WO2021131296A1 - 自動分析装置及び自動分析装置用の制御プログラム - Google Patents

自動分析装置及び自動分析装置用の制御プログラム Download PDF

Info

Publication number
WO2021131296A1
WO2021131296A1 PCT/JP2020/040176 JP2020040176W WO2021131296A1 WO 2021131296 A1 WO2021131296 A1 WO 2021131296A1 JP 2020040176 W JP2020040176 W JP 2020040176W WO 2021131296 A1 WO2021131296 A1 WO 2021131296A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
reaction vessel
measurement
detection unit
dispensing
Prior art date
Application number
PCT/JP2020/040176
Other languages
English (en)
French (fr)
Inventor
雄一郎 大田
健太 今井
俊輔 佐々木
秀和 手塚
博也 梅木
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2021566861A priority Critical patent/JP7304969B2/ja
Priority to EP20904288.6A priority patent/EP4083635A4/en
Priority to US17/781,851 priority patent/US20230010798A1/en
Priority to CN202080084786.3A priority patent/CN114829945A/zh
Publication of WO2021131296A1 publication Critical patent/WO2021131296A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1011Control of the position or alignment of the transfer device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N2035/00891Displaying information to the operator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • G01N2035/0094Scheduling optimisation; experiment design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • G01N2035/0096Scheduling post analysis management of samples, e.g. marking, removing, storing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0441Rotary sample carriers, i.e. carousels for samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1011Control of the position or alignment of the transfer device
    • G01N2035/1013Confirming presence of tip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1081Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices characterised by the means for relatively moving the transfer device and the containers in an horizontal plane
    • G01N35/1083Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices characterised by the means for relatively moving the transfer device and the containers in an horizontal plane with one horizontal degree of freedom
    • G01N2035/1086Cylindrical, e.g. variable angle

Definitions

  • the present invention relates to an automatic analyzer and its control program.
  • An automatic analyzer usually has a sample dispensing mechanism for dispensing a sample and a detection unit for inspecting the dispensed sample by reacting it with a reagent in a reaction vessel. Further, a plurality of detection units are provided in one device, and the inspection is executed in the corresponding detection units according to the inspection items (see, for example, Patent Document 1). The analysis time can be shortened by operating a plurality of detectors in parallel.
  • a measurement item may be specified for each supplied sample, and one of a plurality of detection units may be specified for each measurement item.
  • the automatic analyzer assigns a designated detector and executes the inspection sequentially.
  • the same detection unit may be specified consecutively in a plurality of consecutive measurement items. In this case, only one of the plurality of detection units is continuously used, and the other is not used continuously, resulting in a state in which the plurality of detection units cannot be operated in parallel. As a result, the total analysis time may increase.
  • An object of the present invention is to provide an automatic analyzer and a control program capable of shortening the total analysis time.
  • the automatic analyzer includes a sample rack for accommodating a sample, a sample dispensing mechanism for sucking the sample from the sample rack and dispensing the sample into the reaction vessel, and the reaction vessel. It includes a plurality of detection units for detecting the reaction solution, the sample dispensing mechanism, and a control unit for controlling the detection unit.
  • the control unit is configured to confirm a measurement item designated for the sample and to confirm one of the plurality of detection units specified in the measurement item, and the plurality of detection units.
  • the total analysis time can be shortened by rearranging the sample dispensing and measuring in order with the alternate detection units as much as possible. ..
  • the flowchart explaining the operation of the immunoassay apparatus 101 of the 3rd Embodiment The flowchart explaining the operation of the immunoassay apparatus 101 of the 3rd Embodiment.
  • FIG. 1 is a schematic configuration diagram of an automatic analyzer according to the first embodiment.
  • a case where it is applied to an immunoassay device as an automatic analyzer will be described as an example.
  • the immunoassay device 101 includes a control unit 102, a sample rack 103, a rack transfer line 104, a sample dispensing mechanism 105, an incubator (container installation unit) 106, a reaction vessel transfer mechanism 107, and a reaction vessel holding unit. It includes 108, a reaction vessel stirring mechanism 109, and a waste hole 110.
  • the immunoassay device 101 includes a reagent disk 111, a reagent dispensing mechanism 112, a B / F separation and transport mechanism 113, a B / F separation mechanism 114, a reaction liquid suction mechanism 115 for B / F separation, and a buffer discharge.
  • a mechanism 116 It is provided with a mechanism 116, a stirring mechanism 117 after B / F separation, a reaction liquid suction mechanism 118 for detection, and a plurality of detection units 119 (here, two (first detection unit 119A, second detection unit 119B)).
  • the control unit 102 controls the entire immunoassay device 101 including the sample dispensing mechanism 105. The details of the control will be clarified by the explanation described later.
  • the sample rack 103 installs a sample container 120 for holding a sample.
  • One sample rack 103 may be configured to hold a plurality of sample containers 120.
  • the rack transport line 104 moves the sample container 120 erected on the sample rack 103 to the sample dispensing position near the sample dispensing mechanism 105.
  • the control unit 102 stores an operation unit 133 that receives various operations from the operator, a display unit 134 that displays an interface screen, measurement results, etc., and various data and control programs (programs that control sample dispensing, analysis, etc.). It has a storage unit 135.
  • the sample dispensing mechanism 105 is provided with a nozzle capable of rotating and moving in the vertical direction, sucks the sample held in the sample container 120, and then discharges the sucked sample into the reaction container 121 on the incubator 106.
  • the incubator 106 is configured to be able to hold a plurality of reaction vessels 121 in a heated state, and has a reaction disk that accelerates the reaction of the reaction solution contained in the reaction vessel 121.
  • the reaction disk is configured to be rotatable around a rotation axis.
  • reaction vessel 121 As the reaction disk rotates, the reaction vessel 121 is moved to the reaction vessel installation position L1, the reagent discharge position L2, the sample discharge position L3, the reaction liquid suction position L4 for detection, the reaction vessel disposal position L5, and the B / F separation and transport position L6. Can be moved to.
  • the reaction vessel transport mechanism 107 is a three-axis transport mechanism that can move in three directions of the X-axis, the Y-axis, and the Z-axis, and grips the sample dispensing tip 128 and the reaction vessel 121 to transport the sample to a predetermined position.
  • the reaction vessel holding unit 108 is a holding unit that holds a large number of unused reaction vessels 121 and sample dispensing chips 128.
  • the reaction vessel stirring mechanism 109 is a stirring mechanism that mixes the sample and the reagent in the reaction vessel 121 by applying a rotary motion to the reaction vessel 121.
  • the disposal hole 110 is a hole connected to a disposal container (not shown) for discarding the used reaction vessel 121 and the sample dispensing chip 128.
  • the reaction vessel transport mechanism 107 moves between the reaction vessel holding portion 108, the reaction vessel stirring mechanism 109, the disposal hole 110, the mounting position L7 of the sample dispensing chip 128, and the incubator 106, and moves between the sample dispensing chip 128 and the reaction vessel 121. Is carried.
  • the reagent disk 111 is provided with a plurality of reagent containers 136 holding reagents.
  • the inside of the reagent disk 111 is maintained at a predetermined temperature, and a cover 130 is provided on the upper part of the reagent disk 111.
  • a cover opening 131 is provided in a part of the cover 130.
  • the reagent dispensing mechanism 112 includes a nozzle configured to be rotatable and vertically movable, sucks the reagent held in the reagent container 136 in the reagent disk 111, and sucks the sucked reagent into the reaction container 121 on the incubator 106. It is configured so that it can be discharged to.
  • the B / F separation / transfer mechanism 113 moves the reaction vessel 121, which has passed a predetermined time on the incubator 106, from the B / F separation / transfer position L6 to the B / F separation / transfer mechanism 114.
  • the B / F separation mechanism 114 magnetically attracts magnetic particles containing a substance immunobonded to a measurement object existing in the reaction solution contained in the reaction vessel 121 to the inner wall of the reaction vessel 121. This is a mechanism for separating the reaction liquid containing no magnetic particles and the magnetic particles.
  • the reaction liquid suction mechanism 115 for B / F separation is configured to be movable in the X-axis and Z-axis directions.
  • the reaction liquid suction mechanism 115 for B / F separation moves and descends above the reaction vessel 121 after a predetermined time has passed on the B / F separation mechanism 114, and sucks the reaction liquid containing no magnetic particles in the reaction vessel 121. To do.
  • the buffer solution discharge mechanism 116 is configured to be movable in the X-axis and Z-axis directions, and moves above the reaction vessel 121 in which the reaction solution containing no magnetic particles is sucked on the B / F separation mechanism 114. -Descent and discharge the buffer solution into the reaction vessel 121.
  • the stirring mechanism 117 after B / F separation applies a rotary motion to the reaction vessel 121 to mix the magnetic particles in the reaction vessel 121 with the buffer solution.
  • the mixed reaction vessel 121 is transported to the B / F separation / transfer position L6 of the incubator 106 by the B / F separation / transfer mechanism 113.
  • the reaction liquid suction mechanism 118 for detection is configured to be rotatable and vertically movable, and is configured to be able to suck the reaction liquid contained in the reaction vessel 121 on the incubator 106 and send the liquid to the detection unit 119.
  • the detection unit (analysis unit) 119 is provided with a plurality of detection units 119 (here, two detection units 119A and a second detection unit 119B) in order to shorten the measurement time.
  • the concentration of the object to be detected in the reaction solution sucked and sent from the liquid suction mechanism 118 is detected (analyzed).
  • the first detection unit 119A and the second detection unit 119B are connected to the detection reaction liquid suction mechanism 118 via the liquid feed flow path 132.
  • control unit 102 receives the measurement input signal from the operation unit 133, outputs a control signal to each mechanism in the immunoassay device 101 to perform the analysis, and controls the operation. ..
  • the reaction vessel transport mechanism 107 moves above the reaction vessel holding portion 108, descends, grips the unused reaction vessel 121, and rises. After that, the reaction vessel transport mechanism 107 moves above the reaction vessel installation position L1 of the incubator 106 and descends, and installs the unused reaction vessel 121 on the incubator 106.
  • the transport mechanism 107 moves above the reaction vessel holding portion 108, descends, grips the unused sample dispensing tip 128, and rises. After that, the transport mechanism 107 moves above the chip mounting position L7 and descends, and installs the unused sample dispensing chip 128 on the chip mounting position L7. After that, the nozzle of the sample dispensing mechanism 105 moves above the tip mounting position L7 and descends, and the sample dispensing tip 128 is mounted on the tip of the dispensing nozzle of the sample dispensing mechanism 105.
  • the nozzle of the reagent dispensing mechanism 112 rotates and moves above the opening 131 of the reagent disk cover 130 and descends, and the tip of the nozzle is brought into contact with the reagent in the predetermined reagent container 136 to bring the reagent into a predetermined amount. Aspirate the reagent.
  • the nozzle of the reagent dispensing mechanism 112 moves above the reagent discharge position L2 of the incubator 106, and discharges the reagent to the reaction vessel 121 installed in the incubator 106.
  • the nozzle of the sample dispensing mechanism 105 moves above the sample container 120 arranged in the sample rack 103 and descends after mounting the sample dispensing tip 128, and places the sample held in the sample container 120. A fixed amount of suction. After that, the nozzle of the sample dispensing mechanism 105 moves to the sample discharging position L3 of the incubator 106 and descends, and discharges the sample to the reaction vessel 121 into which the reagent has been dispensed. After discharging the sample, the nozzle of the sample dispensing mechanism 105 performs a mixing operation. After the mixing operation is completed, the nozzle of the sample dispensing mechanism 105 moves above the disposal hole 110, and the used sample dispensing tip 128 is discarded into the disposal hole 110.
  • control unit 102 rotates the incubator 106 to move the reaction vessel 121 in which the sample and the reagent are mixed to the reaction vessel installation position L1, and the transfer mechanism 107 moves the reaction vessel 121 to the reaction vessel stirring mechanism 109. Transport.
  • the reaction vessel stirring mechanism 109 applies a rotary motion to the reaction vessel 121 to agitate the sample and the reagent in the reaction vessel 121 in order to mix them. After that, the control unit 102 returns the reaction vessel 121 after stirring to the reaction vessel installation position L1 of the incubator 106 by the transfer mechanism 107.
  • the control unit 102 selectively carries out the B / F separation step described below according to the measurement item according to the analysis protocol.
  • the reaction vessel 121 after a predetermined time has passed on the incubator 106 is moved to the B / F separation and transport position L6 by the rotation of the incubator 106, and the reaction is carried out by the B / F separation and transport mechanism 113 to the B / F separation and transport mechanism 114. Transport the container 121.
  • the B / F separation mechanism 114 magnetically adsorbs magnetic particles containing a substance immunobound to the measurement target existing in the reaction solution of the reaction vessel 121 to the inner wall of the reaction vessel 121.
  • the nozzle of the reaction liquid suction mechanism 115 for B / F separation is moved and lowered above the reaction vessel 121 to suck the reaction liquid containing no magnetic particles in the reaction vessel 121.
  • the nozzle of the buffer solution discharge mechanism 116 is moved and lowered above the reaction vessel 121 to discharge the buffer solution into the reaction vessel 121. Then, the reaction vessel 121 is transported to the stirring mechanism 117 after the B / F separation by the B / F separation and transport mechanism 113.
  • the stirring mechanism 117 applies a rotary motion to the reaction vessel 121 to mix the magnetic particles in the reaction vessel 121 with the buffer solution.
  • the reaction vessel 121 in which the mixing of the magnetic particles and the buffer solution is completed is returned to the B / F separation / transfer position L6 of the incubator 106 by the transfer mechanism 113 after the B / F separation.
  • the above dispensing and reaction steps are carried out for each measurement item in a cycle of, for example, 12 seconds.
  • the detection step of detecting the object to be measured in the reaction solution by the detection unit 119 will be described in detail below.
  • the reaction vessel 121 in which the sample and the reagent are dispensed and a predetermined time has passed on the incubator 106, or the reaction vessel 121 that has undergone B / F separation is moved to the detection reaction solution suction position L4 by the rotation of the incubator 106.
  • the nozzle of the detection reaction liquid suction mechanism 118 moves and descends above the reaction vessel 121 to suck the reaction liquid in the reaction vessel 121.
  • This reaction solution is sent to the flow cell type detection unit 119 (first detection unit 119A or second detection unit 119B) via the liquid supply flow path 132, and the detection unit 119 detects the object to be measured. I do. Whether to use the first detection unit 119A or the second detection unit 119B is determined according to the designation in the measurement item. In some cases, the detection unit to be used is not specified in the measurement item, in which case the control unit 102 can appropriately select the detection unit currently on standby.
  • the control unit 102 derives a measurement result (concentration of the detection object in the sample, etc.) based on the detection value of the measurement object detected by the detection unit 119, and stores it in the storage unit 135.
  • the measurement result can also be displayed on a display unit 134 such as a display.
  • the control unit 102 moves the reaction vessel 121 in which the reaction liquid is sucked to the reaction vessel disposal position L5 by the rotation of the incubator 106, moves it from the incubator 106 to the upper part of the waste hole 110 by the transport mechanism 107, and causes the waste hole 110. Discard from.
  • the above detection steps can be carried out in the first detection unit 119A or the second detection unit 119B for each measurement item, for example, in a 24-second cycle.
  • the detection unit (119A or 119B) to be used may be specified in the measurement item.
  • the first detection unit 119A performs detection for a certain measurement item because only the first detection unit 119A has the calibration data. May be done.
  • the detection unit may be specified for each measurement item on the GUI, and even in that case, only one of the plurality of detection units may be specified.
  • the measurement items A to C are instructed in the measurement numbers 1 to 3, respectively, but the first detection unit 119A is instructed in each of the measurement items ((1)). Further, in the measurement numbers 4 to 6, the measurement items D to F are instructed, respectively, but in each of the measurement items, the second detection unit 119B is instructed ((2)).
  • the detection by the first detection unit 119A is executed three times in a row.
  • the detection by the second detection unit 119B is executed three times in a row.
  • the second detection unit 119B does not operate and is idle while the detection operation by the first detection unit 119A is being executed, and conversely, the first detection operation is being executed by the second detection unit 119B.
  • the detection unit 119A of the above is not operating and is playing.
  • the first detection unit 119A and the second detection unit 119B cannot operate in parallel, and the total analysis time becomes long.
  • the time required for dispensing is 72 seconds, parallel measurement is not possible, so the total detection time is as long as 132 seconds.
  • the sample is dispensed so that the same detection unit is not continuous.
  • the operation of changing the order of is executed. The operation of changing the order of sample dispensing will be described in more detail with reference to FIG.
  • FIG. 3 is a schematic diagram illustrating the operation of the first embodiment. As shown in FIG. 3A, consider a case where six measurement numbers are specified as in the example of FIG. In the first embodiment, when the same detection unit is specified in consecutive measurement numbers, the control unit 102 executes an operation of changing the order of sample dispensing so that the same detection unit is not continuous. To do.
  • the measurement items (measurement numbers 1 to 3) that specify the first detection unit 119A are consecutive three times.
  • the measurement items (measurement numbers 4 to 6) that specify the second detection unit 119B are also three times in succession. Therefore, the control unit 102 confirms the detection unit designated by the next measurement item of measurement number 2 after the dispensing operation related to the measurement number 1 (sample a, measurement item A) is completed.
  • the control unit 102 determines that the same detection unit (first detection unit 119A) is continuously designated, and changes the order of dispensing. In the example of FIG. 3A, it is the measurement number 4 that the second detection unit 119B, which is not the same as the first detection unit 119A designated by the measurement number 1, is designated. Therefore, after the dispensing operation of measurement number 1 is completed, the control unit 102 skips measurement numbers 2 and 3 (hereinafter, such an operation is referred to as “dispensing skip operation”) and jumps to measurement number 4. To execute the dispensing operation.
  • the control unit 102 skips the measurement numbers 5 and 6 and jumps to the measurement number 2 where the dispensing operation has not been completed yet.
  • the control unit 102 dispenses the sample by changing the order of the dispensing operations so that the measurement numbers specified in the measurement items for the same detection unit are not consecutive.
  • the dispensing operation is executed in the order of measurement numbers 1, 4, 2, 5, 3, and 6. According to such an operation, it is possible to minimize the continuous use of the same detection unit in continuous measurement items (measurement numbers).
  • the first detection unit 119A and the second detection unit 119B have more chances to operate in parallel.
  • the total analysis time can be shortened accordingly. For example, when the time required for dispensing is 72 seconds, the total analysis time can be reduced to, for example, 84 seconds by executing the parallel measurement.
  • the details of the sample dispensing operation in the first embodiment will be described with reference to the flowchart of FIG.
  • the control of the sample dispensing operation is performed by the control unit 102.
  • the sample rack 103 on which a plurality of samples are loaded is transported to the immunoassay device 101 (step S301).
  • the control unit 102 confirms the measurement items of each sample in the order of the measurement numbers (step S302).
  • the immunoassay device 101 reads a barcode attached to the sample container 120 using a barcode detector (not shown), and recognizes a measurement item of each sample and a detection unit designated by the measurement item (step).
  • the barcode and the barcode detector are merely examples of the configuration for confirming the measurement items, and the format does not matter as long as the information of the measurement items and the designated detection unit can be provided to the control unit 102. ..
  • the sample rack 103 moves along the rack transfer line 104 to the front of the sample discharge position L3 (step S303). When the movement is completed, it waits until the dispensing operation is started. A plurality of sample racks can stand by on the rack transport line 104. If the dispensing operation of the sample rack 103 related to the previous measurement number is not completed, the new sample rack 103 waits at the retracted position until the dispensing of the previous sample rack 103 is completed, and after that, the sample is sampled. Move to the discharge position.
  • the sample dispensing mechanism 105 dispenses the amount of the sample according to the measurement protocol shown in the measurement item into the reaction vessel 121 (step S304).
  • step S305A it is confirmed whether or not the dispensing has been completed for all the samples and all the measurement numbers in the sample rack 103 currently at the sample discharge position L3 (step S305A).
  • the dispensing of all the samples and all the measurement numbers is completed (Yes in step S305A)
  • the rack transfer line 104 is not in the next sample rack 103 (No in step S309A)
  • the measurement is completed or the state transitions to the standby state (step S310).
  • the "standby state” is a state in which when the sample rack is transported to the immunoassay device 101, sample dispensing can be started immediately.
  • step S305A when it is determined that the dispensing of all the samples and all the measurement numbers in the sample rack 103 currently at the sample discharge position L3 has not been completed (No in step S305A), the measurement items related to the next measurement number. However, it is confirmed whether or not the same detection unit as the measurement item related to the immediately preceding (previous) measurement is specified (step S306A). If the same detection unit is not specified (No), the operation proceeds to step S311A. On the other hand, if the same detection unit is specified (Yes), the operation proceeds to step S307A.
  • step S311A it is further determined whether or not the sample related to the next measurement item is the same sample as the sample related to the previous measurement number. In the case of the same sample (Yes in step 311A), the sample rack 103 is not moved, and the sample is dispensed from the same sample container 120 as the previous time. If the samples are not the same (No in step 311A), the sample rack 103 is moved to the position of the sample according to the measurement item, and then the same sample is dispensed.
  • step S307A in order to avoid designating the same detection unit consecutively, measurement numbers having measurement items that specify the same detection unit are skipped (dispensing skip operation), and different detection units are specified instead. It is determined whether or not the sample related to the measurement number having the measurement item to be measured exists in the sample rack 103. If the sample is present (Yes in step S307A), the operation proceeds to step S313. If the sample does not exist (No in step S307A), the process proceeds to step S308A. In step S313, the moving amount and moving direction of the sample rack 103 are confirmed based on, for example, the output of the barcode detector described above, and the sample rack is moved (step S314).
  • Step S308A When there is no corresponding sample in the sample rack 103 currently at the sample discharge position L2 (No in step 307A), it is determined whether or not the dispensing skip operation has been executed in the sample rack 103 so far.
  • the control unit 102 can store as historical data whether or not the dispensing skip operation has been performed, and the determination in step S308A is executed according to the historical data.
  • the dispensing skip operation is executed (Yes), the operation proceeds to step S313, and the same operation as described above is executed.
  • the dispensing skip operation is not executed (No)
  • the operation proceeds to step S309A, and the same operation as described above is executed.
  • the sample rack 103 normally moves in the forward direction, but when it is determined that the same detection unit is continuously specified, the sample rack 103 moves in the opposite direction unlike the normal case. , The direction of movement may be switched.
  • the above sample dispensing is repeated until all the measurement items of the sample placed in the sample rack are completed. That is, in the first embodiment, the sample rack is moved according to the measurement items in order to measure alternately in the plurality of detection units within the possible range. As a result, parallel measurement can be performed by a plurality of detection units, and the total analysis time can be shortened.
  • the present invention is not limited to this, and the same operation may be performed across a plurality of sample racks. In that case, the measurement information of the plurality of sample racks is confirmed, and the order of the dispensing operations is changed among the plurality of sample racks.
  • FIG. 5 is a schematic view illustrating a part of the configuration of the automatic analyzer (immunoassay apparatus) of the second embodiment. Since the immunoassay apparatus of the second embodiment is the same as the configuration of the first embodiment except for the portion shown in FIG. 5, redundant description will be omitted below.
  • the difference between the second embodiment and the first embodiment is that the linear sample rack 103 is used in the first embodiment, but it can be moved in a circumferential shape in the second embodiment. The point is that the sample racks 501 and 505 are used.
  • FIG. 5 is a schematic view illustrating a part of the configuration of the automatic analyzer (immunoassay apparatus) of the second embodiment. Since the immunoassay apparatus of the second embodiment is the same as the configuration of the first embodiment except for the portion shown in FIG. 5, redundant description will be omitted below.
  • the difference between the second embodiment and the first embodiment is that the linear sample rack 103 is used in the first embodiment, but it can be moved in a circumferential shape in the second
  • the sample rack 501 is a rack that is first moved to the sample dispensing position L3', and the sample rack 505 is moved to the sample dispensing position L3'after the dispensing operation of the sample rack 501 is completed. It is a rack to be used.
  • the immunoassay apparatus of the second embodiment includes a transport path in which the rack transport line 504 is configured in a circumferential shape, and the sample is provided along the circumferential transport path.
  • the racks 501 and 505 are configured to be movable.
  • the sample racks 501 and 505 are configured by connecting a plurality of container storage portions.
  • a plurality of container storage portions in one sample rack 501, 505 are connected by, for example, a hinge member or an elastic member, and the shape of one sample rack 501, 505 can be flexibly changed along the shape of the transport path. Has been done.
  • the nozzle of the sample dispensing mechanism 105A is configured to be rotatable around a rotation axis, and the tip of the nozzle is movable along the circumferential path of the rack transport line 504. Therefore, when the sample racks 501 and 505 are introduced into the rack transport line 504, the sample dispensing mechanism 105A can access any sample position of the sample racks 501 and 505.
  • the rack transport line 504 is provided with a turnout 506 capable of switching the traveling direction of the sample racks 501 and 505.
  • the turnout 506 rotates and the sample rack at the sample dispensing position L3' Move 501 backwards.
  • the turnout 506 is rotated toward the sample rack traveling direction 507, and the sample rack 501 is moved in the sample rack traveling direction 507.
  • the turnout 506 is rotated to the sample dispensing position L3', and the sample rack 505 waiting at the rack transfer line 504 is moved to the sample dispensing position L3'.
  • step S608A corresponding to step 308A in FIG. 4
  • step S613 the sample dispensing mechanism 105A moves to the confirmed sample position (step S614).
  • Other operations are substantially the same as those in the first embodiment.
  • the same effect as that of the first embodiment can be obtained by using the sample racks 501 and 505 that can be moved in a circumferential shape.
  • the order of the dispensing operations can be changed across a plurality of racks.
  • FIG. 7 is a schematic view illustrating a part of the configuration of the automatic analyzer (immunoassay apparatus) of the third embodiment. Since the immunoassay apparatus of the third embodiment is the same as the configuration of the above-described embodiment except for the portion shown in FIG. 7, duplicated description will be omitted below.
  • the dispensing skip operation of changing the dispensing order of the sample is performed according to the detection unit designated by the measurement item.
  • the same operation is performed in principle, but when the dispensing skip operation is executed, a child sample is generated and the child sample can be temporarily stored in an area (hereinafter, "" It is placed in the child sample area 701).
  • a child sample is an amount of sample required to carry out the measurement of a certain measurement item.
  • a plurality of child samples can be generated in the child sample area 701, but the number is not limited to a specific number.
  • a child sample area 701 capable of temporarily storing the child sample is provided on the circumference on which the nozzle of the sample dispensing mechanism 105B moves.
  • the reaction vessel 121 can be installed in the child sample area 701 by the reaction vessel transport mechanism 107.
  • the sample rack 103 and the rack transfer line 104 are the same as those in the first embodiment, the same sample rack and rack transfer line as in the second embodiment may be adopted.
  • FIGS. 8A and 8B show a flow of a series of sample dispensing operations.
  • the control of the sample dispensing operation is performed by the control unit 102.
  • Steps S801 to S809 in FIG. 8A are substantially the same as steps S302 to S306A, S311A, and S312 of FIG. 4 of the first embodiment. Therefore, duplicate description will be omitted.
  • the operation loops between steps S801 to S806A to S808A.
  • step S806A when it is confirmed that the detection unit specified by the measurement item related to the next measurement number is the same as the detection unit specified by the measurement item related to the immediately preceding (previous) measurement number (Yes), the above-mentioned The procedure for preparing the child sample is started.
  • step S807A it is determined whether or not the sample related to the next measurement number is the same as the sample related to the previous measurement number.
  • step S811 the sample rack is moved by one sample, and then a child sample of a sample different from the previous measurement number is created in the child sample area 701 (step S811).
  • step S810 the sample rack is moved by one sample, and then a child sample of a sample different from the previous measurement number is created in the child sample area 701 (step S811).
  • step S811 the sample rack is moved by one sample, and then a child sample of a sample different from the previous measurement number is created in the child sample area 701 (step S811).
  • the next measurement number is the same sample as the previous measurement number (Yes in step S807A)
  • a child sample of the same sample as the previous measurement number is created in the child sample area 701 (step S811).
  • the sample rack 103 is moved by one sample (step S812). It is determined whether or not the transferred sample is the final sample in the sample rack 103 currently in the sample dispensing position (step S813A).
  • step S813A If it is not the final sample (No in step S813A), the sample is dispensed from the undispensed sample container in the sample rack 103 (step S814), and then the process proceeds to step S815A. On the other hand, if it is the final sample (Yes in step S813A), the process proceeds to step S817A.
  • step S815A it is confirmed whether or not there is a child sample in the child sample area 701 that specifies a detection unit different from the detection unit specified by the previous measurement number (step S815A). If such a child sample is present in the child sample area 701 (Yes in step S815A), the corresponding child sample is dispensed from the child sample area 701 (step S816). In the child sample area 701, steps S815A and S816 are repeated until there are no such child samples.
  • the child sample area 701 if there is a child sample that specifies a detection unit different from the detection unit specified by the previous measurement number, the child sample is dispensed and measured alternately (in parallel) by the two detection units. It can be performed. However, when there is no such child sample in the child sample area 701 (No in step S815A), the detection unit designated by the measurement item with reference to the next measurement number is the sample targeted by the previous measurement number. It is confirmed whether or not the samples are the same (step S819A).
  • step S819A If it is determined that the samples are not the same (No in step S819A), the sample rack is moved by one sample in order to dispense the next sample (step S812). On the other hand, when it is determined that the samples are the same (No in step S819A), it is confirmed whether the measurement item related to the next measurement number specifies the same detection unit as the previous measurement number (step S820A). ).
  • step S820A If it is determined that a different detection unit is specified (No in step S820A), sample dispensing is continued from the same position without moving the sample rack. On the other hand, when it is determined that the same detection unit is designated (Yes in step S820A), the step of creating a child sample in the child sample area 701 is carried out in the same manner as described above (step S811).
  • Steps S811 to S816 described above are repeated until the measurement for all the measurement numbers in one sample rack is completed. After that, when it becomes the final sample in the sample rack 103 (Yes in step S813A), all the unmeasured child samples stored in the child sample area 701 are dispensed (step S818), and then in the sample rack. Dispensing of the final sample of 03 is completed (step S822). After the dispensing is completed, as described above, the same sample dispensing operation is repeated for another sample rack, the measurement is completed, or the state transitions to the standby state (steps S823 and S824).
  • the third embodiment by using a plurality of detection units alternately, it is possible for the plurality of detection units to perform measurement in parallel. At this time, by generating the child sample in the child sample area 701, the execution of this procedure becomes easy.
  • FIG. 9 is a schematic view illustrating a part of the configuration of the automatic analyzer (immunoassay apparatus) of the fourth embodiment. Since the immunoassay apparatus of the fourth embodiment is the same as the configuration of the above-described embodiment except for the portion shown in FIG. 9, duplicate description will be omitted below.
  • the differences between the fourth embodiment and the third embodiment are as follows.
  • a configuration is adopted in which the child sample is temporarily stored in the child sample area 701.
  • a configuration is adopted in which the child sample is temporarily stored in the incubator 106.
  • the immunoassay apparatus of the fourth embodiment has substantially the same structure as that of FIG. 1 except for the sample dispensing mechanism 105C.
  • the dispensing skip operation is executed when the same detection unit is continuously designated.
  • the reaction vessel transport mechanism 107 transports the reaction vessel 121 for preparing the child sample to a predetermined position of the incubator 106.
  • the number of reaction vessels 121 installed is set according to the number of times the dispensing skip operation is executed.
  • the reaction vessel transport mechanism 107 may access a predetermined position of the incubator 106, or conversely, the incubator 106 reacts by the rotation of the incubator 106. You may access the side of the container transport mechanism 107.
  • the sample dispensing mechanism 105C sucks the samples related to a plurality of measurement numbers to be generated as the child sample, which are skipped by the dispensing skip operation, from the sample rack 103 at once. can do.
  • the sample sucked in a batch is divided into a plurality of reaction vessels 108 and discharged according to a plurality of measurement numbers.
  • Samples for a plurality of measurement numbers are sequentially discharged into a plurality of reaction vessels 121 by rotation of the incubator 106, for example. For example, when three measurement items of a sample dispensing amount of 10 uL are skipped, three reaction vessels 121 are installed on the incubator 106. Subsequently, the sample dispensing mechanism 105C sucks 30 uL of the sample from, for example, the sample rack 903, and discharges 10 uL each into the three reaction vessels 121 placed on the incubator 106.
  • the operation of creating a child sample in the child sample area 701 and then dispensing the sample from the child sample area 701 to the incubator 106 is performed.
  • the child sample dispensing as in the third embodiment is unnecessary. It becomes. Therefore, according to the fourth embodiment, as in the first to second embodiments, the order of dispensing is changed according to the content of the measurement items, and the parallel measurement is executed by the plurality of detection units. be able to.
  • FIG. 10 is a schematic view illustrating a part of the configuration of the automatic analyzer (immunoassay apparatus) of the first modification.
  • the sample dispensing mechanism 105D includes a rotating shaft 1001 and a dispensing nozzle 1002.
  • the rotary shaft 1001 is rotatable about the rotary shaft O1.
  • the dispensing nozzle 1002 is configured to be rotatable around a rotating shaft O2 provided at the tip of the rotating shaft 1001.
  • the sample dispensing mechanism 105D has two rotating portions and two rotating axes, whereby the sample rack 103 and the incubator 106 It is said that any location can be accessed.
  • FIG. 11 is a schematic view illustrating a part of the configuration of the automatic analysis (immunoassay device) of the second modification.
  • one sample rack contains a plurality of sample containers and is transported by a rack transfer line.
  • the sample containers 1101, 1104 ... are individually transported along the rack transport line 1102.
  • the sample containers 1101, 1104 ... Can be moved not only in the longitudinal direction of the rack transport line 1102 but also in the lateral direction by magnetic transport or the like.
  • the samples are dispensed in the order of arrival at the sample dispensing position 1103 along the rack transport line 1102, but the same detection unit is designated as in the above-described embodiment.
  • the order can be changed as appropriate to dispense the sample.
  • the immunoassay device is connected to the sample transfer and sample transfer pretreatment unit, and the arrangement of the child samples is changed in advance according to the order of the measurement items when the child sample is prepared.
  • the control unit 102 stores the history of the skipping of the dispensing and the replacement of the measurement order, and based on this history data.
  • a function is provided to recommend changing the detector specified by the measurement item.
  • the history data of changing the measurement order can be stored in the storage unit 118. Further, the decision as to whether or not to recommend the change of the detection unit based on the historical data can be made in the computer program executed by the control unit 102.
  • the detection unit designated at the time of measurement is biased.
  • the detection unit specified in any of the measurement items it is possible to calculate how much the number of times the dispensing can be rearranged can be reduced based on the historical data.
  • a message recommending the change of the designated detection unit is displayed on the display unit 102. Based on the information, the operator can determine whether or not to change the detection unit specified in each measurement item.
  • the present invention is not limited to the above embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • Buffer Liquid discharge mechanism 117 ... B / F separation and stirring mechanism, 118 ... Detection reaction liquid suction mechanism, 119, 119A, 119B ... Detection unit (analysis unit), 120 ... Sample container, 121 ... Reaction vessel, L1 ... Reaction vessel installation position, L2 ... Reagent discharge position, L3 ... Specimen discharge position, L4 ... Detection reaction liquid suction position, L5 ... Reaction vessel disposal position , L6 ... B / F separation and transport position, L7 ... Chip mounting position, 128 ... Sample dispensing chip, 130 ... Reagent disk cover, 131 ... Opening, 132 ... Liquid delivery Flow path 133 ... Operation unit, 134 ... Display unit, 135 ... Storage unit, 501, 505 ... Specimen rack, 506 ... Brancher, 507 ... Specimen rack traveling direction, 701 ⁇ ⁇ ⁇ Child sample area.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

総分析時間の短縮を図ることが出来る自動分析装置及び制御プログラムを提供することを目的とする。この自動分析装置は、検体を収容する検体ラックと、検体を検体ラックから吸引して反応容器に分注する検体分注機構と、反応容器の反応液を検出する複数の検出部と、検体分注機構及び検出部を制御する制御部とを備える。制御部は、検体に関し指定されている測定項目を確認すると共に、測定項目において指定されている複数の検出部のうちの1つの検出部を確認するよう構成される。複数の検出部の中の同一の検出部を指定する測定が連続して指定された場合、異なる検出部を指定する測定が連続するよう、検体分注機構による分注の順序を入れ替える。

Description

自動分析装置及び自動分析装置用の制御プログラム
 本発明は、自動分析装置及びその制御プログラムに関する。
 自動分析装置は通常、検体を分注するための検体分注機構と、分注された検体を反応容器において試薬と反応させて検査を行う検出部とを備えている。また、1つの装置において複数の検出部が設けられ、検査項目に応じて対応する検出部において検査が実行される(例えば特許文献1参照)。複数の検出部が並列に動作することで、分析時間を短縮することができる。
 このような自動分析装置においては、供給される検体ごとに測定項目が指定されるとともに、その測定項目ごとに複数の検出部のうちの1つが指定されることがある。自動分析装置は、指定された検出部を割り当てて順次検査を実行する。
 しかし、複数の連続する測定項目において、同一の検出部が連続して指定されることがある。この場合、複数の検出部のうちの一方のみが連続して使用され、他方は使用されない状態が続き、複数の検出部を並列に動作させることができない状態が生じる。その結果、総分析時間が長くなってしまうことが生じ得る。
特開2011-185821号公報
 本発明は、総分析時間の短縮を図ることが出来る自動分析装置及び制御プログラムを提供することを目的とする。
 上記目的を達成するため、本発明に係る自動分析装置は、検体を収容する検体ラックと、前記検体を前記検体ラックから吸引して反応容器に分注する検体分注機構と、前記反応容器の反応液を検出する複数の検出部と、前記検体分注機構及び前記検出部を制御する制御部とを備える。前記制御部は、前記検体に関し指定されている測定項目を確認すると共に、前記測定項目において指定されている前記複数の検出部のうちの1つの検出部を確認するよう構成され、前記複数の検出部の中の同一の検出部を指定する測定が連続して指定された場合、異なる検出部を指定する測定が連続するよう、前記検体分注機構による分注の順序を入れ替える。
 本発明によれば、項目ごとに検出部を指定した場合であっても、検体分注を並び替え、可能な限り交互の検出部で順に測定することで、総分析時間の短縮が可能となる。
第1の実施の形態の免疫分析装置101において実行される分析動作の概要を説明する概略図。 連続する測定項目において同一の検出部が連続して指定される場合の問題を説明する説明図。 第1の実施の形態の免疫分析装置101の動作を説明する概略図。 第1の実施の形態の免疫分析装置101の動作を説明するフローチャート。 第2の実施の形態の自動分析装置(免疫分析装置)の構成の一部を説明する概略図。 第2の実施の形態の免疫分析装置101の動作を説明するフローチャート。 第3の実施の形態の自動分析装置(免疫分析装置)の構成の一部を説明する概略図。 第3の実施の形態の免疫分析装置101の動作を説明するフローチャート。 第3の実施の形態の免疫分析装置101の動作を説明するフローチャート。 第4の実施の形態の自動分析装置(免疫分析装置)の構成の一部を説明する概略図。 第1の変形例に係る自動分析装置(免疫分析装置)の構成の一部を説明する概略図。 第2の変形例に係る自動分析装置(免疫分析装置)の構成の一部を説明する概略図。 測定項目が指定する検出部の変更を推奨する画面の表示例。
 以下、添付図面を参照して本実施の形態について説明する。添付図面では、機能的に同じ要素は同じ番号又は対応する番号で表示される場合もある。なお、添付図面は本開示の原理に則った実施の形態と実装例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味においても限定するものではない。
 本実施の形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。
[第1の実施の形態]
 図1は、第1の実施の形態に係る自動分析装置の概略構成図である。なお、自動分析装置として免疫分析装置に適用した場合を例に挙げて説明する。
 図1に示すように、免疫分析装置101は、制御部102、検体ラック103、ラック搬送ライン104、検体分注機構105、インキュベータ(容器設置部)106、反応容器搬送機構107、反応容器保持部108、反応容器攪拌機構109、及び廃棄孔110を備えている。これに加えて、免疫分析装置101は、試薬ディスク111、試薬分注機構112、B/F分離搬送機構113、B/F分離機構114、B/F分離用反応液吸引機構115、緩衝液吐出機構116、B/F分離後撹拌機構117、検出用反応液吸引機構118、複数の検出部119(ここでは2つ(第1検出部119A、第2検出部119B))を備えている。
 制御部102は、検体分注機構105を含む免疫分析装置101の全体の制御を司る。制御の詳細については、後述の説明により明らかにされる。検体ラック103は、検体を保持する検体容器120を架設する。1つの検体ラック103は、複数の検体容器120を保持可能に構成され得る。ラック搬送ライン104は、検体ラック103に架設された検体容器120を検体分注機構105の近傍の検体分注位置まで移動させる。制御部102は、オペレータからの各種操作を受け付ける操作部133、インタフェース画面や測定結果等を表示する表示部134、及び各種データや制御プログラム(検体分注、分析などを制御するプログラム)を記憶する記憶部135を備えている。
 検体分注機構105は、回転及び上下方向の動作が可能とされたノズルを備え、検体容器120に保持された検体を吸引した後、インキュベータ106上の反応容器121へ吸引した検体を吐出する。インキュベータ106は、複数の反応容器121を加温状態で保持可能に構成され、反応容器121に収容された反応液の反応を促進させる反応ディスクを有する。反応ディスクは、回転軸を中心に回転可能に構成されている。反応ディスクが回転することにより、反応容器121を、反応容器設置位置L1、試薬吐出位置L2、検体吐出位置L3、検出用反応液吸引位置L4、反応容器廃棄位置L5、B/F分離搬送位置L6まで移動させることができる。
 反応容器搬送機構107は、X軸、Y軸及びZ軸の3方向に移動可能な3軸搬送機構であり、検体分注チップ128や反応容器121を把持して所定位置までの搬送を行う。反応容器保持部108は、多数の未使用の反応容器121や検体分注チップ128を保持する保持部である。反応容器撹拌機構109は、反応容器121に回転運動を加えることで反応容器121内の検体と試薬とを混和する撹拌機構である。廃棄孔110は、使用済の反応容器121や検体分注チップ128を廃棄するための廃棄容器(図示せず)に繋がる孔である。反応容器搬送機構107は、反応容器保持部108、反応容器撹拌機構109、廃棄孔110、検体分注チップ128の装着位置L7、インキュベータ106の間を移動し、検体分注チップ128や反応容器121の搬送を行う。
 試薬ディスク111は、試薬を保持した複数の試薬容器136を設置している。試薬ディスク111の内部は所定の温度に維持されており、試薬ディスク111の上部にはカバー130が設けられている。このカバー130の一部には、カバー開口部131が設けられている。
 試薬分注機構112は、回転及び上下移動が可能に構成されたノズルを備え、試薬ディスク111中の試薬容器136に保持された試薬を吸引すると共に、吸引した試薬をインキュベータ106上の反応容器121へ吐出することが可能に構成されている。B/F分離搬送機構113は、インキュベータ106上で所定時間が経過した反応容器121を、B/F分離搬送位置L6からB/F分離機構114に移動させる。B/F分離機構114は、反応容器121内の収容された反応液中に存在する測定対象物と免疫的な結合をした物質を含む磁性粒子を反応容器121の内壁に磁気的に吸着させることで、磁性粒子を含まない反応液と磁性粒子とを分離する機構である。
 B/F分離用反応液吸引機構115は、X軸及びZ軸方向へ移動可能なよう構成されておいる。B/F分離用反応液吸引機構115は、B/F分離機構114上で所定時間が経過した反応容器121の上方に移動・下降し、反応容器121内の磁性粒子を含まない反応液を吸引する。
 緩衝液吐出機構116は、X軸及びZ軸方向へ移動可能なよう構成されており、B/F分離機構114上で、磁性粒子を含まない反応液が吸引された反応容器121の上方に移動・下降して、反応容器121内に緩衝液を吐出する。B/F分離後攪拌機構117は、反応容器121に回転運動を加えて反応容器121内の磁性粒子と緩衝液とを混和する。混和後の反応容器121は、B/F分離搬送機構113によってインキュベータ106のB/F分離搬送位置L6へと搬送される。
 検出用反応液吸引機構118は、回転と上下移動が可能に構成され、インキュベータ106上の反応容器121中に収容されていた反応液を吸引して検出部119へ送液することが可能に構成されている。検出部(分析部)119は、測定時間短縮のため、複数の検出部119(ここでは、第1の検出部119Aと第2の検出部119Bの2個)が設置されており、検出用反応液吸引機構118から吸引及び送液された反応液中の検出対象物の濃度等を検出する(分析する)。第1の検出部119Aと第2の検出部119Bとは、送液流路132を介して検出用反応液吸引機構118と接続されている。
 次に、第1の実施の形態の免疫分析装置101において実行される分析動作の概要を説明する。
 分析動作においてはまず、制御部102は、操作部133からの測定入力信号を受けて、分析を実施するために免疫分析装置101内の各機構に制御信号を出力し、その動作の制御を行う。
 反応容器搬送機構107は、反応容器保持部108の上方に移動して下降し、未使用の反応容器121を把持して上昇する。その後、反応容器搬送機構107は、インキュベータ106の反応容器設置位置L1の上方に移動して下降し、未使用の反応容器121をインキュベータ106上に設置する。
 次に、搬送機構107は、反応容器保持部108の上方に移動して下降し、未使用の検体分注チップ128を把持して上昇する。その後、搬送機構107は、チップ装着位置L7の上方に移動して下降し、未使用の検体分注チップ128をチップ装着位置L7上に設置する。その後、検体分注機構105のノズルは、チップ装着位置L7の上方に移動して下降し、検体分注機構105の分注ノズルの先端に検体分注チップ128を装着する。
 続いて、試薬分注機構112のノズルは、試薬ディスクカバー130の開口部131の上方に回転移動して下降し、ノズルの先端を所定の試薬容器136内の試薬に接液させて所定量の試薬を吸引する。次いで、試薬分注機構112のノズルは、インキュベータ106の試薬吐出位置L2の上方に移動し、インキュベータ106に設置された反応容器121に試薬を吐出する。
 一方、検体分注機構105のノズルは、検体分注チップ128を装着した後、検体ラック103に配置された検体容器120の上方に移動して下降し、検体容器120に保持された検体を所定量吸引する。その後、検体分注機構105のノズルは、インキュベータ106の検体吐出位置L3に移動して下降し、試薬が分注された反応容器121に検体を吐出する。検体の吐出後、検体分注機構105のノズルは混合動作を行う。混合動作の完了後、検体分注機構105のノズルは廃棄孔110の上方に移動し、使用済の検体分注チップ128を廃棄孔110へと廃棄する。
 その後、制御部102は、検体と試薬とが混合された反応容器121を、インキュベータ106を回転させて反応容器設置位置L1に移動させ、搬送機構107によって反応容器121を反応容器撹拌機構109へと搬送する。
 反応容器撹拌機構109は、反応容器121に回転運動を加えて、反応容器121内の検体と試薬を混和させるために撹拌する。その後、制御部102は、撹拌の終了した反応容器121を搬送機構107によってインキュベータ106の反応容器設置位置L1に戻す。
 制御部102は、分析プロトコルに従って、以下に説明するB/F分離工程を、測定項目に応じて選択的に実施する。まず、インキュベータ106上で所定時間が経過した反応容器121を、インキュベータ106の回転によってB/F分離搬送位置L6に移動させ、B/F分離搬送機構113によってB/F分離機構114へと当該反応容器121を搬送する。
 続いて、B/F分離機構114は、反応容器121の反応液中に存在する測定対象物と免疫的な結合をした物質を含む磁性粒子を反応容器121の内壁に磁気的に吸着させる。所定時間の経過後、当該反応容器121の上方に、B/F分離用反応液吸引機構115のノズルを移動・下降させて、反応容器121内の磁性粒子を含まない反応液を吸引する。
 その後、その反応容器121の上方に、緩衝液吐出機構116のノズルを移動・下降させて、反応容器121内に緩衝液を吐出させる。そして、B/F分離搬送機構113によって、反応容器121をB/F分離後撹拌機構117へと搬送する。
 その後、B/F分離後攪拌機構117において反応容器121に回転運動を加えて、反応容器121内の磁性粒子と緩衝液を混和する。磁性粒子と緩衝液との混和が終了した反応容器121は、B/F分離後搬送機構113によってインキュベータ106のB/F分離搬送位置L6に戻される。以上の分注及び反応の工程が、1つの測定項目あたり、例えば12秒のサイクルで実施される。
 次いで、反応液中の測定対象物を検出部119において検出する検出工程について、下記に詳細に説明する。まず、検体と試薬が分注されインキュベータ106上で所定時間が経過した反応容器121、又はB/F分離を経た反応容器121が、インキュベータ106の回転により、検出用反応液吸引位置L4に移動される。反応容器121が検出用反応液吸引位置L4に移動すると、反応容器121の上方に、検出用反応液吸引機構118のノズルが移動・下降し、反応容器121内の反応液を吸引する。この反応液を、送液流路132を経由してフローセル型の検出部119(第1の検出部119A又は第2の検出部119B)へと送液し、検出部119において測定対象物の検出を行う。第1の検出部119Aと第2の検出部119Bのいずれを使用するかは、測定項目における指定に従って決定される。なお、測定項目において使用する検出部が指定されていない場合もあり、その場合には、制御部102が、現在待機中の検出部を適宜選択し得る。
 制御部102は、検出部119で検出した測定対象物の検出値に基づいて測定結果(検体中の検出対象物の濃度等)を導出し、記憶部135に記憶させる。測定結果は、ディスプレイ等の表示部134にも表示され得る。また、制御部102は、反応液が吸引された反応容器121をインキュベータ106の回転によって反応容器廃棄位置L5に移動させ、搬送機構107によってインキュベータ106から廃棄孔110の上方に移動させ、廃棄孔110から廃棄する。
 以上の検出工程は、第1の検出部119A又は第2の検出部119Bにおいて、1つの測定項目あたり、例えば24秒サイクルで実施され得る。
 図1の免疫分析装置101のように、検出部119が複数の検出部(119A、119B)を備えていることにより、複数の検出部において並列に測定を実行することが可能になり、測定時間の短縮を図ることが可能になる。例えば、2つの検出部119A、119Bで2つの測定を並列に実行する場合、12秒は並列になるため、測定に要する合計の時間は、24+12=36秒となる(12秒短縮される)。
 しかし、測定項目において、使用すべき検出部(119A又は119B)が指定される場合がある。例えば、2つの検出部をもつ免疫分析装置において、ある測定項目については、第1の検出部119Aのみがキャリブレーションデータを有しているため、第1の検出部119Aにおいて検出を行うことが指定される場合がある。また、GUI上で測定項目ごとに検出部の指定がなされる場合があり、その場合にも、複数の検出部のうちの一方のみが指定されることがあり得る。
 このような場合において、連続する測定番号において、同一の検出部が連続して指定されると、複数の検出部のうちの一方のみが連続して使用される一方で、他方の検出部は使用されず、いわば遊んだ状態が継続する。これにより、総分析時間が長くなってしまうという問題がある。この問題を、図2を参照してより詳しく説明する。
 図2の例では、図2(a)の中の表に示すように、測定番号1~6の測定について、測定対象とされる検体(a又はb)と、測定項目(A~F)が指示されている。また、測定項目A、B、Cについては検出部1が、測定項目D、E、Fについては検出部2が指定されているものとする。また、検体分注は1つの測定項目あたり12秒で実施され、6つの測定項目が6×12=72秒で実施されるものとする。また、図2の表の中の(1)、(2)は、指定される検出部の種類(第1の検出部119A又は第2の検出部119B)を示している。
 図2の例では、測定番号1~3では、それぞれ測定項目A~Cが指示されているが、いずれの測定項目も、第1の検出部119Aが指示されている((1))。また、測定番号4~6では、それぞれ測定項目D~Fが指示されているが、いずれの測定項目においても第2の検出部119Bが指示されている((2))。
 図2(a)の表に示す測定番号(1~6)の順に分注動作が行われ、検出動作が分注順に行われると、第1の検出部119Aによる検出が3回連続して実行された後、第2の検出部119Bによる検出が3回連続して実行されることとなる。この場合、第1の検出部119Aによる検出動作の実行中は、第2の検出部119Bは動作せず遊んでおり、逆に、第2の検出部119Bによる検出動作の実行中は、第1の検出部119Aは動作せず遊んでいる。すなわち、測定番号3から4への切り替わりのタイミングを除き、第1の検出部119Aと第2の検出部119Bが並列に動作することができず、総分析時間が長くなってしまう。図2の例の場合、並列動作時間の12秒が短縮されるのみで、6個の測定を含む総分析時間は24×6-12=132秒となってしまう。換言すれば、分注に要する時間は72秒であるにもかかわらず、並列測定が出来ないため、総検出時間は132秒と長くなってしまう。
 そこで、第1の実施の形態の免疫分析装置101では、複数の測定において、同一の検出部を指示する測定項目が連続して指定された場合、同一の検出部が連続しないように検体分注の順序を入れ替える動作が実行される。この検体分注の順序の入れ替え動作を、図3を参照してより詳しく説明する。
 図3は、第1の実施の形態の動作を説明する概略図である。図3(a)に示すように、図2の例と同様に、6個の測定番号が指定された場合を考える。この第1の実施の形態では、連続する測定番号において同一の検出部が指定されている場合において、同一の検出部が連続しないように検体分注の順序を入れ替える動作を、制御部102において実行する。
 図3(a)の例では、第1の検出部119Aを指定する測定項目(測定番号1~3)が3回連続している。また、第2の検出部119Bを指定する測定項目(測定番号4~6)も3回連続している。このため、制御部102は、測定番号1(検体a、測定項目A)に係る分注動作が終了した後、次の測定番号2の測定項目が指定する検出部を確認する。制御部102は、同一の検出部(第1の検出部119A)が連続して指定されていると判断し、分注の順序を入れ替える。図3(a)の例では、測定番号1が指定する第1の検出部119Aとは同一でない第2の検出部119Bが指定されているのは、測定番号4である。そこで、制御部102は、測定番号1の分注動作の終了後は、測定番号2及び3はスキップし(以下、このような動作を「分注スキップ動作」という)、測定番号4にジャンプして分注動作を実行する。
 同様に、測定番号4の分注動作が終了した後は、通常の順序では測定番号5に係る分注動作が実行される。しかし、測定番号5は、測定番号4と同様に、第2の検出部119Bを指定する測定項目Eを含んでいる。測定番号6も同様である。そこで、制御部102は、測定番号5及び6をスキップして、まだ分注動作が終了していない測定番号2にジャンプする。
 以下同様に、制御部102は、同一の検出部を測定項目において指定する測定番号が連続しないよう、分注動作の順序を入れ替えて検体の分注を行う。図3(a)のような測定番号1~6の場合、図3(b)に示すように、測定番号1、4、2、5、3、6の順序で分注動作が実行される。このような動作によれば、連続する測定項目(測定番号)において、同一の検出部が連続して使用されることを極力少なくすることができる。同一の検出部が連続して使用されることが少なくなると、図3(c)に示すように、第1の検出部119Aと第2の検出部119Bとが並列に動作する機会が多くなり、その分総分析時間を短縮することができる。例えば、分注に要する時間が72秒である場合において、並列測定が実行されることにより、総分析時間を例えば84秒まで短縮することができる。
 第1の実施の形態における検体分注動作の詳細を、図4のフローチャートを参照して説明する。検体分注動作の制御は制御部102において行われる。
 検体分注動作が開始される場合、まず、複数の検体が搭載された検体ラック103が、免疫分析装置101へ搬送される(ステップS301)。検体ラック103が搬送されると、制御部102は、測定番号の順序に従い、各検体の測定項目を確認する(ステップS302)。一例として免疫分析装置101は、図示しないバーコード検知器を用いて、検体容器120に付されているバーコードを読み取り、各検体の測定項目と、測定項目が指定する検出部を認識する(ステップS302)。バーコード及びバーコード検知器はあくまでも測定項目を確認するための構成の一例であり、制御部102に対し測定項目及び指定される検出部の情報が提供可能であれば、その形式は不問である。
 ステップS302においてバーコード(測定項目及び検出部)の読み取りが完了すると、検体ラック103が、ラック搬送ライン104に沿って検体吐出位置L3の前まで移動する(ステップS303)。移動が完了すると、分注動作が開始されるまで待機する。なお、ラック搬送ライン104には複数の検体ラックが待機可能となっている。先の測定番号に係る検体ラック103の分注動作が終わっていない場合には、新たな検体ラック103は、先の検体ラック103の分注の完了まで退避位置において待機し、その完了後、検体吐出位置に移動する。
 検体ラック103の検体吐出位置L3への移動が完了すると、検体分注機構105により測定項目に示された測定プロトコルに応じた量の検体が反応容器121に分注される(ステップS304)。
 その後、現在検体吐出位置L3にある検体ラック103内の全ての検体・全ての測定番号について分注が終了したか否かが確認される(ステップS305A)。全ての検体・全ての測定番号の分注が終了した場合(ステップS305AのYes)、次の検体ラック103がラック搬送ライン104に待機しているかが確認される(ステップS309AのYes)。ラック搬送ライン104に次の検体ラック103が待機している場合、同様の検体分注動作が繰り返される。ラック搬送ライン104に次の検体ラック103に無い場合(ステップS309AのNo)、測定終了、もしくは待機状態に遷移する(ステップS310)。ここで「待機状態」とは、検体ラックが免疫分析装置101に搬送された場合、検体分注を即座に開始可能な状態のことである。
 一方、現在検体吐出位置L3にある検体ラック103内の全ての検体・全ての測定番号の分注が終了していないと判断される場合(ステップS305AのNo)、次の測定番号に係る測定項目が、直前(前回)の測定に係る測定項目と同じ検出部が指定しているか否かが確認される(ステップS306A)。同じ検出部が指定されていない場合には(No)、動作はステップS311Aに移行する。一方、同じ検出部が指定されている場合には(Yes)、動作はステップS307Aに移行する。
 ステップS311Aでは、更に、次の測定項目に係る検体が、前回の測定番号に係る検体と同一の検体であるか否かが判断される。同一の検体である場合(ステップ311AのYes)には、検体ラック103を移動させず、前回と同一の検体容器120から検体の分注を行う。同一の検体でない場合(ステップ311AのNo)、検体ラック103を測定項目に係る検体の位置まで移動させた後、同様の検体の分注を行う。
 ステップS307Aでは、同じ検出部が連続して指定されることを回避するため、同じ検出部を指定する測定項目を有する測定番号はスキップし(分注スキップ動作)、代わりに、異なる検出部を指定する測定項目を有する測定番号に係る検体が、検体ラック103内に存在するか否かが判定される。検体が存在する場合には(ステップS307AのYes)、動作はステップS313に移行する。検体が存在しない場合には(ステップS307AのNo)、ステップS308Aに移行する。ステップS313では、検体ラック103の移動量及び移動方向を、例えば前述のバーコード検出器の出力等に基づいて確認し、検体ラックを移動させる(ステップS314)。
 現在検体吐出位置L2にある検体ラック103内に該当する検体がない場合(ステップ307AのNo)には、これまで当該検体ラック103内において、分注スキップ動作が実行されたか否かが判断される(ステップS308A)。制御部102は、分注スキップ動作が行われたか否かを履歴データとして記憶しておくことができ、この履歴データに従ってステップS308Aの判断が実行される。分注スキップ動作が実行されている場合(Yes)、動作はステップS313に移行し、前述と同様の動作が実行される。一方、分注スキップ動作が実行されていない場合(No)、動作はステップS309Aに移行し、前述と同様の動作が実行される。
 以上説明したように、第1の実施の形態では、複数の検出部で並列に測定が実行されるように分注動作を行うことが優先され、次に測定番号の順序が考慮される。そのため、検体ラック103は、通常は順方向に移動するが、同一の検出部が連続して指定されると判断される場合には、通常とは異なり、検体ラック103が逆方向に移動するよう、移動方向が切り替えられることもあり得る。以上の検体分注を、検体ラックに設置された検体の全測定項目が完了するまで繰り返す。すなわち、第1の実施の形態では、可能な範囲で複数の検出部において交互に測定するため、測定項目に応じて検体ラックを移動させる。これにより複数の検出部において並列測定が可能となり、総分析時間の短縮を図ることができる。
 なお、本実施の形態では同一の検体ラック103内での測定順序の変更を行う場合を説明したが、これに限らず、複数の検体ラックに跨って同一の動作を行っても良い。その場合、複数の検体ラックの測定情報を確認し、複数の検体ラック間で分注動作の順序を変更する。
[第2の実施の形態]
 次に、第2の実施の形態に係る自動分析装置について図5等を参照して説明する。図5は、第2の実施の形態の自動分析装置(免疫分析装置)の構成の一部を説明する概略図である。第2の実施の形態の免疫分析装置は、図5に示す部分以外は、第1の実施の形態の構成と同一であるので、以下では重複する説明は省略する。第2の実施の形態と第1の実施の形態の相違点は、第1の実施の形態では直線状の検体ラック103を使用したが、第2の実施の形態では円周状に移動可能な検体ラック501、505を使用する点である。図5において、検体ラック501は、先に検体分注位置L3’に移動されるラックであり、検体ラック505は、検体ラック501の分注動作が終了した後に、検体分注位置L3’に移動されるラックである。
 図5に示すように、第2の実施の形態の免疫分析装置は、ラック搬送ライン504が円周状に構成された搬送経路を備えており、この円周状の搬送経路に沿って、検体ラック501、505が移動可能に構成されている。検体ラック501、505は、複数の容器収納部を連結して構成されている。1つの検体ラック501、505中の複数の容器収納部は、例えばヒンジ部材や弾性部材などにより連結され、1つの検体ラック501、505の形状が、搬送経路の形状に沿って柔軟に変更可能にされている。
 一方、検体分注機構105Aのノズルは、回転軸を中心に回転可能に構成され、ノズルの先端がラック搬送ライン504の円周状の経路に沿って移動可能とされている。このため、検体ラック501、505がラック搬送ライン504に導入されると、検体分注機構105Aは検体ラック501、505の任意の検体位置にアクセス可能となる。なお、ラック搬送ライン504には、検体ラック501、505の進行方向を切り替え可能な分岐器506が備えられている。検体分注位置L3’にある検体ラック501と、ラック搬送ライン504の後方位置に待機している検体ラック505を切り替える際、分岐器506が回転して、検体分注位置L3’にある検体ラック501を後ろ側に移動させる。次に、分岐器506を検体ラック進行方向507に向けて回転させ、検体ラック501を検体ラック進行方向507に移動させる。その後、分岐器506を検体分注位置L3’側に回転させ、ラック搬送ライン504に待機している検体ラック505を検体分注位置L3’に移動させる。
 第2の実施の形態の免疫分析装置の検体分注動作の詳細を、図6のフローチャートを参照して説明する。検体分注動作の制御は制御部102において行われる。図6における各ステップS602~S610は、以下に説明する点を除き、第1の実施の形態のステップS302~S310と同様であるので、重複する説明は省略する。ただし、この実施の形態では、ステップS608A(図4のステップ308Aに相当)において、分注スキップ動作が実行されていないと判断された場合、ステップS613において、対応する検体の位置の確認がされた後(ステップS613)、検体分注機構105Aが、確認された検体の位置に移動する(ステップS614)。その他の動作は第1の実施の形態と略同一である。
 以上のように第2の実施の形態では、円周状に移動可能な検体ラック501、505を用いることで、第1の実施の形態と同一の効果を奏することができる。なお、第2の実施の形態では、第1の実施の形態と同様、複数のラックに跨って分注動作の順序を入れ替えることも可能である。
[第3の実施の形態]
 次に、第3の実施の形態に係る自動分析装置について図7等を参照して説明する。図7は、第3の実施の形態の自動分析装置(免疫分析装置)の構成の一部を説明する概略図である。第3の実施の形態の免疫分析装置は、図7に示す部分以外は、前述の実施の形態の構成と同一であるので、以下では重複する説明は省略する。
 第3の実施の形態と前述の実施の形態の相違点は次の通りである。前述の実施の形態では測定項目が指定する検出部に応じて、検体の分注の順序を入れ替える分注スキップ動作を行う。この第3の実施の形態も、原則として同様の動作を行うものであるが、分注スキップ動作を実行する際に、子検体を生成し、その子検体を一時的に保管可能なエリア(以下「子検体エリア701」という)に載置する。子検体は、ある測定項目の測定を実行するのに必要な量の検体である。子検体エリア701には、複数個の子検体が生成され得るが、その個数は特定の数には限定されない。
 図7に示すように、この第3の実施の形態では、検体分注機構105Bのノズルが移動する円周上に、子検体を一時的に保管可能な子検体エリア701が設けられている。分注スキップ動作を実行する際に、反応容器搬送機構107により子検体エリア701へ反応容器121を設置することができる。なお、検体ラック103及びラック搬送ライン104は第1の実施の形態のものと同一のものとしているが、第2の実施の形態と同様の検体ラック及びラック搬送ラインを採用してもよい。
 第3の実施の形態の免疫分析装置の検体分注動作の詳細を、図8A及び図8Bのフローチャートを参照して説明する。図8Aと図8Bとにより、一連の検体分注動作の流れが示されている。検体分注動作の制御は制御部102において行われる。図8AにおけるステップS801~S809は、第1の実施の形態の図4のステップS302~S306A、S311A、及びS312と略同一である。従って、重複する説明は省略する。連続する測定番号が異なる検出部を指定している場合には、動作はステップS801~S806A~S808Aの間をループする。
 ステップS806Aにおいて、次の測定番号に係る測定項目が指定する検出部が、直前(前回)の測定番号に係る測定項目が指定する検出部と同一であると確認された場合(Yes)、前述の子検体の作成の手順が開始される。まず、ステップS807Aにおいて、次の測定番号に係る検体が、前回の測定番号に係る検体と同一であるか否かが判定される。
 判定の結果が肯定的(Yes)であれば、ステップS810を経ずにステップS811に移行し、否定的(No)であれば、ステップS810を経てステップS811に移行する。ステップS810では、検体ラックを1検体分移動させ、その後子検体エリア701に前回の測定番号とは別の検体の子検体を作成する(ステップS811)。次の測定番号が前回の測定番号と同一検体である場合には(ステップS807AのYes)、子検体エリア701に前回の測定番号と同一の検体の子検体を作成する(ステップS811)。
 その後、次の測定番号に係る検体を分注するために、検体ラック103を1検体分移動させる(ステップS812)。その移動後の検体が、現在検体分注位置にある検体ラック103内での最終検体であるか否かが判定される(ステップS813A)。
 最終検体ではない場合(ステップS813AのNo)、当該検体ラック103内の未分注の検体容器から検体を分注し(ステップS814)、その後ステップS815Aに移行する。一方、最終検体である場合には(ステップS813AのYes)、ステップS817Aに移動する。
 ステップS815Aでは、前回の測定番号が指定する検出部とは異なる検出部を指定している子検体が子検体エリア701中に存在するか否かが確認される(ステップS815A)。そのような子検体が子検体エリア701中に存在する場合(ステップS815AのYes)、子検体エリア701から該当する子検体を分注する(ステップS816)。子検体エリア701において、そのような子検体が無くなるまで、ステップS815AとステップS816が繰り返される。
 子検体エリア701において、前回の測定番号が指定する検出部とは異なる検出部を指定する子検体があれば、その子検体を分注することで、2つの検出部で交互に(並列に)測定を行うことができる。しかし、そのような子検体が子検体エリア701に無い場合(ステップS815AのNo)、次の測定番号を参照し、その測定項目が指定する検出部が、前回の測定番号が対象とする検体と同一の検体であるか否かが確認される(ステップS819A)。
 同一検体でないと判断される場合には(ステップS819AのNo)、次の検体を分注するために、検体ラックを1検体分移動させる(ステップS812)。一方、同一検体であると判断される場合には(ステップS819AのNo)、次の測定番号に係る測定項目が前回の測定番号と同一の検出部を指定しているかが確認される(ステップS820A)。
 異なる検出部を指定していると判定される場合(ステップS820AのNo)、検体ラックを移動させることなく、同じ位置から検体分注を継続する。一方、同一の検出部を指定していると判断される場合(ステップS820AのYes)、前述と同様にして、子検体エリア701において子検体を作成するステップを実施する(ステップS811)。
 以上説明したステップS811~S816が、1の検体ラック中の全ての測定番号についての測定が完了するまで繰り返される。その後、当該検体ラック103内での最終検体となった場合(ステップS813AのYes)、子検体エリア701に保管されている全ての未測定の子検体を分注後(ステップS818)、検体ラック内03の最終検体の分注を完了させる(ステップS822)。分注完了後は、前述の通り、別の検体ラックについて同様の検体分注動作を繰り返すか、測定終了、もしくは待機状態に遷移する(ステップS823、S824)。
 以上のように第3の実施の形態では、複数の検出部を交互に使用することで、複数の検出部において並列に測定を行うことを可能にする。このとき、子検体エリア701に子検体を生成することで、この手順の実行が容易になる。
 [第4の実施の形態]
 次に、第4の実施の形態の自動分析装置について、図9を参照して説明する。図9は、第4の実施の形態の自動分析装置(免疫分析装置)の構成の一部を説明する概略図である。第4の実施の形態の免疫分析装置は、図9に示す部分以外は、前述の実施の形態の構成と同一であるので、以下では重複する説明は省略する。
 第4の実施の形態と第3の実施の形態の相違点は次の通りである。第3の実施の形態では、同一の検出部が連続して指定される場合において、子検体エリア701に子検体を一時的に保管する構成を採用している。これに対し、この第4の実施の形態では、同一の検出部が連続して指定される場合において、インキュベータ106に子検体を一時的に保管する構成を採用している。
 図9に示すように、第4の実施の形態の免疫分析装置は、検体分注機構105C以外は、図1と略同様の構造を有している。第4の実施の形態は、前述の実施の形態と同様に、同一の検出部が連続して指定される場合に、分注スキップ動作を実行する。その際に、反応容器搬送機構107により、子検体の作成のための反応容器121を、インキュベータ106の所定の位置へ搬送する。反応容器121の設置数は、分注スキップ動作を実行する回数に応じて設定される。インキュベータ106に子検体用の反応容器121を設置する場合には、反応容器搬送機構107がインキュベータ106の所定の位置へアクセスしても良いし、逆に、インキュベータ106の回転により、インキュベータ106が反応容器搬送機構107の側へアクセスしても良い。
 なお、子検体の作成時間を短縮するため、検体分注機構105Cは、分注スキップ動作によりスキップされ子検体の生成の対象となる複数の測定番号に係る検体を、検体ラック103から一括で吸引することができる。一括で吸引された検体は、複数の測定番号に従い、複数の反応容器108に分けて吐出される。
 複数の測定番号分の検体は、例えばインキュベータ106の回転により、複数の反応容器121に次々に吐出される。例えば、検体分注量10uLの3つの測定項目がスキップする場合、インキュベータ106上に3つの反応容器121が設置される。続いて検体分注機構105Cは、例えば検体ラック903から検体を30uL吸引し、インキュベータ106に載置された3つの反応容器121に10uLずつ吐出する。
 前述の第3の実施の形態では、子検体エリア701に子検体を作成し、その後子検体エリア701からインキュベータ106に対し検体を分注する動作が行われる。これに対し、第4の実施の形態では、インキュベータ106での子検体作成の時点で反応容器902に検体が分注されているため、第3の実施の形態のような子検体分注が不要となる。従って、この第4の実施の形態によれば、第1~第2の実施の形態と同様、測定項目の内容に応じて分注する順番を変更し、複数の検出部で並列測定を実行することができる。
[変形例]
 次に、各実施の形態の自動分析装置について、図10及び図11を参照して説明する。図10は、第1の変形例の自動分析装置(免疫分析装置)の構成の一部を説明する概略図である。この第1の変形例では、検体分注機構105Dが、回転シャフト1001と、分注ノズル1002とを備えている。回転シャフト1001は、回転軸O1を中心に回転可能とされている。また、分注ノズル1002は、回転シャフト1001の先端に設けられた回転軸O2を中心に回転可能に構成されている。このように、検体分注機構105Dは、前述の実施の形態の検体分注機構とは異なり、2つの回転部と2つの回転軸を有しており、これにより、検体ラック103やインキュベータ106の任意の位置にアクセス可能とされている。
 図11は、第2の変形例の自動分析(免疫分析装置)の構成の一部を説明する概略図である。前述の実施の形態では、1つの検体ラックに複数の検体容器が含まれ、ラック搬送ラインにより搬送される。これに対し、この第2の変形例では、検体容器1101、1104…が、個々にラック搬送ライン1102に沿って搬送される。検体容器1101、1104…は、磁気搬送等により、ラック搬送ライン1102の長手方向だけでなく、短手方向にも移動可能とされている。
 この第2の変形例では、原則としてラック搬送ライン1102に沿って検体分注位置1103への到着順に検体の分注を行うが、前述の実施の形態と同様に、同一の検出部を指定した測定項目を有する測定番号が連続した場合において、適宜順序を入れ替えて検体の分注を行うことができる。
 続いて、第3の変形例を説明する。この第3の変形例では、上記の実施の形態において、検体搬送及び検体搬送前処理ユニットに免疫分析装置を接続し、子検体作成時に測定項目の順番に応じて、子検体の配置を予め入れ替える動作を行うことができる。すなわち、装置への検体導入前に測定項目を認識し、検体搬送前処理ユニットによって、親検体から子検体を作成する際に、予め複数の検出部で交互に検出できるよう、子検体の配置順を入れ替えることができる。
 次に、第4の変形例を説明する。上記の実施の形態では、同一の検出部を指定する測定番号が連続した場合において、検体の分注の手順を入れ替えるなどして、できるだけ複数の検出部が交互に(並列に)測定を行うことができるように制御がされる。これに対し、第4の変形例では、このような分注の手順の入れ替えとは別に、制御部102が分注スキップ及び測定順序の入れ替えが発生した履歴を記憶し、この履歴データに基づいて、測定項目が指定する検出部の変更を推奨する機能が設けられている。測定順序の入れ替えの履歴データは、記憶部118において記憶され得る。また、履歴データに基づく検出部の変更の推奨の是非の判断は、制御部102において実行されるコンピュータプログラムにおいて行われ得る。
 例えば、X回以上測定した免疫分析装置において、分注の並び替え回数が閾値Aを超えていた場合、測定時に指定される検出部に偏りが生じていると推定することができる。いずれかの測定項目において指定する検出部を変更することにより、分注の並び替え回数をどの程度減少させることができるかを、履歴データに基づいて計算することができる。計算値が閾値Bを下回った場合、指定する検出部の変更を推奨するメッセージ(例えば、図12のようなメッセージ)を表示部102に表示する。操作者はその情報に基づいて、各測定項目において指定する検出部を変更すべきか否かを判断することができる。
 本発明は上記実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 101・・・免疫分析装置(自動分析装置)、102・・・制御部、103、505・・・検体ラック、104、504・・・ラック搬送ライン、105、105A、105B~D・・・検体分注機構、106・・・インキュベータ、107・・・反応容器搬送機構、108・・・反応容器保持部、109・・・反応容器攪拌機構、110・・・廃棄孔、111・・・試薬ディスク、112・・・試薬分注機構、113・・・B/F分離搬送機構、114・・・B/F分離機構、115・・・B/F分離用反応液吸引機構、116・・・緩衝液吐出機構、117・・・B/F分離後攪拌機構、118・・・検出用反応液吸引機構、119、119A、119B・・・検出部(分析部)、120・・・検体容器、121・・・反応容器、L1・・・反応容器設置位置、L2・・・試薬吐出位置、L3・・・検体吐出位置、L4・・・検出用反応液吸引位置、L5・・・反応容器廃棄位置、L6・・・B/F分離搬送位置、L7・・・チップ装着位置、128・・・検体分注チップ、130・・・試薬ディスクカバー、131・・・開口部、132・・・送液流路、133・・・操作部、134・・・表示部、135・・・記憶部、501、505・・・検体ラック、506・・・分岐器、507・・・検体ラック進行方向、701・・・子検体エリア。

Claims (12)

  1.  検体を収容する検体ラックと、
     前記検体を前記検体ラックから吸引して反応容器に分注する検体分注機構と、
     前記反応容器の反応液を検出する複数の検出部と、
     前記検体分注機構及び前記検出部を制御する制御部と
    を備え、
     前記制御部は、
     前記検体に関し指定されている測定項目を確認すると共に、前記測定項目において指定されている前記複数の検出部のうちの1つの検出部を確認するよう構成され、
     前記複数の検出部の中の同一の検出部を指定する測定が連続して指定された場合、異なる検出部を指定する測定が連続するよう、前記検体分注機構による分注の順序を入れ替える
    ことを特徴とする自動分析装置。
  2.  前記制御部は、
     同一の検出部を指定する測定が連続して指定された場合、
     前記検体ラックの移動方向を切り替える
    請求項1記載の自動分析装置。
  3.  前記検体ラックは、直線状に構成されたラック搬送ラインに沿って直線状に移動可能に構成される、請求項2に記載の自動分析装置。
  4.  前記検体ラックは、円周状に構成されたラック搬送ラインに沿って円周状に移動可能に構成され、
     前記検体分注機構は、そのノズルの先端が円周状に構成された前記ラック搬送ラインに沿って移動するよう回転軸を中心に回転可能に構成された、請求項2に記載の自動分析装置。
  5.  前記検体を一時的に子検体として保管可能に構成された子検体エリアを更に備え、
     前記制御部は、同一の検出部を指定する測定が連続して指定された場合、前記子検体エリアに前記反応容器を設置し、前記検体分注機構により子検体を前記反応容器に分注し、前記子検体エリアに一時的に保管させる動作を行う、請求項1に記載の自動分析装置。
  6.  前記反応容器の反応を促進するインキュベータを更に備え、
     前記制御部は、同一の検出部を指定する測定が連続して指定された場合、前記インキュベータに前記反応容器を設置し、前記検体分注機構により子検体を前記反応容器に分注し、前記インキュベータに一時的に保管させる動作を行う、請求項1に記載の自動分析装置。
  7.  前記制御部は、前記測定項目が指定する検出部を変更した場合に分注の順序を入れ替える回数を減少させることができると判定される場合に、その旨を表示部に表示させる、請求項1に記載の自動分析装置。
  8.  自動分析装置における検体分注を制御する自動分析装置用の制御プログラムであって、 前記自動分析装置は、
     検体を収容する検体ラックと、
     前記検体を前記検体ラックから吸引して反応容器に分注する検体分注機構と、
     前記反応容器の反応液を検出する複数の検出部と
    を備え、
     前記制御プログラムは、
     前記検体に関し指定されている測定項目を確認すると共に、前記測定項目において指定されている前記複数の検出部のうちの1つの検出部を確認し、
     前記複数の検出部の中の同一の検出部を指定する測定が連続して指定された場合、異なる検出部を指定する測定が連続するよう、前記検体分注機構による分注の順序を入れ替える
    ことを前記自動分析装置に実行させるよう構成された、自動分析装置用の制御プログラム。
  9.  同一の検出部を指定する測定が連続して指定された場合、前記検体ラックの移動方向を切り替える、請求項8に記載の制御プログラム。
  10.  前記自動分析装置は、前記検体を一時的に子検体として保管可能に構成された子検体エリアを更に備え、
     同一の検出部を指定する測定が連続して指定された場合、前記子検体エリアに前記反応容器を設置し、前記検体分注機構により子検体を前記反応容器に分注し、前記子検体エリアに一時的に保管させる動作を前記自動分析装置に実行させる、請求項8に記載の制御プログラム。
  11.  前記自動分析装置は、前記反応容器の反応を促進するインキュベータを更に備え、
     同一の検出部を指定する測定が連続して指定された場合、前記インキュベータに前記反応容器を設置し、前記検体分注機構により子検体を前記反応容器に分注し、前記インキュベータに一時的に保管させる動作を前記自動分析装置に実行させる、請求項8に記載の制御プログラム。
  12.  前記測定項目が指定する検出部を変更した場合に分注の順序を入れ替える回数を減少させることができると判定される場合に、その旨を表示部に表示させる、請求項8に記載の制御プログラム。
PCT/JP2020/040176 2019-12-26 2020-10-27 自動分析装置及び自動分析装置用の制御プログラム WO2021131296A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021566861A JP7304969B2 (ja) 2019-12-26 2020-10-27 自動分析装置及び自動分析装置用の制御プログラム
EP20904288.6A EP4083635A4 (en) 2019-12-26 2020-10-27 AUTOMATIC ANALYZER AND CONTROL PROGRAM FOR AN AUTOMATIC ANALYZER
US17/781,851 US20230010798A1 (en) 2019-12-26 2020-10-27 Automatic analyzer and control program for automatic analyzer
CN202080084786.3A CN114829945A (zh) 2019-12-26 2020-10-27 自动分析装置以及自动分析装置用的控制程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019236532 2019-12-26
JP2019-236532 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021131296A1 true WO2021131296A1 (ja) 2021-07-01

Family

ID=76573999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040176 WO2021131296A1 (ja) 2019-12-26 2020-10-27 自動分析装置及び自動分析装置用の制御プログラム

Country Status (5)

Country Link
US (1) US20230010798A1 (ja)
EP (1) EP4083635A4 (ja)
JP (1) JP7304969B2 (ja)
CN (1) CN114829945A (ja)
WO (1) WO2021131296A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025587A (ja) * 2008-07-15 2010-02-04 Olympus Corp 自動分析装置、検体分注方法および検体分注装置の特別洗浄方法
JP2011185821A (ja) 2010-03-10 2011-09-22 Sysmex Corp 検体分析装置及び検体搬送方法
JP2013068442A (ja) * 2011-09-21 2013-04-18 Hitachi High-Technologies Corp 自動分析装置
WO2018155190A1 (ja) * 2017-02-22 2018-08-30 株式会社日立ハイテクノロジーズ 自動分析装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02311765A (ja) * 1989-05-29 1990-12-27 Hitachi Ltd 生化学自動分析装置
US5960129A (en) * 1997-12-22 1999-09-28 Bayer Corporation Method and apparatus for detecting liquid and gas segment flow through a tube
JP2001208760A (ja) * 2000-01-27 2001-08-03 Jeol Ltd 複合生化学・免疫自動分析装置
US10139422B2 (en) * 2013-01-09 2018-11-27 Siemens Healthcare Diagnostics Inc. Throughput optimizing reagent distribution
JP6865812B2 (ja) * 2017-03-23 2021-04-28 株式会社日立ハイテク 自動分析装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025587A (ja) * 2008-07-15 2010-02-04 Olympus Corp 自動分析装置、検体分注方法および検体分注装置の特別洗浄方法
JP2011185821A (ja) 2010-03-10 2011-09-22 Sysmex Corp 検体分析装置及び検体搬送方法
JP2013068442A (ja) * 2011-09-21 2013-04-18 Hitachi High-Technologies Corp 自動分析装置
WO2018155190A1 (ja) * 2017-02-22 2018-08-30 株式会社日立ハイテクノロジーズ 自動分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4083635A4

Also Published As

Publication number Publication date
EP4083635A4 (en) 2024-02-28
JP7304969B2 (ja) 2023-07-07
US20230010798A1 (en) 2023-01-12
EP4083635A1 (en) 2022-11-02
CN114829945A (zh) 2022-07-29
JPWO2021131296A1 (ja) 2021-07-01

Similar Documents

Publication Publication Date Title
JP5178830B2 (ja) 自動分析装置
US6752960B1 (en) Automatic analysis apparatus
US8383411B2 (en) Specimen processing system and specimen conveyance method
JP2016048255A (ja) 自動分析装置
JP6202742B2 (ja) 自動分析装置
KR20060132729A (ko) 혈액 튜브들을 전혈 분석기에 공급하기 위한 장치
US20090078717A1 (en) Pipette tip supplier, sample analyzer and pipette tip supplying method
JPWO2017047240A1 (ja) 自動分析装置
CN107636469B (zh) 自动分析装置
CN115053137A (zh) 自动分析装置
WO2021131296A1 (ja) 自動分析装置及び自動分析装置用の制御プログラム
JP2011007719A (ja) 自動分析装置
EP4050342A1 (en) Automatic analysis device and method for dispensing reagent
JP2023056431A (ja) 自動分析装置
JP5738696B2 (ja) 生化学分析装置
JP7054616B2 (ja) 自動分析装置
CN115769079A (zh) 自动分析装置
EP3578994A1 (en) Automatic analyzer
JP2017110913A (ja) 自動分析装置
US12019085B2 (en) Automatic analysis device and automatic analysis system
WO2023008069A1 (ja) 自動分析装置、および自動分析装置でのガイダンス方法
EP3842809B1 (en) Automatic analysis device and automatic analysis system
JP2023033053A (ja) 自動分析装置
JP2015052610A (ja) 自動分析装置
JP2023068295A (ja) 洗剤ボトル及び自動分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904288

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566861

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020904288

Country of ref document: EP

Effective date: 20220726