WO2021130646A1 - 電極スラリーの作製方法、電極の作製方法、正極の作製方法、二次電池用電極、二次電池用正極 - Google Patents

電極スラリーの作製方法、電極の作製方法、正極の作製方法、二次電池用電極、二次電池用正極 Download PDF

Info

Publication number
WO2021130646A1
WO2021130646A1 PCT/IB2020/062267 IB2020062267W WO2021130646A1 WO 2021130646 A1 WO2021130646 A1 WO 2021130646A1 IB 2020062267 W IB2020062267 W IB 2020062267W WO 2021130646 A1 WO2021130646 A1 WO 2021130646A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode
secondary battery
graphene
Prior art date
Application number
PCT/IB2020/062267
Other languages
English (en)
French (fr)
Inventor
落合輝明
米田祐美子
成田和平
栗城和貴
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to KR1020227019711A priority Critical patent/KR20220127230A/ko
Priority to CN202080089551.3A priority patent/CN114846647A/zh
Priority to US17/788,369 priority patent/US20230028284A1/en
Priority to JP2021566382A priority patent/JPWO2021130646A5/ja
Publication of WO2021130646A1 publication Critical patent/WO2021130646A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the uniform state of the present invention relates to an electrode for a secondary battery, a positive electrode for a secondary battery, a secondary battery, and a method for manufacturing the same.
  • the present invention relates to a product, process, machine, manufacture, or composition (composition of matter).
  • One aspect of the present invention relates to a semiconductor device, a display device, a light emitting device, a power storage device, a lighting device or an electronic device, or a method for manufacturing the same.
  • the power storage device refers to an element having a power storage function and a device in general.
  • a storage battery also referred to as a secondary battery
  • a lithium ion secondary battery such as a lithium ion secondary battery, a lithium ion capacitor, an all-solid-state battery, an electric double layer capacitor, and the like.
  • the electronic device refers to all devices having a power storage device, and an electro-optical device having a power storage device, an information terminal device having a power storage device, and the like are all electronic devices.
  • Lithium-ion secondary batteries which have particularly high output and high capacity, are mobile information terminals such as mobile phones, smartphones, or notebook computers, portable music players, digital cameras, medical devices, hybrid vehicles (HVs), and electric vehicles.
  • HVs hybrid vehicles
  • electric vehicles demand for next-generation clean energy vehicles such as (EV) or plug-in hybrid vehicles (PHV) is expanding rapidly with the development of the semiconductor industry, and it is becoming a modern computerized society as a source of rechargeable energy. It has become indispensable.
  • the lithium ion secondary battery has at least a positive electrode and a negative electrode having an active material capable of reversibly inserting and removing lithium ions, a separator located between the positive electrode and the negative electrode, and a non-aqueous electrolytic solution.
  • the positive electrode has a positive electrode active material and a positive electrode current collector, and is formed by applying a positive electrode slurry having a conductive auxiliary agent, a binder, and a positive electrode active material to the positive electrode current collector.
  • the negative electrode also has a negative electrode active material and a negative electrode current collector, and is formed by applying a negative electrode slurry having a conductive auxiliary agent, a binder, and a negative electrode active material to the negative electrode current collector.
  • the conductive auxiliary agent is added in order to efficiently obtain a conductive path from the active material to the current collector.
  • the positive electrode or the negative electrode contains a large amount of the conductive auxiliary agent, the amount of active material per electrode weight decreases, so that the battery capacity decreases. Therefore, there is a demand for a highly conductive conductive auxiliary agent that can efficiently secure a conductive path with a small amount.
  • Patent Document 1 the electron conductivity between the active materials or between the active material and the current collector is improved by mixing a conductive auxiliary agent such as acetylene black (AB) or graphite (graphite) particles.
  • a conductive auxiliary agent such as acetylene black (AB) or graphite (graphite) particles.
  • the average particle size of granular conductive aids such as acetylene black, which is generally used, is as large as several tens of nm to several hundreds of nm, surface contact with the active material is difficult and point contact is likely to occur. Therefore, the contact resistance between the active material and the conductive additive is high.
  • the amount of the conductive auxiliary agent is increased in order to increase the contact points between the active material and the conductive auxiliary agent, the ratio of the amount of the active material in the electrode decreases, and the charge / discharge capacity of the battery decreases.
  • Patent Document 2 discloses that a single layer or a laminate of graphene (which is referred to as two-dimensional carbon in the literature) is used as the conductive auxiliary agent instead of the particulate conductive auxiliary agent such as acetylene black. Has been done. Since the single layer or laminate of graphene has a two-dimensional spread, the adhesiveness between the active material and the conductive auxiliary agent and the conductive auxiliary agent is improved, and thus the conductivity of the electrode is improved.
  • the conductive auxiliary agent such as acetylene black
  • Non-Patent Document 1 discloses an example in which graphene oxide (GO: Graphene Oxide) is reduced with thiourea to produce graphene.
  • RGO Reduced Graphene Oxide
  • JP-A-2002-110162 Japanese Unexamined Patent Publication No. 2012-64571
  • graphene has a high specific surface area, so it is difficult to disperse it, and graphene may aggregate.
  • agglomerated graphene is used as a conductive auxiliary agent, it is difficult to make it sufficiently function as a conductive auxiliary agent.
  • RGO has many defective structures due to oxidation and reduction, there is concern about conductivity. Therefore, there is a demand for a method in which the active material and the conductive auxiliary agent are not separated even if the reduction treatment is performed.
  • one aspect of the present invention is to provide a new method for producing a positive electrode.
  • one aspect of the present invention makes it an object to provide a new power storage device.
  • Another object of the present invention is to provide a novel positive electrode slurry.
  • Another object of the present invention is to provide a new positive electrode.
  • a mixture having an active material, a conductive auxiliary agent having a graphene compound, a binder, and a dispersion medium is applied to a current collector, the mixture is dried, and the mixture is subjected to a drying treatment.
  • the heat treatment is performed at a temperature higher than the drying treatment, the graphene compound in the mixture is reduced by a chemical reaction using a reducing agent, and the mixture is heat-reduced at a temperature higher than the heat treatment.
  • a mixture having an active material, a conductive auxiliary agent having a graphene compound, a binder, and a dispersion medium is applied to a current collector, the mixture is dried, and the mixture is subjected to a drying treatment.
  • the heat treatment is performed at a temperature higher than the drying treatment and a longer time than the drying treatment, the graphene compound in the mixture is reduced by a chemical reaction using a reducing agent, and the heat treatment is applied to the mixture.
  • the thermal reduction treatment is performed at a higher temperature.
  • the temperature of the drying treatment is R.I. T. It is 90 ° C. or lower.
  • the temperature of the heat treatment is 120 ° C. or higher and 140 ° C. or lower.
  • the temperature of the heat reduction treatment is 120 ° C. or higher and 180 ° C. or lower.
  • the temperature of the heat treatment is 120 ° C. or higher and 140 ° C. or lower
  • the temperature of the thermal reduction treatment is 120 ° C. or higher and 180 ° C. or lower.
  • the graphene compound is RGO.
  • a novel method for producing a positive electrode can be provided.
  • a novel power storage device can be provided.
  • a novel positive electrode slurry can be provided.
  • a novel positive electrode can be provided.
  • FIG. 1 is a diagram illustrating an example of a method for manufacturing an electrode.
  • FIG. 2 is a diagram illustrating an example of a method for manufacturing an electrode.
  • FIG. 3A is a perspective view of the secondary battery
  • FIG. 3B is a cross-sectional perspective view thereof
  • FIG. 3C is a schematic cross-sectional view during charging.
  • 4A is a perspective view of a secondary battery
  • FIG. 4B is a sectional perspective view thereof
  • FIG. 4C is a perspective view of a battery pack including a plurality of secondary batteries
  • FIG. 4D is a top view thereof.
  • 5A and 5B are diagrams illustrating an example of a secondary battery.
  • 6A and 6B are diagrams illustrating a laminated secondary battery.
  • 7A and 7B are diagrams illustrating an example of a secondary battery.
  • 8A, 8B, 8C, 8D, and 8E are perspective views showing electronic devices.
  • FIG. 9 is a charge / discharge curve of the
  • Graphene can be said to be a material that has conductivity and has a structure in which a hexagon consisting of six carbon atoms is formed in the form of a two-dimensional sheet. Other such materials include carbon nanotubes and the like. Further, the number of layers of graphene is not particularly limited in the present specification, and it may be single-layer graphene, multi-layer graphene, thin-layer graphene, or minor-layer graphene.
  • Examples of the method for producing graphene include a method of reducing graphene oxide to obtain RGO and a method of physically exfoliating graphite as described above.
  • reducing graphene oxide it is difficult to desorb all the oxygen contained in graphene oxide, and some oxygen remains on the RGO.
  • graphene is prepared by a method of physically exfoliating it, the obtained graphene contains only a small amount of oxygen.
  • the oxygen content of graphene produced by the method of physically exfoliating graphite is preferably 0 atomic% or more and 4 atomic% or less or greater than 0 atomic% and 4 atomic% or less, more preferably 0 atomic% or more and 2 atomic% or less or greater than 0 atomic% and 2 atomic. % Or less.
  • graphene includes single-layer graphene or multi-layer graphene having two or more layers and 100 or less layers.
  • Single-layer graphene refers to a sheet of carbon molecules in a monoatomic layer having a ⁇ bond.
  • the graphene oxide refers to a compound obtained by oxidizing the graphene, and is a plurality of graphenes in which the distance between the plurality of monolayer graphenes is greater than 0.34 nm and less than 1.5 nm. ..
  • graphene oxide has polar functional groups such as epoxy groups, carbonyl groups, carboxyl groups, and hydroxyl groups, the interactions that occur between single-layer graphenes. However, it decreases. Therefore, the distance between multiple single-layer graphenes in graphene oxide is greater than the distance between multiple single-layer graphenes in multi-layer graphene.
  • an electrode mixture composition is prepared.
  • the electrode mixture composition has an active material (hereinafter, the particulate active material is also referred to as an active material particle) and a conductive auxiliary agent.
  • the electrode mixture composition may contain a dispersion medium (also referred to as a solvent) and a binder, and may be in the form of a slurry or a paste.
  • graphene compound graphene compound
  • graphene oxide graphene oxide
  • RGO Reduced Graphene Oxide
  • Graphene is a carbon material having a crystal structure in which hexagonal skeletons formed by carbon are arranged in a plane, and has amazing characteristics in electrical, mechanical or chemical properties.
  • the graphene compound has excellent electrical properties such as high conductivity and excellent physical properties such as high flexibility and high mechanical strength.
  • Graphene compounds are preferable because they allow surface contact with low contact resistance and may reduce electrical resistance.
  • the graphene compound has a planar shape, and even if it is thin, it may have very high conductivity, and a conductive path can be efficiently formed in the active material layer with a small amount. Therefore, it is preferable to use the graphene compound as the conductive auxiliary agent because the contact area between the active material and the conductive auxiliary agent can be increased.
  • Graphene oxide is particularly preferable because it has extremely high dispersibility in a solvent.
  • graphene oxide is reduced to form graphene (RGO)
  • all oxygen contained in graphene oxide may not be desorbed, and some oxygen may remain in graphene by ether bond or ester bond. It may have a linked alkyl group.
  • all the alcohol intercalated with graphene oxide may remain in graphene without being desorbed.
  • a binder may be added to the mixture of graphene oxide and the active material.
  • the active material and graphene oxide can be bound so as to maintain a state in which graphene oxide is evenly mixed in the active material.
  • the electrode using graphene oxide is reduced.
  • reduction by heating hereinafter referred to as thermal reduction
  • electrochemical reduction hereinafter referred to as electrochemical reduction
  • chemical reduction Reduction by chemical reaction using a reducing agent
  • at least one of chemical reduction and thermal reduction can be applied to the reduction treatment, it is more preferable to perform both chemical reduction and thermal reduction.
  • the functional groups that are easily reduced differ between chemical reduction and thermal reduction.
  • thermal reduction has a large effect of reducing the hydroxy group (-OH) in graphene oxide by dehydration. Therefore, it can be reduced more efficiently by performing both chemical reduction and thermal reduction, and the conductivity of the reduced graphene oxide can be enhanced.
  • an active material layer containing graphene By desorbing oxygen contained in graphene oxide by reduction treatment, an active material layer containing graphene can be formed. It should be noted that all the oxygen contained in graphene oxide is not desorbed, and some oxygen may remain in graphene.
  • the binding force between the active material and graphene oxide in the electrode mixture composition may decrease.
  • the binding force between the active material and graphene oxide is weakened, and the active material and graphene oxide are peeled off from the current collector in the subsequent process. There is a high probability that the electrodes will collapse.
  • the electrode mixture composition before performing the chemical reduction treatment, the electrode mixture composition is heat-treated.
  • the binding force between the active material and graphene oxide in the electrode mixture composition can be strengthened.
  • the above heat treatment is preferably performed under the condition that at least a part of the binder is crystallized.
  • the crystallization of the binder makes it difficult for the binder to dissolve in the solvent used for the chemical reduction treatment, so that it is possible to suppress a decrease in the binding force between the active material and graphene oxide. Therefore, the heat treatment is preferably performed at a temperature equal to or higher than the temperature at which the binder crystallizes and a temperature below which the binder melts.
  • the heat treatment may be lower than the set temperature in the heat reduction treatment and shorter than the time in the heat reduction treatment.
  • an electrode mixture composition according to one aspect of the present invention and a method for producing an electrode will be described with reference to FIG.
  • a mixture having an active material and a conductive auxiliary agent may be referred to as an electrode mixture composition.
  • a dispersion medium, a mixture 101 having at least an active material, and a graphene compound as a conductive auxiliary agent are prepared (step S11 in FIG. 1). Mixing these (step S12 in FIG. 1) gives the mixture 102 (step S13 in FIG. 1).
  • the graphene compound any one or more of graphene, graphene oxide, and RGO may be used.
  • the mixing amount of the active material and the graphene compound is important. If the amount of the active material is large, the capacity of the positive electrode or the negative electrode produced is large, while the content of the graphene compound, which is a conductive auxiliary agent, is relatively small. If the amount of the conductive auxiliary agent is too small, the conductivity will be low and the battery characteristics will be deteriorated. Therefore, the mixing amount of the active material and the graphene compound is preferably the mixing amount that maximizes the amount of the active material while containing the graphene compound that can secure conductivity.
  • NMP N-methyl-2-pyrrolidone
  • DMF N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • a binder is prepared (step S21 in FIG. 1), and the mixture 102 and the binder are mixed (step S22 in FIG. 1) to obtain a mixture 103 (step S23 in FIG. 1).
  • the mixing amount of the binder may be appropriately set according to the amount of the graphene compound and the active material.
  • the active material and the graphene compound are bound while maintaining the dispersed state. Can be done. Further, depending on the ratio of the active material and the graphene compound, it is not necessary to add the binder, but when the binder is added, the strength of the electrode can be improved.
  • PVDF polyvinylidene fluoride
  • polyimide polytetrafluoroethylene
  • polyvinyl chloride ethylenepropylene diene polymer
  • styrene-butadiene rubber acrylonitrile-butadiene rubber
  • fluororubber polyvinyl acetate, polymethylmethacrylate, polyethylene , Nitrocellulose and the like
  • PVDF polyvinylidene fluoride
  • polyimide polytetrafluoroethylene
  • polyvinyl chloride ethylenepropylene diene polymer
  • styrene-butadiene rubber acrylonitrile-butadiene rubber
  • fluororubber polyvinyl acetate, polymethylmethacrylate, polyethylene , Nitrocellulose and the like
  • a dispersion medium is prepared (step S31 in FIG. 1), and the dispersion medium is added to and mixed with the mixture 103 until a predetermined viscosity is reached (step S32 in FIG. 1), and then kneaded (step S33 in FIG. 1). ).
  • the mixture 104 can be prepared (step S34 in FIG. 1).
  • the mixture 104 may be prepared by kneading the mixture 103 without adding a dispersion medium (without performing S31 and S32). Further, the above-mentioned polar solvent can be used as the dispersion medium in this step. Further, it is preferable to use the same dispersion medium as the dispersion medium prepared in step S11.
  • a current collector is prepared (step S41 in FIG. 1), and the mixture 104, which is the electrode mixture composition prepared in steps S11 to S34, is applied to one or both sides of the current collector with an applicator roll or the like. It is applied by the application method such as the roll coating method, the screen printing method, the doctor blade method, the spin coating method, the bar coating method, etc. used (step S42 in FIG. 1).
  • the electrode mixture composition applied on the current collector is dried by a method such as ventilation drying or vacuum drying (step S43 in FIG. 1).
  • heat treatment may be performed as the drying treatment.
  • the atmosphere of drying (heat treatment) is not particularly limited.
  • the drying treatment is preferably performed at a relatively low temperature of room temperature (RT: Room Temperature) or higher and 120 ° C. or lower, preferably room temperature or higher and 90 ° C. or lower.
  • RT Room Temperature
  • the upper limit value or the lower limit value described in a certain numerical range is replaced with the upper limit value or the lower limit value of another numerical range described stepwise. May be good.
  • binder migration may occur.
  • the binder in the dispersion medium moves in the dispersion medium (also referred to as migration)
  • the binder is biased in the dispersion medium, and there is a high possibility that the strength as an electrode will decrease.
  • the graphene compound and the active material in the dispersion medium move in the dispersion medium
  • the graphene compound and the active material in the dispersion medium may be unevenly distributed. That is, the rapid heat treatment may cause unevenness in the electrodes, and the active material and the graphene compound may be separated from each other.
  • heat treatment is performed at a temperature higher than that of the drying treatment (step S44 in FIG. 1).
  • the atmosphere of the heat treatment is not particularly limited. Preferably, it is performed under reduced pressure (vacuum).
  • the heat treatment is preferably performed under the condition that at least a part of the binder is crystallized. Therefore, the heat treatment is preferably performed at a temperature equal to or higher than the temperature at which the binder crystallizes and a temperature below which the binder melts.
  • the heat treatment is preferably performed at 120 ° C. or higher and 170 ° C. or lower, preferably 120 ° C. or higher and 160 ° C. or lower, and more preferably 120 ° C. or higher and 140 ° C. or lower.
  • the graphene compound and the active material in the electrode are not unevenly distributed.
  • the binding force between the active material and graphene oxide in the electrode mixture composition can be strengthened.
  • the heat treatment temperature is higher than the drying treatment (step S43) in the previous step and lower than the heat reduction treatment (step S45) in the subsequent step. Further, it is preferable that the heat treatment time is longer than the drying treatment in the previous step and shorter than the heat reduction treatment in the subsequent step.
  • the drying treatment and the heat treatment can be performed, for example, using hot air at 40 ° C. or higher and 170 ° C. or lower for 1 minute or more and 10 hours or less, preferably 1 minute or more and 1 hour or less.
  • hot air at 40 ° C. or higher and 170 ° C. or lower for 1 minute or more and 10 hours or less, preferably 1 minute or more and 1 hour or less.
  • step S45 in FIG. 1 the electrode mixture composition on the current collector that has been heat-treated is reduced.
  • the reduction method it is preferable to use chemical reduction. Further, in addition to chemical reduction, thermal reduction may be applied.
  • organic acids such as ascorbic acid, hydrogen, sulfur dioxide, sulfite, sodium sulfite, sodium hydrogen sulfite, ammonium sulfite, hydrazine, dimethylhydrazine, hydroquinone, phosphorous acid and the like can be used. it can.
  • the reducing agent When ascorbic acid is used as the reducing agent, first dissolve ascorbic acid in the solvent.
  • the solvent any one or a mixture of water, NMP, and ethanol can be used. Then, the current collector and the electrode mixture composition prepared in step S44 are immersed in the solution. This treatment can be performed, for example, for 30 minutes or more and 10 hours or less, preferably about 1 hour. Further, heating is preferable because the time for chemical reduction can be shortened. For example, it can be heated to room temperature or higher and 100 ° C. or lower, preferably about 60 ° C. or higher.
  • a thermal reduction treatment may be performed after the chemical reduction treatment.
  • the heat reduction treatment is preferably performed under reduced pressure.
  • a glass tube oven can be used for heating.
  • the glass tube oven can be heated under a reduced pressure of about 1 kPa.
  • the optimum heating temperature and heating time differ depending on the conductive auxiliary agent and binder material used as the material.
  • the temperature is such that graphene oxide is sufficiently reduced and PVDF does not adversely affect PVDF such as crystallization. Specifically, it is preferably 125 ° C. or higher and 200 ° C. or lower, preferably 125 ° C. or higher and 180 ° C. or lower.
  • the heating time is preferably 1 hour or more and 20 hours or less. If the heating time is less than 1 hour, graphene oxide may not be sufficiently reduced. If the heating time exceeds 20 hours, the productivity will decrease.
  • a positive electrode or a negative electrode having a graphene compound as a conductive auxiliary agent can be produced (step S46 in FIG. 1).
  • the electrode mixture composition may have a binder and a dispersion medium in addition to the active material and the conductive auxiliary agent.
  • the procedure for mixing the dispersion medium, the active material, the conductive auxiliary agent, and the binder is not particularly limited.
  • a graphene compound, particularly a graphene compound having a low oxygen content which is prepared by a method of physically (mechanically) peeling graphite as a conductive auxiliary agent as in one aspect of the present invention is used
  • the dispersion medium is active.
  • the graphene compound aggregates, and it is difficult to produce an electrode exhibiting good battery characteristics.
  • the mixture 101 may be adjusted by mixing the dispersion medium and the active material (steps S01 and S02). It is preferable to perform steps S01 and S02 because the mixture 101 having a suitable viscosity or concentration can be adjusted. Note that, in FIG. 2, the same operations as those in FIG. 1 are the same as those in FIG. 1, and detailed description thereof will be omitted.
  • the material that can be used for the above-mentioned active material may be any material that can insert and desorb carrier ions such as lithium ions, and a positive electrode active material or a negative electrode active material can be used.
  • ⁇ Positive electrode active material for example, compounds such as LiFeO 2 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , Cr 2 O 5 , and MnO 2 can be used.
  • a lithium-containing composite phosphate (general formula LiMPO 4 (M is one or more of Fe (II), Mn (II), Co (II), Ni (II)) can be used.
  • Typical examples of the general formula LiMPO 4 are LiFePO 4 , LiNiPO 4 , LiCoPO 4 , LiMnPO 4 , LiFe a Ni b PO 4 , LiFe a Co b PO 4 , LiFe a Mn b PO 4 , LiNi a Co b PO 4 .
  • LiNi a Mn b PO 4 (a + b is 1 or less, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1), LiFe c Ni d Co e PO 4 , LiFe c Ni d Mn e PO 4 , LiNi c Co d Mn e PO 4 (c + d + e ⁇ 1, 0 ⁇ c ⁇ 1,0 ⁇ d ⁇ 1,0 ⁇ e ⁇ 1), LiFe f Ni g Co h Mn i PO 4 (f + g + h + i is 1 or less, 0 ⁇ f ⁇ 1,0 ⁇ Examples thereof include g ⁇ 1, 0 ⁇ h ⁇ 1, 0 ⁇ i ⁇ 1).
  • LiFePO 4 is preferable because it satisfies the requirements for the positive electrode active material in a well-balanced manner, such as safety, stability, high capacity density, high potential, and the presence of lithium ions extracted during initial oxidation (charging).
  • lithium-containing composite metal oxide having a layered rock salt type crystal structure examples include lithium cobalt oxide (LiCoO 2 ), LiNiO 2 , LiMnO 2 , Li 2 MnO 3 , LiNi 0.8 Co 0.2 O 2, and the like.
  • NiCo-based general formula is LiNi x Co 1-x O 2 (0 ⁇ x ⁇ 1)
  • LiNi 0.5 Mn 0.5 O 2 and other NiMn-based general formula is LiNi x Mn 1-x O) 2 (0 ⁇ x ⁇ 1)
  • LiNi 1/3 Mn 1/3 Co 1/3 O 2 and other NiMnCo-based materials also referred to as NMC.
  • LiCoO 2 has a large capacity, is stable in the atmosphere as compared to LiNiO 2, because of the advantages such a thermally stable than LiNiO 2, preferred.
  • lithium-containing composite manganese oxide having a spinel-type crystal structure examples include LiMn 2 O 4 , Li 1 + x Mn 2-x O 4 (0 ⁇ x ⁇ 2), and LiMn 2-x Al x O 4 (0 ⁇ . There are x ⁇ 2), LiMn 1.5 Ni 0.5 O 4, and the like.
  • Li (2-j) MSiO 4 is one or more of Fe (II), Mn (II), Co (II), Ni (II), 0 ⁇ j ⁇ 2).
  • Silicates can be used.
  • Typical examples of the general formula Li (2-j) MSiO 4 are Li (2-j) FeSiO 4 , Li (2-j) NiSiO 4 , Li (2-j) CoSiO 4 , Li (2-j) MnSiO.
  • the pear-con type compound include Fe 2 (MnO 4 ) 3 , Fe 2 (SO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3, and the like.
  • the carrier ion is an alkali metal ion other than lithium ion or an alkaline earth metal ion
  • the positive electrode active material in the above-mentioned substance containing lithium, instead of lithium, an alkali metal (for example, sodium, potassium, etc.), Alkali earth metals (eg, calcium, strontium, barium beryllium, magnesium, etc.) may be used.
  • the positive electrode active material is a granular active material composed of secondary particles having an average particle size and a particle size distribution obtained by pulverizing, granulating and classifying a calcined product obtained by mixing a raw material compound in a predetermined ratio and firing it by an appropriate means. Substances can be used.
  • Niobium electrode active material for example, an alloy-based material, a carbon-based material, or the like can be used.
  • an element capable of performing a charge / discharge reaction by an alloying / dealloying reaction with lithium can be used.
  • a material containing at least one of silicon, tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium, indium and the like can be used.
  • Such elements have a larger capacity than carbon, and silicon in particular has a high theoretical capacity of 4200 mAh / g. Therefore, it is preferable to use silicon as the negative electrode active material. Moreover, you may use the compound which has these elements.
  • an element capable of performing a charge / discharge reaction by an alloying / dealloying reaction with lithium, a compound having the element, and the like may be referred to as an alloy-based material.
  • SiO refers to, for example, silicon monoxide.
  • SiO can also be expressed as SiO x.
  • x preferably has a value in the vicinity of 1.
  • x is preferably 0.2 or more and 1.5 or less, and preferably 0.3 or more and 1.2 or less.
  • carbon-based material graphite, easily graphitizable carbon (soft carbon), non-graphitizable carbon (hard carbon), carbon nanotubes, graphene, carbon black, or the like may be used.
  • Examples of graphite include artificial graphite and natural graphite.
  • Examples of artificial graphite include mesocarbon microbeads (MCMB), coke-based artificial graphite, and pitch-based artificial graphite.
  • MCMB mesocarbon microbeads
  • the artificial graphite spheroidal graphite having a spherical shape can be used.
  • MCMB may have a spherical shape, which is preferable.
  • MCMB is relatively easy to reduce its surface area and may be preferable.
  • Examples of natural graphite include scaly graphite and spheroidized natural graphite.
  • Graphite exhibits a potential as low as lithium metal when lithium ions are inserted into graphite (during the formation of a lithium-graphite intercalation compound) (0.05 V or more and 0.3 V or less vs. Li / Li +). As a result, the lithium ion secondary battery can exhibit a high operating voltage. Further, graphite is preferable because it has advantages such as relatively high capacity per unit volume, relatively small volume expansion, low cost, and high safety as compared with lithium metal.
  • titanium dioxide TiO 2
  • lithium titanium oxide Li 4 Ti 5 O 12
  • lithium-graphite interlayer compound Li x C 6
  • niobium pentoxide Nb 2 O 5
  • Oxides such as tungsten (WO 2 ) and molybdenum oxide (MoO 2 ) can be used.
  • Li 2.6 Co 0.4 N 3 shows a large charge / discharge capacity (900 mAh / g, 1890 mAh / cm 3 ) and is preferable.
  • lithium ions are contained in the negative electrode active material, so that it can be combined with materials such as V 2 O 5 and Cr 3 O 8 which do not contain lithium ions as the positive electrode active material, which is preferable. .. Even when a material containing lithium ions is used as the positive electrode active material, a double nitride of lithium and a transition metal can be used as the negative electrode active material by desorbing the lithium ions contained in the positive electrode active material in advance.
  • a material that causes a conversion reaction can also be used as the negative electrode active material.
  • a transition metal oxide that does not form an alloy with lithium such as cobalt oxide (CoO), nickel oxide (NiO), and iron oxide (FeO)
  • CoO cobalt oxide
  • NiO nickel oxide
  • FeO iron oxide
  • oxides such as Fe 2 O 3 , CuO, Cu 2 O, RuO 2 , Cr 2 O 3 , sulfides such as CoS 0.89 , NiS, and CuS, and Zn 3 N 2 , Cu 3 N, Ge 3 N 4 or the like nitride, NiP 2, FeP 2, CoP 3 etc. phosphide, also at the FeF 3, BiF 3 fluoride and the like.
  • the same material as the conductive auxiliary agent and binder that the positive electrode active material layer can have can be used.
  • a positive electrode current collector is used when producing a positive electrode
  • a negative electrode current collector is used when producing a negative electrode
  • the positive electrode current collector a material having high conductivity such as metals such as stainless steel, gold, platinum, aluminum and titanium, and alloys thereof can be used. Further, it is preferable that the material used for the positive electrode current collector does not elute at the potential of the positive electrode. Further, an aluminum alloy to which an element for improving heat resistance such as silicon, titanium, neodymium, scandium, and molybdenum is added can be used. Further, it may be formed of a metal element that reacts with silicon to form VDD.
  • metal elements that react with silicon to form silicide include zirconium, titanium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, nickel and the like.
  • a foil-like shape, a plate-like shape (sheet-like shape), a net-like shape, a punching metal-like shape, an expanded metal-like shape, or the like can be appropriately used. It is preferable to use a current collector having a thickness of 5 ⁇ m or more and 30 ⁇ m or less.
  • the same material as the positive electrode current collector can be used for the negative electrode current collector.
  • the negative electrode current collector preferably uses a material that does not alloy with carrier ions such as lithium.
  • FIG. 3A is an external view of a coin-type (single-layer flat type) secondary battery
  • FIG. 3B is a cross-sectional view thereof.
  • the positive electrode can 301 that also serves as the positive electrode terminal and the negative electrode can 302 that also serves as the negative electrode terminal are insulated and sealed with a gasket 303 that is made of polypropylene or the like.
  • the positive electrode 304 is formed by a positive electrode current collector 305 and a positive electrode active material layer 306 provided in contact with the positive electrode current collector 305.
  • the negative electrode 307 is formed by a negative electrode current collector 308 and a negative electrode active material layer 309 provided in contact with the negative electrode current collector 308.
  • the positive electrode 304 and the negative electrode 307 used in the coin-type secondary battery 300 may each have an active material layer formed on only one side.
  • the positive electrode can 301 and the negative electrode can 302 metals such as nickel, aluminum, and titanium that are corrosion resistant to the electrolytic solution, or alloys thereof or alloys of these and other metals (for example, stainless steel) may be used. it can. Further, in order to prevent corrosion by the electrolytic solution, it is preferable to coat with nickel, aluminum or the like.
  • the positive electrode can 301 is electrically connected to the positive electrode 304
  • the negative electrode can 302 is electrically connected to the negative electrode 307.
  • the electrolyte is impregnated with the negative electrode 307, the positive electrode 304, and the separator 310, and as shown in FIG. 3B, the positive electrode 304, the separator 310, the negative electrode 307, and the negative electrode can 302 are laminated in this order with the positive electrode can 301 facing down.
  • the positive electrode can 301 and the negative electrode can 302 are crimped via the gasket 303 to manufacture a coin-shaped secondary battery 300.
  • the secondary battery preferably has a separator.
  • the separator include fibers having cellulose such as paper, non-woven fabrics, glass fibers, ceramics, or synthetic fibers using nylon (polyamide), vinylon (polyvinyl alcohol-based fiber), polyester, acrylic, polyolefin, and polyurethane. It is possible to use the one formed by. It is preferable that the separator is processed into a bag shape and arranged so as to wrap either the positive electrode or the negative electrode.
  • the separator may have a multi-layer structure.
  • an organic material film such as polypropylene or polyethylene can be coated with a ceramic material, a fluorine material, a polyamide material, or a mixture thereof.
  • the ceramic material for example, aluminum oxide particles, silicon oxide particles and the like can be used.
  • the fluorine-based material for example, PVDF, polytetrafluoroethylene and the like can be used.
  • the polyamide-based material for example, nylon, aramid (meth-based aramid, para-based aramid) and the like can be used.
  • the oxidation resistance is improved by coating with a ceramic material, deterioration of the separator during high voltage charging / discharging can be suppressed, and the reliability of the secondary battery can be improved. Further, when a fluorine-based material is coated, the separator and the electrode are easily brought into close contact with each other, and the output characteristics can be improved. Coating a polyamide-based material, particularly aramid, improves heat resistance and thus can improve the safety of the secondary battery.
  • a mixed material of aluminum oxide and aramid may be coated on both sides of a polypropylene film.
  • the surface of the polypropylene film in contact with the positive electrode may be coated with a mixed material of aluminum oxide and aramid, and the surface in contact with the negative electrode may be coated with a fluorine-based material.
  • the safety of the secondary battery can be maintained even if the thickness of the entire separator is thin, so that the capacity per volume of the secondary battery can be increased.
  • the current flow during charging of the secondary battery will be described with reference to FIG. 3C.
  • a secondary battery using lithium is regarded as one closed circuit, the movement of lithium ions and the flow of current are in the same direction.
  • the anode (anode) and the cathode (cathode) are exchanged by charging and discharging, and the oxidation reaction and the reduction reaction are exchanged. Therefore, an electrode having a high reaction potential is called a positive electrode.
  • An electrode having a low reaction potential is called a negative electrode. Therefore, in the present specification, the positive electrode is the "positive electrode” or “positive electrode” regardless of whether the battery is being charged, discharged, a reverse pulse current is applied, or a charging current is applied.
  • the negative electrode is referred to as the "positive electrode” and the negative electrode is referred to as the "negative electrode” or the "-pole (negative electrode)".
  • anode (anode) and cathode (cathode) related to the oxidation reaction and the reduction reaction are used, the charging and discharging are reversed, which may cause confusion. Therefore, the terms anode (anode) and cathode (cathode) are not used herein. If the terms anode (anode) and cathode (cathode) are used, specify whether they are charging or discharging, and also indicate whether they correspond to the positive electrode (positive electrode) or the negative electrode (negative electrode). To do.
  • a charger is connected to the two terminals shown in FIG. 3C, and the secondary battery 300 is charged. As the charging of the secondary battery 300 progresses, the potential difference between the electrodes increases.
  • the cylindrical secondary battery 600 has a positive electrode cap (battery lid) 601 on the upper surface and a battery can (outer can) 602 on the side surface and the bottom surface.
  • the positive electrode cap and the battery can (outer can) 602 are insulated by a gasket (insulating packing) 610.
  • FIG. 4B is a diagram schematically showing a cross section of a cylindrical secondary battery.
  • a battery element in which a strip-shaped positive electrode 604 and a negative electrode 606 are wound with a separator 605 sandwiched between them is provided inside the hollow cylindrical battery can 602.
  • the battery element is wound around the center pin.
  • One end of the battery can 602 is closed and the other end is open.
  • a metal such as nickel, aluminum, or titanium having corrosion resistance to an electrolytic solution, or an alloy thereof or an alloy between these and another metal (for example, stainless steel or the like) can be used. .. Further, in order to prevent corrosion by the electrolytic solution, it is preferable to coat with nickel, aluminum or the like.
  • the battery element in which the positive electrode, the negative electrode, and the separator are wound is sandwiched between a pair of insulating plates 608 and 609 facing each other. Further, a non-aqueous electrolytic solution (not shown) is injected into the inside of the battery can 602 provided with the battery element.
  • the non-aqueous electrolyte solution the same one as that of a coin-type secondary battery can be used.
  • a positive electrode terminal (positive electrode current collecting lead) 603 is connected to the positive electrode 604, and a negative electrode terminal (negative electrode current collecting lead) 607 is connected to the negative electrode 606.
  • a metal material such as aluminum can be used for both the positive electrode terminal 603 and the negative electrode terminal 607.
  • the positive electrode terminal 603 is resistance welded to the safety valve mechanism 612, and the negative electrode terminal 607 is resistance welded to the bottom of the battery can 602.
  • the safety valve mechanism 612 is electrically connected to the positive electrode cap 601 via a PTC element (Positive Temperature Coefficient) 611.
  • the safety valve mechanism 612 disconnects the electrical connection between the positive electrode cap 601 and the positive electrode 604 when the increase in the internal pressure of the battery exceeds a predetermined threshold value.
  • the PTC element 611 is a heat-sensitive resistance element whose resistance increases when the temperature rises, and the amount of current is limited by the increase in resistance to prevent abnormal heat generation.
  • Barium titanate (BaTIO 3 ) -based semiconductor ceramics or the like can be used as the PTC element.
  • a plurality of secondary batteries 600 may be sandwiched between the conductive plate 613 and the conductive plate 614 to form the module 615.
  • the plurality of secondary batteries 600 may be connected in parallel, may be connected in series, or may be connected in parallel and then further connected in series.
  • FIG. 4D is a top view of the module 615.
  • the conductive plate 613 is shown by a dotted line for clarity.
  • the module 615 may have conductors 616 that electrically connect a plurality of secondary batteries 600.
  • the conductive plate 613 can be superposed on the conducting wire 616.
  • the temperature control device 617 may be provided between the plurality of secondary batteries 600. When the secondary battery 600 is overheated, it can be cooled by the temperature control device 617, and when the secondary battery 600 is too cold, it can be heated by the temperature control device 617. Therefore, the performance of the module 615 is less affected by the outside air temperature.
  • FIG. 5A shows the structure of the wound body 950.
  • the wound body 950 has a negative electrode 931, a positive electrode 932, and a separator 933.
  • the wound body 950 is a wound body in which the negative electrode 931 and the positive electrode 932 are overlapped and laminated with the separator 933 interposed therebetween, and the laminated sheet is wound.
  • a plurality of layers of the negative electrode 931, the positive electrode 932, and the separator 933 may be further laminated.
  • the secondary battery 913 shown in FIG. 5B has a winding body 950 provided with terminals 951 and 952 inside the housing 930.
  • the wound body 950 is impregnated with the electrolytic solution inside the housing 930.
  • the terminal 952 is in contact with the housing 930, and the terminal 951 is not in contact with the housing 930 by using an insulating material or the like.
  • the housing 930 is shown separately for convenience, but in reality, the winding body 950 is covered with the housing 930, and the terminals 951 and 952 extend outside the housing 930.
  • a metal material for example, aluminum
  • a resin material can be used as the housing 930.
  • FIG. 6A shows an example of an external view of the laminated secondary battery 500. Further, FIG. 6B shows another example of the external view of the laminated secondary battery 500.
  • 6A and 6B have a positive electrode 503, a negative electrode 506, a separator 507, an exterior body 509, a positive electrode lead electrode 510, and a negative electrode lead electrode 511.
  • the laminated type secondary battery 500 has a plurality of wound bodies or strips of positive electrodes 503, separators 507, and negative electrodes 506.
  • the wound body has a negative electrode 506, a positive electrode 503, and a separator 507. Similar to the wound body described with reference to FIG. 5A, the wound body is formed by laminating the negative electrode 506 and the positive electrode 503 on top of each other with the separator 507 interposed therebetween, and winding the laminated sheet.
  • a secondary battery may have a plurality of strip-shaped positive electrodes 503, separators 507, and negative electrodes 506 in a space formed by a film serving as an exterior body 509.
  • the method for manufacturing a secondary battery having a plurality of strip-shaped positive electrodes 503, separator 507, and negative electrode 506 is shown below.
  • the negative electrode 506, the separator 507, and the positive electrode 503 are laminated.
  • an example in which 5 sets of negative electrodes and 4 sets of positive electrodes are used is shown.
  • the tab regions of the positive electrode 503 are joined to each other, and the positive electrode lead electrode 510 is joined to the tab region of the positive electrode on the outermost surface.
  • bonding for example, ultrasonic welding or the like may be used.
  • the tab regions of the negative electrode 506 are bonded to each other, and the negative electrode lead electrode 511 is bonded to the tab region of the negative electrode on the outermost surface.
  • the negative electrode 506, the separator 507, and the positive electrode 503 are arranged on the exterior body 509.
  • a metal thin film having excellent flexibility such as aluminum, stainless steel, copper, and nickel is provided on a film made of a material such as polyethylene, polypropylene, polycarbonate, ionomer, or polyamide, and further on the metal thin film.
  • a three-layered laminated film provided with an insulating synthetic resin film such as a polyamide resin or a polyester resin can be used as the outer surface of the exterior body.
  • the exterior body 509 is bent and the laminate is sandwiched between them. After that, the outer peripheral portion of the exterior body 509 is joined. For example, thermocompression bonding may be used for joining. At the time of this joining, a region (hereinafter, referred to as an introduction port) that is not joined is provided in a part (or one side) of the exterior body 509 so that the electrolytic solution can be put in later.
  • an introduction port a region that is not joined is provided in a part (or one side) of the exterior body 509 so that the electrolytic solution can be put in later.
  • the electrolytic solution is introduced into the exterior body 509 from the introduction port provided in the exterior body 509.
  • the electrolytic solution is preferably introduced in a reduced pressure atmosphere or an inert atmosphere.
  • the inlet is joined.
  • the secondary battery 500 which is a laminated type secondary battery, can be manufactured.
  • the solid-state battery of one aspect of the present invention has a positive electrode 410, a solid electrolyte layer 420, and a negative electrode 430.
  • FIG. 7A shows the case where a solid electrolyte is used.
  • a solid electrolyte it is not necessary to install a separator or a spacer.
  • the entire battery can be solidified, there is no risk of liquid leakage and safety is dramatically improved.
  • the positive electrode 410 has a positive electrode current collector 413 and a positive electrode active material layer 414.
  • the positive electrode active material layer 414 has a positive electrode active material 411 and a solid electrolyte 421.
  • the positive electrode active material 411 the positive electrode active material described in the previous embodiment can be used.
  • the positive electrode active material layer 414 may have a conductive material and a binder.
  • a carbon material such as carbon black (acetylene black (AB) or the like), graphite (graphite) particles, carbon nanotubes (CNT), fullerene or the like can be used.
  • metal powders such as copper, nickel, aluminum, silver and gold, metal fibers, conductive ceramic materials and the like can be used.
  • a graphene compound may be used as the conductive material.
  • Graphene compounds may have excellent electrical properties such as high conductivity and excellent physical properties such as high flexibility and high mechanical strength.
  • the graphene compound has a planar shape. Graphene compounds enable surface contact with low contact resistance. Further, even if it is thin, the conductivity may be very high, and a conductive path can be efficiently formed in the active material layer with a small amount. Therefore, it is preferable to use the graphene compound as the conductive auxiliary agent because the contact area between the active material and the conductive auxiliary agent can be increased. It is also preferable because the electrical resistance may be reduced.
  • graphene compounds for example, graphene, multi-layer graphene, multi-graphene, graphene oxide, multi-layer graphene, multi-graphene, reduced graphene oxide, reduced multi-layer graphene oxide, reduced multi-graphene oxide, graphene quantum dots, etc. including.
  • the reduced graphene oxide is also referred to as Redox Graphene Oxide (hereinafter, RGO).
  • RGO refers to, for example, a compound obtained by reducing graphene oxide (GO: Graphene Oxide).
  • graphene oxide means one having carbon and oxygen, having a sheet-like shape, and having a functional group, particularly an epoxy group, a carboxy group or a hydroxy group.
  • graphene compound net a network-like graphene compound sheet
  • the graphene net can also function as a binder that binds the active materials to each other. Therefore, since the amount of the binder can be reduced or not used, the ratio of the active material to the electrode volume and the electrode weight can be improved. That is, the capacity of the secondary battery can be increased.
  • the solid electrolyte layer 420 has a solid electrolyte 421.
  • the solid electrolyte layer 420 is located between the positive electrode 410 and the negative electrode 430, and is a region having neither the positive electrode active material 411 nor the negative electrode active material 431.
  • the negative electrode 430 has a negative electrode current collector 433 and a negative electrode active material layer 434.
  • the negative electrode active material layer 434 has a negative electrode active material 431 and a solid electrolyte 421. Further, the negative electrode active material layer 434 may have a conductive material and a binder.
  • the negative electrode 430 does not have the solid electrolyte 421 as shown in FIG. 7B. It is preferable to use metallic lithium for the negative electrode 430 because the energy density of the secondary battery 400 can be improved.
  • the solid electrolyte 421, the positive electrode active material 411, and the negative electrode active material 431 are spherical as ideal particle shapes, but in reality, they have various shapes, and are schematically shown for convenience. Shown.
  • the material used for the solid electrolyte 421 of the solid electrolyte layer 420 and the solid electrolyte layer 420 for example, a sulfide-based solid electrolyte, an oxide-based solid electrolyte, a halide-based solid electrolyte, or the like can be used.
  • Sulfide-based solid electrolytes include thiosilicon- based (Li 10 GeP 2 S 12 , Li 3.25 Ge 0.25 P 0.75 S 4, etc.) and sulfide glass (70Li 2 S / 30P 2 S 5 , 30 Li). 2 S ⁇ 26B 2 S 3 ⁇ 44LiI, 63Li 2 S ⁇ 38SiS 2 ⁇ 1Li 3 PO 4, 57Li 2 S ⁇ 38SiS 2 ⁇ 5Li 4 SiO 4, 50Li 2 S ⁇ 50GeS 2 , etc.), sulfide crystallized glass (Li 7 P 3 S 11 , Li 3.25 P 0.95 S 4 etc.) are included. Sulfide-based solid electrolytes have advantages such as having a material having high conductivity, being able to be synthesized at a low temperature, and being relatively soft so that the conductive path can be easily maintained even after charging and discharging.
  • Oxide-based solid electrolytes include materials having a perovskite-type crystal structure (La 2 / 3-x Li 3x TIO 3, etc.) and materials having a NASICON-type crystal structure (Li 1-X Al X Ti 2-X (PO 4).
  • Oxide-based solid electrolytes have the advantage of being stable in the atmosphere.
  • the NASICON type crystal structure is a compound represented by M 2 (XO 4 ) 3 (M: transition metal, X: S, P, As, Mo, W, etc.), and is MO 6 It refers to having an octahedral and XO 4 tetrahedra are arranged three-dimensionally share vertices structure.
  • the halide-based solid electrolyte includes LiAlCl 4 , Li 3 InBr 6 , LiF, LiCl, LiBr, LiI and the like. Further, a composite material in which the pores of porous alumina or porous silica are filled with these halide-based solid electrolytes can also be used as the solid electrolyte.
  • the solid electrolyte may be mixed with the electrolytic solution.
  • the electrolytic solution used by mixing with the solid electrolyte it is possible to use a highly purified electrolytic solution containing a small amount of granular dust and elements other than the constituent elements of the electrolytic solution (hereinafter, also simply referred to as “impurities”). preferable.
  • the weight ratio of impurities to the electrolytic solution is preferably 1% or less, preferably 0.1% or less, and more preferably 0.01% or less.
  • vinylene carbonate, propane sultone (PS), tert-butylbenzene (TBB), fluoroethylene carbonate (FEC), lithium bis (oxalate) borate (LiBOB), and succinonitrile are used as electrolytes mixed with a solid electrolyte.
  • Additives such as dinitrile compounds such as adiponitrile may be added.
  • the concentration of the material to be added may be, for example, 0.1 wt% or more and 5 wt% or less with respect to the entire solvent.
  • a material to be used by mixing with a solid electrolyte a polymer gel electrolyte obtained by swelling a polymer with an electrolytic solution may be used.
  • the secondary battery can be made thinner and lighter.
  • silicone gel acrylic gel, acrylonitrile gel, polyethylene oxide gel, polypropylene oxide gel, fluoropolymer gel and the like can be used.
  • polymer for example, a polymer having a polyalkylene oxide structure such as polyethylene oxide (PEO), PVDF, polyacrylonitrile, etc., and a copolymer containing them can be used.
  • PEO polyethylene oxide
  • PVDF-HFP which is a copolymer of PVDF and hexafluoropropylene (HFP)
  • the polymer to be formed may have a porous shape.
  • FIGS. 8A to 8E show examples of mounting the secondary battery in the electronic device described in a part of the second embodiment.
  • Electronic devices to which a bendable next battery is applied include, for example, television devices (also called televisions or television receivers), monitors for computers, digital cameras, digital video cameras, digital photo frames, mobile phones (also called televisions or television receivers).
  • television devices also called televisions or television receivers
  • monitors for computers digital cameras, digital video cameras, digital photo frames
  • mobile phones also called televisions or television receivers.
  • a mobile phone or a mobile phone device a portable game machine
  • a mobile information terminal a mobile information terminal
  • sound reproduction device a large game machine such as a pachinko machine, and the like.
  • a secondary battery can be applied to a moving body, typically an automobile.
  • automobiles include next-generation clean energy vehicles such as hybrid electric vehicles (HEVs), electric vehicles (EVs), and plug-in hybrid vehicles (PHEVs), and secondary batteries are used as one of the power sources to be installed in the vehicles.
  • HEVs hybrid electric vehicles
  • EVs electric vehicles
  • PHEVs plug-in hybrid vehicles
  • Secondary batteries are used as one of the power sources to be installed in the vehicles.
  • Mobiles are not limited to automobiles.
  • moving objects include trains, monorails, ships, flying objects (helicopters, unmanned aerial vehicles (drones), airplanes, rockets), electric bicycles, electric motorcycles, and the like.
  • the secondary battery of the embodiment can be applied.
  • the secondary battery of the present embodiment may be applied to a ground-mounted charging device provided in a house or a charging station provided in a commercial facility.
  • FIG. 8A shows an example of a mobile phone.
  • the mobile phone 2100 includes an operation button 2103, an external connection port 2104, a speaker 2105, a microphone 2106, and the like, in addition to the display unit 2102 incorporated in the housing 2101.
  • the mobile phone 2100 has a secondary battery 2107.
  • the mobile phone 2100 can execute various applications such as mobile phones, e-mails, text viewing and creation, music playback, Internet communication, and computer games.
  • the operation button 2103 can have various functions such as power on / off operation, wireless communication on / off operation, manner mode execution / cancellation, and power saving mode execution / cancellation. ..
  • the function of the operation button 2103 can be freely set by the operating system incorporated in the mobile phone 2100.
  • the mobile phone 2100 can execute short-range wireless communication with communication standards. For example, by communicating with a headset capable of wireless communication, it is possible to make a hands-free call.
  • the mobile phone 2100 is provided with an external connection port 2104, and data can be directly exchanged with another information terminal via a connector. It can also be charged via the external connection port 2104. The charging operation may be performed by wireless power supply without going through the external connection port 2104.
  • the mobile phone 2100 has a sensor.
  • a human body sensor such as a fingerprint sensor, a pulse sensor, or a body temperature sensor, a touch sensor, a pressure sensor, an acceleration sensor, or the like is preferably mounted.
  • FIG. 8B is an unmanned aerial vehicle 2300 having a plurality of rotors 2302.
  • the unmanned aerial vehicle 2300 is sometimes called a drone.
  • the unmanned aerial vehicle 2300 has a secondary battery 2301, a camera 2303, and an antenna (not shown), which is one aspect of the present invention.
  • the unmanned aerial vehicle 2300 can be remotely controlled via an antenna. Since the secondary battery of one aspect of the present invention has high safety, it can be used safely for a long period of time, and is suitable as a secondary battery to be mounted on the unmanned aerial vehicle 2300.
  • a secondary battery 2602 having a plurality of secondary batteries 2601 can be used as a hybrid electric vehicle (HEV), an electric vehicle (EV), a plug-in hybrid vehicle (PHEV), or other electronic devices. It may be mounted on a device.
  • HEV hybrid electric vehicle
  • EV electric vehicle
  • PHEV plug-in hybrid vehicle
  • FIG. 8D shows an example of a vehicle equipped with a secondary battery 2602.
  • the vehicle 2603 is an electric vehicle that uses an electric motor as a power source for traveling.
  • it is a hybrid vehicle in which an electric motor and an engine can be appropriately selected and used as a power source for traveling.
  • the lithium-ion battery mounted on the automobile is mounted on the vehicle after undergoing a performance test, a reliability test, an abuse test, and the like.
  • a performance test it is confirmed whether the battery is damaged or the electrical contact is inadequate due to the random wave caused by the vibration of the vehicle while traveling or the vibration of the drive system.
  • the structure inside the battery moves downward, and the separator is sandwiched between the positive electrode current collector and the negative electrode plate and damaged, which may cause a short circuit during charging. Therefore, by using the secondary battery of one aspect of the present invention having high electrode strength, it is possible to provide a lithium ion battery that can withstand a reliability test.
  • the vehicle 2603 using an electric motor has a plurality of ECUs (Electronic Control Units), and the ECU controls the engine and the like.
  • the ECU includes a microcomputer.
  • the ECU is connected to a CAN (Control Area Area Network) provided in the electric vehicle.
  • CAN is one of the serial communication standards used as an in-vehicle LAN.
  • the secondary battery can not only drive an electric motor (not shown), but also supply electric power to light emitting devices such as headlights and room lights.
  • the secondary battery can supply electric power to display devices such as speedometers, tachometers, and navigation systems, and semiconductor devices included in the vehicle 2603.
  • the vehicle 2603 can be charged by receiving power supplied from an external charging facility by a plug-in method, a non-contact power supply method, or the like to the secondary battery of the secondary battery 2602.
  • FIG. 8E shows a state in which the vehicle 2603 is being charged from the ground-mounted charging device 2604 via a cable.
  • the charging method, connector specifications, etc. may be appropriately performed by a predetermined method such as CHAdeMO (registered trademark) or combo.
  • the plug-in technology can charge the secondary battery 2602 mounted on the vehicle 2603 by supplying electric power from the outside. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter.
  • the charging device 2604 may be provided in a house as shown in FIG. 8E, or may be a charging station provided in a commercial facility.
  • a power receiving device on the vehicle and supply power from a ground power transmission device in a non-contact manner to charge the vehicle.
  • this non-contact power supply system by incorporating a power transmission device on the road or the outer wall, it is possible to charge the battery not only while the vehicle is stopped but also while the vehicle is running.
  • the non-contact power feeding method may be used to transmit and receive electric power between vehicles.
  • a solar cell may be provided on the exterior portion of the vehicle to charge the secondary battery when the vehicle is stopped or running.
  • An electromagnetic induction method or a magnetic field resonance method can be used for such non-contact power supply.
  • the house shown in FIG. 8E has a power storage system 2612 having a secondary battery and a solar panel 2610, which is one aspect of the present invention.
  • the power storage system 2612 is electrically connected to the solar panel 2610 via wiring 2611 and the like. Further, the power storage system 2612 and the ground-mounted charging device 2604 may be electrically connected.
  • the electric power obtained by the solar panel 2610 can be charged to the power storage system 2612. Further, the electric power stored in the power storage system 2612 can be charged to the secondary battery 2602 of the vehicle 2603 via the charging device 2604.
  • the electric power stored in the electricity storage system 2612 can also supply electric power to other electronic devices in the house. Therefore, even when power cannot be supplied from the commercial power supply due to a power failure or the like, the electronic device can be used by using the power storage system 2612 according to one aspect of the present invention as an uninterruptible power supply.
  • This embodiment can be used in combination with other embodiments as appropriate.
  • a secondary battery (Sample 1A) having a positive electrode having reduced graphene oxide as a conductive material was prepared and its characteristics were evaluated.
  • CR2032 type (diameter 20 mm, height 3.2 mm) coin-type secondary battery was manufactured.
  • a commercially available LCO (C-10N manufactured by Nippon Chemical Industrial Co., Ltd.) was used as the positive electrode active material of the secondary battery.
  • Graphene oxide manufactured by Nishina Materials Co., Ltd., which used the Modified Hummers method in the oxidation process
  • PVDF (TA5130, Solvay) was used as the binder.
  • Positive electrode active material: Conductive material: Binder 95: 3: 2 (% by weight) was mixed to prepare a slurry. NMP was used as the solvent. The slurry was applied to a current collector. An aluminum foil was used for the current collector.
  • the heat treatment was performed in a ventilation drying oven at a set temperature of 50 ° C. for 1 hour, then the set temperature was raised to 80 ° C., and the heat treatment was performed at 80 ° C. for 30 minutes.
  • the heat treatment was carried out under vacuum at a set temperature of 130 ° C. for 10 hours.
  • L-ascorbic acid was used as the reducing agent for chemical reduction.
  • the electrode coated with the positive electrode active material layer was immersed in the ascorbic acid solution and reacted at 60 ° C. for 1 hour.
  • the pressure was applied at a linear pressure of 210 kN / m, and then the pressure was pressed again at a linear pressure of 1467 kN / m to obtain a positive electrode.
  • Lithium metal was used for the opposite electrode.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • VC vinylene carbonate
  • Polypropylene with a thickness of 25 ⁇ m was used for the separator.
  • the positive electrode can and the negative electrode can those made of stainless steel (SUS) were used.
  • sample 1A The charge / discharge curve of sample 1A is shown in FIG. Sample 1A was able to be fully charged and discharged. In addition, the strength of the positive electrode active material layer of Sample 1A was also good.
  • the secondary battery using graphene oxide as the conductive material was good in terms of the strength of the positive electrode active material layer, the discharge characteristics, and the like.
  • Body 309 negative electrode active material layer, 310 separator, 400 secondary battery, 410 positive electrode, 411 positive electrode active material, 413 positive electrode current collector, 414 positive electrode active material layer, 420 solid electrolyte layer, 421 solid electrolyte, 430 negative electrode, 431 negative electrode Active material, 433 negative electrode current collector, 434 negative electrode active material layer, 500 secondary battery, 503 positive electrode, 506 negative electrode, 507 separator, 508 electrolyte, 509 exterior body, 510 positive electrode lead electrode, 511 negative electrode lead electrode, 520 solid electrolyte Layer, 600 secondary battery, 601 positive electrode cap, 602 battery can, 603 positive electrode terminal, 604 positive electrode, 605 separator, 606 negative electrode, 607 negative electrode terminal, 608 insulating plate, 609 insulating plate, 611 PTC element, 612 safety valve mechanism, 613 conductivity Plate, 614 conductive plate, 615 module, 616 lead wire, 617 temperature control device, 904 positive electrode active material, 913 secondary battery, 930 housing,

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

新規な電極の作製方法を提供する。 活物質、グラフェン化合物を有する導電助剤、結着剤、および分散媒を有する混合物を集電体に塗布し、前記混合物に対し、乾燥処理を行い、前記混合物に対し、前記乾燥処理よりも高い温度で、熱処理を行い、前記混合物中の前記グラフェン化合物を、還元剤を用いた化学反応により還元し、前記混合物に対し、前記熱処理よりも高い温度で、熱還元処理を行う。

Description

電極スラリーの作製方法、電極の作製方法、正極の作製方法、二次電池用電極、二次電池用正極
 本発明の一様態は、二次電池用電極、二次電池用正極、二次電池、及びその製造方法に関する。または、本発明は、物、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関する。本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、照明装置または電子機器、またはそれらの製造方法に関する。
 なお、本明細書中において、蓄電装置とは、蓄電機能を有する素子及び装置全般を指すものである。例えば、リチウムイオン二次電池などの蓄電池(二次電池ともいう)、リチウムイオンキャパシタ、全固体電池及び電気二重層キャパシタなどを含む。
 また、本明細書中において電子機器とは、蓄電装置を有する装置全般を指し、蓄電装置を有する電気光学装置、蓄電装置を有する情報端末装置などは全て電子機器である。
 近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池等、全固体電池、種々の蓄電装置の開発が盛んに行われている。特に高出力、高容量であるリチウムイオン二次電池は、携帯電話、スマートフォン、もしくはノート型コンピュータ等の携帯情報端末、携帯音楽プレーヤ、デジタルカメラ、医療機器、又は、ハイブリッド車(HV)、電気自動車(EV)、もしくはプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車など、半導体産業の発展と併せて急速にその需要が拡大し、充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。
 リチウムイオン二次電池は少なくとも、リチウムイオンを可逆的に挿入及び脱離可能な活物質を有する正極及び負極、正極と負極の間に位置するセパレータ、さらに非水電解液を有している。
 正極は正極活物質と正極集電体を有し、導電助剤、結着材及び正極活物質を有する正極スラリーを正極集電体に塗布することで形成される。同様に負極も負極活物質と負極集電体を有し、導電助剤、結着材及び負極活物質を有する負極スラリーを負極集電体に塗布することで形成される。
 ここで導電助剤は活物質から集電体へ導電パスを効率よく得るために添加される。しかし、正極または負極において導電助剤の含有量が多いと電極重量当たりの活物質量が低下するため、電池容量が低下してしまう。そのため、少量で効率よく導電パスが確保できる高電導性の導電助剤が求められている。
 そこで、特許文献1では、アセチレンブラック(AB)やグラファイト(黒鉛)粒子などの導電助剤を混合することで活物質間又は活物質−集電体間の電子伝導性を向上させている。これにより電子伝導性の高い正極活物質の提供を可能としている。
 しかし、一般に用いられるアセチレンブラック等の粒状の導電助剤は平均粒径が数10nmから数100nmと大きいため、活物質との面接触が難しく点接触となりやすい。このため活物質と導電助剤との接触抵抗は高いものとなる。一方、活物質と導電助剤との接触点を増やすために導電助剤の量を増加すると、電極中の活物質量の比率が低下して、電池の充放電容量は低下する。
 これに対し特許文献2では、アセチレンブラック等の粒子状の導電助剤に代えて、グラフェンの単層又は積層(文献中ではこれを2次元カーボンとよんでいる)を導電助剤として用いることが開示されている。グラフェンの単層又は積層は2次元的な拡がりを有するため、活物質と導電助剤、および導電助剤どうしの接着性を向上させ、ひいては電極の導電性を向上させる。
 グラフェンは電気的、機械的または化学的に驚異的な特性を有することから、グラフェンを利用した電界効果トランジスタや太陽電池等様々な分野の応用が期待される炭素材料である。しかし、グラフェンは分散しにくいことが知られている。導電助剤としてグラフェンを活用するためには、グラフェンを分散させる必要がある。非特許文献1には酸化グラフェン(GO:Graphene Oxide)をチオウレアにより還元してグラフェンを作製する例が開示されている。なお、上述のように酸化グラフェンを還元することによって得られるグラフェンをRGO(Redused Graphene Oxide)と呼ぶ。
特開2002−110162号公報 特開2012−64571号公報
Liu Y,et al.Journal of Nanoscience and Nanotechnology Carbon,2011,11,10082
 上述のようにグラフェンは高い比表面積を有するため分散させることが困難であり、グラフェンが凝集してしまう場合がある。凝集したグラフェンを導電助剤として用いた場合、導電助剤として十分に機能させることが困難である。また、RGOは酸化や還元によって多くの欠陥構造を有するため、導電性が懸念される。従って、還元処理を行っても、活物質と導電助剤が剥離しない方法が求められている。
 上記に鑑み、本発明の一態様は、新規な正極の作製方法を提供することを課題とする。または、本発明の一態様は、新規な蓄電装置を提供することを課題とする。また、本発明の一態様は、新規な正極スラリーを提供することを課題とする。また、本発明の一態様は、新規な正極を提供することを課題とする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
 本発明の一態様は、活物質、グラフェン化合物を有する導電助剤、結着剤、および分散媒を有する混合物を集電体に塗布し、前記混合物に対し、乾燥処理を行い、前記混合物に対し、前記乾燥処理よりも高い温度で、熱処理を行い、前記混合物中の前記グラフェン化合物を、還元剤を用いた化学反応により還元し、前記混合物に対し、前記熱処理よりも高い温度で、熱還元処理を行う。
 本発明の一態様は、活物質、グラフェン化合物を有する導電助剤、結着剤、および分散媒を有する混合物を集電体に塗布し、前記混合物に対し、乾燥処理を行い、前記混合物に対し、前記乾燥処理よりも高い温度、かつ前記乾燥処理よりも長時間で、熱処理を行い、前記混合物中の前記グラフェン化合物を、還元剤を用いた化学反応により還元し、前記混合物に対し、前記熱処理よりも高い温度で、熱還元処理を行う。
 上記構成において、前記乾燥処理の温度は、R.T.以上90℃以下である。
 上記構成において、前記熱処理の温度は、120℃以上140℃以下である。
 上記構成において、前記熱還元処理の温度は、120℃以上180℃以下である。
 上記構成において、前記熱処理の温度は、120℃以上140℃以下であり、前記熱還元処理の温度は、120℃以上180℃以下である。
 上記構成において、前記グラフェン化合物は、RGOである。
 本発明の一態様によって、新規な正極の作製方法を提供することができる。また、本発明の一態様によって、新規な蓄電装置を提供することができる。また、本発明の一態様によって、新規な正極スラリーを提供することができる。また、本発明の一態様によって、新規な正極を提供することができる。
図1は電極の作製方法の一例を説明する図である。
図2は電極の作製方法の一例を説明する図である。
図3Aは二次電池の斜視図であり、図3Bはその断面斜視図であり、図3Cは充電時の断面模式図である。
図4Aは二次電池の斜視図であり、図4Bはその断面斜視図であり、図4Cは複数の二次電池を含む電池パックの斜視図であり、図4Dはその上面図である。
図5A、図5Bは二次電池の例を説明する図である。
図6A、図6Bはラミネート型の二次電池を説明する図である。
図7Aおよび図7Bは二次電池の例を説明する図である。
図8A、図8B、図8C、図8D、図8Eは、電子機器を示す斜視図である。
図9は実施例で作製したサンプルの充放電曲線である。
 以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 グラフェンは導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された構造を有する材料ということができる。このような材料は他にカーボンナノチューブ等があげられる。また、本明細書においてグラフェンの層数に特に限定はなく、単層グラフェンであっても、多層グラフェンであっても、薄層グラフェンであっても、少数層グラフェンであっても構わない。
 グラフェンを作製する方法は、上述のように酸化グラフェンを還元し、RGOを得る方法や、グラファイトを物理的に剥離する方法が挙げられる。酸化グラフェンを還元する場合、酸化グラフェンに含まれる全ての酸素を脱離させることは難しく、RGO上に一部酸素が残存する。一方、グラフェンを物理的に剥離する方法によって作製した場合、得られるグラフェンには酸素は微量にしか含まれない。グラファイトを物理的に剥離する方法によって作製されたグラフェンの酸素含有量は0atomic%以上4atomic%以下または0atomic%より大きく4atomic%以下が好ましく、より好ましくは0atomic%以上2atomic%以下または0atomic%より大きく2atomic%以下である。
 なお、本明細書等において、グラフェンは、単層のグラフェン、又は2層以上100層以下の多層グラフェンを含む。単層グラフェンとは、π結合を有する1原子層の炭素分子のシートのことをいう。また、酸化グラフェンとは、上記グラフェンが酸化された化合物のことをいい、複数の単層グラフェンの間の距離が、0.34nmより大であり、1.5nm以下である、複数のグラフェンである。多層グラフェンにおいて、単層グラフェン間には強い相互作用が生じるが、酸化グラフェンは、エポキシ基、カルボニル基、カルボキシル基、ヒドロキシル基等の極性官能基を有するため、単層グラフェンの間に生じる相互作用が、減少する。従って、酸化グラフェンにおける複数の単層グラフェンの間の距離は、多層グラフェンにおける、複数の単層グラフェンの間の距離よりも大きい。
(実施の形態1)
 本実施の形態では、導電助剤としてグラフェン、およびグラフェン化合物を用いた電極について説明する。
 電極を得るためには、まず、電極合剤組成物を作製する。電極合剤組成物は活物質(以下、粒子状の活物質を活物質粒子ともいう。)、および導電助剤を有する。なお、電極合剤組成物は、分散媒(溶媒ともいう。)、および結着剤を含んでいても良く、スラリー状であっても、ペースト状であってもよい。
 なお、導電助剤として用いることができるグラフェンを基本骨格として有する化合物を「グラフェン化合物(グラフェンコンパウンド:Graphene Compound)」と呼ぶ。グラフェン、酸化グラフェンおよびRGO(Reduced Graphene Oxide)は、それぞれ、グラフェン化合物の一種である。
 グラフェンは、炭素が形成する六角形の骨格を平面状に並べた結晶構造をもつ炭素材料であり、電気的、機械的又は化学的な性質に驚異的な特徴を有する。
 また、グラフェン化合物は、高い導電性を有するという優れた電気特性と、高い柔軟性および高い機械的強度を有するという優れた物理特性とを有する。グラフェン化合物は、接触抵抗の低い面接触を可能とし、電気的な抵抗を減少できる場合があるため好ましい。また、グラフェン化合物は平面的な形状を有し、薄くても導電性が非常に高い場合があり、少ない量で効率よく活物質層内で導電パスを形成することができる。そのため、グラフェン化合物を導電助剤として用いることにより、活物質と導電助剤との接触面積を増大させることができるため好ましい。
 特に、酸化グラフェンは、溶媒中での分散性が極めて高いため、好ましい。なお、酸化グラフェンを還元し、グラフェン(RGO)を形成する場合、酸化グラフェンに含まれる酸素等は全て脱離されずに、一部の酸素はグラフェンに残存してもよく、エーテル結合もしくはエステル結合で連結されたアルキル基を有していてもよい。また、酸化グラフェンにインターカレートされたアルコールは、全て脱離されずに、グラフェンに残存していてもよい。
 また、酸化グラフェンと活物質との混合物に、結着剤を添加してもよい。結着剤を添加することで、活物質中に酸化グラフェンが均等に混合された状態を維持するように、活物質と酸化グラフェンとを結着できる。
 ここで、酸化グラフェンを用いた電極は還元処理を行う。酸化グラフェンの還元方法としては、加熱による還元(以下、熱還元という。)、電解液中で電極に酸化グラフェンが還元される電位を与えて行う電気化学的な還元(以下、電気化学還元という。)、還元剤を用いた化学反応による還元(以下、化学還元という。)等が挙げられる。還元処理は化学還元と熱還元の少なくとも一を適用することができるが、化学還元と熱還元の両方を行うことがより好ましい。
 化学還元と熱還元では、還元されやすい官能基が異なる。還元剤はプロトン付加によって酸化グラフェンが有するカルボニル基(C=O)およびカルボキシ基(−COOH)を還元する効果が大きい。一方熱還元は脱水によって酸化グラフェン中のヒドロキシ基(−OH)を還元する効果が大きい。そのため化学還元と熱還元の両方を行うことでより効率よく還元することができ、還元された酸化グラフェンの導電性を高めることができる。
 特に、化学還元処理を行った後に、さらに熱還元処理を行うことにより、形成されるグラフェンの導電性をさらに向上させることができるため好ましい。
 還元処理により、酸化グラフェンに含まれる酸素を脱離させることで、グラフェンを含む活物質層を形成することができる。なお、酸化グラフェンに含まれる酸素は全て脱離されず、一部の酸素はグラフェンに残存していてもよい。
 一方、化学還元処理の影響で、電極合剤組成物中の活物質と酸化グラフェンとの結着力が低下する場合がある。例えば、化学還元処理に用いる溶剤に、結着剤が溶解することで、活物質と酸化グラフェンとの結着力が弱くなり、集電体から活物質や酸化グラフェンなどが剥落するなど、後工程で電極が崩壊する蓋然性が高くなる。
 そこで、化学還元処理を行う前に、電極合剤組成物に対し、熱処理を行う。当該熱処理を行うことで、電極合剤組成物中の活物質と酸化グラフェンとを結着力を強くすることができる。
 例えば、上記熱処理は、結着剤の少なくとも一部が結晶化する条件で行うことが好ましい。結着剤が結晶化することで、結着剤が化学還元処理に用いる溶剤に溶解しにくくなるため、活物質と酸化グラフェンとの結着力の低下を抑制することができる。従って、当該熱処理は、結着剤が結晶化する温度以上、結着剤が融解する温度以下で行うとよい。
 また、熱による還元処理の後に、化学還元処理を行うと、還元率が低下する傾向があるため、上記熱処理は、熱による還元が生じにくい条件を適宜選択するとよい。従って、化学還元処理の後に熱還元を行う場合、上記熱処理は、熱還元処理における設定温度よりも低く、熱還元処理における時間よりも短時間とするとよい。
<作製方法>
 以下では、図1を用いて本発明の一態様の電極合剤組成物及び電極の作製方法について説明する。なお、活物質、および導電助剤を有する混合物を電極合剤組成物という場合がある。
 まず分散媒、および活物質を少なくとも有する混合物101及び導電助剤となるグラフェン化合物を用意する(図1のステップS11)。これらを混合すること(図1のステップS12)で混合物102を得る(図1のステップS13)。なお、グラフェン化合物としては、グラフェン、酸化グラフェン、およびRGOのいずれか一または複数を用いてもよい。
 ステップS11において、活物質とグラフェン化合物の混合量が重要である。活物質の量が多ければ作製される正極または負極の容量が大きくなる一方で、相対的に導電助剤であるグラフェン化合物の含有量が少なくなる。導電助剤の量が少なすぎる場合、導電性が低くなり電池特性が低下する。そのため、活物質とグラフェン化合物の混合量は導電性を確保できるだけのグラフェン化合物を含みつつ、活物質量が最大となる混合量が好ましい。
 分散媒としては、極性溶媒を用いることが好ましい。該極性溶媒としては、N−メチル−2−ピロリドン(略称:NMP)、N,N−ジメチルホルムアミド(略称:DMF)、ジメチルスルホキシド(略称:DMSO)等を用いることができる。
 次に、結着剤を用意し、(図1のステップS21)、混合物102と結着材を混合する(図1のステップS22)ことで混合物103を得る(図1のステップS23)。
 該結着材の混合量は、グラフェン化合物及び活物質の量によって適宜設定すればよい。グラフェン化合物が、複数の活物質の粒子と面接触するように分散されている状態で、結着剤を混合することにより、分散状態を維持したまま、活物質とグラフェン化合物とを結着することができる。また、活物質とグラフェン化合物の割合によっては、結着剤を添加しなくてもよいが、結着剤を添加した場合は電極の強度を向上させることができる。
 結着材としては、ポリフッ化ビニリデン(PVDF)、ポリイミド、ポリテトラフルオロエチレン、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等を用いることができる。
 次に、分散媒を用意し(図1のステップS31)、混合物103に、所定の粘度になるまで分散媒を添加、混合し(図1のステップS32)、その後混練する(図1のステップS33)。以上の工程で、混合物104を作製することができる(図1のステップS34)。
 なお、混合物103の粘度が所定の粘度程度である場合、分散媒を添加せず(S31及びS32を行わず)混合物103を混練することで混合物104を作製してもよい。また、この工程の分散媒は上述の極性溶媒を用いることができる。また、ステップS11で用意した分散媒と同一の分散媒を用いると好ましい。
 次に、集電体を用意し(図1のステップS41)、ステップS11乃至ステップS34により作製した電極合剤組成物である混合物104を、集電体の片面又は両面に、アプリケータロールなどを用いたロールコート法、スクリーン印刷法、ドクターブレード法、スピンコート法、バーコート法等の塗布方法などにより塗布する(図1のステップS42)。
 集電体上に塗布した電極合剤組成物を、通風乾燥又は減圧(真空)乾燥等の方法で乾燥させる(図1のステップS43)。例えば、当該乾燥処理として、熱処理を行うとよい。なお、乾燥(熱処理)の雰囲気は特に限定されない。
 ここで、上記乾燥処理は、室温(R.T.:Room Temperature)以上120℃以下、好ましくは室温以上90℃以下の比較的低温で行うことが好ましい。なお、本明細書において、段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。
 特に、乾燥処理を高温で処理した場合、バインダマイグレーションが生じる場合がある。具体的には、分散媒中のバインダが、分散媒の中で移動(マイグレーションともいう)することで、分散媒中にバインダが偏り、電極としての強度が低下する蓋然性が高い。また、分散媒中のグラフェン化合物、および活物質が、分散媒の中で移動することで、分散媒中のグラフェン化合物、および活物質が偏在する場合がある。つまり、急激に熱処理を行うことで、電極にムラが生じ、活物質とグラフェン化合物とが剥離する場合がある。
 続いて、乾燥処理よりも高い温度にて、熱処理を行う(図1のステップS44)。なお、熱処理の雰囲気は特に限定されない。好ましくは、減圧(真空)下にて行うとよい。
 例えば、当該熱処理は、結着剤の少なくとも一部が結晶化する条件で行うことが好ましい。従って、当該熱処理は、結着剤が結晶化する温度以上、結着剤が融解する温度以下で行うとよい。
 また、上記熱処理は、熱による還元が生じにくい条件を適宜選択するとよい。熱による還元が生じた場合、化学還元により還元されうる置換基が変化する場合がある。従って、化学還元による還元率が低下する場合がある。
 従って、例えば、上記熱処理は、120℃以上170℃以下、好ましくは120℃以上160℃以下、さらに好ましくは120℃以上140℃以下で行うことが好ましい。
 乾燥処理により、電極合剤組成物の分散媒を蒸発させた後、さらに、結着剤が結晶化する温度にて熱処理を行うことで、電極中のグラフェン化合物、および活物質が偏在することなく、電極合剤組成物中の活物質と酸化グラフェンとを結着力を強くすることができる。
 従って、熱処理の温度は、前工程の乾燥処理(ステップS43)よりも高温とし、後工程の熱還元処理(ステップS45)よりも低温で行うことが好ましい。また、熱処理の時間は、前工程の乾燥処理よりも長時間とし、後工程の熱還元処理よりも短時間で行うことが好ましい。
 上記より、乾燥処理、および熱処理は、例えば、40℃以上170℃以下の熱風を用いて1分以上10時間以下、好ましくは1分以上1時間以下の時間行うことができる。なお、乾燥処理から熱処理における温度を、段階的に昇温することで、電極中のグラフェン化合物、および活物質のムラがない電極を得ることができる。
 次に、熱処理を行った集電体上の電極合剤組成物に対し、還元処理を行う(図1のステップS45)。還元方法としては、化学還元を用いることが好ましい。また、化学還元に加え、熱還元を適用してもよい。
 化学還元に用いる還元剤としては、アスコルビン酸をはじめとする有機酸、水素、二酸化硫黄、亜硫酸、亜硫酸ナトリウム、亜硫酸水素ナトリウム、亜硫酸アンモニウム、ヒドラジン、ジメチルヒドラジン、ヒドロキノン又は亜リン酸などを用いることができる。
 還元剤としてアスコルビン酸を用いる場合は、まずアスコルビン酸を溶媒に溶解させる。溶媒としては水、NMP、およびエタノールのいずれか一、または一以上の混合物等を用いることができる。そして該溶液にステップS44で作製した集電体と電極合剤組成物を浸ける。この処理はたとえば30分以上10時間以下行うことができ、1時間程度が好ましい。また加熱すると化学還元の時間を短縮することができ好ましい。たとえば室温以上100℃以下に加熱することができ、たとえば60℃程度が好ましい。
 また、化学還元処理の後に、熱還元処理を行ってもよい。熱還元処理は、減圧下で行うことが好ましい。加熱にはたとえばガラスチューブオーブンを用いることができる。ガラスチューブオーブンは1kPa程度の減圧下で加熱することができる。
 最適な加熱温度および加熱時間は、材料として用いる導電助剤およびバインダの材料により異なる。たとえば導電助剤に酸化グラフェン、バインダにPVDFを用いる場合は、酸化グラフェンが十分に還元され、かつPVDFが結晶化するなどのPVDFに悪影響を及ぼさない程度の温度であることが好ましい。具体的には125℃以上200℃以下、好ましくは125℃以上180℃以下とするとよい。
 なお、100℃以下では酸化グラフェンの還元が十分に進まない恐れがある。また250℃以上ではPVDFに悪影響があり集電体から電極合剤組成物がはがれやすくなる恐れがある。
 加熱時間は1時間以上20時間以下が好ましい。加熱時間が1時間未満では酸化グラフェンが十分に還元されない恐れがある。加熱時間が20時間を超えると生産性が低下する。
 以上の工程により、グラフェン化合物を導電助剤として有する正極または負極を作製することができる(図1のステップS46)。
 上述のように、電極合剤組成物は活物質と導電助剤の他に、結着剤、および分散媒を有する場合がある。導電助剤によく用いられるアセチレンブラックを用いて電極合剤組成物を作製する場合、分散媒、活物質、導電助剤、結着剤を混合する手順に特に制限はない。しかし、本発明の一態様のように導電助剤としてグラフェン化合物、特にグラファイトを物理的(機械的)に剥離する方法によって作製された、酸素含有量が少ないグラフェン化合物を用いる場合、分散媒、活物質、導電助剤、結着剤を混合する手順によっては、グラフェン化合物が凝集してしまい、良好な電池特性を発現する電極を作製するのが困難である。
 また、図2に示すように混合物101を、分散媒と活物質を混合することによって調整しても構わない(ステップS01及びステップS02)。ステップS01及びステップS02を行うことによって、適した粘度または濃度の混合物101を調整できるため好ましい。なお、図2において、図1と同様の操作については、図1と同様であるため詳細な説明を省略する。
<材料>
 ここで、本発明の一態様の作製方法及び電極の構成要素について説明する。
≪活物質≫
 上述の活物質に用いることができる材料は、リチウムイオン等のキャリアイオンの挿入及び脱離が可能な材料であればよく、正極活物質または負極活物質を用いることができる。
<正極活物質>
 正極活物質としては、例えば、LiFeO、LiCoO、LiNiO、LiMn、V、Cr、MnO等の化合物を用いることができる。
 または、リチウム含有複合リン酸塩(一般式LiMPO(Mは、Fe(II)、Mn(II)、Co(II)、Ni(II)の一以上))を用いることができる。一般式LiMPOの代表例としては、LiFePO、LiNiPO、LiCoPO、LiMnPO、LiFeNiPO、LiFeCoPO、LiFeMnPO、LiNiCoPO、LiNiMnPO(a+bは1以下、0<a<1、0<b<1)、LiFeNiCoPO、LiFeNiMnPO、LiNiCoMnPO(c+d+eは1以下、0<c<1、0<d<1、0<e<1)、LiFeNiCoMnPO(f+g+h+iは1以下、0<f<1、0<g<1、0<h<1、0<i<1)等が挙げられる。
 特にLiFePOは、安全性、安定性、高容量密度、高電位、初期酸化(充電)時に引き抜けるリチウムイオンの存在等、正極活物質に求められる事項をバランスよく満たしているため、好ましい。
 層状岩塩型の結晶構造を有するリチウム含有複合金属酸化物としては、例えば、コバルト酸リチウム(LiCoO)、LiNiO、LiMnO、LiMnO、LiNi0.8Co0.2等のNiCo系(一般式は、LiNiCo1−x(0<x<1))、LiNi0.5Mn0.5等のNiMn系(一般式は、LiNiMn1−x(0<x<1))、LiNi1/3Mn1/3Co1/3等のNiMnCo系(NMCともいう。一般式は、LiNiMnCo1−x−y(x>0、y>0、x+y<1))が挙げられる。さらに、Li(Ni0.8Co0.15Al0.05)O、LiMnO−LiMO(M=Co、Ni、Mn)等も挙げられる。
 特に、LiCoOは、容量が大きい、LiNiOに比べて大気中で安定である、LiNiOに比べて熱的に安定である等の利点があるため、好ましい。
 スピネル型の結晶構造を有するリチウム含有複合マンガン酸化物としては、例えば、LiMn、Li1+xMn2−x(0<x<2)、LiMn2−xAl(0<x<2)、LiMn1.5Ni0.5等がある。
 LiMn等のマンガンを含むスピネル型の結晶構造を有するリチウム含有複合マンガン酸化物に、少量のニッケル酸リチウム(LiNi1−x(0<x<1))やLiNi1−x(0<x<1)(M=Co、Al等))を混合すると、マンガンの溶出を抑制する等の利点があり好ましい。
 または、一般式Li(2−j)MSiO(Mは、Fe(II)、Mn(II)、Co(II)、Ni(II)の一以上、0≦j≦2)等のリチウム含有複合ケイ酸塩を用いることができる。一般式Li(2−j)MSiOの代表例としては、Li(2−j)FeSiO、Li(2−j)NiSiO、Li(2−j)CoSiO、Li(2−j)MnSiO、Li(2−j)FeNiSiO、Li(2−j)FeCoSiO、Li(2−j)FeMnSiO、Li(2−j)NiCoSiO、Li(2−j)NiMnSiO(k+lは1以下、0<k<1、0<l<1)、Li(2−j)FeNiCoSiO、Li(2−j)FeNiMnSiO、Li(2−j)NiCoMnSiO(m+n+qは1以下、0<m<1、0<n<1、0<q<1)、Li(2−j)FeNiCoMnSiO(r+s+t+uは1以下、0<r<1、0<s<1、0<t<1、0<u<1)等が挙げられる。
 また、正極活物質として、A(XO(A=Li、Na、Mg、M=Fe、Mn、Ti、V、Nb、Al、X=S、P、Mo、W、As、Si)の一般式で表されるナシコン型化合物を用いることができる。ナシコン型化合物としては、Fe(MnO、Fe(SO、LiFe(PO等が挙げられる。また、正極活物質として、LiMPOF、LiMP、LiMO(M=Fe、Mn)の一般式で表される化合物、FeF等のペロブスカイト型フッ化物、TiS、MoS等の金属カルコゲナイド(硫化物、セレン化物、テルル化物)、LiMVO等の逆スピネル型の結晶構造を有するリチウム含有複合バナジウム酸化物、バナジウム酸化物系(V、V13、LiV等)、マンガン酸化物、有機硫黄化合物等の材料を用いることができる。
 なお、キャリアイオンが、リチウムイオン以外のアルカリ金属イオン、アルカリ土類金属イオンの場合、正極活物質として、上記リチウムを含む物質において、リチウムの代わりに、アルカリ金属(例えば、ナトリウムやカリウム等)、アルカリ土類金属(例えば、カルシウム、ストロンチウム、バリウムベリリウム、マグネシウム等)を用いてもよい。
 正極活物質には、原料化合物を所定の比率で混合し焼成した焼成物を、適当な手段により粉砕、造粒及び分級した、平均粒径や粒径分布を有する二次粒子からなる粒状の活物質を用いることができる。
<負極活物質>
 負極活物質としては、例えば合金系材料や炭素系材料等を用いることができる。
 負極活物質として、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素を用いることができる。例えば、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、インジウム等のうち少なくとも一つを含む材料を用いることができる。このような元素は炭素と比べて容量が大きく、特にシリコンは理論容量が4200mAh/gと高い。このため、負極活物質にシリコンを用いることが好ましい。また、これらの元素を有する化合物を用いてもよい。例えば、SiO、MgSi、MgGe、SnO、SnO、MgSn、SnS、VSn、FeSn、CoSn、NiSn、CuSn、AgSn、AgSb、NiMnSb、CeSb、LaSn、LaCoSn、CoSb、InSb、SbSn等がある。ここで、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素、および該元素を有する化合物等を合金系材料と呼ぶ場合がある。
 本明細書等において、SiOは例えば一酸化シリコンを指す。あるいはSiOは、SiOと表すこともできる。ここでxは1近傍の値を有することが好ましい。例えばxは、0.2以上1.5以下が好ましく、0.3以上1.2以下が好ましい。
 炭素系材料としては、黒鉛、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)、カーボンナノチューブ、グラフェン、カーボンブラック等を用いればよい。
 黒鉛としては、人造黒鉛や、天然黒鉛等が挙げられる。人造黒鉛としては例えば、メソカーボンマイクロビーズ(MCMB)、コークス系人造黒鉛、ピッチ系人造黒鉛等が挙げられる。ここで人造黒鉛として、球状の形状を有する球状黒鉛を用いることができる。例えば、MCMBは球状の形状を有する場合があり、好ましい。また、MCMBはその表面積を小さくすることが比較的容易であり、好ましい場合がある。天然黒鉛としては例えば、鱗片状黒鉛、球状化天然黒鉛等が挙げられる。
 黒鉛はリチウムイオンが黒鉛に挿入されたとき(リチウム−黒鉛層間化合物の生成時)にリチウム金属と同程度に低い電位を示す(0.05V以上0.3V以下 vs.Li/Li)。これにより、リチウムイオン二次電池は高い作動電圧を示すことができる。さらに、黒鉛は、単位体積当たりの容量が比較的高い、体積膨張が比較的小さい、安価である、リチウム金属に比べて安全性が高い等の利点を有するため、好ましい。
 また、負極活物質として、二酸化チタン(TiO)、リチウムチタン酸化物(LiTi12)、リチウム−黒鉛層間化合物(Li)、五酸化ニオブ(Nb)、酸化タングステン(WO)、酸化モリブデン(MoO)等の酸化物を用いることができる。
 また、負極活物質として、リチウムと遷移金属の複窒化物である、LiN型構造をもつLi3−xN(M=Co、Ni、Cu)を用いることができる。例えば、Li2.6Co0.4は大きな充放電容量(900mAh/g、1890mAh/cm)を示し好ましい。
 リチウムと遷移金属の複窒化物を用いると、負極活物質中にリチウムイオンを含むため、正極活物質としてリチウムイオンを含まないV、Cr等の材料と組み合わせることができ好ましい。なお、正極活物質にリチウムイオンを含む材料を用いる場合でも、あらかじめ正極活物質に含まれるリチウムイオンを脱離させることで、負極活物質としてリチウムと遷移金属の複窒化物を用いることができる。
 また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。例えば、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウムとの合金を作らない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン反応が生じる材料としては、さらに、Fe、CuO、CuO、RuO、Cr等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn、CuN、Ge等の窒化物、NiP、FeP、CoP等のリン化物、FeF、BiF等のフッ化物でも起こる。
 負極活物質層が有することのできる導電助剤およびバインダとしては、正極活物質層が有することのできる導電助剤およびバインダと同様の材料を用いることができる。
≪集電体≫
 上述の集電体は正極を作製する場合には、正極集電体を用い、負極を作製する場合には負極集電体を用いる。
 正極集電体としては、ステンレス、金、白金、アルミニウム、チタン等の金属、及びこれらの合金など、導電性が高い材料をもちいることができる。また正極集電体に用いる材料は、正極の電位で溶出しないことが好ましい。また、シリコン、チタン、ネオジム、スカンジウム、モリブデンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることができる。また、シリコンと反応してシリサイドを形成する金属元素で形成してもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケル等がある。集電体は、箔状、板状(シート状)、網状、パンチングメタル状、エキスパンドメタル状等の形状を適宜用いることができる。集電体は、厚みが5μm以上30μm以下のものを用いるとよい。
 負極集電体には、正極集電体と同様の材料を用いることができる。なお負極集電体は、リチウム等のキャリアイオンと合金化しない材料を用いることが好ましい。
(実施の形態2)
 本実施の形態では、先の実施の形態で説明した作製方法によって作製された正極活物質を有する二次電池の形状の例について説明する。本実施の形態で説明する二次電池に用いる材料は、先の実施の形態の記載を参酌することができる。
[コイン型二次電池]
 まずコイン型の二次電池の一例について説明する。図3Aはコイン型(単層偏平型)の二次電池の外観図であり、図3Bは、その断面図である。
 コイン型の二次電池300は、正極端子を兼ねた正極缶301と負極端子を兼ねた負極缶302とが、ポリプロピレン等で形成されたガスケット303で絶縁シールされている。正極304は、正極集電体305と、これと接するように設けられた正極活物質層306により形成される。また、負極307は、負極集電体308と、これに接するように設けられた負極活物質層309により形成される。
 なお、コイン型の二次電池300に用いる正極304および負極307は、それぞれ活物質層は片面のみに形成すればよい。
 正極缶301、負極缶302には、電解液に対して耐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えばステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を被覆することが好ましい。正極缶301は正極304と、負極缶302は負極307とそれぞれ電気的に接続する。
 これら負極307、正極304およびセパレータ310を電解質に含浸させ、図3(B)に示すように、正極缶301を下にして正極304、セパレータ310、負極307、負極缶302をこの順で積層し、正極缶301と負極缶302とをガスケット303を介して圧着してコイン形の二次電池300を製造する。
 正極304に、先の実施の形態で説明した活物質層を用いることで、劣化が少なく、安全性の高いコイン型の二次電池300とすることができる。
[セパレータ]
 また二次電池は、セパレータを有することが好ましい。セパレータとしては、例えば、紙をはじめとするセルロースを有する繊維、不織布、ガラス繊維、セラミックス、或いはナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いることができる。セパレータは袋状に加工し、正極または負極のいずれか一方を包むように配置することが好ましい。
 セパレータは多層構造であってもよい。例えばポリプロピレン、ポリエチレン等の有機材料フィルムに、セラミック系材料、フッ素系材料、ポリアミド系材料、またはこれらを混合したもの等をコートすることができる。セラミック系材料としては、例えば酸化アルミニウム粒子、酸化シリコン粒子等を用いることができる。フッ素系材料としては、例えばPVDF、ポリテトラフルオロエチレン等を用いることができる。ポリアミド系材料としては、例えばナイロン、アラミド(メタ系アラミド、パラ系アラミド)等を用いることができる。
 セラミック系材料をコートすると耐酸化性が向上するため、高電圧充放電の際のセパレータの劣化を抑制し、二次電池の信頼性を向上させることができる。またフッ素系材料をコートするとセパレータと電極が密着しやすくなり、出力特性を向上させることができる。ポリアミド系材料、特にアラミドをコートすると、耐熱性が向上するため、二次電池の安全性を向上させることができる。
 例えばポリプロピレンのフィルムの両面に酸化アルミニウムとアラミドの混合材料をコートしてもよい。また、ポリプロピレンのフィルムの、正極と接する面に酸化アルミニウムとアラミドの混合材料をコートし、負極と接する面にフッ素系材料をコートしてもよい。
 多層構造のセパレータを用いると、セパレータ全体の厚さが薄くても二次電池の安全性を保つことができるため、二次電池の体積あたりの容量を大きくすることができる。
 ここで図3Cを用いて二次電池の充電時の電流の流れを説明する。リチウムを用いた二次電池を一つの閉回路とみなしたとき、リチウムイオンの動きと電流の流れは同じ向きになる。なお、リチウムを用いた二次電池では、充電と放電でアノード(陽極)とカソード(陰極)が入れ替わり、酸化反応と還元反応とが入れ替わることになるため、反応電位が高い電極を正極と呼び、反応電位が低い電極を負極と呼ぶ。したがって、本明細書においては、充電中であっても、放電中であっても、逆パルス電流を流す場合であっても、充電電流を流す場合であっても、正極は「正極」または「+極(プラス極)」と呼び、負極は「負極」または「−極(マイナス極)」と呼ぶこととする。酸化反応や還元反応に関連したアノード(陽極)やカソード(陰極)という用語を用いると、充電時と放電時とでは、逆になってしまい、混乱を招く可能性がある。したがって、アノード(陽極)やカソード(陰極)という用語は、本明細書においては用いないこととする。仮にアノード(陽極)やカソード(陰極)という用語を用いる場合には、充電時か放電時かを明記し、正極(プラス極)と負極(マイナス極)のどちらに対応するものかも併記することとする。
 図3Cに示す2つの端子には充電器が接続され、二次電池300が充電される。二次電池300の充電が進めば、電極間の電位差は大きくなる。
[円筒型二次電池]
 円筒型の二次電池の例について図4A乃至図4Dを参照して説明する。円筒型の二次電池600は、図4Aに示すように、上面に正極キャップ(電池蓋)601を有し、側面および底面に電池缶(外装缶)602を有している。これら正極キャップと電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
 図4Bは、円筒型の二次電池の断面を模式的に示した図である。中空円柱状の電池缶602の内側には、帯状の正極604と負極606とがセパレータ605を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子はセンターピンを中心に捲回されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を被覆することが好ましい。電池缶602の内側において、正極、負極およびセパレータが捲回された電池素子は、対向する一対の絶縁板608、609により挟まれている。また、電池素子が設けられた電池缶602の内部は、非水電解液(図示せず)が注入されている。非水電解液は、コイン型の二次電池と同様のものを用いることができる。
 円筒型の二次電池に用いる正極および負極は捲回するため、集電体の両面に活物質を形成することが好ましい。正極604には正極端子(正極集電リード)603が接続され、負極606には負極端子(負極集電リード)607が接続される。正極端子603および負極端子607は、ともにアルミニウムなどの金属材料を用いることができる。正極端子603は安全弁機構612に、負極端子607は電池缶602の底にそれぞれ抵抗溶接される。安全弁機構612は、PTC素子(Positive Temperature Coefficient)611を介して正極キャップ601と電気的に接続されている。安全弁機構612は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ601と正極604との電気的な接続を切断するものである。また、PTC素子611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導体セラミックス等を用いることができる。
 また、図4Cのように複数の二次電池600を、導電板613および導電板614の間に挟んでモジュール615を構成してもよい。複数の二次電池600は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後さらに直列に接続されていてもよい。複数の二次電池600を有するモジュール615を構成することで、大きな電力を取り出すことができる。
 図4Dはモジュール615の上面図である。図を明瞭にするために導電板613を点線で示した。図4Dに示すようにモジュール615は、複数の二次電池600を電気的に接続する導線616を有していてもよい。導線616上に導電板613を重畳して設けることができる。また複数の二次電池600の間に温度制御装置617を有していてもよい。二次電池600が過熱されたときは、温度制御装置617により冷却し、二次電池600が冷えすぎているときは温度制御装置617により加熱することができる。そのためモジュール615の性能が外気温に影響されにくくなる。
 正極604に、先の実施の形態で説明した作製方法により作製した正極活物質を用いることで、劣化が少なく、安全性の高い円筒型の二次電池600とすることができる。
[二次電池の構造例]
 蓄電装置の別の構造例について、図5及び図6を用いて説明する。
 図5Aに捲回体950の構造について示す。捲回体950は、負極931と、正極932と、セパレータ933と、を有する。捲回体950は、セパレータ933を挟んで負極931と、正極932が重なり合って積層され、該積層シートを捲回させた捲回体である。なお、負極931と、正極932と、セパレータ933と、の積層を、さらに複数重ねてもよい。
 図5Bに示す二次電池913は、筐体930の内部に端子951と端子952が設けられた捲回体950を有する。捲回体950は、筐体930の内部で電解液に含浸される。端子952は、筐体930に接し、端子951は、絶縁材などを用いることにより筐体930に接していない。なお、図5Bでは、便宜のため、筐体930を分離して図示しているが、実際は、捲回体950が筐体930に覆われ、端子951及び端子952が筐体930の外に延在している。筐体930としては、金属材料(例えばアルミニウムなど)又は樹脂材料を用いることができる。
[ラミネート型二次電池]
 次に、ラミネート型の二次電池の例について、図6A及び図6Bを参照して説明する。
 図6Aにラミネート型の二次電池500の外観図の一例を示す。また、図6Bにラミネート型の二次電池500の外観図の他の一例を示す。
 図6A及び図6Bは、正極503、負極506、セパレータ507、外装体509、正極リード電極510及び負極リード電極511を有する。
 ラミネート型の二次電池500は、捲回体または短冊状の複数の正極503、セパレータ507および負極506を有する。
 捲回体は、負極506と、正極503と、セパレータ507と、を有する。捲回体は、図5Aで説明した捲回体と同様に、セパレータ507を挟んで負極506と、正極503とが重なり合って積層され、該積層シートを捲回したものである。
 外装体509となるフィルムにより形成された空間に、短冊状の複数の正極503、セパレータ507および負極506を有する二次電池としてもよい。
 短冊状の複数の正極503、セパレータ507および負極506を有する二次電池の作製方法を以下に示す。
 まず、負極506、セパレータ507及び正極503を積層する。本実施の形態では負極を5組、正極を4組使用する例を示す。次に、正極503のタブ領域同士の接合と、最表面の正極のタブ領域への正極リード電極510の接合を行う。接合には、例えば超音波溶接等を用いればよい。同様に、負極506のタブ領域同士の接合と、最表面の負極のタブ領域への負極リード電極511の接合を行う。
 次に外装体509上に、負極506、セパレータ507及び正極503を配置する。
 外装体509には、例えばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のラミネートフィルムを用いることができる。
 外装体509を折り曲げて間に積層を挟む。その後、外装体509の外周部を接合する。接合には例えば熱圧着等を用いればよい。この接合の際、後に電解液を入れることができるように、外装体509の一部(または一辺)に接合されない領域(以下、導入口という)を設ける。
 次に、外装体509に設けられた導入口から、電解液を外装体509の内側へ導入する。電解液の導入は、減圧雰囲気下、或いは不活性雰囲気下で行うことが好ましい。そして最後に、導入口を接合する。このようにして、ラミネート型の二次電池である二次電池500を作製することができる。
 正極503に、先の実施の形態で説明した活物質層を用いることで、劣化が少なく、安全性の高い二次電池500とすることができる。
 本実施の形態は、他の実施の形態と自由に組み合わせることができる。
(実施の形態3)
 本実施の形態では、固体二次電池の構成について説明する。本明細書においては、固体電解質のみを用いる二次電池だけでなく、ポリマーゲル電解質、微量な電解液、またはこれらを組み合わせて用いる場合も固体電池と呼ぶこととする。
 図7Aに示すように、本発明の一態様の固体電池であり二次電池400は、正極410、固体電解質層420および負極430を有する。図7Aでは固体電解質を用いる場合を示している。固体電解質を用いる場合には、セパレータやスペーサの設置が不要となる。また、電池全体を固体化できるため、漏液のおそれがなくなり安全性が飛躍的に向上する。
 正極410は正極集電体413および正極活物質層414を有する。正極活物質層414は正極活物質411および固体電解質421を有する。正極活物質411として、先の実施の形態で説明した正極活物質を用いることができる。また正極活物質層414は、導電材およびバインダを有していてもよい。導電材としては、カーボンブラック(アセチレンブラック(AB)など)、グラファイト(黒鉛)粒子、カーボンナノチューブ(CNT)、フラーレンなどの炭素材料を用いることができる。また、例えば、銅、ニッケル、アルミニウム、銀、金などの金属粉末や金属繊維、導電性セラミックス材料等を用いることができる。また、導電材としてグラフェン化合物を用いてもよい。グラフェン化合物は、高い導電性を有するという優れた電気特性と、高い柔軟性および高い機械的強度を有するという優れた物理特性と、を有する場合がある。また、グラフェン化合物は平面的な形状を有する。グラフェン化合物は、接触抵抗の低い面接触を可能とする。また、薄くても導電性が非常に高い場合があり、少ない量で効率よく活物質層内で導電パスを形成することができる。そのため、グラフェン化合物を導電助剤として用いることにより、活物質と導電助剤との接触面積を増大させることができるため好ましい。また、電気的な抵抗を減少できる場合があるため好ましい。ここでグラフェン化合物として例えば、グラフェン、多層グラフェン、マルチグラフェン、酸化グラフェン、多層酸化グラフェン、マルチ酸化グラフェン、還元された酸化グラフェン、還元された多層酸化グラフェン、還元されたマルチ酸化グラフェン、グラフェン量子ドット等を含む。還元された酸化グラフェンは、Reduced Graphene Oxide(以下、RGO)とも呼ばれる。ここで、RGOは例えば、酸化グラフェン(GO:Graphene Oxide)を還元して得られる化合物を指す。粒子径の小さい活物質粒子、例えば1μm以下の活物質粒子を用いる場合には、活物質粒子の比表面積が大きく、活物質粒子同士を繋ぐ導電パスがより多く必要となる。このような場合には、少ない量でも効率よく導電パスを形成することができるグラフェン化合物を用いることが、特に好ましい。また、本明細書等において酸化グラフェンとは、炭素と、酸素を有し、シート状の形状を有し、官能基、特にエポキシ基、カルボキシ基またはヒドロキシ基を有するものをいう。また、複数のグラフェン化合物同士が結合することにより、網目状のグラフェン化合物シート(以下グラフェン化合物ネットまたはグラフェンネットと呼ぶ)を形成することができる。活物質をグラフェンネットが被覆する場合に、グラフェンネットは活物質同士を結合するバインダとしても機能することができる。よって、バインダの量を少なくすることができる、又は使用しないことができるため、電極体積や電極重量に占める活物質の比率を向上させることができる。すなわち、二次電池の容量を増加させることができる。
 固体電解質層420は固体電解質421を有する。固体電解質層420は、正極410と負極430の間に位置し、正極活物質411および負極活物質431のいずれも有さない領域である。
 負極430は負極集電体433および負極活物質層434を有する。負極活物質層434は負極活物質431および固体電解質421を有する。また負極活物質層434は、導電材およびバインダを有していてもよい。なお、負極430に金属リチウムを用いる場合は、図7Bのように、固体電解質421を有さない負極430とすることができる。負極430に金属リチウムを用いると、二次電池400のエネルギー密度を向上させることができ好ましい。なお、図7A及び図7Bでは、固体電解質421、正極活物質411、および負極活物質431を、理想的な粒子形状として球状としているが、実際は様々な形状をしており、便宜上模式的に図示している。
 固体電解質層420が有する固体電解質421、および固体電解質層420に用いる材料としては、例えば硫化物系固体電解質、酸化物系固体電解質、ハロゲン化物系固体電解質等を用いることができる。
 硫化物系固体電解質には、チオシリコン系(Li10GeP12、Li3.25Ge0.250.75等)、硫化物ガラス(70LiS・30P、30LiS・26B・44LiI、63LiS・38SiS・1LiPO、57LiS・38SiS・5LiSiO、50LiS・50GeS等)、硫化物結晶化ガラス(Li11、Li3.250.95等)が含まれる。硫化物系固体電解質は、高い伝導度を有する材料がある、低い温度で合成可能、また比較的やわらかいため充放電を経ても導電経路が保たれやすい等の利点がある。
 酸化物系固体電解質には、ペロブスカイト型結晶構造を有する材料(La2/3−xLi3xTiO等)、NASICON型結晶構造を有する材料(Li1−XAlTi2−X(PO等)、ガーネット型結晶構造を有する材料(LiLaZr12等)、LISICON型結晶構造を有する材料(Li14ZnGe16等)、LLZO(LiLaZr12)、酸化物ガラス(LiPO−LiSiO、50LiSiO・50LiBO等)、酸化物結晶化ガラス(Li1.07Al0.69Ti1.46(PO、Li1.5Al0.5Ge1.5(PO等)が含まれる。酸化物系固体電解質は、大気中で安定であるといった利点がある。
 なお本明細書等において、NASICON型結晶構造とは、M(XO(M:遷移金属、X:S、P、As、Mo、W等)で表される化合物であり、MO八面体とXO四面体が頂点を共有して3次元的に配列した構造を有するものをいう。
 ハロゲン化物系固体電解質には、LiAlCl、LiInBr、LiF、LiCl、LiBr、LiI等が含まれる。また、これらハロゲン化物系固体電解質を、ポーラスアルミナやポーラスシリカの細孔に充填したコンポジット材料も固体電解質として用いることができる。
 また、異なる種類の固体電解質を混合して用いてもよい。
 また、固体電解質に、電解液を混合して用いてもよい。
 固体電解質と混合して用いる電解液は、粒状のごみや電解液の構成元素以外の元素(以下、単に「不純物」ともいう。)の含有量が少ない高純度化された電解液を用いることが好ましい。具体的には、電解液に対する不純物の重量比を1%以下、好ましくは0.1%以下、より好ましくは0.01%以下とすることが好ましい。
 また、固体電解質と混合して用いる電解液にビニレンカーボネート、プロパンスルトン(PS)、tert−ブチルベンゼン(TBB)、フルオロエチレンカーボネート(FEC)、リチウムビス(オキサレート)ボレート(LiBOB)、またスクシノニトリル、アジポニトリル等のジニトリル化合物などの添加剤を添加してもよい。添加する材料の濃度は、例えば溶媒全体に対して0.1wt%以上5wt%以下とすればよい。
 また、固体電解質と混合して用いる材料として、ポリマーを電解液で膨潤させたポリマーゲル電解質を用いてもよい。
 ポリマーゲル電解質を用いることで、漏液性等に対する安全性が高まる。また、二次電池の薄型化および軽量化が可能である。
 ゲル化されるポリマーとして、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、フッ素系ポリマーのゲル等を用いることができる。
 ポリマーとしては、例えばポリエチレンオキシド(PEO)などのポリアルキレンオキシド構造を有するポリマーや、PVDF、およびポリアクリロニトリル等、およびそれらを含む共重合体等を用いることができる。例えばPVDFとヘキサフルオロプロピレン(HFP)の共重合体であるPVDF−HFPを用いることができる。また、形成されるポリマーは、多孔質形状を有してもよい。
 また、本実施の形態は、他の実施の形態と自由に組わせることができる。
(実施の形態4)
 本実施の形態では、本発明の一態様である二次電池を電子機器または移動体に実装する例について説明する。
 まず実施の形態2の一部で説明した、二次電池を電子機器に実装する例を図8A乃至図8Eに示す。曲げることのできる次電池を適用した電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
 また、移動体、代表的には自動車に二次電池を適用することができる。自動車としては、ハイブリッド車(HEV)、電気自動車(EV)、又はプラグインハイブリッド車(PHEV)等の次世代クリーンエネルギー自動車を挙げることができ、自動車に搭載する電源の一つとして二次電池を適用することができる。移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)、電動自転車、電動バイクなども挙げることができ、これらの移動体に本発明の一態様の二次電池を適用することができる。
 また、住宅に設けられる地上設置型の充電装置や、商用施設に設けられた充電ステーションに本実施の形態の二次電池を適用してもよい。
 図8Aは、携帯電話機の一例を示している。携帯電話機2100は、筐体2101に組み込まれた表示部2102の他、操作ボタン2103、外部接続ポート2104、スピーカ2105、マイク2106などを備えている。なお、携帯電話機2100は、二次電池2107を有している。
 携帯電話機2100は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
 操作ボタン2103は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、携帯電話機2100に組み込まれたオペレーティングシステムにより、操作ボタン2103の機能を自由に設定することもできる。
 また、携帯電話機2100は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。
 また、携帯電話機2100は外部接続ポート2104を備え、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。また外部接続ポート2104を介して充電を行うこともできる。なお、充電動作は外部接続ポート2104を介さずに無線給電により行ってもよい。
 携帯電話機2100はセンサを有することが好ましい。センサとして例えば、指紋センサ、脈拍センサ、体温センサ等の人体センサや、タッチセンサ、加圧センサ、加速度センサ、等が搭載されることが好ましい。
 図8Bは複数のローター2302を有する無人航空機2300である。無人航空機2300はドローンと呼ばれることもある。無人航空機2300は、本発明の一態様である二次電池2301と、カメラ2303と、アンテナ(図示しない)を有する。無人航空機2300はアンテナを介して遠隔操作することができる。本発明の一態様の二次電池は安全性が高いため、長期間に渡って長時間の安全な使用ができ、無人航空機2300に搭載する二次電池として好適である。
 また図8Cに示すように、本発明の一態様の二次電池2601を複数有する二次電池2602を、ハイブリッド車(HEV)、電気自動車(EV)、又はプラグインハイブリッド車(PHEV)、その他電子機器に搭載してもよい。
 図8Dに、二次電池2602が搭載された車両の一例を示す。車両2603は、走行のための動力源として電気モータを用いる電気自動車である。または、走行のための動力源として電気モータとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。
 ここで、自動車への搭載されるリチウムイオン電池は、性能試験、信頼性試験、乱用試験などを経て車載される。特に、信頼性試験では、車両の走行時の振動や駆動系の振動によるランダム波によって電池の破損や電気的接触の不備などが生じないか確認を行う。
 例えば、リチウムイオン電池の落下衝突により、電池内の構造体が下方に移動し、正極集電体と負極板とにセパレータが挟まれて損傷することで、充電時にショートが発生する場合がある。そこで、電極強度が高い本発明の一態様の二次電池を用いることで、信頼性試験に耐えうるリチウムイオン電池を提供することができる。
 電動モータを用いる車両2603は、複数のECU(Electronic Control Unit)を有し、ECUによってエンジン制御などを行う。ECUは、マイクロコンピュータを含む。ECUは、電動車両に設けられたCAN(Controller Area Network)に接続される。CANは、車内LANとして用いられるシリアル通信規格の一つである。本発明の一態様の二次電池を用いることで、ECUの電源として機能させ、安全性が高く、航続距離の長い車両を実現することができる。
 二次電池は電気モータ(図示せず)を駆動するだけでなく、ヘッドライトやルームライトなどの発光装置に電力を供給することができる。また、二次電池は、車両2603が有するスピードメーター、タコメーター、ナビゲーションシステムなどの表示装置および半導体装置に電力を供給することができる。
 車両2603は、二次電池2602が有する二次電池にプラグイン方式や非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。
 図8Eは地上設置型の充電装置2604から、ケーブルを介して車両2603に充電している状態を示している。充電に際しては、充電方法やコネクターの規格等はCHAdeMO(登録商標)やコンボ等の所定の方式で適宜行えばよい。例えば、プラグイン技術によって、外部からの電力供給により車両2603に搭載された二次電池2602を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。充電装置2604は、図8Eのように住宅に備えられたものであってもよいし、商用施設に設けられた充電ステーションでもよい。
 また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路や外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、車両どうしで電力の送受信を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時や走行時に二次電池の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式や磁界共鳴方式を用いることができる。
 また図8Eに示す住宅は、本発明の一態様である二次電池を有する蓄電システム2612と、ソーラーパネル2610を有する。蓄電システム2612は、ソーラーパネル2610と配線2611等を介して電気的に接続されている。また蓄電システム2612と地上設置型の充電装置2604が電気的に接続されていてもよい。ソーラーパネル2610で得た電力は、蓄電システム2612に充電することができる。また蓄電システム2612に蓄えられた電力は、充電装置2604を介して車両2603が有する二次電池2602に充電することができる。
 蓄電システム2612に蓄えられた電力は、住宅内の他の電子機器にも電力を供給することができる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る蓄電システム2612を無停電電源として用いることで、電子機器の利用が可能となる。
 本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
 本実施例では、導電材として還元された酸化グラフェンを有する正極を有する二次電池(試料1A)を作製し、その特性を評価した。
<二次電池の作製>
 評価のため、CR2032タイプ(直径20mm高さ3.2mm)のコイン型の二次電池を作製した。
 二次電池の正極活物質には市販のLCO(日本化学工業製C−10N)を用いた。導電材として酸化グラフェン(仁科マテリアル社製、酸化工程においてModified Hummers法を用いたもの)を用いた。これは後の工程で還元される。バインダにはPVDF(solvay社TA5130)を用いた。正極活物質:導電材:バインダ=95:3:2(重量%)となるように混合し、スラリーを作製した。溶媒にはNMPを用いた。該スラリーを集電体に塗工した。なお、集電体にはアルミニウム箔を用いた。
 次に、乾燥処理を行った。当該乾燥処理は、通風乾燥炉により、通風状態において、設定温度50℃で1時間の熱処理の後、設定温度を80℃まで昇温し、80℃30分間の熱処理を行った。
 続いて、熱処理を行った。当該熱処理は、真空下において、設定温度130℃で10時間の熱処理を行った。
 次に、正極活物質層内の酸化グラフェンを還元した。
 まず、化学還元を行なった。化学還元の還元剤にはL−アスコルビン酸を用いた。溶媒は水:NMP=1:9(体積比)として、0.078mol/LのL−アスコルビン酸溶液を作製した。アスコルビン酸溶液に正極活物質層を塗工した電極を浸け、60℃で1時間反応させた。
 続いて、加熱温度170℃、加熱時間10時間で熱還元を行った。
 還元処理後に線圧210kN/mで加圧し、その後線圧1467kN/mでもう一度プレスし、正極とした。
 対極にはリチウム金属を用いた。
 電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)で混合されたものを用い、さらに添加剤としてビニレンカーボネート(VC)を2wt%添加した。
 セパレータには厚さ25μmのポリプロピレンを用いた。
 正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いた。
<電池特性およびサイクル特性>
 次に試料1Aについて充放電試験を行った。充電はCCCV(0.5C、4.2V、終止電流0.05C)、放電はCC(0.5C、終止電圧2.5V)とし、25℃で測定した。なお本実施例等において1Cは137mA/gとした。
 試料1Aの充放電曲線を図9に示す。試料1Aは十分に充放電が可能であった。また、試料1Aは正極活物質層の強度も良好であった。
 このように導電材として酸化グラフェンを用いた二次電池は、正極活物質層の強度、放電特性等の点で良好であった。
 101 混合物、102 混合物、103 混合物、104 混合物、300 二次電池、301 正極缶、302 負極缶、303 ガスケット、304 正極、305 正極集電体、306 正極活物質層、307 負極、308 負極集電体、309 負極活物質層、310 セパレータ、400 二次電池、410 正極、411 正極活物質、413 正極集電体、414 正極活物質層、420 固体電解質層、421 固体電解質、430 負極、431 負極活物質、433 負極集電体、434 負極活物質層、500 二次電池、503 正極、506 負極、507 セパレータ、508 電解液、509 外装体、510 正極リード電極、511 負極リード電極、520 固体電解質層、600 二次電池、601 正極キャップ、602 電池缶、603 正極端子、604 正極、605 セパレータ、606 負極、607 負極端子、608 絶縁板、609 絶縁板、611 PTC素子、612 安全弁機構、613 導電板、614 導電板、615 モジュール、616 導線、617 温度制御装置、904 正極活物質、913 二次電池、930 筐体、931 負極、932 正極、933 セパレータ、950 捲回体、951 端子、952 端子、2100 携帯電話機、2101 筐体、2102 表示部、2103 操作ボタン、2104 外部接続ポート、2105 スピーカ、2106 マイク、2107 二次電池、2300 無人航空機、2301 二次電池、2302 ローター、2303 カメラ、2601 二次電池、2602 二次電池、2603 車両、2604 充電装置、2610 ソーラーパネル、2611 配線、2612 蓄電システム

Claims (7)

  1.  活物質、グラフェン化合物を有する導電助剤、結着剤、および分散媒を有する混合物を集電体に塗布し、
     前記混合物に対し、乾燥処理を行い、
     前記混合物に対し、前記乾燥処理よりも高い温度で、熱処理を行い、
     前記混合物中の前記グラフェン化合物を、還元剤を用いた化学反応により還元し、
     前記混合物に対し、前記熱処理よりも高い温度で、熱還元処理を行う電極の作製方法。
  2.  活物質、グラフェン化合物を有する導電助剤、結着剤、および分散媒を有する混合物を集電体に塗布し、
     前記混合物に対し、乾燥処理を行い、
     前記混合物に対し、前記乾燥処理よりも高い温度、かつ前記乾燥処理よりも長時間で、熱処理を行い、
     前記混合物中の前記グラフェン化合物を、還元剤を用いた化学反応により還元し、
     前記混合物に対し、前記熱処理よりも高い温度で、熱還元処理を行う電極の作製方法。
  3.  請求項1または請求項2において、
     前記乾燥処理の温度は、R.T.以上90℃以下である、電極の作製方法。
  4.  請求項1乃至請求項3のいずれか一項において、
     前記熱処理の温度は、120℃以上140℃以下である、電極の作製方法。
  5.  請求項1乃至請求項4のいずれか一項において、
     前記熱還元処理の温度は、120℃以上180℃以下である、電極の作製方法。
  6.  請求項1または請求項2において、
     前記熱処理の温度は、120℃以上140℃以下であり、
     前記熱還元処理の温度は、120℃以上180℃以下である、電極の作製方法。
  7.  請求項1乃至請求項6のいずれか一項において、
     前記グラフェン化合物は、RGOである電極の作製方法。
PCT/IB2020/062267 2019-12-27 2020-12-21 電極スラリーの作製方法、電極の作製方法、正極の作製方法、二次電池用電極、二次電池用正極 WO2021130646A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227019711A KR20220127230A (ko) 2019-12-27 2020-12-21 전극 슬러리의 제작 방법, 전극의 제작 방법, 양극의 제작 방법, 이차 전지용 전극, 이차 전지용 양극
CN202080089551.3A CN114846647A (zh) 2019-12-27 2020-12-21 电极浆料的制造方法、电极的制造方法、正极的制造方法、二次电池用电极、二次电池用正极
US17/788,369 US20230028284A1 (en) 2019-12-27 2020-12-21 Manufacturing method of electrode slurry, manufacturing method of electrode, manufacturing method of positive electrode, electrode for secondary battery, and positive electrode for secondary battery
JP2021566382A JPWO2021130646A5 (ja) 2020-12-21 電極の作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-238615 2019-12-27
JP2019238615 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021130646A1 true WO2021130646A1 (ja) 2021-07-01

Family

ID=76575739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/062267 WO2021130646A1 (ja) 2019-12-27 2020-12-21 電極スラリーの作製方法、電極の作製方法、正極の作製方法、二次電池用電極、二次電池用正極

Country Status (4)

Country Link
US (1) US20230028284A1 (ja)
KR (1) KR20220127230A (ja)
CN (1) CN114846647A (ja)
WO (1) WO2021130646A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199793A (ja) * 2012-06-15 2014-10-23 株式会社半導体エネルギー研究所 蓄電池用電極の製造方法、蓄電池用電極、蓄電池、及び電子機器
JP2017199670A (ja) * 2016-04-21 2017-11-02 東レ株式会社 リチウムイオン電池用正極材料およびその製造方法、リチウムイオン電池用正極、リチウムイオン電池
JP2018063957A (ja) * 2011-06-03 2018-04-19 株式会社半導体エネルギー研究所 電極の作製方法
WO2018123778A1 (ja) * 2016-12-27 2018-07-05 東レ株式会社 電極材料の製造方法、電極材料および二次電池用電極
JP2019016610A (ja) * 2012-04-10 2019-01-31 株式会社半導体エネルギー研究所 非水系二次電池用正極の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3921931B2 (ja) 2000-09-29 2007-05-30 ソニー株式会社 正極活物質及び非水電解質電池
CN106207082A (zh) 2010-08-19 2016-12-07 株式会社半导体能源研究所 电气设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063957A (ja) * 2011-06-03 2018-04-19 株式会社半導体エネルギー研究所 電極の作製方法
JP2019016610A (ja) * 2012-04-10 2019-01-31 株式会社半導体エネルギー研究所 非水系二次電池用正極の製造方法
JP2014199793A (ja) * 2012-06-15 2014-10-23 株式会社半導体エネルギー研究所 蓄電池用電極の製造方法、蓄電池用電極、蓄電池、及び電子機器
JP2017199670A (ja) * 2016-04-21 2017-11-02 東レ株式会社 リチウムイオン電池用正極材料およびその製造方法、リチウムイオン電池用正極、リチウムイオン電池
WO2018123778A1 (ja) * 2016-12-27 2018-07-05 東レ株式会社 電極材料の製造方法、電極材料および二次電池用電極

Also Published As

Publication number Publication date
JPWO2021130646A1 (ja) 2021-07-01
CN114846647A (zh) 2022-08-02
US20230028284A1 (en) 2023-01-26
KR20220127230A (ko) 2022-09-19

Similar Documents

Publication Publication Date Title
JP7292356B2 (ja) 蓄電池用電極の製造方法
JP7010913B2 (ja) 非水系リチウム二次電池用正極の作製方法
JP7044908B2 (ja) 二次電池の作製方法
US11848439B2 (en) Electrode for lithium-ion secondary battery and manufacturing method thereof, and lithium-ion secondary battery
JP6882555B2 (ja) リチウムイオン二次電池、電子機器、移動体、電気自動車、及びリチウムイオン二次電池の正極
JP6452941B2 (ja) 蓄電池用電極
JP7104084B2 (ja) リチウムイオン電池
JP2015097199A (ja) 二次電池
JP2014063724A (ja) 二次電池用正極、二次電池、及びその製造方法
US9929408B2 (en) Electrode member, secondary battery, and method for manufacturing electrode member
JP2022103407A (ja) 電極
WO2021130610A1 (ja) 正極活物質層、活物質層、正極、二次電池および車両
WO2021130646A1 (ja) 電極スラリーの作製方法、電極の作製方法、正極の作製方法、二次電池用電極、二次電池用正極
WO2021181197A1 (ja) 二次電池およびその作製方法、及び車両
WO2021079231A1 (ja) 電極、二次電池および電子機器
CN116057010A (zh) 正极活性物质的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904886

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566382

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904886

Country of ref document: EP

Kind code of ref document: A1