WO2021131090A1 - 曝気槽、汚水処理装置及び汚水処理方法 - Google Patents

曝気槽、汚水処理装置及び汚水処理方法 Download PDF

Info

Publication number
WO2021131090A1
WO2021131090A1 PCT/JP2020/009255 JP2020009255W WO2021131090A1 WO 2021131090 A1 WO2021131090 A1 WO 2021131090A1 JP 2020009255 W JP2020009255 W JP 2020009255W WO 2021131090 A1 WO2021131090 A1 WO 2021131090A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
region
tank
aeration tank
tubular member
Prior art date
Application number
PCT/JP2020/009255
Other languages
English (en)
French (fr)
Inventor
弘憲 角吉
浩成 飯野
Original Assignee
株式会社フジタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジタ filed Critical 株式会社フジタ
Priority to MX2022007294A priority Critical patent/MX2022007294A/es
Publication of WO2021131090A1 publication Critical patent/WO2021131090A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • One embodiment of the present invention relates to an aeration tank, a sewage treatment device, and a sewage treatment method.
  • a sewage treatment device used for purification treatment of human waste, domestic wastewater, etc.
  • a sewage treatment device equipped with an aeration tank using carrier flow is known.
  • the organic component and the nitrogen component in the sewage can be simultaneously removed by flowing a porous carrier to which aerobic bacteria and anaerobic bacteria are attached in the tank body.
  • the carrier flows in the tank body, sewage, microorganisms and oxygen come into contact with each other efficiently, and a high sewage treatment capacity can be realized.
  • the sewage treatment device described in Patent Document 1 is known as a sewage treatment device provided with an aeration tank using carrier flow.
  • ammonia nitrogen or organic nitrogen in sewage is brought into contact with nitrifying bacteria in the outer layer portion of a porous carrier in an aerobic environment to be converted into nitrate nitrogen or nitrite nitrogen.
  • these nitrate nitrogen or nitrite nitrogen are brought into contact with denitrifying bacteria (bacteria exhibiting an action of converting a nitrogen compound into molecular nitrogen) in the inner layer of a porous carrier in an anaerobic environment, and converted into nitrogen gas. Convert. That is, according to the technique described in Patent Document 1, the organic component is removed in the outer layer portion of the porous carrier, and the nitrogen component is removed in the inner layer portion of the porous carrier, so that the sewage is very small.
  • a processing device can be realized.
  • One of the problems of one embodiment of the present invention is to suppress a decrease in denitrification function in sewage treatment using a flowing carrier.
  • the aeration tank according to the embodiment of the present invention is provided above and below the tank body, a carrier provided inside the tank body and holding nitrifying bacteria and denitrifying bacteria inside, and separated from the inner wall of the tank body. It includes a tubular member having an open end in the direction and a first aeration device provided directly below the tubular member.
  • the outer edge of the first air diffuser may be located inside the inner edge of the tubular member.
  • the aeration tank may further include a second aeration device provided apart from the tubular member. At that time, the tubular member may be located on a straight line connecting the pair of second air diffusers.
  • the aeration tank according to the embodiment of the present invention has an aerobic region having an upward flow and an anaerobic region having a downward flow inside the tank body, and is a carrier that holds nitrifying bacteria and denitrifying bacteria inside. Circulates so as to alternately pass through the aerobic region and the anaerobic region.
  • the aerobic region may be formed inside a tubular member having an opening end in the vertical direction, and the anaerobic region may be formed around the tubular member. Further, the amount of dissolved oxygen in the anaerobic region may be 1/10 or less of the amount of dissolved oxygen in the aerobic region.
  • the sewage treatment device includes the above-mentioned aeration tank and a sedimentation layer provided downstream of the aeration tank.
  • the aeration tank and the sedimentation layer may communicate with each other via a carrier screen provided on the inner wall of the tank body.
  • An air diffuser may be provided inside the sedimentation layer.
  • the sewage treatment device may further include a sludge return device that returns the sludge of the aeration tank and the sedimentation layer to the upstream side.
  • an aerobic region having an upward flow and an anaerobic region having a downward flow are formed inside the tank body, and nitrifying bacteria and denitrifying bacteria are retained inside.
  • the carrier is circulated so as to alternately pass through the aerobic region and the anaerobic region.
  • the aerobic region may be formed by diffusing air from below inside a tubular member having an opening end in the vertical direction.
  • the aerobic region may be formed inside the tubular member and the anaerobic region may be formed around the tubular member by selectively dissipating air inside the tubular member.
  • FIG. 1 is a diagram showing a configuration of a sewage treatment system 10 according to an embodiment of the present invention.
  • the sewage treatment system 10 of the present embodiment includes a regulating tank 11, a carrier fluid aeration tank 12, a settling tank 13, a sludge return device 14, a sludge concentration storage tank 15, a disinfection tank 16, and a discharge tank. Includes 17.
  • the example shown in FIG. 1 is only an example, and the sewage treatment system 10 of the present embodiment is not limited to this example.
  • the adjusting tank 11 is a treatment tank that equalizes fluctuations in water quality by temporarily storing and mixing raw water.
  • the adjusting tank 11 also has a role of making the flow rate of sewage supplied to the carrier fluid aeration tank 12 on the downstream side constant.
  • the carrier fluid aeration tank 12 is a treatment tank for removing organic substances and nitrogen in sewage. Removal of organic matter (oxidative decomposition) is carried out by the action of aerobic bacteria in an aerobic environment. By the action of aerobic bacteria, organic matter is mainly decomposed into water and carbon dioxide. Oxygen required for oxidative decomposition is supplied using an air diffuser or the like. Nitrogen removal (denitrification) is carried out by the action of anaerobic bacteria in an anaerobic environment. Specifically, first, ammonia nitrogen or organic nitrogen is converted into nitrate nitrogen or nitrite nitrogen by nitrifying bacteria. After that, nitrate nitrogen or nitrite nitrogen is reduced to nitrogen gas by denitrifying bacteria. The detailed function of the carrier fluid aeration tank 12 of this embodiment will be described later.
  • the settling tank 13 is a treatment tank in which sludge water, which is a mixture of sludge discharged from the carrier fluid aeration tank 12 and treated water, is allowed to stand, and the sludge is settled and separated by utilizing the difference in density between the sludge and the treated water. Is.
  • the sludge return device 14 is a device for returning the sludge separated in the settling tank 13 to the adjusting tank 11 on the upstream side.
  • the sludge return device 14 is composed of, for example, an air lift pump, a return pipe, and the like.
  • the sludge return device 14 has a function of automatically weighing sludge. With this function, the sludge return device 14 has a function of adjusting the amount of sludge returned to the adjusting tank 11 or the like so that the amount of sludge in the carrier fluid aeration tank 12 becomes a set value.
  • the sludge returning device 14 of the present embodiment can return sludge from both the settling tank 13 and the carrier fluid aeration tank 12. Further, the sludge return device 14 can return the transferred sludge not only to the adjusting tank 11 but also to the carrier fluidized aeration tank 12.
  • the sludge concentration storage tank 15 is a treatment tank having a function of concentrating sludge transferred from the carrier fluid aeration tank 12 and the settling tank 13 by the sludge return device 14 and a function of storing the concentrated sludge.
  • the sludge concentration is increased by a precipitation concentration method in which the desorbed liquid (supernatant liquid) is drawn out after the sludge is precipitated.
  • the sludge transferred from the carrier fluidized aeration tank 12 or the settling tank 13 is temporarily stored in the sludge concentration storage tank 15 and then returned to the adjusting tank 11 or the carrier fluidized aeration tank 12.
  • the disinfection tank 16 is a treatment tank having a function of bringing the treated water discharged from the settling tank 13 into contact with a chemical to disinfect (sterilize) the water to make it hygienic and safe.
  • the discharge tank 17 is a tank for storing the treated water disinfected by the disinfection tank 16.
  • the treated water stored in the discharge tank 17 is discharged to the sewer or the like.
  • the sewage treatment device 100 including the carrier fluid aeration tank 12, the settling tank 13, and the sludge return device 14 described above will be described in detail.
  • FIG. 2 is a diagram showing a configuration of a sewage treatment device 100 according to an embodiment of the present invention.
  • the carrier fluid aeration tank 12 and the settling tank 13 are integrated is shown, but each may be configured as a separate treatment tank.
  • the tank body 110 is a member that serves as an outer frame of the carrier fluid aeration tank 12 and the settling tank 13.
  • the tank body 110 can be made of plastic, steel frame, reinforcing bar, concrete, or the like, but is not limited to these materials.
  • the partition 112 is provided inside the tank body 110. That is, the tank body 110 is divided into a first treatment tank (carrier fluid aeration tank 12) and a second treatment tank (sedimentation tank 13) by the partition 112.
  • the "tank body" in the carrier fluidized aeration tank 12 includes a tank main body 110 and a partition 112 that surround a region that functions as the carrier fluidized aeration tank 12.
  • the tank body 110 and the partition 112 may be integrated or separate. Further, although the example in which the tank main body 110 is divided into two processing tanks by the partition 112 is shown here, it may be divided into three or more processing tanks.
  • the carrier screen 114 is provided on the partition 112 provided inside the tank body 110. That is, the carrier fluid aeration tank 12 and the settling tank 13 communicate with each other via the carrier screen 114.
  • the carrier screen 114 is arranged in the opening 112a provided in the partition 112. Specifically, the carrier screen 114 is arranged at the opening end on the upstream side of the opening 112a, that is, the opening end on the side of the carrier fluid aeration tank 12 (the opening end on the side opposite to the side of the settling tank 13).
  • the carrier screen 114 is a member in which a plurality of through holes of a predetermined size are provided in a plate-shaped member.
  • the carrier screen 114 has a role of preventing the carrier 150 from flowing out from the carrier fluidized aeration tank 12 to the settling tank 13 while allowing sludge water to pass from the carrier fluidized aeration tank 12 to the settling tank 13.
  • a net-like member, a punching sheet (a member obtained by punching a sheet-like member made of metal, resin, or the like) or the like can be used.
  • a raw water inflow pipe 116, a raw water measuring tank 117, and a raw water supply pipe 118 are provided on the upstream side of the tank body 110.
  • the raw water measuring tank 117 has a function of measuring the sewage (raw water) discharged from the upstream equipment (adjustment tank 11 in the present embodiment) via the raw water inflow pipe 116.
  • an appropriate amount of sewage can be supplied to the carrier fluid aeration tank 12 via the raw water supply pipe 118.
  • a tubular member 120 is provided inside the tank body 110 so as to be separated from the inner wall (and partition 112) of the tank body 110.
  • the tubular member 120 is a pipe-shaped member having an opening end in the vertical direction, and is made of a plastic material or the like. As shown in FIG. 2, the tubular member 120 is arranged so as to be submerged in the sewage 160 during operation.
  • the outer shape of the tubular member 120 is not limited to a cylindrical shape, and may be a polygonal shape such as a prismatic shape.
  • the length of the tubular member 120 may be 300 mm or more and 3000 mm or less (preferably 500 mm or more and 2000 mm or less), and the cross-sectional diameter or diagonal length may be 30 mm or more and 250 mm or less (preferably 50 mm or more and 200 mm or less). Just do it.
  • a first air diffuser 130 and a second air diffuser 135a to 135c are provided inside the tank main body 110.
  • the first air diffuser 130 and the second air diffuser 135a to 135c are connected to an air supply pipe 137 connected to a blower (not shown).
  • the first air diffuser 130 is a device that generates air bubbles, and is provided directly below the tubular member 120.
  • the air bubbles generated by the first air diffuser 130 rise toward the sewage surface 160a while passing through the inside of the tubular member 120. Due to such a configuration, the diameter or width of the first air diffuser 130 is smaller than the diameter or width of the tubular member 120.
  • the outer edge of the first air diffuser 130 is located inside the inner edge (outline of the inner wall) of the tubular member 120.
  • the diameter or width of the first air diffuser 130 may be the same as the diameter or width of the tubular member 120.
  • the second air diffuser 135a to 135c are also devices that generate air bubbles.
  • the second air diffuser 135a and 135b are provided in the carrier fluidized aeration tank 12.
  • the second air diffuser 135c is provided in the settling tank 13.
  • the second air diffuser 135a is provided near the inner wall of the tank body 110, and the second air diffuser 135b is provided near the partition 112. That is, the second air diffuser 135a and 135b are provided apart from the tubular member 120.
  • the second air diffuser 135c is arranged in the settling tank 13 in the vicinity of the partition 112. In such an arrangement, the upward flow generated by the air bubbles generated from the second air diffuser 135c forms a vortex in the vicinity of the back surface (the surface on the settling tank 13 side) of the carrier screen 114. Further, the upward flow generated by the air bubbles generates a water flow from the settling tank 13 to the carrier fluidized aeration tank 12 with respect to the carrier screen 114. Therefore, according to the present embodiment, the carrier 150 that has been brought close to and adhered to the surface of the carrier screen 114 (the surface on the carrier fluidized aeration tank 12 side) can be pushed back to the carrier fluidized aeration tank 12 side.
  • the second air diffuser 135c may diffuse air intermittently or continuously.
  • the sludge return device 14 includes air lift pumps 142a and 142b, a sludge return pipe 144, a sludge measuring tank 145, and a sludge supply pipe 146.
  • the air lift pump 142a is arranged inside the carrier fluidized aeration tank 12 and plays a role of sucking up sludge accumulated at the bottom of the carrier fluidized aeration tank 12.
  • the air lift pump 142b is arranged inside the settling tank 13 and plays a role of sucking up sludge accumulated at the bottom of the settling tank 13.
  • the carrier 150 adhering to the carrier screen 114 is detached from the carrier screen 114 by the action of the second air diffuser 135c provided in the settling tank 13.
  • the biofilm (activated sludge) desorbed from the surface of the carrier 150 settles on the bottom of the carrier fluidized aeration tank 12. That is, sludge desorbed from the carrier 150 tends to accumulate in the vicinity of the partition 112. Therefore, the air lift pump 142a provided in the carrier fluid aeration tank 12 is arranged in the vicinity of the partition 112.
  • the sludge return device 14 has a function of returning the sucked sludge to the adjusting tank 11 or the carrier fluidized aeration tank 12.
  • the sludge returning device 14 of the present embodiment shows an example of returning the sucked sludge to the upstream side of the carrier fluidized aeration tank 12.
  • the sludge sucked up by the air lift pumps 142a and 142b is supplied to the sludge measuring tank 145 via the sludge return pipe 144.
  • the sludge measuring tank 145 has a function of measuring the sludge sucked up from the downstream equipment (in the present embodiment, the carrier fluid aeration tank 12 and the settling tank 13).
  • the sludge return pipe 144 is connected to the sludge measuring tank 145 via the sludge concentration storage tank 15 shown in FIG. That is, in the present embodiment, the sludge transferred using the air lift pumps 142a and 142b is temporarily stored in the sludge concentration storage tank 15, and then an appropriate amount of sludge is added to the adjusting tank 11 or the carrier fluid aeration tank 12. It is configured to return. However, not limited to this example, the sludge return device 14 may directly return the sludge to the adjusting tank 11 or the carrier fluid aeration tank 12 without passing through the sludge concentration storage tank 15.
  • the carrier 150 that retains nitrifying bacteria and denitrifying bacteria inside is 20% or more and 35% or less (preferably 25% or more 30) with respect to the volume of the carrier fluid aeration tank 12. It is filled with a filling rate (volume occupancy) of% or less). Experimentally, it has been found that when the filling rate is less than 20%, the denitrification function is lowered, and when the filling rate is more than 35%, the fluidity of the carrier is deteriorated.
  • the carrier 150 preferably has a specific gravity of approximately 1 in consideration of fluidity in the tank.
  • the carrier 150 has a columnar, cylindrical or cylindrical shape having an external dimension of 10 mm or more and 300 mm or less (preferably 10 mm or more and 30 mm or less) and a cross-sectional diameter or diagonal length of 10 mm or more and 50 mm or less (preferably 10 mm or more and 30 mm or less). It is a prismatic porous carrier. If the external dimensions and the diameter of the cross section or the length of the diagonal line exceed these numerical ranges, the fluidity deteriorates, which is not preferable.
  • the carrier 150 for example, urethane resin or polyethylene resin can be used.
  • the carrier 150 has abrasion resistance, and when a urethane resin is used, it is preferable to use an ether-based open-cell polyurethane.
  • a prismatic urethane porous carrier is used.
  • the size and material of the carrier 150 are not limited to the above examples as long as they can retain nitrifying bacteria in the outer layer portion of the carrier 150 and denitrifying bacteria in the inner layer portion.
  • the carrier 150 is made of polyethylene or urethane having an air filtration resistance P of 10 mmH 2 O or more and 100 mm H 2 O or less under the conditions of a sample thickness of 30 mm and a wind speed of 2 m / sec. It is preferable to use a material cut out from a plate-shaped member.
  • the sewage 160 supplied from the raw water supply pipe 118 is stored inside the carrier fluid aeration tank 12 and the settling tank 13.
  • the carrier fluidized aeration tank 12 and the settling tank 13 communicate with each other via the carrier screen 114, the heights of the sewage surface 160a of the carrier fluidized aeration tank 12 and the settling tank 13 are the same.
  • a plurality of carriers 150 are dispersed and exist in the sewage 160.
  • these plurality of carriers 150 flow inside the carrier flow aeration tank 12 by the water flow formed by the bubbles generated from the first air diffuser 130 and the second air diffusers 135a and 135b. To do.
  • the region directly above the first air diffuser 130 and the second air diffuser 135a and 135b is referred to as an "air diffuser region".
  • the region directly above the first air diffuser 130 is referred to as a first air diffuser region 162
  • the regions directly above the second air diffuser 135a and 135b are referred to as second air diffuser regions 162a and 162b, respectively.
  • a sufficient amount of air is sent to the first air diffuser region 162 by the first air diffuser 130 for the activity of aerobic bacteria. Since the first air diffuser region 162 is a region formed by ejecting a large amount of oxygen having high dissolution efficiency, the amount of dissolved oxygen is very high as compared with other regions. In particular, inside the tubular member 120, a large amount of air bubbles are supplied into a narrow space, so that the oxygen concentration becomes extremely high. Therefore, the inner region of the tubular member 120 is maintained in an aerobic environment. In the present embodiment, a region under an aerobic environment, such as the region inside the tubular member 120, is referred to as an "aerobic region".
  • the second air-dissipating regions 162a and 162b of the present embodiment are air-dissipated, they are not as high in dissolved oxygen as the first air-dissipating region 162.
  • the second air diffuser 135a and 135b are air diffusers for the purpose of circulating sewage to the last, and may generate bubbles to the extent that an upward flow can be generated. Therefore, the second air diffuser 135a and 135b may have a smaller air supply amount than the first air diffuser 130.
  • the non-dissipating region 164 is a region in which the amount of dissolved oxygen is smaller than the region inside the tubular member 120, and is maintained in an anaerobic environment.
  • a region under an anaerobic environment such as a region around the tubular member 120, is referred to as an “anaerobic region”. In this embodiment, it is important to maintain the non-dissipating region 164 in an anaerobic environment.
  • the non-dissipating region 164 has a dissolved oxygen amount of 1/3 or less (preferably 1/5 or less, more preferably 1/10 or less) as compared with the first dissipating region 162.
  • the amount of dissolved oxygen in the first air-dissipating region 162 is preferably 0.8 mg / l or more, and the amount of dissolved oxygen in the non-dissipating region 164 is preferably 0.3 mg / l or less.
  • air is selectively diffused inside the tubular member 120 (that is, air is diffused inside the tubular member 120 and around the tubular member 120.
  • an aerobic region having an upward flow specifically, a first aeration region 162 inside the tubular member 120
  • the plurality of carriers 150 circulate so as to rise in the aerobic region and descend in the anaerobic region. That is, the carrier 150 of the present embodiment circulates so as to alternately pass through the aerobic region and the anaerobic region.
  • the carrier 150 When the carrier 150 is in the aerobic region, oxidative decomposition of organic substances (carbon compounds) by aerobic bacteria is actively carried out in the outer layer portion of the carrier 150 (the portion close to the outer surface of the carrier 150). That is, in the case of the carrier fluidized aeration tank 12 of the present embodiment, organic substances are efficiently decomposed inside the tubular member 120 in which the aerobic region is formed. Therefore, inside the tubular member 120, the biochemical oxygen demand (BOD) in the sewage 160 decreases.
  • BOD biochemical oxygen demand
  • ammonia is oxidized instead of organic matter in the outer layer of the carrier 150.
  • nitrification of ammonia nitrogen or organic nitrogen is performed by nitrifying bacteria, which are aerobic bacteria, in the outer layer portion of the carrier 150.
  • nitrification ammonia nitrogen or organic nitrogen is converted to nitrate nitrogen or nitrite nitrogen.
  • the nitrate nitrogen or nitrite nitrogen converted in the outer layer portion of the carrier 150 continues to proceed to the inner layer portion of the carrier 150.
  • the inner layer portion of the carrier 150 is an oxygen-deficient region, that is, an anaerobic region because oxygen is not sufficiently supplied.
  • denitrifying bacteria mainly act to reduce nitrate nitrogen or nitrite nitrogen and convert them into nitrogen gas (denitrification action).
  • the converted nitrogen gas is released into the atmosphere through the sewage 160.
  • a nitrifying action by nitrifying bacteria is performed in the outer layer portion, and a denitrifying action by denitrifying bacteria is performed in the inner layer portion.
  • a nitrifying action by nitrifying bacteria is performed in the outer layer portion, and a denitrifying action by denitrifying bacteria is performed in the inner layer portion.
  • the reason why the carrier 150 is alternately passed through the aerobic region and the anaerobic region will be described.
  • Patent Document 1 assumes that the decrease in the nitrogen removal rate is due to the decrease in the anaerobic region inside the carrier, and adopts an approach of increasing the size of the carrier to relatively expand the anaerobic region inside the carrier. There is.
  • the denitrifying bacteria are activated by intentionally applying stress to the denitrifying bacteria inside the carrier.
  • the present inventors considered that the above-mentioned decrease in the nitrogen removal rate was caused by the denitrifying bacteria becoming accustomed to the oxygen-deficient state.
  • the denitrifying bacterium actively reduces (denitrifies) nitrate nitrogen and the like in order to obtain oxygen necessary for decomposing organic matter or ammonia.
  • the denitrifying bacteria lose their aggressiveness of acquiring oxygen and become low in activity. That is, the present inventors considered that the active nitrification by nitrifying bacteria in the outer layer portion of the carrier 150 may be a factor leading to the hypoactivation of denitrifying bacteria.
  • the present inventors intentionally denitrify the bacteria by intermittently suppressing the progress of nitrification in the outer layer portion of the carrier 150 and creating a state in which nitrate nitrogen or the like is not supplied to the inner layer portion of the carrier 150. I decided to give stress to it. That is, the present inventors can maintain a state in which the denitrifying bacteria actively demand oxygen (that is, an activated state) by intermittently placing the denitrifying bacteria in a state of oxygen deficiency. Thought.
  • the carrier 150 is not always placed in an aerobic environment (aerobic region), but the carrier 150 is placed in an anaerobic environment (anaerobic region) for a certain period of time.
  • the action of denitrifying bacteria in the inner layer of the carrier 150 is activated. That is, the sewage treatment device 100 including the carrier fluidized aeration tank 12 of the present embodiment maintains a state in which the carrier 150 alternately passes through the aerobic region and the anaerobic region, thereby removing the sewage existing inside the carrier 150. It is possible to maintain the activity of nitrogenous bacteria and suppress the decrease of denitrification action over time.
  • FIGS. 3A, 3B and 4 are diagrams showing a specific configuration of the sewage treatment device 100 according to the embodiment of the present invention. More specifically, FIG. 3A is a plan view of the sewage treatment apparatus 100. FIG. 3B is a side view of the sewage treatment device 100. FIG. 4 is a cross-sectional view of the inside of the carrier fluid aeration tank 12 in the sewage treatment apparatus 100 as viewed along the longitudinal direction of the tank body 110.
  • the reference numerals used in FIGS. 3A, 3B and 4 refer to the same elements as those used in FIGS. 1 and 2.
  • tubular members 120a and 120b are arranged inside the tank body 110.
  • a first air diffuser 130a is arranged below the tubular member 120a
  • a first air diffuser 130b is arranged below the tubular member 120b.
  • the number of tubular members 120 is not limited to this example, and one tubular member 120 may be arranged inside the carrier fluid aeration tank 12, or three or more tubular members 120. 120 may be arranged.
  • three air lift pumps 142a to 142c are arranged inside the tank body 110.
  • the air lift pumps 142a and 142c are arranged inside the carrier flow aeration tank 12, and the air lift pump 142b is arranged inside the settling tank 13.
  • the second air diffuser 135a to 135c are arranged inside the tank body 110.
  • the second aeration devices 135a and 135b are both arranged inside the carrier fluid aeration tank 12 in the vicinity of the tank body 110 or the partition 112.
  • the tubular members 120a and 120b (and the first air diffuser 130a and 130b) are arranged on a straight line connecting the pair of second air diffusers 135a and 135b.
  • the second air diffuser 135c is arranged in the vicinity of the partition 112 inside the settling tank 13.
  • the upward flow formed by the second air diffuser 135c serves to separate the carrier 150 adhering to the surface of the carrier screen 114 (the surface on the carrier fluidized aeration tank 12 side) from the carrier screen 114. Also has.
  • the upper part of the carrier screen 114 is located above the sewage surface 160a of the sewage 160.
  • the carrier 150 is pushed back to the side of the carrier fluidized aeration tank 12 by the water flow when the sewage surface 160a pushed upward by the upward flow caused by the second air diffuser 135c returns downward. Therefore, when the upper portion of the carrier screen 114 is located above the sewage surface 160a, the water flow can act directly on the carrier screen 114, and the carrier 150 can be easily detached from the carrier screen 114. There is an effect.
  • the carrier screen 114 may be completely submerged in the sewage 160.
  • the above-mentioned tubular members 120a and 120b, the first air diffuser 130a and 130b, the second air diffuser 135a to 135c, and the air lift are arranged side by side on substantially the same straight line, and the carrier screen 114 is also arranged side by side on the same straight line.
  • the inside of both the tubular members 120a and 120b functions as an aerobic region, and the periphery thereof functions as an anaerobic region. Therefore, it is possible to efficiently improve the activity of the denitrifying bacteria existing inside the carrier 150 inside the carrier fluidized aeration tank 12. That is, it is possible to suppress a decrease in the denitrification function in the sewage treatment using the carrier flow, and it is possible to improve the treatment efficiency of the sewage treatment apparatus 100.
  • the carrier 150 is circulated so as to alternately pass through the aerobic region and the anaerobic region. It is possible.
  • the present embodiment is not limited to this configuration.
  • the carrier screen 114 can be used to classify the tank body 110 into a carrier fluid aeration tank 12 and a settling tank 13. .
  • clogging of the carrier screen 114 can be prevented by arranging the second air diffuser 135c in the settling tank 13 and forming a water flow from the settling tank 13 toward the carrier fluidized aeration tank 12. By providing the second air diffuser 135c in the vicinity of the carrier screen 114, clogging of the carrier screen 114 can be prevented more efficiently.
  • 2nd air diffuser 137 ... air supply pipe, 142a to 142c ... air lift pump, 144 ... sludge return pipe, 145 ... sludge measuring tank, 146 ... Sludge supply pipe, 150 ... Carrier, 160 ... Sewage, 160a ... Sewage surface, 162 ... 1st air diffuser area, 162a, 162b ... 2nd air diffuser area, 164 ... Non-sludge area

Abstract

曝気槽は、槽本体と、前記槽本体の内部に設けられ、硝化菌及び脱窒菌を内部に保持する担体と、前記槽本体の内壁から離隔して設けられ、上下方向に開口端を有する筒状部材と、前記筒状部材の直下に設けられた第1散気装置と、を含む。槽本体の内部には、上向流を有する好気性領域と下向流を有する嫌気性領域とが形成され、前記担体は、前記好気性領域と前記嫌気性領域とを交互に通過するように循環する。平面視において、前記第1散気装置の外縁は、前記筒状部材の内縁の内側に位置してもよい。

Description

曝気槽、汚水処理装置及び汚水処理方法
 本発明の一実施形態は、曝気槽、汚水処理装置及び汚水処理方法に関する。
 従来、屎尿、家庭用排水等の浄化処理に使用する汚水処理装置として、担体流動を用いた曝気槽を備えた汚水処理装置が知られている。このような曝気槽は、好気性細菌及び嫌気性細菌を付着させた多孔質担体を槽本体内に流動させることにより、汚水中の有機成分と窒素成分の同時除去を行うことができる。また、担体が槽本体内を流動するため、汚水、微生物及び酸素が効率よく接触し、高い汚水処理能力を実現することができるという特徴がある。
 担体流動を用いた曝気槽を備えた汚水処理装置として、特許文献1に記載された汚水処理装置が知られている。この汚水処理装置では、汚水中のアンモニア態窒素又は有機態窒素を、好気性環境下にある多孔質担体の外層部において硝化菌と接触させ、硝酸態窒素又は亜硝酸態窒素に変換する。さらに、それら硝酸態窒素又は亜硝酸態窒素を、嫌気性環境下にある多孔質担体の内層部において脱窒菌(窒素化合物を分子状窒素に変換する作用を示す菌)と接触させ、窒素ガスに変換する。つまり、特許文献1に記載された技術によれば、多孔質担体の外層部で有機成分の除去が行われ、多孔質担体の内層部で窒素成分の除去が行われるため、非常に小型の汚水処理装置を実現することができる。
特開平8-71579号公報
 特許文献1に記載されるように、多孔質担体の内層部で窒素成分の除去を行う場合、多孔質担体の嫌気性領域(窒素成分を除去する領域)が順次減少し、脱窒機能が低下するという問題があった。そこで、特許文献1に記載の汚水処理装置では、多孔質担体として、長さが300mm以上600mm以下、断面の直径又は対角線の長さが30mm以上50mm以下の円柱状もしくは角柱状の担体を用いることにより、嫌気性領域を拡大して問題の解決を図っていた。しかしながら、サイズの大きい多孔質担体を用いるということは、相対的に好気性領域(有機成分を除去する領域)の総面積が減少することになるため、処理効率の観点から改善の余地があった。
 本発明の一実施形態の課題の一つは、流動する担体を用いた汚水処理において脱窒機能の低下を抑制することにある。
 本発明の一実施形態における曝気槽は、槽本体と、前記槽本体の内部に設けられ、硝化菌及び脱窒菌を内部に保持する担体と、前記槽本体の内壁から離隔して設けられ、上下方向に開口端を有する筒状部材と、前記筒状部材の直下に設けられた第1散気装置と、を含むものである。
 平面視において、前記第1散気装置の外縁は、前記筒状部材の内縁の内側に位置していてもよい。
 前記曝気槽は、前記筒状部材から離隔して設けられた第2散気装置をさらに含んでいてもよい。その際、前記筒状部材は、一対の第2散気装置を結ぶ直線上に位置していてもよい。
 本発明の一実施形態における曝気槽は、槽本体の内部に、上向流を有する好気性領域と下向流を有する嫌気性領域とを有するとともに、硝化菌及び脱窒菌を内部に保持する担体が、前記好気性領域と前記嫌気領域とを交互に通過するように循環するものである。
 前記好気性領域は、上下方向に開口端を有する筒状部材の内部に形成され、前記嫌気性領域は、前記筒状部材の周囲に形成されてもよい。また、前記嫌気性領域の溶存酸素量は、前記好気性領域の溶存酸素量の1/10以下であってもよい。
 本発明の一実施形態における汚水処理装置は、上述の曝気槽と、前記曝気槽の下流に設けられた沈殿層と、を備えているものである。
 前記曝気槽と前記沈殿層とが前記槽本体の内壁に設けられた担体スクリーンを介して連通していてもよい。
 前記沈殿層の内部に散気装置が設けられていてもよい。
 前記汚水処理装置は、前記曝気槽及び前記沈殿層の汚泥を上流側に返送する汚泥返送装置をさらに含んでいてもよい。
 本発明の一実施形態における汚水処理方法は、槽本体の内部に、上向流を有する好気性領域と下向流を有する嫌気性領域とを形成し、硝化菌及び脱窒菌を内部に保持する担体を、前記好気性領域と前記嫌気性領域とを交互に通過するように循環させるものである。
 上下方向に開口端を有する筒状部材の内部に、下方から散気を行うことにより前記好気性領域を形成してもよい。
 前記筒状部材の内部に選択的に散気を行うことにより、前記筒状部材の内部に前記好気性領域を形成し、前記筒状部材の周囲に前記嫌気性領域を形成してもよい。
本発明の一実施形態の汚水処理システムの構成を示す図である。 本発明の一実施形態の汚水処理装置の構成を示す図である。 本発明の一実施形態の汚水処理装置の具体的な構成を示す図である。 本発明の一実施形態の汚水処理装置の具体的な構成を示す図である。
 以下、本発明の実施形態について、図面等を参照しつつ説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。本明細書と各図面において、既出の図面に関して説明したものと同様の機能を備えた要素には、同一の符号を付して、重複する説明を省略することがある。
[汚水処理システムの構成]
 図1は、本発明の一実施形態の汚水処理システム10の構成を示す図である。図1に示すように、本実施形態の汚水処理システム10は、調整槽11、担体流動曝気槽12、沈殿槽13、汚泥返送装置14、汚泥濃縮貯留槽15、消毒槽16、及び、放流槽17を含む。ただし、図1に示す例は一例に過ぎず、本実施形態の汚水処理システム10は、この例に限られるものではない。
 調整槽11は、原水を一旦貯留して混合することにより、水質変動を均等化する処理槽である。また、調整槽11は、下流側の担体流動曝気槽12に供給される汚水の流量を一定にする役割も有する。
 担体流動曝気槽12は、汚水中の有機物及び窒素の除去を行う処理槽である。有機物の除去(酸化分解)は、好気性環境下における好気性細菌の作用により行われる。好気性細菌の作用により、有機物は、主に水と炭酸ガスなどに分解される。酸化分解に必要な酸素は散気装置などを用いて供給される。窒素の除去(脱窒)は、嫌気性環境下における嫌気性細菌の作用により行われる。具体的には、まず、アンモニア態窒素又は有機態窒素が硝化菌により硝酸態窒素又亜硝酸態窒素に変換される。その後、硝酸態窒素又亜硝酸態窒素が脱窒菌により窒素ガスに還元される。本実施形態の担体流動曝気槽12の詳細な機能については、後述する。
 沈殿槽13は、担体流動曝気槽12から放流された汚泥と処理水とが混ざった汚泥水を静置し、汚泥と処理水の密度差を利用して、汚泥を沈降させて分離する処理槽である。
 汚泥返送装置14は、沈殿槽13で分離した汚泥を上流側の調整槽11に戻すための装置である。汚泥返送装置14は、例えばエアリフトポンプ及び返送管等で構成される。汚泥返送装置14は、汚泥の自動計量を行う機能を有する。この機能により、汚泥返送装置14は、担体流動曝気槽12内の汚泥の量が設定値となるように、調整槽11等に戻す汚泥の量を調整する機能を有する。なお、本実施形態の汚泥返送装置14は、沈殿槽13及び担体流動曝気槽12の両方から汚泥を返送することが可能である。また、汚泥返送装置14は、移送した汚泥を調整槽11だけでなく、担体流動曝気槽12に戻すことも可能である。
 汚泥濃縮貯留槽15は、汚泥返送装置14によって担体流動曝気槽12及び沈殿槽13から移送した汚泥を濃縮する機能と濃縮した汚泥を貯留する機能とを有する処理槽である。本実施形態では、汚泥を沈殿させた後に脱離液(上澄み液)を引き抜く沈殿濃縮法により汚泥濃度を高めている。本実施形態では、担体流動曝気槽12又は沈殿槽13から移送された汚泥は、汚泥濃縮貯留槽15に一旦貯留された後、調整槽11又は担体流動曝気槽12に返送される。
 消毒槽16は、沈殿槽13から放流された処理水を薬剤と接触させて消毒(殺菌)を行い、衛生的に安全な水にする機能を有する処理槽である。
 放流槽17は、消毒槽16によって消毒された処理水を貯留する槽である。放流槽17に貯留された処理水は、下水道等に放流される。
 次に、本実施形態の汚水処理システム10のうち、上述した担体流動曝気槽12、沈殿槽13及び汚泥返送装置14で構成される汚水処理装置100について、詳細に説明する。
[汚水処理装置の構成]
 図2は、本発明の一実施形態の汚水処理装置100の構成を示す図である。本実施形態では、担体流動曝気槽12と沈殿槽13とが一体化された例を示すが、それぞれが別の処理槽として構成されていてもよい。
 槽本体110は、担体流動曝気槽12と沈殿槽13の外枠となる部材である。槽本体110は、プラスチック、鉄骨、鉄筋又はコンクリート等を用いて構成することができるが、これらの材料に限られるものではない。本実施形態では、槽本体110の内側には、パーティション112が設けられている。すなわち、槽本体110は、パーティション112によって、第1処理槽(担体流動曝気槽12)と第2処理槽(沈殿槽13)とに区分される。なお、本明細書中において、担体流動曝気槽12における「槽本体」とは、担体流動曝気槽12として機能する領域を囲む槽本体110とパーティション112を含む。槽本体110とパーティション112とは一体物であってもよいし、別体であってもよい。また、ここでは、槽本体110をパーティション112によって2つの処理槽に区分する例を示したが、3つ以上の処理槽に区分してもよい。
 本実施形態では、槽本体110の内側に設けられたパーティション112に担体スクリーン114が設けられている。つまり、担体流動曝気槽12と沈殿槽13とは、担体スクリーン114を介して相互に連通する。本実施形態では、担体スクリーン114は、パーティション112に設けられた開口部112aに配置される。具体的には、担体スクリーン114は、開口部112aの上流側の開口端、すなわち担体流動曝気槽12の側の開口端(沈殿槽13の側と反対側の開口端)に配置される。
 担体スクリーン114は、板状の部材に所定サイズの複数の貫通穴が設けられた部材である。担体スクリーン114は、担体流動曝気槽12から沈殿槽13へ汚泥水を通過させつつ、担体流動曝気槽12から沈殿槽13への担体150の流出を防ぐ役割を有する。担体スクリーン114としては、例えば、網状部材、パンチングシート(金属又は樹脂等で構成されたシート状部材に、パンチングにより穴あけ加工を施した部材)等を用いることができる。
 槽本体110の上流側には、原水流入管116、原水計量槽117及び原水供給管118が設けられている。原水計量槽117は、原水流入管116を介して上流側設備(本実施形態では調整槽11)から放流された汚水(原水)を計量する機能を有する。本実施形態では、原水計量槽117を用いることにより、原水供給管118を介して適切な量の汚水を担体流動曝気槽12に供給することができる。
 槽本体110の内部には、槽本体110の内壁(及びパーティション112)から離隔して筒状部材120が設けられている。筒状部材120は、上下方向に開口端を有したパイプ状の部材であり、プラスチック材料等で構成される。図2に示すように、筒状部材120は、運転時には汚水160中に水没するように配置される。なお、筒状部材120の外形は、円筒状に限らず、角柱状等の多角形状であってもよい。また、筒状部材120の長さは、300mm以上3000mm以下(好ましくは、500mm以上2000mm以下)、断面の直径又は対角線の長さは、30mm以上250mm以下(好ましくは、50mm以上200mm以下)であればよい。
 また、槽本体110の内部には、第1散気装置130及び第2散気装置135a~135cが設けられている。第1散気装置130及び第2散気装置135a~135cは、図示しないブロワに接続された送気管137に接続されている。
 第1散気装置130は、気泡を発生する装置であり、筒状部材120の直下に設けられている。本実施形態では、第1散気装置130によって発生した気泡は、筒状部材120の内側を通過しながら汚水面160aに向かって上昇する。そのような構成とするため、第1散気装置130の径又は幅は、筒状部材120の径又は幅よりも小さくなっている。換言すれば、平面視において、第1散気装置130の外縁は、筒状部材120の内縁(内壁の輪郭)の内側に位置する。ただし、この例に限らず、第1散気装置130の径又は幅は、筒状部材120の径又は幅と同等であってもよい。
 第2散気装置135a~135cも気泡を発生する装置である。本実施形態では、第2散気装置135a及び135bは、担体流動曝気槽12内に設けられる。第2散気装置135cは、沈殿槽13内に設けられる。本実施形態では、第2散気装置135aは、槽本体110の内壁付近に設けられ、第2散気装置135bは、パーティション112付近に設けられる。つまり、第2散気装置135a及び135bは、筒状部材120から離隔して設けられる。
 第2散気装置135cは、沈殿槽13の内部において、パーティション112に近接して配置される。このような配置とした場合、第2散気装置135cから発生した気泡により生じた上向流は、担体スクリーン114の裏面(沈殿槽13側の面)の近傍に渦流を形成する。また、気泡により生じた上向流は、担体スクリーン114に対し、沈殿槽13から担体流動曝気槽12へと向かう水流を発生させる。そのため、本実施形態によれば、担体スクリーン114の表面(担体流動曝気槽12側の面)に寄せられて付着した担体150を担体流動曝気槽12側へと押し戻すことができる。第2散気装置135cは、間欠的に散気しても連続的に散気してもよい。
 汚泥返送装置14は、エアリフトポンプ142a及び142b、汚泥返送管144、汚泥計量槽145、並びに、汚泥供給管146を有する。エアリフトポンプ142aは、担体流動曝気槽12の内部に配置され、担体流動曝気槽12の底部に溜まった汚泥を吸い上げる役割を果たす。同様に、エアリフトポンプ142bは、沈殿槽13の内部に配置され、沈殿槽13の底部に溜まった汚泥を吸い上げる役割を果たす。
 上述のように、本実施形態では、沈殿槽13に設けた第2散気装置135cの作用により、担体スクリーン114に付着した担体150が、担体スクリーン114から脱離する。その際、担体150の表面から脱離した生物膜(活性汚泥)が担体流動曝気槽12の底部に沈降する。つまり、パーティション112の近傍には、担体150から脱離した汚泥が溜まりやすい。そのため、担体流動曝気槽12に設けられるエアリフトポンプ142aは、パーティション112の近傍に配置される。
 汚泥返送装置14は、吸い上げた汚泥を調整槽11又は担体流動曝気槽12に戻す機能を有する。本実施形態の汚泥返送装置14は、吸い上げた汚泥を担体流動曝気槽12の上流側に戻す例を示している。エアリフトポンプ142a及び142bによって吸い上げられた汚泥は、汚泥返送管144を介して汚泥計量槽145に供給される。汚泥計量槽145では、下流側設備(本実施形態では、担体流動曝気槽12及び沈殿槽13)から吸い上げられた汚泥を計量する機能を有する。本実施形態では、汚泥計量槽145を用いることにより、汚泥供給管146を介して適切な量の汚泥を担体流動曝気槽12に戻し、担体流動曝気槽12の内部の汚泥量を設定値となるように調整する。なお、図示は省略するが、汚泥返送管144は、図1に示した汚泥濃縮貯留槽15を経由して汚泥計量槽145に接続されている。すなわち、本実施形態では、エアリフトポンプ142a及び142bを用いた移送した汚泥を、一旦、汚泥濃縮貯留槽15に貯め、その後、調整槽11又は担体流動曝気槽12に対して適切な量の汚泥を戻す構成となっている。ただし、この例に限らず、汚泥返送装置14は、汚泥濃縮貯留槽15を経由せずに、直接的に調整槽11又は担体流動曝気槽12に汚泥を戻してもよい。
 以上の構成を有する槽本体110の内部には、硝化菌及び脱窒菌を内部に保持する担体150が、担体流動曝気槽12の体積に対して20%以上35%以下(好ましくは25%以上30%以下)の充填率(容積占有率)で充填される。なお、実験的には、充填率が20%を下回ると脱窒機能が低下し、充填率が35%を超えると担体の流動性が悪化することが分かっている。
 担体150は、槽内における流動性を考慮すると、比重がほぼ1であることが好ましい。また、担体150は、外形寸法が10mm以上300mm以下(好ましくは10mm以上30mm以下)、断面の直径又は対角線の長さが10mm以上50mm以下(好ましくは10mm以上30mm以下)の円柱状、円筒状又は角柱状の多孔質担体である。外形寸法及び断面の直径もしくは対角線の長さがこれらの数値範囲を超えると、流動性が悪化してしまうため、好ましくない。また、逆に、外形寸法及び断面の直径もしくは対角線の長さがこれらの数値範囲を下回ると、後述する担体150の内部の嫌気性領域が減少してしまうため、脱窒能力が低下して好ましくない。なお、担体150として3辺が等しい角柱状の担体を用いると、すべての面から同等の速度で汚水が進行するため、汚水処理の管理の点で有利である。
 担体150の材料としては、例えばウレタン樹脂又はポリエチレン樹脂を用いることができる。特に、担体150は、耐摩耗性を有することが望ましく、ウレタン樹脂を用いる場合は、エーテル系の連続気泡性のポリウレタンを用いることが好ましい。本実施形態では、角柱状のウレタン製多孔質担体を用いる。
 ただし、担体150のサイズ及び材料は、担体150の外層部に硝化菌を保持し、内層部に脱窒菌を保持し得るサイズ及び材料であれば、上述の例に限られるものではない。本発明者らの知見によれば、担体150として、試料厚さが30mm、風速2m/秒の条件下において、空気濾過抵抗Pが10mmH2O以上100mmH2O以下であるポリエチレン製又はウレタン製の板状部材から切り出した素材を用いることが好ましい。
[汚水処理方法の構成]
 以上の構成を有する汚水処理装置100について、その動作(すなわち、汚水処理方法)について説明する。
 図2に示すように、担体流動曝気槽12及び沈殿槽13の内部には、原水供給管118から供給された汚水160が溜められる。本実施形態の場合、担体流動曝気槽12と沈殿槽13とが担体スクリーン114を介して連通しているため、担体流動曝気槽12及び沈殿槽13の汚水面160aの高さは同じである。
 担体流動曝気槽12では、汚水160の中に複数の担体150が分散して存在する。これら複数の担体150は、汚水処理装置100の運転時において、第1散気装置130並びに第2散気装置135a及び135bから発生する気泡が形成する水流によって、担体流動曝気槽12の内部を流動する。
 このとき、第1散気装置130並びに第2散気装置135a及び135bの直上には、上昇する気泡によって上向流が発生する。これらの上向流によって汚水面160aに向かって押し上げられた汚水160は、第1散気装置130並びに第2散気装置135a及び135bの存在しない領域において、槽本体110の底部に向かって下降する。つまり、第1散気装置130と第2散気装置135aとの間、及び、第1散気装置130と第2散気装置135bとの間には、下向流が発生する。したがって、担体流動曝気槽12の内部には、図2に矢印で示すような汚水160の回流が生じ、この回流によって複数の担体150が槽内を流動(循環)する。
 ここで、第1散気装置130並びに第2散気装置135a及び135bの直上の領域を「散気領域」と呼ぶ。本実施形態では、第1散気装置130の直上の領域を第1散気領域162と呼び、第2散気装置135a及び135bの直上の領域をそれぞれ第2散気領域162a及び162bと呼ぶ。
 第1散気領域162には、第1散気装置130によって、好気性細菌が活動するのに十分な量の空気が送り込まれている。第1散気領域162は、溶解効率の高い大量の酸素を噴出することにより形成される領域であるため、溶存酸素量が他の領域と比較して非常に高い。特に、筒状部材120の内側では、狭い空間内に大量の気泡が供給されるため、酸素濃度が極めて高くなる。そのため、筒状部材120の内側の領域は、好気性環境下に維持される。本実施形態では、筒状部材120の内側の領域のように、好気性環境下にある領域を「好気性領域」と呼ぶ。
 なお、本実施形態の第2散気領域162a及び162bは、散気は行われているものの、第1散気領域162ほど溶存酸素量の高い領域ではない。第2散気装置135a及び135bは、あくまで汚水の循環を目的とした散気装置であり、上向流を発生し得る程度の気泡を発生することができればよい。そのため、第2散気装置135a及び135bは、第1散気装置130よりも空気供給量が少ないものであってもよい。
 また、第1散気領域162と第2散気領域162aとの間、及び、第1散気領域162と第2散気領域162bとの間の領域を「非散気領域」と呼ぶ。非散気領域164は、筒状部材120の内側の領域に比べて溶存酸素量が少ない領域であり、嫌気性環境下に維持される。本実施形態では、筒状部材120の周囲の領域のように、嫌気性環境下にある領域を「嫌気性領域」と呼ぶ。なお、本実施形態では、非散気領域164を嫌気性環境に維持することが重要である。例えば、非散気領域164は、第1散気領域162に比べて溶存酸素量が1/3以下(好ましくは1/5以下、さらに好ましくは1/10以下)であることが望ましい。例えば、第1散気領域162の溶存酸素量は、0.8mg/l以上であることが好ましく、非散気領域164の溶存酸素量は、0.3mg/l以下であることが好ましい。
 以上のように、本実施形態では、筒状部材120の内部に対して選択的に散気を行う(すなわち、筒状部材120の内部には散気を行い、筒状部材120の周囲には散気を行わない)ことにより、担体流動曝気槽12の内部に、上向流を有する好気性領域(具体的には、筒状部材120の内部の第1散気領域162)と、下向流を有する嫌気性領域(具体的には、非散気領域164)と、を形成する。また、図2の矢印で示すように、複数の担体150は、好気性領域を上昇して、嫌気性領域を下降するように循環する。すなわち、本実施形態の担体150は、好気性領域と嫌気性領域とを交互に通過するように循環する。
 担体150が好気性領域にあるとき、担体150の外層部(担体150の外表面に近い部分)では、好気性細菌による有機物(炭素化合物)の酸化分解が活発に行われる。すなわち、本実施形態の担体流動曝気槽12の場合、好気性領域が形成される筒状部材120の内側において有機物が効率よく分解される。そのため、筒状部材120の内側では、汚水160中の生物化学的酸素要求量(BOD)が低下する。
 汚水160中のBODが低下すると、担体150の外層部では、有機物の代わりにアンモニアが酸化されるようになる。具体的には、筒状部材120の内側では、担体150の外層部において、好気性細菌である硝化菌によるアンモニア態窒素又は有機態窒素の硝化が行われる。この硝化作用により、アンモニア態窒素又は有機態窒素は、硝酸態窒素又は亜硝酸態窒素に変換される。担体150の外層部で変換された硝酸態窒素又は亜硝酸態窒素は、引き続き担体150の内層部に進行する。
 担体150の内層部は、酸素が十分に供給されないため、酸素が欠乏した領域、すなわち嫌気性領域となっている。担体150の内層部に形成された嫌気性領域では、主に脱窒菌が働き、硝酸態窒素又は亜硝酸態窒素を還元して窒素ガスに変換する(脱窒作用)。変換された窒素ガスは、汚水160の中を通って大気中へと放出される。
 以上のような流れによって、担体150の内部では、外層部において硝化菌による硝化作用が行われ、内層部において脱窒菌による脱窒作用が行われる。このように本実施形態の担体流動曝気槽12では、有機物の酸化除去と窒素の除去とを同時に実現することができる。
 ここで、本実施形態の汚水処理装置100において、担体150を、好気性領域と嫌気性領域とを交互に通過させる理由について説明する。
 上述のとおり、担体150の内部では、外層部において硝化菌による硝化作用が行われ、内層部において脱窒菌による脱窒作用が行われる。しかしながら、前述の特許文献1にも記載されるとおり、連続的に曝気処理を行うと、次第に窒素除去率が低下するという問題があった。特許文献1では、窒素除去率の低下が担体内部の嫌気性領域の減少によるものと想定し、担体のサイズを大きくして相対的に担体内部の嫌気性領域を拡大するというアプローチを採用している。これに対し、本実施形態の担体流動曝気槽12では、特許文献1に記載されたアプローチとは異なり、担体内部の脱窒菌に対して意図的にストレスを与えることにより、脱窒菌を活性化して、脱窒作用を維持するというアプローチを採用している。
 本発明者らは、上述の窒素除去率の低下は、脱窒菌が、酸素の欠乏した状態に慣れてしまうことに起因すると考えた。脱窒菌は、運転開始時には、有機物又はアンモニアの分解に必要な酸素を得るために、積極的に硝酸態窒素等の還元(脱窒)を行う。しかしながら、脱窒菌が、硝酸態窒素等が常に供給される環境に慣れてしまうと、酸素を取得する積極性を失い、低活性になってしまうと考えられる。つまり、本発明者らは、担体150の外層部において硝化菌による硝化作用が活発に行われる事が、脱窒菌の低活性化を招く要因になっている可能性があると考えた。
 そこで、本発明者らは、担体150の外層部における硝化作用の進行を間欠的に抑制し、担体150の内層部に硝酸態窒素等が供給されない状態を作り出すことにより、意図的に脱窒菌に対してストレスを与えることにした。すなわち、本発明者らは、脱窒菌を間欠的に酸素が欠乏した状態に置くことにより、脱窒菌が積極的に酸素を要求する状態(つまり、活性化した状態)を維持することができると考えた。
 以上のように、本実施形態の担体流動曝気槽12は、担体150を常に好気性環境下(好気性領域)に置くのではなく、一定期間、担体150を嫌気性環境下(嫌気性領域)に置くことにより、担体150の内層部における脱窒菌の働きを活性化させる構成となっている。すなわち、本実施形態の担体流動曝気槽12を含む汚水処理装置100は、担体150が好気性領域と嫌気性領域とを交互に通過する状態を維持することにより、担体150の内部に存在する脱窒菌の活性を維持させ、脱窒作用の経時的な低下を抑制することができる。
[担体流動曝気槽の具体的構成]
 図3及び図4は、本発明の一実施形態の汚水処理装置100の具体的な構成を示す図である。より具体的には、図3(A)は、汚水処理装置100の平面図である。図3(B)は、汚水処理装置100の側面図である。図4は、汚水処理装置100における担体流動曝気槽12の内部を、槽本体110の長手方向に沿って見た断面図である。なお、図3(A)、図3(B)及び図4において使用する符号は、図1及び図2で用いた符号と同じ要素を指す。
 図3(A)及び図3(B)に示す例では、槽本体110の内部に2つの筒状部材、すなわち筒状部材120a及び120bが配置される。筒状部材120aの下方には、第1散気装置130aが配置され、筒状部材120bの下方には、第1散気装置130bが配置される。ただし、筒状部材120の個数は、この例に限られるものではなく、担体流動曝気槽12の内部には、1つの筒状部材120が配置されてもよいし、3つ以上の筒状部材120が配置されてもよい。
 また、槽本体110の内部には、3つのエアリフトポンプ142a~142cが配置される。3つのエアリフトポンプ142a~142cのうち、エアリフトポンプ142a及び142cは、担体流動曝気槽12の内部に配置され、エアリフトポンプ142bは、沈殿槽13の内部に配置される。
 また、槽本体110の内部には、第2散気装置135a~135cが配置される。第2散気装置135a及び135bは、いずれも担体流動曝気槽12の内部において、槽本体110又はパーティション112の近傍に配置される。なお、前述の筒状部材120a及び120b(並びに、第1散気装置130a及び130b)は、一対の第2散気装置135a及び135bを結ぶ直線上に配置されている。第2散気装置135cは、沈殿槽13の内部において、パーティション112の近傍に配置される。前述のように、第2散気装置135cによって形成された上向流は、担体スクリーン114の表面(担体流動曝気槽12側の面)に付着した担体150を、担体スクリーン114から脱離させる役割も有している。
 図3(B)及び図4に示すように、担体スクリーン114の上部は、汚水160の汚水面160aよりも上方に位置する。本実施形態では、第2散気装置135cに起因する上向流によって上方に押し上げられた汚水面160aが下方に戻る際の水流で、担体150を担体流動曝気槽12の側に押し戻す。そのため、担体スクリーン114の上部が汚水面160aよりも上方に位置していた方が、上記水流を担体スクリーン114に対して直接作用させることができ、担体150を担体スクリーン114から脱離させやすくなるという効果がある。ただし、この例に限らず、担体スクリーン114は、汚水160中に完全に水没していてもよい。
 また、図3(A)、図3(B)及び図4に示す例では、前述の筒状部材120a及び120b、第1散気装置130a及び130b、第2散気装置135a~135c、及びエアリフトポンプ142a~142cが略同一の直線上に並んで配置され、担体スクリーン114も同じ直線上に並んで配置されている。
 以上の構成を有する汚水処理装置100は、筒状部材120a及び120bの両方の内側が好気性領域として機能し、それらの周囲が嫌気性領域として機能する。そのため、担体流動曝気槽12の内部において、担体150の内部に存在する脱窒菌の活性を効率良く向上させることが可能である。すなわち、担体流動を用いた汚水処理において脱窒機能の低下を抑制することができ、汚水処理装置100の処理効率の改善を図ることができる。
(変形例1)
 本実施形態では、担体流動曝気槽12の内部に第2散気装置135a及び135bを設けて汚水160を回流させる例について説明したが、本実施形態は、この構成に限られるものではない。例えば、筒状部材120の内部には多量の空気が送り込まれるため、強い上向流が生じ、筒状部材120の下方側の開口端の周囲には負圧が生じる。つまり、筒状部材120の周囲(筒状部材120と槽本体110の内壁との間、又は、筒状部材120とパーティション112との間)には、図2の矢印で示すような回流(筒状部材120の上端から下端への向かう回流)が自然と形成される。
 したがって、図2に示す構成において、担体流動曝気槽12から第2散気装置135a及び135bを省略しても、担体150を、好気性領域と嫌気性領域とを交互に通過するように循環させることが可能である。
(変形例2)
 本実施形態では、パーティション112により、槽本体110を担体流動曝気槽12と沈殿槽13とに区分する例について説明したが、本実施形態は、この構成に限られるものではない。例えば、汚水処理装置100の規模が小さい場合(すなわち、槽本体110が小さい場合)は、担体スクリーン114を用いて、槽本体110を担体流動曝気槽12と沈殿槽13とに区分することもできる。この場合においても、沈殿槽13に第2散気装置135cを配置し、沈殿槽13から担体流動曝気槽12に向かう水流を形成することにより、担体スクリーン114の目詰まりを防ぐことができる。担体スクリーン114に近接して第2散気装置135cを設けることにより、さらに効率よく担体スクリーン114の目詰まりを防ぐことができる。
 本発明の実施形態及びその変形例は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。上述した実施形態の曝気槽、汚水処理装置及び汚水処理方法を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、又は、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
 また、上述した実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。
 10…汚水処理システム、11…調整槽、12…担体流動曝気槽、13…沈殿槽、14…汚泥返送装置、15…汚泥濃縮貯留槽、16…消毒槽、17…放流槽、100…汚水処理装置、110…槽本体、112…パーティション、112a…開口部、114…担体スクリーン、116…原水流入管、117…原水計量槽、118…原水供給管、120…筒状部材、120a、120b…筒状部材、130、130a、130b…第1散気装置、135a~135c…第2散気装置、137…送気管、142a~142c…エアリフトポンプ、144…汚泥返送管、145…汚泥計量槽、146…汚泥供給管、150…担体、160…汚水、160a…汚水面、162…第1散気領域、162a、162b…第2散気領域、164…非散気領域

Claims (13)

  1.  槽本体と、
     前記槽本体の内部に設けられ、硝化菌及び脱窒菌を内部に保持する担体と、
     前記槽本体の内壁から離隔して設けられ、上下方向に開口端を有する筒状部材と、
     前記筒状部材の直下に設けられた第1散気装置と、
     を含む、曝気槽。
  2.  平面視において、前記第1散気装置の外縁は、前記筒状部材の内縁の内側に位置する、請求項1に記載の曝気槽。
  3.  前記筒状部材から離隔して設けられた第2散気装置をさらに含む、請求項1に記載の曝気槽。
  4.  槽本体の内部に、上向流を有する好気性領域と下向流を有する嫌気性領域とを有するとともに、硝化菌及び脱窒菌を内部に保持する担体が、前記好気性領域と前記嫌気性領域とを交互に通過するように循環する、曝気槽。
  5.  前記好気性領域は、上下方向に開口端を有する筒状部材の内部に形成され、前記嫌気性領域は、前記筒状部材の周囲に形成される、請求項4に記載の曝気槽。
  6.  前記嫌気性領域の溶存酸素量は、前記好気性領域の溶存酸素量の1/3以下である、請求項4又は5に記載の曝気槽。
  7.  請求項1乃至6のいずれか一項に記載の曝気槽と、
     前記曝気槽の下流に設けられた沈殿層と、
     を備えた、汚水処理装置。
  8.  前記曝気槽と前記沈殿層とが前記槽本体の内壁に設けられた担体スクリーンを介して連通する、請求項7に記載の汚水処理装置。
  9.  前記沈殿層の内部に散気装置が設けられた、請求項7又は8に記載の汚水処理装置。
  10.  前記曝気槽及び前記沈殿層の汚泥を上流側に返送する汚泥返送装置をさらに含む、請求項7乃至9のいずれか一項に記載の汚水処理装置。
  11.  槽本体の内部に、上向流を有する好気性領域と下向流を有する嫌気性領域とを形成し、硝化菌及び脱窒菌を内部に保持する担体を、前記好気性領域と前記嫌気性領域とを交互に通過するように循環させる、汚水処理方法。
  12.  上下方向に開口端を有する筒状部材の内部に、下方から散気を行うことにより前記好気性領域を形成する、請求項11に記載の汚水処理方法。
  13.  前記筒状部材の内部に選択的に散気を行うことにより、前記筒状部材の内部に前記好気性領域を形成し、前記筒状部材の周囲に前記嫌気性領域を形成する、請求項12に記載の汚水処理方法。
PCT/JP2020/009255 2019-12-23 2020-03-04 曝気槽、汚水処理装置及び汚水処理方法 WO2021131090A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MX2022007294A MX2022007294A (es) 2019-12-23 2020-03-04 Tanque de aireacion, dispositivo y metodo de tratamiento de aguas residuales.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-231248 2019-12-23
JP2019231248A JP7351739B2 (ja) 2019-12-23 2019-12-23 曝気槽、汚水処理装置及び汚水処理方法

Publications (1)

Publication Number Publication Date
WO2021131090A1 true WO2021131090A1 (ja) 2021-07-01

Family

ID=76540549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009255 WO2021131090A1 (ja) 2019-12-23 2020-03-04 曝気槽、汚水処理装置及び汚水処理方法

Country Status (3)

Country Link
JP (1) JP7351739B2 (ja)
MX (1) MX2022007294A (ja)
WO (1) WO2021131090A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06226292A (ja) * 1993-02-04 1994-08-16 Nippon Steel Corp 生物学的汚水処理装置
JPH07136681A (ja) * 1993-11-19 1995-05-30 Yanmar Diesel Engine Co Ltd 回分式汚水処理装置
JPH1057984A (ja) * 1996-08-13 1998-03-03 Kurita Water Ind Ltd 生物処理装置
JPH11290882A (ja) * 1998-04-13 1999-10-26 Kubota Corp 窒素除去装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06226292A (ja) * 1993-02-04 1994-08-16 Nippon Steel Corp 生物学的汚水処理装置
JPH07136681A (ja) * 1993-11-19 1995-05-30 Yanmar Diesel Engine Co Ltd 回分式汚水処理装置
JPH1057984A (ja) * 1996-08-13 1998-03-03 Kurita Water Ind Ltd 生物処理装置
JPH11290882A (ja) * 1998-04-13 1999-10-26 Kubota Corp 窒素除去装置

Also Published As

Publication number Publication date
JP7351739B2 (ja) 2023-09-27
MX2022007294A (es) 2022-07-27
TW202132227A (zh) 2021-09-01
JP2021098167A (ja) 2021-07-01

Similar Documents

Publication Publication Date Title
JP2005279447A (ja) 水処理方法および装置
CN112209573B (zh) 一种养殖尾水处理系统
US20070017867A1 (en) Submerged attached growth bioreactor
KR101087024B1 (ko) 담체부재와 분리막을 구비하는 고도하수처리시설
WO2003043941A1 (fr) Appareil et procede de traitement des eaux usees organiques
KR100937482B1 (ko) 중공복합담체를 이용한 하수고도 처리장치 및 방법
WO2021131090A1 (ja) 曝気槽、汚水処理装置及び汚水処理方法
WO2021074307A1 (en) Wastewater treatment system
WO2021131088A1 (ja) 汚水処理装置
JP2006289153A (ja) 汚水浄化方法及び装置
JP2010234342A (ja) 浄化槽
JP3136902B2 (ja) 汚水の処理方法
JP7015117B2 (ja) 有機性排水処理方法及び有機性排水処理システム
JP3963667B2 (ja) 汚水処理装置及びその運転方法
TWI838480B (zh) 曝氣槽、汙水處理裝置及汙水處理方法
Sekoulov et al. Application of biofiltration in the crude oil processing industry
JP2020075224A (ja) 汚水処理装置及び汚水処理方法
JP2007289891A (ja) 排水処理装置及び排水処理方法
KR101898183B1 (ko) 복합담체와 분사수류장치를 구비한 하·폐수처리장치 및 이를 이용한 인·질소 제거 방법
KR200171727Y1 (ko) 축산분뇨 처리장치
JP2004314062A (ja) 有機物含有排水の処理装置及び処理方法
JP2006218347A (ja) 移流バッフル及び汚水浄化槽
JP2839065B2 (ja) 浄化槽
JPH07313991A (ja) 汚水の処理方法
JP2005046736A (ja) 排水処理装置および排水処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907150

Country of ref document: EP

Kind code of ref document: A1