to 30 parts by weight with respect to 100 parts by weight of the base polymer constituting the agent layer.
  • the haze value required for the light diffusive pressure-sensitive adhesive layer ensures the brightness of the image display device to which the composite polarizing plate obtained by using the haze value is applied, and hardly causes bleeding and blurring of the display image. Therefore, the range of 20 to 80% is preferable.
  • the haze is a value defined by JIS K7105 and represented by (diffuse transmittance / total light transmittance) ⁇ 100 (%).
  • the thickness of the pressure-sensitive adhesive layer and the thickness of the light diffusive pressure-sensitive adhesive layer are determined according to the adhesive force and the like, but are usually in the range of 1 to 40 ⁇ m. Furthermore, this thickness is such that the composite polarizing plate produced using the composite polarizing plate maintains good workability and exhibits high durability, and the image display device using the composite polarizing plate is viewed from the front or obliquely. From the standpoint of maintaining the brightness of the image and making the display image less likely to bleed or blur, 3 to 25 ⁇ m is more preferable.
  • the above-mentioned pressure-sensitive adhesive is formed on the polarizing film surface (the surface on which the peelable film has been bonded) of the polarizing plate with a single-sided transparent protective film that has been cut and from which the peelable film has been removed.
  • a layer is formed.
  • An adhesive layer is formed.
  • a method in which a pressure-sensitive adhesive solution is applied to the polarizing film surface of the polarizing plate with a single-sided transparent protective film and dried is preferably employed. Also preferred is a method in which a release film-treated surface of a support film (separator) that has been subjected to a release treatment is prepared (adhesive with a separator) having a pressure-sensitive adhesive layer formed thereon, and is bonded to the polarizing film surface. Adopted.
  • the pressure-sensitive adhesive solution for example, a solution prepared by dissolving or dispersing the raw material constituting the pressure-sensitive adhesive composition in an organic solvent such as toluene or ethyl acetate to obtain a 10 to 40% by weight solution is used.
  • the pressure-sensitive adhesive layer thus formed may be laminated with a separator made of a resin film that has been treated with a silicone-based release agent.
  • a treatment for improving adhesion to the polarizing film surface for example, corona treatment, etc.
  • corona treatment etc.
  • the same treatment may be applied to the surface of the pressure-sensitive adhesive layer bonded to the polarizing film surface.
  • the above-mentioned pressure-sensitive adhesive layer is formed on one surface of the retardation film.
  • 3rd aspect WHEREIN The timing at which a process (D) is implemented is not specifically limited, What is necessary is just to be implemented by the below-mentioned process (E) being made. That is, step (D) may be performed before step (A), or in parallel with or after any of step (A), step (B) and step (C). Also good.
  • a retardation film having an adhesive layer formed on one side may be supplied to the polarizing film surface from which the peelable film has been removed in step (C).
  • the method similar to the method described in formation of the adhesive layer to the polarizing film surface of a polarizing plate with a single-sided transparent protective film is employable.
  • the core layer is made of a styrene resin
  • the skin layer made of a (meth) acrylic resin composition containing rubber particles is formed on both surfaces thereof. is there.
  • the styrenic resin constituting the core layer can be a homopolymer of styrene or a derivative thereof, or is a binary or higher copolymer of styrene or a derivative thereof and another copolymerizable monomer. You can also.
  • the styrene derivative is a compound in which another group is bonded to styrene, such as o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, o-ethylstyrene, alkyl styrenes such as p-ethyl styrene; and hydroxy styrene, tert-butoxy styrene, vinyl benzoic acid, o-chloro styrene, p-chloro styrene, etc. Substituted styrene etc. in which etc. were introduced.
  • the styrene resin is preferably a copolymer of styrene or a styrene derivative and at least one monomer selected from acrylonitrile, maleic anhydride, methyl methacrylate, and butadiene.
  • the glass transition temperature Tg of the styrenic resin constituting the core layer is preferably 100 ° C. or higher, and more preferably 120 ° C. or higher.
  • the core layer made of styrene resin is preferably set so that the thickness (film thickness) is 10 to 100 ⁇ m. If the thickness is less than 10 ⁇ m, a sufficient retardation value may not easily be exhibited by stretching. On the other hand, when the thickness exceeds 100 ⁇ m, the impact strength of the film tends to be weak and the retardation change due to external stress tends to increase, and white spots etc. are likely to occur when applied to a liquid crystal display device, Display performance is likely to deteriorate.
  • the skin layer disposed on both surfaces of the core layer made of the styrene resin is made of a (meth) acrylic resin composition in which rubber particles are blended with a (meth) acrylic resin.
  • a (meth) acrylic resin include homopolymers of methacrylic acid alkyl esters or acrylic acid alkyl esters, and copolymers of methacrylic acid alkyl esters and acrylic acid alkyl esters.
  • Specific examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, and propyl methacrylate.
  • alkyl acrylate examples include methyl acrylate, ethyl acrylate, and propyl acrylate.
  • a (meth) acrylic resin a commercially available (meth) acrylic resin can be used.
  • Some (meth) acrylic resins are called impact-resistant (meth) acrylic resins, and high heat-resistant (meth) acrylic resins having a glutaric anhydride structure or lactone ring structure in the main chain Also called.
  • the rubber particles blended in the (meth) acrylic resin are preferably acrylic.
  • Acrylic rubber particles are particles having rubber elasticity obtained by polymerizing in the presence of a polyfunctional monomer using an alkyl acrylate ester such as butyl acrylate and 2-ethylhexyl acrylate as a main monomer component. .
  • the rubber particles may be one in which such rubber elastic particles are formed as a single layer, or may be a multilayer structure having at least one rubber elastic layer.
  • the acrylic rubber particles having a multilayer structure particles having rubber elasticity as described above are used as cores, and the periphery thereof is covered with a hard alkyl methacrylate ester polymer, or a hard alkyl methacrylate ester polymer.
  • the core is covered with an acrylic polymer having rubber elasticity as described above, and the hard core is covered with an acrylic polymer having rubber elasticity, and the surroundings are hard methacrylic acid. Examples thereof include those covered with an alkyl ester polymer.
  • the average diameter of the particles formed of the elastic layer is usually in the range of about 50 to 400 nm.
  • the content of the rubber particles in the (meth) acrylic resin composition constituting the skin layer is usually about 5 to 50 parts by weight per 100 parts by weight of the (meth) acrylic resin. Since (meth) acrylic resin and acrylic rubber particles are commercially available in a state where they are mixed, commercially available products thereof can be used. Examples of commercially available (meth) acrylic resins containing acrylic rubber particles include HT55X (manufactured by Sumitomo Chemical Co., Ltd.) and Technoloy (registered trademark) S001 (manufactured by Sumitomo Chemical Co., Ltd.). Such an acrylic rubber particle-containing (meth) acrylic resin composition generally has a Tg of 160 ° C. or lower, and a preferable Tg thereof is 120 ° C. or lower, and further 110 ° C. or lower.
  • the skin layer made of a (meth) acrylic resin composition containing rubber particles, preferably acrylic rubber particles, is desirably made to have a thickness of 10 to 100 ⁇ m. If the thickness is to be less than 10 ⁇ m, film formation tends to be difficult. On the other hand, when the thickness exceeds 100 ⁇ m, the retardation of the (meth) acrylic resin layer (skin layer) tends to be non-negligible.
  • the core layer made of a styrene resin preferably has a Tg of 120 ° C. or higher, while a (meth) acrylic resin composition containing rubber particles.
  • the skin layer made of a material preferably has a Tg of 120 ° C. or lower, more preferably 110 ° C. or lower.
  • the core layer made of styrene resin positively orients the polymer main chain and selectively develops anisotropy, while the skin layer is not only optical but also dynamic.
  • the Tg of the two do not overlap, and the core layer made of styrene resin is blended with rubber particles (meta ) It is preferable to have a higher Tg than a skin layer made of an acrylic resin composition.
  • a styrene resin and a (meth) acrylic resin composition containing rubber particles may be coextruded and then stretched.
  • heat fusion can be performed by heat lamination and the film can be stretched.
  • the retardation film has a three-layer structure in which a skin layer made of a (meth) acrylic resin composition containing rubber particles is formed on both surfaces of a core layer made of a styrene resin.
  • the skin layers arranged on both sides are usually set to substantially the same thickness.
  • blended works as a protective layer, and becomes excellent in mechanical strength and chemical resistance.
  • the retardation film constituted as described above is given in-plane retardation by stretching. Stretching can be performed by known longitudinal uniaxial stretching, tenter lateral uniaxial stretching, simultaneous biaxial stretching, sequential biaxial stretching, or the like, and may be performed so as to obtain a desired retardation value.
  • the retardation film contains other components such as residual solvent, stabilizer, plasticizer, anti-aging agent, antistatic agent, and ultraviolet absorber as necessary, as long as the object of the present invention is not impaired. It may be. Further, a leveling agent can be contained in order to reduce the surface roughness.
  • the width of the retardation film is preferably 10% or less smaller than that of the polarizing plate with a single-sided transparent protective film produced in the above step (A) because the effect of improving productivity stands out. Furthermore, if the width is in the range of 40 to 50% of the polarizing plate, by slitting the polarizing plate with a single-sided transparent protective film to its half width, both of them should be used for bonding with a retardation film. Is more preferable because
  • Step (E) In the 1st aspect and 2nd aspect of this invention, the adhesive layer and retardation film of a polarizing plate with a single-sided transparent protective film in which the adhesive layer was cut and formed were bonded.
  • surface, and the polarizing film surface of the cut polarizing plate with a single-sided transparent protective film are bonded.
  • the method for bonding the polarizing plate with the single-sided transparent protective film to the polarizing film surface is not particularly limited.
  • the polarizing transmission axis of the polarizing plate with the single-sided transparent protective film A method of laminating so that the slow axis of the retardation film is orthogonal or parallel to the retardation film, and laminating so that the slow axis of the retardation film is at a predetermined angle with respect to the polarization transmission axis of the polarizing film The method is adopted.
  • the method of feeding a polarizing plate with a single-sided transparent protective film and a retardation film from each long roll and continuously bonding them together in the long side direction can produce a composite polarizing plate with high productivity.
  • Process (F) active energy is applied to the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the peelable film obtained through the step (A), the step (B) and the step (C) has been removed.
  • a resin composition layer containing an epoxy resin that is cured by irradiation or heating of a wire is formed, and a retardation film is overlaid on the resin composition layer.
  • a resin composition layer containing an epoxy resin that is cured by irradiation with active energy rays or heating is formed on one side of the retardation film, and the peelable film is removed on the resin composition layer.
  • the polarizing film surface of the polarizing plate with a single-sided transparent protective film is overlaid.
  • composition containing an epoxy resin that cures upon irradiation with active energy rays or heating
  • adhesion a retardation film
  • the composition may be referred to as a composition).
  • the epoxy compound preferably does not contain an aromatic ring in the molecule, and also has an epoxy compound (aliphatic) having at least one epoxy group bonded to the alicyclic ring in the molecule.
  • a cyclic epoxy compound The bonding between the polarizing film surface of the polarizing plate with a single-side protective film using the adhesive composition and the retardation film can be performed in the same manner as the bonding between the polarizing film and the transparent protective film.
  • the method for forming the adhesive composition on the polarizing film surface of the polarizing plate with a single-side protective film or the one surface of the retardation film is not particularly limited.
  • a doctor blade, a wire bar, a die coater, a comma coater Various coating methods such as a gravure coater and the like are adopted.
  • the method of pressurizing a polarizing film and retardation film with a roll etc. and spreading it uniformly can also be utilized.
  • metal, rubber, or the like can be used as the material of the roll, and these rolls may be made of the same material or different materials.
  • the thickness of the adhesive composition layer is usually 50 ⁇ m or less, preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the slow axis of the retardation film is orthogonal to the polarizing transmission axis of the polarizing plate with a single-sided transparent protective film or
  • a method of superimposing them so as to be parallel or a method of superimposing them so that the slow axis of the retardation film is at a predetermined angle with respect to the polarization transmission axis of the polarizing film is employed.
  • the timing at which the step (F) is performed is not particularly limited, and may be performed before the later-described step (G) is performed. That is, step (F) may be performed before step (A), or in parallel with or after any of step (A), step (B) and step (C). Also good.
  • the retardation film having the adhesive composition layer formed on one side may be supplied to the polarizing film surface from which the peelable film has been removed in the step (C).
  • Process (G) The adhesive composition layer of the piled product obtained in the step (F) is cured by irradiating with active energy rays or heating, whereby the polarizing film surface of the polarizing plate with a single-sided transparent protective film and A retardation film is bonded through a cured layer of an adhesive composition layer.
  • Retardation film comprising a stretched film having a three-layer structure of a core layer comprising a styrene resin and a skin layer comprising a (meth) acrylic resin composition containing rubber particles, which is laminated on both surfaces of the core layer.
  • the light source used is not particularly limited, but has a light emission distribution at a wavelength of 400 nm or less, for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure Examples include mercury lamps, ultra-high pressure mercury lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and metal halide lamps.
  • the light irradiation intensity to the adhesive composition layer is determined by the curability of the composition and is not particularly limited. For example, the light irradiation intensity in the wavelength region effective for activating the photocationic polymerization initiator is used.
  • the irradiation intensity is preferably 0.1 to 100 mW / cm 2 .
  • the light irradiation intensity to the adhesive composition layer is less than 0.1 mW / cm 2 , the reaction time becomes too long, and when it exceeds 100 mW / cm 2 , the heat radiated from the lamp and the time of polymerization of the adhesive composition Heat generation may cause yellowing of the adhesive composition or deterioration of the polarizing film.
  • the light irradiation time to the adhesive composition layer is determined by the curability of the composition and is not particularly limited. For example, it is expressed as a product of irradiation intensity and irradiation time. It is preferable to set the integrated light quantity to be 10 to 5000 mJ / cm 2 .
  • the integrated light quantity to the adhesive composition layer is less than 10 mJ / cm 2 , active species derived from the photocationic polymerization initiator are not sufficiently generated, and the adhesive composition layer may be insufficiently cured. On the other hand, if the integrated light quantity exceeds 5000 mJ / cm 2 , the irradiation time becomes very long, which is disadvantageous for improving productivity.
  • the adhesive composition layer When the adhesive composition layer is cured by heat, the adhesive composition layer can be heated by a generally known method, and the conditions are not particularly limited. Usually, the thermal cation mixed in the adhesive composition is used. Heating is performed at a temperature higher than the temperature at which the polymerization initiator generates a cationic species or a Lewis acid, for example, about 50 to 200 ° C.
  • the polarization degree, transmittance, hue, transparency of the transparent protective film, and retardation characteristics of the retardation film, etc. of the polarizing plate with a single-sided protective film are obtained. It is preferable to cure the composite polarizing plate as long as the functions of the composite polarizing plate do not deteriorate.
  • the thickness of the cured layer of the adhesive composition is usually 50 ⁇ m or less, preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • an adhesive layer may be provided on the outer surface of the retardation film in the composite polarizing plate.
  • the pressure-sensitive adhesive layer can be suitably used for bonding with other members such as a liquid crystal cell.
  • the composite polarizing plate having an adhesive layer provided on the outer surface of the retardation film is usually arranged so that the retardation film side faces the liquid crystal cell when bonded to the liquid crystal cell.
  • the composite polarizing plate manufactured by the manufacturing method of this invention can be set as a liquid crystal display device by bonding the retardation film side and a liquid crystal cell through an adhesion layer.
  • the same type of polarizing plate or a known polarizing plate can be bonded to the back side of the liquid crystal display device to which the composite polarizing plate is bonded.
  • the operation mode of the liquid crystal panel to be bonded is preferably an IPS (In-Plane-Switching) mode in which optical compensation is favorably performed by the refractive index characteristics of the composite polarizing plate of the present invention.
  • the storage elastic modulus (G ′) of the pressure-sensitive adhesive is a disk-shaped test piece having a diameter of 8 mm ⁇ thickness of 1 mm made of the pressure-sensitive adhesive to be measured, and a dynamic viscoelasticity measuring device (Dynamic Analyzer RDA II: manufactured by REOMETRIC).
  • the initial strain was set to 1N by the torsional shear method with a frequency of 1 Hz, and the measurement was performed at 23 ° C. and 80 ° C.
  • the pressure-sensitive adhesive A constituting the pressure-sensitive adhesive sheet A is obtained by adding a urethane acrylate oligomer to a copolymer of butyl acrylate and acrylic acid and further adding an isocyanate-based crosslinking agent.
  • the storage elastic modulus of this adhesive A was measured by the above method, it was 0.40 MPa at 23 ° C. and 0.18 MPa at 80 ° C.
  • the adhesive was applied to the release treatment surface of a 38 ⁇ m-thick polyethylene terephthalate film (separator) having been subjected to the release treatment by drying the organic solvent solution having the above composition, and dried.
  • the separator was used as a sheet-like pressure-sensitive adhesive (pressure-sensitive adhesive sheet A) in which a layer of pressure-sensitive adhesive A having a thickness of 15 ⁇ m was formed on the surface of the separator.
  • the pressure-sensitive adhesive sheet B is a commercially available sheet-like pressure-sensitive adhesive and does not contain a urethane acrylate oligomer.
  • the storage elastic modulus of the adhesive B constituting the adhesive sheet B was measured by the above method, it was 0.05 MPa at 23 ° C. and 0.04 MPa at 80 ° C.
  • a layer of pressure-sensitive adhesive B having a thickness of 15 ⁇ m is provided on the release treatment surface of a 38 ⁇ m-thick polyethylene terephthalate film (separator) subjected to the release treatment.
  • a commercially available sheet-like pressure-sensitive adhesive with a separator was used.
  • Adhesive A To 100 parts of water, 3 parts of carboxyl group-modified polyvinyl alcohol (Kuraray Poval KL318, manufactured by Kuraray Co., Ltd.) and water-soluble polyamide epoxy resin (Smiles Resin 650, manufactured by Sumika Chemtex Co., Ltd.) (solid content concentration 30%) Aqueous solution) 1.5 parts was added and dissolved to prepare adhesive A.
  • carboxyl group-modified polyvinyl alcohol Karl Poval KL318, manufactured by Kuraray Co., Ltd.
  • water-soluble polyamide epoxy resin Smiles Resin 650, manufactured by Sumika Chemtex Co., Ltd.
  • Adhesive B 100 parts of bis (3,4-epoxycyclohexylmethyl) adipate, 25 parts of diglycidyl ether of hydrogenated bisphenol A, and 4,4′-bis (diphenylsulfonio) diphenyl sulfide bis (hexafluorophosphate as a photocationic polymerization initiator ) (50% propylene carbonate solution) 2.2 parts (active ingredient amount) were mixed and defoamed to prepare an adhesive B made of a curable epoxy resin composition.
  • a 75 ⁇ m-thick polyvinyl alcohol film made of polyvinyl alcohol having an average degree of polymerization of about 2400 and a saponification degree of 99.9 mol% or more was uniaxially stretched about 5 times by a dry method, and further maintained a tension state.
  • the sample was immersed in pure water at 60 ° C. for 1 minute, and then immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.05 / 5/100 at 28 ° C. for 60 seconds.
  • This resin three-layer film was stretched twice at 142 ° C. to obtain a negative retardation film having a total thickness of 104 ⁇ m, an in-plane retardation of 140 nm, and an Nz coefficient of 0.0.
  • the thickness of each layer in the retardation film was about 30 ⁇ m for the core layer and about 37 ⁇ m for each skin layer. Further, the width of the obtained long retardation film was 720 mm.
  • Step (A) A 40 ⁇ m-thick triacetyl cellulose film (transparent protective film) having a saponified surface is bonded to one surface of the polarizing film via an adhesive A, and the opposite surface has adhesiveness.
  • a peelable film a polarizing film in which a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) is bonded, the laminate is dried at 60 ° C., and a transparent protective film is bonded on one side is used. Obtained.
  • the width of the obtained long polarizing plate with a single-sided transparent protective film was 1490 mm.
  • the appearance of this polarizing plate with a single-sided protective film was good without damage such as scratches and cracks, despite the heat of drying and friction with the transport roll.
  • this polarizing plate with a single-sided transparent protective film was cut (slit) along the longitudinal direction according to the width of the retardation film using a slitter (Model FN25, manufactured by Nishimura Seisakusho Co., Ltd.), and 720 mm wide A polarizing plate with a single-sided transparent protective film was obtained.
  • the appearance of the slit polarizing plate was good without damage such as scratches and cracks despite being subjected to shearing during slitting and friction with the transport roll.
  • Steps (C) and (D) The polyethylene film was peeled and removed from the polarizing plate cut in the step (B), and the pressure-sensitive adhesive sheet A was immediately bonded onto the polarizing film surface.
  • Step (E) After the corona treatment is applied to the retardation film at an irradiation amount of 16.8 kJ / m 2 , the corona-treated surface and the polarizing plate with a single-sided transparent protective film slit in the step (B) are used in the step (C). And it bonded through the adhesive layer provided by (D), and obtained the composite polarizing plate.
  • the appearance of the composite polarizing plate thus obtained was good without any film floating, peeling or bubbles. Moreover, when obtaining the sheet
  • the retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) using an adhesive sheet B, and subjected to autoclave treatment at 50 ° C. for 20 minutes to make the composite polarizing plate into glass. It was made to adhere to a board. In this state, a heat shock test was performed by placing in a ⁇ 35 ° C. atmosphere for 30 minutes, then moving to a + 85 ° C. atmosphere and placing in 30 minutes for one cycle, and repeating this for 100 cycles.
  • the composite polarizing plate of Example 1 maintained a good state with no defects observed after the test.
  • Example 1 A composite polarizing plate was produced in the same manner as in Example 1 except that the polarizing plate with a single-sided transparent protective film was not cut. The appearance of the composite polarizing plate thus obtained was good without the film floating, peeling, or bubbles. However, in obtaining a sheet in the same manner as in Example 1, only 48.3% of the total area of the composite polarizing plate could be used.
  • a composite polarizing plate was prepared in the same manner as in Example 1 except that a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) was not used when the polarizing plate with a single-sided transparent protective film was prepared.
  • the appearance of the produced composite polarizing plate was not practically used because the polarizing film was damaged during the production of the polarizing plate with a single-sided transparent protective film and when the polarizing plate with a single-sided transparent protective film was cut.
  • Step (A) A 40 ⁇ m thick triacetyl cellulose film (transparent protective film) having a surface subjected to saponification treatment is bonded to one surface of the polarizing film via an adhesive B, and the opposite surface has adhesiveness.
  • a peelable film a polyethylene film having a self-adhesive surface (bonding surface with a polarizing film) is bonded, and ultraviolet irradiation is performed with an ultraviolet irradiation device (lamp: Fusion D lamp, integrated light quantity: 1000 mJ / cm 2 ). And left at room temperature for 1 hour to obtain a polarizing plate having a transparent protective film bonded on one side.
  • the width of the obtained long polarizing plate with a single-sided transparent protective film was 1490 mm. Further, the appearance of this polarizing plate with a single-sided protective film was good without damage such as scratches and cracks, despite being subjected to friction with the transport roll.
  • this polarizing plate with a single-sided transparent protective film was cut in the same manner as in Example 1 to obtain a polarizing plate with a single-sided transparent protective film having a width of 720 mm.
  • the appearance of the polarizing plate with a single-sided transparent protective film after the cutting was good without damage such as scratches and cracks, despite being sheared at the time of slitting and friction with the transport roll.
  • Steps (C) and (D) The polyethylene film was peeled and removed from the polarizing plate slit in the step (B), and the pressure-sensitive adhesive sheet A was immediately bonded onto the surface of the polarizing film.
  • Step (E) After the corona treatment is applied to the retardation film at an irradiation amount of 16.8 kJ / m 2 , the corona-treated surface and the polarizing plate with a single-sided transparent protective film slit in the step (B) are used in the step (C). And it bonded through the adhesive layer provided by (D), and obtained the composite polarizing plate.
  • the appearance of the composite polarizing plate thus obtained was good without any film floating, peeling or bubbles. Moreover, in obtaining the sheet
  • the retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) using an adhesive sheet B, and subjected to autoclave treatment at 50 ° C. for 20 minutes to make the composite polarizing plate into glass. It was made to adhere to a board. In this state, a heat shock test was performed by placing in a ⁇ 35 ° C. atmosphere for 30 minutes, then moving to a + 85 ° C. atmosphere and placing in 30 minutes for one cycle, and repeating this for 100 cycles.
  • the composite polarizing plate of Example 2 maintained a good state with no defects observed even after the test.
  • Example 3 a composite polarizing plate was produced in the same manner except that the pressure-sensitive adhesive sheet A used in the step (D) was changed to the pressure-sensitive adhesive sheet B.
  • the appearance of the composite polarizing plate thus obtained was good without the film floating, peeling, or bubbles.
  • 96.6% was able to be used in the whole area of a composite polarizing plate.
  • the retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) with an adhesive sheet B, and subjected to autoclave treatment at 50 ° C. for 20 minutes to adhere the composite polarizing plate to the glass plate.
  • a heat shock test was performed by placing in a ⁇ 35 ° C. atmosphere for 30 minutes, then moving to a + 85 ° C. atmosphere and placing in 30 minutes for one cycle, and repeating this for 100 cycles.
  • bubbles were generated in the pressure-sensitive adhesive layer between the retardation film and the glass after the test, which was not practical.
  • Example 2 a composite polarizing plate was produced in the same manner except that the pressure-sensitive adhesive sheet A used in the step (D) was changed to the pressure-sensitive adhesive sheet B.
  • the appearance of the composite polarizing plate thus obtained was good without the film floating, peeling, or bubbles.
  • 96.6% was able to be used in the whole area of a composite polarizing plate.
  • the retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) with an adhesive sheet B, and subjected to autoclave treatment at 50 ° C. for 20 minutes to adhere the composite polarizing plate to the glass plate.
  • a heat shock test was performed by placing in a ⁇ 35 ° C. atmosphere for 30 minutes, then moving to a + 85 ° C. atmosphere and placing in 30 minutes for one cycle, and repeating this for 100 cycles.
  • bubbles were generated in the pressure-sensitive adhesive layer between the retardation film and the glass after the test, which was not practical.
  • Step (A) A 40 ⁇ m-thick triacetyl cellulose film (transparent protective film) having a saponified surface is bonded to one surface of the polarizing film via an adhesive A, and the opposite surface has adhesiveness.
  • a peelable film a polarizing film in which a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) is bonded, the laminate is dried at 60 ° C., and a transparent protective film is bonded on one side is used. Obtained.
  • the width of the obtained long polarizing plate with a single-sided transparent protective film was 1490 mm.
  • the appearance of this polarizing plate with a single-sided protective film was good without damage such as scratches and cracks, despite the heat of drying and friction with the transport roll.
  • Steps (C) and (D)] Subsequently, the polyethylene film was peeled and removed from the polarizing plate with a single-sided transparent protective film, and immediately, the pressure-sensitive adhesive sheet A was bonded onto the polarizing film surface.
  • Step (B) Using a slitter (Model FN25, manufactured by Nishimura Seisakusho Co., Ltd.), the polarizing plate with a single-sided transparent protective film was cut (slit) along the longitudinal direction according to the width of the retardation film, and the single-sided surface having a width of 720 mm A polarizing plate with a transparent protective film was obtained.
  • the appearance of the slit polarizing plate was good without damage such as scratches and cracks despite being subjected to shearing during slitting and friction with the transport roll.
  • Step (E) After the corona treatment is applied to the retardation film at an irradiation amount of 16.8 kJ / m 2 , the corona-treated surface and the polarizing plate with a single-sided transparent protective film slit in the step (B) are used in the step (C). And it bonded through the adhesive layer provided by (D), and obtained the composite polarizing plate.
  • the appearance of the composite polarizing plate thus obtained was good without any film floating, peeling or bubbles. Moreover, when obtaining the sheet
  • Step (A) A 40 ⁇ m-thick triacetyl cellulose film (transparent protective film) having a saponified surface is bonded to one surface of the polarizing film via an adhesive A, and the opposite surface has adhesiveness.
  • a peelable film a polarizing film in which a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) is bonded, the laminate is dried at 60 ° C., and a transparent protective film is bonded on one side is used. Obtained.
  • the width of the obtained long polarizing plate with a single-sided transparent protective film was 1490 mm.
  • the appearance of this polarizing plate was good without damage such as scratches and cracks, despite the heat of drying and the friction with the transport roll.
  • this polarizing plate with a single-sided transparent protective film was cut (slit) along the longitudinal direction according to the width of the retardation film using a slitter (Model FN25, manufactured by Nishimura Seisakusho Co., Ltd.), and 720 mm wide A polarizing plate with a single-sided transparent protective film was obtained.
  • the appearance of the slit polarizing plate was good without damage such as scratches and cracks despite being subjected to shearing during slitting and friction with the transport roll.
  • Step (D) After the corona treatment was performed on the retardation film at an irradiation amount of 16.8 kJ / m 2 , the pressure-sensitive adhesive sheet A was bonded onto the corona-treated surface.
  • Steps (C) and (E) Corona treatment at a dose of 16.8 kJ / m 2 on the polarizing film side of the polarizing plate from which the polyethylene film was peeled and removed from the pressure-sensitive adhesive layer side of the retardation film and the polarizing plate with the single-side transparent protective film slit in the step (B). Then, the polarizing plate and the retardation film were bonded via the pressure-sensitive adhesive layer provided in the step (D) to obtain a composite polarizing plate.
  • the appearance of the composite polarizing plate thus obtained was good without any film floating, peeling or bubbles. Moreover, when obtaining the sheet
  • Step (A) A polarizing film obtained in Production Example 3 is bonded to a surface of a saponified 40 ⁇ m thick triacetyl cellulose film (transparent protective film) using adhesive A obtained in Production Example 1.
  • a polyethylene film (peelable film) having a self-adhesive surface (bonding surface with a polarizing film) is bonded to the other surface, and the bonded body is dried at 60 ° C. and transparently protected on one side.
  • the polarizing plate with which the film was bonded was obtained.
  • the width of the obtained long polarizing plate with a single-sided protective film was 1490 mm.
  • the appearance of this polarizing plate with a single-sided protective film was good without damage such as scratches and cracks, despite the heat of drying and friction with the transport roll.
  • this polarizing plate with a single-sided transparent protective film was cut (slit) along the longitudinal direction according to the size of the retardation film using a slitter (Model FN25, manufactured by Nishimura Seisakusho), and 720 mm.
  • a polarizing plate with a single-side protective film having a width was obtained.
  • the appearance of the slit polarizing plate was good without damage such as scratches and cracks despite being subjected to shearing during slitting and friction with the transport roll.
  • Step (C), Step (F) and Step (G) One side of the retardation film was subjected to corona treatment at an irradiation amount of 16.8 kJ / m 2 , and adhesive B was applied to the treated surface. Next, the polyethylene film is peeled off from the polarizing plate with the single-sided protective film slit in the step (B), and immediately, the polarizing plate with the single-sided protective film and the retardation film are bonded to the polarizing film surface and the retardation film adhesive.
  • the irradiated product is irradiated with ultraviolet rays with an ultraviolet irradiation device (lamp: Fusion D lamp, integrated light quantity 1000 mJ / cm 2 ), and left at room temperature for 1 hour.
  • an ultraviolet irradiation device lamp: Fusion D lamp, integrated light quantity 1000 mJ / cm 2
  • a composite polarizing plate was obtained.
  • the appearance of the composite polarizing plate thus obtained was good with no floating or peeling of the film and no bubbles.
  • seat for liquid crystal cell bonding from this composite polarizing plate by cutting 96.6% of the total area of the polarizing plate with a single-sided protective film could be used.
  • the retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) using an adhesive sheet, and subjected to an autoclave treatment at 50 ° C. for 20 minutes so that the composite polarizing plate is a glass plate. Adhere to. In this state, a heat shock test is performed by placing in an atmosphere of ⁇ 35 ° C. for 30 minutes, then moving to an atmosphere of + 85 ° C. and placing for 30 minutes as one cycle, and repeating this for 100 cycles. In the composite polarizing plate of Example 5, no defects were observed even after the test, and the good state was maintained.
  • Example 5 A composite polarizing plate was produced in the same manner as in Example 5 except that the polarizing plate with a single-sided protective film was not slit. The appearance of the composite polarizing plate thus obtained was good with no floating or peeling of the film and no bubbles. However, in obtaining a sheet in the same manner as in Example 5, only 48.3% of the total area of the polarizing plate with a single-sided protective film could be used.
  • a composite polarizing plate was prepared in the same manner as in Example 5 except that a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) was not used when the polarizing plate with a single-side protective film was prepared. The appearance of the produced composite polarizing plate was not practically used because the polarizing film was damaged when the polarizing plate with a single-sided protective film was produced and when the polarizing plate was slit.
  • a 40 ⁇ m thick triacetyl cellulose film (transparent protective film) having a saponified surface is overlapped with an adhesive B, and on the other side, the surface (with the polarizing film) Adhesive surface) is bonded with a self-adhesive polyethylene film (peelable film), and irradiated with ultraviolet rays using an ultraviolet irradiation device (lamp: Fusion D lamp, integrated light quantity 1000 mJ / cm 2 ) for 1 hour at room temperature.
  • an ultraviolet irradiation device lamp: Fusion D lamp, integrated light quantity 1000 mJ / cm 2
  • this polarizing plate with a single-sided transparent protective film was cut (slit) along the longitudinal direction according to the size of the retardation film using a slitter (Model FN25, manufactured by Nishimura Seisakusho), and 720 mm.
  • a polarizing plate with a single-side protective film having a width was obtained.
  • the appearance of the slit polarizing plate was good without damage such as scratches and cracks despite being sheared at the time of slitting and friction with the transport roll.
  • Step (C), Step (F) and Step (G) Using the retardation film, a composite polarizing plate was obtained in the same manner as in Step (C), Step (F) and Step (G) of Example 5. The appearance of the composite polarizing plate thus obtained was good with no floating or peeling of the film and no bubbles. Moreover, in obtaining the sheet
  • the retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) with an adhesive sheet, and subjected to autoclave treatment at 50 ° C. for 20 minutes to make the composite polarizing plate into glass. Adhere to the board. In this state, a heat shock test is performed by placing in an atmosphere of ⁇ 35 ° C. for 30 minutes, then moving to an atmosphere of + 85 ° C. and placing for 30 minutes as one cycle, and repeating this for 100 cycles. In the composite polarizing plate of Example 6, no defects were observed even after the test, and the good state was maintained.
  • the composite polarizing plate obtained by the present invention can be widely used as an optical member in various liquid crystal display devices.
  • large liquid crystal display devices such as televisions, computer displays, car navigation systems, mobile phones, and mobile terminal devices. It can be used as an optical member in a medium- and small-sized liquid crystal display device used for the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polarising Elements (AREA)

Abstract

Disclosed is a method for manufacturing a composite polarizing plate equipped with a phase difference film made of a drawn film with a three-layer structure comprising a styrene-based resin core layer and rubber-particle-containing (meth)acrylic resin skin layers laminated on both sides of said core layer, and for manufacturing a polarizing plate, that has a transparent protective film on one side, laminated on the phase difference film. The method comprises producing the polarizing plate that has the transparent protective film on one side, cutting of said plate, removing a peel-away film, forming an adhesive layer or an adhesive composition layer on the phase change film or on the polarizing film side of the polarizing plate, and adhering the phase change film to the polarizing plate using the cured adhesive layer or the adhesive composition.

Description

複合偏光板の製造方法Manufacturing method of composite polarizing plate
 本発明は、複合偏光板の製造方法に関するものである。 The present invention relates to a method for producing a composite polarizing plate.
 液晶表示装置は、消費電力が低く、低電圧で動作し、軽量で薄型である等の特徴を生かして、各種の表示用デバイスに用いられている。この液晶表示装置は、液晶セル、偏光板、位相差フィルム、集光シート、拡散フィルム、導光板、および光反射シート等、多くの光学部材から構成されている。そこで、これらの光学部材を構成するフィルムまたはシートの枚数削減や膜厚の低減等の改良により、液晶表示装置の生産効率や明度の向上および軽量・薄型化等を図ることが可能であり、このような研究が盛んに行われている。 Liquid crystal display devices are used in various display devices by taking advantage of features such as low power consumption, low voltage operation, light weight and thinness. This liquid crystal display device is composed of many optical members such as a liquid crystal cell, a polarizing plate, a retardation film, a light collecting sheet, a diffusion film, a light guide plate, and a light reflecting sheet. Therefore, by improving the number of films or sheets constituting these optical members and reducing the film thickness, it is possible to improve the production efficiency and brightness of the liquid crystal display device and to reduce the weight and thickness. Such research is actively conducted.
 さらに、液晶表示装置には、厳しい耐久条件にも耐え得ることが要求されている。たとえば、カーナビゲーションシステム用の液晶表示装置においては、それが置かれる車内の温度や湿度が非常に高くなることがあり、また、携帯電話、携帯端末機器等のディスプレイやテレビ、コンピュータ用のディスプレイ等においても、それらの使用環境や設置場所によっては、温度および湿度の変化が激しい条件に曝される場合があるため、そのような厳しい条件の使用にも耐え得る製品性能が求められる。 Furthermore, liquid crystal display devices are required to withstand severe durability conditions. For example, in a liquid crystal display device for a car navigation system, the temperature and humidity in the vehicle in which the liquid crystal display device is placed may become very high. Also, a display for a mobile phone, a portable terminal device, etc., a television, a display for a computer, etc. However, depending on the use environment and the installation location, the temperature and humidity may be exposed to severe conditions, so that product performance that can withstand use under such severe conditions is required.
 液晶表示装置の部品である偏光板は通常、偏光フィルムの両面または片面に透明な保護フィルムが積層された構造になっている。たとえば、偏光フィルムは、ポリビニルアルコール系樹脂フィルムに一軸延伸と二色性色素による染色を行なった後、ホウ酸処理して架橋反応を起こさせ、次いで水洗、乾燥する方法により製造されている。二色性色素としては、ヨウ素または二色性有機染料が用いられる。このようにして得られる偏光フィルムの両面または片面に保護フィルムを積層して偏光板とされ、液晶表示装置に組み込まれて使用される。保護フィルムには、トリアセチルロースに代表されるセルロースアセテート系樹脂フィルムが多く使用されており、その厚みは通例30~120μm程度である。また、保護フィルムの積層には、ポリビニルアルコール系樹脂の水溶液からなる接着剤を用いることが多い。 A polarizing plate, which is a component of a liquid crystal display device, usually has a structure in which a transparent protective film is laminated on both sides or one side of a polarizing film. For example, a polarizing film is produced by a method in which a polyvinyl alcohol resin film is uniaxially stretched and dyed with a dichroic dye, then treated with boric acid to cause a crosslinking reaction, and then washed with water and dried. As the dichroic dye, iodine or a dichroic organic dye is used. A protective film is laminated on both sides or one side of the polarizing film thus obtained to form a polarizing plate, which is used by being incorporated in a liquid crystal display device. As the protective film, a cellulose acetate resin film typified by triacetylrose is often used, and its thickness is usually about 30 to 120 μm. In addition, an adhesive composed of an aqueous solution of a polyvinyl alcohol-based resin is often used for laminating the protective film.
 二色性色素が吸着配向している偏光フィルムの両面または片面に、ポリビニルアルコール系樹脂の水溶液からなる接着剤を用いてトリアセチルセルロースからなる保護フィルムを積層した偏光板は、湿熱条件下で長時間使用した場合に、偏光性能が低下したり、保護フィルムと偏光フィルムとが剥離しやすかったりする問題がある。 A polarizing plate in which a protective film made of triacetyl cellulose is laminated on both sides or one side of a polarizing film on which a dichroic dye is adsorbed and oriented using an adhesive made of an aqueous solution of a polyvinyl alcohol resin is long under wet heat conditions. When used for a long time, there is a problem that the polarizing performance is deteriorated or the protective film and the polarizing film are easily peeled off.
 そこで、少なくとも一方の保護フィルムを、セルロースアセテート系以外の樹脂で構成する試みがある。たとえば、JPH08−43812−Aには、偏光フィルムの両面に保護フィルムを積層した偏光板において、その保護フィルムの少なくとも一方を、位相差フィルムの機能を有する熱可塑性ノルボルネン系樹脂で構成することが記載されている。また、JPH09−325216−Aには、偏光フィルムの保護層のうち少なくとも一方を複屈折性のフィルムで構成することが記載されている。 Therefore, there is an attempt to construct at least one protective film with a resin other than cellulose acetate. For example, JPH08-43812-A describes that, in a polarizing plate in which protective films are laminated on both sides of a polarizing film, at least one of the protective films is composed of a thermoplastic norbornene resin having a retardation film function. Has been. JP09-325216-A describes that at least one of the protective layers of the polarizing film is composed of a birefringent film.
 一方、スチレン系樹脂フィルムは、スチレン系樹脂の主鎖の分極率よりも側鎖の分極率が大きい(負に分極するということがある)ため、厚さ方向の屈折率が大きい負の位相差フィルムとして検討されている。ここで、厚さ方向の屈折率が大きい負の位相差フィルムとは、面内の最大屈折率方向(遅相軸方向)の屈折率をn、面内でそれと直交する方向(進相軸方向)の屈折率をn、厚さ方向の屈折率をnとしたとき、n≒n>nの関係を有し、(n−n)/(n−n)で定義されるNz係数が概ね0(ゼロ)のフィルムである。しかし、スチレン系樹脂フィルムには、耐熱性、機械強度および耐薬品性に課題があり、実用化には至っていない。 On the other hand, a styrene resin film has a negative phase difference in which the refractive index in the thickness direction is large because the polarizability of the side chain is larger than the polarizability of the main chain of the styrene resin (it may be negatively polarized). It is being considered as a film. Here, the negative retardation film is larger refractive index in the thickness direction, the refractive indices n x a maximum refractive index direction in the plane (slow axis direction), a direction perpendicular thereto in the plane (fast axis when the refractive index in the direction) and n y, the refractive index in the thickness direction and n z, has a relationship of n z ≒ n x> n y , (n x -n z) / (n x -n y ) Defined by the Nz coefficient is approximately 0 (zero). However, styrene resin films have problems in heat resistance, mechanical strength, and chemical resistance, and have not yet been put into practical use.
 スチレン系樹脂の耐熱性については、ガラス転移温度(以下、Tgと略すことがある)の高い樹脂を形成するモノマー、たとえば、ノルボルネンや無水マレイン酸を共重合させることで、改善され得ることが知られているが、このような共重合によっても機械強度や耐薬品性を十分に改善することはできない。 It is known that the heat resistance of a styrene resin can be improved by copolymerizing a monomer that forms a resin having a high glass transition temperature (hereinafter sometimes abbreviated as Tg), for example, norbornene or maleic anhydride. However, such copolymerization cannot sufficiently improve the mechanical strength and chemical resistance.
 スチレンに他のモノマーを共重合させたり、あるいはスチレン系フィルムに他の樹脂層を積層したりする技術も多数提案されている。たとえば、WO99/64500には、スチレンを代表例とする芳香族ビニルモノマーとα−オレフィンとの本質的にランダムな共重合体をフィルムにすることが記載されており、そのフィルムと他のポリマー層との多層構造にすることも示唆されている。また、US2002/0169267A1やJP2003−207640−Aには、スチレンを代表例とする芳香族ビニルモノマーに非環状オレフィンモノマーおよび環状オレフィンモノマーを共重合させた三元共重合体を位相差フィルムにすることが記載されている。さらに、JP2003−90912−Aには、ノルボルネン系樹脂からなる配向フィルムとスチレン−無水マレイン酸共重合樹脂からなる配向フィルムとを、接着剤層を介して積層し、位相差フィルムにすることが記載されており、JP2004−167823−Aには、ポリオレフィン系の多層フィルムにポリスチレン系のシートを積層することが記載されている。さらにまた、JP2006−192637−Aには、スチレン系樹脂からなる第1層と、ゴム粒子が配合されたアクリル系樹脂組成物からなる第2層とを、接着剤層を介さずに積層して位相差フィルムとすることが記載されている。 Many techniques have been proposed in which other monomers are copolymerized with styrene, or other resin layers are laminated on a styrene film. For example, WO99 / 64500 describes that an essentially random copolymer of an aromatic vinyl monomer and α-olefin, typically styrene, is used as a film, and the film and other polymer layers. It is also suggested to make a multilayer structure. In US2002 / 0169267A1 and JP2003-207640-A, a terpolymer obtained by copolymerizing an acyclic olefin monomer and a cyclic olefin monomer with an aromatic vinyl monomer typified by styrene is used as a retardation film. Is described. Furthermore, JP2003-90912-A describes that an alignment film made of a norbornene-based resin and an alignment film made of a styrene-maleic anhydride copolymer resin are laminated through an adhesive layer to form a retardation film. JP 2004-167823-A describes that a polystyrene-based sheet is laminated on a polyolefin-based multilayer film. Furthermore, in JP2006-192637-A, a first layer made of a styrene resin and a second layer made of an acrylic resin composition containing rubber particles are laminated without using an adhesive layer. It describes that it is a retardation film.
 しかし、スチレン系樹脂フィルムを位相差フィルムに適用する場合、所望の位相差特性および機械強度を達成するためには、スチレン系樹脂フィルムの幅を広くすることができず、これにより、作製できるフィルムの幅が偏光フィルムの幅より小さくなり、従来の位相差フィルム付き偏光板の製造方法ではその生産性が著しく低下するという問題があった。すなわち、この場合、偏光板と、偏光板より幅が小さい位相差フィルムとを貼合すると、位相差フィルムが貼合されていない偏光板部分が生じる。一方、偏光板を液晶セルへ貼合する所定の形状に切り出すには、通常、長尺方向に対して直角または斜角に裁断し、その所定の形状へ再度裁断するが、この裁断によって位相差フィルムの貼合されていない偏光板部分は廃棄される。さらに、この位相差フィルムが貼合されていない偏光板部分も裁断長さに加わることにより、生産性は著しく低下する。 However, when a styrene resin film is applied to a retardation film, in order to achieve desired retardation characteristics and mechanical strength, the width of the styrene resin film cannot be widened. However, the conventional method for producing a polarizing plate with a retardation film has a problem that the productivity is remarkably reduced. That is, in this case, when a polarizing plate and a retardation film having a smaller width than the polarizing plate are bonded together, a polarizing plate portion where the retardation film is not bonded is generated. On the other hand, in order to cut the polarizing plate into a predetermined shape to be bonded to the liquid crystal cell, it is usually cut at a right angle or an oblique angle with respect to the longitudinal direction, and then cut again into the predetermined shape. The polarizing plate part where the film is not bonded is discarded. Furthermore, productivity is significantly reduced by adding a polarizing plate portion to which the retardation film is not bonded to the cutting length.
 またさらに、スチレン系樹脂フィルムを適用した位相差フィルムは、偏光フィルムの保護フィルムを兼ねるように使用する場合、偏光フィルムとの接着性に劣る場合があった。 Furthermore, when the retardation film to which the styrene resin film is applied is used so as to serve also as a protective film for the polarizing film, the adhesiveness to the polarizing film may be inferior.
 本発明の目的は、偏光板と、スチレン系樹脂フィルムを適用した、偏光板より幅が小さい、位相差フィルムとを積層してなる、偏光フィルムと位相差フィルムの密着力に優れた複合偏光板を生産性良く製造する方法を提供することにある。 An object of the present invention is to apply a polarizing plate and a styrene-based resin film, which is formed by laminating a retardation film having a smaller width than the polarizing plate, and having excellent adhesion between the polarizing film and the retardation film. It is in providing the method of manufacturing with good productivity.
 本発明は、下記のものを含む。
<1> スチレン系樹脂からなるコア層と、前記コア層の両面に積層される、ゴム粒子を含有する(メタ)アクリル系樹脂組成物からなるスキン層との3層構造を有する延伸フィルムからなる位相差フィルムと、
 前記位相差フィルム上に積層される、偏光フィルムの片面に透明保護フィルムを有する片面透明保護フィルム付き偏光板と、
を備える複合偏光板を製造する方法であって、
下記工程(A)、工程(B)、工程(C)、工程(D)および工程(E)を含むか、下記工程(A)、工程(B)、工程(C)、工程(F)および工程(G)を含む方法。
(A)偏光フィルムの片面に透明保護フィルムを貼合し、反対側の面に粘着性を有する剥離性フィルムを貼合し、片面透明保護フィルム付き偏光板を作製する工程
(B)片面透明保護フィルム付き偏光板を、位相差フィルムの幅に合わせて長尺方向に沿って裁断する工程
(C)剥離性フィルムを偏光フィルム面から除去する工程
(D)位相差フィルムの片面、および、剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面、の少なくとも一方に、80℃において0.1MPa以上の貯蔵弾性率を示す粘着剤層を形成する工程
(E)剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面に、前記粘着剤層を介して位相差フィルムを貼合する工程
(F)位相差フィルムの片面、および、剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面、の少なくとも一方に、活性エネルギー線の照射または加熱により硬化するエポキシ化合物を含有する樹脂組成物層を形成し、該樹脂組成物層上に他方の偏光板の偏光フィルム面または位相差フィルムを重ねる工程
(G)該樹脂組成物層を硬化させることにより片面透明保護フィルム付き偏光板の偏光フィルム面に、該樹脂組成物の硬化層を介して位相差フィルムを貼合する工程
The present invention includes the following.
<1> A stretched film having a three-layer structure including a core layer composed of a styrene resin and a skin layer composed of a (meth) acrylic resin composition containing rubber particles, which is laminated on both surfaces of the core layer. Retardation film,
A polarizing plate with a single-sided transparent protective film having a transparent protective film on one side of the polarizing film, laminated on the retardation film,
A method of manufacturing a composite polarizing plate comprising:
The following step (A), step (B), step (C), step (D) and step (E) are included, or the following step (A), step (B), step (C), step (F) and A method comprising the step (G).
(A) A step of pasting a transparent protective film on one side of a polarizing film and pasting an adhesive peelable film on the opposite side to produce a polarizing plate with a single-sided transparent protective film (B) Single-sided transparent protection A step of cutting the polarizing plate with a film along the longitudinal direction according to the width of the retardation film (C) A step of removing the peelable film from the polarizing film surface (D) One side of the retardation film, and a peelability Step of forming an adhesive layer showing a storage elastic modulus of 0.1 MPa or more at 80 ° C. on at least one of the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the film has been removed (E) The peelable film is removed (F) One side of retardation film and releasability of pasting retardation film to polarizing film surface of polarizing plate with single-sided transparent protective film made through said adhesive layer A resin composition layer containing an epoxy compound that is cured by irradiation with active energy rays or heating is formed on at least one of the polarizing film surface of the polarizing plate with a single-side transparent protective film from which the film has been removed, and the resin composition layer Step (G) of laminating the polarizing film surface or retardation film of the other polarizing plate on the cured film of the resin composition on the polarizing film surface of the polarizing plate with a single-side transparent protective film by curing the resin composition layer Step of laminating retardation film via
<2> <1>に記載の方法であって、
該方法は、工程(A)、工程(B)、工程(C)、工程(D)および工程(E)をこの順に含み、
工程(D)において、前記粘着剤層は、剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面に形成される。
<2> The method according to <1>,
The method includes step (A), step (B), step (C), step (D) and step (E) in this order,
In the step (D), the pressure-sensitive adhesive layer is formed on the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the peelable film has been removed.
<3> <1>に記載の方法であって、
該方法は、工程(A)、工程(C)、工程(D)、工程(B)および工程(E)をこの順で含み、
工程(D)において、前記粘着剤層は、剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面に形成される。
<3> The method according to <1>,
The method includes step (A), step (C), step (D), step (B) and step (E) in this order,
In the step (D), the pressure-sensitive adhesive layer is formed on the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the peelable film has been removed.
<4> <1>に記載の方法であって、
該方法は、工程(A)、工程(B)、工程(C)および工程(E)をこの順に含み、また工程(D)を含み、
工程(D)において、前記粘着剤層は、位相差フィルムの片面に形成される。
<4> The method according to <1>,
The method includes step (A), step (B), step (C) and step (E) in this order, and also includes step (D),
In the step (D), the pressure-sensitive adhesive layer is formed on one side of the retardation film.
<5> <1>に記載の方法であって、
該方法は、工程(A)、工程(B)、工程(C)、工程(F)および工程(G)をこの順に含み、
工程(F)において、該樹脂組成物層は、剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面に形成される。
<5> The method according to <1>,
The method includes step (A), step (B), step (C), step (F) and step (G) in this order,
In the step (F), the resin composition layer is formed on the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the peelable film has been removed.
<6> <1>に記載の方法であって、
該方法は、工程(A)、工程(B)、工程(C)および工程(G)をこの順に含み、また工程(F)を含み、
工程(F)において、該樹脂組成物層は、位相差フィルムの片面に形成される。
<6> The method according to <1>,
The method includes step (A), step (B), step (C) and step (G) in this order, and also includes step (F),
In the step (F), the resin composition layer is formed on one side of the retardation film.
<7> <2>または<3>に記載の方法であって、
工程(F)において、前記エポキシ化合物は、脂環式環に結合したエポキシ基を分子内に1個以上有する化合物を含有する。
<7> The method according to <2> or <3>,
In the step (F), the epoxy compound contains a compound having at least one epoxy group bonded to an alicyclic ring in the molecule.
<8> <1>~<7>のいずれかに記載の方法であって、
コア層の膜厚は10~100μmであり、スキン層の膜厚は10~100μmである。
<8> The method according to any one of <1> to <7>,
The thickness of the core layer is 10 to 100 μm, and the thickness of the skin layer is 10 to 100 μm.
<9> <1>~<8>のいずれかに記載の方法であって、
コア層のガラス転移温度は120℃以上であり、スキン層のガラス転移温度は120℃以下である。
<9> The method according to any one of <1> to <8>,
The glass transition temperature of the core layer is 120 ° C. or higher, and the glass transition temperature of the skin layer is 120 ° C. or lower.
<10> <1>~<9>のいずれかに記載の方法であって、
位相差フィルムは、その幅が、工程(A)において作製される片面透明保護フィルム付き偏光板の幅より10%以上小さいものである。
<10> The method according to any one of <1> to <9>,
The width of the retardation film is 10% or more smaller than the width of the polarizing plate with a single-sided transparent protective film produced in the step (A).
<11> <1>~<10>のいずれかに記載の方法であって、
工程(A)において、偏光フィルムと透明保護フィルムとは、ポリビニルアルコール系樹脂またはエポキシ樹脂を含有する接着剤を用いて貼合される。
<11> The method according to any one of <1> to <10>,
In the step (A), the polarizing film and the transparent protective film are bonded using an adhesive containing a polyvinyl alcohol resin or an epoxy resin.
<12> <11>に記載の方法であって、
工程(A)において、前記接着剤が、活性エネルギー線の照射または加熱により硬化するエポキシ化合物を含有する樹脂組成物である。
<12> The method according to <11>,
In the step (A), the adhesive is a resin composition containing an epoxy compound that is cured by irradiation with active energy rays or heating.
<13> <12>に記載の方法であって、
偏光フィルムと透明保護フィルムとの前記エポキシ化合物を含有する樹脂組成物を用いる貼合が、偏光フィルムの片面、および、透明保護フィルムの片面の少なくとも一方に、前記エポキシ化合物を含有する樹脂組成物層を形成し、前記エポキシ樹脂を含有する樹脂組成物層上に他方の偏光板または透明保護フィルムを重ねる工程と、前記エポキシ化合物を含有する樹脂組成物層を硬化させて、偏光フィルム面に前記エポキシ化合物を含有する樹脂組成物の硬化層を介して透明保護フィルムを貼合する工程を含む。
<13> The method according to <12>,
Bonding using a resin composition containing the epoxy compound between a polarizing film and a transparent protective film is a resin composition layer containing the epoxy compound on at least one side of the polarizing film and one side of the transparent protective film. Forming the other polarizing plate or the transparent protective film on the resin composition layer containing the epoxy resin, curing the resin composition layer containing the epoxy compound, and applying the epoxy to the polarizing film surface. The process includes pasting a transparent protective film through the cured layer of the resin composition containing the compound.
<14> <12>または<13>に記載の方法であって、
工程(A)における前記エポキシ化合物は、脂環式環に結合したエポキシ基を分子内に1個以上有する化合物を含有する。
<14> The method according to <12> or <13>,
The said epoxy compound in a process (A) contains the compound which has 1 or more of epoxy groups couple | bonded with the alicyclic ring in a molecule | numerator.
<15> <1>~<14>のいずれかに記載の方法であって、
前記透明保護フィルムの厚みが20~300μmである。
<15> The method according to any one of <1> to <14>,
The transparent protective film has a thickness of 20 to 300 μm.
<16> <1>~<15>のいずれかに記載の方法であって、
前記粘着剤層の厚みが1~40μmである。
<16> The method according to any one of <1> to <15>,
The pressure-sensitive adhesive layer has a thickness of 1 to 40 μm.
 本発明の複合偏光板の製造方法によれば、位相差フィルムとの貼合前に片面透明保護フィルム付き偏光板を位相差フィルムの大きさに合わせて長尺方向に沿って裁断し、位相差フィルムと貼合する片面透明保護フィルム付き偏光板と位相差フィルムと貼合しない片面透明保護フィルム付き偏光板とに分けることにより、生産性低下を招くことがなくなる。
さらに、片面透明保護フィルム付き偏光板の位相差フィルムと貼合しない部分は他製品に用いることができるため、全体の生産性は著しく向上する。
According to the method for producing a composite polarizing plate of the present invention, the polarizing plate with a single-sided transparent protective film is cut along the longitudinal direction according to the size of the retardation film before being bonded to the retardation film, and the retardation is obtained. By dividing into a polarizing plate with a single-sided transparent protective film to be bonded to a film and a polarizing plate with a single-sided transparent protective film that is not bonded to a retardation film, productivity is not reduced.
Furthermore, since the part which does not bond with the phase difference film of the polarizing plate with a single-sided transparent protective film can be used for another product, the whole productivity improves remarkably.
 また、本発明により得られる複合偏光板は、位相差フィルムと偏光フィルムとの密着性にも優れており、高い耐久性能を有する。 Moreover, the composite polarizing plate obtained by the present invention is excellent in adhesion between the retardation film and the polarizing film and has high durability performance.
 さらに、裁断される片面透明保護フィルム付き偏光板の偏光フィルム側に、粘着性を有する剥離性フィルムを貼合しておくことにより、透明保護フィルムと偏光フィルムの貼合や、裁断における偏光フィルムの損傷を防止することができる。 Furthermore, by sticking a peelable film having adhesiveness to the polarizing film side of the polarizing plate with a single-sided transparent protective film to be cut, bonding of the transparent protective film and the polarizing film, or of the polarizing film in cutting Damage can be prevented.
 本発明により得られる複合偏光板は、液晶表示装置、特には、横電界モードの液晶セル、すなわち、IPS(In−Plane−Switching)セルを備える液晶表示装置に好適に適用することができる。 The composite polarizing plate obtained by the present invention can be suitably applied to a liquid crystal display device, particularly a liquid crystal display device including a transverse electric field mode liquid crystal cell, that is, an IPS (In-Plane-Switching) cell.
 <複合偏光板の製造方法>
 本発明の複合偏光板の製造方法は、スチレン系樹脂からなるコア層と、前記コア層の両面に積層される、ゴム粒子を含有する(メタ)アクリル系樹脂組成物からなるスキン層との3層構造(スキン層/コア層/スキン層)を有する延伸フィルムからなる位相差フィルムと、
 前記位相差フィルム上に積層される、偏光フィルムの片面に透明保護フィルムを有する片面透明保護フィルム付き偏光板と、
を備える複合偏光板を製造する方法であって、
下記工程(A)、工程(B)、工程(C)、工程(D)および工程(E)を含む方法か、
下記工程(A)、工程(B)、工程(C)、工程(F)および工程(G)を含む方法である。
(A)偏光フィルムの片面に透明保護フィルムを貼合し、反対側の面に粘着性を有する剥離性フィルムを貼合し、片面透明保護フィルム付き偏光板を作製する工程
(B)片面透明保護フィルム付き偏光板を、位相差フィルムの幅に合わせて長尺方向に沿って裁断する工程
(C)剥離性フィルムを偏光フィルム面から除去する工程
(D)位相差フィルムの片面、および、剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面、の少なくとも一方に、80℃において0.1MPa以上の貯蔵弾性率を示す粘着剤層を形成する工程
(E)剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面に、前記粘着剤層を介して位相差フィルムを貼合する工程
(F)位相差フィルムの片面、および、剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面、の少なくとも一方に、活性エネルギー線の照射または加熱により硬化するエポキシ化合物を含有する樹脂組成物層を形成し、該樹脂組成物層上に他方の偏光板の偏光フィルム面または位相差フィルムを重ねる工程
(G)該樹脂組成物層を硬化させることにより片面透明保護フィルム付き偏光板の偏光フィルム面に、該樹脂組成物の硬化層を介して位相差フィルムを貼合する工程
<Method for producing composite polarizing plate>
The method for producing a composite polarizing plate of the present invention includes a core layer composed of a styrene resin and a skin layer composed of a (meth) acrylic resin composition containing rubber particles, which is laminated on both surfaces of the core layer. A retardation film comprising a stretched film having a layer structure (skin layer / core layer / skin layer);
A polarizing plate with a single-sided transparent protective film having a transparent protective film on one side of the polarizing film, laminated on the retardation film,
A method of manufacturing a composite polarizing plate comprising:
A method comprising the following step (A), step (B), step (C), step (D) and step (E),
The method includes the following step (A), step (B), step (C), step (F) and step (G).
(A) A step of pasting a transparent protective film on one side of a polarizing film and pasting an adhesive peelable film on the opposite side to produce a polarizing plate with a single-sided transparent protective film (B) Single-sided transparent protection A step of cutting the polarizing plate with a film along the longitudinal direction according to the width of the retardation film (C) A step of removing the peelable film from the polarizing film surface (D) One side of the retardation film, and a peelability Step of forming an adhesive layer showing a storage elastic modulus of 0.1 MPa or more at 80 ° C. on at least one of the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the film has been removed (E) The peelable film is removed (F) One side of retardation film and releasability of pasting retardation film to polarizing film surface of polarizing plate with single-sided transparent protective film made through said adhesive layer A resin composition layer containing an epoxy compound that is cured by irradiation with active energy rays or heating is formed on at least one of the polarizing film surface of the polarizing plate with a single-side transparent protective film from which the film has been removed, and the resin composition layer Step (G) of laminating the polarizing film surface or retardation film of the other polarizing plate on the cured film of the resin composition on the polarizing film surface of the polarizing plate with a single-side transparent protective film by curing the resin composition layer Step of laminating retardation film via
 本発明の複合偏光板の製造方法において、片面透明保護フィルム付き偏光板の偏光フィルムと位相差フィルムとの貼合を、80℃において0.1MPa以上の貯蔵弾性率を示す粘着剤層を介して行う方法(工程(A)、工程(B)、工程(C)、工程(D)および工程(E)を含む方法)の好ましい態様としては、工程(A)、工程(B)、工程(C)、工程(D)および工程(E)をこの順に含み、工程(D)において、前記粘着剤層は、剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面に形成される態様(以下、第一の態様と記すことがある)、工程(A)、工程(C)、工程(D)、工程(B)および工程(E)をこの順に含み、工程(D)において、前記粘着剤層は、剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面に形成される態様(以下、第二の態様と記すことがある)及び、工程(A)、工程(B)、工程(C)および工程(E)をこの順に含み、さらに工程(D)を含み、工程(D)において、前記粘着剤層は、位相差フィルムの片面に形成される態様(以下、第三の態様と記すことがある)を挙げることができる。 In the manufacturing method of the composite polarizing plate of the present invention, the bonding between the polarizing film of the polarizing plate with a single-sided transparent protective film and the retardation film is performed through an adhesive layer exhibiting a storage elastic modulus of 0.1 MPa or more at 80 ° C. As a preferable mode of the method to be performed (the method including the step (A), the step (B), the step (C), the step (D) and the step (E)), the step (A), the step (B), the step (C ), Step (D) and step (E) in this order. In step (D), the pressure-sensitive adhesive layer is formed on the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the peelable film has been removed. In the step (D), the embodiment (hereinafter sometimes referred to as the first embodiment), step (A), step (C), step (D), step (B) and step (E) are included in this order. The pressure-sensitive adhesive layer is a piece from which the peelable film has been removed. An embodiment (hereinafter, sometimes referred to as a second embodiment) formed on the polarizing film surface of the polarizing plate with a transparent protective film, and the step (A), the step (B), the step (C) and the step (E) In this order, and further including the step (D), in the step (D), the pressure-sensitive adhesive layer may be formed on one side of the retardation film (hereinafter sometimes referred to as a third mode). Can do.
 片面透明保護フィルム付き偏光板の偏光フィルムと位相差フィルムとの貼合を、活性エネルギー線の照射または加熱により硬化するエポキシ化合物を含有する樹脂組成物層を介して行う方法(工程(A)、工程(B)、工程(C)、工程(F)および工程(G)を含む方法)の好ましい態様としては、工程(A)、工程(B)、工程(C)、工程(F)および工程(G)をこの順に含み、工程(F)において、該樹脂組成物層は、剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面に形成される態様(以下、第四の態様と記すことがある)及び、工程(A)、工程(B)、工程(C)および工程(G)をこの順に含み、さらに工程(F)を含み、工程(F)において、該樹脂組成物層は、位相差フィルムの片面に形成される態様(以下、第五の態様と記すことがある)を挙げることができる。 A method of performing the bonding of the polarizing film of the polarizing plate with a single-sided transparent protective film and the retardation film via a resin composition layer containing an epoxy compound that is cured by irradiation with active energy rays or heating (step (A), As a preferred embodiment of the step (B), the step (C), the step (F) and the step (G)), the step (A), the step (B), the step (C), the step (F) and the step (G) is included in this order, and in the step (F), the resin composition layer is formed on the polarizing film surface of the polarizing plate with a single-side transparent protective film from which the peelable film has been removed (hereinafter referred to as the fourth). And may include a step (A), a step (B), a step (C) and a step (G) in this order, and further includes a step (F). In the step (F), the resin composition Material layer is one side of retardation film Aspect to be formed (hereinafter, sometimes referred to as the fifth embodiment) can be mentioned.
〔1〕工程(A)
 本発明の複合偏光板の製造方法においては、まず、偏光フィルムの片面に透明保護フィルムを貼合し、反対側の面に粘着性を有する剥離性フィルムを貼合し、片面透明保護フィルム付き偏光板を作製する。
[1] Step (A)
In the method for producing a composite polarizing plate of the present invention, first, a transparent protective film is bonded to one side of a polarizing film, an adhesive peelable film is bonded to the opposite side, and polarized light with a single-sided transparent protective film is attached. Make a plate.
 (偏光フィルム)
 本発明の複合偏光板の製造方法で用いられる偏光フィルムは、自然光からある一方向の直線偏光を選択的に透過する機能を有するものである。例えば、ポリビニルアルコール系フィルムにヨウ素を吸着・配向させたヨウ素系偏光フィルム、ポリビニルアルコール系フィルムに二色性の染料を吸着・配向させた染料系偏光フィルム、およびリオトロピック液晶状態の二色性染料をコーティングし、配向・固定化した塗布型偏光フィルム等が挙げられる。これらのヨウ素系偏光フィルム、染料系偏光フィルム、および塗布型偏光フィルムは、自然光からある一方向の直線偏光を選択的に透過し、もう一方向の直線偏光を吸収する機能を有するもので、吸収型偏光フィルムと呼ばれている。
(Polarizing film)
The polarizing film used in the method for producing a composite polarizing plate of the present invention has a function of selectively transmitting linearly polarized light in one direction from natural light. For example, an iodine polarizing film in which iodine is adsorbed and oriented on a polyvinyl alcohol film, a dye polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol film, and a dichroic dye in a lyotropic liquid crystal state Examples thereof include a coating type polarizing film coated, oriented and fixed. These iodine-based polarizing films, dye-based polarizing films, and coating-type polarizing films have a function of selectively transmitting one direction of linearly polarized light from natural light and absorbing the other direction of linearly polarized light. It is called a type polarizing film.
 本発明の製造方法で用いられる偏光フィルムは、上述した吸収型偏光フィルムだけでなく、自然光からある一方向の直線偏光を選択的に透過し、もう一方向の直線偏光を反射または散乱する機能を有する反射型偏光フィルムまたは散乱型偏光フィルムと呼ばれているものでもよい。また、ここで具体的に挙げた偏光フィルムに限定されるわけではなく、自然光からある一方向の直線偏光を選択的に透過する機能を有するものであればよい。これらの偏光フィルムの中でも、視認性に優れている吸収型偏光フィルムを用いるのが好ましく、中でも、偏光度および透過率に優れるヨウ素系偏光フィルムがより好ましい。 The polarizing film used in the production method of the present invention has a function of selectively transmitting one direction of linearly polarized light from natural light and reflecting or scattering another direction of linearly polarized light as well as the above-described absorption polarizing film. What is called a reflective polarizing film or a scattering polarizing film may be used. Moreover, it is not necessarily limited to the polarizing film specifically mentioned here, What is necessary is just to have a function which selectively permeate | transmits the linearly polarized light of one direction from natural light. Among these polarizing films, it is preferable to use an absorbing polarizing film excellent in visibility, and among them, an iodine polarizing film excellent in polarization degree and transmittance is more preferable.
 上記ポリビニルアルコール系フィルムに用いられるポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他に、酢酸ビニルと共重合可能な他の単量体との共重合体等が挙げられる。酢酸ビニルと共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、不飽和スルホン酸類、オレフィン類およびビニルエーテル類が挙げられる。 The polyvinyl alcohol resin used in the polyvinyl alcohol film can be obtained by saponifying a polyvinyl acetate resin. Examples of the polyvinyl acetate resin include, in addition to polyvinyl acetate, which is a homopolymer of vinyl acetate, copolymers with other monomers copolymerizable with vinyl acetate. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, unsaturated sulfonic acids, olefins and vinyl ethers.
 ポリビニルアルコール系樹脂のケン化度は、通常85~100mol%であり、98~100mol%がより好ましい。ポリビニルアルコール系樹脂は、変性されていてもよく、たとえば、アルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール、およびポリビニルブチラールも用いられる。ポリビニルアルコール系樹脂の重合度は、通常、1000~10000程度であり、1500~10000程度が好ましい。 The saponification degree of the polyvinyl alcohol resin is usually 85 to 100 mol%, and more preferably 98 to 100 mol%. The polyvinyl alcohol-based resin may be modified. For example, polyvinyl formal, polyvinyl acetal, and polyvinyl butyral modified with aldehydes are also used. The degree of polymerization of the polyvinyl alcohol-based resin is usually about 1000 to 10,000, and preferably about 1500 to 10,000.
 このようなポリビニルアルコール系樹脂を製膜したものが、偏光フィルムの原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は特に限定されるものでなく、公知の方法で製膜することができる。ポリビニルアルコール系原反フィルムの厚みは特に限定されるものではないが、たとえば、2~150μm程度である。 A film obtained by forming such a polyvinyl alcohol resin is used as an original film of a polarizing film. The method for forming a polyvinyl alcohol-based resin is not particularly limited, and can be formed by a known method. The thickness of the polyvinyl alcohol-based raw film is not particularly limited, but is, for example, about 2 to 150 μm.
 偏光フィルムは、通常、上述したようなポリビニルアルコール系樹脂からなる原反フィルムの水分を調整する調湿工程、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色してその二色性色素を吸着させる工程、二色性色素が吸着配向されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、およびホウ酸水溶液による処理後に水洗する工程を経て製造される。 The polarizing film is usually a humidity adjusting step for adjusting the moisture of the raw film made of the polyvinyl alcohol resin as described above, a step of uniaxially stretching the polyvinyl alcohol resin film, and the polyvinyl alcohol resin film with a dichroic dye. It is manufactured through a process of dyeing and adsorbing the dichroic dye, a process of treating the polyvinyl alcohol resin film on which the dichroic dye is adsorbed and oriented with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution. The
 一軸延伸は、二色性色素による染色の前に行なってもよいし、染色と同時に行なってもよいし、染色の後に行なってもよい。一軸延伸を二色性色素による染色の後で行なう場合には、この一軸延伸は、ホウ酸処理の前に行なってもよいし、ホウ酸処理中に行なってもよい。また、これらの複数の段階で一軸延伸を行なうことも可能である。一軸延伸にあたっては、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また、大気中で延伸を行なう等の乾式延伸であってもよいし、溶剤にて膨潤させた状態で延伸を行なう湿式延伸であってもよい。延伸倍率は、通常、4~8倍である。水洗後、乾燥して得られる偏光フィルムの厚みは、たとえば、1~50μmとすることができる。 The uniaxial stretching may be performed before the dyeing with the dichroic dye, may be performed simultaneously with the dyeing, or may be performed after the dyeing. When uniaxial stretching is performed after dyeing with a dichroic dye, the uniaxial stretching may be performed before boric acid treatment or during boric acid treatment. Moreover, it is also possible to perform uniaxial stretching in these several steps. In uniaxial stretching, it may be uniaxially stretched between rolls having different peripheral speeds, or may be uniaxially stretched using a hot roll. Further, it may be dry stretching such as stretching in the air, or may be wet stretching in which stretching is performed in a state swollen with a solvent. The draw ratio is usually 4 to 8 times. The thickness of the polarizing film obtained by rinsing with water and drying can be, for example, 1 to 50 μm.
 (透明保護フィルム)
 本発明の製造方法で用いられる透明保護フィルムは、透明性、機械的強度、熱安定性、水分遮蔽性、および位相差値の安定性に優れる材料からなることが好ましい。このような透明保護フィルム用材料としては、特に限定されるものではないが、たとえば、メタクリル酸メチル系樹脂等の(メタ)アクリル系樹脂、ポリプロピレン系樹脂等の鎖状オレフィン系樹脂、環状オレフィン系樹脂、ポリ塩化ビニル系樹脂、セルロース系樹脂、スチレン系樹脂、アクリロニトリル・ブタジエン・スチレン系樹脂、アクリロニトリル・スチレン系樹脂、ポリ酢酸ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、変性ポリフェニレンエーテル系樹脂、ポリブチレンテレフタレート系樹脂、ポリエチレンテレフタレート系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリアリレート系樹脂、ポリアミドイミド系樹脂およびポリイミド系樹脂が挙げられる。
(Transparent protective film)
The transparent protective film used in the production method of the present invention is preferably made of a material having excellent transparency, mechanical strength, thermal stability, moisture shielding properties, and retardation value stability. Such a material for transparent protective film is not particularly limited. For example, (meth) acrylic resins such as methyl methacrylate resins, chain olefin resins such as polypropylene resins, and cyclic olefin resins. Resin, polyvinyl chloride resin, cellulose resin, styrene resin, acrylonitrile / butadiene / styrene resin, acrylonitrile / styrene resin, polyvinyl acetate resin, polyvinylidene chloride resin, polyamide resin, polyacetal resin, Polycarbonate resin, modified polyphenylene ether resin, polybutylene terephthalate resin, polyethylene terephthalate resin, polysulfone resin, polyethersulfone resin, polyarylate resin, polyamideimide resin and polyimide resin And the like.
 これらの樹脂のそれぞれは、単独で、あるいは他の1種類以上と組み合わせて用いることができる。また、これらの樹脂は、任意の適切なポリマー変性を行なってから用いることもでき、このポリマー変性としては、たとえば、共重合、架橋、分子末端、立体規則性制御、および異種ポリマー同士の反応を伴う場合を含む混合等の変性が挙げられる。 Each of these resins can be used alone or in combination with one or more other types. These resins can also be used after any suitable polymer modification. Examples of the polymer modification include copolymerization, crosslinking, molecular terminal, stereoregularity control, and reaction between different polymers. Modifications such as mixing including the accompanying cases are included.
 これらの中でも、透明保護フィルムの材料としては、メタクリル酸メチル系樹脂等の(メタ)アクリル系樹脂、ポリエチレンテレフタレート系樹脂、ポリプロピレン系樹脂等の鎖状オレフィン系樹脂、セルロース系樹脂を用いることが好ましい。 Among these, as the material for the transparent protective film, it is preferable to use (meth) acrylic resins such as methyl methacrylate resins, chain olefin resins such as polyethylene terephthalate resins and polypropylene resins, and cellulose resins. .
 メタクリル酸メチル系樹脂とは、メタクリル酸メチル単位を50重量%以上含む重合体である。メタクリル酸メチル単位の含有量は、好ましくは70重量%以上であり、100重量%であってもよい。メタクリル酸メチル単位が100重量%の重合体は、メタクリル酸メチルを単独で重合させて得られるメタクリル酸メチル単独重合体である。 The methyl methacrylate resin is a polymer containing 50% by weight or more of methyl methacrylate units. The content of methyl methacrylate units is preferably 70% by weight or more, and may be 100% by weight. The polymer having a methyl methacrylate unit of 100% by weight is a methyl methacrylate homopolymer obtained by polymerizing methyl methacrylate alone.
 このメタクリル酸メチル系樹脂は、通常、メタクリル酸メチルを主成分とする単官能単量体、多官能単量体、ラジカル重合開始剤および連鎖移動剤の共存下に重合して得ることができる。 This methyl methacrylate resin can be usually obtained by polymerization in the presence of a monofunctional monomer, a polyfunctional monomer, a radical polymerization initiator and a chain transfer agent mainly composed of methyl methacrylate.
 メタクリル酸メチルと共重合し得る単官能単量体としては、特に限定されるものではないが、たとえば、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸2−エチルヘキシル、メタクリル酸2−ヒドロキシエチル等のメタクリル酸メチル以外のメタクリル酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル等のアクリル酸エステル類;2−(ヒドロキシメチル)アクリル酸メチル、3−(ヒドロキシエチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチル、2−(ヒドロキシメチル)アクリル酸ブチル等のヒドロキシアクリル酸エステル類;メタクリル酸、アクリル酸等の不飽和酸類;クロロスチレン、ブロモスチレン等のハロゲン化スチレン類;ビニルトルエン、α−メチルスチレン等の置換スチレン類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;無水マレイン酸、無水シトラコン酸等の不飽和酸無水物類;ならびにフェニルマレイミドおよびシクロヘキシルマレイミド等の不飽和イミド類を挙げることができる。このような単量体は、それぞれ単独で用いられてもよいし、他の1種以上と組み合わせて用いられてもよい。 The monofunctional monomer that can be copolymerized with methyl methacrylate is not particularly limited. For example, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, methacrylic acid 2 -Methacrylic acid esters other than methyl methacrylate such as ethylhexyl and 2-hydroxyethyl methacrylate; methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate Acrylic acid esters such as 2-hydroxyethyl acrylate; methyl 2- (hydroxymethyl) acrylate, methyl 3- (hydroxyethyl) acrylate, ethyl 2- (hydroxymethyl) acrylate, 2- (hydride) Hydroxymethyl esters such as xymethyl) butyl acrylate; unsaturated acids such as methacrylic acid and acrylic acid; halogenated styrenes such as chlorostyrene and bromostyrene; substituted styrenes such as vinyltoluene and α-methylstyrene; acrylonitrile And unsaturated nitriles such as methacrylonitrile; unsaturated acid anhydrides such as maleic anhydride and citraconic anhydride; and unsaturated imides such as phenylmaleimide and cyclohexylmaleimide. Such monomers may be used alone or in combination with one or more other monomers.
 メタクリル酸メチルと共重合し得る多官能単量体としては、特に限定されるものではないが、たとえば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、テトラデカエチレングリコール(メタ)アクリレート等のエチレングリコールまたはそのオリゴマーの両末端水酸基をアクリル酸またはメタクリル酸でエステル化したもの;プロピレングリコールまたはそのオリゴマーの両末端水酸基をアクリル酸またはメタクリル酸でエステル化したもの;ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート等の2価アルコールの水酸基をアクリル酸またはメタクリル酸でエステル化したもの;ビスフェノールA、ビスフェノールAのアルキレンオキサイド付加物、またはこれらのハロゲン置換体の両末端水酸基をアクリル酸またはメタクリル酸でエステル化したもの;トリメチロールプロパン、ペンタエリスリトール等の多価アルコールをアクリル酸またはメタクリル酸でエステル化したもの、ならびにこれら末端水酸基にグリシジルアクリレートまたはグリシジルメタクリレートのエポキシ基を開環付加させたもの;コハク酸、アジピン酸、テレフタル酸、フタル酸、これらのハロゲン置換体等の二塩基酸およびこれらのアルキレンオキサイド付加物等にグリシジルアクリレートまたはグリシジルメタクリレートのエポキシ基を開環付加させたもの;アリール(メタ)アクリレート;およびジビニルベンゼン等のジアリール化合物が挙げられる。中でも、エチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレートおよびネオペンチルグリコールジメタクリレートが好ましく用いられる。 The polyfunctional monomer that can be copolymerized with methyl methacrylate is not particularly limited. For example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate , Ethylene glycol such as tetraethylene glycol di (meth) acrylate, nonaethylene glycol di (meth) acrylate, tetradecaethylene glycol (meth) acrylate, or the like, esterified with acrylic acid or methacrylic acid at both terminal hydroxyl groups; Propylene glycol or its oligomers with both terminal hydroxyl groups esterified with acrylic acid or methacrylic acid; neopentyl glycol di (meth) acrylate, hexanediol di (meth) acrylate , A hydroxyl group of a dihydric alcohol such as butanediol di (meth) acrylate esterified with acrylic acid or methacrylic acid; bisphenol A, an alkylene oxide adduct of bisphenol A, or hydroxyl groups at both ends of these halogen-substituted products Esterified with acid or methacrylic acid; polyhydric alcohols such as trimethylolpropane and pentaerythritol esterified with acrylic acid or methacrylic acid, and ring-opening addition of epoxy groups of glycidyl acrylate or glycidyl methacrylate to these terminal hydroxyl groups Succinic acid, adipic acid, terephthalic acid, phthalic acid, dibasic acids such as halogen-substituted products thereof, and alkylene oxide adducts thereof. The epoxy groups of acrylate ones was ring-opening addition; aryl (meth) acrylate; and diaryl compounds such as divinylbenzene. Among these, ethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate and neopentyl glycol dimethacrylate are preferably used.
 メタクリル酸メチル系樹脂は、さらに、樹脂に共重合させた官能基間の反応を行ない変性されたものであってもよい。その反応としては、たとえば、アクリル酸メチルのメチルエステル基と2−(ヒドロキシメチル)アクリル酸メチルとの水酸基の高分子鎖内脱メタノール縮合反応、アクリル酸のカルボキシル基と2−(ヒドロキシメチル)アクリル酸メチルとの水酸基の高分子鎖内脱水縮合反応等が挙げられる。 The methyl methacrylate resin may be further modified by a reaction between functional groups copolymerized with the resin. As the reaction, for example, demethanol condensation reaction in the polymer chain of a hydroxyl group of methyl acrylate and methyl 2- (hydroxymethyl) acrylate, carboxyl group of acrylic acid and 2- (hydroxymethyl) acrylic Examples thereof include a dehydration condensation reaction of a hydroxyl group with methyl acid in a polymer chain.
 メタクリル酸メチル系樹脂は、市販品を容易に入手することが可能であり、たとえば、各々商品名で、スミペックス(住友化学(株)製)、アクリペット(三菱レイヨン(株)製)、デルペット(旭化成(株)製)、パラペット((株)クラレ製)およびアクリビュア((株)日本触媒製)等が挙げられる。 Commercially available methyl methacrylate resins can be easily obtained. For example, Sumipex (manufactured by Sumitomo Chemical Co., Ltd.), Acrypet (manufactured by Mitsubishi Rayon Co., Ltd.), Delpet (Manufactured by Asahi Kasei Co., Ltd.), Parapet (manufactured by Kuraray Co., Ltd.) and acryl viewer (manufactured by Nippon Shokubai Co., Ltd.).
 ポリエチレンテレフタレート系樹脂とは、繰り返し単位の80mol%以上がエチレンテレフタレートで構成される樹脂を意味し、他のジカルボン酸成分とジオール成分を含んでいてもよい。他のジカルボン酸成分としては、特に限定されるものでないが、たとえば、イソフタル酸、p−β−オキシエトキシ安息香酸、4,4’−ジカルボキシジフェニール、4,4’−ジカルボキシベンゾフェノン、ビス(4−カルボキシフェニル)エタン、アジピン酸、セバシン酸および1,4−ジカルボキシシクロヘキサンが挙げられる。 Polyethylene terephthalate resin means a resin in which 80 mol% or more of repeating units are composed of ethylene terephthalate, and may contain other dicarboxylic acid components and diol components. Examples of other dicarboxylic acid components include, but are not limited to, isophthalic acid, p-β-oxyethoxybenzoic acid, 4,4′-dicarboxydiphenyl, 4,4′-dicarboxybenzophenone, bis (4-Carboxyphenyl) ethane, adipic acid, sebacic acid and 1,4-dicarboxycyclohexane.
 他のジオール成分としては、特に限定されるものではないが、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、ジエチレングリコール、シクロヘキサンジオール、ビスフェノールAのエチレンオキサイド付加物、ポリエチレングリコール、ポリプロピレングリコールおよびポリテトラメチレングリコールが挙げられる。 Other diol components are not particularly limited, but propylene glycol, butanediol, neopentyl glycol, diethylene glycol, cyclohexanediol, ethylene oxide adduct of bisphenol A, polyethylene glycol, polypropylene glycol, and polytetramethylene glycol. Can be mentioned.
 これらのジカルボン酸成分やジオール成分のそれぞれは、必要により他の1種類以上と組み合わせて用いることができる。また、p−オキシ安息香酸等のオキシカルボン酸を併用することもできる。また、他の共重合成分として、少量のアミド結合、ウレタン結合、エーテル結合、およびカーボネート結合等を含有するジカルボン酸成分またはジオール成分が用いられてもよい。 Each of these dicarboxylic acid components and diol components can be used in combination with one or more other types as necessary. Moreover, oxycarboxylic acids, such as p-oxybenzoic acid, can also be used together. Further, as other copolymerization component, a dicarboxylic acid component or a diol component containing a small amount of an amide bond, a urethane bond, an ether bond, a carbonate bond, or the like may be used.
 ポリエチレンテレフタレート系樹脂の製造方法としては、テレフタル酸およびエチレングリコール(ならびに必要に応じて他のジカルボン酸または他のジオール)を直接重縮合させる方法、テレフタル酸のジアルキルエステルおよびエチレングリコール(ならびに必要に応じて他のジカルボン酸のジアルキルエステルまたは他のジオール)とをエステル交換反応させた後重縮合させる方法、およびテレフタル酸(および必要に応じて他のジカルボン酸)のエチレングリコールエステル(および必要に応じて他のジオールエステル)を触媒の存在下で重縮合させる方法等が採用される。さらに、必要に応じて固相重合を行ない、分子量を向上させたり、低分子量成分を低減させたりすることもできる。 Polyethylene terephthalate resin can be produced by direct polycondensation of terephthalic acid and ethylene glycol (and other dicarboxylic acids or other diols as required), dialkyl esters of terephthalic acid and ethylene glycol (and if necessary) A transesterification reaction with a dialkyl ester of another dicarboxylic acid or other diol), and a polycondensation, and an ethylene glycol ester of terephthalic acid (and other dicarboxylic acids as required) For example, a method of polycondensation of other diol ester) in the presence of a catalyst is employed. Furthermore, solid phase polymerization can be performed as necessary to improve the molecular weight or reduce the low molecular weight components.
 また、ポリプロピレン系樹脂とは、上記鎖状オレフィン系樹脂の中でも、繰り返し単位の80重量%以上がプロピレンモノマーである鎖状オレフィンモノマーを、重合用触媒を用いて重合されたものをいう。中でも、プロピレンホモポリマーが好ましい。
また、プロピレンを主体とし、それと共重合可能なコモノマーを、1~20重量%の割合で、好ましくは3~10重量%の割合で共重合させた共重合体も好ましい。
The polypropylene resin refers to a polymer obtained by polymerizing a chain olefin monomer in which 80% by weight or more of the repeating unit is a propylene monomer among the chain olefin resins. Of these, propylene homopolymer is preferred.
Also preferred is a copolymer comprising propylene as a main component and a comonomer copolymerizable therewith at a rate of 1 to 20% by weight, preferably 3 to 10% by weight.
 プロピレン共重合体を用いる場合、プロピレンと共重合可能なコモノマーとしては、エチレン、1−ブテンおよび1−ヘキセンが好ましい。中でも、透明性に比較的優れることから、エチレンを3~10重量%の割合で共重合させたプロピレン共重合体が好ましい。エチレンの共重合割合を1重量%以上とすることで、透明性を上げる効果が現れる。一方、その割合が20重量%を超えると、樹脂の融点が下がり、保護フィルムに要求される耐熱性が損なわれる場合がある。 When a propylene copolymer is used, ethylene, 1-butene and 1-hexene are preferred as comonomers copolymerizable with propylene. Among them, a propylene copolymer obtained by copolymerizing ethylene at a ratio of 3 to 10% by weight is preferable because of relatively excellent transparency. By setting the copolymerization ratio of ethylene to 1% by weight or more, an effect of increasing transparency appears. On the other hand, when the ratio exceeds 20% by weight, the melting point of the resin is lowered, and the heat resistance required for the protective film may be impaired.
 中でも、20℃のキシレンに可溶な成分(CXS成分)が1重量%以下であるプロピレンホモポリマーがより好ましく、CXS成分が0.5重量%以下のプロピレンホモポリマーがさらに好ましい。 Among these, a propylene homopolymer having a component soluble in xylene at 20 ° C. (CXS component) of 1% by weight or less is more preferable, and a propylene homopolymer having a CXS component of 0.5% by weight or less is more preferable.
 また、セルロース系樹脂とは、綿花リンタや木材パルプ(広葉樹パルプ、針葉樹パルプ)等の原料セルロースから得られるセルロースの水酸基における水素原子の一部または全部がアセチル基、プロピオニル基および/またはブチリル基で置換された、セルロース有機酸エステルまたはセルロース混合有機酸エステルをいう。たとえば、セルロースの酢酸エステル、プロピオン酸エステル、酪酸エステル、およびそれらの混合エステル等からなるものが挙げられる。中でも、トリアセチルセルロースフィルム、ジアセチルセルロースフィルム、セルロースアセテートプロピオネートフィルム、およびセルロースアセテートブチレートフィルムが好ましい。 Cellulosic resins are those in which some or all of the hydrogen atoms in the hydroxyl groups of cellulose obtained from raw material cellulose such as cotton linter and wood pulp (hardwood pulp, conifer pulp) are acetyl groups, propionyl groups and / or butyryl groups. It refers to a substituted cellulose organic acid ester or cellulose mixed organic acid ester. Examples include cellulose acetates, propionate esters, butyrate esters, and mixed esters thereof. Among these, a triacetyl cellulose film, a diacetyl cellulose film, a cellulose acetate propionate film, and a cellulose acetate butyrate film are preferable.
 このようなメタクリル酸メチル系樹脂、ポリエチレンテレフタレート系樹脂、ポリプロピレン系樹脂およびセルロース系樹脂等を、偏光フィルムに接着する透明保護フィルムとする方法としては、その樹脂に応じた方法を適宜選択すればよく、特に限定されるものではない。たとえば、溶媒に溶解させた樹脂を金属製バンド、またはドラムへ流延し、溶媒を乾燥除去してフィルムを得る溶媒キャスト法、および樹脂をその溶融温度以上に加熱・混練してダイより押し出し、冷却することによりフィルムを得る溶融押出法が採用される。この溶融押出法では、単層フィルムの押し出しであってもよく、また多層フィルムの同時押し出しであってもよい。 As a method for making such a methyl methacrylate resin, a polyethylene terephthalate resin, a polypropylene resin, a cellulose resin, and the like as a transparent protective film to be bonded to a polarizing film, a method corresponding to the resin may be appropriately selected. There is no particular limitation. For example, a resin dissolved in a solvent is cast onto a metal band or drum, and the solvent is cast by removing the solvent by drying, and the resin is heated and kneaded above its melting temperature and extruded from a die, A melt extrusion method for obtaining a film by cooling is employed. In this melt extrusion method, a single layer film may be extruded or a multilayer film may be simultaneously extruded.
 こうして得られる透明保護フィルムとして用いられるフィルムは、市販品を容易に入手することが可能である。たとえば、メタクリル酸メチル系樹脂フィルムとしては、それぞれ商品名で、スミペックス(住友化学(株)製)、アクリライト(三菱レイヨン(株)製)、アクリプレン(三菱レイヨン(株)製)、デラグラス(旭化成(株)製)、パラグラス((株)クラレ製)、コモグラス((株)クラレ製)およびアクリビュア((株)日本触媒製)が挙げられる。 The film used as the transparent protective film thus obtained can be easily obtained as a commercial product. For example, methyl methacrylate resin films are sold under the trade names of Sumipex (manufactured by Sumitomo Chemical Co., Ltd.), Acrylite (manufactured by Mitsubishi Rayon Co., Ltd.), Acryprene (manufactured by Mitsubishi Rayon Co., Ltd.), Delaglass (Asahi Kasei). (Manufactured by Co., Ltd.), Paragrass (manufactured by Kuraray Co., Ltd.), como glass (manufactured by Kuraray Co., Ltd.) and acryl viewer (manufactured by Nippon Shokubai Co., Ltd.)
 また、ポリエチレンテレフタレート系樹脂フィルムとしては、たとえば、それぞれ商品名で、ノバクリアー(三菱化学(株)製)および帝人A−PETシート(帝人化成(株)製)が挙げられる。 In addition, examples of the polyethylene terephthalate resin film include Novaclear (manufactured by Mitsubishi Chemical Corporation) and Teijin A-PET sheet (manufactured by Teijin Chemicals Ltd.) under the trade names.
 また、ポリプロピレン系樹脂フィルムとしては、たとえば、それぞれ商品名で、FILMAX CPPフィルム(FILMAX社製)、サントックス(サン・トックス(株)製)、トーセロ(東セロ(株)製)、東洋紡パイレンフィルム(東洋紡績(株)製)、トレファン(東レフィルム加工(株)製)、ニホンポリエース(日本ポリエース(株)製)および太閤FC(フタムラ化学(株)製)が挙げられる。 In addition, as the polypropylene resin film, for example, FILMAX CPP film (manufactured by FILMAX), Santox (manufactured by Sun Tox Co., Ltd.), Tosero (manufactured by Tosero Co., Ltd.), Toyobo Pyrene Film ( Toyobo Co., Ltd.), Treffan (Toray Film Processing Co., Ltd.), Nihon Polyace (Nihon Polyace Co., Ltd.) and Dazai FC (Futamura Chemical Co., Ltd.).
 さらに、セルロース系樹脂フィルムとしては、たとえば、それぞれ商品名で、フジタックTD(富士フィルム(株)製)およびコニカミノルタTACフィルムKC(コニカミノルタオプト(株)製)が挙げられる。 Further, examples of the cellulose resin film include Fujitac TD (manufactured by Fuji Film Co., Ltd.) and Konica Minolta TAC film KC (manufactured by Konica Minolta Opto Co., Ltd.) under the trade names.
 本発明に用いられる透明保護フィルムには、防眩性(ヘイズ)を付与することができる。防眩性を付与する方法は、特に限定されるものではないが、たとえば、上記の原料樹脂中に無機微粒子もしくは有機微粒子を混合してフィルム化する方法、上記の多層押し出しを用いて、一方に微粒子が混合された樹脂ともう一方に微粒子が混合されていない樹脂とから二層フィルム化する方法、前記微粒子が混合された樹脂で前記微粒子が混合されていない樹脂の両側を挟んで三層フィルム化する方法、およびフィルムの片側に無機微粒子もしくは有機微粒子を硬化性バインダー樹脂に混合してなる塗布液をコートし、バインダー樹脂を硬化して防眩層を設ける方法が採用される。 The antiglare property (haze) can be imparted to the transparent protective film used in the present invention. The method for imparting antiglare properties is not particularly limited. For example, a method of mixing inorganic fine particles or organic fine particles into the raw material resin to form a film, the multilayer extrusion described above, and the like. A method of forming a two-layer film from a resin in which fine particles are mixed and a resin in which fine particles are not mixed in the other, a three-layer film sandwiching both sides of the resin in which the fine particles are mixed and the resin in which the fine particles are not mixed And a method of coating one side of the film with a coating solution obtained by mixing inorganic fine particles or organic fine particles with a curable binder resin, and curing the binder resin to provide an antiglare layer.
 防眩性を付与するための無機微粒子としては、特に限定されるものではないが、たとえば、シリカ、コロイダルシリカ、アルミナ、アルミナゾル、アルミノシリケート、アルミナ−シリカ複合酸化物、カオリン、タルク、マイカ、炭酸カルシウムおよびリン酸カルシウムが挙げられる。また、有機微粒子としては、特に限定されるものではないが、たとえば、架橋ポリアクリル酸粒子、メタクリル酸メチル/スチレン共重合体樹脂粒子、架橋ポリスチレン粒子、架橋ポリメチルメタクリレート粒子、シリコーン樹脂粒子およびポリイミド粒子が挙げられる。 The inorganic fine particles for imparting antiglare properties are not particularly limited. For example, silica, colloidal silica, alumina, alumina sol, aluminosilicate, alumina-silica composite oxide, kaolin, talc, mica, carbonic acid. Calcium and calcium phosphate are mentioned. Further, the organic fine particles are not particularly limited. For example, crosslinked polyacrylic acid particles, methyl methacrylate / styrene copolymer resin particles, crosslinked polystyrene particles, crosslinked polymethyl methacrylate particles, silicone resin particles, and polyimide. Particles.
 こうして得られる防眩性が付与された透明保護フィルムのヘイズ値は、6~45%の範囲内であることが好ましい。透明保護フィルムのヘイズ値が6%を下回ると、十分な防眩効果が現れない場合がある。また、透明保護フィルムのヘイズ値が45%を超えると、このフィルムを用いてなる液晶表示装置の画面が白ちゃけ、画質の低下をまねく場合がある。 The haze value of the thus obtained transparent protective film with antiglare property is preferably in the range of 6 to 45%. When the haze value of the transparent protective film is less than 6%, a sufficient antiglare effect may not appear. On the other hand, when the haze value of the transparent protective film exceeds 45%, the screen of the liquid crystal display device using this film may be whitened, resulting in a reduction in image quality.
 なお、このヘイズ値は、JIS K 7136に準拠し、たとえば、ヘイズ・透過率計HM−150((株)村上色彩技術研究所製)を用いて測定することができる。ヘイズ値の測定に際しては、フィルムの反りを防止するために、たとえば、光学的に透明な粘着剤を用いて防眩性付与面が表面となるようにフィルム面をガラス基板に貼合した測定サンプルを用いることが好ましい。 In addition, this haze value can be measured using a haze / transmittance meter HM-150 (manufactured by Murakami Color Research Laboratory Co., Ltd.) in accordance with JIS K 7136. In measuring the haze value, in order to prevent warping of the film, for example, a measurement sample in which the film surface is bonded to a glass substrate using an optically transparent adhesive so that the antiglare property-imparting surface becomes the surface. Is preferably used.
 透明保護フィルム上には、さらに、導電層、ハードコート層および低反射層等の機能層を積層することができる。また、透明保護フィルムを構成するバインダー樹脂には、これらの機能を有する樹脂組成物を選択することもできる。 On the transparent protective film, functional layers such as a conductive layer, a hard coat layer and a low reflection layer can be further laminated. Moreover, the resin composition which has these functions can also be selected for binder resin which comprises a transparent protective film.
 また、透明保護フィルムは、偏光フィルムとの貼合に先立って、ケン化処理、コロナ処理、およびプラズマ処理等を施しておくことが好ましい。 The transparent protective film is preferably subjected to saponification treatment, corona treatment, plasma treatment and the like prior to bonding with the polarizing film.
 透明保護フィルムの厚みは、特に制限されるものではないが、通常、強度や取り扱い性等の観点から1~500μm程度であり、20~300μmが好ましく、20~100μmがさらに好ましい。この範囲内の厚みであれば、偏光フィルムを機械的に保護し、高温高湿下に曝されても偏光フィルムが収縮せず、安定した光学特性を保つことができる。 The thickness of the transparent protective film is not particularly limited, but is usually about 1 to 500 μm, preferably 20 to 300 μm, and more preferably 20 to 100 μm from the viewpoints of strength and handleability. When the thickness is within this range, the polarizing film is mechanically protected, and even when exposed to high temperature and high humidity, the polarizing film does not shrink and stable optical characteristics can be maintained.
 (透明保護フィルム貼合用接着剤)
 偏光フィルムと透明保護フィルムの接着に用いる接着剤は、特に限定されるものではないが、たとえば、ポリビニルアルコール系樹脂、エポキシ系樹脂、ウレタン系樹脂、シアノアクリレート系樹脂、アクリルアミド系樹脂等の成分(以下、接着剤成分と記すことがある)を含有する接着剤(以下、接着剤組成物と記すこともある)が挙げられる。中でも、水系の接着剤、すなわち、接着剤成分を水に溶解したものまたはこれを水に分散させたものは、接着剤層の厚みをより低減することができるため好ましく用いられる。また、別の好ましい接着剤としては、加熱や活性エネルギー線の照射によりモノマーまたはオリゴマーを反応硬化させて接着剤層を形成する無溶剤の樹脂組成物からなるものが挙げられる。
(Adhesive for transparent protective film bonding)
The adhesive used for bonding the polarizing film and the transparent protective film is not particularly limited. For example, components such as polyvinyl alcohol resins, epoxy resins, urethane resins, cyanoacrylate resins, acrylamide resins ( Hereinafter, an adhesive (which may be referred to as an adhesive component) may be used (hereinafter also referred to as an adhesive composition). Among them, a water-based adhesive, that is, an adhesive component dissolved in water or dispersed in water is preferably used because the thickness of the adhesive layer can be further reduced. As another preferable adhesive, an adhesive composed of a solventless resin composition in which a monomer or an oligomer is reactively cured by heating or irradiation with active energy rays to form an adhesive layer can be mentioned.
 まず、水系の接着剤について説明する。水系の接着剤としては、接着剤成分として、たとえば、ポリビニルアルコール系樹脂、水溶性の架橋性エポキシ樹脂またはウレタン系樹脂等を含有するものが挙げられる。ポリビニルアルコール系樹脂としては、水系接着剤に用いられる種々公知の樹脂を用いることができる。また、水溶性の架橋性エポキシ樹脂としては、たとえば、ジエチレントリアミンやトリエチレンテトラミン等のポリアルキレンポリアミンとアジピン酸等のジカルボン酸との反応で得られるポリアミドポリアミンにエピクロロヒドリンを反応させて得られるポリアミドエポキシ樹脂を挙げることができる。このようなポリアミドエポキシ樹脂の市販品としては、スミレーズレジン 650(住化ケムテックス(株)製)、スミレーズレジン 675(住化ケムテックス(株)製)等が挙げられる。 First, the water-based adhesive will be described. Examples of the water-based adhesive include those containing, for example, a polyvinyl alcohol resin, a water-soluble crosslinkable epoxy resin, a urethane resin, or the like as an adhesive component. As the polyvinyl alcohol-based resin, various known resins used for water-based adhesives can be used. The water-soluble crosslinkable epoxy resin can be obtained, for example, by reacting a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine with a polyamidopolyamine obtained by reacting a dicarboxylic acid such as adipic acid with epichlorohydrin. Mention may be made of polyamide epoxy resins. Examples of such commercially available polyamide epoxy resins include Sumire Resin 650 (manufactured by Sumika Chemtex Co., Ltd.), Sumire Resin 675 (manufactured by Sumika Chemtex Co., Ltd.), and the like.
 接着剤成分として水溶性の架橋性エポキシ樹脂を用いる場合、その接着剤組成物には、塗工性と接着性を向上させるために、さらにポリビニルアルコール系樹脂等の他の水溶性樹脂を混合することが好ましい。ポリビニルアルコール系樹脂としては、部分ケン化ポリビニルアルコールおよび完全ケン化ポリビニルアルコールや、カルボキシル基変性ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、メチロール基変性ポリビニルアルコール、アミノ基変性ポリビニルアルコール等の変性されたポリビニルアルコール系樹脂が挙げられる。中でも、酢酸ビニルと不飽和カルボン酸またはその塩との共重合体のケン化物、すなわち、カルボキシル基変性ポリビニルアルコールが好ましく用いられる。なお、ここでいう「カルボキシル基」とは、−COOHおよびその塩を含む概念である。 When a water-soluble crosslinkable epoxy resin is used as an adhesive component, the adhesive composition is further mixed with another water-soluble resin such as a polyvinyl alcohol resin in order to improve coatability and adhesiveness. It is preferable. Examples of the polyvinyl alcohol-based resin include partially saponified polyvinyl alcohol and fully saponified polyvinyl alcohol, modified polyvinyl alcohol such as carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, and amino group-modified polyvinyl alcohol. Alcohol-type resin is mentioned. Among them, a saponified product of a copolymer of vinyl acetate and unsaturated carboxylic acid or a salt thereof, that is, carboxyl group-modified polyvinyl alcohol is preferably used. Here, the “carboxyl group” is a concept including —COOH and a salt thereof.
 市販されている好適なカルボキシル基変性ポリビニルアルコールとしては、たとえば、クラレポバール KL−506((株)クラレ製)、クラレポバール KL−318((株)クラレ製)、クラレポバール KL−118((株)クラレ製)、ゴーセナール T−330(日本合成化学工業(株)製)、ゴーセナール T−350(日本合成化学工業(株)製)、DR−0415(電気化学工業(株)製)、AF−17(日本酢ビ・ポバール(株)製)、AT−17(日本酢ビ・ポバール(株)製)及びAP−17(日本酢ビ・ポバール(株)製)が挙げられる。 Examples of suitable commercially available carboxyl group-modified polyvinyl alcohol include Kuraray Poval KL-506 (manufactured by Kuraray Co., Ltd.), Kuraray Poval KL-318 (manufactured by Kuraray Co., Ltd.), and Kuraray Poval KL-118 ((Co., Ltd.). ) Kuraray), Gosenal T-330 (manufactured by Nippon Synthetic Chemical Industry), Gosenal T-350 (manufactured by Nippon Synthetic Chemical Industry), DR-0415 (manufactured by Denki Kagaku Kogyo), AF- 17 (manufactured by Nippon Vinegar-Poval Co., Ltd.), AT-17 (manufactured by Nippon Vinegar-Povar Co., Ltd.) and AP-17 (manufactured by Nippon Vinegar-Poval Co., Ltd.).
 水溶性の架橋性エポキシ樹脂を含む接着剤は、エポキシ樹脂および必要に応じて加えられるポリビニルアルコール系樹脂等の他の水溶性樹脂を水に溶解し、接着剤溶液として調製することができる。この場合、水溶性の架橋性エポキシ樹脂の含有量は、水100重量部に対して、0.2~2重量部程度とすることが好ましい。また、ポリビニルアルコール系樹脂を配合する場合、その配合量は、水100重量部に対して、1~10重量部程度とすることが好ましく、1~5重量部程度とすることがより好ましい。 An adhesive containing a water-soluble crosslinkable epoxy resin can be prepared by dissolving an epoxy resin and other water-soluble resin such as a polyvinyl alcohol-based resin added as necessary in water. In this case, the content of the water-soluble crosslinkable epoxy resin is preferably about 0.2 to 2 parts by weight with respect to 100 parts by weight of water. When the polyvinyl alcohol-based resin is blended, the blending amount is preferably about 1 to 10 parts by weight, and more preferably about 1 to 5 parts by weight with respect to 100 parts by weight of water.
 一方、水系の接着剤に好適に用いることができるウレタン系樹脂としては、アイオノマー型のウレタン樹脂、特にポリエステル系アイオノマー型ウレタン樹脂を挙げることができる。ここで、アイオノマー型とは、ウレタン樹脂を構成する骨格内に、少量のイオン性成分(親水成分)が導入されたものである。また、ポリエステル系アイオノマー型ウレタン樹脂とは、ポリエステル骨格を有するウレタン樹脂であって、その骨格内に少量のイオン性成分(親水成分)が導入されたものである。このようなアイオノマー型ウレタン樹脂は、乳化剤を使用せずに直接、水中で乳化してエマルジョンとなるため、水系の接着剤に好適に用いることができる。ポリエステル系アイオノマー型ウレタン樹脂の市販品としては、たとえば、ハイドラン AP−20(大日本インキ化学工業(株)製)、ハイドラン APX−101H(大日本インキ化学工業(株)製)等があり、いずれもエマルジョンの形で入手できる。 On the other hand, examples of urethane resins that can be suitably used for water-based adhesives include ionomer-type urethane resins, particularly polyester-type ionomer-type urethane resins. Here, the ionomer type is obtained by introducing a small amount of an ionic component (hydrophilic component) into the skeleton constituting the urethane resin. The polyester ionomer type urethane resin is a urethane resin having a polyester skeleton, and a small amount of an ionic component (hydrophilic component) is introduced into the skeleton. Such an ionomer type urethane resin is emulsified directly in water without using an emulsifier and becomes an emulsion, so that it can be suitably used for an aqueous adhesive. Examples of commercially available polyester ionomer type urethane resins include Hydran AP-20 (Dainippon Ink Chemical Co., Ltd.), Hydran APX-101H (Dainippon Ink Chemical Co., Ltd.), etc. Is also available in the form of an emulsion.
 アイオノマー型のウレタン樹脂を接着剤成分とする場合、その接着剤組成物には、さらにイソシアネート系架橋剤を配合することが好ましい。イソシアネート系架橋剤は、分子内にイソシアナト基(−NCO)を少なくとも2個有する化合物であり、たとえば、2,4−トリレンジイソシアネート、フェニレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、1,6−ヘキサメチレンジイソシアネートおよびイソホロンジイソシアネート等のポリイソシアネート単量体の他に、それらの複数分子がトリメチロールプロパン等の多価アルコールに付加したアダクト体、ジイソシアネート3分子がそれぞれの片末端イソシアナト基の部分でイソシアヌレート環を形成した3官能のイソシアヌレート体、ジイソシアネート3分子がそれぞれの片末端イソシアナト基の部分で水和・脱炭酸して形成されるビュレット体等のポリイソシアネート変性体等が挙げられる。好適に使用し得る市販のイソシアネート系架橋剤としては、たとえば、ハイドランアシスター C−1(大日本インキ化学工業(株)製)等が挙げられる。 When an ionomer-type urethane resin is used as an adhesive component, it is preferable to add an isocyanate-based crosslinking agent to the adhesive composition. The isocyanate-based crosslinking agent is a compound having at least two isocyanato groups (—NCO) in the molecule. For example, 2,4-tolylene diisocyanate, phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,6-hexa In addition to polyisocyanate monomers such as methylene diisocyanate and isophorone diisocyanate, adducts in which a plurality of these molecules are added to a polyhydric alcohol such as trimethylolpropane, and three molecules of diisocyanate are isocyanurates at each end isocyanato group Examples thereof include a trifunctional isocyanurate having a ring formed and a polyisocyanate-modified product such as a burette formed by hydration and decarboxylation of three diisocyanate molecules at each isocyanato group. Examples of commercially available isocyanate-based crosslinking agents that can be suitably used include Hydran Assister C-1 (manufactured by Dainippon Ink & Chemicals, Inc.).
 アイオノマー型のウレタン樹脂を含む水系接着剤においては、粘度と接着性の観点から、ウレタン樹脂は、その濃度が10~70重量%程度となるように水中に溶解または分散されることが好ましく、20~50重量%以下がより好ましい。また、イソシアネート系架橋剤を配合する場合、その配合量は、ウレタン系樹脂100重量部に対してイソシアネート系架橋剤が5~100重量部程度となるように適宜選択される。 In the water-based adhesive containing an ionomer type urethane resin, from the viewpoint of viscosity and adhesiveness, the urethane resin is preferably dissolved or dispersed in water so that its concentration is about 10 to 70% by weight. It is more preferably up to 50% by weight. Further, when the isocyanate crosslinking agent is blended, the blending amount is appropriately selected so that the isocyanate crosslinking agent is about 5 to 100 parts by weight with respect to 100 parts by weight of the urethane resin.
 こうしてなる水系接着剤を用いる場合、その接着剤を、透明保護フィルム、または偏光フィルムの接着面に塗布し、両者を貼り合わせて乾燥することにより、偏光フィルムと透明保護フィルムとの積層体を得ることができる。 In the case of using the aqueous adhesive thus formed, the adhesive is applied to the adhesive surface of the transparent protective film or the polarizing film, and the laminated body of the polarizing film and the transparent protective film is obtained by bonding and drying both. be able to.
 次に、活性エネルギー線の照射または加熱により硬化するエポキシ化合物を含有する無溶剤の樹脂組成物からなる接着剤について説明する。 Next, an adhesive made of a solventless resin composition containing an epoxy compound that is cured by irradiation with active energy rays or heating will be described.
 本発明の製造方法に好ましく用いられる前記接着剤は、加熱や活性エネルギー線の照射により重合する硬化性の化合物と重合開始剤とを含有し有意量の溶剤を含まない硬化性組成物(以下、硬化性組成物と記すことがある)である。この硬化性の化合物は、反応性の観点からカチオン重合で硬化するものが好ましく、特にエポキシ化合物(エポキシ樹脂)を含有することが好ましい。 The adhesive preferably used in the production method of the present invention contains a curable compound that is polymerized by heating or irradiation with active energy rays and a polymerization initiator, and does not contain a significant amount of solvent (hereinafter, It may be described as a curable composition). This curable compound is preferably one that is cured by cationic polymerization from the viewpoint of reactivity, and particularly preferably contains an epoxy compound (epoxy resin).
 このエポキシ化合物は、耐候性や屈折率等の観点から、分子内に芳香環を含まないものが好適に用いられる。分子内に芳香環を含まないエポキシ化合物を用いた接着剤は、たとえば、特開2004−245925号公報に記載されている。このような芳香環を含まないエポキシ化合物としては、芳香族エポキシ化合物の水素化物、脂環式エポキシ化合物、および脂肪族エポキシ化合物等が挙げられる。 As this epoxy compound, those having no aromatic ring in the molecule are suitably used from the viewpoint of weather resistance, refractive index and the like. An adhesive using an epoxy compound that does not contain an aromatic ring in the molecule is described in, for example, JP-A-2004-245925. Examples of such epoxy compounds that do not contain an aromatic ring include hydrides of aromatic epoxy compounds, alicyclic epoxy compounds, and aliphatic epoxy compounds.
 芳香族エポキシ化合物の水素化物とは、芳香族エポキシ化合物を触媒の存在下、加圧下で芳香環に選択的に水素化反応を行なうことにより得られるものである。芳香族エポキシ化合物としては、たとえば、ビスフェノールAのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテル、ビスフェノールSのジグリシジルエーテル等のビスフェノール型エポキシ化合物;フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、ヒドロキシベンズアルデヒドフェノールノボラックエポキシ樹脂等のノボラック型のエポキシ樹脂;及びテトラヒドロキシジフェニルメタンのグリシジルエーテル、テトラヒドロキシベンゾフェノンのグリシジルエーテル、エポキシ化ポリビニルフェノール等の多官能型のエポキシ化合物が挙げられる。中でも、水素化されたビスフェノールAのジグリシジルエーテルが好ましい。 A hydride of an aromatic epoxy compound is obtained by selectively hydrogenating an aromatic epoxy compound to an aromatic ring under pressure in the presence of a catalyst. Examples of aromatic epoxy compounds include bisphenol-type epoxy compounds such as bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, and bisphenol S diglycidyl ether; phenol novolac epoxy resins, cresol novolac epoxy resins, hydroxybenzaldehyde phenol novolac Examples thereof include novolak-type epoxy resins such as epoxy resins; and polyfunctional epoxy compounds such as glycidyl ether of tetrahydroxydiphenylmethane, glycidyl ether of tetrahydroxybenzophenone, and epoxidized polyvinylphenol. Of these, hydrogenated diglycidyl ether of bisphenol A is preferred.
 脂環式エポキシ化合物とは、次式に示す脂環式環に結合したエポキシ基を分子内に少なくとも1個有する化合物である。 An alicyclic epoxy compound is a compound having at least one epoxy group in the molecule bonded to an alicyclic ring represented by the following formula.
Figure JPOXMLDOC01-appb-I000001
(式中、mは2~5の整数を表す。)
Figure JPOXMLDOC01-appb-I000001
(In the formula, m represents an integer of 2 to 5.)
 この式における(CH中の水素原子を1個または複数個取り除いた形の基が他の化学構造に結合した化合物が、脂環式エポキシ化合物となりうる。また、脂環式環を形成する水素がメチル基やエチル基のような直鎖状アルキル基で適宜置換されていてもよい。中でも、エポキシシクロペンタン環(上式においてm=3のもの)や、エポキシシクロヘキサン環(上式においてm=4のもの)を有する化合物を用いることが好ましい。脂環式エポキシ化合物の具体例として、たとえば、次のものを挙げることができる。 A compound in which one or more hydrogen atoms in (CH 2 ) m in this formula are removed and bonded to another chemical structure can be an alicyclic epoxy compound. Further, the hydrogen forming the alicyclic ring may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group. Among them, it is preferable to use a compound having an epoxycyclopentane ring (m = 3 in the above formula) or an epoxycyclohexane ring (m = 4 in the above formula). Specific examples of the alicyclic epoxy compound include the following.
 3,4−エポキシシクロヘキシルメチル 3,4−エポキシシクロヘキサンカルボキシレート、
 3,4−エポキシ−6−メチルシクロヘキシルメチル 3,4−エポキシ−6−メチルシクロヘキサンカルボキシレート、
 エチレンビス(3,4−エポキシシクロヘキサンカルボキシレート)、
 ビス(3,4−エポキシシクロヘキシルメチル) アジペート、
 ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル) アジペート、
 ジエチレングリコールビス(3,4−エポキシシクロヘキシルメチルエーテル)、
 エチレングリコールビス(3,4−エポキシシクロヘキシルメチルエーテル)、
 2,3,14,15−ジエポキシ−7,11,18,21−テトラオキサトリスピロ−[5.2.2.5.2.2]ヘンイコサン(また、3,4−エポキシシクロヘキサンスピロ−2’,6’−ジオキサンスピロ−3’’,5’’−ジオキサンスピロ−3’’’,4’’’−エポキシシクロヘキサンとも命名できる化合物)、
 4−(3,4−エポキシシクロヘキシル)−2,6−ジオキサ−8,9−エポキシスピロ[5.5]ウンデカン、
 4−ビニルシクロヘキセンジオキサイド、
 ビス−2,3−エポキシシクロペンチルエーテル、および、
 ジシクロペンタジエンジオキサイド。
3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate,
3,4-epoxy-6-methylcyclohexylmethyl 3,4-epoxy-6-methylcyclohexanecarboxylate,
Ethylene bis (3,4-epoxycyclohexanecarboxylate),
Bis (3,4-epoxycyclohexylmethyl) adipate,
Bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate,
Diethylene glycol bis (3,4-epoxycyclohexyl methyl ether),
Ethylene glycol bis (3,4-epoxycyclohexyl methyl ether),
2,3,14,15-diepoxy-7,11,18,21-tetraoxatrispiro- [5.2.2.5.2.2] henicosane (also 3,4-epoxycyclohexanespiro-2 ' , 6′-Dioxanespiro-3 ″, 5 ″ -Dioxanespiro-3 ′ ″, 4 ′ ″-epoxycyclohexane)
4- (3,4-epoxycyclohexyl) -2,6-dioxa-8,9-epoxyspiro [5.5] undecane,
4-vinylcyclohexene dioxide,
Bis-2,3-epoxycyclopentyl ether, and
Dicyclopentadiene dioxide.
 また、脂肪族エポキシ化合物は、脂肪族多価アルコールまたはそのアルキレンオキサイド付加物のポリグリシジルエーテルである。たとえば、1,4−ブタンジオールのジグリシジルエーテル、1,6−ヘキサンジオールのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、ポリプロピレングリコールのジグリシジルエーテル、エチレングリコールやポリプロピレングリコール、グリセリン等の脂肪族多価アルコールに1種または2種以上のアルキレンオキサイド(エチレンオキサイドやポリプロピレンオキサイド)を付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル等が挙げられる。 Also, the aliphatic epoxy compound is a polyglycidyl ether of an aliphatic polyhydric alcohol or an alkylene oxide adduct thereof. For example, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl Polyglycidyl ethers of polyether polyols obtained by adding one or more alkylene oxides (ethylene oxide or polypropylene oxide) to aliphatic polyhydric alcohols such as ether, ethylene glycol, polypropylene glycol, and glycerin. It is done.
 ここに例示したエポキシ化合物のそれぞれは、単独で使用してもよいし、他の1種以上と混合して使用してもよい。 Each of the epoxy compounds exemplified here may be used alone or in combination with one or more other compounds.
 このようなエポキシ化合物のエポキシ当量は、通常、30~3000g/eqであり、50~1500g/eqが好ましい。エポキシ当量が30g/eqを下回ると、硬化後の透明保護フィルムの可撓性が低下したり、接着強度が低下したりする場合がある。一方、3000g/eqを超えると、他の成分との相溶性が低下する場合がある。 The epoxy equivalent of such an epoxy compound is usually 30 to 3000 g / eq, preferably 50 to 1500 g / eq. When the epoxy equivalent is less than 30 g / eq, the flexibility of the transparent protective film after curing may decrease or the adhesive strength may decrease. On the other hand, when it exceeds 3000 g / eq, the compatibility with other components may decrease.
 硬化性組成物には、エポキシ化合物をカチオン重合で硬化させるためにカチオン重合開始剤が配合される。カチオン重合開始剤は、可視光線、紫外線、X線、および電子線等の活性エネルギー線の照射、または加熱により、カチオン種またはルイス酸を発生し、エポキシ基の重合反応を開始させる。いずれのタイプのカチオン重合開始剤であっても、潜在性が付与されていることが作業性の観点から好ましい。 In the curable composition, a cationic polymerization initiator is blended in order to cure the epoxy compound by cationic polymerization. The cationic polymerization initiator generates a cationic species or a Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, or by heating, and initiates a polymerization reaction of an epoxy group. Regardless of the type of cationic polymerization initiator, it is preferable from the viewpoint of workability that latency is imparted.
 以下、活性エネルギー線の照射によりカチオン種やルイス酸を生じる光カチオン重合開始剤について説明する。光カチオン重合開始剤を使用すると、常温での硬化が可能となり、偏光フィルムの耐熱性または熱膨張による内部応力を考慮する必要が減少し、透明保護フィルムと偏光フィルムとを良好に接着することができる。また、光カチオン重合開始剤は光で触媒的に作用するため、エポキシ化合物に混合しても保存安定性や作業性に優れる。活性エネルギー線の照射によりカチオン種やルイス酸を生じる化合物としては、たとえば、芳香族ジアゾニウム塩、芳香族ヨードニウム塩および芳香族スルホニウム塩のようなオニウム塩、ならびに鉄−アレン錯体等を挙げられる。中でも、特に芳香族スルホニウム塩は300nm以上の波長領域でも紫外線吸収特性を有することから、硬化性に優れ良好な機械強度や接着強度を有する硬化物を与えることができるため、好ましく用いられる。 Hereinafter, a photocationic polymerization initiator that generates cationic species and Lewis acid upon irradiation with active energy rays will be described. Use of a cationic photopolymerization initiator enables curing at room temperature, reduces the need to consider the internal stress due to heat resistance or thermal expansion of the polarizing film, and allows the transparent protective film and the polarizing film to adhere well. it can. Moreover, since a photocationic polymerization initiator acts catalytically by light, it is excellent in storage stability and workability even when mixed with an epoxy compound. Examples of the compound that generates a cationic species or a Lewis acid upon irradiation with active energy rays include onium salts such as aromatic diazonium salts, aromatic iodonium salts, and aromatic sulfonium salts, and iron-allene complexes. Among these, aromatic sulfonium salts are particularly preferably used since they have ultraviolet absorption characteristics even in a wavelength region of 300 nm or more, and can provide a cured product having excellent curability and good mechanical strength and adhesive strength.
 このような光カチオン重合開始剤は市販品として容易に入手でき、たとえば、それぞれ商品名で、カヤラッド PCI−220(日本化薬(株)製)、カヤラッド PCI−620(日本化薬(株)製)、UVI−6990(ユニオンカーバイド社製)、アデカオプトマー SP−150((株)ADEKA製)、アデカオプトマー SP−170((株)ADEKA製)、CI−5102(日本曹達(株)製)、CIT−1370(日本曹達(株)製)、CIT−1682(日本曹達(株)製)、CIP−1866S(日本曹達(株)製)、CIP−2048S(日本曹達(株)製)、CIP−2064S(日本曹達(株)製)、DPI−101(みどり化学(株)製)、DPI−102(みどり化学(株)製)、DPI−103(みどり化学(株)製)、DPI−105(みどり化学(株)製)、MPI−103(みどり化学(株)製)、MPI−105(みどり化学(株)製)、BBI−101(みどり化学(株)製)、BBI−102(みどり化学(株)製)、BBI−103(みどり化学(株)製)、BBI−105(みどり化学(株)製)、TPS−101(みどり化学(株)製)、TPS−102(みどり化学(株)製)、TPS−103(みどり化学(株)製)、TPS−105(みどり化学(株)製)、MDS−103(みどり化学(株)製)、MDS−105(みどり化学(株)製)、DTS−102(みどり化学(株)製)、DTS−103(みどり化学(株)製)、PI−2074(ローディア社製)等が挙げられる。 Such a cationic photopolymerization initiator can be easily obtained as a commercial product. For example, Kayrad PCI-220 (manufactured by Nippon Kayaku Co., Ltd.), Kayrad PCI-620 (manufactured by Nippon Kayaku Co., Ltd.) under the trade names, respectively. ), UVI-6990 (manufactured by Union Carbide), Adekaoptomer SP-150 (manufactured by ADEKA), Adekaoptomer SP-170 (manufactured by ADEKA), CI-5102 (manufactured by Nippon Soda Co., Ltd.) ), CIT-1370 (manufactured by Nippon Soda Co., Ltd.), CIT-1682 (manufactured by Nippon Soda Co., Ltd.), CIP-1866S (manufactured by Nippon Soda Co., Ltd.), CIP-2048S (manufactured by Nippon Soda Co., Ltd.), CIP-2064S (manufactured by Nippon Soda Co., Ltd.), DPI-101 (manufactured by Midori Chemical Co., Ltd.), DPI-102 (manufactured by Midori Chemical Co., Ltd.), DPI-103 (midor Chemical Co., Ltd.), DPI-105 (Midori Chemical Co., Ltd.), MPI-103 (Midori Chemical Co., Ltd.), MPI-105 (Midori Chemical Co., Ltd.), BBI-101 (Midori Chemical Co., Ltd.) Co., Ltd.), BBI-102 (Midori Chemical Co., Ltd.), BBI-103 (Midori Chemical Co., Ltd.), BBI-105 (Midori Chemical Co., Ltd.), TPS-101 (Midori Chemical Co., Ltd.) Manufactured), TPS-102 (manufactured by Midori Chemical Co., Ltd.), TPS-103 (manufactured by Midori Chemical Co., Ltd.), TPS-105 (manufactured by Midori Chemical Co., Ltd.), MDS-103 (manufactured by Midori Chemical Co., Ltd.) MDS-105 (manufactured by Midori Chemical Co., Ltd.), DTS-102 (manufactured by Midori Chemical Co., Ltd.), DTS-103 (manufactured by Midori Chemical Co., Ltd.), PI-2074 (manufactured by Rhodia), and the like.
 光カチオン重合開始剤の配合量は、エポキシ化合物100重量部に対して、通常、0.5~20重量部であり、1重量部~15重量部が好ましい。 The compounding amount of the cationic photopolymerization initiator is usually 0.5 to 20 parts by weight and preferably 1 to 15 parts by weight with respect to 100 parts by weight of the epoxy compound.
 硬化性組成物には、必要に応じて光増感剤を併用することができる。光増感剤を使用することで反応性が向上し、硬化物の機械強度や接着強度を向上させることができる。
 光増感剤としては、たとえば、カルボニル化合物、有機硫黄化合物、過硫化物、レドックス系化合物、アゾおよびジアゾ化合物、ハロゲン化合物、ならびに光還元性色素が挙げられる。光増感剤を配合する場合、その配合量は、光カチオン重合性エポキシ樹脂組成物を100重量部として、通常、0.1~20重量部程度である。
A photosensitizer can be used in combination with the curable composition as necessary. By using a photosensitizer, the reactivity is improved and the mechanical strength and adhesive strength of the cured product can be improved.
Examples of the photosensitizer include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo and diazo compounds, halogen compounds, and photoreducible dyes. When the photosensitizer is blended, the blending amount is usually about 0.1 to 20 parts by weight with 100 parts by weight of the photocationically polymerizable epoxy resin composition.
 次に、熱カチオン重合開始剤について説明する。加熱によりカチオン種またはルイス酸を発生する化合物としては、ベンジルスルホニウム塩、チオフェニウム塩、チオラニウム塩、ベンジルアンモニウム、ピリジニウム塩、ヒドラジニウム塩、カルボン酸エステル、スルホン酸エステル、およびアミンイミドを挙げられる。これらの熱カチオン重合開始剤も、市販品を容易に入手することができ、たとえば、いずれも商品名で、アデカオプトン CP77((株)ADEKA製)、アデカオプトン CP66((株)ADEKA製)、CI−2639(日本曹達(株)製)、CI−2624(日本曹達(株)製)、サンエイド SI−60L(三新化学工業(株)製)、サンエイド SI−80L(三新化学工業(株)製)、サンエイド SI−100L(三新化学工業(株)製)等が挙げられる。 Next, the thermal cationic polymerization initiator will be described. Examples of the compound that generates a cationic species or a Lewis acid by heating include benzylsulfonium salt, thiophenium salt, thiolanium salt, benzylammonium, pyridinium salt, hydrazinium salt, carboxylic acid ester, sulfonic acid ester, and amine imide. Commercially available products of these thermal cationic polymerization initiators can also be easily obtained. For example, they are trade names such as Adeka Opton CP77 (manufactured by ADEKA), Adeka Opton CP66 (manufactured by ADEKA), CI- 2639 (manufactured by Nippon Soda Co., Ltd.), CI-2624 (manufactured by Nippon Soda Co., Ltd.), Sun-Aid SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.), Sun-Aid SI-80L (manufactured by Sanshin Chemical Industry Co., Ltd.) ), Sun Aid SI-100L (manufactured by Sanshin Chemical Industry Co., Ltd.) and the like.
 前記の光カチオン重合と熱カチオン重合を併用することも、有用な技術である。
 硬化性組成物は、さらにオキセタン類やポリオール類等のカチオン重合を促進する化合物を含有してもよい。
It is also a useful technique to use the above cationic photopolymerization and thermal cationic polymerization together.
The curable composition may further contain a compound that promotes cationic polymerization, such as oxetanes and polyols.
 こうして得られる硬化性組成物を、透明保護フィルムおよび偏光フィルムの少なくとも一方に塗布して硬化性組成物層を形成させ、硬化性組成物層上に他方の偏光フィルムまたは透明保護フィルムを重ねた後、活性エネルギー線の照射または加熱によって硬化性組成物層を硬化させることにより、硬化層を介した偏光フィルムと透明保護フィルムとの貼合を行うことができる。硬化性組成物を透明保護フィルムまたは偏光フィルムに塗工する方法に特別な限定はなく、たとえば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、およびグラビアコーター等、種々の塗工方式が採用される。硬化性組成物層の厚さは、通常、1μm以上、50μm以下であり、20μm以下が好ましく、10μm以下がさらに好ましい。 After the curable composition thus obtained is applied to at least one of the transparent protective film and the polarizing film to form a curable composition layer, and the other polarizing film or transparent protective film is stacked on the curable composition layer The polarizing film and the transparent protective film can be bonded via the cured layer by curing the curable composition layer by irradiation with active energy rays or heating. There is no particular limitation on the method for applying the curable composition to the transparent protective film or the polarizing film. For example, various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater are adopted. The The thickness of the curable composition layer is usually 1 μm or more and 50 μm or less, preferably 20 μm or less, and more preferably 10 μm or less.
 活性エネルギー線の照射により硬化性組成物層の硬化を行なう場合、用いられる光源としては、特に限定されるものではないが、波長400nm以下に発光分布を有する、たとえば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯およびメタルハライドランプが挙げられる。硬化性組成物層への光照射強度は、その組成物の硬化性によって決定されるものであり、特に制限されるものではないが、光カチオン重合開始剤の活性化に有効な波長領域の照射強度が0.1~100mW/cmであることが好ましい。硬化性組成物層への光照射強度が0.1mW/cm未満であると、反応時間が長くなりすぎ、100mW/cmを超えると、ランプから輻射される熱および硬化性組成物の重合時の発熱により、硬化性組成物の黄変や偏光フィルムの劣化を生じる場合がある。同様に、硬化性組成物層への光照射時間は、その組成物の硬化性によって決定されるものであり、特に制限されるものではないが、たとえば、照射強度と照射時間との積として表される積算光量が10~5000mJ/cmとなるように設定されることが好ましい。硬化性組成物層への積算光量が10mJ/cm未満であると、光カチオン重合開始剤由来の活性種の発生が十分でなく、硬化性組成物層の硬化が不十分となる場合がある。また、積算光量が5000mJ/cmを超えると、照射時間が非常に長くなり、生産性向上には不利なものとなる。 When the curable composition layer is cured by irradiation with active energy rays, the light source used is not particularly limited, but has a light emission distribution at a wavelength of 400 nm or less, such as a low-pressure mercury lamp, a medium-pressure mercury lamp, High pressure mercury lamps, ultra high pressure mercury lamps, chemical lamps, black light lamps, microwave excited mercury lamps and metal halide lamps. The light irradiation intensity to the curable composition layer is determined by the curability of the composition and is not particularly limited, but the irradiation in the wavelength region effective for the activation of the photocationic polymerization initiator. The strength is preferably 0.1 to 100 mW / cm 2 . When the light irradiation intensity to the curable composition layer is less than 0.1 mW / cm 2 , the reaction time becomes too long, and when it exceeds 100 mW / cm 2 , the heat radiated from the lamp and the polymerization of the curable composition The heat generated at the time may cause yellowing of the curable composition or deterioration of the polarizing film. Similarly, the light irradiation time to the curable composition layer is determined by the curability of the composition and is not particularly limited. For example, the light irradiation time is expressed as a product of irradiation intensity and irradiation time. It is preferable to set the integrated light quantity to be 10 to 5000 mJ / cm 2 . When the integrated light quantity to the curable composition layer is less than 10 mJ / cm 2 , the generation of the active species derived from the photocationic polymerization initiator is not sufficient, and the curable composition layer may be insufficiently cured. . On the other hand, if the integrated light quantity exceeds 5000 mJ / cm 2 , the irradiation time becomes very long, which is disadvantageous for improving productivity.
 熱により硬化性組成物層の硬化を行なう場合、一般的に知られた方法で加熱することができ、その条件等も特に限定されるものではないが、通常、硬化性組成物に配合された熱カチオン重合開始剤がカチオン種やルイス酸を発生する温度以上で加熱が行なわれ、たとえば、50~200℃程度である。 When the curable composition layer is cured by heat, it can be heated by a generally known method, and the conditions are not particularly limited, but are usually blended in the curable composition. Heating is performed at a temperature higher than the temperature at which the thermal cationic polymerization initiator generates cationic species and Lewis acid, and the temperature is, for example, about 50 to 200 ° C.
 活性エネルギー線の照射または加熱のいずれの条件で硬化させる場合でも、片面保護フィルム付き偏光板の偏光度、透過率、色相、透明保護フィルムの透明性等の諸機能が低下しない範囲で硬化させることが好ましい。硬化性組成物層を硬化してなる硬化層の厚さは、通常、50μm以下であり、20μm以下が好ましく、10μm以下がより好ましい。 Even if it is cured under any condition of irradiation with active energy rays or heating, it should be cured as long as the functions such as polarization degree, transmittance, hue, transparency of the transparent protective film of the polarizing plate with a single-sided protective film do not deteriorate. Is preferred. The thickness of the cured layer obtained by curing the curable composition layer is usually 50 μm or less, preferably 20 μm or less, and more preferably 10 μm or less.
 (剥離性フィルム)
 本発明の製造方法で用いられる粘着性を有する剥離性フィルムとしては、剥離が容易になるよう低分子量の粘着剤処理がなされたフィルムが使用でき、たとえば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;環状オレフィン系樹脂;及びポリエチレン、ポリプロピレン、プロピレン/エチレン共重合体等の鎖状オレフィン系樹脂を使用できる。中でも、粘着性を適宜調節することができ、市販品の入手が容易であるという点から、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、及びポリエチレンフィルムが好ましく用いられる。
(Peelable film)
As the peelable film having adhesiveness used in the production method of the present invention, a film which has been treated with a low molecular weight pressure-sensitive adhesive so as to be easily peeled can be used. For example, polyesters such as polyethylene terephthalate and polyethylene naphthalate Resin; Cyclic olefin resin; and chain olefin resin such as polyethylene, polypropylene, propylene / ethylene copolymer can be used. Among these, a polyethylene terephthalate film, a polypropylene film, and a polyethylene film are preferably used from the viewpoint that the adhesiveness can be adjusted as appropriate and the commercial product is easily available.
 剥離性フィルムは自己粘着性を有しており、偏光フィルムにおける透明保護フィルムが貼合される面とは反対側の面に、直接貼合することができる。 The peelable film has self-adhesiveness and can be directly bonded to the surface of the polarizing film opposite to the surface to which the transparent protective film is bonded.
 こうして、接着剤により偏光フィルムの片面に透明保護フィルムが貼合され、反対側の面には粘着性を有する剥離性フィルムが貼合された片面透明保護フィルム付き偏光板は、一旦、巻き取り装置によって塩化ビニル管等のコアに巻き取られる。なお、偏光フィルムに透明保護フィルムを貼合する工程と、偏光フィルムに剥離性フィルムを貼合する工程とは、いずれを先に行なってもよく、同時に行なってもよい。 Thus, a polarizing plate with a single-sided transparent protective film in which a transparent protective film is bonded to one side of a polarizing film by an adhesive and a peelable film having adhesiveness is bonded to the opposite side is once a winding device. Is wound around a core such as a vinyl chloride tube. In addition, either the process of bonding a transparent protective film to a polarizing film and the process of bonding a peelable film to a polarizing film may be performed first, and may be performed simultaneously.
 〔2〕工程(B)
 本発明の第一の態様、第三の態様、第四の態様および第五の態様においては、上述のようにして作製した片面に剥離性フィルムを貼合した片面透明保護フィルム付き偏光板を、第二の態様においては、片面に粘着剤層を形成した片面透明保護フィルム付き偏光板を、位相差フィルムの大きさに合わせて長尺方向に沿って裁断(スリット)する。片面透明保護フィルム付き偏光板の裁断後の幅は、後述する位相差フィルムの幅に応じて適宜設定されるが、たとえば、裁断後の片面透明保護フィルム付き偏光板の少なくとも一断片は、後述する位相差フィルムの幅と同じ幅とされることが好ましい。
 なお、第二の態様において、片面透明保護フィルム付き偏光板の裁断は、積層された粘着剤層も一緒に行われる。
[2] Process (B)
In the first aspect, the third aspect, the fourth aspect and the fifth aspect of the present invention, a polarizing plate with a single-sided transparent protective film in which a peelable film is bonded to one side produced as described above, In a 2nd aspect, the polarizing plate with a single-sided transparent protective film in which the adhesive layer was formed in the single side | surface is cut | judged (slit) along a longitudinal direction according to the magnitude | size of retardation film. The width after cutting of the polarizing plate with a single-sided transparent protective film is appropriately set according to the width of the retardation film described later. For example, at least one fragment of the polarizing plate with a single-sided transparent protective film after cutting will be described later. The width is preferably the same as the width of the retardation film.
In the second embodiment, the polarizing plate with a single-sided transparent protective film is cut together with the laminated pressure-sensitive adhesive layer.
 片面透明保護フィルム付き偏光板を裁断する方法は、特に限定されるものではないが、通常、巻き取られた片面透明保護フィルム付き偏光板をスリッター(長尺方向の裁断機)へ繰り出すと同時に裁断し、次いで裁断された複数の断片を再び巻き取る方法が採用される。また、位相差フィルムの幅に合わせて裁断された偏光板を巻き取らずに、そこから次工程へ順次送る方法を採用することもできる。 The method of cutting the polarizing plate with a single-sided transparent protective film is not particularly limited, but usually the rolled-up polarizing plate with a single-sided transparent protective film is fed simultaneously to a slitter (long-direction cutting machine). Then, a method of rewinding the cut pieces is adopted. Further, it is possible to adopt a method in which the polarizing plate cut in accordance with the width of the retardation film is not taken up, and is sequentially sent to the next step.
 〔3〕工程(C)
 本発明の第一の態様、第三の態様、第四の態様および第五の態様においては、上記工程(B)で裁断された片面透明保護フィルム付き偏光板から剥離性フィルムを、第二の態様においては、裁断されていない片面透明保護フィルム付き偏光板から剥離性フィルムを、除去する。
[3] Process (C)
In the first aspect, the third aspect, the fourth aspect, and the fifth aspect of the present invention, the peelable film is removed from the polarizing plate with the single-sided transparent protective film cut in the step (B). In an aspect, a peelable film is removed from the polarizing plate with a single-sided transparent protective film which is not cut.
 〔4〕工程(D)
 本発明の第一の態様においては、工程(B)で裁断され、工程(C)で剥離性フィルムを除去した片面透明保護フィルム付き偏光板の偏光フィルム面(剥離性フィルムが貼合されていた面)上に、第二の態様においては、工程(C)で剥離性フィルムを除去した裁断していない片面透明保護フィルム付き偏光板の偏光フィルム面(剥離性フィルムが貼合されていた面)上に、第三の態様においては、位相差フィルムの片面に、80℃において0.1MPa以上の貯蔵弾性率を有する粘着剤層を形成する。
[4] Process (D)
In the 1st aspect of this invention, the polarizing film surface (peelable film) of the polarizing plate with the single-sided transparent protective film which cut | judged by the process (B) and removed the peelable film at the process (C) was bonded. On the surface), in the second embodiment, the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the peelable film was removed in step (C) (the surface on which the peelable film was bonded). Moreover, in the third aspect, a pressure-sensitive adhesive layer having a storage elastic modulus of 0.1 MPa or more at 80 ° C. is formed on one surface of the retardation film.
 (粘着剤)
 粘着剤層の形成に用いられる粘着剤は、80℃での貯蔵弾性率が0.1MPa以上であり、好ましくは0.15MPa~10MPaである。80℃での貯蔵弾性率が0.1MPa未満である場合には、高温環境と低温環境が繰り返されたとき発生する偏光フィルムの寸法変化に追随できないため気泡、はがれが発生するなどの不具合があるためである。また、この粘着剤の23℃の温度における貯蔵弾性率は0.1MPa以上が好ましく、0.2~10MPaがより好ましい。なお、貯蔵弾性率は一般的に温度が高い条件ほど低くなる傾向があるため、80℃で測定した材料の貯蔵弾性率が0.1MPa以上であれば、通常、23℃で測定した同じ材料の貯蔵弾性率はそれ以上の値を示す。本願明細書において、粘着剤は、感圧性接着剤(pressure sensitive adhesive)と同義である。
(Adhesive)
The pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer has a storage elastic modulus at 80 ° C. of 0.1 MPa or more, preferably 0.15 MPa to 10 MPa. When the storage elastic modulus at 80 ° C. is less than 0.1 MPa, there is a problem that bubbles and peeling occur because the dimensional change of the polarizing film that occurs when the high temperature environment and the low temperature environment are repeated cannot be followed. Because. Further, the storage elastic modulus at a temperature of 23 ° C. of this pressure-sensitive adhesive is preferably 0.1 MPa or more, and more preferably 0.2 to 10 MPa. In addition, since the storage elastic modulus generally tends to be lower as the temperature is higher, if the storage elastic modulus of the material measured at 80 ° C. is 0.1 MPa or more, usually the same material measured at 23 ° C. A storage elastic modulus shows the value beyond it. In the specification of the present application, the pressure-sensitive adhesive is synonymous with a pressure-sensitive adhesive.
 ここで、貯蔵弾性率(動的弾性率)とは、一般的に用いられる粘弾性測定の用語を意味するものであるが、試料に時間によって変化(振動)する歪または応力を与えて、それによって発生する応力または歪を測定することにより、試料の力学的な性質を測定する方法(動的粘弾性測定)によって求められる値である。具体的には、試料に加える正弦波形の歪(応力)によって発生する応力(歪)を、歪(応力)と同位相の成分と90度ずれた位相の成分の波に分けたとき、歪(応力)と同位相の応力(歪)成分から算出される弾性率をいう。貯蔵弾性率は、市販の粘弾性測定装置、例えば、後述する実施例に示すような動的粘弾性測定装置(Dynamic Analyzer RDA II:REOMETRIC社製)を用いて測定することができる。粘弾性測定装置の温度制御には、循環恒温槽、電気ヒーター、ペルチェ素子等の種々公知の温度制御デバイスが用いられており、これによって測定時の温度を設定することができる。 Here, the storage elastic modulus (dynamic elastic modulus) is a commonly used term for viscoelasticity measurement, and gives a strain or stress that changes (vibrates) over time to a sample. This is a value determined by a method (dynamic viscoelasticity measurement) for measuring the mechanical properties of a sample by measuring the stress or strain generated by. Specifically, when the stress (strain) generated by the sinusoidal strain (stress) applied to the sample is divided into a component having the same phase as the strain (stress) and a component having a phase shifted by 90 degrees, The elastic modulus calculated from the stress (strain) component in phase with the stress. The storage elastic modulus can be measured using a commercially available viscoelasticity measuring device, for example, a dynamic viscoelasticity measuring device (Dynamic Analyzer RDA II: manufactured by REOMETRIC) as shown in the examples described later. For the temperature control of the viscoelasticity measuring apparatus, various known temperature control devices such as a circulating thermostat, an electric heater, a Peltier element, and the like are used, and thereby the temperature at the time of measurement can be set.
 通常の画像表示装置またはそれに適用される光学フィルムに用いられている粘着剤は、その貯蔵弾性率が高々0.1MPa程度であるが、本発明の製造方法に用いる粘着剤は、上述したようにその貯蔵弾性率が高いものである。このような高い貯蔵弾性率を有する、すなわち硬い粘着剤を用いることにより、高温環境下に置かれたときや、高温環境と低温環境が繰り返されたときの凝集力不足を補うことができ、そのときに発生する偏光フィルムの収縮に伴う寸法変化を抑制できる。この作用により、本発明の複合偏光板は良好な耐久性を有する。 The pressure-sensitive adhesive used in a normal image display device or an optical film applied thereto has a storage elastic modulus of about 0.1 MPa at most, but the pressure-sensitive adhesive used in the production method of the present invention is as described above. The storage elastic modulus is high. By using such a high storage elastic modulus, that is, a hard adhesive, it is possible to compensate for the lack of cohesive force when placed in a high temperature environment or when a high temperature environment and a low temperature environment are repeated. The dimensional change accompanying the shrinkage | contraction of the polarizing film sometimes generated can be suppressed. By this action, the composite polarizing plate of the present invention has good durability.
 本発明の製造方法に用いられる具体的な高弾性粘着剤としては、たとえば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリエーテル等の成分を主に含有する組成物で構成することができる。中でも、アクリル系ポリマーのように、光学的な透明性に優れ、適度の濡れ性や凝集力を保持し、基材との接着性にも優れ、さらに耐候性や耐熱性等を有し、加熱や加湿の条件下で浮きや剥がれ等の剥離問題を生じないものを選択して用いることが好ましい。アクリル系ポリマーにおいては、メチル基、エチル基およびブチル基等の炭素数が20以下のアルキル基を有するアクリル酸のアルキルエステルと、(メタ)アクリル酸や(メタ)アクリル酸ヒドロキシエチル等からなる官能基含有アクリル系モノマーとを、ガラス転移温度が好ましくは25℃以下、さらに好ましくは0℃以下となるように配合した、重量平均分子量が10万以上のアクリル系共重合体が有用である。 The specific high-elasticity adhesive used in the production method of the present invention can be composed of a composition mainly containing components such as acrylic polymer, silicone polymer, polyester, polyurethane, and polyether. . Above all, like acrylic polymer, it has excellent optical transparency, moderate wettability and cohesion, excellent adhesion to the substrate, weather resistance, heat resistance, etc. It is preferable to select and use one that does not cause peeling problems such as floating and peeling under humidifying conditions. In the acrylic polymer, a functional group comprising an alkyl ester of acrylic acid having an alkyl group having 20 or less carbon atoms such as a methyl group, an ethyl group and a butyl group, and (meth) acrylic acid or hydroxyethyl (meth) acrylate. An acrylic copolymer having a weight average molecular weight of 100,000 or more obtained by blending a group-containing acrylic monomer with a glass transition temperature of preferably 25 ° C. or lower, more preferably 0 ° C. or lower is useful.
 アクリル系ポリマーとしては、特に限定されるものではないが、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2−エチルヘキシル等の(メタ)アクリル酸エステル系ポリマーや、これらの(メタ)アクリル酸エステルを2種類以上用いた共重合系ポリマーが好適に用いられる。また、これらのアクリル系ポリマーには、極性モノマーが共重合されていてもよい。極性モノマーとしては、たとえば、(メタ)アクリル酸、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリルアミド、2−N,N−ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレート等の、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等の極性官能基を有するモノマーを挙げることができる。 The acrylic polymer is not particularly limited, but (meth) acrylic such as butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, etc. Acid ester polymers and copolymer polymers using two or more of these (meth) acrylic esters are preferably used. Moreover, polar monomers may be copolymerized with these acrylic polymers. Examples of polar monomers include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (meth) acrylamide, and 2-N, N-dimethylaminoethyl (meth). Mention may be made of monomers having a polar functional group such as a carboxyl group, a hydroxyl group, an amide group, an amino group, and an epoxy group, such as acrylate and glycidyl (meth) acrylate.
 これらのアクリル系ポリマーは、単独でも粘着剤として使用可能であるが、通常、架橋剤が配合された粘着剤組成物とされる。架橋剤としては、2価または多価金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成するもの、ポリアミン化合物であって、カルボキシル基との間でアミド結合を形成するもの、ポリエポキシ化合物やポリオール化合物であって、カルボキシル基との間でエステル結合を形成するもの、およびポリイソシアネート化合物であって、カルボキシル基との間でアミド結合を形成するものが例示される。中でもポリイソシアネート化合物が好ましく用いられる。 These acrylic polymers can be used alone as a pressure-sensitive adhesive, but are usually a pressure-sensitive adhesive composition containing a crosslinking agent. As the crosslinking agent, a divalent or polyvalent metal ion that forms a carboxylic acid metal salt with a carboxyl group, a polyamine compound that forms an amide bond with a carboxyl group, Examples include polyepoxy compounds and polyol compounds that form an ester bond with a carboxyl group, and polyisocyanate compounds that form an amide bond with a carboxyl group. Of these, polyisocyanate compounds are preferably used.
 粘着剤の貯蔵弾性率を高い値にするための手段としては、特に限定されるものではないが、たとえば、上述した粘着剤組成物に、オリゴマー、具体的にはウレタンアクリレート系のオリゴマーを配合する方法が好ましく採用される。さらに、このようなウレタンアクリレート系オリゴマーを配合した粘着剤組成物にエネルギー線を照射して硬化させる方法が、より高い貯蔵弾性率を有するようになるためより好ましく採用される。ウレタンアクリレート系オリゴマーが配合された粘着剤、またはそれを支持フィルム(セパレータ)上に塗工し紫外線硬化させたセパレータ付き粘着剤は公知であり、粘着剤メーカーから入手できる。 The means for increasing the storage elastic modulus of the pressure-sensitive adhesive is not particularly limited. For example, an oligomer, specifically, a urethane acrylate-based oligomer is added to the above-mentioned pressure-sensitive adhesive composition. A method is preferably employed. Furthermore, a method of irradiating and curing an adhesive composition containing such a urethane acrylate oligomer with energy rays is more preferably employed because it has a higher storage elastic modulus. A pressure-sensitive adhesive in which a urethane acrylate oligomer is blended or a pressure-sensitive adhesive with a separator obtained by coating it on a support film (separator) and curing it with ultraviolet rays is known and can be obtained from a pressure-sensitive adhesive manufacturer.
 粘着剤組成物には、上述したポリマー、架橋剤およびオリゴマーの他に、必要に応じて、粘着剤の粘着力、凝集力、粘性、弾性率およびガラス転移温度等を調整するために、たとえば、天然物や合成物である樹脂類、粘着性付与樹脂、酸化防止剤、紫外線吸収剤、染料、顔料、消泡剤、腐食抑制剤、光重合開始剤等の適宜な添加剤を配合することもできる。紫外線吸収剤としては、たとえば、サリチル酸エステル系化合物やベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、およびニッケル錯塩系化合物が挙げられる。 In order to adjust the adhesive force, cohesive force, viscosity, elastic modulus, glass transition temperature, etc. of the adhesive, if necessary, in addition to the above-described polymer, crosslinking agent and oligomer, It is also possible to add appropriate additives such as natural and synthetic resins, tackifier resins, antioxidants, UV absorbers, dyes, pigments, antifoaming agents, corrosion inhibitors, photopolymerization initiators, etc. it can. Examples of the ultraviolet absorber include salicylic acid ester compounds, benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, and nickel complex compounds.
 また、本発明の製造方法で用いられる粘着剤は、光拡散剤を配合して光拡散性粘着剤とすることができる。ここで用いる光拡散剤は、粘着剤層を構成するポリマーとは屈折率が異なる微粒子であればよく、無機化合物からなる微粒子や有機化合物(ポリマー)からなる微粒子を用いることができる。 Further, the pressure-sensitive adhesive used in the production method of the present invention can be mixed with a light diffusing agent to form a light diffusable pressure-sensitive adhesive. The light diffusing agent used here may be fine particles having a refractive index different from that of the polymer constituting the pressure-sensitive adhesive layer, and fine particles made of an inorganic compound or fine particles made of an organic compound (polymer) can be used.
 無機化合物からなる微粒子としては、たとえば、酸化アルミニウム(屈折率:1.76)および酸化ケイ素(屈折率:1.45)等が挙げられる。また、有機化合物(ポリマー)からなる微粒子としては、たとえば、メラミンビーズ(屈折率:1.57)、ポリメタクリル酸メチルビーズ(屈折率:1.49)、メタクリル酸メチル/スチレン共重合体樹脂ビーズ(屈折率:1.50~1.59)、ポリカーボネートビーズ(屈折率:1.55)、ポリエチレンビーズ(屈折率:1.53)、ポリスチレンビーズ(屈折率:1.6)、ポリ塩化ビニルビーズ(屈折率:1.46)、およびシリコーン樹脂ビーズ(屈折率:1.46)が挙げられる。 Examples of the fine particles made of an inorganic compound include aluminum oxide (refractive index: 1.76) and silicon oxide (refractive index: 1.45). Examples of the fine particles comprising an organic compound (polymer) include melamine beads (refractive index: 1.57), polymethyl methacrylate beads (refractive index: 1.49), and methyl methacrylate / styrene copolymer resin beads. (Refractive index: 1.50 to 1.59), polycarbonate beads (refractive index: 1.55), polyethylene beads (refractive index: 1.53), polystyrene beads (refractive index: 1.6), polyvinyl chloride beads (Refractive index: 1.46) and silicone resin beads (refractive index: 1.46).
 上記アクリル系ポリマーを含めて、粘着剤層を構成する樹脂組成物は、通常、1.4前後の屈折率を有するので、配合する光拡散剤はその屈折率が1~2程度のものから適宜選択すればよい。粘着剤層を構成する組成物中のポリマーと光拡散剤との屈折率差は、通常、0.01以上であり、また画像表示装置の明るさと視認性の観点から、0.01~0.5が好ましい。光拡散剤として用いる微粒子は、球形のもの、それも単分散に近いものが好ましく、たとえば、平均粒径が2~6μm程度の範囲にある微粒子が好適に用いられる。 Since the resin composition constituting the pressure-sensitive adhesive layer including the acrylic polymer usually has a refractive index of about 1.4, the light diffusing agent to be blended is appropriately selected from those having a refractive index of about 1-2. Just choose. The difference in refractive index between the polymer and the light diffusing agent in the composition constituting the pressure-sensitive adhesive layer is usually 0.01 or more, and from the viewpoint of the brightness and visibility of the image display device, 0.01 to 0.00. 5 is preferred. The fine particles used as the light diffusing agent are preferably spherical and those close to monodisperse. For example, fine particles having an average particle size in the range of about 2 to 6 μm are preferably used.
 光拡散剤の配合量は、それが配合された光拡散性粘着剤層に必要とされるヘイズ値や、それが適用される画像表示装置の明るさ等を考慮して適宜決められるが、粘着剤層を構成するベースポリマー100重量部に対して、通常3~30重量部程度である。 The blending amount of the light diffusing agent is appropriately determined in consideration of the haze value required for the light diffusing pressure-sensitive adhesive layer in which it is blended, the brightness of the image display device to which it is applied, etc. The amount is usually about 3 to 30 parts by weight with respect to 100 parts by weight of the base polymer constituting the agent layer.
 また、光拡散性粘着剤層に必要とされるヘイズ値は、それを用いて得られる複合偏光板が適用された画像表示装置の明るさを確保するとともに、表示像のにじみやボケを生じにくくする観点から、20~80%の範囲が好ましい。ヘイズは、JIS K7105に規定され、(拡散透過率/全光線透過率)×100(%)で表される値である。 In addition, the haze value required for the light diffusive pressure-sensitive adhesive layer ensures the brightness of the image display device to which the composite polarizing plate obtained by using the haze value is applied, and hardly causes bleeding and blurring of the display image. Therefore, the range of 20 to 80% is preferable. The haze is a value defined by JIS K7105 and represented by (diffuse transmittance / total light transmittance) × 100 (%).
 粘着剤層の厚みおよび光拡散性粘着剤層の厚みは、その接着力等に応じて決定されるが、通常、1~40μmの範囲である。さらに、この厚みはそれを用いて製造される複合偏光板が良好な加工性を保ち、高い耐久性を示し、またその複合偏光板を用いた画像表示装置が正面から見た場合や斜めから見た場合の明るさを保ち、表示像のにじみやボケが生じにくくする観点から、3~25μmがより好ましい。 The thickness of the pressure-sensitive adhesive layer and the thickness of the light diffusive pressure-sensitive adhesive layer are determined according to the adhesive force and the like, but are usually in the range of 1 to 40 μm. Furthermore, this thickness is such that the composite polarizing plate produced using the composite polarizing plate maintains good workability and exhibits high durability, and the image display device using the composite polarizing plate is viewed from the front or obliquely. From the standpoint of maintaining the brightness of the image and making the display image less likely to bleed or blur, 3 to 25 μm is more preferable.
 本発明の第一の態様においては、裁断され、剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面(剥離性フィルムが貼合されていた面)上に、上記した粘着剤層が形成される。本発明の第二の態様においては、剥離性フィルムが除去された(未裁断の)片面透明保護フィルム付き偏光板の偏光フィルム面(剥離性フィルムが貼合されていた面)上に、上記した粘着剤層が形成される。 In the first aspect of the present invention, the above-mentioned pressure-sensitive adhesive is formed on the polarizing film surface (the surface on which the peelable film has been bonded) of the polarizing plate with a single-sided transparent protective film that has been cut and from which the peelable film has been removed. A layer is formed. In the 2nd aspect of this invention, it described above on the polarizing film surface (surface on which the peelable film was bonded) of the polarizing plate with the single-sided transparent protective film from which the peelable film was removed (uncut). An adhesive layer is formed.
 粘着剤層の形成には、片面透明保護フィルム付き偏光板の偏光フィルム面に粘着剤溶液を塗布し乾燥する方法が好ましく採用される。また、離型処理が施された支持フィルム(セパレータ)の離型処理面に粘着剤層が形成されたもの(セパレータ付き粘着剤)を用意し、それを上記偏光フィルム面に貼り合わせる方法も好ましく採用される。 For the formation of the pressure-sensitive adhesive layer, a method in which a pressure-sensitive adhesive solution is applied to the polarizing film surface of the polarizing plate with a single-sided transparent protective film and dried is preferably employed. Also preferred is a method in which a release film-treated surface of a support film (separator) that has been subjected to a release treatment is prepared (adhesive with a separator) having a pressure-sensitive adhesive layer formed thereon, and is bonded to the polarizing film surface. Adopted.
 粘着剤溶液には、たとえば、トルエンや酢酸エチル等の有機溶媒に上記粘着剤組成物を構成する原料を溶解または分散させて、たとえば10~40重量%溶液としたものが用いられる。こうして形成された粘着剤層には、シリコーン系等の離型剤による処理が施された樹脂フィルムからなるセパレータが積層されていてもよい。 As the pressure-sensitive adhesive solution, for example, a solution prepared by dissolving or dispersing the raw material constituting the pressure-sensitive adhesive composition in an organic solvent such as toluene or ethyl acetate to obtain a 10 to 40% by weight solution is used. The pressure-sensitive adhesive layer thus formed may be laminated with a separator made of a resin film that has been treated with a silicone-based release agent.
 さらに、片面透明保護フィルム付き偏光板の偏光フィルム面に粘着剤層を形成する際に、必要に応じて、偏光フィルム面に密着性を向上させるための処理、たとえば、コロナ処理等を施してもよく、同様の処理を偏光フィルム面に貼り合わされる粘着剤層の表面に施してもよい。 Furthermore, when forming the pressure-sensitive adhesive layer on the polarizing film surface of the polarizing plate with a single-sided transparent protective film, if necessary, a treatment for improving adhesion to the polarizing film surface, for example, corona treatment, etc. The same treatment may be applied to the surface of the pressure-sensitive adhesive layer bonded to the polarizing film surface.
 本発明の第三の態様においては、位相差フィルムの片面上に、上記した粘着剤層を形成する。
 第三の態様において、工程(D)が実施されるタイミングは、特に限定されるものではなく、後述の工程(E)がなされるまでに実施されればよい。すなわち、工程(D)は、工程(A)の前に行なってもよいし、工程(A)、工程(B)および工程(C)のいずれかと並行して、あるいはそれらいずれかの後に行なってもよい。要は、工程(C)で剥離性フィルムが除去された偏光フィルム面に、片面に粘着剤層を形成した位相差フィルムが供給されるようにすればよい。
 また、位相差フィルム面への粘着剤層の形成方法としては、片面透明保護フィルム付き偏光板の偏光フィルム面への粘着剤層の形成において記載した方法と同様の方法を採用することができる。
In the third aspect of the present invention, the above-mentioned pressure-sensitive adhesive layer is formed on one surface of the retardation film.
3rd aspect WHEREIN: The timing at which a process (D) is implemented is not specifically limited, What is necessary is just to be implemented by the below-mentioned process (E) being made. That is, step (D) may be performed before step (A), or in parallel with or after any of step (A), step (B) and step (C). Also good. In short, a retardation film having an adhesive layer formed on one side may be supplied to the polarizing film surface from which the peelable film has been removed in step (C).
Moreover, as a formation method of the adhesive layer to a phase difference film surface, the method similar to the method described in formation of the adhesive layer to the polarizing film surface of a polarizing plate with a single-sided transparent protective film is employable.
 (位相差フィルム)
 本発明の製造方法に用いられる位相差フィルムは、そのコア層がスチレン系樹脂からなり、その両面に、ゴム粒子を含有する(メタ)アクリル系樹脂組成物からなるスキン層が形成されたものである。
(Retardation film)
In the retardation film used in the production method of the present invention, the core layer is made of a styrene resin, and the skin layer made of a (meth) acrylic resin composition containing rubber particles is formed on both surfaces thereof. is there.
 コア層を構成するスチレン系樹脂は、スチレンまたはその誘導体の単独重合体であることができるほか、スチレン若しくはその誘導体と他の共重合性モノマーとの、二元またはそれ以上の共重合体であることもできる。ここで、スチレン誘導体とは、スチレンに他の基が結合した化合物であって、たとえば、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、2,4−ジメチルスチレン、o−エチルスチレン、p−エチルスチレンのようなアルキルスチレン;および、ヒドロキシスチレン、tert−ブトキシスチレン、ビニル安息香酸、o−クロロスチレン、p−クロロスチレン等の、スチレンのベンゼン核に水酸基、アルコキシ基、カルボキシル基、ハロゲン等が導入された置換スチレン等が挙げられる。上記US2002/0169267A1やJP2003−207640−Aに開示されるような三元共重合体も用いることができる。スチレン系樹脂は、スチレンまたはスチレン誘導体と、アクリロニトリル、無水マレイン酸、メチルメタクリレートおよびブタジエンから選ばれる少なくとも1種のモノマーとの共重合体であることが好ましい。コア層を構成するスチレン系樹脂は、コア層の耐熱性を向上させるために、そのガラス転移温度Tgは100℃以上であることが好ましく、より好ましくは、120℃以上である。 The styrenic resin constituting the core layer can be a homopolymer of styrene or a derivative thereof, or is a binary or higher copolymer of styrene or a derivative thereof and another copolymerizable monomer. You can also. Here, the styrene derivative is a compound in which another group is bonded to styrene, such as o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, o-ethylstyrene, alkyl styrenes such as p-ethyl styrene; and hydroxy styrene, tert-butoxy styrene, vinyl benzoic acid, o-chloro styrene, p-chloro styrene, etc. Substituted styrene etc. in which etc. were introduced. A terpolymer as disclosed in the above US2002 / 0169267A1 or JP2003-207640-A can also be used. The styrene resin is preferably a copolymer of styrene or a styrene derivative and at least one monomer selected from acrylonitrile, maleic anhydride, methyl methacrylate, and butadiene. In order to improve the heat resistance of the core layer, the glass transition temperature Tg of the styrenic resin constituting the core layer is preferably 100 ° C. or higher, and more preferably 120 ° C. or higher.
 スチレン系樹脂からなるコア層は、その厚み(膜厚)が10~100μmとなるように設定することが望ましい。その厚みが10μm未満では、延伸によって十分なレターデーション値が発現しにくいことがある。一方、その厚みが100μmを超えると、フィルムの衝撃強度が弱くなりやすいとともに、外部応力によるレターデーション変化が大きくなる傾向にあり、液晶表示装置に適用したときに白抜け等が発生しやすくなり、表示性能が低下しやすい。 The core layer made of styrene resin is preferably set so that the thickness (film thickness) is 10 to 100 μm. If the thickness is less than 10 μm, a sufficient retardation value may not easily be exhibited by stretching. On the other hand, when the thickness exceeds 100 μm, the impact strength of the film tends to be weak and the retardation change due to external stress tends to increase, and white spots etc. are likely to occur when applied to a liquid crystal display device, Display performance is likely to deteriorate.
 前記のスチレン系樹脂からなるコア層の両面に配置されるスキン層は、(メタ)アクリル系樹脂にゴム粒子が配合されている(メタ)アクリル系樹脂組成物からなる。ゴム粒子を配合することにより、耐衝撃性やハンドリング性が向上する。(メタ)アクリル系樹脂としては、たとえば、メタクリル酸アルキルエステルまたはアクリル酸アルキルエステルの単独重合体や、メタクリル酸アルキルエステルとアクリル酸アルキルエステルとの共重合体等が挙げられる。メタクリル酸アルキルエステルとして具体的には、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル等が、またアクリル酸アルキルエステルとして具体的には、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル等が挙げられる。このような(メタ)アクリル系樹脂には、汎用の(メタ)アクリル系樹脂として市販されているものが使用できる。なお、(メタ)アクリル系樹脂の中には、耐衝撃(メタ)アクリル系樹脂と呼ばれるもの、また、主鎖中にグルタル酸無水物構造やラクトン環構造を有する高耐熱(メタ)アクリル系樹脂と呼ばれるものも含まれる。 The skin layer disposed on both surfaces of the core layer made of the styrene resin is made of a (meth) acrylic resin composition in which rubber particles are blended with a (meth) acrylic resin. By blending rubber particles, impact resistance and handling properties are improved. Examples of the (meth) acrylic resin include homopolymers of methacrylic acid alkyl esters or acrylic acid alkyl esters, and copolymers of methacrylic acid alkyl esters and acrylic acid alkyl esters. Specific examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, and propyl methacrylate. Specific examples of the alkyl acrylate include methyl acrylate, ethyl acrylate, and propyl acrylate. . As such a (meth) acrylic resin, a commercially available (meth) acrylic resin can be used. Some (meth) acrylic resins are called impact-resistant (meth) acrylic resins, and high heat-resistant (meth) acrylic resins having a glutaric anhydride structure or lactone ring structure in the main chain Also called.
 (メタ)アクリル系樹脂に配合されるゴム粒子は、アクリル系のものが好ましい。アクリル系ゴム粒子とは、アクリル酸ブチルおよびアクリル酸2−エチルヘキシル等のアクリル酸アルキルエステルを主な単量体成分とし、多官能モノマーの存在下に重合させて得られるゴム弾性を有する粒子である。ゴム粒子は、このようなゴム弾性を有する粒子が単層で形成されたものでもよいし、ゴム弾性層を少なくとも1層有する多層構造体であってもよい。多層構造のアクリル系ゴム粒子としては、上記のようなゴム弾性を有する粒子を核とし、その周りを硬質のメタクリル酸アルキルエステル系重合体で覆ったもの、硬質のメタクリル酸アルキルエステル系重合体を核とし、その周りを上記のようなゴム弾性を有するアクリル系重合体で覆ったもの、また硬質の核の周りを、ゴム弾性を有するアクリル系重合体で覆い、さらにその周りを硬質のメタクリル酸アルキルエステル系重合体で覆ったもの等が挙げられる。これらのゴム粒子は、弾性層で形成される粒子の平均直径が通常50~400nm程度の範囲にある。 The rubber particles blended in the (meth) acrylic resin are preferably acrylic. Acrylic rubber particles are particles having rubber elasticity obtained by polymerizing in the presence of a polyfunctional monomer using an alkyl acrylate ester such as butyl acrylate and 2-ethylhexyl acrylate as a main monomer component. . The rubber particles may be one in which such rubber elastic particles are formed as a single layer, or may be a multilayer structure having at least one rubber elastic layer. As the acrylic rubber particles having a multilayer structure, particles having rubber elasticity as described above are used as cores, and the periphery thereof is covered with a hard alkyl methacrylate ester polymer, or a hard alkyl methacrylate ester polymer. The core is covered with an acrylic polymer having rubber elasticity as described above, and the hard core is covered with an acrylic polymer having rubber elasticity, and the surroundings are hard methacrylic acid. Examples thereof include those covered with an alkyl ester polymer. In these rubber particles, the average diameter of the particles formed of the elastic layer is usually in the range of about 50 to 400 nm.
 スキン層を構成する(メタ)アクリル系樹脂組成物における上記ゴム粒子の含有量は、(メタ)アクリル系樹脂100重量部あたり、通常5~50重量部程度である。(メタ)アクリル系樹脂およびアクリル系ゴム粒子は、それらを混合した状態で市販されているので、その市販品を用いることができる。アクリル系ゴム粒子が配合された(メタ)アクリル系樹脂の市販品の例として、HT55X(住友化学(株)製)およびテクノロイ(登録商標)S001(住友化学(株)製)が挙げられる。このようなアクリル系ゴム粒子含有(メタ)アクリル系樹脂組成物は、一般に160℃以下のTgを有するが、その好ましいTgは120℃以下、さらには110℃以下である。 The content of the rubber particles in the (meth) acrylic resin composition constituting the skin layer is usually about 5 to 50 parts by weight per 100 parts by weight of the (meth) acrylic resin. Since (meth) acrylic resin and acrylic rubber particles are commercially available in a state where they are mixed, commercially available products thereof can be used. Examples of commercially available (meth) acrylic resins containing acrylic rubber particles include HT55X (manufactured by Sumitomo Chemical Co., Ltd.) and Technoloy (registered trademark) S001 (manufactured by Sumitomo Chemical Co., Ltd.). Such an acrylic rubber particle-containing (meth) acrylic resin composition generally has a Tg of 160 ° C. or lower, and a preferable Tg thereof is 120 ° C. or lower, and further 110 ° C. or lower.
 ゴム粒子、好ましくはアクリル系ゴム粒子、が配合された(メタ)アクリル系樹脂組成物からなるスキン層は、その厚みが10~100μmとなるようにすることが望ましい。
その厚みを10μm未満にしようとすると、製膜が難しくなる傾向にある。一方、厚みが100μmを超えると、この(メタ)アクリル系樹脂層(スキン層)のレターデーションが無視できなくなる傾向にある。
The skin layer made of a (meth) acrylic resin composition containing rubber particles, preferably acrylic rubber particles, is desirably made to have a thickness of 10 to 100 μm.
If the thickness is to be less than 10 μm, film formation tends to be difficult. On the other hand, when the thickness exceeds 100 μm, the retardation of the (meth) acrylic resin layer (skin layer) tends to be non-negligible.
 上記のとおり、本発明で使用する位相差フィルムにおいて、スチレン系樹脂からなるコア層は、そのTgが120℃以上であるのが好ましく、一方、ゴム粒子が配合された(メタ)アクリル系樹脂組成物からなるスキン層は、そのTgが120℃以下、さらには110℃以下であるのが好ましい。延伸時に、スチレン系樹脂からなるコア層は、その高分子主鎖を積極的に配向させ、選択的に異方性を発現させる一方で、スキン層は光学的のみならず力学的な観点からも高分子鎖を極力配向させずに、より等方的な構造に近づけるのが好ましいことから、両者のTgが重ならず、スチレン系樹脂からなるコア層のほうが、ゴム粒子が配合された(メタ)アクリル系樹脂組成物からなるスキン層よりも高いTgを有するようにするのが好ましい。 As described above, in the retardation film used in the present invention, the core layer made of a styrene resin preferably has a Tg of 120 ° C. or higher, while a (meth) acrylic resin composition containing rubber particles. The skin layer made of a material preferably has a Tg of 120 ° C. or lower, more preferably 110 ° C. or lower. During stretching, the core layer made of styrene resin positively orients the polymer main chain and selectively develops anisotropy, while the skin layer is not only optical but also dynamic. Since it is preferable to make the polymer chain closer to an isotropic structure without aligning the polymer chain as much as possible, the Tg of the two do not overlap, and the core layer made of styrene resin is blended with rubber particles (meta ) It is preferable to have a higher Tg than a skin layer made of an acrylic resin composition.
 本発明に使用される位相差フィルムを製造するには、たとえば、スチレン系樹脂と、ゴム粒子が配合された(メタ)アクリル系樹脂組成物とを共押出し、その後延伸すればよい。その他、それぞれ単層のフィルムを作製した後で、ヒートラミネーションにより熱融着させ、それを延伸する方法も可能である。 In order to produce the retardation film used in the present invention, for example, a styrene resin and a (meth) acrylic resin composition containing rubber particles may be coextruded and then stretched. In addition, after each single-layer film is produced, heat fusion can be performed by heat lamination and the film can be stretched.
 位相差フィルムは、スチレン系樹脂からなるコア層の両面に、ゴム粒子が配合された(メタ)アクリル系樹脂組成物からなるスキン層が形成された3層構造とされる。この3層構造において、両面に配置されるスキン層は通常、ほぼ同じ厚みとされる。このように3層構造とすることにより、ゴム粒子が配合された(メタ)アクリル系樹脂組成物からなるスキン層が保護層として働き、機械強度や耐薬品性に優れたものとなる。 The retardation film has a three-layer structure in which a skin layer made of a (meth) acrylic resin composition containing rubber particles is formed on both surfaces of a core layer made of a styrene resin. In this three-layer structure, the skin layers arranged on both sides are usually set to substantially the same thickness. Thus, by setting it as a three-layer structure, the skin layer which consists of a (meth) acrylic-type resin composition with which the rubber particle was mix | blended works as a protective layer, and becomes excellent in mechanical strength and chemical resistance.
 以上のように構成される位相差フィルムは、延伸により面内レターデーションが付与される。延伸は、公知の縦一軸延伸やテンター横一軸延伸、同時二軸延伸、逐次二軸延伸等で行うことができ、所望とするレターデーション値が得られるように延伸すればよい。 The retardation film constituted as described above is given in-plane retardation by stretching. Stretching can be performed by known longitudinal uniaxial stretching, tenter lateral uniaxial stretching, simultaneous biaxial stretching, sequential biaxial stretching, or the like, and may be performed so as to obtain a desired retardation value.
 また、位相差フィルムは、本発明の目的を損なわない範囲で、残存溶媒、安定剤、可塑剤、老化防止剤、帯電防止剤、および紫外線吸収剤等、その他の成分を必要に応じて含有していてもよい。また、表面粗さを小さくするため、レベリング剤を含有することもできる。 In addition, the retardation film contains other components such as residual solvent, stabilizer, plasticizer, anti-aging agent, antistatic agent, and ultraviolet absorber as necessary, as long as the object of the present invention is not impaired. It may be. Further, a leveling agent can be contained in order to reduce the surface roughness.
 位相差フィルムの幅は、上記工程(A)にて作製される片面透明保護フィルム付き偏光板より10%以上小さいことが生産性向上の効果が際立つために好ましい。さらに、その幅が前記偏光板の40~50%の範囲であれば、片面透明保護フィルム付き偏光板をその半分の幅へスリットすることにより、その双方ともに位相差フィルムとの貼合に用いることができるためより好ましい。 The width of the retardation film is preferably 10% or less smaller than that of the polarizing plate with a single-sided transparent protective film produced in the above step (A) because the effect of improving productivity stands out. Furthermore, if the width is in the range of 40 to 50% of the polarizing plate, by slitting the polarizing plate with a single-sided transparent protective film to its half width, both of them should be used for bonding with a retardation film. Is more preferable because
〔5〕工程(E)
 本発明の第一の態様及び第二の態様においては、裁断され粘着剤層が形成された片面透明保護フィルム付き偏光板の粘着剤層と位相差フィルムとを貼合する。第三の態様においては、片面に粘着剤層が形成された位相差フィルムの粘着剤層と、裁断された片面透明保護フィルム付き偏光板の偏光フィルム面とを貼合する。
[5] Step (E)
In the 1st aspect and 2nd aspect of this invention, the adhesive layer and retardation film of a polarizing plate with a single-sided transparent protective film in which the adhesive layer was cut and formed were bonded. In a 3rd aspect, the adhesive layer of the retardation film in which the adhesive layer was formed in the single side | surface, and the polarizing film surface of the cut polarizing plate with a single-sided transparent protective film are bonded.
 裁断され粘着剤層が形成された片面透明保護フィルム付き偏光板の粘着剤層と位相差フィルムとの貼合方法、片面に粘着剤層が形成された位相差フィルムの粘着剤層と、裁断された片面透明保護フィルム付き偏光板の偏光フィルム面との貼合方法としては、特に限定されるものではないが、たとえば、貼合ロール等を用いて、片面透明保護フィルム付き偏光板の偏光透過軸に対して位相差フィルムの遅相軸が直交または平行となるように積層する方法や、偏光フィルムの偏光透過軸に対して位相差フィルムの遅相軸が所定の角度となるように貼合する方法が採用される。特に、片面透明保護フィルム付き偏光板と位相差フィルムとを各々の長尺ロールから繰り出し長辺方向を合わせて連続的に貼合する方法は、生産性よく複合偏光板を製造することができるため好ましく採用される。 A method of laminating a pressure-sensitive adhesive layer and a retardation film of a polarizing plate with a single-sided transparent protective film, which has been cut and formed with a pressure-sensitive adhesive layer, and a pressure-sensitive adhesive layer of a retardation film in which a pressure-sensitive adhesive layer is formed on one side The method for bonding the polarizing plate with the single-sided transparent protective film to the polarizing film surface is not particularly limited. For example, using a bonding roll or the like, the polarizing transmission axis of the polarizing plate with the single-sided transparent protective film A method of laminating so that the slow axis of the retardation film is orthogonal or parallel to the retardation film, and laminating so that the slow axis of the retardation film is at a predetermined angle with respect to the polarization transmission axis of the polarizing film The method is adopted. In particular, the method of feeding a polarizing plate with a single-sided transparent protective film and a retardation film from each long roll and continuously bonding them together in the long side direction can produce a composite polarizing plate with high productivity. Preferably employed.
 〔6〕工程(F)
 本発明の第四の態様においては、工程(A)、工程(B)及び工程(C)を経て得られる剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面に、活性エネルギー線の照射または加熱により硬化するエポキシ樹脂を含有する樹脂組成物層を形成させ、該樹脂組成物層上に位相差フィルムを重ねる。第五の態様においては、位相差フィルムの片面に活性エネルギー線の照射または加熱により硬化するエポキシ樹脂を含有する樹脂組成物層を形成させ、該樹脂組成物層上に剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面を重ねる。
[6] Process (F)
In the fourth aspect of the present invention, active energy is applied to the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the peelable film obtained through the step (A), the step (B) and the step (C) has been removed. A resin composition layer containing an epoxy resin that is cured by irradiation or heating of a wire is formed, and a retardation film is overlaid on the resin composition layer. In the fifth aspect, a resin composition layer containing an epoxy resin that is cured by irradiation with active energy rays or heating is formed on one side of the retardation film, and the peelable film is removed on the resin composition layer. The polarizing film surface of the polarizing plate with a single-sided transparent protective film is overlaid.
 (活性エネルギー線の照射または加熱により硬化するエポキシ樹脂を含有する樹脂組成物)
 剥離性フィルムが除去された片面透明保護フィルム付き偏光板の面と位相差フィルムとの貼合に用いられる、活性エネルギー線の照射または加熱により硬化するエポキシ樹脂を含有する樹脂組成物(以下、接着組成物と記す場合がある)は、無溶剤であることが好ましい。
(Resin composition containing an epoxy resin that cures upon irradiation with active energy rays or heating)
A resin composition containing an epoxy resin that is cured by irradiation with active energy rays or heating, which is used for laminating the surface of a polarizing plate with a single-sided transparent protective film from which the peelable film has been removed and a retardation film (hereinafter referred to as adhesion) In some cases, the composition may be referred to as a composition).
 接着組成物としては、工程(A)にて記載した偏光フィルムと透明保護フィルムとの接着に用いることができるエポキシ化合物(エポキシ樹脂)と重合開始剤とを含有する硬化性組成物を本工程においても同様に用いることができる。工程(A)にて記載したように、エポキシ化合物は、分子内に芳香環を含まないものが好ましく、また、脂環式環に結合したエポキシ基を分子内に少なくとも1個有するエポキシ化合物(脂環式エポキシ化合物)を含むことが好ましい。接着組成物を用いる片面保護フィルム付き偏光板の偏光フィルム面と位相差フィルムとの貼合は、偏光フィルムと透明保護フィルムとの貼合と同様にして行なうことができる。 As the adhesive composition, a curable composition containing an epoxy compound (epoxy resin) that can be used for adhesion between the polarizing film and the transparent protective film described in step (A) and a polymerization initiator in this step. Can be used similarly. As described in the step (A), the epoxy compound preferably does not contain an aromatic ring in the molecule, and also has an epoxy compound (aliphatic) having at least one epoxy group bonded to the alicyclic ring in the molecule. A cyclic epoxy compound). The bonding between the polarizing film surface of the polarizing plate with a single-side protective film using the adhesive composition and the retardation film can be performed in the same manner as the bonding between the polarizing film and the transparent protective film.
 片面保護フィルム付き偏光板の偏光フィルム面または位相差フィルムの片面に、接着組成物を形成させる方法としては、特に限定されるものではないが、たとえば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、およびグラビアコーター等、種々の塗工方式が採用される。また、偏光フィルムと位相差フィルムとの間に接着組成物を滴下した後、ロール等で偏光フィルムと位相差フィルムを加圧して均一に押し広げる方法も利用できる。ここで、ロールの材質は金属やゴム等を用いることが可能であり、これらロールは同じ材質であってもよく、異なる材質であっても良い。接着組成物層の厚さは、通常、50μm以下であり、20μm以下が好ましく、10μm以下がより好ましい。
 偏光フィルム面に接着組成物層を形成した片面保護フィルム付き偏光板の接着組成物層と位相差フィルムとを重ねる方法、または片面に接着組成物層を形成した位相差フィルムの接着組成物層と片面保護フィルム付き偏光板の偏光フィルム面とを重ねる方法としては例えば、貼合ロール等を用いて、片面透明保護フィルム付き偏光板の偏光透過軸に対して位相差フィルムの遅相軸が直交または平行となるように重ねる方法や、偏光フィルムの偏光透過軸に対して位相差フィルムの遅相軸が所定の角度となるように重ねる方法が採用される。特に、片面透明保護フィルム付き偏光板と位相差フィルムとを各々の長尺ロールから繰り出し長辺方向を合わせて連続的に重ねる方法は、生産性よく複合偏光板を製造することができるため好ましく採用される。
The method for forming the adhesive composition on the polarizing film surface of the polarizing plate with a single-side protective film or the one surface of the retardation film is not particularly limited. For example, a doctor blade, a wire bar, a die coater, a comma coater Various coating methods such as a gravure coater and the like are adopted. Moreover, after dripping an adhesive composition between a polarizing film and retardation film, the method of pressurizing a polarizing film and retardation film with a roll etc. and spreading it uniformly can also be utilized. Here, metal, rubber, or the like can be used as the material of the roll, and these rolls may be made of the same material or different materials. The thickness of the adhesive composition layer is usually 50 μm or less, preferably 20 μm or less, and more preferably 10 μm or less.
A method of laminating an adhesive composition layer of a polarizing plate with a single-side protective film having an adhesive composition layer formed on the polarizing film surface, or an adhesive composition layer of a retardation film having an adhesive composition layer formed on one side; As a method of overlapping the polarizing film surface of the polarizing plate with a single-sided protective film, for example, using a bonding roll or the like, the slow axis of the retardation film is orthogonal to the polarizing transmission axis of the polarizing plate with a single-sided transparent protective film or A method of superimposing them so as to be parallel or a method of superimposing them so that the slow axis of the retardation film is at a predetermined angle with respect to the polarization transmission axis of the polarizing film is employed. In particular, the method of feeding the polarizing plate with a single-sided transparent protective film and the retardation film from each long roll and continuously superimposing them in the long side direction is preferable because it can produce a composite polarizing plate with high productivity. Is done.
 第五の態様において、工程(F)が実施されるタイミングは、特に限定されるものではなく、後述の工程(G)がなされるまでに実施されればよい。すなわち、工程(F)は、工程(A)の前に行なってもよいし、工程(A)、工程(B)および工程(C)のいずれかと並行して、あるいはそれらいずれかの後に行なってもよい。要は、工程(C)で剥離性フィルムが除去された偏光フィルム面に、片面に接着組成物層を形成した位相差フィルムが供給されるようにすればよい。 In the fifth aspect, the timing at which the step (F) is performed is not particularly limited, and may be performed before the later-described step (G) is performed. That is, step (F) may be performed before step (A), or in parallel with or after any of step (A), step (B) and step (C). Also good. In short, the retardation film having the adhesive composition layer formed on one side may be supplied to the polarizing film surface from which the peelable film has been removed in the step (C).
 工程(G)
 工程(F)にて得られる積重物(piled product)の接着組成物層に活性エネルギー線を照射するかまたは加熱することによって硬化させることにより、片面透明保護フィルム付き偏光板の偏光フィルム面と位相差フィルムとを接着組成物層の硬化層を介して貼合する。
Process (G)
The adhesive composition layer of the piled product obtained in the step (F) is cured by irradiating with active energy rays or heating, whereby the polarizing film surface of the polarizing plate with a single-sided transparent protective film and A retardation film is bonded through a cured layer of an adhesive composition layer.
 これにより目的とする、
 スチレン系樹脂からなるコア層と、前記コア層の両面に積層される、ゴム粒子を含有する(メタ)アクリル系樹脂組成物からなるスキン層との3層構造を有する延伸フィルムからなる位相差フィルムと、
 前記位相差フィルム上に積層される、偏光フィルムの片面に透明保護フィルムを有する片面透明保護フィルム付き偏光板と、
を備える複合偏光板が得られる。
This is the purpose,
Retardation film comprising a stretched film having a three-layer structure of a core layer comprising a styrene resin and a skin layer comprising a (meth) acrylic resin composition containing rubber particles, which is laminated on both surfaces of the core layer. When,
A polarizing plate with a single-sided transparent protective film having a transparent protective film on one side of the polarizing film, laminated on the retardation film,
Is obtained.
 活性エネルギー線の照射により接着組成物層の硬化を行う場合、用いられる光源としては、特に限定されるものではないが、波長400nm以下に発光分布を有する、たとえば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯およびメタルハライドランプが挙げられる。接着組成物層への光照射強度は、その組成物の硬化性によって決定されるものであり、特に制限されるものではないが、たとえば、光カチオン重合開始剤の活性化に有効な波長領域の照射強度が0.1~100mW/cmであることが好ましい。接着組成物層への光照射強度が0.1mW/cm未満であると、反応時間が長くなりすぎ、100mW/cmを超えると、ランプから輻射される熱および接着組成物の重合時の発熱により、接着組成物の黄変や偏光フィルムの劣化を生じる場合がある。同様に、接着組成物層への光照射時間は、その組成物の硬化性によって決定されるものであり、特に制限されるものではないが、たとえば、照射強度と照射時間との積として表される積算光量が10~5000mJ/cmとなるように設定されることが好ましい。接着組成物層への積算光量が10mJ/cm未満であると、光カチオン重合開始剤由来の活性種の発生が十分でなく、接着組成物層の硬化が不十分となる場合がある。また、積算光量が5000mJ/cmを超えると、照射時間が非常に長くなり、生産性向上には不利なものとなる。 When the adhesive composition layer is cured by irradiation with active energy rays, the light source used is not particularly limited, but has a light emission distribution at a wavelength of 400 nm or less, for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure Examples include mercury lamps, ultra-high pressure mercury lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and metal halide lamps. The light irradiation intensity to the adhesive composition layer is determined by the curability of the composition and is not particularly limited. For example, the light irradiation intensity in the wavelength region effective for activating the photocationic polymerization initiator is used. The irradiation intensity is preferably 0.1 to 100 mW / cm 2 . When the light irradiation intensity to the adhesive composition layer is less than 0.1 mW / cm 2 , the reaction time becomes too long, and when it exceeds 100 mW / cm 2 , the heat radiated from the lamp and the time of polymerization of the adhesive composition Heat generation may cause yellowing of the adhesive composition or deterioration of the polarizing film. Similarly, the light irradiation time to the adhesive composition layer is determined by the curability of the composition and is not particularly limited. For example, it is expressed as a product of irradiation intensity and irradiation time. It is preferable to set the integrated light quantity to be 10 to 5000 mJ / cm 2 . When the integrated light quantity to the adhesive composition layer is less than 10 mJ / cm 2 , active species derived from the photocationic polymerization initiator are not sufficiently generated, and the adhesive composition layer may be insufficiently cured. On the other hand, if the integrated light quantity exceeds 5000 mJ / cm 2 , the irradiation time becomes very long, which is disadvantageous for improving productivity.
 熱により接着組成物層の硬化を行なう場合、一般的に知られた方法で加熱することができ、その条件等も特に限定されるものではないが、通常、接着組成物に配合された熱カチオン重合開始剤がカチオン種やルイス酸を発生する温度以上で加熱が行なわれ、たとえば、50~200℃程度である。 When the adhesive composition layer is cured by heat, the adhesive composition layer can be heated by a generally known method, and the conditions are not particularly limited. Usually, the thermal cation mixed in the adhesive composition is used. Heating is performed at a temperature higher than the temperature at which the polymerization initiator generates a cationic species or a Lewis acid, for example, about 50 to 200 ° C.
 加熱及び活性エネルギー線の照射のいずれの条件で硬化させる場合でも、片面保護フィルム付き偏光板の偏光度、透過率、色相、透明保護フィルムの透明性、および位相差フィルムの位相差特性等、得られる複合偏光板の諸機能が低下しない範囲で硬化させることが好ましい。接着組成物の硬化層の厚さは、通常、50μm以下であり、20μm以下が好ましく、10μm以下がより好ましい。 Even when curing under any conditions of heating and irradiation with active energy rays, the polarization degree, transmittance, hue, transparency of the transparent protective film, and retardation characteristics of the retardation film, etc. of the polarizing plate with a single-sided protective film are obtained. It is preferable to cure the composite polarizing plate as long as the functions of the composite polarizing plate do not deteriorate. The thickness of the cured layer of the adhesive composition is usually 50 μm or less, preferably 20 μm or less, and more preferably 10 μm or less.
 本発明の製造方法では、複合偏光板における位相差フィルムの外面に、粘着剤層が設けられてもよい。その粘着剤層は、液晶セル等の他の部材との貼合に好適に用いることができる。位相差フィルムの外面に粘着剤層が設けられた複合偏光板は、通常、液晶セルへの貼合にあたりその位相差フィルム側が液晶セルに向き合うように配置される。 In the production method of the present invention, an adhesive layer may be provided on the outer surface of the retardation film in the composite polarizing plate. The pressure-sensitive adhesive layer can be suitably used for bonding with other members such as a liquid crystal cell. The composite polarizing plate having an adhesive layer provided on the outer surface of the retardation film is usually arranged so that the retardation film side faces the liquid crystal cell when bonded to the liquid crystal cell.
 <液晶表示装置>
 本発明の製造方法により製造された複合偏光板は、その位相差フィルム側と液晶セルとを粘着層を介して貼合することで、液晶表示装置とすることができる。この複合偏光板を貼合した液晶表示装置の裏面側には、同種の偏光板、または公知の偏光板を貼合することができる。また、貼合される液晶パネルの動作モードは、本発明の複合偏光板の屈折率特性により良好に光学補償されるIPS(In−Plane−Switching)モードが好ましい。
<Liquid crystal display device>
The composite polarizing plate manufactured by the manufacturing method of this invention can be set as a liquid crystal display device by bonding the retardation film side and a liquid crystal cell through an adhesion layer. The same type of polarizing plate or a known polarizing plate can be bonded to the back side of the liquid crystal display device to which the composite polarizing plate is bonded. In addition, the operation mode of the liquid crystal panel to be bonded is preferably an IPS (In-Plane-Switching) mode in which optical compensation is favorably performed by the refractive index characteristics of the composite polarizing plate of the present invention.
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中、使用量または含有量を表す「部」および「%」は、特に断りのない限り重量基準である。なお、以下の例において、貯蔵弾性率は次の方法によって測定した。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In the examples, “part” and “%” representing the amount used or content are based on weight unless otherwise specified. In the following examples, the storage elastic modulus was measured by the following method.
 [貯蔵弾性率の測定方法]
 粘着剤の貯蔵弾性率(G’)は、測定対象の粘着剤からなる直径8mm×厚み1mmの円盤状の試験片を作製し、動的粘弾性測定装置(Dynamic Analyzer RDA II:REOMETRIC社製)を用いて、周波数1Hzの捻りせん断法で初期歪1Nとし、23℃および80℃の条件で測定を行なった。
[Method for measuring storage modulus]
The storage elastic modulus (G ′) of the pressure-sensitive adhesive is a disk-shaped test piece having a diameter of 8 mm × thickness of 1 mm made of the pressure-sensitive adhesive to be measured, and a dynamic viscoelasticity measuring device (Dynamic Analyzer RDA II: manufactured by REOMETRIC). The initial strain was set to 1N by the torsional shear method with a frequency of 1 Hz, and the measurement was performed at 23 ° C. and 80 ° C.
 また、後述する実施例および比較例においては、粘着剤、接着剤、偏光フィルムおよび位相差フィルムとして、次のものを用いた。 In the examples and comparative examples described later, the following were used as the pressure-sensitive adhesive, adhesive, polarizing film, and retardation film.
 (粘着剤シートA)
 粘着剤シートAを構成する粘着剤Aは、アクリル酸ブチルとアクリル酸との共重合体にウレタンアクリレートオリゴマーが配合され、さらにイソシアネート系架橋剤が添加されたものである。この粘着剤Aの貯蔵弾性率を上記の方法で測定したところ、23℃において0.40MPa、80℃において0.18MPaであった。以下の実施例において、粘着剤は、上記組成の有機溶剤溶液を、離型処理が施された厚さ38μmのポリエチレンテレフタレートフィルム(セパレータ)の離型処理面に塗工し、乾燥することにより、そのセパレータの表面に厚さ15μmの粘着剤Aの層が形成されたセパレータ付きシート状粘着剤(粘着剤シートA)として用いた。
(Adhesive sheet A)
The pressure-sensitive adhesive A constituting the pressure-sensitive adhesive sheet A is obtained by adding a urethane acrylate oligomer to a copolymer of butyl acrylate and acrylic acid and further adding an isocyanate-based crosslinking agent. When the storage elastic modulus of this adhesive A was measured by the above method, it was 0.40 MPa at 23 ° C. and 0.18 MPa at 80 ° C. In the following examples, the adhesive was applied to the release treatment surface of a 38 μm-thick polyethylene terephthalate film (separator) having been subjected to the release treatment by drying the organic solvent solution having the above composition, and dried. The separator was used as a sheet-like pressure-sensitive adhesive (pressure-sensitive adhesive sheet A) in which a layer of pressure-sensitive adhesive A having a thickness of 15 μm was formed on the surface of the separator.
 (粘着剤シートB)
 粘着剤シートBは、市販のシート状粘着剤であり、ウレタンアクリレートオリゴマーは配合されていない。粘着剤シートBを構成する粘着剤Bの貯蔵弾性率を上記の方法で測定したところ、23℃において0.05MPa、80℃において0.04MPaであった。
以下の実施例および比較例においては、粘着剤シートBとして、離型処理が施された厚さ38μmのポリエチレンテレフタレートフィルム(セパレータ)の離型処理面に厚さ15μmの粘着剤Bの層が設けられている市販のセパレータ付きシート状粘着剤を使用した。
(Adhesive sheet B)
The pressure-sensitive adhesive sheet B is a commercially available sheet-like pressure-sensitive adhesive and does not contain a urethane acrylate oligomer. When the storage elastic modulus of the adhesive B constituting the adhesive sheet B was measured by the above method, it was 0.05 MPa at 23 ° C. and 0.04 MPa at 80 ° C.
In the following examples and comparative examples, as the pressure-sensitive adhesive sheet B, a layer of pressure-sensitive adhesive B having a thickness of 15 μm is provided on the release treatment surface of a 38 μm-thick polyethylene terephthalate film (separator) subjected to the release treatment. A commercially available sheet-like pressure-sensitive adhesive with a separator was used.
 (接着剤A)
 水100部に、カルボキシル基変性ポリビニルアルコール(クラレポバール KL318、(株)クラレ製)3部と水溶性ポリアミドエポキシ樹脂(スミレーズレジン650、住化ケムテックス(株)製)(固形分濃度30%の水溶液)1.5部を添加し、溶解させて接着剤Aを調製した。
(Adhesive A)
To 100 parts of water, 3 parts of carboxyl group-modified polyvinyl alcohol (Kuraray Poval KL318, manufactured by Kuraray Co., Ltd.) and water-soluble polyamide epoxy resin (Smiles Resin 650, manufactured by Sumika Chemtex Co., Ltd.) (solid content concentration 30%) Aqueous solution) 1.5 parts was added and dissolved to prepare adhesive A.
 (接着剤B)
 ビス(3,4−エポキシシクロヘキシルメチル)アジペート100部、水添ビスフェノールAのジグリシジルエーテル25部、および光カチオン重合開始剤として4,4’−ビス(ジフェニルスルホニオ)ジフェニルスルフィド ビス(ヘキサフルオロホスフェート)(50%プロピレンカーボネート溶液)2.2部(有効成分量)を混合した後、脱泡して、硬化性エポキシ樹脂組成物からなる接着剤Bを調製した。
(Adhesive B)
100 parts of bis (3,4-epoxycyclohexylmethyl) adipate, 25 parts of diglycidyl ether of hydrogenated bisphenol A, and 4,4′-bis (diphenylsulfonio) diphenyl sulfide bis (hexafluorophosphate as a photocationic polymerization initiator ) (50% propylene carbonate solution) 2.2 parts (active ingredient amount) were mixed and defoamed to prepare an adhesive B made of a curable epoxy resin composition.
 (偏光フィルム)
 平均重合度が約2400であり、ケン化度が99.9モル%以上であるポリビニルアルコールからなる厚さ75μmのポリビニルアルコールフィルムを、乾式で約5倍に一軸延伸し、さらに緊張状態を保ったまま、60℃の純水に1分間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.05/5/100の水溶液に28℃で60秒間浸漬した。その後、ヨウ化カリウム/ホウ酸/水の重量比が8.5/8.5/100の水溶液に72℃で300秒間浸漬した。引き続き26℃の純水で20秒間洗浄した後、65℃で乾燥して、ポリビニルアルコールにヨウ素が吸着配向された偏光フィルムを得た。
(Polarizing film)
A 75 μm-thick polyvinyl alcohol film made of polyvinyl alcohol having an average degree of polymerization of about 2400 and a saponification degree of 99.9 mol% or more was uniaxially stretched about 5 times by a dry method, and further maintained a tension state. The sample was immersed in pure water at 60 ° C. for 1 minute, and then immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.05 / 5/100 at 28 ° C. for 60 seconds. Then, it was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 8.5 / 8.5 / 100 at 72 ° C. for 300 seconds. Subsequently, it was washed with pure water at 26 ° C. for 20 seconds and then dried at 65 ° C. to obtain a polarizing film in which iodine was adsorbed and oriented on polyvinyl alcohol.
 (位相差フィルム)
 スチレン−無水マレイン酸系共重合樹脂〔ノヴァケミカル社製の「ダイラーク(登録商標)D332」(Tg=131℃)〕をコア層とし、平均粒径200nmのアクリル系ゴム粒子が約20%配合されているメタクリル系樹脂〔住友化学株式会社製の「テクノロイ(登録商標)S001」に使用されている樹脂(Tg=105℃)〕をスキン層として、3層共押出を行ない、コア層の厚みが60μmで、その両面に各々厚みが72μmのスキン層が形成された樹脂3層フィルムを得た。この樹脂3層フィルムを142℃で2倍に延伸して、総厚みが104μm、面内レターデーションが140nm、Nz係数が0.0である負の位相差フィルムを得た。この位相差フィルムにおける各層の膜厚は、コア層が約30μm、各々のスキン層が約37μmであった。また、得られた長尺の位相差フィルムの幅は、720mmであった。
(Retardation film)
Styrene-maleic anhydride copolymer resin (“Dylark® D332” (Tg = 131 ° C.) manufactured by Nova Chemical Co., Ltd.) is used as a core layer, and about 20% of acrylic rubber particles having an average particle size of 200 nm are blended. Methacrylic resin [resin used in “Technoloy (registered trademark) S001” manufactured by Sumitomo Chemical Co., Ltd. (Tg = 105 ° C.)] is used as a skin layer, and three-layer coextrusion is performed. A resin three-layer film having a skin layer of 60 μm and a thickness of 72 μm on each side was obtained. This resin three-layer film was stretched twice at 142 ° C. to obtain a negative retardation film having a total thickness of 104 μm, an in-plane retardation of 140 nm, and an Nz coefficient of 0.0. The thickness of each layer in the retardation film was about 30 μm for the core layer and about 37 μm for each skin layer. Further, the width of the obtained long retardation film was 720 mm.
 <実施例1>
 [工程(A)]
 偏光フィルムの片面に、表面にケン化処理を施した厚み40μmのトリアセチルセルロースフィルム(透明保護フィルム)を、接着剤Aを介して貼合し、その反対側の面には、粘着性を有する剥離性フィルムとして、表面(偏光フィルムとの接着面)が自己粘着性を有するポリエチレンフィルムを貼合し、その積層体を60℃で乾燥させ、片面に透明保護フィルムが貼合された偏光板を得た。得られた長尺の片面透明保護フィルム付き偏光板の幅は、1490mmであった。この片面保護フィルム付き偏光板の外観は、乾燥の熱や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
<Example 1>
[Step (A)]
A 40 μm-thick triacetyl cellulose film (transparent protective film) having a saponified surface is bonded to one surface of the polarizing film via an adhesive A, and the opposite surface has adhesiveness. As a peelable film, a polarizing film in which a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) is bonded, the laminate is dried at 60 ° C., and a transparent protective film is bonded on one side is used. Obtained. The width of the obtained long polarizing plate with a single-sided transparent protective film was 1490 mm. The appearance of this polarizing plate with a single-sided protective film was good without damage such as scratches and cracks, despite the heat of drying and friction with the transport roll.
 [工程(B)]
 次いで、この片面透明保護フィルム付き偏光板を、スリッター(Model FN25、(株)西村製作所製)を用いて、位相差フィルムの幅に合わせて長尺方向に沿って裁断(スリット)し、720mm幅の片面透明保護フィルム付き偏光板を得た。このスリットされた偏光板の外観は、スリット時の剪断や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
[Step (B)]
Subsequently, this polarizing plate with a single-sided transparent protective film was cut (slit) along the longitudinal direction according to the width of the retardation film using a slitter (Model FN25, manufactured by Nishimura Seisakusho Co., Ltd.), and 720 mm wide A polarizing plate with a single-sided transparent protective film was obtained. The appearance of the slit polarizing plate was good without damage such as scratches and cracks despite being subjected to shearing during slitting and friction with the transport roll.
 [工程(C)および(D)]
 上記工程(B)で裁断された偏光板からポリエチレンフィルムを剥離除去し、ただちにその偏光フィルム面上に、粘着剤シートAを貼合した。
[Steps (C) and (D)]
The polyethylene film was peeled and removed from the polarizing plate cut in the step (B), and the pressure-sensitive adhesive sheet A was immediately bonded onto the polarizing film surface.
 [工程(E)]
 位相差フィルムに照射量16.8kJ/mでコロナ処理を施した後、そのコロナ処理面と、上記工程(B)でスリットされた片面透明保護フィルム付き偏光板とを、上記工程(C)および(D)で設けた粘着剤層を介して貼合し、複合偏光板を得た。
[Step (E)]
After the corona treatment is applied to the retardation film at an irradiation amount of 16.8 kJ / m 2 , the corona-treated surface and the polarizing plate with a single-sided transparent protective film slit in the step (B) are used in the step (C). And it bonded through the adhesive layer provided by (D), and obtained the composite polarizing plate.
 こうして得られた複合偏光板の外観は、フィルムの浮き、はがれ、および気泡等のない良好なものであった。また、この複合偏光板から液晶セル貼合用のシートを裁断によって得るにあたり、複合偏光板の全面積中96.6%を使用できた。 The appearance of the composite polarizing plate thus obtained was good without any film floating, peeling or bubbles. Moreover, when obtaining the sheet | seat for liquid crystal cell bonding from this composite polarizing plate by cutting, 96.6% was able to be used in the whole area of a composite polarizing plate.
 得られた複合偏光板の位相差フィルム面を、粘着剤シートBを用いてソーダガラス(液晶セルの代わりとして使用)に固定し、50℃で20分間のオートクレーブ処理を施して複合偏光板をガラス板に密着させた。この状態で、−35℃の雰囲気に30分置き、次に+85℃の雰囲気に移して30分置くことを1サイクルとし、これを100サイクル繰り返すヒートショック試験を行なった。実施例1の複合偏光板は、試験後にも欠陥は観察されず、良好な状態を維持していた。 The retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) using an adhesive sheet B, and subjected to autoclave treatment at 50 ° C. for 20 minutes to make the composite polarizing plate into glass. It was made to adhere to a board. In this state, a heat shock test was performed by placing in a −35 ° C. atmosphere for 30 minutes, then moving to a + 85 ° C. atmosphere and placing in 30 minutes for one cycle, and repeating this for 100 cycles. The composite polarizing plate of Example 1 maintained a good state with no defects observed after the test.
 <比較例1>
 片面透明保護フィルム付き偏光板を裁断しなかったこと以外は実施例1と同様にして、複合偏光板を作製した。こうして得られた複合偏光板の外観は、フィルムの浮き、はがれ、および気泡等のない良好なものであった。しかし、実施例1と同様にシートを得るにあたっては、複合偏光板の全面積中48.3%しか使用できなかった。
<Comparative Example 1>
A composite polarizing plate was produced in the same manner as in Example 1 except that the polarizing plate with a single-sided transparent protective film was not cut. The appearance of the composite polarizing plate thus obtained was good without the film floating, peeling, or bubbles. However, in obtaining a sheet in the same manner as in Example 1, only 48.3% of the total area of the composite polarizing plate could be used.
 <比較例2>
 片面透明保護フィルム付き偏光板の作製時に、表面(偏光フィルムとの接着面)が自己粘着性を有するポリエチレンフィルムを使用しなかった以外は、実施例1と同様に複合偏光板を作製した。作製した複合偏光板の外観は、片面透明保護フィルム付き偏光板の作製時および片面透明保護フィルム付き偏光板の裁断時に偏光フィルムが損傷を受けており、実用に供せられるものではなかった。
<Comparative example 2>
A composite polarizing plate was prepared in the same manner as in Example 1 except that a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) was not used when the polarizing plate with a single-sided transparent protective film was prepared. The appearance of the produced composite polarizing plate was not practically used because the polarizing film was damaged during the production of the polarizing plate with a single-sided transparent protective film and when the polarizing plate with a single-sided transparent protective film was cut.
 <実施例2>
 [工程(A)]
 偏光フィルムの片面に、表面にケン化処理を施した厚み40μmのトリアセチルセルロースフィルム(透明保護フィルム)を、接着剤Bを介して貼合し、その反対側の面には、粘着性を有する剥離性フィルムとして、表面(偏光フィルムとの接着面)が自己粘着性を有するポリエチレンフィルムを貼合し、紫外線照射装置(ランプ:Fusion Dランプ、積算光量:1000mJ/cm)にて紫外線の照射を行ない、室温で1時間放置して、片面に透明保護フィルムが貼合された偏光板を得た。得られた長尺の片面透明保護フィルム付き偏光板の幅は、1490mmであった。また、この片面保護フィルム付き偏光板の外観は、搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
<Example 2>
[Step (A)]
A 40 μm thick triacetyl cellulose film (transparent protective film) having a surface subjected to saponification treatment is bonded to one surface of the polarizing film via an adhesive B, and the opposite surface has adhesiveness. As a peelable film, a polyethylene film having a self-adhesive surface (bonding surface with a polarizing film) is bonded, and ultraviolet irradiation is performed with an ultraviolet irradiation device (lamp: Fusion D lamp, integrated light quantity: 1000 mJ / cm 2 ). And left at room temperature for 1 hour to obtain a polarizing plate having a transparent protective film bonded on one side. The width of the obtained long polarizing plate with a single-sided transparent protective film was 1490 mm. Further, the appearance of this polarizing plate with a single-sided protective film was good without damage such as scratches and cracks, despite being subjected to friction with the transport roll.
 [工程(B)]
 次いで、この片面透明保護フィルム付き偏光板を実施例1と同様にして裁断し、720mm幅の片面透明保護フィルム付き偏光板を得た。この裁断後の片面透明保護フィルム付き偏光板の外観は、スリット時のせん断や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
[Step (B)]
Next, this polarizing plate with a single-sided transparent protective film was cut in the same manner as in Example 1 to obtain a polarizing plate with a single-sided transparent protective film having a width of 720 mm. The appearance of the polarizing plate with a single-sided transparent protective film after the cutting was good without damage such as scratches and cracks, despite being sheared at the time of slitting and friction with the transport roll.
 [工程(C)および(D)]
 前記工程(B)でスリットされた偏光板からポリエチレンフィルムを剥離除去し、ただちにその偏光フィルム面上に、粘着剤シートAを貼合した。
[Steps (C) and (D)]
The polyethylene film was peeled and removed from the polarizing plate slit in the step (B), and the pressure-sensitive adhesive sheet A was immediately bonded onto the surface of the polarizing film.
 [工程(E)]
 位相差フィルムに照射量16.8kJ/mでコロナ処理を施した後、そのコロナ処理面と、上記工程(B)でスリットされた片面透明保護フィルム付き偏光板とを、上記工程(C)および(D)で設けた粘着剤層を介して貼合し、複合偏光板を得た。
[Step (E)]
After the corona treatment is applied to the retardation film at an irradiation amount of 16.8 kJ / m 2 , the corona-treated surface and the polarizing plate with a single-sided transparent protective film slit in the step (B) are used in the step (C). And it bonded through the adhesive layer provided by (D), and obtained the composite polarizing plate.
 こうして得られた複合偏光板の外観は、フィルムの浮き、はがれ、および気泡等のない良好なものであった。また、この複合偏光板から液晶セル貼合用のシートを裁断によって得るにあたり、片面保護フィルム付き偏光板の全面積中96.6%を使用できた。 The appearance of the composite polarizing plate thus obtained was good without any film floating, peeling or bubbles. Moreover, in obtaining the sheet | seat for liquid crystal cell bonding from this composite polarizing plate by cutting, 96.6% of the total area of the polarizing plate with a single-sided protective film could be used.
 得られた複合偏光板の位相差フィルム面を、粘着剤シートBを用いてソーダガラス(液晶セルの代わりとして使用)に固定し、50℃で20分間のオートクレーブ処理を施して複合偏光板をガラス板に密着させた。この状態で、−35℃の雰囲気に30分置き、次に+85℃の雰囲気に移して30分置くことを1サイクルとし、これを100サイクル繰り返すヒートショック試験を行なった。実施例2の複合偏光板は、試験後にも欠陥は観察されず、良好な状態を維持していた。 The retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) using an adhesive sheet B, and subjected to autoclave treatment at 50 ° C. for 20 minutes to make the composite polarizing plate into glass. It was made to adhere to a board. In this state, a heat shock test was performed by placing in a −35 ° C. atmosphere for 30 minutes, then moving to a + 85 ° C. atmosphere and placing in 30 minutes for one cycle, and repeating this for 100 cycles. The composite polarizing plate of Example 2 maintained a good state with no defects observed even after the test.
 <比較例3>
 実施例1において、工程(D)で用いる粘着剤シートAを粘着剤シートBに変更した以外は、同様に複合偏光板を作製した。こうして得られた複合偏光板の外観は、フィルムの浮き、はがれ、および気泡等のない良好なものであった。また、この複合偏光板から液晶セル貼合用のシートを裁断によって得るにあたり、複合偏光板の全面積中96.6%を使用できた。
<Comparative Example 3>
In Example 1, a composite polarizing plate was produced in the same manner except that the pressure-sensitive adhesive sheet A used in the step (D) was changed to the pressure-sensitive adhesive sheet B. The appearance of the composite polarizing plate thus obtained was good without the film floating, peeling, or bubbles. Moreover, in obtaining the sheet | seat for liquid crystal cell bonding from this composite polarizing plate by cutting, 96.6% was able to be used in the whole area of a composite polarizing plate.
 得られた複合偏光板の位相差フィルム面を粘着剤シートBでソーダガラス(液晶セルの代わりとして使用)に固定し、50℃で20分間のオートクレーブ処理を施して複合偏光板をガラス板に密着させた。この状態で、−35℃の雰囲気に30分置き、次に+85℃の雰囲気に移して30分置くことを1サイクルとし、これを100サイクル繰り返すヒートショック試験を行なった。比較例3の偏光板は、試験後に位相差フィルムとガラスの間の粘着剤層に気泡が発生し、実用に足るものではなかった。 The retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) with an adhesive sheet B, and subjected to autoclave treatment at 50 ° C. for 20 minutes to adhere the composite polarizing plate to the glass plate. I let you. In this state, a heat shock test was performed by placing in a −35 ° C. atmosphere for 30 minutes, then moving to a + 85 ° C. atmosphere and placing in 30 minutes for one cycle, and repeating this for 100 cycles. In the polarizing plate of Comparative Example 3, bubbles were generated in the pressure-sensitive adhesive layer between the retardation film and the glass after the test, which was not practical.
 <比較例4>
 実施例2において、工程(D)で用いる粘着剤シートAを粘着剤シートBに変更した以外は、同様に複合偏光板を作製した。こうして得られた複合偏光板の外観は、フィルムの浮き、はがれ、および気泡等のない良好なものであった。また、この複合偏光板から液晶セル貼合用のシートを裁断によって得るにあたり、複合偏光板の全面積中96.6%を使用できた。
<Comparative example 4>
In Example 2, a composite polarizing plate was produced in the same manner except that the pressure-sensitive adhesive sheet A used in the step (D) was changed to the pressure-sensitive adhesive sheet B. The appearance of the composite polarizing plate thus obtained was good without the film floating, peeling, or bubbles. Moreover, in obtaining the sheet | seat for liquid crystal cell bonding from this composite polarizing plate by cutting, 96.6% was able to be used in the whole area of a composite polarizing plate.
 得られた複合偏光板の位相差フィルム面を粘着剤シートBでソーダガラス(液晶セルの代わりとして使用)に固定し、50℃で20分間のオートクレーブ処理を施して複合偏光板をガラス板に密着させた。この状態で、−35℃の雰囲気に30分置き、次に+85℃の雰囲気に移して30分置くことを1サイクルとし、これを100サイクル繰り返すヒートショック試験を行なった。比較例4の偏光板は、試験後に位相差フィルムとガラスの間の粘着剤層に気泡が発生し、実用に足るものではなかった。 The retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) with an adhesive sheet B, and subjected to autoclave treatment at 50 ° C. for 20 minutes to adhere the composite polarizing plate to the glass plate. I let you. In this state, a heat shock test was performed by placing in a −35 ° C. atmosphere for 30 minutes, then moving to a + 85 ° C. atmosphere and placing in 30 minutes for one cycle, and repeating this for 100 cycles. In the polarizing plate of Comparative Example 4, bubbles were generated in the pressure-sensitive adhesive layer between the retardation film and the glass after the test, which was not practical.
 <実施例3>
 [工程(A)]
 偏光フィルムの片面に、表面にケン化処理を施した厚み40μmのトリアセチルセルロースフィルム(透明保護フィルム)を、接着剤Aを介して貼合し、その反対側の面には、粘着性を有する剥離性フィルムとして、表面(偏光フィルムとの接着面)が自己粘着性を有するポリエチレンフィルムを貼合し、その積層体を60℃で乾燥させ、片面に透明保護フィルムが貼合された偏光板を得た。得られた長尺の片面透明保護フィルム付き偏光板の幅は、1490mmであった。また、この片面保護フィルム付き偏光板の外観は、乾燥の熱や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
<Example 3>
[Step (A)]
A 40 μm-thick triacetyl cellulose film (transparent protective film) having a saponified surface is bonded to one surface of the polarizing film via an adhesive A, and the opposite surface has adhesiveness. As a peelable film, a polarizing film in which a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) is bonded, the laminate is dried at 60 ° C., and a transparent protective film is bonded on one side is used. Obtained. The width of the obtained long polarizing plate with a single-sided transparent protective film was 1490 mm. The appearance of this polarizing plate with a single-sided protective film was good without damage such as scratches and cracks, despite the heat of drying and friction with the transport roll.
 [工程(C)および(D)]
 次いで、この片面透明保護フィルム付き偏光板からポリエチレンフィルムを剥離除去し、ただちにその偏光フィルム面上に、粘着剤シートAを貼合した。
[Steps (C) and (D)]
Subsequently, the polyethylene film was peeled and removed from the polarizing plate with a single-sided transparent protective film, and immediately, the pressure-sensitive adhesive sheet A was bonded onto the polarizing film surface.
 [工程(B)]
 この片面透明保護フィルム付き偏光板を、スリッター(Model FN25、(株)西村製作所製)を用いて、位相差フィルムの幅に合わせて長尺方向に沿って裁断(スリット)し、720mm幅の片面透明保護フィルム付き偏光板を得た。このスリットされた偏光板の外観は、スリット時の剪断や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
[Step (B)]
Using a slitter (Model FN25, manufactured by Nishimura Seisakusho Co., Ltd.), the polarizing plate with a single-sided transparent protective film was cut (slit) along the longitudinal direction according to the width of the retardation film, and the single-sided surface having a width of 720 mm A polarizing plate with a transparent protective film was obtained. The appearance of the slit polarizing plate was good without damage such as scratches and cracks despite being subjected to shearing during slitting and friction with the transport roll.
 [工程(E)]
 位相差フィルムに照射量16.8kJ/mでコロナ処理を施した後、そのコロナ処理面と、前記工程(B)でスリットされた片面透明保護フィルム付き偏光板とを、上記工程(C)および(D)で設けた粘着剤層を介して貼合し、複合偏光板を得た。
[Step (E)]
After the corona treatment is applied to the retardation film at an irradiation amount of 16.8 kJ / m 2 , the corona-treated surface and the polarizing plate with a single-sided transparent protective film slit in the step (B) are used in the step (C). And it bonded through the adhesive layer provided by (D), and obtained the composite polarizing plate.
 こうして得られた複合偏光板の外観は、フィルムの浮き、はがれ、および気泡等のない良好なものであった。また、この複合偏光板から液晶セル貼合用のシートを裁断によって得るにあたり、複合偏光板の全面積中96.6%を使用できた。 The appearance of the composite polarizing plate thus obtained was good without any film floating, peeling or bubbles. Moreover, when obtaining the sheet | seat for liquid crystal cell bonding from this composite polarizing plate by cutting, 96.6% was able to be used in the whole area of a composite polarizing plate.
 <実施例4>
 [工程(A)]
 偏光フィルムの片面に、表面にケン化処理を施した厚み40μmのトリアセチルセルロースフィルム(透明保護フィルム)を、接着剤Aを介して貼合し、その反対側の面には、粘着性を有する剥離性フィルムとして、表面(偏光フィルムとの接着面)が自己粘着性を有するポリエチレンフィルムを貼合し、その積層体を60℃で乾燥させ、片面に透明保護フィルムが貼合された偏光板を得た。得られた長尺の片面透明保護フィルム付き偏光板の幅は、1490mmであった。また、この偏光板の外観は、乾燥の熱や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
<Example 4>
[Step (A)]
A 40 μm-thick triacetyl cellulose film (transparent protective film) having a saponified surface is bonded to one surface of the polarizing film via an adhesive A, and the opposite surface has adhesiveness. As a peelable film, a polarizing film in which a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) is bonded, the laminate is dried at 60 ° C., and a transparent protective film is bonded on one side is used. Obtained. The width of the obtained long polarizing plate with a single-sided transparent protective film was 1490 mm. In addition, the appearance of this polarizing plate was good without damage such as scratches and cracks, despite the heat of drying and the friction with the transport roll.
 [工程(B)]
 次いで、この片面透明保護フィルム付き偏光板を、スリッター(Model FN25、(株)西村製作所製)を用いて、位相差フィルムの幅に合わせて長尺方向に沿って裁断(スリット)し、720mm幅の片面透明保護フィルム付き偏光板を得た。このスリットされた偏光板の外観は、スリット時の剪断や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
[Step (B)]
Subsequently, this polarizing plate with a single-sided transparent protective film was cut (slit) along the longitudinal direction according to the width of the retardation film using a slitter (Model FN25, manufactured by Nishimura Seisakusho Co., Ltd.), and 720 mm wide A polarizing plate with a single-sided transparent protective film was obtained. The appearance of the slit polarizing plate was good without damage such as scratches and cracks despite being subjected to shearing during slitting and friction with the transport roll.
 [工程(D)]
 位相差フィルムに照射量16.8kJ/mでコロナ処理を施した後、そのコロナ処理面上に、粘着剤シートAを貼合した。
[Step (D)]
After the corona treatment was performed on the retardation film at an irradiation amount of 16.8 kJ / m 2 , the pressure-sensitive adhesive sheet A was bonded onto the corona-treated surface.
 [工程(C)および(E)]
 位相差フィルムの粘着剤層側および上記工程(B)でスリットされた片面透明保護フィルム付き偏光板からポリエチレンフィルムを剥離除去した偏光板の偏光フィルム側に照射量16.8kJ/mでコロナ処理を施した後、偏光版と位相差フィルムとを上記工程(D)で設けた粘着剤層を介して貼合し、複合偏光板を得た。
[Steps (C) and (E)]
Corona treatment at a dose of 16.8 kJ / m 2 on the polarizing film side of the polarizing plate from which the polyethylene film was peeled and removed from the pressure-sensitive adhesive layer side of the retardation film and the polarizing plate with the single-side transparent protective film slit in the step (B). Then, the polarizing plate and the retardation film were bonded via the pressure-sensitive adhesive layer provided in the step (D) to obtain a composite polarizing plate.
 こうして得られた複合偏光板の外観は、フィルムの浮き、はがれ、および気泡等のない良好なものであった。また、この複合偏光板から液晶セル貼合用のシートを裁断によって得るにあたり、複合偏光板の全面積中96.6%を使用できた。 The appearance of the composite polarizing plate thus obtained was good without any film floating, peeling or bubbles. Moreover, when obtaining the sheet | seat for liquid crystal cell bonding from this composite polarizing plate by cutting, 96.6% was able to be used in the whole area of a composite polarizing plate.
 <実施例5>
 [工程(A)]
 製造例3で得られた偏光フィルムの片面に、表面にケン化処理を施した厚み40μmのトリアセチルセルロースフィルム(透明保護フィルム)を、製造例1で得られた接着剤Aを用いて貼合し、その他方の面には、表面(偏光フィルムとの接着面)が自己粘着性を有するポリエチレンフィルム(剥離性フィルム)を貼合し、その貼合体を60℃で乾燥し、片面に透明保護フィルムが貼合された偏光板を得た。得られた長尺の片面保護フィルム付き偏光板の幅は、1490mmであった。この片面保護フィルム付き偏光板の外観は、乾燥の熱や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
<Example 5>
[Step (A)]
A polarizing film obtained in Production Example 3 is bonded to a surface of a saponified 40 μm thick triacetyl cellulose film (transparent protective film) using adhesive A obtained in Production Example 1. On the other side, a polyethylene film (peelable film) having a self-adhesive surface (bonding surface with a polarizing film) is bonded to the other surface, and the bonded body is dried at 60 ° C. and transparently protected on one side. The polarizing plate with which the film was bonded was obtained. The width of the obtained long polarizing plate with a single-sided protective film was 1490 mm. The appearance of this polarizing plate with a single-sided protective film was good without damage such as scratches and cracks, despite the heat of drying and friction with the transport roll.
 [工程(B)]
 次いで、この片面透明保護フィルム付き偏光板を、スリッター(Model FN25、(株)西村製作所製)を用いて、位相差フィルムの大きさに合わせて長尺方向に沿って裁断(スリット)し、720mm幅の片面保護フィルム付き偏光板を得た。このスリットされた偏光板の外観は、スリット時の剪断や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
[Step (B)]
Next, this polarizing plate with a single-sided transparent protective film was cut (slit) along the longitudinal direction according to the size of the retardation film using a slitter (Model FN25, manufactured by Nishimura Seisakusho), and 720 mm. A polarizing plate with a single-side protective film having a width was obtained. The appearance of the slit polarizing plate was good without damage such as scratches and cracks despite being subjected to shearing during slitting and friction with the transport roll.
 [工程(C)、工程(F)および工程(G)]
 位相差フィルムの片面に、照射量16.8kJ/mでコロナ処理を施し、その処理面に接着剤Bを塗工した。次いで、上記工程(B)でスリットされた片面保護フィルム付き偏光板からポリエチレンフィルムを剥離除去し、ただちに、片面保護フィルム付き偏光板と位相差フィルムとを、偏光フィルム面と位相差フィルムの接着剤塗工面とが接するように重ね、その積重物(piled product)に紫外線照射装置(ランプ:Fusion Dランプ、積算光量1000mJ/cm)で紫外線の照射を行ない、室温で1時間放置して、複合偏光板を得た。こうして得られた複合偏光板の外観は、フィルムの浮きやはがれ、気泡等はなく良好なものであった。また、この複合偏光板から液晶セル貼合用のシートを裁断によって得るにあたり、片面保護フィルム付き偏光板の全面積中96.6%を使用できた。
[Step (C), Step (F) and Step (G)]
One side of the retardation film was subjected to corona treatment at an irradiation amount of 16.8 kJ / m 2 , and adhesive B was applied to the treated surface. Next, the polyethylene film is peeled off from the polarizing plate with the single-sided protective film slit in the step (B), and immediately, the polarizing plate with the single-sided protective film and the retardation film are bonded to the polarizing film surface and the retardation film adhesive. Stacked so that the coated surface is in contact with each other, the irradiated product is irradiated with ultraviolet rays with an ultraviolet irradiation device (lamp: Fusion D lamp, integrated light quantity 1000 mJ / cm 2 ), and left at room temperature for 1 hour. A composite polarizing plate was obtained. The appearance of the composite polarizing plate thus obtained was good with no floating or peeling of the film and no bubbles. Moreover, in obtaining the sheet | seat for liquid crystal cell bonding from this composite polarizing plate by cutting, 96.6% of the total area of the polarizing plate with a single-sided protective film could be used.
 得られた複合偏光板の位相差フィルム面を、粘着剤シートを用いてソーダガラス(液晶セルの代わりとして使用)に固定し、50℃で20分間のオートクレーブ処理を施して複合偏光板をガラス板に密着させる。この状態で、−35℃の雰囲気に30分置き、次に+85℃の雰囲気に移して30分置くことを1サイクルとし、これを100サイクル繰り返すヒートショック試験を行なう。実施例5の複合偏光板は、試験後にも欠陥は観察されず、良好な状態を維持している。 The retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) using an adhesive sheet, and subjected to an autoclave treatment at 50 ° C. for 20 minutes so that the composite polarizing plate is a glass plate. Adhere to. In this state, a heat shock test is performed by placing in an atmosphere of −35 ° C. for 30 minutes, then moving to an atmosphere of + 85 ° C. and placing for 30 minutes as one cycle, and repeating this for 100 cycles. In the composite polarizing plate of Example 5, no defects were observed even after the test, and the good state was maintained.
 <比較例5>
 片面保護フィルム付き偏光板をスリットしない以外は、実施例5と同様に複合偏光板を作製した。こうして得られた複合偏光板の外観は、フィルムの浮きやはがれ、気泡等はなく良好なものであった。しかし、実施例5と同様にシートを得るにあたっては、片面保護フィルム付き偏光板の全面積中48.3%しか使用できなかった。
<Comparative Example 5>
A composite polarizing plate was produced in the same manner as in Example 5 except that the polarizing plate with a single-sided protective film was not slit. The appearance of the composite polarizing plate thus obtained was good with no floating or peeling of the film and no bubbles. However, in obtaining a sheet in the same manner as in Example 5, only 48.3% of the total area of the polarizing plate with a single-sided protective film could be used.
 <比較例6>
 片面保護フィルム付き偏光板の作製時に、表面(偏光フィルムとの接着面)が自己粘着性を有するポリエチレンフィルムを使用しなかった以外は、実施例5と同様に複合偏光板を作製した。作製した複合偏光板の外観は、片面保護フィルム付き偏光板の作製時および偏光板のスリット時に偏光フィルムが損傷を受けており実用に供せられるものではなかった。
<Comparative Example 6>
A composite polarizing plate was prepared in the same manner as in Example 5 except that a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) was not used when the polarizing plate with a single-side protective film was prepared. The appearance of the produced composite polarizing plate was not practically used because the polarizing film was damaged when the polarizing plate with a single-sided protective film was produced and when the polarizing plate was slit.
 <実施例6>
 [工程(A)]
 偏光フィルムの片面に、表面にケン化処理を施した厚み40μmのトリアセチルセルロースフィルム(透明保護フィルム)を、接着剤Bを介して重ね、その反対側の面には、表面(偏光フィルムとの接着面)が自己粘着性を有するポリエチレンフィルム(剥離性フィルム)を貼合し、紫外線照射装置(ランプ:Fusion Dランプ、積算光量1000mJ/cm)にて紫外線の照射を行ない、室温で1時間放置して、片面に透明保護フィルムが貼合された偏光板を得た。得られた長尺の片面保護フィルム付き偏光板の幅は、1490mmであった。この片面保護フィルム付き偏光板の外観は、搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
<Example 6>
[Step (A)]
On one side of the polarizing film, a 40 μm thick triacetyl cellulose film (transparent protective film) having a saponified surface is overlapped with an adhesive B, and on the other side, the surface (with the polarizing film) Adhesive surface) is bonded with a self-adhesive polyethylene film (peelable film), and irradiated with ultraviolet rays using an ultraviolet irradiation device (lamp: Fusion D lamp, integrated light quantity 1000 mJ / cm 2 ) for 1 hour at room temperature. It left to obtain the polarizing plate by which the transparent protective film was bonded on one side. The width of the obtained long polarizing plate with a single-sided protective film was 1490 mm. The appearance of this polarizing plate with a single-sided protective film was good with no damage such as scratches and cracks, despite the friction with the transport roll.
 [工程(B)]
 次いで、この片面透明保護フィルム付き偏光板を、スリッター(Model FN25、(株)西村製作所製)を用いて、位相差フィルムの大きさに合わせて長尺方向に沿って裁断(スリット)し、720mm幅の片面保護フィルム付き偏光板を得た。このスリットされた偏光板の外観は、スリット時のせん断や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
[Step (B)]
Next, this polarizing plate with a single-sided transparent protective film was cut (slit) along the longitudinal direction according to the size of the retardation film using a slitter (Model FN25, manufactured by Nishimura Seisakusho), and 720 mm. A polarizing plate with a single-side protective film having a width was obtained. The appearance of the slit polarizing plate was good without damage such as scratches and cracks despite being sheared at the time of slitting and friction with the transport roll.
 [工程(C)、工程(F)及び工程(G)]
 位相差フィルムを用い、実施例5の工程(C)、工程(F)および工程(G)と同様にして、複合偏光板を得た。こうして得られた複合偏光板の外観は、フィルムの浮きやはがれ、気泡等はなく良好なものであった。また、この複合偏光板から液晶セル貼合用のシートを裁断によって得るにあたり、片面保護フィルム付き偏光板の全面積中96.6%を使用できた。
[Step (C), Step (F) and Step (G)]
Using the retardation film, a composite polarizing plate was obtained in the same manner as in Step (C), Step (F) and Step (G) of Example 5. The appearance of the composite polarizing plate thus obtained was good with no floating or peeling of the film and no bubbles. Moreover, in obtaining the sheet | seat for liquid crystal cell bonding from this composite polarizing plate by cutting, 96.6% of the total area of the polarizing plate with a single-sided protective film could be used.
 得られた複合偏光板の位相差フィルム面を、粘着剤シートを用いてでソーダガラス(液晶セルの代わりとして使用)に固定し、50℃で20分間のオートクレーブ処理を施して複合偏光板をガラス板に密着させる。この状態で、−35℃の雰囲気に30分置き、次に+85℃の雰囲気に移して30分置くことを1サイクルとし、これを100サイクル繰り返すヒートショック試験を行なう。実施例6の複合偏光板は、試験後にも欠陥は観察されず、良好な状態を維持している。 The retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) with an adhesive sheet, and subjected to autoclave treatment at 50 ° C. for 20 minutes to make the composite polarizing plate into glass. Adhere to the board. In this state, a heat shock test is performed by placing in an atmosphere of −35 ° C. for 30 minutes, then moving to an atmosphere of + 85 ° C. and placing for 30 minutes as one cycle, and repeating this for 100 cycles. In the composite polarizing plate of Example 6, no defects were observed even after the test, and the good state was maintained.
 本発明により得られる複合偏光板は、種々の液晶表示装置における光学部材として広く利用され得るものであり、たとえば、テレビ等の大型液晶表示装置や、コンピュータ用ディスプレイ、カーナビ、携帯電話、携帯端末機器等に用いられる中小型液晶表示装置における光学部材として利用され得るものである。 The composite polarizing plate obtained by the present invention can be widely used as an optical member in various liquid crystal display devices. For example, large liquid crystal display devices such as televisions, computer displays, car navigation systems, mobile phones, and mobile terminal devices. It can be used as an optical member in a medium- and small-sized liquid crystal display device used for the like.

Claims (16)

  1.  スチレン系樹脂からなるコア層と、前記コア層の両面に積層される、ゴム粒子を含有する(メタ)アクリル系樹脂組成物からなるスキン層との3層構造を有する延伸フィルムからなる位相差フィルムと、
     前記位相差フィルム上に積層される、偏光フィルムの片面に透明保護フィルムを有する片面透明保護フィルム付き偏光板と、
    を備える複合偏光板を製造する方法であって、
    (A)偏光フィルムの片面に透明保護フィルムを貼合し、反対側の面に粘着性を有する剥離性フィルムを貼合し、片面透明保護フィルム付き偏光板を作製する工程と、
    (B)片面透明保護フィルム付き偏光板を、位相差フィルムの幅に合わせて長尺方向に沿って裁断する工程と、
    (C)剥離性フィルムを偏光フィルム面から除去する工程と、
    (D)位相差フィルムの片面、および、剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面、の少なくとも一方に、80℃において0.1MPa以上の貯蔵弾性率を示す粘着剤層を形成する工程と、
    (E)剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面に、前記粘着剤層を介して位相差フィルムを貼合する工程とを含むか、
    工程(A)、工程(B)及び工程(C)を含み、さらに
    (F)位相差フィルムの片面、および、剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面、の少なくとも一方に、活性エネルギー線の照射または加熱により硬化するエポキシ化合物を含有する樹脂組成物層を形成し、該樹脂組成物層上に他方の偏光板の偏光フィルム面または位相差フィルムを重ねる工程と、
    (G)該樹脂組成物層を硬化させることにより片面透明保護フィルム付き偏光板の偏光フィルム面に、該樹脂組成物の硬化層を介して位相差フィルムを貼合する工程とを含む。
    Retardation film comprising a stretched film having a three-layer structure of a core layer comprising a styrene resin and a skin layer comprising a (meth) acrylic resin composition containing rubber particles, which is laminated on both surfaces of the core layer. When,
    A polarizing plate with a single-sided transparent protective film having a transparent protective film on one side of the polarizing film, laminated on the retardation film,
    A method of manufacturing a composite polarizing plate comprising:
    (A) a step of pasting a transparent protective film on one side of the polarizing film, pasting a peelable film having adhesiveness on the opposite side, and producing a polarizing plate with a single-sided transparent protective film;
    (B) cutting the polarizing plate with a single-sided transparent protective film along the longitudinal direction according to the width of the retardation film;
    (C) removing the peelable film from the polarizing film surface;
    (D) A pressure-sensitive adhesive having a storage modulus of 0.1 MPa or more at 80 ° C. on at least one of the one side of the retardation film and the polarizing film side of the polarizing plate with the single-sided transparent protective film from which the peelable film has been removed. Forming a layer;
    (E) including a step of laminating a retardation film on the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the peelable film has been removed, via the pressure-sensitive adhesive layer,
    At least of the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the process (A), the process (B), and the process (C) were included, and also (F) one side of the retardation film and the peelable film were removed. On the other hand, forming a resin composition layer containing an epoxy compound that is cured by irradiation with active energy rays or heating, and overlaying the polarizing film surface or retardation film of the other polarizing plate on the resin composition layer;
    (G) A step of bonding the retardation film to the polarizing film surface of the polarizing plate with a single-sided transparent protective film by curing the resin composition layer via the cured layer of the resin composition.
  2.  請求の範囲1に記載の方法であって、
    該方法は、工程(A)、工程(B)、工程(C)、工程(D)および工程(E)をこの順に含み、
    工程(D)において、前記粘着剤層は、剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面に形成される。
    A method according to claim 1, comprising:
    The method includes step (A), step (B), step (C), step (D) and step (E) in this order,
    In the step (D), the pressure-sensitive adhesive layer is formed on the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the peelable film has been removed.
  3.  請求項1に記載の方法であって、
    該方法は、工程(A)、工程(C)、工程(D)、工程(B)および工程(E)をこの順で含み、
    工程(D)において、前記粘着剤層は、剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面に形成される。
    The method of claim 1, comprising:
    The method includes step (A), step (C), step (D), step (B) and step (E) in this order,
    In the step (D), the pressure-sensitive adhesive layer is formed on the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the peelable film has been removed.
  4.  請求の範囲1に記載の方法であって、
    該方法は、工程(A)、工程(B)、工程(C)および工程(E)をこの順に含み、また工程(D)を含み、
    工程(D)において、前記粘着剤層は、位相差フィルムの片面に形成される。
    A method according to claim 1, comprising:
    The method includes step (A), step (B), step (C) and step (E) in this order, and also includes step (D),
    In the step (D), the pressure-sensitive adhesive layer is formed on one side of the retardation film.
  5.  請求の範囲1に記載の方法であって、
    該方法は、工程(A)、工程(B)、工程(C)、工程(F)および工程(G)をこの順に含み、
    工程(F)において、該樹脂組成物層は、剥離性フィルムが除去された片面透明保護フィルム付き偏光板の偏光フィルム面に形成される。
    A method according to claim 1, comprising:
    The method includes step (A), step (B), step (C), step (F) and step (G) in this order,
    In the step (F), the resin composition layer is formed on the polarizing film surface of the polarizing plate with a single-sided transparent protective film from which the peelable film has been removed.
  6.  請求の範囲1に記載の方法であって、
    該方法は、工程(A)、工程(B)、工程(C)および工程(G)をこの順に含み、また工程(F)を含み、
    工程(F)において、該樹脂組成物層は、位相差フィルムの片面に形成される。
    A method according to claim 1, comprising:
    The method includes step (A), step (B), step (C) and step (G) in this order, and also includes step (F),
    In the step (F), the resin composition layer is formed on one side of the retardation film.
  7.  請求の範囲2または3に記載の方法であって、
    工程(F)において、前記エポキシ化合物は、脂環式環に結合したエポキシ基を分子内に1個以上有する化合物を含有する。
    A method according to claim 2 or 3, wherein
    In the step (F), the epoxy compound contains a compound having at least one epoxy group bonded to an alicyclic ring in the molecule.
  8.  請求の範囲1~7のいずれかに記載の方法であって、
    コア層の厚さは10~100μmであり、スキン層の厚さは10~100μmである。
    A method according to any one of claims 1 to 7,
    The core layer has a thickness of 10 to 100 μm, and the skin layer has a thickness of 10 to 100 μm.
  9.  請求の範囲1~8のいずれかに記載の方法であって、
    コア層のガラス転移温度は120℃以上であり、スキン層のガラス転移温度は120℃以下である。
    A method according to any one of claims 1 to 8,
    The glass transition temperature of the core layer is 120 ° C. or higher, and the glass transition temperature of the skin layer is 120 ° C. or lower.
  10.  請求の範囲1~9のいずれかに記載の方法であって、
    位相差フィルムは、その幅が、工程(A)において作製される片面透明保護フィルム付き偏光板の幅より10%以上小さいものである。
    A method according to any one of claims 1 to 9,
    The width of the retardation film is 10% or more smaller than the width of the polarizing plate with a single-sided transparent protective film produced in the step (A).
  11.  請求の範囲1~10のいずれかに記載の方法であって、
    工程(A)において、偏光フィルムと透明保護フィルムとは、ポリビニルアルコール系樹脂またはエポキシ樹脂を含有する接着剤を用いて貼合される。
    A method according to any one of claims 1 to 10,
    In the step (A), the polarizing film and the transparent protective film are bonded using an adhesive containing a polyvinyl alcohol resin or an epoxy resin.
  12.  請求の範囲11に記載の方法であって、
    工程(A)において、前記接着剤が、活性エネルギー線の照射または加熱により硬化するエポキシ化合物を含有する樹脂組成物である。
    A method according to claim 11, comprising:
    In the step (A), the adhesive is a resin composition containing an epoxy compound that is cured by irradiation with active energy rays or heating.
  13.  請求の範囲12に記載の方法であって、
    偏光フィルムと透明保護フィルムとの前記エポキシ化合物を含有する樹脂組成物を用いる貼合が、偏光フィルムの片面、および、透明保護フィルムの片面の少なくとも一方に、前記エポキシ化合物を含有する樹脂組成物層を形成し、前記エポキシ化合物を含有する樹脂組成物層上に他方の偏光板または透明保護フィルムを重ねる工程と、前記エポキシ化合物を含有する樹脂組成物層を硬化させて、偏光フィルム面に前記エポキシ化合物を含有する樹脂組成物の硬化層を介して透明保護フィルムを貼合する工程を含む。
    A method according to claim 12, comprising:
    Bonding using a resin composition containing the epoxy compound between a polarizing film and a transparent protective film is a resin composition layer containing the epoxy compound on at least one side of the polarizing film and one side of the transparent protective film. And forming the other polarizing plate or transparent protective film on the resin composition layer containing the epoxy compound, curing the resin composition layer containing the epoxy compound, and applying the epoxy on the polarizing film surface. The process includes pasting a transparent protective film through the cured layer of the resin composition containing the compound.
  14.  請求の範囲12または13に記載の方法であって、
    工程(A)における前記エポキシ化合物は、脂環式環に結合したエポキシ基を分子内に1個以上有する化合物を含有する。
    A method according to claim 12 or 13, comprising
    The said epoxy compound in a process (A) contains the compound which has 1 or more of epoxy groups couple | bonded with the alicyclic ring in a molecule | numerator.
  15.  請求の範囲1~14のいずれかに記載の方法であって、
    透明保護フィルムの厚みが20~300μmである。
    A method according to any one of claims 1 to 14,
    The thickness of the transparent protective film is 20 to 300 μm.
  16.  請求の範囲1~15のいずれかに記載の方法であって、
    前記粘着剤層の厚みが1~40μmである。
    A method according to any one of claims 1 to 15,
    The pressure-sensitive adhesive layer has a thickness of 1 to 40 μm.
PCT/JP2009/071013 2008-12-11 2009-12-10 Method for manufacturing composite polarizing plate WO2010067896A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008315497A JP2010139703A (en) 2008-12-11 2008-12-11 Method for manufacturing composite polarizing plate
JP2008315684A JP2010139729A (en) 2008-12-11 2008-12-11 Method for manufacturing composite polarizing plate
JP2008-315684 2008-12-11
JP2008-315497 2008-12-11

Publications (1)

Publication Number Publication Date
WO2010067896A1 true WO2010067896A1 (en) 2010-06-17

Family

ID=42242878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071013 WO2010067896A1 (en) 2008-12-11 2009-12-10 Method for manufacturing composite polarizing plate

Country Status (2)

Country Link
TW (1) TW201028292A (en)
WO (1) WO2010067896A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229372A (en) * 2011-04-27 2012-11-22 Nitto Denko Corp Tacky adhesive composition and tacky adhesive sheet
JP2018028913A (en) * 2017-08-24 2018-02-22 リンテック株式会社 Touch panel
US11535777B2 (en) 2017-03-23 2022-12-27 Mitsubishi Chemical Corporation Double-sided pressure-sensitive adhesive sheet, laminate comprising component member for image display device, kit for laminate formation, and use of double-sided pressure-sensitive adhesive sheet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101072371B1 (en) * 2010-09-20 2011-10-11 주식회사 엘지화학 Adhesive for polarizing plate and polarizing plate comprising the same
KR102172750B1 (en) 2014-06-25 2020-11-02 동우 화인켐 주식회사 Ultra Thin Polarizing Plate and Liquid Crystal Display Device Comprising the Same
KR20190027016A (en) * 2017-09-04 2019-03-14 효성화학 주식회사 Acryl Film
JP7292859B2 (en) * 2018-11-19 2023-06-19 藤森工業株式会社 Surface protective film and optical parts to which it is attached
TWI727299B (en) * 2019-04-03 2021-05-11 奇美實業股份有限公司 Plate unit, cutting device for cutting the same, and method for manufacturing and processing the same
CN113568198A (en) * 2021-07-08 2021-10-29 业成科技(成都)有限公司 Laminating method of polaroid and display thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004199045A (en) * 2002-12-04 2004-07-15 Sharp Corp Optical film and liquid crystal display using it
JP2004245925A (en) * 2003-02-12 2004-09-02 Sumitomo Chem Co Ltd Polarizing plate, its manufacturing method, optical member, and liquid crystal display device
JP2005043384A (en) * 2002-07-04 2005-02-17 Fuji Photo Film Co Ltd Method and apparatus for sticking polarizing plate
JP2006018323A (en) * 2005-09-01 2006-01-19 Nitto Denko Corp Compound double refraction member
JP2006022311A (en) * 2004-06-09 2006-01-26 Fuji Photo Film Co Ltd Cellulose acylate film, polarizing plate and liquid crystal display device
JP2006030982A (en) * 2004-06-16 2006-02-02 Sumitomo Chemical Co Ltd Phase difference film and liquid crystal display device including the same
JP2006192637A (en) * 2005-01-12 2006-07-27 Sumitomo Chemical Co Ltd Resin multilayered film and phase difference film
JP2006309114A (en) * 2005-03-30 2006-11-09 Lintec Corp Pressure-sensitive adhesive for polarizing plates, polarizing plate having pressure-sensitive adhesive, and production process for polarizing plate
JP2008040275A (en) * 2006-08-08 2008-02-21 Nippon Zeon Co Ltd Polarizing plate for liquid crystal display
JP2008045041A (en) * 2006-08-17 2008-02-28 Nippon Carbide Ind Co Inc Pressure-sensitive adhesive composition for optical member surface-protective film and optical member surface-protective film
JP2009258589A (en) * 2008-03-26 2009-11-05 Sumitomo Chemical Co Ltd Composite polarizing plate, method of manufacturing composite polarizing plate, and liquid crystal display using it
JP2009294502A (en) * 2008-06-06 2009-12-17 Sumitomo Chemical Co Ltd Composite polarizing plate and liquid crystal display device using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043384A (en) * 2002-07-04 2005-02-17 Fuji Photo Film Co Ltd Method and apparatus for sticking polarizing plate
JP2004199045A (en) * 2002-12-04 2004-07-15 Sharp Corp Optical film and liquid crystal display using it
JP2004245925A (en) * 2003-02-12 2004-09-02 Sumitomo Chem Co Ltd Polarizing plate, its manufacturing method, optical member, and liquid crystal display device
JP2006022311A (en) * 2004-06-09 2006-01-26 Fuji Photo Film Co Ltd Cellulose acylate film, polarizing plate and liquid crystal display device
JP2006030982A (en) * 2004-06-16 2006-02-02 Sumitomo Chemical Co Ltd Phase difference film and liquid crystal display device including the same
JP2006192637A (en) * 2005-01-12 2006-07-27 Sumitomo Chemical Co Ltd Resin multilayered film and phase difference film
JP2006309114A (en) * 2005-03-30 2006-11-09 Lintec Corp Pressure-sensitive adhesive for polarizing plates, polarizing plate having pressure-sensitive adhesive, and production process for polarizing plate
JP2006018323A (en) * 2005-09-01 2006-01-19 Nitto Denko Corp Compound double refraction member
JP2008040275A (en) * 2006-08-08 2008-02-21 Nippon Zeon Co Ltd Polarizing plate for liquid crystal display
JP2008045041A (en) * 2006-08-17 2008-02-28 Nippon Carbide Ind Co Inc Pressure-sensitive adhesive composition for optical member surface-protective film and optical member surface-protective film
JP2009258589A (en) * 2008-03-26 2009-11-05 Sumitomo Chemical Co Ltd Composite polarizing plate, method of manufacturing composite polarizing plate, and liquid crystal display using it
JP2009294502A (en) * 2008-06-06 2009-12-17 Sumitomo Chemical Co Ltd Composite polarizing plate and liquid crystal display device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229372A (en) * 2011-04-27 2012-11-22 Nitto Denko Corp Tacky adhesive composition and tacky adhesive sheet
US11535777B2 (en) 2017-03-23 2022-12-27 Mitsubishi Chemical Corporation Double-sided pressure-sensitive adhesive sheet, laminate comprising component member for image display device, kit for laminate formation, and use of double-sided pressure-sensitive adhesive sheet
JP2018028913A (en) * 2017-08-24 2018-02-22 リンテック株式会社 Touch panel

Also Published As

Publication number Publication date
TW201028292A (en) 2010-08-01

Similar Documents

Publication Publication Date Title
KR101708944B1 (en) A liquid crystal display device
JP6090399B2 (en) Liquid crystal display
KR101640949B1 (en) Liquid crystal display device
JP5296575B2 (en) Photocurable adhesive composition, polarizing plate and method for producing the same, optical member and liquid crystal display device
KR101685715B1 (en) A liquid crystal display device
KR101811878B1 (en) Polarizer, method for producing polarizer, and liquid crystal display device
JP5569773B2 (en) Composite polarizing plate and IPS mode liquid crystal display device using the same
WO2010067896A1 (en) Method for manufacturing composite polarizing plate
JP2010277063A (en) Liquid crystal display device
JP2009258589A (en) Composite polarizing plate, method of manufacturing composite polarizing plate, and liquid crystal display using it
JP2009109993A (en) Set of polarizing plate, liquid crystal panel using the same, and liquid crystal display device
JP2013003515A (en) Composite polarizer and liquid crystal display device using the same
JP2010102310A (en) Composite polarizing plate and liquid crystal display device using the same
JP2010107953A (en) Polarizing plate for ips mode liquid crystal display device and ips mode liquid crystal display device
JP2010091602A (en) Polarizing plate and liquid crystal display device
JP5596207B2 (en) Photocurable adhesive composition, polarizing plate and method for producing the same, optical member and liquid crystal display device
JP6462254B2 (en) Polarizing plate, high-intensity polarizing plate, and IPS mode liquid crystal display device
JP6390764B2 (en) Polarizing plate and liquid crystal display device
JP2012133301A (en) Liquid crystal display device
JP2010139729A (en) Method for manufacturing composite polarizing plate
KR101781308B1 (en) Polarizing plate set and liquid crystal panel
JP2010091606A (en) Composite polarizing plate for ips mode liquid crystal display device, and ips mode liquid crystal display device
JP2009271490A (en) Composite polarizing plate and liquid crystal display device using the same
KR101643503B1 (en) Polarizing plate and liquid crystal display device
JP2010139703A (en) Method for manufacturing composite polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831997

Country of ref document: EP

Kind code of ref document: A1