WO2021131125A1 - 高周波モジュール及び通信装置 - Google Patents
高周波モジュール及び通信装置 Download PDFInfo
- Publication number
- WO2021131125A1 WO2021131125A1 PCT/JP2020/028524 JP2020028524W WO2021131125A1 WO 2021131125 A1 WO2021131125 A1 WO 2021131125A1 JP 2020028524 W JP2020028524 W JP 2020028524W WO 2021131125 A1 WO2021131125 A1 WO 2021131125A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inductor
- path
- switch
- frequency module
- communication band
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/0004—Impedance-matching networks
- H03H9/0009—Impedance-matching networks using surface acoustic wave devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/05—Holders; Supports
- H03H9/0538—Constructional combinations of supports or holders with electromechanical or other electronic elements
- H03H9/0566—Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
- H03H9/0576—Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including surface acoustic wave [SAW] devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/70—Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
- H03H9/72—Networks using surface acoustic waves
- H03H9/725—Duplexers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/16—Circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/05—Holders; Supports
- H03H9/0538—Constructional combinations of supports or holders with electromechanical or other electronic elements
- H03H9/0542—Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a lateral arrangement
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/05—Holders; Supports
- H03H9/0538—Constructional combinations of supports or holders with electromechanical or other electronic elements
- H03H9/0547—Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
- H03H9/0552—Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement the device and the other elements being mounted on opposite sides of a common substrate
Definitions
- the present invention generally relates to a high frequency module and a communication device, and more specifically, to a high frequency module and a communication device capable of simultaneously using a plurality of different communications.
- the high-frequency circuit described in Patent Document 1 includes a first switch unit, a first matching circuit unit, and a plurality of filters constituting the filter unit.
- a first switch section an input terminal (antenna terminal) is connected to the antenna element.
- the output terminal of the first switch unit and the input terminal of the filter unit are connected via the first matching circuit unit.
- the first matching circuit unit has a plurality of inductors. One end of the plurality of inductors is connected to one of the plurality of paths connecting the first switch unit and the plurality of filters, and the other end is connected to the ground.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a high-frequency module and a communication device capable of obtaining better impedance characteristics.
- the high frequency module includes a first elastic wave filter, a second elastic wave filter, a switch, a first inductor, and a second inductor.
- the first elastic wave filter passes the signal of the first communication band.
- the second elastic wave filter passes the signal of the second communication band.
- the switch can connect the first elastic wave filter and the second elastic wave filter to the antenna terminal at the same time.
- the first inductor is provided between a node on the signal path connecting the switch and the second elastic wave filter and ground.
- the second inductor is connected in series between the switch and the first inductor in the signal path.
- the high frequency module includes a first elastic wave filter, a second elastic wave filter, a switch, and a phase adjustment circuit.
- the first elastic wave filter passes the signal of the first communication band.
- the second elastic wave filter passes a signal of the second communication band, which is a frequency band lower than the frequency band of the first communication band.
- the switch can connect the first elastic wave filter and the second elastic wave filter to the antenna terminal at the same time.
- the phase adjustment circuit is provided on a signal path connecting the switch and the second elastic wave filter, and adjusts the phase of the signal in the second communication band.
- the phase adjusting circuit includes an inductor, a first capacitor, and a second capacitor. The inductor is connected in series between the switch and the second SAW filter in the signal path.
- the first capacitor is provided between both ends of the inductor and the first end on the switch side and ground in the signal path.
- the second capacitor is provided between the second end of the inductor on the second elastic wave filter side and the ground in the signal path.
- the length of the first path between the connection point between the inductor and the second capacitor and the second elastic wave filter in the signal path is the length of the inductor and the first capacitor in the signal path. It is longer than the length of the second path between the connection point and the switch.
- the communication device includes the high frequency module and a signal processing circuit.
- the signal processing circuit processes the signal of the first communication band and the signal of the second communication band.
- FIG. 1 is a schematic configuration diagram of a high-frequency module according to the first embodiment and a communication device including the same high-frequency module.
- FIG. 2A is a plan view of the same high frequency module.
- FIG. 2B is a cross-sectional view of the same high frequency module as X1-X1.
- FIG. 3A is a Smith chart showing the impedance of the second receive filter with respect to the second communication band in the high frequency module of the same.
- FIG. 3B is a Smith chart showing the impedance of the second receiving filter with respect to the first communication band in the same high frequency module.
- FIG. 4A is a Smith chart showing the impedance of the second receiving filter with respect to the second communication band when the second inductor is inserted in the high frequency module of the same.
- FIG. 4B is a Smith chart showing the impedance of the second receiving filter with respect to the first communication band when the second inductor is inserted in the high frequency module of the same.
- FIG. 4C is a Smith chart showing the impedance of the second receiving filter with respect to the second communication band when the first inductor is used in the high frequency module of the same.
- FIG. 4D is a Smith chart showing the impedance of the second receiving filter with respect to the first communication band when the first inductor is used in the high frequency module of the same.
- FIG. 4E is a Smith chart showing the impedance of the second receiving filter with respect to the second communication band when the first inductor and the second inductor are used in the high frequency module of the same.
- FIG. 4F is a Smith chart showing the impedance of the second receiving filter with respect to the first communication band when the first inductor and the second inductor are used in the high frequency module of the same.
- FIG. 5A is a Smith chart showing the impedance of the second receiving filter with respect to the second communication band when a parasitic capacitance is generated between the first inductor and the second inductor in the high frequency module of the same.
- FIG. 5B is a Smith chart showing the impedance of the second receiving filter with respect to the first communication band when a parasitic capacitance is generated between the first inductor and the second inductor in the high frequency module of the same.
- FIG. 5A is a Smith chart showing the impedance of the second receiving filter with respect to the second communication band when a parasitic capacitance is generated between the first inductor and the second inductor in the high frequency module of the same.
- FIG. 5B is a Smith chart showing the impedance of the second receiving filter with respect to the first communication band
- FIG. 5C is a Smith chart showing the impedance of the second receiving filter with respect to the second communication band when a parasitic capacitance is generated between the antenna switch and the second inductor in the high frequency module of the same.
- FIG. 5D is a Smith chart showing the impedance of the second receiving filter with respect to the first communication band when a parasitic capacitance is generated between the antenna switch and the second inductor in the high frequency module of the same.
- FIG. 6A is a Smith chart showing the impedance of the second receiving filter with respect to the second communication band when a parasitic inductor is generated between the first inductor and the second receiving filter in the high frequency module of the same.
- FIG. 6B is a Smith chart showing the impedance of the second receiving filter with respect to the first communication band when a parasitic inductor is generated between the first inductor and the second receiving filter in the same high frequency module.
- FIG. 6C is a Smith chart showing the impedance of the second receiving filter with respect to the second communication band when a parasitic inductor is generated between the antenna switch and the second inductor in the high frequency module of the same.
- FIG. 6D is a Smith chart showing the impedance of the second receiving filter with respect to the first communication band when a parasitic inductor is generated between the antenna switch and the second inductor in the high frequency module of the same.
- FIG. 7A is a plan view of the high frequency module according to the first modification of the first embodiment.
- FIG. 7A is a plan view of the high frequency module according to the first modification of the first embodiment.
- FIG. 7B is a cross-sectional view of the same high frequency module as X2-X2.
- FIG. 8 is a cross-sectional view of the high frequency module according to the second modification of the first embodiment.
- FIG. 9 is a schematic configuration diagram of a high-frequency module according to the second embodiment and a communication device including the same high-frequency module.
- FIG. 10A is a plan view of the same high frequency module.
- FIG. 10B is a cross-sectional view taken along the line Y1-Y1 of the same high-frequency module.
- FIG. 11 is a Smith chart showing the impedance of the second reception filter in the frequency band of the first communication band when the second reception filter is viewed from the antenna switch in the high frequency module of the same.
- FIG. 12 is a graph showing a return loss in communication due to simultaneous use of the first communication band and the second communication band.
- FIG. 13 is a graph showing signal loss in the frequency band of the first communication band when the second reception filter side is viewed from the selection terminal.
- FIG. 14A is a plan view of the high frequency module according to the first modification of the second embodiment.
- FIG. 14B is a cross-sectional view of Y2-Y2 of the same high frequency module.
- FIG. 15 is a cross-sectional view of a high frequency module according to a further modification of the modification 1 of the second embodiment.
- FIG. 16 is a schematic configuration diagram of a high-frequency module according to the second modification of the second embodiment and a communication device including the same high-frequency module.
- FIG. 17 is a plan view of the same high frequency module.
- the high-frequency module 1 includes an antenna terminal 2, a first reception filter 3, a second reception filter 4, an antenna switch 5 (switch), and a first phase adjustment circuit 6. And a second phase adjusting circuit 7. Further, the high frequency module 1 includes a first low noise amplifier 12 and a second low noise amplifier 13 as an amplifier 11 for amplifying a signal.
- the high frequency module 1 further includes a mounting substrate 100 as shown in FIGS. 2A and 2B.
- the high frequency module 1 is used for a mobile phone such as a smartphone, for example.
- the high frequency module 1 is not limited to a mobile phone, and may be a wearable terminal such as a smart watch, for example.
- the high frequency module 1 is used in the communication device 8 that communicates with an external device (not shown).
- the high frequency module 1 is a module capable of supporting, for example, a 4G (4th generation mobile communication) standard, a 5G (5th generation mobile communication) standard, and the like.
- the 4G standard is, for example, a 3GPP LTE standard (LTE: Long Term Evolution).
- the 5G standard is, for example, 5G NR (New Radio).
- the high frequency module 1 is a module capable of supporting carrier aggregation and dual connectivity.
- the antenna terminal 2 is electrically connected to the antenna 9 as shown in FIG.
- the first reception filter 3 is an elastic wave filter.
- the surface acoustic wave filter is, for example, a SAW (Surface Acoustic Wave) filter that utilizes surface acoustic waves.
- the first reception filter 3 is provided in the first reception path R1 for receiving the first reception signal from the antenna 9.
- the first reception path R1 is a signal path connecting the antenna switch 5 and the first reception filter 3, and is a path for receiving the first reception signal via the antenna terminal 2.
- the first reception filter 3 is an elastic wave filter having a first communication band as a pass band.
- the first reception filter 3 is an elastic wave filter that allows signals in the first communication band to pass through. That is, the first reception filter 3 passes the first reception signal of the first frequency band included in the first communication band.
- the first communication band is, for example, Band 3 (reception band: 1805 MHz-1880 MHz) of the LTE (Long Term Evolution) standard (including the LTE-Advanced standard).
- the second reception filter 4 is an elastic wave filter.
- the surface acoustic wave filter is, for example, a SAW filter that utilizes a surface acoustic wave.
- the second reception filter 4 is provided in the second reception path R2 for receiving the second reception signal from the antenna 9.
- the second reception path R2 is a signal path connecting the antenna switch 5 and the second reception filter 4, and is a path for receiving the second reception signal via the antenna terminal 2.
- the second reception filter 4 is an elastic wave filter having a second communication band as a pass band.
- the second reception filter 4 is an elastic wave filter that allows signals in the second communication band to pass through. That is, the second reception filter 4 passes the second reception signal of the second frequency band included in the second communication band.
- the second frequency band is a frequency band higher than the first frequency band.
- the second communication band is, for example, Band 41 (reception band: 2496 MHz-2690 MHz) of the LTE standard (including the LTE-Advanced standard).
- the antenna switch 5 has a common terminal 51 and a plurality of (two in the illustrated example) selection terminals 521 to 522.
- the antenna switch 5 selects at least one of the plurality of selection terminals 521 to 522 as the connection destination of the common terminal 51. That is, the antenna switch 5 selectively connects the first reception filter 3, the second reception filter 4, and the antenna 9.
- the antenna switch 5 is configured so that the first reception filter 3 and the second reception filter 4 can be connected to the common terminal 51 at the same time.
- the common terminal 51 is connected to the antenna terminal 2. That is, the common terminal 51 is electrically connected to the antenna 9 via the antenna terminal 2.
- the common terminal 51 is not limited to being directly connected to the antenna 9.
- a filter, a coupler, or the like may be provided between the common terminal 51 and the antenna 9.
- the selection terminal 521 is electrically connected to the first reception filter 3.
- the selection terminal 522 is electrically connected to the second reception filter 4.
- the antenna switch 5 In the case of carrier aggregation that communicates the first reception signal and the second reception signal at the same time, the antenna switch 5 always connects the first reception filter 3 and the second reception filter 4 to the antenna 9. Specifically, in the case of carrier aggregation, the antenna switch 5 always connects the selection terminal 521 and the selection terminal 522 to the common terminal 51.
- carrier aggregation refers to communication that uses radio waves in a plurality of frequency bands at the same time.
- the antenna switch 5 When carrier aggregation is not performed, the antenna switch 5 always connects the receiving filter of one of the first receiving filter 3 and the second receiving filter 4 to the antenna 9 according to the communication band used for communication. For example, when performing communication using the first communication band, the antenna switch 5 connects the selection terminal 521 to the common terminal 51. When performing communication using the second communication band, the antenna switch 5 connects the selection terminal 522 to the common terminal 51.
- the antenna switch 5 is connected to the antenna terminal 2, the first reception filter 3, and the second reception filter 4.
- the antenna switch 5 has a state in which the connection destination with the antenna terminal 2 is the first reception filter 3 or the second reception filter 4 depending on the communication mode, and the connection destination with the antenna terminal 2 is the first reception filter 3 and the second reception filter 3. It is possible to switch between the states of both the reception filters 4.
- the first low noise amplifier 12 amplifies the first received signal received by the antenna 9.
- the input terminal of the first low noise amplifier 12 is electrically connected to the antenna switch 5.
- the output terminal of the first low noise amplifier 12 is connected to a signal processing circuit 80 described later.
- the second low noise amplifier 13 amplifies the second received signal received by the antenna 9.
- the input terminal of the second low noise amplifier 13 is electrically connected to the antenna switch 5.
- the output terminal of the second low noise amplifier 13 is connected to the signal processing circuit 80.
- the first phase adjustment circuit 6 is provided in the first reception path R1.
- the first phase adjusting circuit 6 includes a third reactance element 63 together with the first reactance element 61 and the second reactance element 62.
- the first reactance element 61 is inserted in series with the first receiving path R1.
- the second reactance element 62 is provided between the first end of the first reactance element 61 and the ground.
- the third reactance element 63 is provided between the second end of the first reactance element 61 and the ground. That is, the first phase adjustment circuit 6 is a ⁇ -type circuit.
- the first phase adjustment circuit 6 includes an inductor L11 as a first reactance element 61, a capacitor C11 as a second reactance element 62, and a capacitor C12 as a third reactance element 63.
- the second phase adjustment circuit 7 is provided in the second reception path R2.
- the second phase adjusting circuit 7 includes a first inductor L21 and a second inductor L22.
- the first inductor L21 is, for example, a chip inductor.
- the second inductor L22 is, for example, a chip inductor.
- One end of the first inductor L21 is connected to the second receiving path R2, and the other end is connected to the ground.
- the first inductor L21 is provided between the node on the second reception path R2 (signal path) and the ground. That is, the first inductor L21 is shunt-connected in the second reception path R2.
- the second inductor L22 is inserted in series between the antenna switch 5 and the first inductor L21 in the second reception path R2. That is, the second inductor L22 is connected in series (series connection) between the antenna switch 5 and the first inductor L21 in the second receiving path R2. Further, in the second inductor L22, the phase change in the second frequency band is larger than that in the first frequency band.
- the mounting board 100 has a first main surface 101 and a second main surface 102 facing each other in the first direction D1 which is the thickness direction of the mounting board 100.
- the mounting substrate 100 is, for example, a printed wiring board, an LTCC (Low Temperature Co-fired Ceramics), an HTCC (High Temperature Co-fired Ceramics), or a resin substrate.
- the mounting substrate 100 is, for example, a multilayer substrate including a plurality of dielectric layers and a plurality of conductive layers. The plurality of dielectric layers and the plurality of conductive layers are laminated in the first direction D1 of the mounting substrate 100. The plurality of conductive layers are formed in a predetermined pattern determined for each layer.
- Each of the plurality of conductive layers includes one or a plurality of conductor portions in one plane orthogonal to the first direction D1 of the mounting substrate 100.
- the material of each conductive layer is, for example, copper.
- the plurality of conductive layers include a ground layer. In the high frequency module 1, a plurality of ground terminals and a ground layer are electrically connected via a via conductor or the like included in the mounting substrate 100.
- the mounting board 100 is not limited to the printed wiring board and the LTCC board, but may be a wiring structure.
- the wiring structure is, for example, a multi-layer structure.
- the multilayer structure includes at least one insulating layer and at least one conductive layer.
- the insulating layer is formed in a predetermined pattern. When there are a plurality of insulating layers, the plurality of insulating layers are formed in a predetermined pattern determined for each layer.
- the conductive layer is formed in a predetermined pattern different from the predetermined pattern of the insulating layer. When there are a plurality of conductive layers, the plurality of conductive layers are formed in a predetermined pattern determined for each layer.
- the conductive layer may include one or more rewiring sections.
- the first surface of the two surfaces facing each other in the thickness direction of the multilayer structure is the first main surface 101 of the mounting board 100, and the second surface is the second main surface 102 of the mounting board 100.
- the wiring structure may be, for example, an interposer.
- the interposer may be an interposer using a silicon substrate, or may be a substrate composed of multiple layers.
- the first reception filter 3, the second reception filter 4, the first phase adjustment circuit 6, and the second phase adjustment circuit 7 are mounted on the first main surface 101.
- the second inductor L22 and the first inductor L21 of the second phase adjusting circuit 7 are connected by surface wiring such as a conductor pattern. Specifically, the second inductor L22 and the first inductor L21 are connected by a path R22 formed by surface wiring such as a conductor pattern (see FIG. 2B).
- the first inductor L21 and the second receiving filter 4 are connected by surface wiring. Specifically, the first inductor L21 and the second receiving filter 4 are connected by a path R23 formed by surface wiring (see FIG. 2B).
- the surface layer wiring is a wiring conductor provided on the first main surface 101 of the mounting board 100.
- a part of the first reception filter 3 may be mounted on the first main surface 101 of the mounting board 100, and the rest of the first receiving filter 3 may be mounted on the mounting board 100.
- the first reception filter 3 is arranged on the first main surface 101 side of the second main surface 102 on the mounting substrate 100, and has at least a portion mounted on the first main surface 101.
- a part of the second reception filter 4 may be mounted on the first main surface 101 of the mounting board 100, and the rest of the second receiving filter 4 may be mounted on the mounting board 100.
- the second reception filter 4 is arranged on the first main surface 101 side of the second main surface 102 on the mounting board 100, and has at least a portion mounted on the first main surface 101.
- a part of the first phase adjusting circuit 6 may be mounted on the first main surface 101 of the mounting board 100, and the rest of the first phase adjusting circuit 6 may be mounted on the mounting board 100.
- the first phase adjusting circuit 6 is arranged on the first main surface 101 side of the second main surface 102 on the mounting board 100, and has at least a portion mounted on the first main surface 101.
- the second phase adjusting circuit 7 may be mounted on the first main surface 101 of the mounting board 100, and the rest of the second phase adjusting circuit 7 may be mounted on the mounting board 100.
- the second phase adjusting circuit 7 is arranged on the first main surface 101 side of the second main surface 102 on the mounting board 100, and has at least a portion mounted on the first main surface 101.
- the first inductor L21 may be mounted on the first main surface 101
- the second inductor L22 may be mounted on the mounting board 100.
- the second inductor L22 and the first inductor L21 are connected by a path formed by an internal wiring conductor consisting of a wiring portion (wiring conductor) provided inside the mounting board 100 and a via conductor.
- the first inductor L21 and the second receiving filter 4 are internally wired by a wiring conductor and a via conductor provided inside the mounting board 100. It is connected by a path formed by a conductor.
- a switch IC (Integrated Circuit) 110 in which an antenna switch 5 and a plurality of amplifiers 11 (first low noise amplifier 12, second low noise amplifier 13) are integrated into one chip is mounted on the second main surface 102.
- the antenna switch 5 and the second inductor L22 are connected via a path R21 formed by a via conductor 95 provided on the mounting substrate 100.
- the second reception filter 4 and the second low noise amplifier 13 are connected via a path R25 formed by a via conductor 96 provided on the mounting substrate 100.
- a part of the switch IC 110 may be mounted on the second main surface 102 of the mounting board 100, and the rest of the switch IC 110 may be mounted on the mounting board 100.
- the switch IC 110 is arranged on the second main surface 102 side of the first main surface 101 on the mounting board 100, and has at least a portion mounted on the second main surface 102.
- Each component provided on the first main surface 101 and the second main surface 102 is electrically connected to the mounting substrate 100 by, for example, solder bumps.
- the solder bumps are arranged between the arranged components and the mounting board 100 in the thickness direction of the mounting board 100 (first direction D1).
- the above-mentioned second reception path R2 includes the above-mentioned paths R21, R22, and R23.
- FIG. 2A shows a plan view of the high frequency module 1 as viewed from the first direction D1
- FIG. 2B shows a cross-sectional view of the high frequency module 1.
- the high frequency module 1 includes a plurality of external connection electrodes 90 (see FIG. 2B).
- the plurality of external connection electrodes 90 connect the high frequency module 1 to a mother substrate on which a signal processing circuit 80 or the like is mounted.
- the plurality of external connection electrodes 90 are columnar (for example, columnar) electrodes arranged (provided) on the second main surface 102 of the mounting substrate 100.
- the material of the plurality of external connection electrodes 90 is, for example, a metal (for example, copper, a copper alloy, etc.).
- the plurality of external connection electrodes 90 include an antenna terminal 2 and a ground terminal used for grounding.
- the high frequency module 1 receives the signal received by the antenna 9 via the antenna terminal 2 which is one of the external connection electrodes 90 among the plurality of external connection electrodes 90, and enters the signal processing circuit 80 via another external connection electrode 90. Output.
- the high-frequency module 1 is mounted on the first main surface 101 of the mounting board 100, and the first receiving filter 3, the second receiving filter 4, the first phase adjusting circuit 6, and the second phase adjusting circuit are mounted on the first main surface 101.
- a first resin layer 120 that covers an electronic component such as 7 is further provided.
- the high-frequency module 1 further includes a second resin layer 130 on the second main surface 102 of the mounting substrate 100, which covers electronic components such as the switch IC 110 mounted on the second main surface 102.
- the material of the second resin layer 130 may be the same material as the material of the first resin layer 120, or may be a different material. In FIG. 2A, the first resin layer 120 is omitted.
- the antenna switch 5, the first low noise amplifier 12, and the second low noise amplifier 13 are arranged on the second main surface 102 of the mounting board 100 as described above (see FIG. 2B).
- the first phase adjusting circuit 6, the second phase adjusting circuit 7, the first receiving filter 3 and the second receiving filter 4 are arranged on the first main surface 101 of the mounting board 100 (see FIG. 2A).
- the first phase adjustment circuit 6 and the first reception filter 3 are arranged in this order along the second direction D2.
- the second inductor L22, the first inductor L21, and the second receiving filter 4 of the second phase adjusting circuit 7 are arranged in this order along the second direction D2 which is a direction orthogonal to the first direction D1.
- the second inductor L22 is connected to the antenna switch 5 via the path R21 included in the second reception path R2 (see FIG. 2B).
- the second reception filter 4 is connected to the second low noise amplifier 13 via the path R25. (See FIG. 2B).
- the second inductor L22 overlaps with the antenna switch 5 (see FIGS. 2A and 2B). ..
- a part of the second inductor L22 may overlap with the antenna switch 5. That is, when the mounting board 100 is viewed in a plan view, at least a part of the second inductor L22 may overlap with the antenna switch 5.
- the first inductor L21 when the mounting board 100 is viewed in a plan view, the first inductor L21 overlaps with the antenna switch 5 (see FIGS. 2A and 2B).
- a part of the first inductor L21 may overlap with the antenna switch 5. That is, when the mounting board 100 is viewed in a plan view, at least a part of the first inductor L21 may overlap with the antenna switch 5.
- the mounting board 100 when the mounting board 100 is viewed in a plan view, at least a part of the first reception filter 3 overlaps with the first low noise amplifier 12 (see FIG. 2A).
- a part of the first reception filter 3 may overlap with the first low noise amplifier 12. That is, when the mounting board 100 is viewed in a plan view, at least a part of the first reception filter 3 may overlap with the first low noise amplifier 12.
- the second reception filter 4 overlaps with the second low noise amplifier 13 (see FIGS. 2A and 2B).
- a part of the second reception filter 4 may overlap with the second low noise amplifier 13. That is, when the mounting board 100 is viewed in a plan view, at least a part of the second reception filter 4 may overlap with the second low noise amplifier 13.
- the path length between the antenna switch 5 and the second inductor L22 in the second reception path R2 is set to "A1".
- the length from the selection terminal 522 of the antenna switch 5 to one end of the second inductor L22 is set to "A1" (see FIG. 2B). (See FIG. 1).
- the path length between the first inductor L21 and the second inductor L22 in the second receiving path R2 is set to "A2".
- the length from the other end of the second inductor L22 to the connection point with the first inductor L21, for example, the length of the path R22 (see FIG. 2B) is referred to as “A2”. (See Fig. 1).
- the path length between the first inductor L21 and the second reception filter 4 in the second reception path R2 is set to "A3".
- the length from the connection point with the first inductor L21 to the input terminal of the second reception filter 4, for example, the length of the path R23 (see FIG. 2B) is set to “A3”. (See Fig. 1).
- the first inductor L21 and the second inductor L22 are arranged so that both the first inequality "A1> A2" and the second inequality "A1> A3" are satisfied.
- the first inductor L21 and the second inductor L22 may be arranged so that one of the first inequality and the second inequality holds. That is, the first inductor L21 and the second inductor L22 may be arranged so that at least one of the first inequality and the second inequality holds.
- the route length "A1" is longer than the route length "A2". Further, the path length "A1" is longer than the path length "A3".
- the antenna switch 5 selects the selection terminal 521 as the connection destination of the common terminal 51. That is, the first reception filter 3 is electrically connected to the antenna 9. The first reception signal received by the antenna 9 is input to the first reception filter 3 via the antenna switch 5 and the first phase adjustment circuit 6.
- the antenna switch 5 selects the selection terminal 522 as the connection destination of the common terminal 51. That is, the second reception filter 4 is electrically connected to the antenna 9. The second reception signal received by the antenna 9 is input to the second reception filter 4 via the antenna switch 5 and the second phase adjustment circuit 7.
- the antenna switch 5 selects the selection terminal 521 and the selection terminal 522 as the connection destination of the common terminal 51.
- the first reception filter 3 and the second reception filter 4 are electrically connected to the antenna 9.
- the first reception signal and the second reception signal received by the antenna 9 are input to the first reception filter 3 via the antenna switch 5 and the first phase adjustment circuit 6.
- the first reception signal and the second reception signal received by the antenna 9 are input to the first reception filter 3 via the antenna switch 5 and the second phase adjustment circuit 7.
- the communication device 8 includes a high frequency module 1 and a signal processing circuit 80.
- the signal processing circuit 80 signals the signal of the first communication band and the signal of the second communication band.
- the signal processing circuit 80 includes a baseband signal processing circuit 81 and an RF signal processing circuit 82.
- the baseband signal processing circuit 81 is, for example, a BBIC (Baseband Integrated Circuit) and is electrically connected to the RF signal processing circuit 82.
- the baseband signal processing circuit 81 generates an I-phase signal and a Q-phase signal from the baseband signal.
- the baseband signal processing circuit 81 performs IQ modulation processing by synthesizing an I-phase signal and a Q-phase signal, and outputs a transmission signal.
- the transmission signal is generated as a modulation signal obtained by amplitude-modulating a carrier signal having a predetermined frequency with a period longer than the period of the carrier signal.
- the RF signal processing circuit 82 is, for example, an RFIC (Radio Frequency Integrated Circuit), and is provided between the high frequency module 1 and the baseband signal processing circuit 81. ing.
- the RF signal processing circuit 82 has a function of performing signal processing on the transmission signal from the baseband signal processing circuit 81 and a function of performing signal processing on the received signal received by the antenna 9.
- the RF signal processing circuit 82 is a multi-band compatible processing circuit, and can generate and amplify transmission signals of a plurality of communication bands.
- the high frequency module in the comparative example does not include a series-coupled inductor between the shunt-connected inductor and the antenna switch.
- a shunt-connected inductor is provided to perform communication using one of the plurality of filters (elastic wave filter) and the other filter (elastic wave filter) at the same time.
- the frequency band of the other filter in the one filter can be set to the open end.
- the communication using one of the plurality of filters and the one filter and the other filter are used. There is a possibility that the impedance will shift in the frequency band that passes through the one filter between the time of communication that is used at the same time.
- the high frequency module 1 of the first embodiment includes a signal of the first communication band (for example, Band 1) and a second communication band (for example, Band 41) of the second frequency band higher than the first frequency band of the first communication band. It is possible to communicate with the signal of.
- the high frequency module 1 includes a first elastic wave filter (for example, a first receiving filter 3), a second elastic wave filter (for example, a second receiving filter 4), a switch (antenna switch 5), and a first inductor L21. , A second inductor L22.
- the first elastic wave filter passes the signal of the first communication band.
- the second elastic wave filter passes the signal of the second communication band.
- the switch is connected to the antenna terminal 2, the first SAW filter and the second SAW filter.
- the switch has a state in which the connection destination with the antenna terminal 2 is the first reception filter 3 or the second reception filter 4, and the connection destination with the antenna terminal 2 is the first reception filter 3 and the second reception filter 4. It is possible to switch between the states of both of 4 and 4.
- the first inductor L21 is shunt-connected in the signal path (for example, the second reception path R2) between the switch and the second elastic wave filter.
- the second inductor L22 is serially connected between the switch and the first inductor L21 in the signal path. In the second inductor L22, the phase change with respect to the second frequency band is larger than that of the first frequency band.
- 3A, 4A, 4C and 4E are Smith charts showing the impedance of the second reception filter 4 with respect to the second communication band.
- 3B, 4B, 4D and 4F are Smith charts showing the impedance of the second receive filter 4 with respect to the first communication band.
- a straight line passing through the center of the chart to the left and right is an axis (resistance axis) representing the resistance component of impedance.
- the scale on the resistance axis is normalized, with 0 ⁇ at the left end, 1.0 (50 ⁇ ) at the center of the chart, and infinity (open) at the right end.
- the lower side of the resistance shaft is capacitive and the upper side of the resistance shaft is inductive.
- FIG. 3A is a Smith chart showing a state in which the impedance of the second reception filter 4 with respect to the second communication band is matched in communication only in the second communication band (Band 41).
- FIG. 3B is a Smith chart showing the impedance of the second reception filter 4 with respect to the first communication band (Band 3) when the impedance of the second reception filter 4 with respect to the second communication band at the time of communication is matched. ..
- FIG. 4A shows a second reception with respect to the second communication band when the second inductor L22 is inserted and communication (carrier aggregation) is performed by simultaneously using the first communication band (Band 3) and the second communication band (Band 41). It is a Smith chart which shows the impedance of a filter 4.
- FIG. 4B is a Smith chart showing the impedance of the second reception filter 4 with respect to the first communication band when communication is performed by simultaneously using the first communication band and the second communication band.
- FIG. 4C shows a second communication band with respect to the second communication band when impedance matching is performed using the first inductor L21 in the case of performing communication by simultaneously using the first communication band (Band 3) and the second communication band (Band 41). It is a Smith chart which shows the impedance of the receiving filter 4.
- FIG. 4D shows the impedance of the second reception filter 4 with respect to the first communication band when impedance matching is performed using the first inductor L21 in the case of performing communication by simultaneously using the first communication band and the second communication band. It is a Smith chart which shows.
- FIG. 4E shows a second impedance matching using the first inductor L21 and the second inductor L22 in the case of performing communication by simultaneously using the first communication band (Band 3) and the second communication band (Band 41). It is a Smith chart which shows the impedance of the 2nd receive filter 4 with respect to a communication band.
- FIG. 4F shows the first impedance matching using the first inductor L21 and the second inductor L22 in the case of performing communication by simultaneously using the first communication band (Band 3) and the second communication band (Band 41). It is a Smith chart which shows the impedance of the 2nd receive filter 4 with respect to a communication band.
- the ZA1 is the second in the frequency band of the second communication band when the second reception filter 4 side is viewed from the selection terminal 522 of the antenna switch 5 in FIG. 1 in the communication of only the second communication band.
- the impedance of the reception filter 4 is shown.
- ZA2 shows the impedance of the second reception filter 4 in the frequency band of the first communication band when the first reception filter 3 side is viewed from the selection terminal 522 in the communication of only the second communication band. ..
- the impedance of the second reception filter 4 in the second communication band is in a matched state (matched).
- the ZA 11 is the second in the frequency band of the second communication band when the second reception filter 4 side is viewed from the selection terminal 522 in the communication by simultaneously using the first communication band and the second communication band. 2 Indicates the impedance of the reception filter 4.
- the ZA 12 is the first in the frequency band of the first communication band when the second reception filter 4 side is viewed from the selection terminal 522 in the communication by simultaneously using the first communication band and the second communication band. 1 Indicates the impedance of the reception filter 3.
- the second inductor L22 is connected in series on the second reception path R2. Further, in the second inductor L22, the phase change in the second frequency band is larger than that in the first frequency band. Therefore, as can be seen from FIG. 4A, the impedance of the second reception filter 4 in the second communication band shifts from the matched state to the inductive state. Further, as can be seen from FIG. 4B, the impedance of the first communication band of the second reception filter 4 is inductive.
- the ZA 13 is the second in the frequency band of the second communication band when the second reception filter 4 side is viewed from the selection terminal 522 in the communication by simultaneously using the first communication band and the second communication band. 2 Indicates the impedance of the reception filter 4.
- the ZA 14 is the first in the frequency band of the first communication band when the first reception filter 3 side is viewed from the selection terminal 522 in the communication by simultaneously using the first communication band and the second communication band. 2 Indicates the impedance of the reception filter 4.
- the first inductor L21 is shunt-connected in the second reception path R2, it is suitable for impedance matching in the low frequency band.
- the impedance of the second reception filter 4 in the second communication band shifts from the matched state to the capacitiveity.
- the impedance of the second reception filter 4 in the first communication band shifts to the vicinity of the open end.
- the ZA 15 is the second in the frequency band of the second communication band when the second reception filter 4 side is viewed from the selection terminal 522 in the communication by simultaneously using the first communication band and the second communication band. 2 Indicates the impedance of the reception filter 4.
- the ZA 16 is the first in the frequency band of the first communication band when the second reception filter 4 side is viewed from the selection terminal 522 in the communication by simultaneously using the first communication band and the second communication band. 2 Indicates the impedance of the reception filter 4.
- the impedance of the second reception filter 4 in the second communication band maintains a matched state.
- the impedance of the second reception filter 4 in the first communication band shifts to the vicinity of the open end.
- ZA15 of FIG. 4E is a second communication band with respect to the second communication band when impedance matching is performed using the first inductor L21 and the second inductor L22 in the case of performing communication by simultaneously using the first communication band and the second communication band. 2
- the impedance of the receiving filter 4 is shown.
- the impedance of the second reception filter 4 does not deviate in the frequency band of the second communication band, and the first communication band is used. It is necessary to open the impedance of the second receiving filter in the frequency band of.
- the impedance of the second receiving filter 4 with respect to the second communication band is maintained in the matched state, and the second with respect to the first communication band is maintained.
- the impedance of the receiving filter 4 can be opened. As a result, better impedance characteristics can be obtained in communication by using the first communication band and the second communication band at the same time.
- the path length “A1” of the path R21 between the antenna switch 5 and the second inductor L22 in the signal path (second reception path R2) is the second reception.
- the path length of the path R22 between the first inductor L21 and the second inductor L22 is longer than the path length “A2”.
- Parasitic capacitance may occur in each of route R21 and route R22.
- FIG. 5A is a Smith chart showing the impedance of the second reception filter 4 with respect to the second communication band (Band 41) when a parasitic capacitance is generated in the path R22.
- FIG. 5B is a Smith chart showing the impedance of the second reception filter 4 with respect to the first communication band (Band 3) when a parasitic capacitance is generated in the path R22.
- FIG. 5C is a Smith chart showing the impedance of the second reception filter 4 with respect to the second communication band when a parasitic capacitance is generated in the path R21.
- FIG. 5D is a Smith chart showing the impedance of the second reception filter 4 with respect to the first communication band when a parasitic capacitance is generated in the path R21. In each of FIGS.
- the straight line passing through the center of the chart to the left and right is the axis (resistance axis) representing the resistance component of impedance.
- the scale on the resistance axis is normalized, with 0 ⁇ at the left end, 1.0 (50 ⁇ ) at the center of the chart, and infinity (open) at the right end.
- the lower side of the resistance shaft is capacitive and the upper side of the resistance shaft is inductive.
- the ZA 21 is the second in the frequency band of the second communication band when the second reception filter 4 side is viewed from the selection terminal 522 in the communication by simultaneously using the first communication band and the second communication band. 2 Indicates the impedance of the reception filter 4.
- the ZA 22 is the first in the frequency band of the first communication band when the second reception filter 4 side is viewed from the selection terminal 522 in the communication by simultaneously using the first communication band and the second communication band. 1 Indicates the impedance of the reception filter 3.
- the impedance of the second reception filter 4 in the second communication band substantially matches the matching state.
- the impedance of the first communication band of the second reception filter 4 largely moves from the vicinity of the open end.
- the ZA23 is the second in the frequency band of the second communication band when the second reception filter 4 side is viewed from the selection terminal 522 in the communication by simultaneously using the first communication band and the second communication band. 2 Indicates the impedance of the reception filter 4.
- the ZA24 is the first in the frequency band of the first communication band when the second reception filter 4 side is viewed from the selection terminal 522 in the communication by simultaneously using the first communication band and the second communication band. 1 Indicates the impedance of the reception filter 3.
- the impedance of the second reception filter 4 in the second communication band is maintained in a matched state.
- the impedance of the first communication band of the second reception filter 4 has a smaller amount of movement from the vicinity of the open end than in FIG. 5B. ..
- the relationship between the path length "A1" of the route R21 and the path length "A2" of the route R22 is set to "A1> A2".
- the amount of movement of the impedance of the first communication band in the second reception filter 4 from the open end due to the generation of parasitic capacitance can be reduced. As a result, better impedance characteristics can be obtained in communication by using the first communication band and the second communication band at the same time.
- the path length “A1” between the antenna switch 5 and the second inductor L22 in the signal path (second reception path R2) is the second reception path R2.
- the path length between the first inductor L21 and the second receiving filter 4 is longer than the path length "A3".
- Parasitic inductors may occur in each of the path R21 and the path R23.
- FIG. 6A is a Smith chart showing the impedance of the second reception filter 4 with respect to the second communication band (Band 41) when a parasitic inductor is generated in the path R23.
- FIG. 6B is a Smith chart showing the impedance of the second reception filter 4 with respect to the first communication band (Band 3) when a parasitic inductor is generated in the path R23.
- FIG. 6C is a Smith chart showing the impedance of the second reception filter 4 with respect to the second communication band when a parasitic inductor is generated in the path R21.
- FIG. 6D is a Smith chart showing the impedance of the second reception filter 4 with respect to the first communication band when a parasitic inductor is generated in the path R21. In each of FIGS.
- the straight line passing through the center of the chart to the left and right is the axis (resistance axis) representing the resistance component of impedance.
- the scale on the resistance axis is normalized, with 0 ⁇ at the left end, 1.0 (50 ⁇ ) at the center of the chart, and infinity (open) at the right end.
- the lower side of the resistance shaft is capacitive and the upper side of the resistance shaft is inductive.
- the ZA 31 is the second in the frequency band of the second communication band when the second reception filter 4 side is viewed from the selection terminal 522 in the communication by simultaneously using the first communication band and the second communication band. 2 Indicates the impedance of the reception filter 4.
- the ZA 32 is the first in the frequency band of the first communication band when the second reception filter 4 side is viewed from the selection terminal 522 in the communication by simultaneously using the first communication band and the second communication band. 1 Indicates the impedance of the reception filter 3.
- the impedance of the second reception filter 4 in the second communication band substantially matches the matching state.
- the impedance of the first communication band of the second reception filter 4 largely shifts from the vicinity of the open end.
- the ZA 33 is the second in the frequency band of the second communication band when the second reception filter 4 side is viewed from the selection terminal 522 in the communication by simultaneously using the first communication band and the second communication band. 2 Indicates the impedance of the reception filter 4.
- the ZA34 is the first in the frequency band of the first communication band when the second reception filter 4 side is viewed from the selection terminal 522 in the communication by simultaneously using the first communication band and the second communication band. 1 Indicates the impedance of the reception filter 3.
- the impedance in the second communication band of the second reception filter 4 is maintained in a matched state.
- the impedance of the first communication band of the second reception filter 4 has a smaller amount of movement from the vicinity of the open end than in FIG. 6B. ..
- the relationship between the path length "A1" of the path R21 and the path length "A3" of the path R23 is set to "A1> A3".
- the amount of movement of the impedance of the first communication band in the second receiving filter 4 from the open end due to the generation of the parasitic inductor can be reduced. As a result, better impedance characteristics can be obtained in communication by using the first communication band and the second communication band at the same time.
- the high frequency module 1 includes a mounting board 100 in which components are arranged on both the first main surface 101 and the second main surface 102 facing each other in the first direction D1. Not limited to.
- It may be a single-sided mounting board on which components are mounted on one of the main surfaces of the first main surface 101 and the second main surface 102, for example, the first main surface.
- the mounting board 100A of this modification is, for example, a printed wiring board, an LTCC, an HTCC, or a resin board, similarly to the mounting board 100.
- the mounting substrate 100A is, like the mounting substrate 100, a multilayer substrate including, for example, a plurality of dielectric layers and a plurality of conductive layers.
- the mounting board 100A is not limited to the printed wiring board and the LTCC board, and may be a wiring structure.
- the first resin layer 120 is omitted as in FIG. 2A.
- a first reception filter 3, a second reception filter 4, a first phase adjustment circuit 6, a second phase adjustment circuit 7, and a switch IC 110 are mounted on the first main surface 101A.
- a plurality of external connection electrodes 90A are provided on the second main surface 102A facing the first main surface 101A in the first direction D1 which is the thickness direction of the mounting substrate 100A (see FIG. 7B).
- the plurality of external connection electrodes 90A connect the high frequency module 1A to the mother substrate on which the signal processing circuit 80 and the like are mounted.
- the plurality of external connection electrodes 90A are ball bumps formed in a spherical shape.
- the material of the ball bump is, for example, gold, copper, solder or the like.
- the plurality of external connection electrodes 90A include an antenna terminal 2 and a ground terminal used for grounding.
- the antenna switch 5 of the switch IC 110 and the second inductor L22 of the second phase adjustment circuit 7 are connected by surface wiring such as a conductor pattern. Specifically, the antenna switch 5 and the second inductor L22 are connected by a path R31 formed by surface wiring such as a conductor pattern (see FIGS. 7A and 7B).
- the second inductor L22 and the first inductor L21 of the second phase adjusting circuit 7 are connected by surface wiring such as a conductor pattern.
- the second inductor L22 and the first inductor L21 are connected by a path R32 formed by surface wiring such as a conductor pattern (see FIGS. 7A and 7B).
- the first inductor L21 and the second receiving filter 4 are connected by surface wiring. Specifically, the first inductor L21 and the second receiving filter 4 are connected by a path R33 formed by surface wiring (see FIGS. 7A and 7B).
- Each component provided on the first main surface 101A is electrically connected to the mounting board 100A by, for example, a solder bump.
- the solder bumps are arranged between the arranged components and the mounting board 100A in the thickness direction (first direction D1) of the mounting board 100A.
- the second reception path R2 includes the above paths R31, R32, and R33.
- the path length of the path R31 between the antenna switch 5 and the second inductor L22 is set to "A11". Specifically, the length from the selection terminal 522 of the antenna switch 5 to one end of the second inductor L22, for example, the length of the path R31 is set to "A11".
- the path length of the path R32 between the first inductor L21 and the second inductor L22 is set to "A12". Specifically, the length from the other end of the second inductor L22 to the connection point with the first inductor L21, for example, the length of the path R32 is defined as "A12".
- the path length of the path R33 between the first inductor L21 and the second reception filter 4 is set to "A13". Specifically, the length from the connection point with the first inductor L21 to the input terminal of the second reception filter 4, for example, the length of the path R33 is set to "A13".
- the first inductor L21 and the second inductor L22 are arranged so that both the inequality "A11> A12” and the inequality "A11> A13" are satisfied.
- the first inductor L21 and the second inductor L22 may be arranged so that one of the inequality "A11> A12” and the inequality "A11> A13” is satisfied. That is, the first inductor L21 and the second inductor L22 may be arranged so that at least one of the inequality "A11> A12” and the inequality "A11> A13" is satisfied.
- a second resin layer is formed on the second main surface 102 side of the mounting substrate 100 so as to cover the switch IC 110 mounted on the second main surface 102. 130 is provided. Further, the high frequency module 1 includes a plurality of external connection electrodes 90 formed in a columnar shape, and is connected to the mother substrate by the plurality of external connection electrodes 90.
- the second resin layer is omitted on the second main surface 102 side of the mounting substrate 100, and the mother substrate is formed by a plurality of external connection electrodes 90B formed in a spherical shape. It may be connected to.
- Each of the plurality of external connection electrodes 90B is, for example, a ball bump formed in a spherical shape.
- the material of the ball bump is, for example, gold, copper, solder or the like.
- the high frequency module 1 may include a plurality of external connection electrodes 90 and a plurality of external connection electrodes 90B.
- the first inductor L21 and the second inductor L22 have the first inequality "A1>A2" and the second inequality with respect to the path length "A1", the path length "A2" and the path length "A3".
- the configuration is such that both "A1>A3" are satisfied.
- the first inductor L21 and the second inductor L22 are not limited to this configuration.
- the route widths of the route R21, the route R22, and the route R23 may be different.
- the route width of the route R21 is "B1"
- the route width of the route R22 is "B2”
- the route width of the route R23 is "B3”.
- Paths R21, R22, and R23 may be formed so that both are established.
- the route width may be the average value of the widths in the route, the maximum value, or an intermediate value between the maximum value and the minimum value.
- paths R21, R22, and R23 may be formed so that one of the third inequality and the fourth inequality holds. That is, the paths R21, R22, and R23 may be formed so that at least one of the third and fourth inequalities holds.
- the relationship of the path length shown in the first embodiment and the relationship of the path width of the present modification may be combined.
- the first reception filter 3 is configured to be a SAW filter, but is not limited to this configuration.
- the first reception filter 3 may be an elastic wave filter that utilizes another elastic wave filter, for example, an elastic boundary wave, a plate wave, or the like.
- the first reception filter 3 may be, for example, a BAW (Bulk Acoustic Wave) filter.
- the second reception filter 4 may be an elastic wave filter that utilizes another elastic wave filter, for example, an elastic boundary wave, a plate wave, or the like, like the first reception filter 3.
- the second reception filter 4 may be, for example, a BAW filter.
- the mounting substrate 100 is configured to be a printed wiring board, an LTCC substrate, an HTCC substrate, or a resin substrate, but is not limited to this configuration.
- the mounting board 100 may be a component-embedded board.
- the antenna switch 5 and the plurality of amplifiers 11 have a configuration included in the switch IC 110, that is, the antenna switch 5 and the plurality of amplifiers 11 are one chip.
- the configuration is not limited to this configuration.
- the antenna switch 5 and the plurality of amplifiers 11 are integrated into one chip.
- the antenna switch 5 and the plurality of amplifiers 11 may be individually arranged on the second main surface 102.
- the first inductor L21 and the second inductor L22 are configured to be chip inductors as an example, but the present invention is not limited to this.
- the first inductor L21 is not limited to the chip inductor, and may be formed by a conductor pattern or the like. When the first inductor L21 is formed by a conductor pattern or the like, it may be mounted on the mounting substrate 100.
- the second inductor L22 is not limited to the chip inductor, and may be formed by a conductor pattern or the like. When the second inductor L22 is formed by a conductor pattern or the like, it may be mounted on the mounting substrate 100.
- the high frequency module 1 may be provided with a transmission filter which is an elastic wave filter used for transmitting a signal instead of the first reception filter 3.
- a power amplifier is used instead of the first low noise amplifier 12.
- the high frequency module 1 may be provided with a duplexer (elastic wave filter) used for transmitting and receiving signals instead of the first receiving filter 3.
- a duplexer elastic wave filter
- the first low noise amplifier 12 and the power amplifier are connected to the duplexer.
- the high frequency module 1 may be provided with a duplexer (elastic wave filter) used for transmitting and receiving signals instead of the second receiving filter 4.
- a duplexer elastic wave filter
- the second low noise amplifier 13 and the power amplifier are connected to the duplexer.
- Emodiment 2 The present embodiment is different from the first embodiment in that the high frequency module 1B has the phase adjustment circuit 7b instead of the second phase adjustment circuit 7 and does not have the first phase adjustment circuit 6.
- the communication device 8 of the present embodiment includes a high frequency module 1B and a signal processing circuit 80.
- the high-frequency module 1B includes an antenna terminal 2, a first reception filter 3b, a second reception filter 4b, an antenna switch 5 (switch), a phase adjustment circuit 7b, and the like. To be equipped. Further, the high frequency module 1B includes a first low noise amplifier 12 and a second low noise amplifier 13 as an amplifier 11 for amplifying a signal. The high frequency module 1B further includes a mounting substrate 100B as shown in FIGS. 10A and 10B.
- the first reception filter 3b is an elastic wave filter.
- the surface acoustic wave filter is, for example, a SAW filter that utilizes a surface acoustic wave.
- the first reception filter 3b is provided on the first reception path R11 (first communication band path) for receiving the first reception signal from the antenna 9.
- the first reception path R11 is a signal path connecting the antenna switch 5 and the first reception filter 3b, and is a path for receiving the first reception signal via the antenna terminal 2.
- the first reception filter 3b is an elastic wave filter having a first communication band as a pass band.
- the first reception filter 3b is an elastic wave filter that allows signals in the first communication band to pass through. That is, the first reception filter 3b passes the first reception signal of the first frequency band included in the first communication band.
- the first communication band is, for example, the LTE standard Band 41 (reception band: 2496 MHz-2690 MHz).
- the second reception filter 4b is an elastic wave filter.
- the surface acoustic wave filter is, for example, a SAW filter that utilizes a surface acoustic wave.
- the second reception filter 4b is provided on the second reception path R12 (signal path) for receiving the second reception signal from the antenna 9.
- the second reception path R12 is a signal path connecting the antenna switch 5 and the second reception filter 4b, and is a path for receiving the second reception signal via the antenna terminal 2.
- the second reception filter 4b is an elastic wave filter having a second communication band as a pass band.
- the second reception filter 4b is an elastic wave filter that allows signals in the second communication band to pass through. That is, the second reception filter 4b passes the second reception signal of the second frequency band included in the second communication band.
- the second frequency band is a frequency band lower than the first frequency band.
- the second communication band is, for example, Band 3 (reception band: 1805 MHz-1880 MHz) of the LTE standard (including the LTE-Advanced standard). That is, the second reception filter 4b is a filter that allows signals in the second communication band, which is a frequency band lower than the frequency band of the first communication band, to pass through.
- the pass band of the second reception filter 4b and the pass band of the first reception filter 3b do not overlap.
- the phase adjustment circuit 7b is provided in the second reception path R12.
- the phase adjusting circuit 7b includes an inductor 71b, a first capacitor 72b, and a second capacitor 73b.
- the inductor 71b is inserted in series with the second reception path R12.
- the first capacitor 72b is provided between the first end T2 of the inductor 71b and the ground.
- the second capacitor 73b is provided between the second end T1 of the inductor 71b and the ground. That is, the phase adjustment circuit 7b is a ⁇ -type circuit.
- the first end T2 of the inductor 71b is the end on the antenna switch 5 side of both ends of the inductor 71b.
- the second end T1 of the inductor 71b is an end on the second receiving filter 4b side of both ends of the inductor 71b.
- the mounting board 100B has a first main surface 101B and a second main surface 102B facing each other in the first direction D1 which is the thickness direction of the mounting board 100B.
- the mounting board 100B is, for example, a printed wiring board, an LTCC, an HTCC, or a resin board.
- the mounting substrate 100B is, for example, a multilayer substrate including a plurality of dielectric layers and a plurality of conductive layers. The plurality of dielectric layers and the plurality of conductive layers are laminated in the first direction D1 of the mounting substrate 100B.
- the plurality of conductive layers are formed in a predetermined pattern determined for each layer.
- Each of the plurality of conductive layers includes one or a plurality of conductor portions in one plane orthogonal to the first direction D1 of the mounting substrate 100B.
- the material of each conductive layer is, for example, copper.
- the plurality of conductive layers include a ground layer. In the high frequency module 1B, a plurality of ground terminals and a ground layer are electrically connected via a via conductor or the like included in the mounting substrate 100B.
- the mounting board 100B is not limited to the printed wiring board and the LTCC board, but may be a wiring structure.
- the wiring structure is, for example, a multi-layer structure.
- the multilayer structure includes at least one insulating layer and at least one conductive layer.
- the insulating layer is formed in a predetermined pattern. When there are a plurality of insulating layers, the plurality of insulating layers are formed in a predetermined pattern determined for each layer.
- the conductive layer is formed in a predetermined pattern different from the predetermined pattern of the insulating layer. When there are a plurality of conductive layers, the plurality of conductive layers are formed in a predetermined pattern determined for each layer.
- the conductive layer may include one or more rewiring sections.
- the first surface of the two surfaces facing each other in the thickness direction of the multilayer structure is the first main surface 101B of the mounting board 100B, and the second surface is the second main surface 102B of the mounting board 100B.
- the wiring structure may be, for example, an interposer.
- the interposer may be an interposer using a silicon substrate, or may be a substrate composed of multiple layers.
- the first reception filter 3b, the second reception filter 4b, and the phase adjustment circuit 7b are mounted on the first main surface 101B (see FIGS. 10A and 10B).
- a switch IC 110 including an antenna switch 5 is further mounted on the first main surface 101B (see FIG. 10B).
- the switch IC 110 includes a plurality of amplifiers 11 (first low noise amplifier 12, second low noise amplifier 13) as in the first embodiment.
- the phase adjustment circuit 7b and the antenna switch 5 are connected by surface wiring such as a conductor pattern. Specifically, the phase adjustment circuit 7b and the antenna switch 5 are connected by a path R311 formed by surface wiring (see FIG. 10B).
- the surface layer wiring is a wiring conductor provided on the first main surface 101B of the mounting substrate 100B.
- the phase adjustment circuit 7b and the second reception filter 4b are connected by surface wiring such as a conductor pattern. Specifically, the phase adjustment circuit 7b and the second reception filter 4b are connected by a path R312 formed by surface wiring (see FIG. 10B).
- the impedance of the path R312 is preferably a low impedance of 50 ohms or less.
- a part of the first reception filter 3b may be mounted on the first main surface 101B of the mounting board 100B, and the rest of the first receiving filter 3b may be mounted on the mounting board 100B.
- the first reception filter 3b is arranged on the first main surface 101B side of the second main surface 102B on the mounting substrate 100B, and has at least a portion mounted on the first main surface 101B.
- a part of the second reception filter 4b may be mounted on the first main surface 101B of the mounting board 100B, and the rest of the second receiving filter 4b may be mounted on the mounting board 100B.
- the second reception filter 4b is arranged on the first main surface 101B side of the second main surface 102B on the mounting substrate 100B, and has at least a portion mounted on the first main surface 101B.
- phase adjusting circuit 7b may be mounted on the first main surface 101B of the mounting board 100B, and the rest of the phase adjusting circuit 7b may be mounted on the mounting board 100B.
- the phase adjusting circuit 7b is arranged on the first main surface 101B side of the second main surface 102B on the mounting substrate 100B, and has at least a portion mounted on the first main surface 101B.
- the inductor 71b may be mounted on the first main surface 101B, and the first capacitor 72b and the second capacitor 73b may be mounted on the mounting board 100B.
- the inductor 71b, the first capacitor 72b, and the second capacitor 73b are connected by a path formed by an internal wiring conductor composed of a wiring conductor and a via conductor provided inside the mounting substrate 100B.
- a part of the switch IC 110 may be mounted on the first main surface 101B of the mounting board 100B, and the rest of the switch IC 110 may be mounted on the mounting board 100B.
- the switch IC 110 is arranged on the first main surface 101B side of the second main surface 102B on the mounting board 100B, and has at least a portion mounted on the first main surface 101B.
- Each component provided on the first main surface 101B is electrically connected to the mounting board 100B by, for example, a solder bump.
- the solder bumps are arranged between the arranged components and the mounting board 100B in the thickness direction (first direction D1) of the mounting board 100B.
- the above-mentioned second reception path R12 includes the above-mentioned routes R311 and R312.
- FIG. 10A shows a plan view of the high frequency module 1B as viewed from the first direction D1
- FIG. 10B shows a cross-sectional view of the high frequency module 1B.
- the high frequency module 1B includes a plurality of external connection electrodes 90b (see FIG. 10B).
- the plurality of external connection electrodes 90b connect the high frequency module 1B to the mother substrate on which the signal processing circuit 80 and the like are mounted.
- the plurality of external connection electrodes 90b are ball bumps formed in a spherical shape.
- the material of the ball bump is, for example, gold, copper, solder or the like.
- the plurality of external connection electrodes 90b include an antenna terminal 2 and a ground terminal used for grounding.
- the high frequency module 1B receives the signal received by the antenna 9 via the antenna terminal 2, which is one of the plurality of external connection electrodes 90b, and connects to the signal processing circuit 80 via another external connection electrode 90b. Output.
- the high-frequency module 1B includes electronic components such as a first reception filter 3b, a second reception filter 4b, a phase adjustment circuit 7b, and a switch IC 110 mounted on the first main surface 101B on the first main surface 101B of the mounting board 100B.
- a resin layer 120 for covering is further provided. In FIG. 10A, the resin layer 120 is omitted.
- the first capacitor 72b, the inductor 71b, the second capacitor 73b, and the second receiving filter 4b of the phase adjusting circuit 7b are arranged in this order along the second direction D2 which is a direction orthogonal to the first direction D1 (). (See FIG. 9).
- the phase adjustment circuit 7b is connected to the antenna switch 5 via the path R311 included in the second reception path R12 (see FIG. 10B).
- the path length between the antenna switch 5 and the phase adjustment circuit 7b in the second reception path R12 is set to "AA2".
- the length from the selection terminal 522 of the antenna switch 5 to the connection point between the first capacitor 72b and the inductor 71b for example, the length of the path R311 (see FIGS. 10A and 102B).
- the connection point between the first capacitor 72b and the inductor 71b corresponds to the first end T2 of the inductor 71b.
- the connection point between the first capacitor 72b and the inductor 71b may be referred to as a connection point T2.
- the path length between the second reception filter 4b and the second capacitor 73b is set to "AA1".
- the length from the connection point between the inductor 71b and the second capacitor 73b to the input terminal of the second reception filter 4b for example, the length of the path R312 (see FIGS. 10A and 10B). Let it be "AA1" (see FIG. 9).
- the connection point between the second capacitor 73b and the inductor 71b corresponds to the second end T1 of the inductor 71b.
- the connection point between the second capacitor 73b and the inductor 71b may be referred to as a connection point T1.
- the path length between the second reception filter 4b and the second capacitor 73b is also referred to as the first path length.
- the path length between the antenna switch 5 and the phase adjustment circuit 7b is also referred to as a second path length.
- the switch IC110, the phase adjustment circuit 7b, and the second reception filter 4b are arranged so that the first inequality "AA1> AA2" is established.
- the first path length "AA1" is longer than the second path length "AA2".
- the operation of the high frequency module 1B according to the second embodiment is the same as that of the high frequency module 1 according to the first embodiment, and thus the description thereof is omitted here.
- the high frequency module 1B of the second embodiment has a first elastic wave filter (for example, a first reception filter 3b) and a second elastic wave filter (for example, a second reception filter 4b).
- a switch for example, an antenna switch 5
- the first elastic wave filter passes the signal of the first communication band.
- the second elastic wave filter passes the signal of the second communication band, which is a frequency band lower than the frequency band of the first communication band.
- the switch can connect the first elastic wave filter and the second elastic wave filter to the antenna terminal 2 at the same time.
- the phase adjustment circuit 7b is provided on a signal path (for example, the second reception path R12) connecting the switch and the second elastic wave filter, and adjusts the phase of the signal in the second communication band.
- the phase adjusting circuit 7b includes an inductor 71b, a first capacitor 72b, and a second capacitor 73b.
- the inductor 71b is connected in series between the switch and the second SAW filter in the signal path.
- the first capacitor 72b is provided between the first end T2 on the switch side and the ground at both ends of the inductor 71b in the above signal path.
- the second capacitor (73b) is provided between the second end T1 on the second elastic wave filter side and the ground at both ends of the inductor 71b in the above signal path.
- the length (first) of the first path (for example, path R312) between the connection point between the inductor 71b and the second capacitor 73b (second end T1 of the inductor 71b) and the second elastic wave filter.
- One path length “AA1”) is the second path (for example, path R311) between the connection point between the inductor 71b and the first capacitor 72b (first end T2 of the inductor 71b) and the switch in the above signal path. Is longer than the length of (second path length "AA2").
- the frequency band of the first reception filter 3b when the second reception filter 4b side is viewed from the antenna switch 5 is opened. It is necessary to design a high frequency module. Further, when communication is performed by using the first communication band and the second communication band at the same time, the frequency of one filter (for example, the second reception filter 4b) is the frequency of another filter (for example, the first reception filter 3b). It is necessary to set the band as the open end and increase the return loss in the frequency band of another filter (for example, the first reception filter 3b).
- the impedance of the first reception filter 3b in the frequency band of the first communication band (here, Band 41) when the second reception filter 4 side is viewed from the selection terminal 522 of the antenna switch 5 is shown.
- the ZA 41 is the first in the frequency band of the first communication band when the second reception filter 4b side is viewed from the selection terminal 522 in the communication by simultaneously using the first communication band and the second communication band. 2 Indicates the impedance of the reception filter 4b. At this time, the impedance of the first communication band of the second reception filter 4 is capacitive. In this case, in the second reception path R12 between the antenna switch 5 and the second reception filter 4b, a capacitance is generated between the ground layer of the mounting board 100B, but the return loss is not reduced. Therefore, the second reception path R12 can be lengthened.
- FIG. 12 shows the return loss in communication due to the simultaneous use of the first communication band and the second communication band.
- the horizontal axis of the graph of FIG. 12 represents frequency, and the vertical axis represents RL.
- FIG. 13 shows a signal loss in the frequency band of the first communication band when the second reception filter 4b side is viewed from the selection terminal 522 in the communication by simultaneously using the first communication band and the second communication band. Is shown.
- the horizontal axis of the graph of FIG. 13 represents frequency, and the vertical axis represents IL.
- the characteristic G1 shown in FIG. 12 and the characteristic G11 shown in FIG. 13 show the return loss and the loss when the route length “AA1” of the route R312 is made longer than the route length “AA2” of the route R311.
- the characteristic G2 shown in FIG. 12 and the characteristic G12 shown in FIG. 13 show the return loss and the loss when the route length “AA2” of the route R311 is made longer than the route length “AA1” of the route R312.
- the frequency band of the first communication band here, Band 41
- the signal return loss is large.
- the mounting board 100C of the first modification is different from the second embodiment in that the switch IC 110 is mounted on the second main surface 102B.
- the points different from those of the second embodiment will be mainly described.
- the same components as those in the second embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
- the high frequency module 1C includes an antenna terminal 2, a first reception filter 3b, a second reception filter 4b, an antenna switch 5, and a phase adjustment circuit 7b, as in the second embodiment. Further, the high frequency module 1C includes a first low noise amplifier 12 and a second low noise amplifier 13. The high frequency module 1C further includes a mounting substrate 100C as shown in FIGS. 14A and 14B.
- FIG. 14A shows a plan view of the high frequency module 1C according to the modified example 1 as viewed from the first direction D1
- FIG. 14B shows a cross-sectional view of the high frequency module 1C.
- the high frequency module 1C includes a plurality of external connection electrodes 90c (see FIG. 14B).
- the plurality of external connection electrodes 90c connect the high frequency module 1C to the mother substrate on which the signal processing circuit 80 and the like are mounted.
- the plurality of external connection electrodes 90c are columnar (for example, columnar) electrodes arranged (provided) on the second main surface 102B of the mounting substrate 100C.
- the material of the plurality of external connection electrodes 90c is, for example, a metal (for example, copper, a copper alloy, etc.).
- the plurality of external connection electrodes 90c include an antenna terminal 2 and a ground terminal used for grounding.
- the high frequency module 1C receives the signal received by the antenna 9 via the antenna terminal 2, which is one of the plurality of external connection electrodes 90c, and connects to the signal processing circuit 80 via another external connection electrode 90c. Output.
- the first reception filter 3b, the second reception filter 4b, and the phase adjustment circuit 7b are mounted on the first main surface 101C of the mounting board 100C.
- the switch IC 110 is mounted on the second main surface 102C of the mounting board 100C.
- the high-frequency module 1C is a resin layer on the first main surface 101C of the mounting substrate 100C that covers electronic components such as the first reception filter 3b, the second reception filter 4b, and the phase adjustment circuit 7b mounted on the first main surface 101C.
- 120 (hereinafter, also referred to as a first resin layer 120) is further provided.
- the high-frequency module 1C further includes a second resin layer 130 on the second main surface 102C of the mounting substrate 100C, which covers electronic components such as the switch IC 110 mounted on the second main surface 102C.
- the material of the second resin layer 130 may be the same material as the material of the first resin layer 120, or may be a different material.
- the first resin layer 120 is omitted.
- the antenna switch 5, the first low noise amplifier 12, and the second low noise amplifier 13 are arranged on the second main surface 102C of the mounting board 100C as described above (see FIGS. 14A and 14B).
- the phase adjustment circuit 7b, the first reception filter 3b, and the second reception filter 4b are arranged on the first main surface 101C of the mounting board 100C (see FIGS. 14A and 14B).
- the first capacitor 72b, the inductor 71b, the second capacitor 73b, and the second receiving filter 4b of the phase adjusting circuit 7b are arranged in this order along the second direction D2.
- the first capacitor 72b and the inductor 71b are connected to the antenna switch 5 via the path R311 included in the second reception path R12 (see FIG. 14B).
- the second reception filter 4b is connected to the second low noise amplifier 13 via the path R25. (See FIG. 14B).
- the phase adjustment circuit 7b overlaps with the antenna switch 5 (see FIGS. 14A and 14B). .
- a part of the phase adjusting circuit 7b may overlap with the antenna switch 5. That is, when the mounting board 100C is viewed in a plan view, at least a part of the phase adjusting circuit 7b may overlap with the antenna switch 5.
- the first capacitor 72b overlaps with the antenna switch 5 (see FIGS. 14A and 14B).
- a part of the first capacitor 72b may overlap with the antenna switch 5. That is, when the mounting board 100C is viewed in a plan view, at least a part of the first capacitor 72b may overlap with the antenna switch 5.
- the inductor 71b overlaps with the antenna switch 5 (see FIGS. 14A and 14B).
- a part of the inductor 71b may overlap with the antenna switch 5. That is, when the mounting board 100C is viewed in a plan view, at least a part of the inductor 71b may overlap with the antenna switch 5.
- the second capacitor 73b overlaps with the antenna switch 5 (see FIGS. 14A and 14B).
- a part of the second capacitor 73b may overlap with the antenna switch 5. That is, when the mounting board 100C is viewed in a plan view, at least a part of the second capacitor 73b may overlap with the antenna switch 5.
- the mounting board 100C when the mounting board 100C is viewed in a plan view, at least a part of the first reception filter 3b overlaps with the first low noise amplifier 12 (see FIG. 14A).
- the mounting board 100C when the mounting board 100C is viewed in a plan view, at least a part of the second reception filter 4b overlaps with the second low noise amplifier 13 (see FIGS. 14A and 14B).
- the antenna switch 5 and the phase adjustment circuit 7b are connected via a via conductor 95 and an inner layer wiring conductor provided on the mounting board 100C.
- the via conductor 95 included in the path between the antenna switch 5 and the phase adjusting circuit 7b forms the path R311.
- the phase adjusting circuit 7b and the second receiving filter 4b are connected via a wiring conductor 98 and a via conductor 97.
- the wiring conductor 98 and the via conductor 97 included in the path between the phase adjusting circuit 7b and the second reception filter 4b form the path R312.
- the second reception path R12 from the antenna switch 5 to the second reception filter 4b includes the path R311 and the path R312.
- the path length of the path R311 of the second reception path R12 corresponds to the second path length “AA2”
- the path length of the path R312 of the second reception path R12 becomes the first path length “AA1”. Equivalent to. That is, in the first modification, the path length of the path R312 is longer than the path length of the path R311.
- the switch IC 110 mounted on the second main surface 102C is covered on the second main surface 102C side of the mounting board 100C.
- a second resin layer 130 is provided.
- the high frequency module 1C includes a plurality of external connection electrodes 90c formed in a columnar shape, and is connected to the mother substrate by the plurality of external connection electrodes 90c.
- the second resin layer is omitted on the second main surface 102C side of the mounting substrate 100C, and the mother substrate is formed by a plurality of external connection electrodes 91c formed in a spherical shape. It may be connected to.
- Each of the plurality of external connection electrodes 91c is, for example, a ball bump formed in a spherical shape.
- the material of the ball bump is, for example, gold, copper, solder or the like.
- the high frequency module 1C may include a plurality of external connection electrodes 90c and a plurality of external connection electrodes 91c.
- the high-frequency module 1D includes an antenna terminal 2, a first reception filter 3b, a second reception filter 4b, an antenna switch 5, a first phase adjustment circuit 6d, and the like. It includes a phase adjusting circuit 7b (hereinafter, referred to as a second phase adjusting circuit 7b). Further, the high frequency module 1C includes a first low noise amplifier 12 and a second low noise amplifier 13. The high frequency module 1D further includes a mounting board 100D as shown in FIG.
- the first phase adjustment circuit 6d is an HPF (High Pass Filter) phase circuit, and as shown in FIG. 16, has a third reactance element 63d together with a first reactance element 61d and a second reactance element 62d.
- the first phase adjusting circuit 6d includes a capacitor C61 as a first reactance element 61d, a capacitor C62 as a second reactance element 62d, and an inductor L63 as a third reactance element 63d.
- the first reactance element 61d and the second reactance element 62d are inserted in series in the first reception path R11 between the antenna switch 5 and the first reception filter 3bb.
- the first reactance element 61d is arranged between the antenna switch 5 and the second reactance element 62d in the first reception path R11.
- the third reactance element 63d is provided between one point between the first reactance element 61d and the second reactance element 62d and the ground. In other words, one end of the third reactance element 63d is connected between the first reactance element 61d and the second reactance element 62d, and the other end is connected to the ground.
- the mounting board 100D has a first main surface 101D and a second main surface facing each other in the thickness direction (corresponding to the first direction D1) of the mounting board 100D.
- the mounting board 100D is, for example, a printed wiring board, an LTCC, an HTCC, or a resin board.
- the mounting substrate 100D is, for example, a multilayer substrate including a plurality of dielectric layers and a plurality of conductive layers. The plurality of dielectric layers and the plurality of conductive layers are laminated in the thickness direction of the mounting substrate 100D. The plurality of conductive layers are formed in a predetermined pattern determined for each layer.
- Each of the plurality of conductive layers includes one or a plurality of conductor portions in one plane orthogonal to the thickness direction of the mounting substrate 100D.
- the material of each conductive layer is, for example, copper.
- the plurality of conductive layers include a ground layer. In the high frequency module 1D, a plurality of ground terminals and a ground layer are electrically connected via a via conductor or the like included in the mounting substrate 100D.
- the mounting board 100D is not limited to the printed wiring board and the LTCC board, but may be a wiring structure.
- the wiring structure is, for example, a multi-layer structure.
- the multilayer structure includes at least one insulating layer and at least one conductive layer.
- the insulating layer is formed in a predetermined pattern. When there are a plurality of insulating layers, the plurality of insulating layers are formed in a predetermined pattern determined for each layer.
- the conductive layer is formed in a predetermined pattern different from the predetermined pattern of the insulating layer. When there are a plurality of conductive layers, the plurality of conductive layers are formed in a predetermined pattern determined for each layer.
- the conductive layer may include one or more rewiring sections.
- the first surface of the two surfaces facing each other in the thickness direction of the multilayer structure is the first main surface 101D of the mounting board 100D, and the second surface is the second main surface of the mounting board 100D.
- the wiring structure may be, for example, an interposer.
- the interposer may be an interposer using a silicon substrate, or may be a substrate composed of multiple layers.
- the first reception filter 3b, the second reception filter 4b, the first phase adjustment circuit 6d, and the second phase adjustment circuit 7b are mounted on the first main surface 101D (see FIG. 17).
- a switch IC 110 including an antenna switch 5 is further mounted on the first main surface 101D (see FIG. 17).
- the switch IC 110 includes a plurality of amplifiers 11 (first low noise amplifier 12, second low noise amplifier 13) as in the first and second embodiments.
- the first phase adjustment circuit 6d and the antenna switch 5 are connected by surface wiring such as a conductor pattern. Specifically, the first phase adjustment circuit 6d and the antenna switch 5 are connected by a path R411 formed by surface wiring (see FIG. 17).
- the first phase adjustment circuit 6d and the first reception filter 3b are connected by surface wiring such as a conductor pattern. Specifically, the first phase adjusting circuit 6d and the first receiving filter 3b are connected by a path R412 formed by surface wiring (see FIG. 17).
- a part of the first phase adjusting circuit 6d may be mounted on the first main surface 101D of the mounting board 100D, and the rest of the first phase adjusting circuit 6d may be mounted on the mounting board 100D.
- the first phase adjusting circuit 6d is arranged on the first main surface 101D side of the second main surface on the mounting board 100D, and has at least a portion mounted on the first main surface 101D.
- the third reactance element (inductor L63) may be mounted on the first main surface 101D, and the first reactance element 61d (capacitor C61) and the second reactance element (capacitor C62) may be mounted on the mounting substrate 100D.
- the third reactance element 63d, the first reactance element 61d, and the second reactance element 62d are connected by a path formed by an internal wiring conductor composed of a wiring conductor and a via conductor provided inside the mounting substrate 100D. Ru.
- a part of the switch IC 110 may be mounted on the first main surface 101D of the mounting board 100D, and the rest of the switch IC 110 may be mounted on the mounting board 100D.
- the switch IC 110 is arranged on the first main surface 101D side of the second main surface on the mounting board 100D, and has at least a portion mounted on the first main surface 101D.
- Each component provided on the first main surface 101D is electrically connected to the mounting board 100D by, for example, a solder bump.
- the solder bumps are arranged between the arranged components and the mounting board 100D in the thickness direction (first direction D1) of the mounting board 100D.
- the above-mentioned first reception path R11 includes the above-mentioned paths R411 and R412.
- the high frequency module 1D has the first reception filter 3b, the second reception filter 4b, and the first phase adjustment circuit mounted on the first main surface 101D on the first main surface 101D of the mounting board 100D.
- a resin layer covering electronic components such as 6d, the second phase adjusting circuit 7b, and the switch IC110 is further provided. In FIG. 17, the resin layer is omitted.
- the first reactance element 61d, the third reactance element 63d, the second reactance element 62d, and the first receive filter 3b of the first phase adjustment circuit 6d are in this order in a direction orthogonal to the thickness direction (corresponding to the second direction D2). ) Is arranged.
- the first phase adjusting circuit 6d is connected to the antenna switch 5 via the path R411 included in the first receiving path R11 (see FIG. 17).
- the path length between the antenna switch 5 and the first phase adjustment circuit 6d in the first reception path R11 is set to "AA3".
- the length from the selection terminal 522 of the antenna switch 5 to the connection point T11 between the first reactance element 61d and the third reactance element 63d, for example, the path R411 (see FIG. 17). Let the length of be "AA3" (see FIG. 16).
- the path length between the first phase adjustment circuit 6d and the first reception filter 3b is set to "AA4".
- the total length of the second path length “AA2” of the path R311 and the first path length “AA1” of the path R312 is between the antenna switch 5 and the first reactance element 61d in the first receiving path R11. It is longer than the total length of the distance and the distance between the second reactance element 62d and the first receiving filter 3b. More specifically, the total length of the second path length “AA2” of the path R311 and the first path length “AA1” of the path R312 is the total length between the antenna switch 5 and the connection point T11 in the first reception path R11. It is longer than the total length of the distance (path length “AA3”) and the distance between the connection point T12 and the first reception filter 3b (path length “AA4”).
- phase adjustment circuit 7b is arranged so that the inequality "AA1>AA2" is satisfied with respect to the first path length "AA1" and the second path length "AA2".
- the phase adjusting circuit 7b is not limited to this configuration.
- the conditions of the respective route widths of the route R311 and the route R312 may be added to the above conditions (inequality "AA1> AA2").
- the route width of the route R311 may be "BB1" and the route width of the route R312 may be "BB2", and the routes R311 and R312 may be formed so that the inequality "BB1> BB2" is established.
- the route width may be the average value of the widths in the route, the maximum value, or an intermediate value between the maximum value and the minimum value.
- the first reception filter 3b is configured to be a SAW filter, but is not limited to this configuration.
- the first receiving filter 3b may be an elastic wave filter that utilizes another elastic wave filter, for example, an elastic boundary wave, a plate wave, or the like.
- the first reception filter 3b may be, for example, a BAW filter.
- the second reception filter 4b may be an elastic wave filter that utilizes another elastic wave filter, for example, an elastic boundary wave, a plate wave, or the like, like the first reception filter 3b.
- the second reception filter 4b may be, for example, a BAW filter.
- the mounting substrate 100B is configured to be a printed wiring board, an LTCC substrate, an HTCC substrate, or a resin substrate, but is not limited to this configuration.
- the mounting board 100B may be a component-embedded board.
- the antenna switch 5 and the plurality of amplifiers 11 have a configuration included in the switch IC 110, that is, the antenna switch 5 and the plurality of amplifiers 11 are one chip.
- the configuration is not limited to this configuration.
- the antenna switch 5 and the plurality of amplifiers 11 are integrated into one chip.
- the antenna switch 5 and the plurality of amplifiers 11 may be individually arranged on the second main surface 102B.
- the high frequency module 1B may be provided with a transmission filter which is an elastic wave filter used for transmitting a signal instead of the first reception filter 3b.
- a power amplifier is used instead of the first low noise amplifier 12.
- the high frequency module 1B may be provided with a duplexer (elastic wave filter) used for transmitting and receiving signals instead of the first receiving filter 3b.
- a duplexer elastic wave filter
- the first low noise amplifier 12 and the power amplifier are connected to the duplexer.
- the high frequency module 1B may be provided with a duplexer (elastic wave filter) used for transmitting and receiving signals instead of the second receiving filter 4b.
- a duplexer elastic wave filter
- the second low noise amplifier 13 and the power amplifier are connected to the duplexer.
- the high frequency module (1; 1A) of the first aspect includes the first elastic wave filter (for example, the first receiving filter 3) and the second elastic wave filter (for example, the second receiving filter 4). , An antenna (antenna switch 5), a first inductor (L21), and a second inductor (L22).
- the first elastic wave filter passes the signal of the first communication band.
- the second elastic wave filter passes the signal of the second communication band.
- the switch can connect the first elastic wave filter and the second elastic wave filter to the antenna terminal at the same time.
- the first inductor (L21) is provided between the node and the ground on the signal path (for example, the second reception path R2) between the switch and the second elastic wave filter.
- the second inductor (L22) is connected in series between the switch and the first inductor (L21) in the signal path.
- the impedance of the second elastic wave filter with respect to the second communication band is maintained in the matched state, and the first The impedance of the second elastic wave filter with respect to the communication band can be opened.
- better impedance characteristics can be obtained in communication by using the first communication band and the second communication band at the same time.
- the path length (path length “A1”; “A11”) between the switch and the second inductor in the signal path is the above. Of the signal paths, it is longer than the path length (path length "A2"; “A12”) between the first inductor (L21) and the second inductor (L22).
- the path length (path length "A1"; “ A11 ") is longer than the path length (path length” A3 “;” A13 ") between the first inductor (L21) and the second elastic wave filter in the above signal path.
- the path width between the switch and the second inductor (L22) in the signal path is the signal path. Of these, it is longer than the path width between the first inductor (L21) and the second inductor (L22).
- the path width between the switch and the second inductor (L22) in the signal path is the signal path. Of these, it is longer than the path width between the first inductor (L21) and the second elastic wave filter.
- R22; R32) is formed by surface wiring.
- the parasitic capacitance generated is compared with the case where the path (R22; R32) between the first inductor (L21) and the second inductor (L22) is provided inside the mounting substrate (100; 100A). Can be made smaller.
- the path (R23) between the first inductor (L21) and the second elastic wave filter in the above signal path. R33) is formed by surface wiring.
- the generated parasitic inductor is compared with the case where the path (R23; R33) between the first inductor (L21) and the second elastic wave filter is provided inside the mounting substrate (100; 100A). It can be made smaller.
- the high frequency module (1) of the eighth aspect further includes a mounting substrate (100) in any one of the first to seventh aspects.
- the mounting substrate (100) has a first main surface (101) and a second main surface (102) facing each other in the thickness direction (for example, the first direction D1).
- the first elastic wave filter, the second elastic wave filter, the first inductor (L21) and the second inductor (L22) are arranged on the first main surface (101) side.
- the switch is arranged on the second main surface (102) side.
- the high frequency module (1) of the ninth aspect further includes a plurality of external connection electrodes (90; 90B) arranged on the second main surface (102) in the eighth aspect.
- the second inductor (L22) overlaps with the switch when the mounting substrate (100) is viewed in a plan view in the eighth or ninth aspect. ..
- the path length between the switch and the second inductor (L22) can be shortened.
- any one of the eighth to tenth aspects when the mounting substrate (100) is viewed in a plan view, at least a part of the first inductor (L21) is a switch. overlapping.
- the path length from the switch to the second inductor (L22) and the first inductor (L21) can be shortened.
- the high frequency module (1) of the twelfth aspect further includes a first low noise amplifier (12) and a second low noise amplifier (13) in any one of the eighth to eleventh aspects.
- the first low noise amplifier (12) is connected to the first elastic wave filter.
- the second low noise amplifier (13) is connected to the second elastic wave filter.
- the first low noise amplifier (12) and the second low noise amplifier (13) are provided on the second main surface (102).
- the path length between the first elastic wave filter and the first low noise amplifier (12) and the path length between the second elastic wave filter and the second low noise amplifier (13) are shortened, respectively. be able to.
- the high frequency module (1) of the thirteenth aspect includes the first reactance element (61), the second reactance element (62), and the third reactance element (63) in any one of the eighth to twelfth aspects. , Are further provided.
- the first reactance element (61) is inserted in series in the signal path for the first communication band (for example, the first reception path R1) between the switch and the first elastic wave filter.
- the second reactance element (62) is provided between the first end of the first reactance element (61) and the ground in the signal path for the first communication band.
- the third reactance element (63) is provided between the second end of the first reactance element (61) and the ground in the signal path for the first communication band.
- the impedance in the second communication band of the first SAW filter when viewed from the switch on the first SAW filter side can be shifted to the vicinity of the open end.
- the high frequency module (1B; 1C; 1D) of the fourteenth aspect includes a first elastic wave filter (for example, a first receiving filter 3b), a second elastic wave filter (for example, a second receiving filter 4b), and a switch (for example, a second receiving filter 4b).
- a first elastic wave filter for example, a first receiving filter 3b
- a second elastic wave filter for example, a second receiving filter 4b
- a switch for example, a second receiving filter 4b.
- the first elastic wave filter passes the signal of the first communication band.
- the second elastic wave filter passes the signal of the second communication band, which is a frequency band lower than the frequency band of the first communication band.
- the switch can connect the first elastic wave filter and the second elastic wave filter to the antenna terminal (2) at the same time.
- the phase adjustment circuit (7b) is provided on a signal path (for example, the second reception path R12) connecting the switch and the second elastic wave filter, and adjusts the phase of the signal in the second communication band.
- the phase adjusting circuit (7b) includes an inductor (71b), a first capacitor (72b), and a second capacitor (73b).
- the inductor (71b) is connected in series between the switch and the second SAW filter in the signal path.
- the first capacitor (72b) is provided between the first end (T2) on the switch side and the ground at both ends of the inductor (71b) in the signal path.
- the second capacitor (73b) is provided between the second end (T1) on the second elastic wave filter side of both ends of the inductor (71b) and the ground in the signal path.
- first path for example, path R312 between the connection point between the inductor (71b) and the second capacitor (73b) (the second end T1 of the inductor 71b) and the second elastic wave filter.
- the length is the first of the above signal paths between the connection point between the inductor (71b) and the first capacitor (72b) (first end T2 of the inductor 71b) and the switch. It is longer than the length of two paths (for example, path R311) (second path length "AA2").
- the path width of the first path is longer than the path width of the second path.
- the first path and the second path are formed by surface wiring.
- the generated parasitic capacitance can be reduced as compared with the case where the first path and the second path are provided inside the mounting substrate (100B; 100C; 100D).
- the high frequency module (1C) of the seventeenth aspect has a mounting substrate (100C) having a first main surface (101C) and a second main surface (102C) facing each other in any one of the 14th to 16th aspects. , Further prepare.
- the first elastic wave filter, the second elastic wave filter, the inductor (71b), the first capacitor (72b) and the second capacitor (73b) are arranged on the first main surface (101C) side.
- the switch is arranged on the second main surface (102C) side.
- the high frequency module (1C) of the eighteenth aspect further includes a plurality of external connection electrodes (90c) arranged on the second main surface (102C) in the seventeenth aspect.
- the high frequency module (1C) of the nineteenth aspect at least a part of the first capacitor (72b) overlaps with the switch when the mounting substrate (100C) is viewed in a plan view in the 17th or 18th aspect. ..
- the length of the second path (second path length "AA2") of the signal path (for example, the second reception path R12) can be shortened.
- At least a part of the second capacitor (73b) is a switch when the mounting substrate (100C) is viewed in a plan view in any one of the 17th to 19th aspects. overlapping.
- the length of the second path of the receiving path (second path length "AA2") can be shortened.
- the high frequency module (1C) of the 21st aspect further includes a first low noise amplifier (12) and a second low noise amplifier (13) in any one of the 17th to 20th aspects.
- the first low noise amplifier (12) is connected to the first elastic wave filter.
- the second low noise amplifier (13) is connected to the second elastic wave filter.
- the first low noise amplifier (12) and the second low noise amplifier (13) are provided on the second main surface (102C).
- the path length between the first elastic wave filter and the first low noise amplifier (12) and the path length between the second elastic wave filter and the second low noise amplifier (13) are shortened, respectively. be able to.
- a second phase adjustment circuit (first phase adjustment) different from the first phase adjustment circuit which is the phase adjustment circuit (7b).
- the circuit 6d) is further provided.
- the second phase adjustment circuit is provided on the signal path for the first communication band (first reception path R11) connecting the switch and the second elastic wave filter.
- the second phase adjusting circuit includes a first reactance element (61d), a second reactance element (62d), and a third reactance element (63d).
- the first reactance element (61d) and the second reactance element (62d) are inserted in series in the signal path for the first communication band between the switch and the first elastic wave filter.
- the third reactance element (63d) is connected between the first reactance element (61d) and the second reactance element (62d), and the other end is connected to the ground.
- the first reactance element (61d) is arranged between the switch and the second reactance element (62d) in the signal path for the first communication band.
- the total length of the length of the first path (path R312) and the length of the second path (path R311) is the distance (path) between the switch and the first reactance element (61d) in the signal path for the first communication band. It is longer than the total length of the length "AA3") and the distance between the second reactance element (62d) and the first elastic wave filter (path length "AA4").
- the communication device (8) of the 23rd aspect includes a high frequency module (1; 1A; 1B; 1C; 1D) of any one of the first to 22nd aspects, and a signal processing circuit (80).
- the signal processing circuit (80) signals the signal of the first communication band and the signal of the second communication band.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Transceivers (AREA)
Abstract
より良好なインピーダンス特性を得ることができる高周波モジュール及び通信装置を提供する。高周波モジュール(1)は、第1弾性波フィルタ(第1受信フィルタ3)と、第2弾性波フィルタ(第2受信フィルタ4)と、スイッチ(アンテナスイッチ5)と、第1インダクタ(L21)と、第2インダクタ(L22)と、を備える。第1弾性波フィルタは、第1通信バンドの信号を通過させる。第2弾性波フィルタは、第2通信バンドの信号を通過させる。第1インダクタ(L21)は、スイッチと第2弾性波フィルタとを結ぶ信号経路(第2受信経路R2)上のノードとグランドとの間に設けられている。第2インダクタ(L22)は、上記信号経路においてスイッチと第1インダクタ(L21)との間で直列接続されている。
Description
本発明は、一般に高周波モジュール及び通信装置に関し、より詳細には、互いに異なる複数の通信の同時使用に対応可能な高周波モジュール及び通信装置に関する。
従来、互いに周波数帯域の異なる複数の高周波信号を伝送する高周波回路(高周波モジュール)が知られている(特許文献1参照)。
特許文献1に記載された高周波回路は、第1スイッチ部と、第1整合回路部と、フィルタ部を構成する複数のフィルタと、を備える。第1スイッチ部では、入力端子(アンテナ端子)が、アンテナ素子に接続される。第1スイッチ部の出力端子とフィルタ部の入力端子とは、第1整合回路部を介して接続されている。第1整合回路部は、複数のインダクタを有する。複数のインダクタは、第1スイッチ部と複数のフィルタとを接続する複数の経路のうち対応する1つの経路に一端が接続され、他端がグランドに接続されている。
特許文献1で記載された高周波回路(高周波モジュール)において、複数のフィルタ(弾性波フィルタ)がアンテナ端子に同時に接続された場合であっても、より良好なインピーダンス特性が要求されている。
本発明は上記課題に鑑みてなされ、より良好なインピーダンス特性を得ることができる高周波モジュール及び通信装置を提供することを目的とする。
本発明の一態様に係る高周波モジュールは、第1弾性波フィルタと、第2弾性波フィルタと、スイッチと、第1インダクタと、第2インダクタと、を備える。前記第1弾性波フィルタは、第1通信バンドの信号を通過させる。前記第2弾性波フィルタは、第2通信バンドの信号を通過させる。前記スイッチは、前記第1弾性波フィルタと前記第2弾性波フィルタとをアンテナ端子に同時に接続可能である。前記第1インダクタは、前記スイッチと前記第2弾性波フィルタとを結ぶ信号経路上のノードとグランドとの間に設けられている。前記第2インダクタは、前記信号経路において前記スイッチと前記第1インダクタとの間で直列接続されている。
本発明の一態様に係る高周波モジュールは、第1弾性波フィルタと、第2弾性波フィルタと、スイッチと、位相調整回路と、備える。前記第1弾性波フィルタは、第1通信バンドの信号を通過させる。前記第2弾性波フィルタは、前記第1通信バンドの周波数帯よりも低周波数帯である第2通信バンドの信号を通過させる。前記スイッチは、前記第1弾性波フィルタと前記第2弾性波フィルタとをアンテナ端子に同時に接続可能である。前記位相調整回路は、前記スイッチと前記第2弾性波フィルタとを結ぶ信号経路上に設けられ、前記第2通信バンドの前記信号の位相を調整する。前記位相調整回路は、インダクタと、第1キャパシタと、第2キャパシタと、を有している。前記インダクタは、前記信号経路において前記スイッチと前記第2弾性波フィルタとの間で直列接続されている。前記第1キャパシタは、前記信号経路において、前記インダクタの両端のうち前記スイッチ側の第1端とグランドとの間に設けられている。前記第2キャパシタは、前記信号経路において、前記インダクタの両端のうち前記第2弾性波フィルタ側の第2端とグランドとの間に設けられている。前記信号経路のうち前記インダクタと前記第2キャパシタとの接続点と、前記第2弾性波フィルタとの間の第1経路の長さは、前記信号経路のうち前記インダクタと前記第1キャパシタとの接続点と、前記スイッチとの間の第2経路の長さよりも長い。
本発明の一態様に係る通信装置は、前記高周波モジュールと、信号処理回路と、を備える。前記信号処理回路は、前記第1通信バンドの前記信号及び前記第2通信バンドの前記信号を信号処理する。
本発明によると、より良好なインピーダンス特性を得ることができる。
以下、実施形態に係る高周波モジュール及び通信装置について、図面を参照して説明する。下記の実施形態等において参照する図面は、模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
(実施形態1)
以下、実施形態1に係る高周波モジュール1及び通信装置8について、図1~図6Dを用いて説明する。
以下、実施形態1に係る高周波モジュール1及び通信装置8について、図1~図6Dを用いて説明する。
(1)高周波モジュール
実施形態1に係る高周波モジュール1の全体構成について、図1を参照して説明する。
実施形態1に係る高周波モジュール1の全体構成について、図1を参照して説明する。
実施形態1に係る高周波モジュール1は、図1に示すように、アンテナ端子2と、第1受信フィルタ3と、第2受信フィルタ4と、アンテナスイッチ5(スイッチ)と、第1位相調整回路6と、第2位相調整回路7と、を備える。また、高周波モジュール1は、信号を増幅させる増幅器11として、第1ローノイズアンプ12と、第2ローノイズアンプ13とを備える。高周波モジュール1は、さらに、図2A及び図2Bに示すように、実装基板100を備える。
高周波モジュール1は、例えば、スマートフォンのような携帯電話に用いられる。なお、高周波モジュール1は、携帯電話に限定されず、例えば、スマートウォッチのようなウェアラブル端末であってもよい。要するに、高周波モジュール1は、図1に示すように、外部装置(図示せず)と通信を行う通信装置8に用いられる。高周波モジュール1は、例えば、4G(第4世代移動通信)規格、5G(第5世代移動通信)規格等に対応可能なモジュールである。4G規格は、例えば、3GPP LTE規格(LTE:Long Term Evolution)である。5G規格は、例えば、5G NR(New Radio)である。高周波モジュール1は、キャリアアグリゲーション及びデュアルコネクティビティに対応可能なモジュールである。
(2)高周波モジュールの各構成要素
以下、実施形態1に係る高周波モジュール1の各構成要素について、図面を参照して説明する。
以下、実施形態1に係る高周波モジュール1の各構成要素について、図面を参照して説明する。
(2.1)アンテナ端子
アンテナ端子2は、図1に示すように、アンテナ9に電気的に接続される。
アンテナ端子2は、図1に示すように、アンテナ9に電気的に接続される。
(2.2)第1受信フィルタ
第1受信フィルタ3は、弾性波フィルタである。弾性波フィルタは、例えば、弾性表面波を利用するSAW(Surface Acoustic Wave)フィルタである。
第1受信フィルタ3は、弾性波フィルタである。弾性波フィルタは、例えば、弾性表面波を利用するSAW(Surface Acoustic Wave)フィルタである。
第1受信フィルタ3は、図1に示すように、第1受信信号をアンテナ9から受信するための第1受信経路R1に設けられている。言い換えると、第1受信経路R1は、アンテナスイッチ5と第1受信フィルタ3とを結ぶ信号経路であって、第1受信信号をアンテナ端子2を介して受信するための経路である。
第1受信フィルタ3は、第1通信バンドを通過帯域とする弾性波フィルタである。言い換えると、第1受信フィルタ3は、第1通信バンドの信号を通過させる弾性波フィルタである。すなわち、第1受信フィルタ3は、第1通信バンドに含まれる第1周波数帯域の第1受信信号を通過させる。ここで、第1通信バンドは、例えば、LTE(Long Term Evolution)規格(LTE-Advanced規格を含む)のBand3(受信帯域:1805MHz-1880MHz)である。
(2.3)第2受信フィルタ
第2受信フィルタ4は、弾性波フィルタである。弾性波フィルタは、例えば、弾性表面波を利用するSAWフィルタである。
第2受信フィルタ4は、弾性波フィルタである。弾性波フィルタは、例えば、弾性表面波を利用するSAWフィルタである。
第2受信フィルタ4は、図1に示すように、第2受信信号をアンテナ9から受信するための第2受信経路R2に設けられている。言い換えると、第2受信経路R2は、アンテナスイッチ5と第2受信フィルタ4とを結ぶ信号経路であって、第2受信信号をアンテナ端子2を介して受信するための経路である。
第2受信フィルタ4は、第2通信バンドを通過帯域とする弾性波フィルタである。言い換えると、第2受信フィルタ4は、第2通信バンドの信号を通過させる弾性波フィルタである。すなわち、第2受信フィルタ4は、第2通信バンドに含まれる第2周波数帯域の第2受信信号を通過させる。ここで、第2周波数帯域は、第1周波数帯域よりも高い周波数帯域である。ここで、第2通信バンドは、例えば、LTE規格(LTE-Advanced規格を含む)のBand41(受信帯域:2496MHz-2690MHz)である。
(2.4)アンテナスイッチ
アンテナスイッチ5は、図1に示すように、共通端子51と、複数(図示例では2つ)の選択端子521~522とを有する。アンテナスイッチ5は、複数の選択端子521~522の少なくとも1つを共通端子51の接続先として選択する。つまり、アンテナスイッチ5は、第1受信フィルタ3、及び第2受信フィルタ4とアンテナ9とを選択的に接続する。アンテナスイッチ5は、第1受信フィルタ3と第2受信フィルタ4とを共通端子51に同時に接続可能に構成されている。
アンテナスイッチ5は、図1に示すように、共通端子51と、複数(図示例では2つ)の選択端子521~522とを有する。アンテナスイッチ5は、複数の選択端子521~522の少なくとも1つを共通端子51の接続先として選択する。つまり、アンテナスイッチ5は、第1受信フィルタ3、及び第2受信フィルタ4とアンテナ9とを選択的に接続する。アンテナスイッチ5は、第1受信フィルタ3と第2受信フィルタ4とを共通端子51に同時に接続可能に構成されている。
共通端子51は、アンテナ端子2に接続されている。つまり、共通端子51は、アンテナ端子2を介してアンテナ9に電気的に接続されている。なお、共通端子51は、アンテナ9に直接接続されていることに限定されない。共通端子51とアンテナ9との間には、フィルタ又はカプラ等が設けられていてもよい。
選択端子521は、第1受信フィルタ3に電気的に接続されている。選択端子522は、第2受信フィルタ4に電気的に接続されている。
第1受信信号と第2受信信号とを同時に通信するキャリアアグリゲーションの場合、アンテナスイッチ5は、第1受信フィルタ3及び第2受信フィルタ4をアンテナ9に常時接続させる。具体的には、アンテナスイッチ5は、キャリアアグリゲーションの場合、選択端子521及び選択端子522を共通端子51に常時接続させる。ここで、キャリアアグリゲーションとは、複数の周波数帯域の電波を同時に使用する通信をいう。
キャリアアグリゲーションを行わない場合には、アンテナスイッチ5は、通信に用いる通信バンドに応じて、第1受信フィルタ3及び第2受信フィルタ4のうち一方の受信フィルタをアンテナ9に常時接続させる。例えば、第1通信バンドを用いた通信を行う場合には、アンテナスイッチ5は、選択端子521を共通端子51に接続させる。第2通信バンドを用いた通信を行う場合には、アンテナスイッチ5は、選択端子522を共通端子51に接続させる。
すなわち、アンテナスイッチ5は、アンテナ端子2、第1受信フィルタ3及び第2受信フィルタ4に接続される。アンテナスイッチ5は、通信形態に応じてアンテナ端子2との接続先が第1受信フィルタ3又は第2受信フィルタ4である状態と、アンテナ端子2との接続先が第1受信フィルタ3及び第2受信フィルタ4の両方である状態とを切替可能である。
(2.5)第1ローノイズアンプ
第1ローノイズアンプ12は、アンテナ9が受信した第1受信信号を増幅する。第1ローノイズアンプ12の入力端子は、アンテナスイッチ5に電気的に接続されている。第1ローノイズアンプ12の出力端子は、後述する信号処理回路80に接続されている。
第1ローノイズアンプ12は、アンテナ9が受信した第1受信信号を増幅する。第1ローノイズアンプ12の入力端子は、アンテナスイッチ5に電気的に接続されている。第1ローノイズアンプ12の出力端子は、後述する信号処理回路80に接続されている。
(2.6)第2ローノイズアンプ
第2ローノイズアンプ13は、アンテナ9が受信した第2受信信号を増幅する。第2ローノイズアンプ13の入力端子は、アンテナスイッチ5に電気的に接続されている。第2ローノイズアンプ13の出力端子は、信号処理回路80に接続されている。
第2ローノイズアンプ13は、アンテナ9が受信した第2受信信号を増幅する。第2ローノイズアンプ13の入力端子は、アンテナスイッチ5に電気的に接続されている。第2ローノイズアンプ13の出力端子は、信号処理回路80に接続されている。
(2.7)第1位相調整回路
第1位相調整回路6は、第1受信経路R1に設けられている。第1位相調整回路6は、第1リアクタンス素子61及び第2リアクタンス素子62と共に、第3リアクタンス素子63を含む。第1リアクタンス素子61は、第1受信経路R1に直列に挿入されている。第2リアクタンス素子62は、第1リアクタンス素子61の第1端とグランドとの間に設けられている。第3リアクタンス素子63は、第1リアクタンス素子61の第2端とグランドとの間に設けられている。つまり、第1位相調整回路6は、π型回路である。第1位相調整回路6は、第1リアクタンス素子61としてインダクタL11を含み、第2リアクタンス素子62としてキャパシタC11を含み、第3リアクタンス素子63としてキャパシタC12を含む。
第1位相調整回路6は、第1受信経路R1に設けられている。第1位相調整回路6は、第1リアクタンス素子61及び第2リアクタンス素子62と共に、第3リアクタンス素子63を含む。第1リアクタンス素子61は、第1受信経路R1に直列に挿入されている。第2リアクタンス素子62は、第1リアクタンス素子61の第1端とグランドとの間に設けられている。第3リアクタンス素子63は、第1リアクタンス素子61の第2端とグランドとの間に設けられている。つまり、第1位相調整回路6は、π型回路である。第1位相調整回路6は、第1リアクタンス素子61としてインダクタL11を含み、第2リアクタンス素子62としてキャパシタC11を含み、第3リアクタンス素子63としてキャパシタC12を含む。
(2.8)第2位相調整回路
第2位相調整回路7は、第2受信経路R2に設けられている。第2位相調整回路7は、第1インダクタL21と、第2インダクタL22と、を含む。第1インダクタL21は、例えばチップインダクタである。第2インダクタL22は、例えばチップインダクタである。第1インダクタL21の一端は第2受信経路R2に接続され、他端はグランドに接続されている。言い換えると、第1インダクタL21は、第2受信経路R2(信号経路)上のノードとグランドとの間に設けられている。つまり、第1インダクタL21は、第2受信経路R2において、シャント接続されている。第2インダクタL22は、第2受信経路R2においてアンテナスイッチ5と第1インダクタL21との間に直列に挿入されている。すなわち、第2インダクタL22は、第2受信経路R2においてアンテナスイッチ5と第1インダクタL21との間で直列接続(シリーズ接続)されている。さらに、第2インダクタL22では、第1周波数帯より第2周波数帯の位相の変化が大きい。
第2位相調整回路7は、第2受信経路R2に設けられている。第2位相調整回路7は、第1インダクタL21と、第2インダクタL22と、を含む。第1インダクタL21は、例えばチップインダクタである。第2インダクタL22は、例えばチップインダクタである。第1インダクタL21の一端は第2受信経路R2に接続され、他端はグランドに接続されている。言い換えると、第1インダクタL21は、第2受信経路R2(信号経路)上のノードとグランドとの間に設けられている。つまり、第1インダクタL21は、第2受信経路R2において、シャント接続されている。第2インダクタL22は、第2受信経路R2においてアンテナスイッチ5と第1インダクタL21との間に直列に挿入されている。すなわち、第2インダクタL22は、第2受信経路R2においてアンテナスイッチ5と第1インダクタL21との間で直列接続(シリーズ接続)されている。さらに、第2インダクタL22では、第1周波数帯より第2周波数帯の位相の変化が大きい。
(2.9)実装基板
実装基板100は、実装基板100の厚さ方向である第1方向D1において互いに対向する第1主面101及び第2主面102を有する。実装基板100は、例えば、プリント配線板、LTCC(Low Temperature Co-fired Ceramics)、HTCC(High Temperature Co-fired Ceramics)、樹脂基板である。ここにおいて、実装基板100は、例えば、複数の誘電体層及び複数の導電層を含む多層基板である。複数の誘電体層及び複数の導電層は、実装基板100の第1方向D1において積層されている。複数の導電層は、層ごとに定められた所定パターンに形成されている。複数の導電層の各々は、実装基板100の第1方向D1に直交する一平面内において1つ又は複数の導体部を含む。各導電層の材料は、例えば、銅である。複数の導電層は、グランド層を含む。高周波モジュール1では、複数のグランド端子とグランド層とが、実装基板100の有するビア導体等を介して電気的に接続されている。
実装基板100は、実装基板100の厚さ方向である第1方向D1において互いに対向する第1主面101及び第2主面102を有する。実装基板100は、例えば、プリント配線板、LTCC(Low Temperature Co-fired Ceramics)、HTCC(High Temperature Co-fired Ceramics)、樹脂基板である。ここにおいて、実装基板100は、例えば、複数の誘電体層及び複数の導電層を含む多層基板である。複数の誘電体層及び複数の導電層は、実装基板100の第1方向D1において積層されている。複数の導電層は、層ごとに定められた所定パターンに形成されている。複数の導電層の各々は、実装基板100の第1方向D1に直交する一平面内において1つ又は複数の導体部を含む。各導電層の材料は、例えば、銅である。複数の導電層は、グランド層を含む。高周波モジュール1では、複数のグランド端子とグランド層とが、実装基板100の有するビア導体等を介して電気的に接続されている。
実装基板100は、プリント配線板、LTCC基板に限らず、配線構造体であってもよい。配線構造体は、例えば、多層構造体である。多層構造体は、少なくとも1つの絶縁層と、少なくとも1つの導電層とを含む。絶縁層は、所定パターンに形成されている。絶縁層が複数の場合は、複数の絶縁層は、層ごとに定められた所定パターンに形成されている。導電層は、絶縁層の所定パターンとは異なる所定パターンに形成されている。導電層が複数の場合は、複数の導電層は、層ごとに定められた所定パターンに形成されている。導電層は、1つ又は複数の再配線部を含んでもよい。配線構造体では、多層構造体の厚さ方向において互いに対向する2つの面のうち第1面が実装基板100の第1主面101であり、第2面が実装基板100の第2主面102である。配線構造体は、例えば、インタポーザであってもよい。インタポーザは、シリコン基板を用いたインタポーザであってもよいし、多層で構成された基板であってもよい。
第1主面101には、第1受信フィルタ3、第2受信フィルタ4、第1位相調整回路6及び第2位相調整回路7が実装されている。第2位相調整回路7の第2インダクタL22と第1インダクタL21とは、導体パターン等の表層配線により接続されている。具体的には、第2インダクタL22と第1インダクタL21とは、導体パターン等の表層配線により形成された経路R22により接続されている(図2B参照)。第1インダクタL21と第2受信フィルタ4とは、表層配線により接続されている。具体的には、第1インダクタL21と第2受信フィルタ4とは、表層配線により形成された経路R23により接続されている(図2B参照)。ここで、表層配線とは、実装基板100の第1主面101に設けられた配線導体である。
なお、第1受信フィルタ3の一部が実装基板100の第1主面101に実装されており、第1受信フィルタ3の残りが実装基板100に内装されていてもよい。要するに、第1受信フィルタ3は、実装基板100において第2主面102よりも第1主面101側に配置されており、かつ、第1主面101に実装されている部分を少なくとも有する。
第2受信フィルタ4の一部が実装基板100の第1主面101に実装されており、第2受信フィルタ4の残りが実装基板100に内装されていてもよい。要するに、第2受信フィルタ4は、実装基板100において第2主面102よりも第1主面101側に配置されており、かつ、第1主面101に実装されている部分を少なくとも有する。
第1位相調整回路6の一部が実装基板100の第1主面101に実装されており、第1位相調整回路6の残りが実装基板100に内装されていてもよい。要するに、第1位相調整回路6は、実装基板100において第2主面102よりも第1主面101側に配置されており、かつ、第1主面101に実装されている部分を少なくとも有する。
さらに、第2位相調整回路7の一部が実装基板100の第1主面101に実装されており、第2位相調整回路7の残りが実装基板100に内装されていてもよい。要するに、第2位相調整回路7は、実装基板100において第2主面102よりも第1主面101側に配置されており、かつ、第1主面101に実装されている部分を少なくとも有する。例えば、第1インダクタL21が第1主面101に実装され、第2インダクタL22が実装基板100に内装されてもよい。この場合、第2インダクタL22と第1インダクタL21とは、実装基板100の内部に設けられた配線部(配線導体)とビア導体とによる内装配線導体により形成された経路により接続される。
また、第1インダクタL21が実装基板100に内装されている場合には、第1インダクタL21と第2受信フィルタ4とは、実装基板100の内部に設けられた配線導体とビア導体とによる内装配線導体により形成された経路により接続される。
第2主面102には、アンテナスイッチ5及び複数の増幅器11(第1ローノイズアンプ12、第2ローノイズアンプ13)が1チップ化されたスイッチIC(Integrated Circuit)110が実装されている。アンテナスイッチ5と、第2インダクタL22とは、実装基板100に設けられたビア導体95によって形成された経路R21を介して接続されている。第2受信フィルタ4と、第2ローノイズアンプ13とは、実装基板100に設けられたビア導体96によって形成された経路R25を介して接続されている。
なお、スイッチIC110の一部が実装基板100の第2主面102に実装されており、スイッチIC110の残りが実装基板100に内装されていてもよい。要するに、スイッチIC110は、実装基板100において第1主面101よりも第2主面102側に配置されており、かつ、第2主面102に実装されている部分を少なくとも有する。
第1主面101及び第2主面102に設けられる各部品は、例えば、はんだバンプにより実装基板100と電気的に接続されている。はんだバンプは、実装基板100の厚さ方向(第1方向D1)において、配置されている部品と実装基板100との間に配置されている。ここで、上述した第2受信経路R2は、上記経路R21,R22,R23を含む。
(2.10)その他の構成
次に、高周波モジュール1における他の構成要素について説明する。
次に、高周波モジュール1における他の構成要素について説明する。
図2Aは高周波モジュール1を第1方向D1から見た平面図を、図2Bは高周波モジュール1の断面図を、それぞれ示す。
高周波モジュール1は、複数の外部接続電極90を備えている(図2B参照)。複数の外部接続電極90は、高周波モジュール1を、信号処理回路80等が実装されているマザー基板に接続する。複数の外部接続電極90は、実装基板100の第2主面102上に配置された(設けられた)柱状(例えば、円柱状)の電極である。複数の外部接続電極90の材料は、例えば、金属(例えば、銅、銅合金等)である。複数の外部接続電極90は、アンテナ端子2、及び接地に用いられるグランド端子を含む。
高周波モジュール1は、複数の外部接続電極90のうち1つの外部接続電極90であるアンテナ端子2を介してアンテナ9が受信した信号を受け取り、別の外部接続電極90を介して信号処理回路80に出力する。
高周波モジュール1は、実装基板100の第1主面101において、第1主面101に実装されている第1受信フィルタ3、第2受信フィルタ4、第1位相調整回路6及び第2位相調整回路7等の電子部品を覆う第1樹脂層120を、更に備える。高周波モジュール1は、実装基板100の第2主面102において、第2主面102に実装されているスイッチIC110等の電子部品を覆う第2樹脂層130を、更に備える。第2樹脂層130の材料は、第1樹脂層120の材料と同じ材料であってもよいし、異なる材料であってもよい。なお、図2Aでは、第1樹脂層120を省略している。
アンテナスイッチ5、第1ローノイズアンプ12及び第2ローノイズアンプ13は、上述したように、実装基板100の第2主面102に配置されている(図2B参照)。
第1位相調整回路6、第2位相調整回路7、第1受信フィルタ3及び第2受信フィルタ4は、実装基板100の第1主面101に配置されている(図2A参照)。
第1位相調整回路6及び第1受信フィルタ3は、この順に、第2方向D2に沿って配置されている。
第2位相調整回路7の第2インダクタL22、第1インダクタL21及び第2受信フィルタ4は、この順に、第1方向D1と直交する方向である第2方向D2に沿って配置されている。第2インダクタL22は、第2受信経路R2に含まれる経路R21を介してアンテナスイッチ5に接続されている(図2B参照)。第2受信フィルタ4は、経路R25を介して第2ローノイズアンプ13に接続されている。(図2B参照)。
実施形態1において、実装基板100を平面視した場合、つまり第1方向D1から実装基板100を見た場合に、第2インダクタL22は、アンテナスイッチ5と重なっている(図2A,図2B参照)。なお、実装基板100を平面視した場合、第2インダクタL22の一部が、アンテナスイッチ5と重なっていてもよい。つまり、実装基板100を平面視した場合、第2インダクタL22の少なくとも一部が、アンテナスイッチ5と重なっていればよい。
実施形態1において、実装基板100を平面視した場合、第1インダクタL21は、アンテナスイッチ5と重なっている(図2A,図2B参照)。なお、実装基板100を平面視した場合、第1インダクタL21の一部が、アンテナスイッチ5と重なっていてもよい。つまり、実装基板100を平面視した場合、第1インダクタL21の少なくとも一部が、アンテナスイッチ5と重なっていればよい。
また、実装基板100を平面視した場合、第1受信フィルタ3の少なくとも一部は、第1ローノイズアンプ12と重なっている(図2A参照)。なお、実装基板100を平面視した場合、第1受信フィルタ3の一部が、第1ローノイズアンプ12と重なっていてもよい。つまり、実装基板100を平面視した場合、第1受信フィルタ3の少なくとも一部が、第1ローノイズアンプ12と重なっていればよい。
また、実装基板100を平面視した場合、第2受信フィルタ4の少なくとも一部は、第2ローノイズアンプ13と重なっている(図2A、図2B参照)。なお、実装基板100を平面視した場合、第2受信フィルタ4の一部が、第2ローノイズアンプ13と重なっていてもよい。つまり、実装基板100を平面視した場合、第2受信フィルタ4の少なくとも一部が、第2ローノイズアンプ13と重なっていればよい。
ここで、第2受信経路R2のうちアンテナスイッチ5と第2インダクタL22との間の経路長を“A1”とする。具体的には、第2受信経路R2において、アンテナスイッチ5の選択端子522から第2インダクタL22の一端までの長さ、例えば経路R21(図2B参照)の長さを、“A1”とする(図1参照)。
また、第2受信経路R2のうち第1インダクタL21と第2インダクタL22との間の経路長を“A2”とする。具体的には、第2受信経路R2において、第2インダクタL22の他端から第1インダクタL21との接続点までの長さ、例えば経路R22(図2B参照)の長さを、“A2”とする(図1参照)。
さらに、第2受信経路R2のうち第1インダクタL21と第2受信フィルタ4との間の経路長を“A3”とする。具体的には、第2受信経路R2において、第1インダクタL21との接続点から第2受信フィルタ4の入力端子までの長さ、例えば経路R23(図2B参照)の長さを、“A3”とする(図1参照)。
このとき、第1不等式“A1>A2”及び第2不等式“A1>A3”の双方が成立するように、第1インダクタL21及び第2インダクタL22は配置される。なお、第1不等式及び第2不等式のうち一方の不等式が成立するように、第1インダクタL21及び第2インダクタL22は配置されてもよい。つまり、第1不等式及び第2不等式のうち少なくとも一方の不等式が成立するように、第1インダクタL21及び第2インダクタL22は配置されていればよい。
要するに、実施形態1では、経路長“A1”は、経路長“A2”よりも長い。さらに、経路長“A1”は、経路長“A3”よりも長い。
(3)高周波モジュールの動作
以下、実施形態1に係る高周波モジュール1の動作について、図1を参照して説明する。
以下、実施形態1に係る高周波モジュール1の動作について、図1を参照して説明する。
まず、第1通信バンドの信号の通信のみの場合について説明する。この場合、アンテナスイッチ5は、共通端子51の接続先として、選択端子521を選択する。つまり、アンテナ9には、第1受信フィルタ3が電気的に接続される。アンテナ9で受信された第1受信信号は、アンテナスイッチ5及び第1位相調整回路6を介して、第1受信フィルタ3に入力される。
続いて、第2通信バンドの信号の通信のみの場合について説明する。この場合、アンテナスイッチ5は、共通端子51の接続先として、選択端子522を選択する。つまり、アンテナ9には、第2受信フィルタ4が電気的に接続される。アンテナ9で受信された第2受信信号は、アンテナスイッチ5及び第2位相調整回路7を介して、第2受信フィルタ4に入力される。
次に、第1通信バンドの信号及び第2通信バンドの信号を同時に通信するキャリアアグリゲーションの場合について説明する。この場合、アンテナスイッチ5は、共通端子51の接続先として、選択端子521と、選択端子522とを選択する。アンテナ9には、第1受信フィルタ3及び第2受信フィルタ4が電気的に接続される。アンテナ9で受信された第1受信信号及び第2受信信号はアンテナスイッチ5及び第1位相調整回路6を介して、第1受信フィルタ3に入力される。アンテナ9で受信された第1受信信号及び第2受信信号はアンテナスイッチ5及び第2位相調整回路7を介して、第1受信フィルタ3に入力される。
(4)通信装置
通信装置8は、図2に示すように、高周波モジュール1と、信号処理回路80と、を備える。信号処理回路80は、第1通信バンドの信号及び第2通信バンドの信号を信号処理する。信号処理回路80は、ベースバンド信号処理回路81と、RF信号処理回路82とを備える。
通信装置8は、図2に示すように、高周波モジュール1と、信号処理回路80と、を備える。信号処理回路80は、第1通信バンドの信号及び第2通信バンドの信号を信号処理する。信号処理回路80は、ベースバンド信号処理回路81と、RF信号処理回路82とを備える。
(4.1)ベースバンド信号処理回路
ベースバンド信号処理回路81は、図1示すように、例えばBBIC(Baseband Integrated Circuit)であり、RF信号処理回路82に電気的に接続されている。ベースバンド信号処理回路81は、ベースバンド信号からI相信号及びQ相信号を生成する。ベースバンド信号処理回路81は、I相信号とQ相信号とを合成することでIQ変調処理を行って、送信信号を出力する。この際、送信信号は、所定周波数の搬送波信号を、当該搬送波信号の周期よりも長い周期で振幅変調した変調信号として生成される。
ベースバンド信号処理回路81は、図1示すように、例えばBBIC(Baseband Integrated Circuit)であり、RF信号処理回路82に電気的に接続されている。ベースバンド信号処理回路81は、ベースバンド信号からI相信号及びQ相信号を生成する。ベースバンド信号処理回路81は、I相信号とQ相信号とを合成することでIQ変調処理を行って、送信信号を出力する。この際、送信信号は、所定周波数の搬送波信号を、当該搬送波信号の周期よりも長い周期で振幅変調した変調信号として生成される。
(4.2)RF信号処理回路
RF信号処理回路82は、図1に示すように、例えばRFIC(Radio Frequency Integrated Circuit)であり、高周波モジュール1とベースバンド信号処理回路81との間に設けられている。RF信号処理回路82は、ベースバンド信号処理回路81からの送信信号に対して信号処理を行う機能と、アンテナ9で受信された受信信号に対して信号処理を行う機能とを有する。RF信号処理回路82は、マルチバンド対応の処理回路であり、複数の通信バンドの送信信号を生成して増幅することが可能である。
RF信号処理回路82は、図1に示すように、例えばRFIC(Radio Frequency Integrated Circuit)であり、高周波モジュール1とベースバンド信号処理回路81との間に設けられている。RF信号処理回路82は、ベースバンド信号処理回路81からの送信信号に対して信号処理を行う機能と、アンテナ9で受信された受信信号に対して信号処理を行う機能とを有する。RF信号処理回路82は、マルチバンド対応の処理回路であり、複数の通信バンドの送信信号を生成して増幅することが可能である。
(5)効果
以下、実施形態1の高周波モジュール1による効果について説明する。
以下、実施形態1の高周波モジュール1による効果について説明する。
(5.1)第1の効果
比較例での高周波モジュールでは、シャント接続されたインダクタとアンテナスイッチとの間において、シリーズ結合されたインダクタは備えていない。比較例での高周波モジュールでは、シャント接続されたインダクタが設けられることで、複数のフィルタのうち一のフィルタ(弾性波フィルタ)と、他のフィルタ(弾性波フィルタ)とを同時使用する通信を行う場合に、当該一のフィルタにおいて当該他のフィルタの周波数帯域をオープン端となるようにすることができる。しかしながら、当該一のフィルタを通過する周波数帯域が当該他のフィルタを通過する周波数帯域よりも高い場合、複数のフィルタのうち一のフィルタを用いる通信時と、当該一のフィルタと他のフィルタとを同時使用する通信時とで、当該一のフィルタを通過する周波数帯域でのインピーダンスのずれが生じる可能性がある。
比較例での高周波モジュールでは、シャント接続されたインダクタとアンテナスイッチとの間において、シリーズ結合されたインダクタは備えていない。比較例での高周波モジュールでは、シャント接続されたインダクタが設けられることで、複数のフィルタのうち一のフィルタ(弾性波フィルタ)と、他のフィルタ(弾性波フィルタ)とを同時使用する通信を行う場合に、当該一のフィルタにおいて当該他のフィルタの周波数帯域をオープン端となるようにすることができる。しかしながら、当該一のフィルタを通過する周波数帯域が当該他のフィルタを通過する周波数帯域よりも高い場合、複数のフィルタのうち一のフィルタを用いる通信時と、当該一のフィルタと他のフィルタとを同時使用する通信時とで、当該一のフィルタを通過する周波数帯域でのインピーダンスのずれが生じる可能性がある。
そこで、実施形態1の高周波モジュール1は、第1通信バンド(例えば、Band1)の信号と、第1通信バンドの第1周波数帯よりも高い第2周波数帯の第2通信バンド(例えば、Band41)の信号と、を同時に通信することが可能である。高周波モジュール1は、第1弾性波フィルタ(例えば、第1受信フィルタ3)と、第2弾性波フィルタ(例えば、第2受信フィルタ4)と、スイッチ(アンテナスイッチ5)と、第1インダクタL21と、第2インダクタL22と、を備える。第1弾性波フィルタは、第1通信バンドの信号を通過させる。第2弾性波フィルタは、第2通信バンドの信号を通過させる。スイッチは、アンテナ端子2、第1弾性波フィルタ及び第2弾性波フィルタに接続される。スイッチは、通信形態に応じてアンテナ端子2との接続先が第1受信フィルタ3又は第2受信フィルタ4である状態と、アンテナ端子2との接続先が第1受信フィルタ3及び第2受信フィルタ4の両方である状態とを切替可能である。第1インダクタL21は、スイッチと第2弾性波フィルタとの信号経路(例えば、第2受信経路R2)においてシャント接続されている。第2インダクタL22は、信号経路においてスイッチと第1インダクタL21との間でシリーズ接続される。第2インダクタL22では、第1周波数帯より第2周波数帯に対する位相変化が大きい。
以下、実施形態1による第1の効果について説明する。
図3A、図4A、図4C及び図4Eは、第2通信バンドに対する第2受信フィルタ4のインピーダンスを示すスミスチャートである。図3B、図4B、図4D及び図4Fは、第1通信バンドに対する第2受信フィルタ4のインピーダンスを示すスミスチャートである。図3A、図3B及び図4A~図4Fの各々において、左右にチャートの中心を通る直線が、インピーダンスの抵抗成分を表す軸(抵抗軸)である。抵抗軸上の目盛りに関しては、正規化されており、左端が0Ω、チャートの中心が1.0(50Ω)、右端が無限大(オープン)である。また、図3A~図3Fの各々において、抵抗軸よりも下側が容量性であり、抵抗軸よりも上側が誘導性である。
図3Aは、第2通信バンド(Band41)のみでの通信において、第2通信バンドに対する第2受信フィルタ4のインピーダンスの整合がとれた状態を表すスミスチャートである。図3Bは、上記通信時での第2通信バンドに対する第2受信フィルタ4のインピーダンスの整合がとれた場合において、第1通信バンド(Band3)に対する第2受信フィルタ4のインピーダンスを示すスミスチャートである。
図4Aは、第2インダクタL22を挿入し、第1通信バンド(Band3)と第2通信バンド(Band41)との同時使用による通信(キャリアアグリゲーション)を行う場合において、第2通信バンドに対する第2受信フィルタ4のインピーダンスを示すスミスチャートである。図4Bは、第1通信バンドと第2通信バンドとの同時使用による通信を行う場合において、第1通信バンドに対する第2受信フィルタ4のインピーダンスを示すスミスチャートである。
図4Cは、第1通信バンド(Band3)と第2通信バンド(Band41)との同時使用による通信を行う場合において、第1インダクタL21を用いてインピーダンス整合を行うときの第2通信バンドに対する第2受信フィルタ4のインピーダンスを示すスミスチャートである。図4Dは、第1通信バンドと第2通信バンドとの同時使用による通信を行う場合において、第1インダクタL21を用いてインピーダンス整合を行うときの第1通信バンドに対する第2受信フィルタ4のインピーダンスを示すスミスチャートである。
図4Eは、第1通信バンド(Band3)と第2通信バンド(Band41)との同時使用による通信を行う場合において、第1インダクタL21及び第2インダクタL22を用いてインピーダンス整合を行うときの第2通信バンドに対する第2受信フィルタ4のインピーダンスを示すスミスチャートである。図4Fは、第1通信バンド(Band3)と第2通信バンド(Band41)との同時使用による通信を行う場合において、第1インダクタL21及び第2インダクタL22を用いてインピーダンス整合を行うときの第1通信バンドに対する第2受信フィルタ4のインピーダンスを示すスミスチャートである。
図3Aにおいて、ZA1は、第2通信バンドのみの通信において、図1におけるアンテナスイッチ5の選択端子522から第2受信フィルタ4側を見たときの、第2通信バンドの周波数帯域での第2受信フィルタ4のインピーダンスを示す。図3Bにおいて、ZA2は、第2通信バンドのみの通信において、選択端子522から第1受信フィルタ3側を見たときの、第1通信バンドの周波数帯域での第2受信フィルタ4のインピーダンスを示す。
図3Aから分かるように、第2受信フィルタ4の第2通信バンドでのインピーダンスは、整合がとれた状態(整合)となっている。
図4Aにおいて、ZA11は、第1通信バンドと第2通信バンドとの同時使用による通信において、選択端子522から第2受信フィルタ4側を見たときの、第2通信バンドの周波数帯域での第2受信フィルタ4のインピーダンスを示す。図4Bにおいて、ZA12は、第1通信バンドと第2通信バンドとの同時使用による通信において、選択端子522から第2受信フィルタ4側を見たときの、第1通信バンドの周波数帯域での第1受信フィルタ3のインピーダンスを示す。
第2インダクタL22は、第2受信経路R2においてシリーズ接続されている。さらに、第2インダクタL22では、第1周波数帯より第2周波数帯の位相の変化が大きい。そのため、図4Aから分かるように、第2受信フィルタ4の第2通信バンドでのインピーダンスは、整合状態から誘導性にシフトする。また、図4Bから分かるように、第2受信フィルタ4の第1通信バンドのインピーダンスは誘導性となっている。
図4Cにおいて、ZA13は、第1通信バンドと第2通信バンドとの同時使用による通信において、選択端子522から第2受信フィルタ4側を見たときの、第2通信バンドの周波数帯域での第2受信フィルタ4のインピーダンスを示す。図4Dにおいて、ZA14は、第1通信バンドと第2通信バンドとの同時使用による通信において、選択端子522から第1受信フィルタ3側を見たときの、第1通信バンドの周波数帯域での第2受信フィルタ4のインピーダンスを示す。
第1インダクタL21は、第2受信経路R2においてシャント接続されているので、低周波数帯に対してインピーダンス整合を行うのに適している。図4Cから分かるように、第2受信フィルタ4の第2通信バンドでのインピーダンスは、整合状態から容量性にシフトする。また、図4Dから分かるように、第2受信フィルタ4の第1通信バンドでのインピーダンスは、オープン端の近傍にシフトする。
図4Eにおいて、ZA15は、第1通信バンドと第2通信バンドとの同時使用による通信において、選択端子522から第2受信フィルタ4側を見たときの、第2通信バンドの周波数帯域での第2受信フィルタ4のインピーダンスを示す。図4Fにおいて、ZA16は、第1通信バンドと第2通信バンドとの同時使用による通信において、選択端子522から第2受信フィルタ4側を見たときの、第1通信バンドの周波数帯域での第2受信フィルタ4のインピーダンスを示す。
図4Eから分かるように、第2受信フィルタ4の第2通信バンドでのインピーダンスは、整合状態を維持する。また、図4Fから分かるように、第2受信フィルタ4の第1通信バンドでのインピーダンスは、オープン端の近傍にシフトする。
図4EのZA15は、第1通信バンドと第2通信バンドとの同時使用による通信を行う場合において、第1インダクタL21及び第2インダクタL22を用いてインピーダンス整合を行うときの第2通信バンドに対する第2受信フィルタ4のインピーダンスを示す。
第1通信バンドと第2通信バンドとの同時使用による通信を行う場合には、第2通信バンドの周波数帯域での第2受信フィルタ4のインピーダンスのずれが生じないようにし、かつ第1通信バンドの周波数帯での第2受信フィルタのインピーダンスをオープンにする必要がある。
上記結果により、第1インダクタL21及び第2インダクタL22を用いてインピーダンス整合を行うことで、第2通信バンドに対する第2受信フィルタ4のインピーダンスを整合状態に維持し、かつ第1通信バンドに対する第2受信フィルタ4のインピーダンスをオープンにすることができる。その結果、第1通信バンドと第2通信バンドとの同時使用による通信において、より良好なインピーダンス特性を得ることができる。
(5.2)第2の効果
実施形態1では、信号経路(第2受信経路R2)のうちアンテナスイッチ5と第2インダクタL22との間の経路R21の経路長“A1”は、第2受信経路R2のうち第1インダクタL21と第2インダクタL22との間の経路R22の経路長“A2”よりも長い。
実施形態1では、信号経路(第2受信経路R2)のうちアンテナスイッチ5と第2インダクタL22との間の経路R21の経路長“A1”は、第2受信経路R2のうち第1インダクタL21と第2インダクタL22との間の経路R22の経路長“A2”よりも長い。
以下、実施形態1による第2の効果について説明する。
経路R21及び経路R22のそれぞれにおいて、寄生容量が発生する場合がある。
図5Aは、経路R22に寄生容量が発生した場合における第2通信バンド(Band41)に対する第2受信フィルタ4のインピーダンスを示すスミスチャートである。図5Bは、経路R22に寄生容量が発生した場合における第1通信バンド(Band3)に対する第2受信フィルタ4のインピーダンスを示すスミスチャートである。図5Cは、経路R21に寄生容量が発生した場合における第2通信バンドに対する第2受信フィルタ4のインピーダンスを示すスミスチャートである。図5Dは、経路R21に寄生容量が発生した場合における第1通信バンドに対する第2受信フィルタ4のインピーダンスを示すスミスチャートである。図5A~図5Dの各々において、左右にチャートの中心を通る直線が、インピーダンスの抵抗成分を表す軸(抵抗軸)である。抵抗軸上の目盛りに関しては、正規化されており、左端が0Ω、チャートの中心が1.0(50Ω)、右端が無限大(オープン)である。また、図5A~図5Dの各々において、抵抗軸よりも下側が容量性であり、抵抗軸よりも上側が誘導性である。
図5Aにおいて、ZA21は、第1通信バンドと第2通信バンドとの同時使用による通信において、選択端子522から第2受信フィルタ4側を見たときの、第2通信バンドの周波数帯域での第2受信フィルタ4のインピーダンスを示す。図5Bにおいて、ZA22は、第1通信バンドと第2通信バンドとの同時使用による通信において、選択端子522から第2受信フィルタ4側を見たときの、第1通信バンドの周波数帯域での第1受信フィルタ3のインピーダンスを示す。
図5Aから分かるように、経路R22に寄生容量が発生した場合では、第2受信フィルタ4の第2通信バンドでのインピーダンスは、整合状態とほぼ一致する。また、図5Bから分かるように、経路R22に寄生容量が発生した場合では、第2受信フィルタ4の第1通信バンドのインピーダンスはオープン端の近傍から大きく移動する。
図5Cにおいて、ZA23は、第1通信バンドと第2通信バンドとの同時使用による通信において、選択端子522から第2受信フィルタ4側を見たときの、第2通信バンドの周波数帯域での第2受信フィルタ4のインピーダンスを示す。図5Dにおいて、ZA24は、第1通信バンドと第2通信バンドとの同時使用による通信において、選択端子522から第2受信フィルタ4側を見たときの、第1通信バンドの周波数帯域での第1受信フィルタ3のインピーダンスを示す。
図5Cから分かるように、経路R21に寄生容量が発生した場合では、第2受信フィルタ4の第2通信バンドでのインピーダンスは、整合状態で維持される。また、図5Dから分かるように、経路R21に寄生容量が発生した場合では、第2受信フィルタ4の第1通信バンドのインピーダンスは、図5Bと比較してオープン端の近傍からの移動量は小さい。
部品間に発生する寄生容量は、部品間の経路長に比例するため、経路R21の経路長“A1”と経路R22の経路長“A2”との関係を“A1>A2”とすることで、寄生容量の発生による第2受信フィルタ4における第1通信バンドのインピーダンスのオープン端からの移動量を小さくすることができる。その結果、第1通信バンドと第2通信バンドとの同時使用による通信において、より良好なインピーダンス特性を得ることができる。
(5.3)第3の効果
実施形態1では、信号経路(第2受信経路R2)のうちアンテナスイッチ5と第2インダクタL22との間の経路長“A1”は、第2受信経路R2のうち第1インダクタL21と第2受信フィルタ4との間の経路長“A3”よりも長い。
実施形態1では、信号経路(第2受信経路R2)のうちアンテナスイッチ5と第2インダクタL22との間の経路長“A1”は、第2受信経路R2のうち第1インダクタL21と第2受信フィルタ4との間の経路長“A3”よりも長い。
以下、実施形態1による第3の効果について説明する。
経路R21及び経路R23のそれぞれにおいて、寄生インダクタが発生する場合がある。
図6Aは、経路R23に寄生インダクタが発生した場合における第2通信バンド(Band41)に対する第2受信フィルタ4のインピーダンスを示すスミスチャートである。図6Bは、経路R23に寄生インダクタが発生した場合における第1通信バンド(Band3)に対する第2受信フィルタ4のインピーダンスを示すスミスチャートである。図6Cは、経路R21に寄生インダクタが発生した場合における第2通信バンドに対する第2受信フィルタ4のインピーダンスを示すスミスチャートである。図6Dは、経路R21に寄生インダクタが発生した場合における第1通信バンドに対する第2受信フィルタ4のインピーダンスを示すスミスチャートである。図6A~図6Dの各々において、左右にチャートの中心を通る直線が、インピーダンスの抵抗成分を表す軸(抵抗軸)である。抵抗軸上の目盛りに関しては、正規化されており、左端が0Ω、チャートの中心が1.0(50Ω)、右端が無限大(オープン)である。また、図6A~図6Dの各々において、抵抗軸よりも下側が容量性であり、抵抗軸よりも上側が誘導性である。
図6Aにおいて、ZA31は、第1通信バンドと第2通信バンドとの同時使用による通信において、選択端子522から第2受信フィルタ4側を見たときの、第2通信バンドの周波数帯域での第2受信フィルタ4のインピーダンスを示す。図6Bにおいて、ZA32は、第1通信バンドと第2通信バンドとの同時使用による通信において、選択端子522から第2受信フィルタ4側を見たときの、第1通信バンドの周波数帯域での第1受信フィルタ3のインピーダンスを示す。
図6Aから分かるように、経路R23に寄生インダクタが発生した場合では、第2受信フィルタ4の第2通信バンドでのインピーダンスは、整合状態とほぼ一致する。また、図6Bから分かるように、経路R23に寄生インダクタが発生した場合では、第2受信フィルタ4の第1通信バンドのインピーダンスはオープン端の近傍から大きく移動する。
図6Cにおいて、ZA33は、第1通信バンドと第2通信バンドとの同時使用による通信において、選択端子522から第2受信フィルタ4側を見たときの、第2通信バンドの周波数帯域での第2受信フィルタ4のインピーダンスを示す。図6Dにおいて、ZA34は、第1通信バンドと第2通信バンドとの同時使用による通信において、選択端子522から第2受信フィルタ4側を見たときの、第1通信バンドの周波数帯域での第1受信フィルタ3のインピーダンスを示す。
図6Cから分かるように、経路R21に寄生インダクタが発生した場合では、第2受信フィルタ4の第2通信バンドでのインピーダンスは、整合状態で維持される。また、図6Dから分かるように、経路R21に寄生インダクタが発生した場合では、第2受信フィルタ4の第1通信バンドのインピーダンスは、図6Bと比較してオープン端の近傍からの移動量は小さい。
部品間に発生する寄生インダクタは、部品間の経路長に比例するため、経路R21の経路長“A1”と経路R23の経路長“A3”との関係を“A1>A3”とすることで、寄生インダクタの発生による第2受信フィルタ4における第1通信バンドのインピーダンスのオープン端からの移動量を小さくすることができる。その結果、第1通信バンドと第2通信バンドとの同時使用による通信において、より良好なインピーダンス特性を得ることができる。
(6)変形例
以下、実施形態1の変形例について説明する。
以下、実施形態1の変形例について説明する。
(6.1)変形例1
上記実施形態1では、高周波モジュール1は、第1方向D1において互いに対向する第1主面101及び第2主面102の双方に部品が配置される実装基板100を備える構成としているが、この構成に限定されない。
上記実施形態1では、高周波モジュール1は、第1方向D1において互いに対向する第1主面101及び第2主面102の双方に部品が配置される実装基板100を備える構成としているが、この構成に限定されない。
第1主面101及び第2主面102のうち一方の主面、例えば第1主面に部品が実装される片面実装可能な実装基板であってもよい。
本変形例の実装基板100Aは、実装基板100と同様に、例えばプリント配線板、LTCC、HTCC、樹脂基板である。ここにおいて、実装基板100Aは、実装基板100と同様に、例えば、複数の誘電体層及び複数の導電層を含む多層基板である。なお、実装基板100Aは、プリント配線板、LTCC基板に限らず、配線構造体であってもよい。なお、図7Aでは、図2Aと同様に、第1樹脂層120を省略している。
第1主面101Aには、第1受信フィルタ3、第2受信フィルタ4、第1位相調整回路6、第2位相調整回路7、スイッチIC110が実装されている。
実装基板100Aの厚さ方向である第1方向D1において第1主面101Aと対向する第2主面102Aには、複数の外部接続電極90Aを備えている(図7B参照)。複数の外部接続電極90Aは、高周波モジュール1Aを、信号処理回路80等が実装されているマザー基板に接続する。複数の外部接続電極90Aは、球状に形成されているボールバンプである。ボールバンプの材料は、例えば、金、銅、はんだ等である。複数の外部接続電極90Aは、アンテナ端子2、及び接地に用いられるグランド端子を含む。
スイッチIC110のアンテナスイッチ5と、第2位相調整回路7の第2インダクタL22とは、導体パターン等の表層配線により接続されている。具体的には、アンテナスイッチ5と第2インダクタL22とは、導体パターン等の表層配線により形成された経路R31により接続されている(図7A、図7B参照)。第2位相調整回路7の第2インダクタL22と第1インダクタL21とは、導体パターン等の表層配線により接続されている。具体的には、第2インダクタL22と第1インダクタL21とは、導体パターン等の表層配線により形成された経路R32により接続されている(図7A、図7B参照)。第1インダクタL21と第2受信フィルタ4とは、表層配線により接続されている。具体的には、第1インダクタL21と第2受信フィルタ4とは、表層配線により形成された経路R33により接続されている(図7A、図7B参照)。
第1主面101Aに設けられる各部品は、例えば、はんだバンプにより実装基板100Aと電気的に接続されている。はんだバンプは、実装基板100Aの厚さ方向(第1方向D1)において、配置されている部品と実装基板100Aとの間に配置されている。ここで、第2受信経路R2は、上記経路R31,R32,R33を含む。
ここで、アンテナスイッチ5と第2インダクタL22との間の経路R31の経路長を“A11”とする。具体的には、アンテナスイッチ5の選択端子522から第2インダクタL22の一端までの長さ、例えば経路R31の長さを、“A11”とする。
また、第1インダクタL21と第2インダクタL22との間の経路R32の経路長を“A12”とする。具体的には、第2インダクタL22の他端から第1インダクタL21との接続点までの長さ、例えば経路R32の長さを、“A12”とする。
さらに、第1インダクタL21と第2受信フィルタ4との間の経路R33の経路長を“A13”とする。具体的には、第1インダクタL21との接続点から第2受信フィルタ4の入力端子までの長さ、例えば経路R33の長さを、“A13”とする。
このとき、不等式“A11>A12”及び不等式“A11>A13”の双方が成立するように、第1インダクタL21及び第2インダクタL22は配置される。なお、不等式“A11>A12”及び不等式“A11>A13”のうち一方の不等式が成立するように、第1インダクタL21及び第2インダクタL22は配置されてもよい。つまり、不等式“A11>A12”及び不等式“A11>A13”のうち少なくとも一方の不等式が成立するように、第1インダクタL21及び第2インダクタL22は配置されていればよい。
(6.2)変形例2
実施形態1に係る高周波モジュール1では、図2Bに示すように、実装基板100の第2主面102側において、第2主面102上に実装されているスイッチIC110を覆うように第2樹脂層130が設けられている。また、高周波モジュール1は、円柱状に形成されている複数の外部接続電極90を備えており、これら複数の外部接続電極90によりマザー基板に接続されている。
実施形態1に係る高周波モジュール1では、図2Bに示すように、実装基板100の第2主面102側において、第2主面102上に実装されているスイッチIC110を覆うように第2樹脂層130が設けられている。また、高周波モジュール1は、円柱状に形成されている複数の外部接続電極90を備えており、これら複数の外部接続電極90によりマザー基板に接続されている。
これに対して、図8に示すように、実装基板100の第2主面102側において第2樹脂層が省略されており、かつ、球状に形成されている複数の外部接続電極90Bによりマザー基板に接続されていてもよい。
複数の外部接続電極90Bの各々は、例えば、球状に形成されているボールバンプである。ボールバンプの材料は、例えば、金、銅、はんだ等である。
また、高周波モジュール1は、複数の外部接続電極90及び複数の外部接続電極90Bを備えてもよい。
(6.3)変形例3
上記実施形態1では、第1インダクタL21及び第2インダクタL22は、経路長“A1”、経路長“A2”及び経路長“A3”に対して、第1不等式“A1>A2”及び第2不等式“A1>A3”の双方が成立するように配置される構成としている。しかしながら、第1インダクタL21及び第2インダクタL22は、この構成に限定されない。
上記実施形態1では、第1インダクタL21及び第2インダクタL22は、経路長“A1”、経路長“A2”及び経路長“A3”に対して、第1不等式“A1>A2”及び第2不等式“A1>A3”の双方が成立するように配置される構成としている。しかしながら、第1インダクタL21及び第2インダクタL22は、この構成に限定されない。
経路R21、経路R22及び経路R23のそれぞれの経路幅を異ならせてもよい。経路R21の経路幅を“B1”、経路R22の経路幅を“B2”、及び経路R23の経路幅を“B3”とし、第3不等式“B1<B2”及び第4不等式“B1<B3”の双方が成立するように経路R21,R22,R23を形成してもよい。ここで、経路幅は、経路における幅の平均値であってもよいし、最大値であってもよいし、最大値と最小値との中間値であってもよい。
この場合においても、経路長“A1”、経路長“A2”及び経路長“A3”を異ならせる場合と同様の効果を得る。
なお、第3不等式及び第4不等式のうち一方が成立するように、経路R21,R22,R23を形成してもよい。つまり、第3不等式及び第4不等式のうち少なくとも一方の不等式が成立するように、経路R21,R22,R23を形成してもよい。
また、経路R21、経路R22及び経路R23において、実施形態1で示した経路長の関係と、本変形例の経路幅の関係と、を組み合わせてもよい。
(6.4)変形例4
上記実施形態1において、第1受信フィルタ3は、SAWフィルタである構成としているが、この構成に限定されない。第1受信フィルタ3は、他の弾性波フィルタ、例えば、弾性境界波、板波等を利用する弾性波フィルタであってもよい。第1受信フィルタ3は、例えばBAW(Bulk Acoustic Wave)フィルタであってもよい。
上記実施形態1において、第1受信フィルタ3は、SAWフィルタである構成としているが、この構成に限定されない。第1受信フィルタ3は、他の弾性波フィルタ、例えば、弾性境界波、板波等を利用する弾性波フィルタであってもよい。第1受信フィルタ3は、例えばBAW(Bulk Acoustic Wave)フィルタであってもよい。
また、第2受信フィルタ4は、第1受信フィルタ3と同様に、他の弾性波フィルタ、例えば、弾性境界波、板波等を利用する弾性波フィルタであってもよい。第2受信フィルタ4は、例えばBAWフィルタであってもよい。
(6.5)変形例5
上記実施形態1において、実装基板100は、プリント配線板、LTCC基板又はHTCC基板、又は樹脂基板とする構成としているが、この構成に限定されない。実装基板100は部品内蔵基板であってもよい。
上記実施形態1において、実装基板100は、プリント配線板、LTCC基板又はHTCC基板、又は樹脂基板とする構成としているが、この構成に限定されない。実装基板100は部品内蔵基板であってもよい。
(6.6)変形例6
上記実施形態1では、アンテナスイッチ5と複数の増幅器11(第1ローノイズアンプ12、第2ローノイズアンプ13)とは、スイッチIC110に含まれる構成、つまりアンテナスイッチ5と複数の増幅器11とが1チップ化される構成としているが、この構成に限定されない。
上記実施形態1では、アンテナスイッチ5と複数の増幅器11(第1ローノイズアンプ12、第2ローノイズアンプ13)とは、スイッチIC110に含まれる構成、つまりアンテナスイッチ5と複数の増幅器11とが1チップ化される構成としているが、この構成に限定されない。
アンテナスイッチ5と複数の増幅器11とが1チップ化されることは、必須ではない。アンテナスイッチ5及び複数の増幅器11は、個別に第2主面102に配置されてもよい。
(6.7)変形例7
上記実施形態1では、第1インダクタL21及び第2インダクタL22は、一例としてそれぞれチップインダクタとする構成としているが、これに限定されない。
上記実施形態1では、第1インダクタL21及び第2インダクタL22は、一例としてそれぞれチップインダクタとする構成としているが、これに限定されない。
第1インダクタL21は、チップインダクタに限らず、導体パターン等で形成されてもよい。第1インダクタL21が導体パターン等で形成される場合には、実装基板100に内装されてもよい。
同様に、第2インダクタL22は、チップインダクタに限らず、導体パターン等で形成されてもよい。第2インダクタL22が導体パターン等で形成される場合には、実装基板100に内装されてもよい。
(6.8)変形例8
上記実施形態1において、高周波モジュール1は、第1受信フィルタ3の代わりに、信号の送信に用いられる弾性波フィルタである送信フィルタを設けてもよい。この場合、第1ローノイズアンプ12の代わりにパワーアンプが用いられる。
上記実施形態1において、高周波モジュール1は、第1受信フィルタ3の代わりに、信号の送信に用いられる弾性波フィルタである送信フィルタを設けてもよい。この場合、第1ローノイズアンプ12の代わりにパワーアンプが用いられる。
また、高周波モジュール1は、第1受信フィルタ3の代わりに、信号の送受信に用いられるデュプレクサ(弾性波フィルタ)を設けてもよい。この場合、デュプレクサには、第1ローノイズアンプ12と、パワーアンプとが接続される。
また、高周波モジュール1は、第2受信フィルタ4の代わりに、信号の送受信に用いられるデュプレクサ(弾性波フィルタ)を設けてもよい。この場合、デュプレクサには、第2ローノイズアンプ13と、パワーアンプとが接続される。
(実施形態2)
本実施形態では、高周波モジュール1Bが、第2位相調整回路7の代わりに位相調整回路7bを有し、第1位相調整回路6を有していない点が、実施形態1とは異なる。
本実施形態では、高周波モジュール1Bが、第2位相調整回路7の代わりに位相調整回路7bを有し、第1位相調整回路6を有していない点が、実施形態1とは異なる。
ここでは、実施形態1と異なる点を中心に説明する。実施形態1と同一の構成要素については、同一の符号を付し、その説明を適宜省略する。
(1)構成
本実施形態の通信装置8は、図9に示すように、高周波モジュール1Bと、信号処理回路80と、を備える。
本実施形態の通信装置8は、図9に示すように、高周波モジュール1Bと、信号処理回路80と、を備える。
本実施形態に係る高周波モジュール1Bは、図9に示すように、アンテナ端子2と、第1受信フィルタ3bと、第2受信フィルタ4bと、アンテナスイッチ5(スイッチ)と、位相調整回路7bと、を備える。また、高周波モジュール1Bは、信号を増幅させる増幅器11として、第1ローノイズアンプ12と、第2ローノイズアンプ13とを備える。高周波モジュール1Bは、さらに、図10A及び図10Bに示すように、実装基板100Bを備える。
第1受信フィルタ3bは、弾性波フィルタである。弾性波フィルタは、例えば、弾性表面波を利用するSAWフィルタである。
第1受信フィルタ3bは、図9に示すように、第1受信信号をアンテナ9から受信するための第1受信経路R11(第1通信バンド用経路)に設けられている。言い換えると、第1受信経路R11は、アンテナスイッチ5と第1受信フィルタ3bとを結ぶ信号経路であって、第1受信信号をアンテナ端子2を介して受信するための経路である。
第1受信フィルタ3bは、第1通信バンドを通過帯域とする弾性波フィルタである。言い換えると、第1受信フィルタ3bは、第1通信バンドの信号を通過させる弾性波フィルタである。すなわち、第1受信フィルタ3bは、第1通信バンドに含まれる第1周波数帯域の第1受信信号を通過させる。ここで、第1通信バンドは、例えば、LTE規格のBand41(受信帯域:2496MHz-2690MHz)である。
第2受信フィルタ4bは、弾性波フィルタである。弾性波フィルタは、例えば、弾性表面波を利用するSAWフィルタである。
第2受信フィルタ4bは、図9に示すように、第2受信信号をアンテナ9から受信するための第2受信経路R12(信号経路)に設けられている。言い換えると、第2受信経路R12は、アンテナスイッチ5と第2受信フィルタ4bとを結ぶ信号経路であって、第2受信信号をアンテナ端子2を介して受信するための経路である。
第2受信フィルタ4bは、第2通信バンドを通過帯域とする弾性波フィルタである。言い換えると、第2受信フィルタ4bは、第2通信バンドの信号を通過させる弾性波フィルタである。すなわち、第2受信フィルタ4bは、第2通信バンドに含まれる第2周波数帯域の第2受信信号を通過させる。ここで、第2周波数帯域は、第1周波数帯域よりも低い周波数帯域である。ここで、第2通信バンドは、例えば、LTE規格(LTE-Advanced規格を含む)のBand3(受信帯域:1805MHz-1880MHz)である。つまり、第2受信フィルタ4bは、第1通信バンドの周波数帯よりも低周波数帯である第2通信バンドの信号を通過させるフィルタである。ここで、第2受信フィルタ4bの通過帯域と、第1受信フィルタ3bの通過帯域とは、重複していない。
位相調整回路7bは、第2受信経路R12に設けられている。位相調整回路7bは、インダクタ71bと、第1キャパシタ72bと、第2キャパシタ73bと、を含む。インダクタ71bは、第2受信経路R12に直列に挿入されている。第1キャパシタ72bは、インダクタ71bの第1端T2とグランドとの間に設けられている。第2キャパシタ73bは、インダクタ71bの第2端T1とグランドとの間に設けられている。つまり、位相調整回路7bは、π型回路である。ここで、インダクタ71bの第1端T2は、インダクタ71bの両端のうちアンテナスイッチ5側の端部である。インダクタ71bの第2端T1は、インダクタ71bの両端のうち第2受信フィルタ4b側の端部である。
実装基板100Bは、図10Bに示すように、実装基板100Bの厚さ方向である第1方向D1において互いに対向する第1主面101B及び第2主面102Bを有する。実装基板100Bは、例えば、プリント配線板、LTCC、HTCC、樹脂基板である。ここにおいて、実装基板100Bは、例えば、複数の誘電体層及び複数の導電層を含む多層基板である。複数の誘電体層及び複数の導電層は、実装基板100Bの第1方向D1において積層されている。複数の導電層は、層ごとに定められた所定パターンに形成されている。複数の導電層の各々は、実装基板100Bの第1方向D1に直交する一平面内において1つ又は複数の導体部を含む。各導電層の材料は、例えば、銅である。複数の導電層は、グランド層を含む。高周波モジュール1Bでは、複数のグランド端子とグランド層とが、実装基板100Bの有するビア導体等を介して電気的に接続されている。
実装基板100Bは、プリント配線板、LTCC基板に限らず、配線構造体であってもよい。配線構造体は、例えば、多層構造体である。多層構造体は、少なくとも1つの絶縁層と、少なくとも1つの導電層とを含む。絶縁層は、所定パターンに形成されている。絶縁層が複数の場合は、複数の絶縁層は、層ごとに定められた所定パターンに形成されている。導電層は、絶縁層の所定パターンとは異なる所定パターンに形成されている。導電層が複数の場合は、複数の導電層は、層ごとに定められた所定パターンに形成されている。導電層は、1つ又は複数の再配線部を含んでもよい。配線構造体では、多層構造体の厚さ方向において互いに対向する2つの面のうち第1面が実装基板100Bの第1主面101Bであり、第2面が実装基板100Bの第2主面102Bである。配線構造体は、例えば、インタポーザであってもよい。インタポーザは、シリコン基板を用いたインタポーザであってもよいし、多層で構成された基板であってもよい。
第1主面101Bには、第1受信フィルタ3b、第2受信フィルタ4b及び位相調整回路7bが実装されている(図10A及び図10B参照)。第1主面101Bには、アンテナスイッチ5を含むスイッチIC110が、更に実装されている(図10B参照)。スイッチIC110は、実施形態1と同様に、複数の増幅器11(第1ローノイズアンプ12、第2ローノイズアンプ13)を含む。
位相調整回路7bとアンテナスイッチ5とは、導体パターン等の表層配線により接続されている。具体的には、位相調整回路7bとアンテナスイッチ5とは、表層配線により形成された経路R311により接続されている(図10B参照)。ここで、表層配線とは、実装基板100Bの第1主面101Bに設けられた配線導体である。
位相調整回路7bと第2受信フィルタ4bとは、導体パターン等の表層配線により接続されている。具体的には、位相調整回路7bと第2受信フィルタ4bとは、表層配線により形成された経路R312により接続されている(図10B参照)。ここで、経路R312のインピーダンスは、50オーム以下の低インピーダンスであることが好ましい。
なお、第1受信フィルタ3bの一部が実装基板100Bの第1主面101Bに実装されており、第1受信フィルタ3bの残りが実装基板100Bに内装されていてもよい。要するに、第1受信フィルタ3bは、実装基板100Bにおいて第2主面102Bよりも第1主面101B側に配置されており、かつ、第1主面101Bに実装されている部分を少なくとも有する。
第2受信フィルタ4bの一部が実装基板100Bの第1主面101Bに実装されており、第2受信フィルタ4bの残りが実装基板100Bに内装されていてもよい。要するに、第2受信フィルタ4bは、実装基板100Bにおいて第2主面102Bよりも第1主面101B側に配置されており、かつ、第1主面101Bに実装されている部分を少なくとも有する。
位相調整回路7bの一部が実装基板100Bの第1主面101Bに実装されており、位相調整回路7bの残りが実装基板100Bに内装されていてもよい。要するに、位相調整回路7bは、実装基板100Bにおいて第2主面102Bよりも第1主面101B側に配置されており、かつ、第1主面101Bに実装されている部分を少なくとも有する。例えば、インダクタ71bが第1主面101Bに実装され、第1キャパシタ72b及び第2キャパシタ73bが実装基板100Bに内装されてもよい。この場合、インダクタ71bと第1キャパシタ72b及び第2キャパシタ73bとは、実装基板100Bの内部に設けられた配線導体とビア導体とによる内装配線導体により形成された経路により接続される。
スイッチIC110の一部が実装基板100Bの第1主面101Bに実装されており、スイッチIC110の残りが実装基板100Bに内装されていてもよい。要するに、スイッチIC110は、実装基板100Bにおいて第2主面102Bよりも第1主面101B側に配置されており、かつ、第1主面101Bに実装されている部分を少なくとも有する。
第1主面101Bに設けられる各部品は、例えば、はんだバンプにより実装基板100Bと電気的に接続されている。はんだバンプは、実装基板100Bの厚さ方向(第1方向D1)において、配置されている部品と実装基板100Bとの間に配置されている。ここで、上述した第2受信経路R12は、上記経路R311,R312を含む。
次に、高周波モジュール1Bにおける他の構成要素について説明する。
図10Aは高周波モジュール1Bを第1方向D1から見た平面図を、図10Bは高周波モジュール1Bの断面図を、それぞれ示す。
高周波モジュール1Bは、複数の外部接続電極90bを備えている(図10B参照)。複数の外部接続電極90bは、高周波モジュール1Bを、信号処理回路80等が実装されているマザー基板に接続する。複数の外部接続電極90bは、球状に形成されているボールバンプである。ボールバンプの材料は、例えば、金、銅、はんだ等である。複数の外部接続電極90bは、アンテナ端子2、及び接地に用いられるグランド端子を含む。
高周波モジュール1Bは、複数の外部接続電極90bのうち1つの外部接続電極90bであるアンテナ端子2を介してアンテナ9が受信した信号を受け取り、別の外部接続電極90bを介して信号処理回路80に出力する。
高周波モジュール1Bは、実装基板100Bの第1主面101Bにおいて、第1主面101Bに実装されている第1受信フィルタ3b、第2受信フィルタ4b、位相調整回路7b及びスイッチIC110等の電子部品を覆う樹脂層120を、更に備える。なお、図10Aでは、樹脂層120を省略している。
位相調整回路7bの第1キャパシタ72b、インダクタ71b及び第2キャパシタ73b、第2受信フィルタ4bは、この順に、第1方向D1と直交する方向である第2方向D2に沿って配置されている(図9参照)。位相調整回路7bは、第2受信経路R12に含まれる経路R311を介してアンテナスイッチ5に接続されている(図10B参照)。
ここで、第2受信経路R12のうちアンテナスイッチ5と位相調整回路7bとの間の経路長を“AA2”とする。具体的には、第2受信経路R12において、アンテナスイッチ5の選択端子522から第1キャパシタ72bとインダクタ71bとの接続点までの長さ、例えば経路R311(図10A及び図102B参照)の長さを、“AA2”とする(図9参照)。ここで、第1キャパシタ72bとインダクタ71bとの接続点は、インダクタ71bの第1端T2に相当する。以下の説明において、第1キャパシタ72bとインダクタ71bとの接続点を、接続点T2という場合がある。
また、第2受信フィルタ4bと第2キャパシタ73bとの間の経路長を“AA1”とする。具体的には、第2受信経路R12において、インダクタ71bと第2キャパシタ73bとの接続点から第2受信フィルタ4bの入力端子までの長さ、例えば経路R312(図10A及び図10B参照)の長さを、“AA1”とする(図9参照)。ここで、第2キャパシタ73bとインダクタ71bとの接続点は、インダクタ71bの第2端T1に相当する。以下の説明において、第2キャパシタ73bとインダクタ71bとの接続点を、接続点T1という場合がある。
以下、第2受信フィルタ4bと第2キャパシタ73bとの間の経路長を第1経路長ともいう。また、アンテナスイッチ5と位相調整回路7bとの間の経路長を第2経路長ともいう。
ここで、第1不等式“AA1>AA2”が成立するように、スイッチIC110、位相調整回路7b及び第2受信フィルタ4bは配置されている。要するに、本実施形態2では、第1経路長“AA1”は、第2経路長“AA2”よりも長い。
以下、本実施形態2に係る高周波モジュール1Bの動作は、実施形態1に係る高周波モジュール1と同様であるので、ここでの説明は省略する。
(2)効果
以上説明したように、本実施形態2の高周波モジュール1Bは、第1弾性波フィルタ(例えば、第1受信フィルタ3b)と、第2弾性波フィルタ(例えば、第2受信フィルタ4b)と、スイッチ(例えば、アンテナスイッチ5)と、位相調整回路7bと、を備える。第1弾性波フィルタは、第1通信バンドの信号を通過させる。第2弾性波フィルタは、前記第1通信バンドの周波数帯よりも低周波数帯である第2通信バンドの信号を通過させる。スイッチは、第1弾性波フィルタと第2弾性波フィルタとをアンテナ端子2に同時に接続可能である。位相調整回路7bは、スイッチと第2弾性波フィルタとを結ぶ信号経路(例えば、第2受信経路R12)上に設けられ、第2通信バンドの信号の位相を調整する。位相調整回路7bは、インダクタ71bと、第1キャパシタ72bと、第2キャパシタ73bと、を有している。インダクタ71bは、上記信号経路においてスイッチと第2弾性波フィルタとの間で直列接続されている。第1キャパシタ72bは、上記信号経路において、インダクタ71bの両端のうちスイッチ側の第1端T2とグランドとの間に設けられている。第2キャパシタ(73b)は、上記信号経路において、インダクタ71bの両端のうち第2弾性波フィルタ側の第2端T1とグランドとの間に設けられている。上記信号経路のうちインダクタ71bと第2キャパシタ73bとの接続点(インダクタ71bの第2端T1)と、第2弾性波フィルタとの間の第1経路(例えば、経路R312)の長さ(第1経路長“AA1”)は、上記信号経路のうちインダクタ71bと第1キャパシタ72bとの接続点(インダクタ71bの第1端T2)と、スイッチとの間の第2経路(例えば、経路R311)の長さ(第2経路長“AA2”)よりも長い。
以上説明したように、本実施形態2の高周波モジュール1Bは、第1弾性波フィルタ(例えば、第1受信フィルタ3b)と、第2弾性波フィルタ(例えば、第2受信フィルタ4b)と、スイッチ(例えば、アンテナスイッチ5)と、位相調整回路7bと、を備える。第1弾性波フィルタは、第1通信バンドの信号を通過させる。第2弾性波フィルタは、前記第1通信バンドの周波数帯よりも低周波数帯である第2通信バンドの信号を通過させる。スイッチは、第1弾性波フィルタと第2弾性波フィルタとをアンテナ端子2に同時に接続可能である。位相調整回路7bは、スイッチと第2弾性波フィルタとを結ぶ信号経路(例えば、第2受信経路R12)上に設けられ、第2通信バンドの信号の位相を調整する。位相調整回路7bは、インダクタ71bと、第1キャパシタ72bと、第2キャパシタ73bと、を有している。インダクタ71bは、上記信号経路においてスイッチと第2弾性波フィルタとの間で直列接続されている。第1キャパシタ72bは、上記信号経路において、インダクタ71bの両端のうちスイッチ側の第1端T2とグランドとの間に設けられている。第2キャパシタ(73b)は、上記信号経路において、インダクタ71bの両端のうち第2弾性波フィルタ側の第2端T1とグランドとの間に設けられている。上記信号経路のうちインダクタ71bと第2キャパシタ73bとの接続点(インダクタ71bの第2端T1)と、第2弾性波フィルタとの間の第1経路(例えば、経路R312)の長さ(第1経路長“AA1”)は、上記信号経路のうちインダクタ71bと第1キャパシタ72bとの接続点(インダクタ71bの第1端T2)と、スイッチとの間の第2経路(例えば、経路R311)の長さ(第2経路長“AA2”)よりも長い。
第1通信バンドと第2通信バンドとの同時使用による通信を行う場合には、アンテナスイッチ5から第2受信フィルタ4b側を見たときの第1受信フィルタ3bの周波数帯域がオープンとなるように高周波モジュールを設計する必要がある。また、第1通信バンドと第2通信バンドとの同時使用による通信を行う場合には、一のフィルタ(例えば、第2受信フィルタ4b)において他のフィルタ(例えば、第1受信フィルタ3b)の周波数帯域を開放端とし、かつ他のフィルタ(例えば、第1受信フィルタ3b)の周波数帯域でのリターンロスを大きくする必要がある。
アンテナスイッチ5の選択端子522から第2受信フィルタ4側を見たときの、第1通信バンド(ここでは、Band41)の周波数帯域での第1受信フィルタ3bのインピーダンスを示す。
図11において、ZA41は、第1通信バンドと第2通信バンドとの同時使用による通信において、選択端子522から第2受信フィルタ4b側を見たときの、第1通信バンドの周波数帯域での第2受信フィルタ4bのインピーダンスを示す。このとき、第2受信フィルタ4の第1通信バンドのインピーダンスは容量性となっている。この場合、アンテナスイッチ5と第2受信フィルタ4bとの間の第2受信経路R12において、実装基板100Bのグランド層との間で容量が発生するがリターンロスは小さくならない。そのため、第2受信経路R12を長くすることができる。
図12に、第1通信バンドと第2通信バンドとの同時使用による通信でのリターンロスを示す。図12のグラフの横軸は周波数を表し、縦軸は、RLを表す。また、図13に、第1通信バンドと第2通信バンドとの同時使用による通信において、選択端子522から第2受信フィルタ4b側を見たときの、第1通信バンドの周波数帯域の信号のロスを示す。図13のグラフの横軸は周波数を表し、縦軸は、ILを表す。図12に示す特性G1及び図13に示す特性G11は、経路R312の経路長“AA1”を、経路R311の経路長“AA2”よりも長くした場合でのリターンロス及びロスを示す。図12に示す特性G2及び図13に示す特性G12は、経路R311の経路長“AA2”を、経路R312の経路長“AA1”よりも長くした場合でのリターンロス及びロスを示す。図12及び図13によると、経路R312を経路R311よりも長くした場合、選択端子522から第2受信フィルタ4側を見たときの、第1通信バンド(ここでは、Band41)の周波数帯域での信号のリターンロスは大きくなる。
したがって、より良好なインピーダンス特性を得ることができる。
(3)変形例
以下実施形態2に係る変形例について、説明する。
以下実施形態2に係る変形例について、説明する。
(3.1)変形例1
変形例1の実装基板100Cでは、スイッチIC110が第2主面102Bに実装されている点が、実施形態2とは異なる。以下、実施形態2とは異なる点を中心に説明する。なお、実施形態2と同様の構成要素については、同一の符号を付し、その説明を適宜省略する。
変形例1の実装基板100Cでは、スイッチIC110が第2主面102Bに実装されている点が、実施形態2とは異なる。以下、実施形態2とは異なる点を中心に説明する。なお、実施形態2と同様の構成要素については、同一の符号を付し、その説明を適宜省略する。
変形例1に係る高周波モジュール1Cは、実施形態2と同様に、アンテナ端子2と、第1受信フィルタ3bと、第2受信フィルタ4bと、アンテナスイッチ5と、位相調整回路7bと、を備える。また、高周波モジュール1Cは、第1ローノイズアンプ12と、第2ローノイズアンプ13とを備える。高周波モジュール1Cは、さらに、図14A及び図14Bに示すように、実装基板100Cを備える。
図14Aは、変形例1に係る高周波モジュール1Cを第1方向D1から見た平面図を、図14Bは高周波モジュール1Cの断面図を、それぞれ示す。
高周波モジュール1Cは、複数の外部接続電極90cを備えている(図14B参照)。複数の外部接続電極90cは、高周波モジュール1Cを、信号処理回路80等が実装されているマザー基板に接続する。複数の外部接続電極90cは、実装基板100Cの第2主面102B上に配置された(設けられた)柱状(例えば、円柱状)の電極である。複数の外部接続電極90cの材料は、例えば、金属(例えば、銅、銅合金等)である。複数の外部接続電極90cは、アンテナ端子2、及び接地に用いられるグランド端子を含む。
高周波モジュール1Cは、複数の外部接続電極90cのうち1つの外部接続電極90cであるアンテナ端子2を介してアンテナ9が受信した信号を受け取り、別の外部接続電極90cを介して信号処理回路80に出力する。
実装基板100Cの第1主面101Cには、第1受信フィルタ3b、第2受信フィルタ4b及び位相調整回路7bが実装されている。実装基板100Cの第2主面102Cには、スイッチIC110が実装されている。
高周波モジュール1Cは、実装基板100Cの第1主面101Cにおいて、第1主面101Cに実装されている第1受信フィルタ3b、第2受信フィルタ4b及び位相調整回路7b等の電子部品を覆う樹脂層120(以下、第1樹脂層120ともいう)を、更に備える。高周波モジュール1Cは、実装基板100Cの第2主面102Cにおいて、第2主面102Cに実装されているスイッチIC110等の電子部品を覆う第2樹脂層130を、更に備える。第2樹脂層130の材料は、第1樹脂層120の材料と同じ材料であってもよいし、異なる材料であってもよい。なお、図14Aでは、第1樹脂層120を省略している。
アンテナスイッチ5、第1ローノイズアンプ12及び第2ローノイズアンプ13は、上述したように、実装基板100Cの第2主面102Cに配置されている(図14A及び図14B参照)。
位相調整回路7b、第1受信フィルタ3b及び第2受信フィルタ4bは、実装基板100Cの第1主面101Cに配置されている(図14A及び図14B参照)。
位相調整回路7bの第1キャパシタ72b、インダクタ71b、第2キャパシタ73bと、第2受信フィルタ4bとは、この順に、第2方向D2に沿って配置されている。第1キャパシタ72bとインダクタ71bとは、第2受信経路R12に含まれる経路R311を介してアンテナスイッチ5に接続されている(図14B参照)。第2受信フィルタ4bは、経路R25を介して第2ローノイズアンプ13に接続されている。(図14B参照)。
変形例1において、実装基板100Cを平面視した場合、つまり第1方向D1から実装基板100Cを見た場合に、位相調整回路7bは、アンテナスイッチ5と重なっている(図14A,図14B参照)。なお、実装基板100Cを平面視した場合、位相調整回路7bの一部が、アンテナスイッチ5と重なっていてもよい。つまり、実装基板100Cを平面視した場合、位相調整回路7bの少なくとも一部が、アンテナスイッチ5と重なっていればよい。
変形例1において、実装基板100Cを平面視した場合、第1キャパシタ72bは、アンテナスイッチ5と重なっている(図14A,図14B参照)。なお、実装基板100Cを平面視した場合、第1キャパシタ72bの一部が、アンテナスイッチ5と重なっていてもよい。つまり、実装基板100Cを平面視した場合、第1キャパシタ72bの少なくとも一部が、アンテナスイッチ5と重なっていればよい。
変形例1において、実装基板100Cを平面視した場合、インダクタ71bは、アンテナスイッチ5と重なっている(図14A,図14B参照)。なお、実装基板100Cを平面視した場合、インダクタ71bの一部が、アンテナスイッチ5と重なっていてもよい。つまり、実装基板100Cを平面視した場合、インダクタ71bの少なくとも一部が、アンテナスイッチ5と重なっていればよい。
変形例1において、実装基板100Cを平面視した場合、第2キャパシタ73bは、アンテナスイッチ5と重なっている(図14A,図14B参照)。なお、実装基板100Cを平面視した場合、第2キャパシタ73bの一部が、アンテナスイッチ5と重なっていてもよい。つまり、実装基板100Cを平面視した場合、第2キャパシタ73bの少なくとも一部が、アンテナスイッチ5と重なっていればよい。
また、実装基板100Cを平面視した場合、第1受信フィルタ3bの少なくとも一部は、第1ローノイズアンプ12と重なっている(図14A参照)。
また、実装基板100Cを平面視した場合、第2受信フィルタ4bの少なくとも一部は、第2ローノイズアンプ13と重なっている(図14A、図14B参照)。
アンテナスイッチ5と、位相調整回路7bとは、実装基板100Cに設けられたビア導体95及び内層配線導体を介して接続されている。ここで、アンテナスイッチ5と位相調整回路7bとの間の経路に含まれるビア導体95が経路R311を形成する。位相調整回路7bと第2受信フィルタ4bとは、配線導体98及びビア導体97を介して接続されている。ここで、位相調整回路7bと第2受信フィルタ4bとの間の経路に含まれる配線導体98とビア導体97とが経路R312を形成する。
変形例1では、アンテナスイッチ5から第2受信フィルタ4bまでの第2受信経路R12は、経路R311及び経路R312を含む。変形例1では、第2受信経路R12のうち経路R311の経路長が第2経路長“AA2”に相当し、第2受信経路R12のうち経路R312の経路長が第1経路長“AA1”に相当する。すなわち、変形例1では、経路R312の経路長は、経路R311の経路長よりも長い。
変形例1においても、実施形態2と同様に、より良好なインピーダンス特性を得ることができる。
ここで、変形例1の更なる変形例について、説明する。
実施形態2の変形例1に係る高周波モジュール1Cでは、図14Bに示すように、実装基板100Cの第2主面102C側において、第2主面102C上に実装されているスイッチIC110を覆うように第2樹脂層130が設けられている。また、高周波モジュール1Cは、円柱状に形成されている複数の外部接続電極90cを備えており、これら複数の外部接続電極90cによりマザー基板に接続されている。
これに対して、図15に示すように、実装基板100Cの第2主面102C側において第2樹脂層が省略されており、かつ、球状に形成されている複数の外部接続電極91cによりマザー基板に接続されていてもよい。
複数の外部接続電極91cの各々は、例えば、球状に形成されているボールバンプである。ボールバンプの材料は、例えば、金、銅、はんだ等である。
また、高周波モジュール1Cは、複数の外部接続電極90c及び複数の外部接続電極91cを備えてもよい。
(3.2)変形例2
本変形例2では、第1受信経路R11にも位相調整回路が設けられている点で、実施形態2とは異なる。以下、実施形態2とは異なる点を中心に説明する。なお、実施形態2と同様の構成要素については、同一の符号を付し、その説明を適宜省略する。
本変形例2では、第1受信経路R11にも位相調整回路が設けられている点で、実施形態2とは異なる。以下、実施形態2とは異なる点を中心に説明する。なお、実施形態2と同様の構成要素については、同一の符号を付し、その説明を適宜省略する。
本変形例2に係る高周波モジュール1Dは、図16に示すように、アンテナ端子2と、第1受信フィルタ3bと、第2受信フィルタ4bと、アンテナスイッチ5と、第1位相調整回路6dと、位相調整回路7b(以下、第2位相調整回路7bという)と、を備える。また、高周波モジュール1Cは、第1ローノイズアンプ12と、第2ローノイズアンプ13とを備える。高周波モジュール1Dは、さらに、図17に示すように、実装基板100Dを備える。
第1位相調整回路6dは、HPF(High Pass Filter)位相回路であり、図16に示すように、第1リアクタンス素子61d及び第2リアクタンス素子62dと共に、第3リアクタンス素子63dを有している。第1位相調整回路6dは、第1リアクタンス素子61dとしてキャパシタC61を含み、第2リアクタンス素子62dとしてキャパシタC62を含み、第3リアクタンス素子63dとしてインダクタL63を含む。
第1リアクタンス素子61d及び第2リアクタンス素子62dは、アンテナスイッチ5と第1受信フィルタ3bbとの間の第1受信経路R11において直列に挿入されている。本変形例2では、第1リアクタンス素子61dは、第1受信経路R11においてアンテナスイッチ5と第2リアクタンス素子62dとの間に配置されている。
第3リアクタンス素子63dは、第1リアクタンス素子61dと第2リアクタンス素子62dとの間の一点とグランドとの間に設けられている。言い換えると、第3リアクタンス素子63dの一端が第1リアクタンス素子61dと第2リアクタンス素子62dとの間に接続され、他端がグランドに接続されている。
実装基板100Dは、実装基板100Dの厚さ方向(第1方向D1に相当)において互いに対向する第1主面101D及び第2主面を有する。実装基板100Dは、例えば、プリント配線板、LTCC、HTCC、樹脂基板である。ここにおいて、実装基板100Dは、例えば、複数の誘電体層及び複数の導電層を含む多層基板である。複数の誘電体層及び複数の導電層は、実装基板100Dの厚さ方向において積層されている。複数の導電層は、層ごとに定められた所定パターンに形成されている。複数の導電層の各々は、実装基板100Dの厚さ方向に直交する一平面内において1つ又は複数の導体部を含む。各導電層の材料は、例えば、銅である。複数の導電層は、グランド層を含む。高周波モジュール1Dでは、複数のグランド端子とグランド層とが、実装基板100Dの有するビア導体等を介して電気的に接続されている。
実装基板100Dは、プリント配線板、LTCC基板に限らず、配線構造体であってもよい。配線構造体は、例えば、多層構造体である。多層構造体は、少なくとも1つの絶縁層と、少なくとも1つの導電層とを含む。絶縁層は、所定パターンに形成されている。絶縁層が複数の場合は、複数の絶縁層は、層ごとに定められた所定パターンに形成されている。導電層は、絶縁層の所定パターンとは異なる所定パターンに形成されている。導電層が複数の場合は、複数の導電層は、層ごとに定められた所定パターンに形成されている。導電層は、1つ又は複数の再配線部を含んでもよい。配線構造体では、多層構造体の厚さ方向において互いに対向する2つの面のうち第1面が実装基板100Dの第1主面101Dであり、第2面が実装基板100Dの第2主面である。配線構造体は、例えば、インタポーザであってもよい。インタポーザは、シリコン基板を用いたインタポーザであってもよいし、多層で構成された基板であってもよい。
第1主面101Dには、第1受信フィルタ3b、第2受信フィルタ4b、第1位相調整回路6d、及び第2位相調整回路7bが実装されている(図17参照)。第1主面101Dには、アンテナスイッチ5を含むスイッチIC110が、更に実装されている(図17参照)。スイッチIC110は、実施形態1,2と同様に、複数の増幅器11(第1ローノイズアンプ12、第2ローノイズアンプ13)を含む。
第1位相調整回路6dとアンテナスイッチ5とは、導体パターン等の表層配線により接続されている。具体的には、第1位相調整回路6dとアンテナスイッチ5とは、表層配線により形成された経路R411により接続されている(図17参照)。
第1位相調整回路6dと第1受信フィルタ3bとは、導体パターン等の表層配線により接続されている。具体的には、第1位相調整回路6dと第1受信フィルタ3bとは、表層配線により形成された経路R412により接続されている(図17参照)。
第1位相調整回路6dの一部が実装基板100Dの第1主面101Dに実装されており、第1位相調整回路6dの残りが実装基板100Dに内装されていてもよい。要するに、第1位相調整回路6dは、実装基板100Dにおいて第2主面よりも第1主面101D側に配置されており、かつ、第1主面101Dに実装されている部分を少なくとも有する。例えば、第3リアクタンス素子(インダクタL63)が第1主面101Dに実装され、第1リアクタンス素子61d(キャパシタC61)及び第2リアクタンス素子(キャパシタC62)が実装基板100Dに内装されてもよい。この場合、第3リアクタンス素子63dと第1リアクタンス素子61d及び第2リアクタンス素子62dとは、実装基板100Dの内部に設けられた配線導体とビア導体とによる内装配線導体により形成された経路により接続される。
スイッチIC110の一部が実装基板100Dの第1主面101Dに実装されており、スイッチIC110の残りが実装基板100Dに内装されていてもよい。要するに、スイッチIC110は、実装基板100Dにおいて第2主面よりも第1主面101D側に配置されており、かつ、第1主面101Dに実装されている部分を少なくとも有する。
第1主面101Dに設けられる各部品は、例えば、はんだバンプにより実装基板100Dと電気的に接続されている。はんだバンプは、実装基板100Dの厚さ方向(第1方向D1)において、配置されている部品と実装基板100Dとの間に配置されている。ここで、上述した第1受信経路R11は、上記経路R411,R412を含む。
高周波モジュール1Dは、実施形態2と同様に、実装基板100Dの第1主面101Dにおいて、第1主面101Dに実装されている第1受信フィルタ3b、第2受信フィルタ4b、第1位相調整回路6d、第2位相調整回路7b及びスイッチIC110等の電子部品を覆う樹脂層を、更に備える。なお、図17では、樹脂層を省略している。
第1位相調整回路6dの第1リアクタンス素子61d、第3リアクタンス素子63d、第2リアクタンス素子62d、及び第1受信フィルタ3bは、この順に、厚さ方向と直交する方向(第2方向D2の相当)に沿って配置されている。第1位相調整回路6dは、第1受信経路R11に含まれる経路R411を介してアンテナスイッチ5に接続されている(図17参照)。
ここで、第1受信経路R11のうちアンテナスイッチ5と第1位相調整回路6dとの間の経路長を“AA3”とする。具体的には、第1受信経路R11において、アンテナスイッチ5の選択端子522から第1リアクタンス素子61dと第3リアクタンス素子63dのとの接続点T11までの長さ、例えば経路R411(図17参照)の長さを、“AA3”とする(図16参照)。
また、第1位相調整回路6dと第1受信フィルタ3bとの間の経路長を“AA4”とする。具体的には、第1受信経路R11において、第3リアクタンス素子63dと第2リアクタンス素子62dとの接続点T12から第1受信フィルタ3bの入力端子までの長さ、例えば経路R412(図17参照)の長さを、“AA4”とする(図16参照)。
ここで、経路R311の第2経路長“AA2”と経路R312の第1経路長“AA1”との合計長は、第1受信経路R11のうちアンテナスイッチ5と第1リアクタンス素子61dとの間の距離と、第2リアクタンス素子62dと第1受信フィルタ3bとの間の距離との合計長より長い。より詳細には、経路R311の第2経路長“AA2”と経路R312の第1経路長“AA1”との合計長は、第1受信経路R11のうちアンテナスイッチ5と接続点T11との間の距離(経路長“AA3”)と、接続点T12と第1受信フィルタ3bとの間の距離(経路長“AA4”)との合計長より長い。
(3.3)変形例3
上記実施形態2では、位相調整回路7bは、第1経路長“AA1”及び第2経路長“AA2”に対して、不等式“AA1>AA2”が成立するように配置される構成としている。しかしながら、位相調整回路7bは、この構成に限定されない。
上記実施形態2では、位相調整回路7bは、第1経路長“AA1”及び第2経路長“AA2”に対して、不等式“AA1>AA2”が成立するように配置される構成としている。しかしながら、位相調整回路7bは、この構成に限定されない。
上記条件(不等式“AA1>AA2”)に、経路R311及び経路R312のそれぞれの経路幅の条件を加えてもよい。経路R311の経路幅を“BB1”、及び経路R312の経路幅を“BB2”とし、不等式“BB1>BB2”が成立するように経路R311,R312を形成してもよい。ここで、経路幅は、経路における幅の平均値であってもよいし、最大値であってもよいし、最大値と最小値との中間値であってもよい。
この場合においても、より良好なインピーダンス特性を得ることができる。
(3.4)変形例4
上記実施形態2において、第1受信フィルタ3bは、SAWフィルタである構成としているが、この構成に限定されない。第1受信フィルタ3bは、他の弾性波フィルタ、例えば、弾性境界波、板波等を利用する弾性波フィルタであってもよい。第1受信フィルタ3bは、例えばBAWフィルタであってもよい。
上記実施形態2において、第1受信フィルタ3bは、SAWフィルタである構成としているが、この構成に限定されない。第1受信フィルタ3bは、他の弾性波フィルタ、例えば、弾性境界波、板波等を利用する弾性波フィルタであってもよい。第1受信フィルタ3bは、例えばBAWフィルタであってもよい。
また、第2受信フィルタ4bは、第1受信フィルタ3bと同様に、他の弾性波フィルタ、例えば、弾性境界波、板波等を利用する弾性波フィルタであってもよい。第2受信フィルタ4bは、例えばBAWフィルタであってもよい。
(3.5)変形例5
上記実施形態2において、実装基板100Bは、プリント配線板、LTCC基板又はHTCC基板、又は樹脂基板とする構成としているが、この構成に限定されない。実装基板100Bは部品内蔵基板であってもよい。
上記実施形態2において、実装基板100Bは、プリント配線板、LTCC基板又はHTCC基板、又は樹脂基板とする構成としているが、この構成に限定されない。実装基板100Bは部品内蔵基板であってもよい。
(3.6)変形例6
上記実施形態2では、アンテナスイッチ5と複数の増幅器11(第1ローノイズアンプ12、第2ローノイズアンプ13)とは、スイッチIC110に含まれる構成、つまりアンテナスイッチ5と複数の増幅器11とが1チップ化される構成としているが、この構成に限定されない。
上記実施形態2では、アンテナスイッチ5と複数の増幅器11(第1ローノイズアンプ12、第2ローノイズアンプ13)とは、スイッチIC110に含まれる構成、つまりアンテナスイッチ5と複数の増幅器11とが1チップ化される構成としているが、この構成に限定されない。
アンテナスイッチ5と複数の増幅器11とが1チップ化されることは、必須ではない。アンテナスイッチ5及び複数の増幅器11は、個別に第2主面102Bに配置されてもよい。
(3.7)変形例7
上記実施形態2において、高周波モジュール1Bは、第1受信フィルタ3bの代わりに、信号の送信に用いられる弾性波フィルタである送信フィルタを設けてもよい。この場合、第1ローノイズアンプ12の代わりにパワーアンプが用いられる。
上記実施形態2において、高周波モジュール1Bは、第1受信フィルタ3bの代わりに、信号の送信に用いられる弾性波フィルタである送信フィルタを設けてもよい。この場合、第1ローノイズアンプ12の代わりにパワーアンプが用いられる。
また、高周波モジュール1Bは、第1受信フィルタ3bの代わりに、信号の送受信に用いられるデュプレクサ(弾性波フィルタ)を設けてもよい。この場合、デュプレクサには、第1ローノイズアンプ12と、パワーアンプとが接続される。
また、高周波モジュール1Bは、第2受信フィルタ4bの代わりに、信号の送受信に用いられるデュプレクサ(弾性波フィルタ)を設けてもよい。この場合、デュプレクサには、第2ローノイズアンプ13と、パワーアンプとが接続される。
なお、本変形例7は、実施形態2に係る変形例1~6に適用してもよい。
(まとめ)
以上説明したように、第1の態様の高周波モジュール(1;1A)は、第1弾性波フィルタ(例えば、第1受信フィルタ3)と、第2弾性波フィルタ(例えば、第2受信フィルタ4)と、アンテナ(アンテナスイッチ5)と、第1インダクタ(L21)と、第2インダクタ(L22)と、を備える。第1弾性波フィルタは、第1通信バンドの信号を通過させる。第2弾性波フィルタは、第2通信バンドの信号を通過させる。スイッチは、第1弾性波フィルタと第2弾性波フィルタとをアンテナ端子に同時に接続可能である。第1インダクタ(L21)は、スイッチと第2弾性波フィルタとの信号経路(例えば、第2受信経路R2)上のノードとグランドとの間に設けられている。第2インダクタ(L22)は、上記信号経路においてスイッチと第1インダクタ(L21)との間で直列接続されている。
以上説明したように、第1の態様の高周波モジュール(1;1A)は、第1弾性波フィルタ(例えば、第1受信フィルタ3)と、第2弾性波フィルタ(例えば、第2受信フィルタ4)と、アンテナ(アンテナスイッチ5)と、第1インダクタ(L21)と、第2インダクタ(L22)と、を備える。第1弾性波フィルタは、第1通信バンドの信号を通過させる。第2弾性波フィルタは、第2通信バンドの信号を通過させる。スイッチは、第1弾性波フィルタと第2弾性波フィルタとをアンテナ端子に同時に接続可能である。第1インダクタ(L21)は、スイッチと第2弾性波フィルタとの信号経路(例えば、第2受信経路R2)上のノードとグランドとの間に設けられている。第2インダクタ(L22)は、上記信号経路においてスイッチと第1インダクタ(L21)との間で直列接続されている。
この構成によると、第1インダクタ(L21)及び第2インダクタ(L22)を用いてインピーダンス整合を行うことで、第2通信バンドに対する第2弾性波フィルタのインピーダンスを整合状態に維持し、かつ第1通信バンドに対する第2弾性波信フィルタのインピーダンスをオープンにすることができる。その結果、例えば、第1通信バンドと第2通信バンドとの同時使用による通信において、より良好なインピーダンス特性を得ることができる。
第2の態様の高周波モジュール(1;1A)では、第1の態様において、上記信号経路のうちスイッチと第2インダクタとの間の経路長(経路長“A1”;“A11”)は、上記信号経路のうち第1インダクタ(L21)と第2インダクタ(L22)との間の経路長(経路長“A2”;“A12”)よりも長い。
この構成によると、寄生容量が発生した場合であっても第2弾性波フィルタにおける第1通信バンドのインピーダンスのオープン端からの移動量を小さくすることができる。その結果、第1通信バンドと第2通信バンドとの同時使用による通信において、より良好なインピーダンス特性を得ることができる。
第3の態様の高周波モジュール(1;1A)では、第1又は第2の態様において、上記信号経路のうちスイッチと第2インダクタ(L22)との間の経路長(経路長“A1”;“A11”)は、上記信号経路のうち第1インダクタ(L21)と第2弾性波フィルタとの間の経路長(経路長“A3”;“A13”)よりも長い。
この構成によると、寄生インダクタが発生した場合であっても第2弾性波フィルタにおける第1通信バンドのインピーダンスのオープン端からの移動量を小さくすることができる。その結果、第1通信バンドと第2通信バンドとの同時使用による通信において、より良好なインピーダンス特性を得ることができる。
第4の態様の高周波モジュール(1;1A)では、第1~第3のいずれかの態様において、上記信号経路のうちスイッチと第2インダクタ(L22)との間の経路幅は、上記信号経路のうち第1インダクタ(L21)と第2インダクタ(L22)との間の経路幅よりも長い。
この構成によると、寄生容量が発生した場合であっても第2弾性波フィルタにおける第1通信バンドのインピーダンスのオープン端からの移動量を小さくすることができる。その結果、第1通信バンドと第2通信バンドとの同時使用による通信において、より良好なインピーダンス特性を得ることができる。
第5の態様の高周波モジュール(1;1A)では、第1~第4のいずれかの態様において、上記信号経路のうちスイッチと第2インダクタ(L22)との間の経路幅は、上記信号経路のうち第1インダクタ(L21)と第2弾性波フィルタとの間の経路幅よりも長い。
この構成によると、寄生インダクタが発生した場合であっても第2弾性波フィルタにおける第1通信バンドのインピーダンスのオープン端からの移動量を小さくすることができる。その結果、第1通信バンドと第2通信バンドとの同時使用による通信において、より良好なインピーダンス特性を得ることができる。
第6の態様の高周波モジュール(1;1A)では、第1~第5のいずれかの態様において、上記信号経路のうち第1インダクタ(L21)と第2インダクタ(L22)との間の経路(R22;R32)は、表層配線により形成されている。
この構成によると、第1インダクタ(L21)と第2インダクタ(L22)との間の経路(R22;R32)を実装基板(100;100A)の内部に設ける場合と比較して、発生する寄生容量を小さくすることができる。
第7の態様の高周波モジュール(1;1A)では、第1~第6のいずれかの態様において、上記信号経路のうち第1インダクタ(L21)と第2弾性波フィルタとの間の経路(R23;R33)は、表層配線により形成されている。
この構成によると、第1インダクタ(L21)と第2弾性波フィルタとの間の経路(R23;R33)を実装基板(100;100A)の内部に設ける場合と比較して、発生する寄生インダクタを小さくすることができる。
第8の態様の高周波モジュール(1)は、第1~第7のいずれかの態様において、実装基板(100)を、更に備える。実装基板(100)は、厚さ方向(例えば、第1方向D1)において互いに対向する第1主面(101)及び第2主面(102)を有する。第1弾性波フィルタ、第2弾性波フィルタ、第1インダクタ(L21)及び第2インダクタ(L22)は、第1主面(101)側に配置されている。スイッチは、第2主面(102)側に配置されている。
この構成によると、実装基板(100)の両面にスイッチ等の部品を実装しつつ、第1通信バンドと第2通信バンドとの同時使用による通信において、より良好なインピーダンス特性を得ることができる。
第9の態様の高周波モジュール(1)では、第8の態様において、第2主面(102)に配置されている複数の外部接続電極(90;90B)を、更に備える。
この構成によると、外部接続電極(90)が接続されたマザー基板等と実装基板(100)との隙間にスイッチを配置しつつ、第1通信バンドと第2通信バンドとの同時使用による通信において、より良好なインピーダンス特性を得ることができる。
第10の態様の高周波モジュール(1)では、第8又は第9の態様において、実装基板(100)を平面視した場合に、第2インダクタ(L22)の少なくとも一部は、スイッチと重なっている。
この構成によると、スイッチと第2インダクタ(L22)との経路長を短くすることができる。
第11の態様の高周波モジュール(1)では、第8~第10のいずれかの態様において、実装基板(100)を平面視した場合に、第1インダクタ(L21)の少なくとも一部は、スイッチと重なっている。
この構成によると、スイッチから第2インダクタ(L22)及び第1インダクタ(L21)までの経路長を短くすることができる。
第12の態様の高周波モジュール(1)は、第8~第11のいずれかの態様において、第1ローノイズアンプ(12)と、第2ローノイズアンプ(13)と、を更に備える。第1ローノイズアンプ(12)は、第1弾性波フィルタと接続されている。第2ローノイズアンプ(13)は、第2弾性波フィルタと接続されている。第1ローノイズアンプ(12)及び第2ローノイズアンプ(13)は、第2主面(102)に設けられている。実装基板(100)を平面視した場合に、第1弾性波フィルタの少なくとも一部は、第1ローノイズアンプ(12)と重なっている。第2弾性波フィルタの少なくとも一部は、第2ローノイズアンプ(13)と重なっている。
この構成によると、第1弾性波フィルタと第1ローノイズアンプ(12)との間の経路長、及び第2弾性波フィルタと第2ローノイズアンプ(13)との間の経路長を、それぞれ短くすることができる。
第13の態様の高周波モジュール(1)は、第8~第12のいずれかの態様において、第1リアクタンス素子(61)と、第2リアクタンス素子(62)と、第3リアクタンス素子(63)と、を更に備える。第1リアクタンス素子(61)は、スイッチと第1弾性波フィルタとの間の第1通信バンド用信号経路(例えば、第1受信経路R1)において直列に挿入されている。第2リアクタンス素子(62)は、第1通信バンド用信号経路において、第1リアクタンス素子(61)の第1端とグランドとの間に設けられている。第3リアクタンス素子(63)は、第1通信バンド用信号経路において、第1リアクタンス素子(61)の第2端とグランドとの間に設けられている。
この構成によると、スイッチから第1弾性波フィルタ側を見たときの、第1弾性波フィルタの第2通信バンドでのインピーダンスを、オープン端の近傍にシフトさせることができる。
第14の態様の高周波モジュール(1B;1C;1D)は、第1弾性波フィルタ(例えば、第1受信フィルタ3b)と、第2弾性波フィルタ(例えば、第2受信フィルタ4b)と、スイッチ(例えば、アンテナスイッチ5)と、位相調整回路(7b)と、を備える。第1弾性波フィルタは、第1通信バンドの信号を通過させる。第2弾性波フィルタは、第1通信バンドの周波数帯よりも低周波数帯である第2通信バンドの信号を通過させる。スイッチは、第1弾性波フィルタと第2弾性波フィルタとをアンテナ端子(2)に同時に接続可能である。位相調整回路(7b)は、スイッチと第2弾性波フィルタとを結ぶ信号経路(例えば、第2受信経路R12)上に設けられ、第2通信バンドの信号の位相を調整する。位相調整回路(7b)は、インダクタ(71b)と、第1キャパシタ(72b)と、第2キャパシタ(73b)と、を有している。インダクタ(71b)は、上記信号経路においてスイッチと第2弾性波フィルタとの間で直列接続されている。第1キャパシタ(72b)は、上記信号経路において、インダクタ(71b)の両端のうちスイッチ側の第1端(T2)とグランドとの間に設けられている。第2キャパシタ(73b)は、上記信号経路において、インダクタ(71b)の両端のうち第2弾性波フィルタ側の第2端(T1)とグランドとの間に設けられている。上記信号経路のうちインダクタ(71b)と第2キャパシタ(73b)との接続点(インダクタ71bの第2端T1)と、第2弾性波フィルタとの間の第1経路(例えば、経路R312)の長さ(第1経路長“AA1”)は、上記信号経路のうちインダクタ(71b)と第1キャパシタ(72b)との接続点(インダクタ71bの第1端T2)と、スイッチとの間の第2経路(例えば、経路R311)の長さ(第2経路長“AA2”)よりも長い。
この構成によると、第1通信バンドと第2通信バンドとの同時使用による通信において、より良好なインピーダンス特性を得ることができる。
第15の態様の高周波モジュール(1B;1C;1D)では、第14の態様において、第1経路の経路幅は、第2経路の経路幅よりも長い。
この構成によると、より良好なインピーダンス特性を得ることができる。
第16の態様の高周波モジュール(1B;1C;1D)では、第14又は第15の態様において、第1経路及び第2経路は、表層配線により形成されている。
この構成によると、第1経路及び第2経路を実装基板(100B;100C;100D)の内部に設ける場合と比較して、発生する寄生容量を小さくすることができる。
第17の態様の高周波モジュール(1C)は、第14~第16のいずれかの態様において、互いに対向する第1主面(101C)及び第2主面(102C)を有する実装基板(100C)を、更に備える。第1弾性波フィルタ、第2弾性波フィルタ、インダクタ(71b)、第1キャパシタ(72b)及び第2キャパシタ(73b)は、第1主面(101C)側に配置されている。スイッチは、第2主面(102C)側に配置されている。
この構成によると、実装基板(100C)の両面にスイッチ等の部品を実装しつつ、第1通信バンドと第2通信バンドとの同時使用による通信において、より良好なインピーダンス特性を得ることができる。
第18の態様の高周波モジュール(1C)は、第17の態様において、第2主面(102C)に配置されている複数の外部接続電極(90c)を、更に備える。
この構成によると、外部接続電極(90c)が接続されたマザー基板等と実装基板(100C)との隙間にスイッチを配置しつつ、第1通信バンドと第2通信バンドとの同時使用による通信において、より良好なインピーダンス特性を得ることができる。
第19の態様の高周波モジュール(1C)は、第17又は第18の態様において、実装基板(100C)を平面視した場合に、第1キャパシタ(72b)の少なくとも一部は、スイッチと重なっている。
この構成によると、信号経路(例えば、第2受信経路R12)の第2経路の長さ(第2経路長“AA2”)を短くすることができる。
第20の態様の高周波モジュール(1C)は、第17~第19のいずれかの態様において、実装基板(100C)を平面視した場合に、第2キャパシタ(73b)の少なくとも一部は、スイッチと重なっている。
この構成によると、受信経路の第2経路の長さ(第2経路長“AA2”)を短くすることができる。
第21の態様の高周波モジュール(1C)は、第17~第20のいずれかの態様において、第1ローノイズアンプ(12)と、第2ローノイズアンプ(13)とを、更に備える。第1ローノイズアンプ(12)は、第1弾性波フィルタと接続されている。第2ローノイズアンプ(13)は、第2弾性波フィルタと接続されている。第1ローノイズアンプ(12)及び第2ローノイズアンプ(13)は、第2主面(102C)に設けられている。実装基板(100C)を平面視した場合に、第1弾性波フィルタの少なくとも一部は、第1ローノイズアンプ(12)と重なっており、第2弾性波フィルタの少なくとも一部は、第2ローノイズアンプ(13)と重なっている。
この構成によると、第1弾性波フィルタと第1ローノイズアンプ(12)との間の経路長、及び第2弾性波フィルタと第2ローノイズアンプ(13)との間の経路長を、それぞれ短くすることができる。
第22の態様の高周波モジュール(1D)では、第14~第21のいずれかの態様において、位相調整回路(7b)である第1位相調整回路とは異なる第2位相調整回路(第1位相調整回路6d)を、更に備える。第2位相調整回路は、スイッチと第2弾性波フィルタとを結ぶ第1通信バンド用信号経路(第1受信経路R11)上に設けられている。第2位相調整回路は、第1リアクタンス素子(61d)及び第2リアクタンス素子(62d)と、第3リアクタンス素子(63d)と、を有している。第1リアクタンス素子(61d)及び第2リアクタンス素子(62d)は、スイッチと第1弾性波フィルタとの間の第1通信バンド用信号経路において直列に挿入されている。第3リアクタンス素子(63d)は、一端が第1リアクタンス素子(61d)と第2リアクタンス素子(62d)との間に接続され、他端がグランドに接続されている。第1リアクタンス素子(61d)は、第1通信バンド用信号経路においてスイッチと第2リアクタンス素子(62d)との間に配置されている。第1経路(経路R312)の長さと第2経路(経路R311)の長さとの合計長は、第1通信バンド用信号経路のうちスイッチと第1リアクタンス素子(61d)との間の距離(経路長“AA3”)と、第2リアクタンス素子(62d)と第1弾性波フィルタとの間の距離(経路長“AA4”)との合計長より長い。
この構成によると、第1通信バンドと第2通信バンドとの同時使用による通信において、より良好なインピーダンス特性を得ることができる。
第23の態様の通信装置(8)は、第1~第22のいずれかの態様の高周波モジュール(1;1A;1B;1C;1D)と、信号処理回路(80)と、を備える。信号処理回路(80)は、第1通信バンドの信号及び第2通信バンドの信号を信号処理する。
この構成によると、第1通信バンドと第2通信バンドとの同時使用による通信において、より良好なインピーダンス特性を得ることができる。
1,1A,1B,1C,1D 高周波モジュール
2 アンテナ端子
3,3b 第1受信フィルタ(第1弾性波フィルタ)
4,4b 第2受信フィルタ(第2弾性波フィルタ)
5 アンテナスイッチ(スイッチ)
6,6d 第1位相調整回路
7 第2位相調整回路
7b 位相調整回路(第2位相調整回路)
8 通信装置
9 アンテナ
11 増幅器
12 第1ローノイズアンプ
13 第2ローノイズアンプ
51 共通端子
61,61d 第1リアクタンス素子
62,62d 第2リアクタンス素子
63,63d 第3リアクタンス素子
71b インダクタ
72b 第1キャパシタ
73b 第2キャパシタ
80 信号処理回路
81 ベースバンド信号処理回路
82 RF信号処理回路
90,90A,90B,90b,90c,91c 外部接続電極
95,96,97 ビア導体
98 配線導体
100,100A,100B,100C,100D 実装基板
101,101A,101B,101C,101D 第1主面
102,102A,102B,102C,102D 第2主面
110 スイッチIC
120 第1樹脂層(樹脂層)
130 第2樹脂層
521,522 選択端子
C11,C12、C61,C62 キャパシタ
D1 第1方向
D2 第2方向
L11、L63 インダクタ
L21 第1インダクタ
L22 第2インダクタ
R1,R11 第1受信経路
R2,R12 第2受信経路
R21,R22,R23,R25,R31,R32,R33,R311、R312,R411,R412 経路
T1 第2端(接続点)
T2 第1端(接続点)
T11,T12 接続点
2 アンテナ端子
3,3b 第1受信フィルタ(第1弾性波フィルタ)
4,4b 第2受信フィルタ(第2弾性波フィルタ)
5 アンテナスイッチ(スイッチ)
6,6d 第1位相調整回路
7 第2位相調整回路
7b 位相調整回路(第2位相調整回路)
8 通信装置
9 アンテナ
11 増幅器
12 第1ローノイズアンプ
13 第2ローノイズアンプ
51 共通端子
61,61d 第1リアクタンス素子
62,62d 第2リアクタンス素子
63,63d 第3リアクタンス素子
71b インダクタ
72b 第1キャパシタ
73b 第2キャパシタ
80 信号処理回路
81 ベースバンド信号処理回路
82 RF信号処理回路
90,90A,90B,90b,90c,91c 外部接続電極
95,96,97 ビア導体
98 配線導体
100,100A,100B,100C,100D 実装基板
101,101A,101B,101C,101D 第1主面
102,102A,102B,102C,102D 第2主面
110 スイッチIC
120 第1樹脂層(樹脂層)
130 第2樹脂層
521,522 選択端子
C11,C12、C61,C62 キャパシタ
D1 第1方向
D2 第2方向
L11、L63 インダクタ
L21 第1インダクタ
L22 第2インダクタ
R1,R11 第1受信経路
R2,R12 第2受信経路
R21,R22,R23,R25,R31,R32,R33,R311、R312,R411,R412 経路
T1 第2端(接続点)
T2 第1端(接続点)
T11,T12 接続点
Claims (23)
- 第1通信バンドの信号を通過させる第1弾性波フィルタと、
第2通信バンドの信号を通過させる第2弾性波フィルタと、
前記第1弾性波フィルタと前記第2弾性波フィルタとをアンテナ端子に同時に接続可能なスイッチと、
前記スイッチと前記第2弾性波フィルタとを結ぶ信号経路上のノードとグランドとの間に設けられた第1インダクタと、
前記信号経路において前記スイッチと前記第1インダクタとの間で直列接続された第2インダクタと、を備える、
高周波モジュール。 - 前記信号経路のうち前記スイッチと前記第2インダクタとの間の経路長は、前記信号経路のうち前記第1インダクタと前記第2インダクタとの間の経路長よりも長い、
請求項1に記載の高周波モジュール。 - 前記信号経路のうち前記スイッチと前記第2インダクタとの間の経路長は、前記信号経路のうち前記第1インダクタと前記第2弾性波フィルタとの間の経路長よりも長い、
請求項1又は2に記載の高周波モジュール。 - 前記信号経路のうち前記スイッチと前記第2インダクタとの間の経路幅は、前記信号経路のうち前記第1インダクタと前記第2インダクタとの間の経路幅よりも長い、
請求項1~3のいずれか一項に記載の高周波モジュール。 - 前記信号経路のうち前記スイッチと前記第2インダクタとの間の経路幅は、前記信号経路のうち前記第1インダクタと前記第2弾性波フィルタとの間の経路幅よりも長い、
請求項1~4のいずれか一項に記載の高周波モジュール。 - 前記信号経路のうち前記第1インダクタと前記第2インダクタとの間の経路は、表層配線により形成されている、
請求項1~5のいずれか一項に記載の高周波モジュール。 - 前記信号経路のうち前記第1インダクタと前記第2弾性波フィルタとの間の経路は、表層配線により形成されている、
請求項1~6のいずれか一項に記載の高周波モジュール。 - 互いに対向する第1主面及び第2主面を有する実装基板を、更に備え、
前記第1弾性波フィルタ、前記第2弾性波フィルタ、前記第1インダクタ及び前記第2インダクタは、前記第1主面側に配置されており、
前記スイッチは、前記第2主面側に配置されている、
請求項1~7のいずれか一項に記載の高周波モジュール。 - 前記第2主面に配置されている複数の外部接続電極を、更に備える、
請求項8に記載の高周波モジュール。 - 前記実装基板を平面視した場合に、前記第2インダクタの少なくとも一部は、前記スイッチと重なっている、
請求項8又は9に記載の高周波モジュール。 - 前記実装基板を平面視した場合に、前記第1インダクタの少なくとも一部は、前記スイッチと重なっている、
請求項8~10のいずれか一項に記載の高周波モジュール。 - 前記第1弾性波フィルタと接続された第1ローノイズアンプと、
前記第2弾性波フィルタと接続された第2ローノイズアンプを、更に備え、
前記第1ローノイズアンプ及び前記第2ローノイズアンプは、前記第2主面に設けられており、
前記実装基板を平面視した場合に、前記第1弾性波フィルタの少なくとも一部は、前記第1ローノイズアンプと重なっており、前記第2弾性波フィルタの少なくとも一部は、前記第2ローノイズアンプと重なっている、
請求項8~11のいずれか一項に記載の高周波モジュール。 - 前記スイッチと前記第1弾性波フィルタとの間の第1通信バンド用信号経路において直列に挿入された第1リアクタンス素子と、
前記第1通信バンド用信号経路において、前記第1リアクタンス素子の第1端とグランドとの間に設けられた第2リアクタンス素子と、
前記第1通信バンド用信号経路において、前記第1リアクタンス素子の第2端とグランドとの間に設けられた第3リアクタンス素子と、を更に備える、
請求項8~12のいずれか一項に記載の高周波モジュール。 - 第1通信バンドの信号を通過させる第1弾性波フィルタと、
前記第1通信バンドの周波数帯よりも低周波数帯である第2通信バンドの信号を通過させる第2弾性波フィルタと、
前記第1弾性波フィルタと前記第2弾性波フィルタとをアンテナ端子に同時に接続可能なスイッチと、
前記スイッチと前記第2弾性波フィルタとを結ぶ信号経路上に設けられ、前記第2通信バンドの前記信号の位相を調整する位相調整回路と、を備え、
前記位相調整回路は、
前記信号経路において前記スイッチと前記第2弾性波フィルタとの間で直列接続されたインダクタと、
前記信号経路において、前記インダクタの両端のうち前記スイッチ側の第1端とグランドとの間に設けられた第1キャパシタと、
前記信号経路において、前記インダクタの両端のうち前記第2弾性波フィルタ側の第2端とグランドとの間に設けられた第2キャパシタと、を有しており、
前記信号経路のうち前記インダクタと前記第2キャパシタとの接続点と、前記第2弾性波フィルタとの間の第1経路の長さは、前記信号経路のうち前記インダクタと前記第1キャパシタとの接続点と、前記スイッチとの間の第2経路の長さよりも長い、
高周波モジュール。 - 前記第1経路の経路幅は、前記第2経路の経路幅よりも長い、
請求項14に記載の高周波モジュール。 - 前記第1経路及び前記第2経路は、表層配線により形成されている、
請求項14又は15に記載の高周波モジュール。 - 互いに対向する第1主面及び第2主面を有する実装基板を、更に備え、
前記第1弾性波フィルタ、前記第2弾性波フィルタ、前記インダクタ、前記第1キャパシタ及び前記第2キャパシタは、前記第1主面側に配置されており、
前記スイッチは、前記第2主面側に配置されている、
請求項14~16のいずれか一項に記載の高周波モジュール。 - 前記第2主面に配置されている複数の外部接続電極を、更に備える、
請求項17に記載の高周波モジュール。 - 前記実装基板を平面視した場合に、前記第1キャパシタの少なくとも一部は、前記スイッチと重なっている、
請求項17又は18に記載の高周波モジュール。 - 前記実装基板を平面視した場合に、前記第2キャパシタの少なくとも一部は、前記スイッチと重なっている、
請求項17~19のいずれか一項に記載の高周波モジュール。 - 前記第1弾性波フィルタと接続された第1ローノイズアンプと、
前記第2弾性波フィルタと接続された第2ローノイズアンプと、を更に備え、
前記第1ローノイズアンプ及び前記第2ローノイズアンプは、前記第2主面に設けられており、
前記実装基板を平面視した場合に、前記第1弾性波フィルタの少なくとも一部は、前記第1ローノイズアンプと重なっており、前記第2弾性波フィルタの少なくとも一部は、前記第2ローノイズアンプと重なっている、
請求項17~20のいずれか一項に記載の高周波モジュール。 - 前記位相調整回路である第1位相調整回路とは異なる第2位相調整回路を、更に備え、
前記第2位相調整回路は、前記スイッチと前記第2弾性波フィルタとを結ぶ第1通信バンド用信号経路上に設けられており、
前記第2位相調整回路は、
前記スイッチと前記第1弾性波フィルタとの間の第1通信バンド用信号経路において直列に挿入された第1リアクタンス素子及び第2リアクタンス素子と、
一端が前記第1リアクタンス素子と前記第2リアクタンス素子との間に接続され、他端がグランドに接続されている第3リアクタンス素子と、を有しており、
前記第1リアクタンス素子は、前記第1通信バンド用信号経路において前記スイッチと前記第2リアクタンス素子との間に配置されており、
前記第1経路の長さと前記第2経路の長さとの合計長は、前記第1通信バンド用信号経路のうち前記スイッチと前記第1リアクタンス素子との間の距離と、前記第2リアクタンス素子と前記第1弾性波フィルタとの間の距離との合計長より長い、
請求項14~21のいずれか一項に記載の高周波モジュール。 - 請求項1~22のいずれか一項に記載の高周波モジュールと、
前記第1通信バンドの前記信号及び前記第2通信バンドの前記信号を信号処理する信号処理回路と、を備える、
通信装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080088385.5A CN114830541B (zh) | 2019-12-27 | 2020-07-22 | 高频模块以及通信装置 |
US17/805,235 US20220294487A1 (en) | 2019-12-27 | 2022-06-03 | Radio-frequency module and communication apparatus |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-239496 | 2019-12-27 | ||
JP2019239496 | 2019-12-27 | ||
JP2020-077817 | 2020-04-24 | ||
JP2020077817 | 2020-04-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/805,235 Continuation US20220294487A1 (en) | 2019-12-27 | 2022-06-03 | Radio-frequency module and communication apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021131125A1 true WO2021131125A1 (ja) | 2021-07-01 |
Family
ID=76572974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/028524 WO2021131125A1 (ja) | 2019-12-27 | 2020-07-22 | 高周波モジュール及び通信装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220294487A1 (ja) |
CN (1) | CN114830541B (ja) |
WO (1) | WO2021131125A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019044034A1 (ja) * | 2017-08-31 | 2019-03-07 | 株式会社村田製作所 | 高周波モジュール、フロントエンドモジュールおよび通信装置 |
WO2019065569A1 (ja) * | 2017-09-29 | 2019-04-04 | 株式会社村田製作所 | 高周波回路および通信装置 |
WO2019188875A1 (ja) * | 2018-03-29 | 2019-10-03 | 株式会社村田製作所 | 高周波モジュール |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6995630B2 (en) * | 2001-10-24 | 2006-02-07 | Matsushita Electric Industrial Co., Ltd. | High-frequency compound switch module and communication terminal using it |
TW200713681A (en) * | 2005-09-26 | 2007-04-01 | Murata Manufacturing Co | High-frequency front end module, and duplexer |
KR101232242B1 (ko) * | 2008-11-04 | 2013-02-12 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 필터장치 및 그것을 포함하는 모듈 |
EP2355348B1 (en) * | 2008-11-25 | 2018-03-07 | Murata Manufacturing Co., Ltd. | Elastic wave filter device |
JP6432608B2 (ja) * | 2014-12-25 | 2018-12-05 | 株式会社村田製作所 | 高周波モジュール |
CN108352852B (zh) * | 2015-10-26 | 2021-01-29 | 株式会社村田制作所 | 开关模块 |
CN107689778B (zh) * | 2016-08-05 | 2022-03-01 | 株式会社村田制作所 | 高频模块以及通信装置 |
JP6690608B2 (ja) * | 2017-07-20 | 2020-04-28 | 株式会社村田製作所 | マルチプレクサ、高周波フロントエンド回路および通信装置 |
-
2020
- 2020-07-22 WO PCT/JP2020/028524 patent/WO2021131125A1/ja active Application Filing
- 2020-07-22 CN CN202080088385.5A patent/CN114830541B/zh active Active
-
2022
- 2022-06-03 US US17/805,235 patent/US20220294487A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019044034A1 (ja) * | 2017-08-31 | 2019-03-07 | 株式会社村田製作所 | 高周波モジュール、フロントエンドモジュールおよび通信装置 |
WO2019065569A1 (ja) * | 2017-09-29 | 2019-04-04 | 株式会社村田製作所 | 高周波回路および通信装置 |
WO2019188875A1 (ja) * | 2018-03-29 | 2019-10-03 | 株式会社村田製作所 | 高周波モジュール |
Also Published As
Publication number | Publication date |
---|---|
CN114830541B (zh) | 2024-06-11 |
CN114830541A (zh) | 2022-07-29 |
US20220294487A1 (en) | 2022-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10873352B2 (en) | Radio-frequency module and communication apparatus | |
WO2020184613A1 (ja) | 高周波モジュールおよび通信装置 | |
US11336312B2 (en) | Radio frequency module and communication device | |
US11394817B2 (en) | Radio frequency module and communication device | |
US11349507B2 (en) | Radio frequency module and communication device | |
US11418158B2 (en) | Radio-frequency module and communication device | |
US11152961B2 (en) | Radio frequency module and communication device | |
US11777534B2 (en) | Radio frequency module and communication device | |
CN214959529U (zh) | 高频模块和通信装置 | |
KR102417481B1 (ko) | 고주파 모듈 및 통신 장치 | |
JP2021145288A (ja) | 高周波モジュールおよび通信装置 | |
JP2021197642A (ja) | 高周波モジュールおよび通信装置 | |
JP2018196037A (ja) | 方向性結合器、高周波フロントエンドモジュール、および、通信機器 | |
KR20210131234A (ko) | 고주파 모듈 및 통신 장치 | |
JP2022018955A (ja) | 高周波モジュール及び通信装置 | |
JP2021158569A (ja) | 高周波モジュールおよび通信装置 | |
US20240146261A1 (en) | Radio-frequency circuit, radio-frequency module, and communication device | |
KR102452114B1 (ko) | 고주파 모듈 및 통신 장치 | |
US11606107B2 (en) | Radio frequency module and communication device | |
WO2018225590A1 (ja) | 高周波モジュール | |
JP2021158554A (ja) | 高周波モジュールおよび通信装置 | |
WO2021131125A1 (ja) | 高周波モジュール及び通信装置 | |
WO2021192429A1 (ja) | 高周波モジュール及び通信装置 | |
CN110476355B (zh) | 多工器、高频前端电路以及通信装置 | |
WO2022230708A1 (ja) | 高周波回路及び通信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20906766 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20906766 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |