WO2021130306A1 - Dispositif de recuperation d'un navire a la mer - Google Patents

Dispositif de recuperation d'un navire a la mer Download PDF

Info

Publication number
WO2021130306A1
WO2021130306A1 PCT/EP2020/087758 EP2020087758W WO2021130306A1 WO 2021130306 A1 WO2021130306 A1 WO 2021130306A1 EP 2020087758 W EP2020087758 W EP 2020087758W WO 2021130306 A1 WO2021130306 A1 WO 2021130306A1
Authority
WO
WIPO (PCT)
Prior art keywords
cradle
lines
axis
stabilization
recovery device
Prior art date
Application number
PCT/EP2020/087758
Other languages
English (en)
Inventor
François Warnan
Olivier Jezequel
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to AU2020411001A priority Critical patent/AU2020411001A1/en
Priority to US17/787,305 priority patent/US20230016702A1/en
Publication of WO2021130306A1 publication Critical patent/WO2021130306A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/36Arrangement of ship-based loading or unloading equipment for floating cargo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/16Arrangement of ship-based loading or unloading equipment for cargo or passengers of lifts or hoists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/16Arrangement of ship-based loading or unloading equipment for cargo or passengers of lifts or hoists
    • B63B2027/165Deployment or recovery of underwater vehicles using lifts or hoists

Definitions

  • the invention relates to the general field of recovery, from a surface station, propelled surface ships or powered submarine ships.
  • the surface station is, for example, a surface ship ("surface ship" in English terminology) or a ground station, that is to say a station fixed with respect to the earth, such as, for example , a seaport.
  • the invention relates, more particularly, to devices for recovering ships at sea, installed on a surface station, as well as to methods for recovering ships using this type of recovery device.
  • the invention relates in particular to the hoisting of a ship, from sea level to a position situated above sea level, for example at the level of a platform of the surface station on which the ship is intended to be stored.
  • the invention is particularly interesting for the recovery of surface vessels from a surface vessel, where the vessel and the surface vessel can move relative to each other while on the same wave.
  • a major problem in recovery operations for a propelled, floating or submersible marine vehicle consists of securing operations, both from the point of view of the operators involved and from the point of view of the equipment.
  • the ship and the surface vessel are two mobile units which react to different stresses and therefore have different and uncontrollable movements on the sea. 'they are far from each other, they constitute masses which are not likely to collide with each other. The risk of collision between these two masses is high, in particular due to the sea state formed, when a connection is established between these two masses.
  • a solution to limit the risk of collision, when these two masses are connected to each other, is to ensure a mechanical decoupling between these two masses in order to limit the transmission of movements from one to the other. 'other. This makes it possible to guarantee relative safety during the recovery of the vessel in heavy seas.
  • This device comprises a nacelle intended to support the vessel to be recovered.
  • the nacelle is connected to a rail attached to the host building and extending vertically in calm sea conditions.
  • the means of connection between the nacelle and the rail make it possible to ensure freedom of movement of the cradle in pitch, yaw, roll and heave (“pitch, yaw, roll, heave” in English terminology).
  • the device comprises a lifting device comprising an upper frame located above the cradle and connected to the nacelle by hangers, the length of which is adjusted by winches.
  • the nacelle can be hoisted, by translation along the rail, from a position in which it floats on the surface of the water to a high part of the rail located above the main deck of the host building ("host ship »In Anglo-Saxon terminology).
  • the hangers are flexible elements which allow relative movement between the nacelle and the host building while forming a permanent link between the nacelle and the host building.
  • the nacelle may be either floating, which only makes it possible to recover surface vessels, or sinking, which makes it possible to recover underwater and surface vessels but with a significant risk, for the ship N to strike the nacelle.
  • An object of the invention is to limit at least one of the aforementioned drawbacks.
  • the invention relates to a device for recovering a ship at sea from a surface station, the recovery device comprising:
  • a lifting device comprising an upper frame and a set of hangers connecting the cradle to the upper frame, the lengths of the hangers being variable so as to allow the cradle to be raised and lowered
  • the set of hangers comprising a first hanger of stabilization and a second stabilization line adapted to be in a stabilization configuration in which the first stabilization line and the second stabilization line are in tension and extend linearly, and in which a first orthogonal projection of the first stabilization line on a transverse plane defined by a z axis, linked to the upper frame and extending substantially vertically in calm sea conditions, and by a y axis orthogonal to the z axis, and a second orthogonal projection of the second stabilization line on the transverse plane, are inclined relative to each other so as to limit a sway of the cradle water in relation to the upper frame.
  • the vessel is intended to rest on the cradle under the effect of gravity during hoisting.
  • the device comprises an attachment connecting a first attachment point of the cradle to a second fixed attachment point, in the receiving configuration, relative to the upper frame in translation along the y axis and / or according to an x axis orthogonal to the y axis and the z axis.
  • the device comprises:
  • the connecting piece is in a ball joint connection or in connection with three degrees of freedom in rotation and one degree of freedom in translation along an axis parallel to an axis x linked to the upper frame and perpendicular to the y axis and the z axis, with the cradle.
  • the recovery device is configured to recover a ship moving on the surface of the water, for example, towards the connecting piece, in calm sea conditions, preferably along an axis of advance parallel to a x axis linked to the upper frame and perpendicular to the y axis and the z axis.
  • first orthogonal projection and the second orthogonal projection intersect.
  • the first stabilization line and the second stabilization line are able to be in a rest configuration in which the first stabilization line and the second stabilization line are in tension and in which a third orthogonal projection of the first stabilization hanger on the transverse plane and a fourth orthogonal projection of the second stabilization hanger on the transverse plane, has a lower inclination, with respect to each other, than in the stabilization configuration so that a swing of the cradle relative to the upper frame is more limited when the lines are in the stabilization configuration than when they are in the rest configuration.
  • the set of lines comprises hoisting lines arranged so as to allow the cradle to be hoisted with zero heel in calm sea conditions and to adjust the attitude of the cradle, each hoisting line having an orthogonal projection on the plane being able to present a single predetermined orientation in calm sea conditions, when the hoisting line is in tension and extends linearly.
  • the device comprises means for adjusting the lengths of the lines configured to keep the lines of the assembly of lines substantially in tension during a stabilized hoisting step during which the adjustment means hoist the cradle towards the upper frame, the recovery device being in the recovery configuration and the stabilization lines being in the stabilization configuration.
  • the adjustment means are configured to keep the lines of the set of lines in tension during the stabilized hoisting step.
  • the adjustment means are configured to continuously reduce the lengths of the lines of the set of lines during the stabilized hoisting step.
  • the device comprises connecting means for connecting a bow of the ship to the cradle so as to prevent movement of the ship relative to the cradle along the x axis forward.
  • the invention also relates to a method of stabilizing a cradle of a device according to the invention, in which the lines of the set of lines are maintained substantially in tension, the stabilization lines being in the stabilization configuration.
  • the invention also relates to a method for hoisting a ship overboard using a recovery device according to the invention.
  • the hoisting process comprises a stabilized hoisting step during which the cradle is hoisted towards the upper frame under the effect of a variation in the length of the lines, the recovery device being in the recovery configuration and the stabilization lines being in the stabilization configuration.
  • the proposed solution makes it possible to limit the relative sway between the cradle and the surface platform. It makes it possible to limit the risk of collision between the vessel to be recovered and the surface platform while being light and not very bulky.
  • FIG. 1 is a schematic illustration of a device for recovering a ship according to the invention in a receiving configuration, when the cradle is in a receiving orientation, before receiving a ship,
  • FIG. 2 is a block diagram of the means of the recovery device according to the invention.
  • FIG. 3 is a schematic illustration of the device for recovering a ship according to the invention in the reception configuration, when the cradle is in a reception orientation, after reception of a ship
  • FIG. 4 is a schematic illustration of the device for recovering a ship according to the invention in the reception configuration, when the cradle is in a hoisting orientation, after reception of a ship
  • FIG. 5 is a schematic illustration of the device for recovering a ship according to the invention, in the receiving configuration, when the cradle is in a hoisting orientation, after receiving a ship, the stabilization lines being in a stabilization configuration,
  • FIG. 6 illustrates the sway of an assembly formed by the cradle and the ship resting on the cradle, when the stabilization lines are parallel to each other (on the left) and when their projections on a plane (y, z) intersect (to the right),
  • FIG. 7 shows schematically successive views a to f, in the y, z plane, of the hoisting of the assembly formed by the ship and the cradle by re-tensioning the lines which relax under the effect of the swaying of the '' together in relation to the host building,
  • FIG. 8 shows schematically in perspective the sway of the assembly relative to the host building
  • FIG. 9 shows schematically projections of the stabilization lines in the stabilization configuration on the y, z plane
  • FIG. 10 is a schematic illustration, in perspective, of the recovery device of a ship according to the invention, in the receiving configuration, when the cradle is in a hoisting orientation and the assembly is above the sea level,
  • FIG. 11 is a schematic illustration, in side view, of the recovery device of a ship according to the invention, in the receiving configuration, when the cradle is in a hoisting orientation and arrives at a part high of a guide rail,
  • - Figure 12 is a schematic illustration, in side view, of the recovery device of a ship according to the invention after sliding the assembly along a guide extending along the deck of the ship
  • - Figure 13 is a schematic illustration, in top view, a cradle linked to a float having a variable angular opening, in top view (left), in rear view (in the middle) and in top view, after reduction of the angular opening of the float (right).
  • the invention relates to a device for recovering a self-propelled ship, that is to say a ship comprising propulsion means, from a surface station on which the recovery device is mounted.
  • the surface station can be a surface ship ("surface ship” in English terminology), as in the non-limiting example of the figures.
  • the surface station is, for example, alternatively, a station fixed with respect to the earth such as, for example, a quay of a seaport.
  • the invention applies, for example, to the recovery of autonomous vehicles or remotely controlled vehicles.
  • the vessel to be recovered is, for example, a self-propelled surface vessel, such as for example a USV ("Unmanned Surface Vehicle” according to English terminology) or a submersible vessel, for example of the UUV type ("Unmanned Surface Vehicle” Underwater Vehicle “according to Anglo-Saxon terminology).
  • a self-propelled surface vessel such as for example a USV ("Unmanned Surface Vehicle” according to English terminology) or a submersible vessel, for example of the UUV type ("Unmanned Surface Vehicle” Underwater Vehicle “according to Anglo-Saxon terminology).
  • FIG. 1 schematically represents an example of a device D for recovering a submerged vessel N located at the level of the surface S of the water (sea level), from a surface building H, called a host building (“Host ship” in Anglo-Saxon terminology) in the remainder of the text.
  • Device D is mounted on host building H.
  • the device D comprises a nacelle NA comprising a cradle B intended to support the vessel N so as to allow the vessel N to be hoisted under the effect of the hoisting of the cradle B.
  • the device is configured so that the vessel N is intended to rest on the cradle under the effect of gravity during hoisting.
  • the ship N is then resting on the cradle B along the axis z.
  • the cradle B preferably has negative buoyancy which allows the recovery of a submarine ship N navigating underwater.
  • the cradle B has positive buoyancy, which only allows the recovery of a vessel N navigating on the surface. Zero buoyancy is also possible.
  • the recovery device is intended to hoist the cradle B and therefore the ship N resting on the cradle B, from sea level or from a fully submerged position located below sea level, up to a hoisted position in which the cradle B is located facing the sea above sea level.
  • the hoisted position is advantageously a position located above a platform of the surface station along a vertical axis so as to be able to store the vessel N on the platform from the hoisted position.
  • the recovery device D is able to hoist the ship N from sea level, to a hoisted position of higher altitude than the main deck P, of the host building H, on which the ship N is intended for storage.
  • the altitude of a point is defined along a vertical axis from sea level. It is positive when the point is at sea level and negative when the point is below sea level.
  • the platform is, for example, a platform of a wharf of a sea port.
  • the recovery device is able to bring the ship into a storage position on the deck of the ship from the hoisted position, by translation of the ship N along a horizontal axis in calm sea conditions as is described in patent application FR3062844.
  • the recovery device D comprises a lifting device LEV mounted on the host building H and comprising an upper frame CS and a set of hangers 11 to 16 connecting the upper frame CS to the cradle B.
  • the recovery device D is adapted to be in a recovery configuration, as shown in Figures 1 to 11, in which the cradle B is located facing the sea, the upper frame CS is fixed relative to the host building H and is facing the cradle B and in which the hangers 11 to 16 connect the upper frame CS to the cradle B.
  • the lengths of the lines 11 to 16 are variable so as to make it possible to vary a distance of the cradle B relative to the upper frame CS along a vertical axis by variations in the lengths of the lines.
  • a reduction in the length of the lines makes it possible to hoist the cradle B towards the upper frame CS.
  • An increase in the length of the lines allows the B subframe to be lowered away from the CS upper frame.
  • the LEV lifting device makes it possible to hoist the cradle B from sea level or from a position in which the cradle B is totally submerged and below the surface of the water, to the hoisted position , when the device D is in the recovery configuration, under the effect of a variation in the length of the lines 11 to 16 of the assembly and more particularly under the effect of a reduction in their length.
  • the lifting device in the recovery configuration advantageously, but not necessarily, allows the vessel N to be lowered from the hoisted position to sea level or to a fully submerged position located below the level of the sea. sea.
  • the recovery device is then also a device for launching the vessel N. This is also obtained by a variation in the length of the lines of the assembly and more particularly under the effect of an increase in the length of these lines.
  • the device D also comprises means REG for adjusting the lengths of the lines configured to allow the lengths of the lines to be adjusted independently of each other.
  • REG adjustment means include a set T of motorized winches, as shown in Figure 2, to vary the lengths of the hangers independently and COM control means to control the winches of the set T from winch as shown in figure 2.
  • the set T of winches comprises, for example, one winch per line, each winch being able to adjust the length of a single line. Winches the set T can be controlled independently of each other by means for controlling the winches.
  • the recovery device includes an AR attachment connecting a first CT attachment point of the cradle B to the host building H permanently when hoisting the cradle B.
  • the AR attachment comprises a link member OL connecting the first attachment point CT of the cradle B to a second attachment point C fixed, in the recovery configuration, relative to the upper frame CS (it is i.e. to the host vessel H), in translation along an x axis and / or along a y axis linked to the upper frame CS and horizontal in calm sea conditions, so that the first attachment point CT is linked to at least three degrees of freedom with the second point of attachment C.
  • the connecting member links the cradle B flexibly to the host building H.
  • the cradle B is caused to swing around the second point of attachment C by state of turbulent sea.
  • the vertical direction is defined by the force of gravity. This direction is perpendicular to the sea surface in calm sea conditions.
  • the state of the sea is defined on the Douglas scale.
  • the calm sea corresponds to a sea of zero force.
  • the first point of attachment CT is a front zone of the cradle B along the x axis, in the non-limiting embodiment of the figures.
  • the second attachment point C is, for example, located in front of the first attachment point CT along the x axis.
  • the first attachment point is a central point of a longitudinal end E1 of the cradle B.
  • the first attachment point CT is located substantially in the center of the front end E1 of the cradle B, along the y axis in calm sea conditions.
  • the AR attachment comprises a connecting member OL connecting the first attachment point CT to a first attachment point C which is a connecting part C so that the part connection C is in connection with three degrees of freedom in rotation with the cradle B.
  • the connecting piece C is connected to a guide R fixed to the host building H, that is to say to the frame CS and making it possible to guide the connecting piece C in translation along an axis z, relative to the frame upper CS, during a variation in the length of the lines, when the recovery device is in the recovery configuration.
  • the guide R is in the form of an R rail elongated along a longitudinal axis which is the z axis.
  • the connecting piece C is connected with three degrees of freedom in rotation with the cradle B and in a sliding connection with the rail R along the z axis via the intermediary.
  • the connecting piece C is connected to the cradle B leaving these degrees of freedom of movement through a connecting member OL.
  • the R rail is fixed with respect to the host building H when the recovery device D is in the recovery configuration and arranged so that the z axis extends substantially vertically in calm sea conditions.
  • the cradle B is then connected to the host building H via the rail R and the connecting piece C.
  • the cradle B is connected to a degree of freedom in translation along the z axis with the host building H (or the upper frame CS) and to three degrees of freedom in rotation with the host building H (or the top frame CS).
  • the degree of freedom in translation along the z axis allows the cradle B to be translated, relative to the host building H and relative to the upper frame CS, along the z axis.
  • the three degrees of freedom in rotation ensure a certain decoupling of the movements of the cradle B from those of the host vessel H.
  • the recovery device D also comprises connecting means for connecting a prow PR of the ship N to the cradle B so as to prevent movement of the ship N relative to the cradle B along the x axis forward.
  • the set of hangers of the device D comprises, according to the invention, stabilization lines 15, 16, capable of being in a stabilization configuration, visible in FIG. 5, in which they are in tension, in which they extend linearly and in which their orthogonal projections on a transverse plane (y, z) linked to the upper frame CS, and therefore to the host building H, and defined by the y axis and the z axis, are inclined with respect to each other.
  • the first orthogonal projection of the first stabilization hanger 15 on the transverse plane (y, z) is inclined with respect to the second orthogonal projection of the second stabilization hanger on the transverse plane (y, z).
  • the stabilization lines limit the sway of the cradle B relative to the host building H, in particular its component around the z axis.
  • This limitation of the sway is particularly advantageous when the cradle B is emerged.
  • the stabilization lines 15, 16 are able to be in a stabilization configuration in which the first orthogonal projection of the first stabilization line 15 on the transverse plane (y, z) crosses the second orthogonal projection of the second stabilization line on the transverse plane (y, z).
  • the stabilization lines 15, 16 then make it possible to ensure good limitation of the sway of the cradle B relative to the host building H while occupying a small volume.
  • the recovery device is configured to recover, at sea, a ship N moving, at sea, for example towards the connecting piece C, in calm sea conditions, preferably or essentially along an axis of advance parallel to an x axis, shown in FIG. 1, linked to the upper frame CS and perpendicular to the z axis.
  • the direction of travel parallel to the x axis is defined as the displacement from back to front.
  • the cradle B extends longitudinally along a longitudinal axis I of the cradle B, from the front end E1 of the cradle B to a rear end E2 of the cradle B, and the axis I is suitable for be substantially parallel to the x axis, for example calm sea state, when the recovery device is in the recovery configuration.
  • the front end E1 is located in front of the rear end E2 along the x axis.
  • the cradle B has substantially identical dimensions along the x axis and the y axis in calm sea conditions when the I axis is substantially horizontal.
  • the dimension of the cradle B along the x axis is less than the dimension of the cradle B along the y axis in calm sea conditions when the I axis is substantially horizontal.
  • the cradle B has, advantageously but not necessarily, the general shape of a ship's hull, open, intended to substantially match the shape of the ship N when the latter rests on the cradle B so as to block the transverse movements of the ship N with respect to the cradle B.
  • the transverse movements are movements of the ship N along the y axis in calm sea conditions.
  • the y axis is perpendicular to x and z. This makes it possible to ensure a substantially fixed position of the vessel N relative to the cradle B when the vessel N rests on the cradle B when hoisting the cradle B, in particular in calm sea conditions.
  • the recovery device D is advantageously mounted on the host building H so that the x axis is parallel to a main axis of movement p according to which the host building H is intended for moving mainly.
  • the p-axis extends backwards towards the front of the host vessel H. It is generally, but not necessarily, a longitudinal axis of the host vessel H along which the host vessel H s' extends longitudinally.
  • the receiving device D is advantageously mounted on the host building H so that the cradle B or its support zone ZS, on which the cradle B is intended to support the vessel N, extends completely behind a rear panel TA of the host building H when the receiving device is in the recovery configuration. This allows ship N to be retrieved from behind the host H building.
  • the reception device D is mounted on the host building H so that the cradle B is disposed on one side of the host building H, that is to say next to the host building H, according to the 'axis y.
  • the reception device D then makes it possible to recovering a vessel N moving parallel to the main axis p and arriving next to the host vessel H along the axis y.
  • the device D is shown schematically during a reception phase of the ship N, during which the ship N is positioned above the cradle B, between the cradle B and the upper frame CS .
  • the stabilization lines 15, 16 are advantageously maintained in a rest configuration shown in Figure 3, in which the stabilization lines 15, 16 are stretched and substantially parallel to each other , that is to say, more generally, in which a third orthogonal projection of the first hanger is substantially parallel to the orthogonal projection of the second hanger on the transverse plane (y, z) and spaced along the y axis .
  • This possibility of the stabilization lines 15, 16 to be in the rest configuration makes it possible not to hinder the vessel N in its movement along the x axis towards the guide R.
  • the cradle B has a positive attitude.
  • the rear end E2 of the cradle B is located at a lower altitude than the end E1.
  • the E2 end is located at a greater depth than the E1 end.
  • This reception orientation makes it possible to facilitate and secure the arrival of the ship N opposite the cradle B, above the cradle B, when the ship N is moving along the x axis. Indeed, this reception orientation moves the cradle B away from the volume in which the AUV will penetrate to come opposite the cradle B which makes it possible to limit the risks of shocks and friction between the vessel N and the cradle B during this surgery. The risk of damage to the vessel N is thus limited.
  • the connecting means connect the prow PR of the ship N to the cradle B so as to prevent a movement of the ship N relative to the cradle B along an axis x forward.
  • the LEV lifting device comprises a set of lines 11 to 16 comprising hoisting lines 11 to 14 and the stabilization lines 15, 16.
  • the hangers 11 to 16 are arranged and connected to the cradle B so as to allow the cradle B to be hoisted with zero heel, the cradle B then being substantially symmetrical with respect to a vertical plane passing through the axis I, by calm sea state and in such a way as to allow the attitude of the cradle B to be varied by adjusting the lengths of the lines.
  • the set of lines comprises at least two lines connected to the cradle B so as to exert respective vertical traction on the cradle B at respective points spaced along the axis I or, more generally, along the axis connecting the ends E1 and E2 of the cradle B.
  • This arrangement makes it possible to change the cradle B from the reception orientation of FIG. 3 to a hoisting orientation, from the FIG. 4 in which the cradle B has a zero trim in a calm sea state.
  • the set of lines 11 to 16 comprises at least two lines connected to the cradle B so as to exert respective vertical pulls on the cradle B at respective points spaced along the y axis in calm sea conditions.
  • the hoisting lines are configured in these last two ways.
  • it is the set of lines, including stabilization lines, which is configured in these last two ways, the number of lines may then be lower.
  • the set of lines comprises two pairs of hoisting lines 11, 12 and 13, 14.
  • the lines 11 and 12 of the first pair of lines exert vertical traction on the cradle B at points P1 and P2 respectively, visible in Figure 3, located near the end E1, substantially at the same distance from the 'end E1.
  • the lines 13 and 14 of the second pair of lines exert vertical tensile forces on the cradle B at points P3 and P4, visible in Figure 1, located near the end E2, substantially at the same distance from the end E2.
  • Both lines of each pair of hoisting lines 11 and 12 exert vertical traction on the cradle B at points P1 and P2 (respectively P3 and P4) spaced along the y axis in calm sea conditions, arranged on either side of the x plane , z passing through connecting piece C in calm sea conditions.
  • P1 and P2 (P3 and P4 respectively) are separated, by calm sea conditions, by a plane parallel to the x and z axes passing through the connecting piece C.
  • the length of the lines 13 to 14 and preferably 13 to 16 is reduced.
  • the ship N comes to rest on the cradle B so as to have a substantially fixed position relative to the cradle B.
  • the length of the lines of the assembly is then reduced so as to hoist the cradle B in its hoisting orientation by sliding along the z axis.
  • the movements of the vessel N begin to be controlled by the lines 11 to 16 due to the vertical traction they exert on the cradle B.
  • the assembly E formed by the cradle B and the vessel N connected to the cradle B and resting on the cradle B can still swing relative to the host building H under the effect of the waves, due to the connection with three rotational degrees of freedom, which provides a certain flexibility to the connection.
  • the stabilization lines 15 and 16 are brought into the stabilization configuration as shown. in figure 5.
  • the stabilization lines 15, 16 include, for example, each a first longitudinal end e1, e1 'fixed to the cradle B and a second longitudinal end e2, e2' connected to the CS top frame.
  • the LEV lifting device comprises ENT drive means, referenced in FIG. 2, making it possible to pass the stabilization lines 15 and 16 from the rest configuration to the stabilization configuration by moving the second ends e2, e2 'of each of the stabilization lines 15, 16 in the opposite direction along the y axis to bring the stabilization lines 15, 16 into the stabilization configuration of FIG. 5.
  • the second end e2, e2 'of each stabilization line 15, 16 is moved, approaching, along the y axis, the position occupied by the second end e2', e2 of the other stabilization line in the rest configuration .
  • COM control means are able to control the ENT drive means.
  • the sway of the assembly E is limited with respect to the host building H.
  • the orthogonal projections of the stabilization lines 15, 16 on the plane (y, z) intersect or, more generally, when they are inclined with respect to each other, the movement of the center of gravity of the assembly E is made more difficult.
  • the center of gravity G of the assembly E moves on a first gutter G1 in a plane transverse parallel to (y, z) up to an extreme position PE1.
  • the cradle B which is connected to the rail R from the front, by a connection with three degrees of freedom in rotation, undergoes a sway which is a combination of movements around the three axes and in particular around the z axis.
  • a sway which is a combination of movements around the three axes and in particular around the z axis.
  • the recovery device D makes it possible to make the sway of the assembly E with respect to the rail R around the axis z more and more constrained as the hoisting continues.
  • the constraints on the movement of the assembly E relative to the host vessel H increase slowly and gradually while avoiding the installation of a stop which would limit its sway but which the vessel N could come up against with risks of deterioration of the ship N.
  • this solution does not require heavy or bulky shock absorbers to damp the swaying movement of the assembly by dissipation of energy. This solution is based on lines which are light and not very bulky.
  • This solution also makes it possible to take advantage of the natural sway of the cradle B relative to the host building H, under the effect of the waves, to facilitate the hoisting of the assembly E and to hoist the assembly E smoothly taking advantage of the alternating tension phases and holding the lines.
  • a particular configuration of the set of T winches and of the COM control means of the set of winches can be implemented for this purpose.
  • the relative swing of the assembly E with respect to the host building H is a swing around the axes x, y and z.
  • This swing includes a component along the z axis which causes some lines to relax as seen in view b of FIG. 7.
  • this swing under the effect of the waves, is done without effort on the part of the winches T
  • the set of winches T so as to restore or maintain tension, on each swing of the assembly E with respect to the rail R, the lines which relax or tend to relax under the effect of the swinging.
  • the means REG for adjusting the lengths of the lines are advantageously configured to keep the lines 11 to 16 substantially taut, that is to say in tension permanently or at least during a phase of hoisting the cradle B or of the set E starting when the cradle B is submerged or at least during a phase of hoisting the cradle B or of the set E starting when the cradle B has emerged.
  • the REG adjustment means are configured to hold the lines 11 with 16 tensioned, that is to say, under tension, permanently or at least during a phase of hoisting of the cradle B beginning when the cradle B is submerged, or at least during a phase of hoisting of the cradle B or of the set E starting when the cradle B has emerged.
  • the REG adjustment means are configured to keep each line in constant tension.
  • the REG adjustment means are configured to continuously reduce the length of each of the lines 11 to 16 during a stabilized hoisting phase during which the stabilization lines are in the stabilization configuration.
  • the REG adjustment means are configured to maintain the lines 11 to 16 substantially in tension by increasing, for example, the speed of reduction of the lengths of the lines which relax or which tend to relax under the effect of the sway of the cradle B relative to the host building H while continuing to reduce the lengths of the lines which are stretched under the effect of the sway of the cradle B relative to the host building H.
  • the REG adjustment means are configured to reduce the length of each line at a predetermined fixed hoisting speed of the line concerned in the absence of swaying of the cradle B with respect to the rail R, then the adjustment means are configured so as to reduce the length of each hanger which tends to stretch under the effect of the relative sway of the cradle B and of the rail R at a speed higher than the predetermined speed and so reducing the length of each line which tends to relax under the effect of the relative sway of the cradle and the rail R at a speed lower than the predetermined speed.
  • the REG adjustment means comprise, as shown in FIG. 2, means for monitoring SURV of the tension of the lines 11 to 16 making it possible to measure a physical quantity representative of the tensions of the lines, that is to say say about the inclination of the cradle B relative to the host ship H, for example around the axis z.
  • SURV monitoring means comprise, for example, an inclinometer making it possible to measure an inclination of the lines, an acceleration sensor, a first inertial unit making it possible to measure an orientation of the cradle and / or a second inertial unit making it possible to measure an orientation of the cradle.
  • host building H at least one tension sensor, each tension sensor making it possible to measure the tension of a line.
  • the orientation of the host building and / or of the cradle can as a variant be measured from one or more acceleration sensors and / or one or more gyrometers each making it possible to measure a component of an angular velocity vector and / or at from a position sensor.
  • the invention also relates to a method for stabilizing the cradle B or of the assembly E consisting in maintaining the lines 11 to 16 of the assembly of lines substantially in tension, and preferably in tension, during a relative swing of the cradle B with respect to the host building H, the recovery device being in the recovery configuration, the stabilization method comprising a step consisting in bringing the stabilization lines from the rest configuration to the stabilization configuration.
  • the stabilization method is implemented when the cradle B extends above sea level, that is to say when its support zone ZS extends above the level. of the sea.
  • the invention also relates to a method for hoisting the cradle B, or the assembly E, the recovery method comprises a stabilized hoisting step of the cradle or of the assembly E, for example from the level of the sea, or from a lower or higher level, to a hoisted position situated above sea level, in which the lines 11 to 16 are maintained substantially in tension, and are preferably maintained in tension, while the cradle B slides along the z axis towards the upper frame CS, the recovery device D being in the recovery configuration and the stabilization lines being in the stabilization configuration.
  • the method comprises a positioning step, prior to the stabilization or stabilized hoisting step, consisting in putting the lines in the stabilization configuration.
  • the lines are in the stabilization configuration throughout the duration of the hoisting step or until the end of the hoisting procedure, from the moment when the cradle B is located above the sea level (i.e. is emerged) or from when cradle B is located at sea surface level or from a position in which cradle B is fully submerged.
  • the lines are maintained in constant tension throughout the duration of the stabilized hoisting step and / or of the stabilization process.
  • the length of each of the lines 11 to 16 of the assembly is continuously reduced.
  • the rate of reduction in the length of each of the lines is non-zero and positive during the hoisting step.
  • the method advantageously comprises a step in which the cradle is passed from a reception orientation to a rest orientation by adjusting the lengths of the lines. This step is prior to the stabilized hoisting step and preferably prior to the step in which the stabilization lines are placed in the stabilization configuration.
  • the inclination of the projections of the stabilization lines 15, 16 on the transverse plane (y, z), one with respect to the other, allows also to limit the sway of the cradle B relative to the host building H outside of the hoisting phases by configuring the adjustment means appropriately, in particular the component of the sway around the axis z.
  • the stabilization lines 15, 16 are connected to the cradle B so as to each exert a vertical traction on the cradle B, substantially at the level of the end E2 of the cradle B .
  • the stabilization lines 15, 16 are connected to the cradle B so as to each exert a vertical traction on the cradle B at a distance from the first point along the perpendicular x axis. in the (y, z) plane in a calm sea state and preferably substantially at an end furthest from the first attachment point along the x axis perpendicular to the (y, z) plane in a sea state calm. This makes it possible to limit the sway of the cradle B relative to the host building in an efficient manner.
  • the stabilization lines 15, 16 each exert a vertical traction on the cradle B at a distance from the end E2 and from the end E1, along the axis I.
  • the orthogonal projections PROJ15, PROJ16 of the stabilization lines 15, and respectively 16, on the transverse plane (y, z) as shown schematically in FIG. 9 cross. They form an angle a between them.
  • This angle is the difference between the oriented angle a1 formed by the orthogonal projection PROJ15 of the first stabilization hanger 15, in the (y, z) plane, with respect to the z axis, and the oriented angle a2 formed by the orthogonal projection PROJ16 of the second stabilization hanger 16, in the (y, z) plane, with respect to the z axis.
  • the second end of each stabilization line is moved, along the y axis, to the position occupied by the second end of the other stabilization line in the rest configuration.
  • This configuration requires a larger CS upper frame along the y axis with respect to the production of the figures and affects the compactness of the solution.
  • the projections of the stabilization lines on the transverse plane (y, z) are inclined with respect to one another in the rest position.
  • the orthogonal projections of the stabilization lines 15, 16 on the transverse plane (y, z) do not intersect.
  • the orthogonal projections of the stabilization lines do not intersect in the stabilization configuration, they are inclined in the opposite direction with respect to the z axis.
  • the stabilization lines 15, 16 are only suitable for being in the stabilization configuration.
  • the stabilization lines can obstruct the passage of the vessel N to come opposite the cradle.
  • the projections of the stabilization lines do not intersect in the stabilization configuration, the dimension of the upper frame CS along the y axis must be greater if it is desired to obtain the same inclination between the projections of the lines on the plane (y, z) only when these projections intersect.
  • the assembly E is located at an altitude intermediate between sea level and the level of the P bridge.
  • the rail R comprises a lower part BR located below the freeboard of the host vessel and an upper part HR located above the freeboard of the ship.
  • the upper part of the rail HR is separable from its lower part BR and is able to slide along a guide G, for example, along the x axis.
  • the upper part of the rail HR is detached from the base part BR and slides along the guide G, as visible in FIG.
  • the upper frame CS is, for example, connected to the host building H so as to be able to be moved from a reception position in which it is located next to the ship's deck or to the rail R along the axis. x to a storage position in which the upper frame CS is above the deck of the ship P.
  • the upper frame CS maintains its orientation around the three axes x, y, z relative to the host building H.
  • the upper frame CS is, for example, connected to the host building H by a gantry PO with double spaced arms symmetrical to each other with respect to the x, z plane.
  • Each double arm comprises a first arm B1, B2 mounted to pivot relative to the bridge P of the host building H around the same first individual axis y1 parallel to the y axis and a second individual arm BB1, BB2 of the same length as the first arm B1, B2 and mounted to pivot relative to the bridge P of the host building H around the same second individual axis y2 parallel to the first individual axis y1 and spaced from the first individual axis y1 along the axis x.
  • the CS upper frame is suspended from the individual arms and pivotally mounted on each of the individual arms B1, BB1; B2, BB2 around axes y3, y4 substantially parallel to the individual axes y1, y2.
  • the CS upper frame is able to be moved from its reception position to the storage position by pivoting each of the individual arms around its individual axis while keeping the same orientation with respect to the host building H.
  • Each hanger 11 to 16 is a portion of a longer flexible filiform link capable of being wound around one of the winches of the assembly T.
  • hanger is meant the part of the threadlike link extending from a first point of the upper frame CS to a second point of the cradle B on which the threadlike link exerts a traction when the line is tensioned, that is to say that it extends linearly from this first point to this second point.
  • these two points are the points on which are exerted the opposing tensile forces putting the line in tension.
  • These two points are the two ends of the hanger, that is to say of the portion considered of the threadlike link.
  • the lengths of the lines that is to say the length of the portion of the threadlike link forming the line, from the first point to the second point, is adjusted by winding the threadlike link around a drum of a winch or unrolling it from the drum.
  • the length of the lines is not intended to be adjusted by an extension of the threadlike link.
  • the threadlike link is intended to have a substantially fixed length and the length of the lines is intended to vary substantially only by a variation in the length of the threadlike link from the first point to the second point.
  • the different lines 11 to 16 can be formed by separate threadlike links or the whole lines can be formed by the same threadlike link.
  • the winches of the T set are mounted on the upper frame CS but could, as a variant, be mounted on the ship's deck or on the cradle B.
  • the set of lines 11 to 16 includes four hoisting lines and two stabilization lines.
  • the set of lines could include a different number of hoisting and / or stabilization lines as long as they allow the cradle B to slide along the rail R and maintain its zero list and adjust its trim.
  • Each hoisting line has, when all the lifting lines are in tension, an orthogonal projection on the (x, y) plane being able to present a single predetermined orientation in calm sea conditions.
  • the hoisting lines 11 to 14 are arranged so as to be substantially parallel to each other when they are under tension. Alternatively, at least one hoisting line 11 to 14 is inclined relative to another hoisting line when in tension.
  • the attachment AR comprises a member connecting the first attachment point CT of the cradle to a connecting piece C in sliding connection with the upper frame CS, via the guide R, in the receive configuration.
  • the first point of attachment CT is connected with three degrees of freedom in rotation to the connecting piece C.
  • the connecting member OL establishes a connection with six degrees of freedom (three translations and three rotations) between the cradle B and the connecting part C.
  • the part C is in a ball joint connection with the cradle B or in connection with three degrees of freedom in rotation and one or two degrees of freedom in translation with the cradle B.
  • Each degree of freedom in translation allows a relative translational movement between the part C and the cradle B with a predetermined clearance.
  • the degree of freedom in translation is along the x axis.
  • the cradle B is moored by the first point of attachment CT via a mooring to the host building H, that is to say to a second point of attachment fixed relative to the upper frame CS in the reception configuration, so that the first point of attachment CT is linked to three degrees of freedom in rotation and to three degrees of freedom in translation with respect to the second point of attachment.
  • the device does not have the clip.
  • the nacelle NA comprises a guide float F capable of exhibiting a predetermined positive buoyancy.
  • the float F is interposed between the cradle B and the upper frame CS so that the cradle B is intended to support the guide float F during the hoisting of the cradle B under the effect of a variation in length of the lines 11 to 16 .
  • the cradle B is located below the upper frame CS along a vertical axis or along the z axis in calm sea conditions.
  • the guide float F is opposite the cradle B and interposed between the cradle B and the upper frame CS along the z axis.
  • the float F is configured and connected to the cradle B to guide a vessel N moving forward on the surface of the water with a movement speed comprising a positive component along an axis x towards a front part FO of the cradle B.
  • the front part FO of the cradle B is the part of the FO float which is located in front of the FO float along the x axis in calm sea conditions.
  • the front part of the float FO is preferably located substantially opposite the front end E1 of the cradle B or the bearing zone ZS of the cradle B.
  • the guide float F is connected with at least three degrees of freedom in rotation with the cradle B. [0144] This freedom allows the guide float F to move relative to the cradle B.
  • This freedom allows the guide float F to move relative to the cradle B.
  • the guide float F is movable in translation relative to the cradle B along the z axis, the z axis being vertical in calm sea conditions. This makes it possible to limit the risks of impacts between the vessel N and the cradle B, the heavy cradle B being able to move away from the float F, when it is submerged, by a translation along the axis z with respect to the float F, in lengthening the lines accordingly which leaves free a volume of larger size, in particular of greater depth to accommodate the N vessel.
  • the translation of the float F relative to the cradle B may be authorized with a predetermined maximum amplitude along the z axis or may be free.
  • the float F is connected with 3 degrees of freedom in translation of the float F relative to the cradle B.
  • Each translational movement along an axis perpendicular to the z axis can be is authorized with a predetermined maximum amplitude along this axis.
  • the float F is connected to the cradle B by means of the connecting piece C.
  • the front FO of the float F is connected to the connecting piece C by a second connecting member L.
  • the second connecting member L establishes a connection with six degrees of freedom (three translations and three rotations) between the float F and the connecting piece C, and allows each of these movements, freely or with a predetermined maximum amplitude.
  • the float F is in a ball joint connection with the connecting piece C or in connection with three degrees of freedom in rotation and 1 or 2 degrees of freedom in translation. This variant is less advantageous from the point of view of the risk of impacts between the vessel N and the float F.
  • the float F is free in translation along the z axis relative to the cradle B. In other words, it is able to slide relative to the frame along the z axis independently of the cradle B. This allows, when of the reception phase of the vessel N, to leave a greater volume under the float, between the float and the cradle B, allowing the cradle B to be immersed as deeply as desired.
  • the float F is connected to the rail R via a second connecting part in sliding connection with the rail R.
  • the second part is separated from the first connecting part so as to be able to slide along the rail R, independently from cradle B.
  • the float F is connected with three degrees of freedom in rotation with the cradle B and no degree of freedom in translation with the cradle B.
  • the recovery device D comprises a third link member LL making it possible to hook the prow PR of the ship N, also called the nose of the ship N in the case of submarines, to the float FO, preferably at the front. FO of float F, when the vessel N arrives opposite the front FO of the float or in abutment on the front FO of the float F.
  • This third link member LL thus makes it possible to connect the vessel N to the host vessel H which then tows the vessel N.
  • the ship N attached to the float F, is located opposite the cradle B, bow P forward along the x axis.
  • the prow PR is located substantially opposite the first longitudinal end E1 of the cradle B.
  • the third link member LL establishes a ball joint between the vessel N and the front part FO of the float F or a link with 6 degrees of freedom allowing movements of the vessel N according to 6 degrees of freedom with a maximum amplitude. predetermined for each degree of freedom. Consequently, even once the vessel N is hooked by its prow PR to the host vessel H, the vessel N has freedom of movement in rotation and possibly along the three axes of translation with respect to the vessel, which makes it possible to avoid subject it to too great an effort.
  • the third link member LL comprises, for example, a carabiner or a hook device connecting the vessel to the float under the effect of traction by the vessel N on a predetermined area of the front part FO of the float.
  • the third link member LL can be passive.
  • the recovery device comprises means for detecting traction of the vessel on the predetermined area of the front part FO of the float and the control means COM are configured to control the connecting element so that 'it connects the vessel to the float when traction by the vessel on the area of the front part of the float is detected by the detection means.
  • the float F has, for example, the general shape of a U comprising a bottom FO disposed substantially opposite the front end of the cradle B or the front of the bearing zone of the cradle B, by state of calm sea.
  • the float F comprises two wings A1 and A2 each extending longitudinally from the bottom FO, comprising the stop BU, to a free or rear end EA1, EA2 located behind the bottom F along the x axis, the wings A1 and A2 being separated by a plane parallel to the x and z axes passing through the FO bottom, in calm sea conditions.
  • the ship N then enters the space delimited by the float F through an opening OV delimited by the rear ends of the wings EA1 and EA2.
  • the float F comprises, for example, a continuous coil in the general shape of a U, having positive buoyancy or a set of rods capable of exhibiting the predetermined positive buoyancy connected together so as to form the general shape of U. Adjacent strands along a generally U-shaped curve may be contiguous or spaced from each other.
  • the float F when it has the predetermined positive buoyancy, is elastically deformable so as to damp the impacts, that is to say to absorb the energy of the impacts, between the vessel N and the float. F, in particular when the vessel N is located inside the volume delimited by the guide float. Thus, the vessel N does not encounter a rigid element before being hooked to the float F.
  • the float F comprises, for example, a closed flexible envelope capable of containing air and to have the general U-shape.
  • the float F can be adapted to be alternately inflated, to have the predetermined positive buoyancy, and deflated.
  • the float comprises a U-shaped structure coated with a flexible outer envelope, elastically compressible so as to absorb the energy of impacts between the vessel N and the float F when the vessel N approaches the float F and when it enters the volume delimited by the wings EA1 and EA2 and the bottom FO of the float F.
  • the float F is advantageously configured and connected to the cradle B to limit the movements of the ship N relative to the cradle B along the y axis, in calm sea conditions.
  • the longitudinal axis I of the ship N is substantially included in the plane (z, I), in calm sea conditions.
  • the lifting device comprises two openings G1, G2, visible in Figure 8, made in the float F.
  • the lifting device comprises two connecting lines 13 and 14, taken from the lines 11 to 16 which connect the cradle B to the upper frame CS.
  • Each link hanger 13, 14 connects the cradle B to the upper frame CS by passing through an opening G1, G2 made in the float F and radially completely surrounding the link hanger 13.
  • Each opening G1, G2 is advantageously configured and arranged so that each connecting line 13, 14 is able to extend substantially linearly, that is to say along a single straight line, in calm sea conditions. , when it is under tension.
  • This configuration therefore makes it possible to orient the vessel N flexibly, in the direction allowing it to come to cooperate optimally with the cradle B, when the cradle B is brought into the hoisting orientation, then when it is hoist.
  • the connecting lines serve as a guide for the cradle B.
  • the connecting lines 13, 14 exert vertical traction on the cradle B substantially at the level of the rear end E2 of the cradle B. This makes it possible to promote the flexible placement allowed by the connecting lines.
  • the connecting lines 13, 14 comprise two lines exerting vertical traction on the cradle B at distant points along the y axis when they are tensioned.
  • the first opening G1 is under the first wing A1 and the second opening G2 passes through the second wing A2.
  • the lifting device comprises two connecting lines 13, 14 capable of being separated by a plane (x, z) passing through the front FO in calm sea conditions. This ensures symmetrical stabilization of the float F around the plane (x, z).
  • the device could alternatively comprise one or more than two connecting lines.
  • the float F has an angular opening around an axis capable of being parallel to the z axis in calm sea conditions and a length along the x axis substantially fixed when 'it exhibits the predetermined positive buoyancy.
  • the float has a variable angular opening around an axis capable of being parallel to the z axis in calm sea conditions and / or of variable length.
  • the float FF differs from that of the preceding figures, in that it has a variable angular opening. Moreover, the device differs from that of the previous figures, in that it does not include stabilization lines. It could, as a variant, comprise stabilization lines.
  • the wings AA1 and AA2 are able to pivot with respect to each other about a z1 axis which may be parallel to the z axis in calm sea conditions.
  • the wings are connected by a torsion spring RES which tends to give the float F a large angular reception opening y as shown schematically in top view in the left view of FIG. 13 and in rear view in the view of the middle.
  • the angular reception opening y is obtained under the effect of an appropriate lengthening of the lines of the links 13, 14 making it possible to relax the connecting lines 13, 14 which leave the wings AA1 and AA2 to move apart under the effect of the force exerted by the spring.
  • the connecting lines 13 and 14 extend along a curved line comprising two substantially straight lines.
  • the angular opening of the float F decreases under the effect of a reduction in the length of the lines 13 and 14 putting them under tension, until the float F presents an angular hoisting opening yh, visible in the right view, in which the connecting lines 13 and 14 are stretched and extend linearly, that is to say each extend longitudinally along a single straight line.
  • the connecting lines 13 and 14 are advantageously, but not necessarily, substantially parallel to one another when the float F has the angular hoisting opening yh.
  • the cradle B comprises at least one shock absorber AM making it possible to absorb an impact between the cradle B and the ship area N when the cradle B is raised to bring it to bear against the ship N.
  • the NA nacelle can take different shapes depending on the type of machine it is intended to transport.
  • the NA nacelle is, for example, devoid of float F, the NA nacelle, then totally submersible, is suitable for the recovery of underwater vehicles, or the float F is integrated into the cradle B so that the cradle B is floating , the nacelle is then floating and suitable for the recovery of floating vehicles.
  • the guide is a rail R.
  • the guide can be any other type of guide, for example, a pantograph or a hydraulic guidance system.
  • the float F is connected to the same guide R as the cradle B.
  • the float is connected to a second guide whose function is the same, namely, to guide the float F in translation along the z axis.
  • the device comprises a tether connecting the front part FO of the float F to a point fixed with respect to the upper frame CS.
  • the float F is connected to the cradle B only by one or more connecting lines.
  • the set of lines is devoid of stabilization lines.
  • the control means can comprise at least one memory and at least one processor.
  • the control means are then provided in the form of one or more stored computer programs, each computer program is stored in a memory of the computer and comprising code instructions executable by a processor.
  • control means can be provided in the form of one or more dedicated integrated circuits or ASICs (for “Application Specifies Integrated Circuit”) or of one or more programmable logic components, for example type FPGA (for "Field Programmable Gâte Array” in English), configured or programmed to generate the command (s) that it must generate.
  • ASICs Application Specifies Integrated Circuit
  • programmable logic components for example type FPGA (for "Field Programmable Gâte Array” in English), configured or programmed to generate the command (s) that it must generate.
  • the invention relates to a recovery assembly comprising a surface station and a recovery device according to the invention mounted on the surface station.
  • the invention also relates to a marine assembly comprising the recovery assembly and the vessel N.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Load-Engaging Elements For Cranes (AREA)

Abstract

L'invention concerne un dispositif de récupération d'un navire (N) à la mer depuis une station de surface (H), le dispositif de récupération comprenant : - un berceau (B) destiné à supporter le navire (N), - un dispositif de levage (LEV) comprenant un châssis supérieur (CS) et un ensemble de suspentes (11, 12, 13, 14, 15, 16) reliant le berceau (B) au châssis supérieur (CS), des longueurs des suspentes étant variables de façon à permettre de hisser et d'abaisser le berceau (B), une première suspente de stabilisation (15) et une deuxième suspente de stabilisation (16) étant aptes à être dans une configuration de stabilisation dans laquelle la première suspente de stabilisation (15) et la deuxième suspente de stabilisation (16) sont en tension et s'étendent linéairement, et dans laquelle une première projection orthogonale de la première suspente de stabilisation (15) sur un plan transverse (y, z) défini par un axe z, lié au châssis supérieur (CS) et s'étendant sensiblement verticalement par état de mer calme, et par un axe y orthogonal à l'axe z, et une deuxième projection orthogonale de la deuxième suspente de stabilisation (16) sur le plan transverse, sont inclinées l'une par rapport à l'autre de façon à permettre de limiter un balancement du berceau (B) par rapport au châssis supérieur (CS).

Description

DESCRIPTION
DISPOSITIF DE RECUPERATION D’UN NAVIRE A LA MER
[0001] L'invention se rapporte au domaine général de la récupération, depuis une station de surface, de navires de surface propulsés ou de navires sous-marins propulsés. La station de surface est, par exemple, un bâtiment de surface (« surface ship » en terminologie anglo-saxonne) ou une station au sol, c’est-à-dire une station fixe par rapport à la terre, comme, par exemple, un port maritime.
[0002] L’invention se rapporte, plus particulièrement, aux dispositifs de récupération de navires à la mer, installés sur une station de surface, ainsi qu’aux procédés de récupération de navires utilisant ce type de dispositifs de récupération. L’invention concerne notamment le hissage d’un navire, depuis le niveau de la mer jusqu’à une position située au-dessus du niveau de la mer, par exemple au niveau d’une plateforme de la station de surface sur laquelle le navire est destiné à être stocké. L’invention est particulièrement intéressante pour la récupération de navires de surface depuis un bâtiment de surface, le navire et le bâtiment de surface pouvant bouger l’un par rapport à l’autre tout en étant sur une même vague.
[0003] Un problème majeur des opérations de récupération d’un engin marin propulsé, flottant ou submersible, consiste en la sécurisation des opérations, tant du point de vue des opérateurs amenés à intervenir que du point de vue du matériel.
[0004] Avant la récupération d’un navire depuis un bâtiment de surface, le navire et le bâtiment de surface sont deux mobiles qui réagissent à des sollicitations différentes et présentent, par conséquent, des mouvements différents et non maîtrisables sur la mer. Tant qu’ils sont éloignés l’un de l’autre, ils constituent des masses qui ne risquent pas d’entrer en collision l’une avec l’autre. Le risque de collision entre ces deux masses est important, notamment par état de mer formé, lorsque l’on vient établir une liaison entre ces deux masses. Une solution pour limiter le risque de collision, lorsque l’on vient relier ces deux masses l’une à l’autre, est d’assurer un découplage mécanique entre ces deux masses afin de limiter la transmission des mouvements de l’une à l’autre. Cela permet de garantir une relative sécurité lors de la récupération du navire par état de mer formée. [0005] Un exemple de dispositif permettant une relative sécurisation de la récupération d’un navire depuis un bâtiment de surface est divulgué dans la demande de brevet français déposée par la demanderesse et dont le numéro de publication est le FR3062844. Ce dispositif comprend une nacelle destinée à supporter le navire à récupérer. La nacelle est reliée à un rail fixé au bâtiment hôte et s’étendant verticalement par état de mer calme. Les moyens de liaison entre la nacelle et le rail permettent d’assurer une liberté de mouvement du berceau en tangage, lacet, roulis et pilonnement (« pitch, yaw, roll, heave « en terminologie anglo-saxonne). Le dispositif comprend un dispositif de levage comprenant un châssis supérieur situé au-dessus du berceau et relié à la nacelle par des suspentes dont la longueur est réglée par des treuils. La nacelle peut être hissée, par translation le long du rail, d’une position dans laquelle elle flotte à la surface de l’eau jusqu’à une partie haute du rail située au-dessus du pont principal du bâtiment hôte (« host ship » en terminologie anglo-saxonne).
[0006] Les suspentes sont des éléments souples qui autorisent un mouvement relatif entre la nacelle et le bâtiment hôte tout en formant une liaison permanente entre la nacelle et le bâtiment hôte. Lors du hissage du navire à récupérer, une fois qu’il est supporté par la nacelle et relié au rail, la réduction de la longueur des suspentes permet de faire adopter progressivement, au navire à récupérer, les mouvements du bâtiment hôte. Le navire à récupérer peut alors être fixé rigidement au bâtiment hôte avec des risques limités de chocs entre ces deux masses antagonistes.
[0007] Toutefois, par état de mer formée, lorsque l’ensemble formé par la nacelle et le navire à récupérer arrive au-dessus du niveau de la mer, cet ensemble risque de se balancer furieusement car il n’est plus amorti par l’eau. Des éléments de butée sont prévus pour brider les mouvements de lacet de l’ensemble mais ces butées constituent des masses contre lesquelles l’ensemble peut entrer en collision avec des risques de dégâts matériels.
[0008] Par ailleurs, dans la demande de brevet FR3062844, la nacelle peut-être, soit flottante, ce qui permet uniquement de récupérer des navires de surface, soit coulante, ce qui permet de récupérer des navires sous-marins et de surface mais avec un risque important, pour le navire N de venir heurter la nacelle.
[0009] Un but de l’invention est de limiter au moins un des inconvénients précités. [0010] A cet effet, l’invention a pour objet un dispositif de récupération d’un navire à la mer depuis une station de surface, le dispositif de récupération comprenant :
- un berceau destiné à supporter le navire,
- un dispositif de levage comprenant un châssis supérieur et un ensemble de suspentes reliant le berceau au châssis supérieur, des longueurs des suspentes étant variables de façon à permettre de hisser et d’abaisser le berceau, l’ensemble de suspentes comprenant une première suspente de stabilisation et une deuxième suspente de stabilisation aptes à être dans une configuration de stabilisation dans laquelle la première suspente de stabilisation et la deuxième suspente de stabilisation sont en tension et s’étendent linéairement, et dans laquelle une première projection orthogonale de la première suspente de stabilisation sur un plan transverse défini par un axe z, lié au châssis supérieur et s’étendant sensiblement verticalement par état de mer calme, et par un axe y orthogonal à l’axe z, et une deuxième projection orthogonale de la deuxième suspente de stabilisation sur le plan transverse, sont inclinées l’une par rapport à l’autre de façon à permettre de limiter un balancement du berceau par rapport au châssis supérieur.
[0011] Avantageusement, le navire est destiné à reposer sur le berceau sous l’effet de la gravité lors du hissage.
[0012] Avantageusement, le dispositif comprend une attache reliant un premier point d’attache du berceau à un deuxième point d’attache fixe, dans la configuration de réception, par rapport au châssis supérieur en translation selon l’axe y et/ou selon un axe x orthogonal à l’axe y et à l’axe z.
[0013] Dans un mode particulier de réalisation, le dispositif comprend :
- une pièce de liaison en liaison à trois degrés de liberté en rotation avec le berceau,
- un guide permettant de guider la pièce de liaison en translation selon l’axe z, par rapport au châssis supérieur, lors d’une variation de longueur des suspentes.
[0014] Dans des modes particuliers de réalisation, la pièce de liaison est en liaison rotule ou en liaison à trois degrés de liberté en rotation et un degré de liberté en translation selon un axe parallèle à un axe x lié au châssis supérieur et perpendiculaire à l’axe y et à l’axe z, avec le berceau. [0015] Avantageusement, le dispositif de récupération est configuré pour récupérer un navire se déplaçant à la surface de l’eau, par exemple, vers la pièce de liaison, par état de mer calme, préférentiellement selon un axe d’avancement parallèle à un axe x lié au châssis supérieur et perpendiculaire à l’axe y et à l’axe z.
[0016] Dans un mode préféré de réalisation, la première projection orthogonale et la deuxième projection orthogonale se croisent.
[0017] Avantageusement, la première suspente de stabilisation et la deuxième suspente de stabilisation sont aptes à être dans une configuration de repos dans laquelle la première suspente de stabilisation et la deuxième suspente de stabilisation sont en tension et dans laquelle une troisième projection orthogonale de la première suspente de stabilisation sur le plan transverse et une quatrième projection orthogonale de la deuxième suspente de stabilisation sur le plan transverse, présente une inclinaison plus faible, l’une par rapport à l’autre, que dans la configuration de stabilisation de sorte qu’un balancement du berceau par rapport au châssis supérieur est plus limité lorsque les suspentes sont dans la configuration de stabilisation que lorsqu’elles sont dans la configuration de repos.
[0018] Avantageusement, l’ensemble de suspentes comprend des suspentes de hissage disposées de sorte à permettre de hisser le berceau avec une gîte nulle par état de mer calme et de régler une assiette du berceau, chaque suspente de hissage présentant, une projection orthogonale sur le plan étant apte à présenter une unique orientation prédéterminée par état de mer calme, lorsque la suspente de hissage est en tension et s’étend linéairement.
[0019] Avantageusement, le dispositif comprend des moyens de réglage des longueurs des suspentes configurés pour maintenir les suspentes de l’ensemble de suspentes sensiblement en tension lors d’une étape de hissage stabilisée lors de laquelle les moyens de réglage hissent le berceau vers le châssis supérieur, le dispositif de récupération étant dans la configuration de récupération et les suspentes de stabilisation étant dans la configuration de stabilisation.
[0020] Avantageusement, les moyens de réglage sont configurés pour maintenir les suspentes de l’ensemble de suspentes en tension lors de l’étape de hissage stabilisé. [0021] Avantageusement, les moyens de réglage sont configurés pour réduire continûment les longueurs des suspentes de l’ensemble de suspentes lors de l’étape hissage stabilisé.
[0022] Avantageusement, le dispositif comprend des moyens de liaison permettant de relier une proue du navire au berceau de sorte à empêcher un mouvement du navire par rapport au berceau selon l’axe x vers l’avant.
[0023] L’invention se rapporte aussi à un procédé de stabilisation d’un berceau d’un dispositif selon l’invention, lors duquel les suspentes de l’ensemble de suspentes sont maintenues sensiblement en tension, les suspentes de stabilisation étant dans la configuration de stabilisation.
[0024] L’invention se rapporte aussi à un procédé de hissage d’un navire à la mer utilisant un dispositif de récupération selon l’invention. Le procédé de hissage comprend une étape de hissage stabilisé lors de laquelle on hisse le berceau vers le châssis supérieur sous l’effet d’une variation de longueur des suspentes, le dispositif de récupération étant dans la configuration de récupération et les suspentes de stabilisation étant dans la configuration de stabilisation.
[0025] La solution proposée permet de limiter le balancement relatif entre le berceau et la plateforme de surface. Elle permet de limiter les risques de heurt entre le navire à récupérer et la plateforme de surface tout en étant légère et peu volumineuse.
[0026] D’autres caractéristiques, détails et avantages de l’invention ressortiront à la lecture de la description faite en référence aux dessins annexés donnés à titre d’exemple et qui représentent, respectivement :
- la figure 1 est une illustration schématique d’un dispositif de récupération d’un navire selon l’invention dans une configuration de réception, lorsque le berceau est dans une orientation d’accueil, avant réception d’un navire,
- la figure 2 est un schéma bloc de moyens du dispositif de récupération selon l’invention,
- la figure 3 est une illustration schématique du dispositif de récupération d’un navire selon l’invention dans la configuration de réception, lorsque le berceau est dans une orientation d’accueil, après réception d’un navire, - la figure 4 est une illustration schématique du dispositif de récupération d’un navire selon l’invention dans la configuration de réception, lorsque le berceau est dans une orientation de hissage, après réception d’un navire,
- la figure 5 est une illustration schématique du dispositif de récupération d’un navire selon l’invention, dans la configuration de réception, lorsque le berceau est dans une orientation de hissage, après réception d’un navire, les suspentes de stabilisation étant dans une configuration de stabilisation,
- la figure 6 illustre le balancement d’un ensemble formé par le berceau et le navire reposant sur le berceau, lorsque les suspentes de stabilisation sont parallèles entre elles (à gauche) et lorsque leurs projections sur un plan (y, z) se croisent (à droite),
- la figure 7 représente schématiquement des vues successives a à f, dans le plan y, z, du hissage de l’ensemble formé par le navire et le berceau en remettant en tension les suspentes qui se détendent sous l’effet du balancement de l’ensemble par rapport au bâtiment hôte,
- la figure 8 représente schématiquement en perspective le balancement de l’ensemble par rapport au bâtiment hôte,
- la figure 9 représente schématiquement des projections des suspentes de stabilisation dans la configuration de stabilisation sur le plan y, z,
- la figure 10 est une illustration schématique, en perspective, du dispositif de récupération d’un navire selon l’invention, dans la configuration de réception, lorsque le berceau est dans une orientation de hissage et l’ensemble se trouve au-dessus du niveau de la mer,
- la figure 11 est une illustration schématique, en vue de côté, du dispositif de récupération d’un navire selon l’invention, dans la configuration de réception, lorsque le berceau est dans une orientation de hissage et arrive au niveau d’une partie haute d’un rail de guidage,
- la figure 12 est une illustration schématique, en vue de côté, du dispositif de récupération d’un navire selon l’invention après coulissement de l’ensemble le long d’un guide s’étendant le long du pont du navire, - la figure 13 est une illustration schématique, en vue de dessus, un berceau lié à un flotteur présentant une ouverture angulaire variable, en vue de dessus (à gauche), en vue de derrière (au milieu) et en vue de dessus, après réduction de l’ouverture angulaire du flotteur (à droite).
[0027] D’une figure à l’autre, les mêmes éléments sont repérés par les mêmes références.
[0028] L’invention se rapporte à un dispositif de récupération d’un navire autopropulsé, c’est-à-dire d’un navire comprenant des moyens de propulsion, depuis une station de surface sur laquelle est monté le dispositif de récupération. La station de surface peut être un bâtiment de surface (« surface ship >> en terminologie anglo- saxonne), comme dans l’exemple non limitatif des figures.
[0029] La station de surface est, par exemple, en variante, une station fixe par rapport à la terre comme, par exemple, un quai d’un port maritime.
[0030] L’invention s’applique, par exemple, à la récupération d'engins autonomes ou d’engins télécommandés.
[0031] Le navire à récupérer est, par exemple, un navire autopropulsé de surface, comme par exemple un USV, ("Unmanned Surface Vehicle" selon la terminologie anglo-saxonne) ou un navire submersible, par exemple de type UUV ("Unmanned Underwater Vehicle" selon la terminologie anglo-saxonne).
[0032] La figure 1 représente schématiquement un exemple de dispositif D de récupération d’un navire N immergé se trouvant au niveau de la surface S de l’eau (niveau de la mer), depuis un bâtiment de surface H, appelé bâtiment hôte (« host ship » en terminologie anglo-saxonne) dans la suite du texte. Le dispositif D est monté sur le bâtiment hôte H.
[0033] Comme visible en figure 1 , le dispositif D comprend une nacelle NA comprenant un berceau B destiné à supporter le navire N de façon à permettre de hisser le navire N sous l’effet du hissage du berceau B.
[0034] Avantageusement, le dispositif est configuré de sorte que le navire N est destiné à reposer sur le berceau sous l’effet de la gravité lors du hissage. Le navire N est alors en appui sur le berceau B selon l’axe z. [0035] Le berceau B présente, de préférence, une flottabilité négative ce qui permet la récupération d’un navire N sous-marin naviguant sous l’eau. En variante, le berceau B présente une flottabilité positive ce permet uniquement la récupération d’un navire N naviguant en surface. Une flottabilité nulle est aussi envisageable.
[0036] Le dispositif de récupération est destiné à hisser le berceau B et donc le navire N reposant sur le berceau B, depuis le niveau de la mer ou depuis une position totalement immergée situé en-dessous du niveau de la mer, jusqu’à une position hissée dans laquelle le berceau B est situé en regard de la mer au-dessus du niveau de la mer.
[0037] La position hissée est, avantageusement, une position située au-dessus d’une plateforme de la station de surface selon un axe vertical de façon à pouvoir stocker le navire N sur la plateforme, depuis la position hissée. Dans l’exemple des figures, le dispositif de récupération D est apte à hisser le navire N depuis le niveau de la mer, jusqu’à une position hissée d’altitude supérieure au pont principal P, du bâtiment hôte H, sur lequel le navire N est destiné à être stocké. L’altitude d’un point est définie selon un axe vertical par rapport au niveau de la mer. Elle est positive lorsque le point se situé au niveau de la mer et négative lorsque le point se situé en- dessous du niveau de la mer.
[0038] En variante, la plateforme est, par exemple, une plate-forme d’un quai d’un port maritime. Avantageusement, mais non nécessairement, le dispositif de récupération est apte à amener le navire dans une position de stockage sur le pont du navire à partir de la position hissée, par translation du navire N selon un axe horizontal par état de mer calme comme cela est décrit dans la demande de brevet FR3062844.
[0039] Afin de permettre de hisser le berceau B, le dispositif de récupération D comprend un dispositif de levage LEV monté sur le bâtiment hôte H et comprenant un châssis supérieur CS et un ensemble de suspentes 11 à 16 reliant le châssis supérieur CS au berceau B.
[0040] Le dispositif de récupération D est apte à être dans une configuration de récupération, telle que représentée sur les figures 1 à 11 , dans laquelle le berceau B est situé en regard de la mer, le châssis supérieur CS est fixe par rapport au bâtiment hôte H et est en regard du berceau B et dans laquelle les suspentes 11 à 16 relient le châssis supérieur CS au berceau B.
[0041] Dans cette configuration, lorsque les suspentes sont tendues, le berceau B est suspendu au châssis supérieur CS par les suspentes 11 à 16.
[0042] Les longueurs des suspentes 11 à 16 sont variables de façon à permettre de faire varier une distance du berceau B par rapport au châssis supérieur CS selon un axe vertical par des variations des longueurs des suspentes. Une réduction de longueur des suspentes permet de hisser le berceau B vers le châssis supérieur CS. Une augmentation de longueur des suspentes permet d’abaisser le berceau B en l’éloignant du châssis supérieur CS.
[0043] Le dispositif de levage LEV permet de hisser le berceau B depuis le niveau de la mer ou depuis une position dans laquelle le berceau B est totalement immergé et en-dessous de la surface de l’eau, jusqu’à la position hissée, lorsque le dispositif D est dans la configuration de récupération, sous l’effet d’une variation de longueur de suspentes 11 à 16 de l’ensemble et plus particulièrement sous l’effet d’une réduction de leur longueur.
[0044] Le dispositif de levage dans la configuration de récupération permet avantageusement, mais non nécessairement, d’abaisser le navire N depuis la position hissée jusqu’au niveau de la mer ou jusqu’à une position totalement immergée située sous le niveau de la mer. Le dispositif de récupération est alors aussi un dispositif de mise à l’eau du navire N. Cela est également obtenu par une variation de la longueur de suspentes de l’ensemble et plus particulièrement sous l’effet d’une augmentation de la longueur de ces suspentes.
[0045] Le dispositif D comprend également des moyens de réglage REG des longueurs des suspentes configurés pour permettre de régler les longueurs des suspentes de façon indépendante les unes des autres.
[0046] Les moyens de réglage REG comprennent un ensemble T de treuils motorisés, comme visible en figure 2, permettant de faire varier les longueurs des suspentes de façon indépendante et des moyens de commande COM permettant de commander les treuils de l’ensemble T de treuil comme visible en figure 2.
[0047] L’ensemble T de treuils comprend, par exemple, un treuil par suspente, chaque treuil étant apte à régler la longueur d’une seule suspente. Les treuils de l’ensemble T sont commandables indépendamment les uns des autres par des moyens de commande des treuils.
[0048] En plus des suspentes, le dispositif de récupération comprend une attache AR reliant un premier point d’attache CT du berceau B au bâtiment hôte H de façon permanente lors du hissage du berceau B.
[0049] L’attache AR comprend un organe de liaison OL reliant le premier point d’attache CT du berceau B à un deuxième point d’attache C fixe, dans la configuration de récupération, par rapport au châssis supérieur CS (c’est à dire au bâtiment hôte H), en translation selon un axe x et/ou selon un axe y liés au châssis supérieur CS et horizontaux par état de mer calme, de façon que le premier point d’attache CT soit en liaison à au moins trois degrés de liberté avec le deuxième point d’attache C. Ainsi l’organe de liaison lie le berceau B de façon souple au bâtiment hôte H. Le berceau B est amené à se balancer autour du deuxième point d’attache C par état de mer agitée.
[0050] La direction verticale est définie par la force de gravité. Cette direction est perpendiculaire à la surface de la mer par état de mer calme. La surface de la mer, par état de mer calme, définit le plan horizontal. L’état de la mer est défini sur l’échelle de Douglas. La mer calme correspond à une mer de force nulle.
[0051] Le premier point d’attache CT est une zone avant du berceau B selon l’axe x, dans la réalisation non limitative des figures.
[0052] Dans ce cas le deuxième point d’attache C est, par exemple, situé devant le premier point d’attache CT selon l’axe x.
[0053] Dans l’exemple non limitatif des figures, le premier point d’attache est un point central d’une extrémité longitudinale E1 du berceau B. Autrement dit, le premier point d’attache CT est situé sensiblement au centre de l’extrémité avant E1 du berceau B, selon l’axe y par état de mer calme.
[0054] Dans l’exemple non limitatif des figures, l’attache AR comprend un organe de liaison OL reliant le premier point d’attache CT à un premier point d’attache C qui est une pièce de liaison C de façon que la pièce de liaison C soit en liaison à trois degrés de liberté en rotation avec le berceau B. [0055] La pièce de liaison C est reliée à un guide R fixé au bâtiment hôte H, c’est-à- dire au châssis CS et permettant de guider la pièce de liaison C en translation selon un axe z, par rapport au châssis supérieur CS, lors d’une variation de longueur des suspentes, lorsque le dispositif de récupération est dans la configuration de récupération.
[0056] Dans l’exemple non limitatif de la figure 1 , le guide R est sous forme d’un rail R allongé selon un axe longitudinal qui est l’axe z. La pièce de liaison C est en liaison à trois degrés de liberté en rotation avec le berceau B et en liaison glissière avec le rail R selon l’axe z par l’intermédiaire. La pièce de liaison C est reliée au berceau B laissant ces degrés de liberté de mouvement par l’intermédiaire d’un organe de liaison OL. Le rail R est fixe par rapport au bâtiment hôte H lorsque le dispositif de récupération D se trouve dans la configuration de récupération et disposé de façon que l’axe z s’étende sensiblement verticalement par état de mer calme. Le berceau B est alors relié au bâtiment hôte H par l’intermédiaire du rail R et de la pièce de liaison C.
[0057] Ainsi, le berceau B est en liaison à un degré de liberté en translation selon l’axe z avec le bâtiment hôte H (ou le châssis supérieur CS) et à trois degrés de liberté en rotation avec le bâtiment hôte H (ou le châssis supérieur CS).
[0058] Comme vu précédemment, le degré de liberté en translation selon l’axe z permet de translater le berceau B, par rapport au bâtiment hôte H et par rapport au châssis supérieur CS, le long de l’axe z. Les trois degrés de liberté en rotation assurent un certain découplage des mouvements du berceau B par rapport à ceux du bâtiment hôte H. Ainsi, lorsque le navire N repose sur le berceau B, les risques de chocs entre le navire N et le bâtiment hôte H, par état de mer agitée, sont limités, alors même que le dispositif de récupération D assure une liaison continue entre le bâtiment hôte H et le navire N. La limitation des mouvements relatifs entre navire N et le bâtiment hôte H peut alors se faire progressivement sans heurt.
[0059] Le dispositif de récupération D comprend également des moyens de liaison permettant de relier une proue PR du navire N au berceau B de sorte à empêcher un mouvement du navire N par rapport au berceau B selon l’axe x vers l’avant.
[0060] Afin de sécuriser le hissage du navire N lorsque ce dernier est supporté par le berceau B et relié au bâtiment hôte H, l’ensemble de suspentes du dispositif D comprend, selon l’invention, des suspentes de stabilisation 15, 16, aptes à être dans une configuration de stabilisation, visible en figure 5, dans laquelle elles sont en tension, dans laquelle elles s’étendent linéairement et dans laquelle leurs projections orthogonales sur un plan transverse (y, z) lié au châssis supérieur CS, et donc au bâtiment hôte H, et défini par l’axe y et l’axe z, sont inclinées l’une par rapport à l’autre. Autrement dit, la première projection orthogonale de la première suspente de stabilisation 15 sur le plan transverse (y, z) est inclinée par rapport à la deuxième projection orthogonale de la deuxième suspente de stabilisation sur le plan transverse (y, z). Dans la configuration de stabilisation, les suspentes de stabilisation limitent le balancement du berceau B par rapport au bâtiment hôte H, notamment sa composante autour de l’axe z.
[0061] Cette limitation du balancement est particulièrement avantageuse lorsque le berceau B est émergé.
[0062] Il est à noter que par « les suspentes s’étendent linéairement » on entend que les suspentes s’étendent longitudinalement selon une unique ligne droite.
[0063] Dans la réalisation avantageuse des figures, les suspentes de stabilisation 15, 16 sont aptes à être dans une configuration de stabilisation dans laquelle la première projection orthogonale de la première suspente de stabilisation 15 sur le plan transverse (y, z) croise la deuxième projection orthogonale de la deuxième suspente de stabilisation sur le plan transverse (y, z). Les suspentes de stabilisation 15, 16 permettent alors d’assurer une bonne limitation du balancement du berceau B par rapport au bâtiment hôte H tout en occupant un volume restreint.
[0064] Dans la réalisation non limitative des figures, le dispositif de récupération est configuré pour récupérer, à la mer, un navire N se déplaçant, en mer, par exemple vers la pièce de liaison C, par état de mer calme, préférentiellement ou essentiellement selon un axe d’avancement parallèle à un axe x, représenté en figure 1 , lié au châssis supérieur CS et perpendiculaire à l’axe z. Le sens de déplacement parallèlement à l’axe x est défini comme étant le déplacement de l’arrière vers l’avant.
[0065] Par exemple, le berceau B s’étend longitudinalement selon un axe longitudinal I du berceau B, depuis l’extrémité avant E1 du berceau B jusqu’à une extrémité arrière E2 du berceau B, et l’axe I est apte à être sensiblement parallèle à l’axe x, par état de mer calme, lorsque le dispositif de récupération est dans la configuration de récupération. L’extrémité avant E1 est située devant l’extrémité arrière E2 selon l’axe x.
[0066] En variante, le berceau B présente des dimensions sensiblement identiques selon l’axe x et l’axe y par état de mer calme lorsque l’axe I est sensiblement horizontal. Dans une autre variante, la dimension du berceau B selon l’axe x est inférieure à la dimension du berceau B selon l’axe y par état de mer calme lorsque l’axe I est sensiblement horizontal.
[0067] Le berceau B présente, avantageusement mais non nécessairement, une forme générale de coque de navire, ouverte, destinée à épouser sensiblement la forme du navire N lorsque ce dernier repose sur le berceau B de façon à bloquer les mouvements transversaux du navire N par rapport au berceau B. Les mouvements transversaux sont des mouvements du navire N selon l’axe y par état de mer calme. L’axe y est perpendiculaire à x et z. Cela permet d’assurer une position sensiblement fixe du navire N par rapport au berceau B lorsque le navire N repose sur le berceau B lors du hissage du berceau B, notamment par état de mer calme.
[0068] Dans le cas de la récupération depuis le bâtiment hôte H, le dispositif de récupération D est avantageusement monté sur le bâtiment hôte H de façon que l’axe x soit parallèle à un axe de déplacement principal p selon lequel bâtiment hôte H est destiné à se déplacer principalement. L’axe p s’étend dans le sens de l’arrière vers l’avant du navire hôte H. Il s’agit généralement, mais pas nécessairement, d’un axe longitudinal du bâtiment hôte H selon lequel le bâtiment hôte H s’étend longitudinalement.
[0069] Le dispositif de réception D est, avantageusement, monté sur le bâtiment hôte H de sorte que le berceau B ou sa zone de support ZS, sur laquelle le berceau B est destiné à supporter le navire N, s’étende complètement derrière un tableau arrière TA du bâtiment hôte H lorsque le dispositif de réception est en configuration de récupération. Cela permet de récupérer le navire N depuis l’arrière du bâtiment hôte H.
[0070] En variante, le dispositif de réception D est monté sur le bâtiment hôte H de sorte que le berceau B soit disposé sur un côté du bâtiment hôte H, c’est-à-dire à côté du bâtiment hôte H, selon l’axe y. Le dispositif de réception D permet alors de récupérer un navire N se déplaçant parallèlement à l’axe principal p et arrivant à côté du bâtiment hôte H selon l’axe y.
[0071] Nous allons maintenant décrire plus précisément le fonctionnement du dispositif de récupération selon l’invention et le procédé de récupération associé.
[0072] En figure 3, le dispositif D est représenté schématiquement lors d’une phase d’accueil du navire N, lors de laquelle le navire N vient se positionner au-dessus du berceau B, entre le berceau B et le châssis supérieur CS.
[0073] Lors de la phase d’accueil du navire N, les suspentes de stabilisation 15, 16 sont avantageusement maintenues dans une configuration de repos représentée en figure 3, dans laquelle les suspentes de stabilisation 15, 16 sont tendues et sensiblement parallèles entre elles, c’est-à-dire, de façon plus générale, dans laquelle une troisième projection orthogonale de la première suspente est sensiblement parallèle la projection orthogonale de la deuxième suspente sur le plan transverse (y, z) et espacées selon l’axe y. Cette possibilité des suspentes de stabilisation 15, 16 de se trouver dans la configuration de repos permet de ne pas gêner le navire N dans son déplacement selon l’axe x vers le guide R.
[0074] Dans une orientation d’accueil telle que représentée en figures 3, le berceau B présente une assiette positive. Autrement dit, dans l’orientation d’accueil, l’extrémité arrière E2 du berceau B est située à une altitude plus faible que l’extrémité E1. Autrement dit, l’extrémité E2 se située à une profondeur plus importante que l’extrémité E1. Cette orientation d’accueil permet de faciliter et de sécuriser l’arrivée du navire N en regard du berceau B, au-dessus du berceau B, lorsque le navire N se déplace selon l’axe x. En effet, cette orientation d’accueil éloigne le berceau B du volume dans lequel l’AUV va pénétrer pour venir en regard du berceau B ce qui permet de limiter les risques chocs et de frottement entre le navire N et le berceau B lors de cette opération. Les risques d’endommagement du navire N sont ainsi limités.
[0075] Lorsque le navire N arrive en butée contre une butée FO, qui sera décrite ultérieurement, située devant le navire N selon l’axe x, les moyens de liaison relient la proue PR du navire N au berceau B de sorte à empêcher un mouvement du navire N par rapport au berceau B selon un axe x vers l’avant. [0076] Le dispositif de levage LEV comprend un ensemble de suspentes 11 à 16 comprenant des suspentes de hissage 11 à 14 et les suspentes de stabilisation 15, 16.
[0077] Les suspentes 11 à 16 sont disposées et reliées au berceau B de façon à permettre de hisser le berceau B avec une gîte nulle, le berceau B étant alors sensiblement symétrique par rapport à un plan vertical passant par l’axe I, par état de mer calme et de façon à permettre de faire varier une assiette du berceau B par un réglage des longueurs des suspentes.
[0078] Afin de permettre de régler l’assiette du berceau B, l’ensemble de suspentes comprend au moins deux suspentes reliées au berceau B de façon à exercer des tractions verticales respectives sur le berceau B en des points respectifs espacés selon l’axe I ou, de façon plus générale, selon l’axe reliant les extrémités E1 et E2 du berceau B. Cet agencement permet de faire passer le berceau B de l’orientation d’accueil de la figure 3 à une orientation de hissage, de la figure 4 dans laquelle le berceau B présente une assiette nulle par état de mer calme.
[0079] Afin de permettre de hisser le berceau B avec une gîte nulle, par état de mer calme, l’ensemble de suspentes 11 à 16 comprend au moins deux suspentes reliées au berceau B de façon à exercer des tractions verticales respectives sur le berceau B en des points respectifs espacés selon l’axe y par état de mer calme.
[0080] Avantageusement, les suspentes de hissage sont configurées de ces deux dernières manières. En variante, c’est l’ensemble de suspentes, suspentes de stabilisation comprises, qui est configuré de ces deux dernières manières, le nombre de suspentes peut alors être plus faible.
[0081] Dans l’exemple non limitatif des figures, l’ensemble de suspentes comprend deux couples de suspentes de hissage 11 , 12 et 13, 14.
[0082] Les suspentes 11 et 12 du premier couple de suspentes exercent des tractions verticales sur le berceau B en des points P1 et respectivement P2, visibles en figure 3, situés à proximité de l’extrémité E1 , sensiblement à la même distance de l’extrémité E1. Les suspentes 13 et 14 du deuxième couple de suspentes exercent des forces de traction verticales sur le berceau B en des points P3 et P4, visibles en figure 1 , situés à proximité de l’extrémité E2, sensiblement à la même distance de l’extrémité E2. Les deux suspentes de chaque couple de suspentes de hissage 11 et 12 (respectivement 13 et 14) exercent des tractions verticales sur le berceau B en des points P1 et P2 (respectivement P3 et P4) espacés selon l’axe y par état de mer calme, disposées de part et d’autre du plan x, z passant par la pièce de liaison C par état de mer calme. Avantageusement, P1 et P2 (respectivement P3 et P4) sont séparés, par état de mer calme, par un plan parallèle aux axes x et z passant par la pièce de liaison C.
[0083] Afin de faire passer le berceau B de l’orientation d’accueil de la figure 3 à l’orientation de hissage de la figure 4, on réduit la longueur des suspentes 13 à 14 et de préférence 13 à 16.
[0084] Le navire N vient reposer sur le berceau B de façon à présenter une position sensiblement fixe par rapport au berceau B.
[0085] On réduit ensuite la longueur des suspentes de l’ensemble de façon à hisser le berceau B dans son orientation de hissage par coulissement le long de l’axe z.
[0086] Les mouvements du navire N commencent à être contrôlés par les suspentes 11 à 16 du fait de la traction verticale qu’elles exercent sur le berceau B. L’ensemble E formé par le berceau B et le navire N relié au berceau B et reposant sur le berceau B peut encore se balancer par rapport au bâtiment hôte H sous l’effet des vagues, du fait de la liaison à trois degrés de liberté en rotation, ce qui assure une certaine souplesse à la liaison.
[0087] Lorsque l’ensemble E arrive au-dessus de la surface de l’eau. Le balancement du berceau B par rapport au bâtiment hôte H n’est plus amorti et peut même être amplifié par résonnance.
[0088] Afin de limiter le balancement de l’ensemble E par rapport au bâtiment hôte, lors du hissage, notamment sa composante autour de l’axe z, on amène les suspentes de stabilisation 15 et 16 dans la configuration de stabilisation telle que représentée en figure 5.
[0089] A cet effet, comme visible en figures 6 et 7, les suspentes de stabilisation 15, 16 comprennent, par exemple, chacune une première extrémité longitudinale e1 , e1 ’ fixée au berceau B et une deuxième extrémité longitudinale e2, e2’ reliée au châssis supérieur CS. Le dispositif de levage LEV comprend des moyens d’entraînement ENT, référencés en figure 2, permettant de faire passer les suspentes de stabilisation 15 et 16 de la configuration de repos à la configuration de stabilisation en déplaçant les deuxièmes extrémités e2, e2’ de chacune des suspentes de stabilisation 15, 16 en sens contraire selon l’axe y pour amener les suspentes de stabilisation 15, 16 dans la configuration de stabilisation de la figure 5. La deuxième extrémité e2, e2’ de chaque suspente de stabilisation 15, 16 est déplacée, en se rapprochant, selon l’axe y, de la position occupée par la deuxième extrémité e2’, e2 de l’autre suspente de stabilisation dans la configuration de repos.
[0090] Comme visible en figure 2, moyens de commande COM sont aptes à commander les moyens d’entraînement ENT.
[0091] En amenant les suspentes de stabilisation 15, 16 dans la configuration de stabilisation, on limite le balancement de l’ensemble E par rapport au bâtiment hôte H. En effet, lorsque les projections orthogonales des suspentes de stabilisation 15, 16 sur le plan (y, z) se croisent ou, de façon plus générale, lorsqu’elles sont inclinées l’une par rapport à l’autre, le mouvement du centre de gravité de l’ensemble E est rendu plus difficile. Comme représenté en figure 6 à gauche, lorsque les suspentes de stabilisation 15, 16 sont parallèles entre elles ou en l’absence de suspentes de stabilisation, le centre de gravité G de l’ensemble E se déplace sur une première gouttière G1 dans un plan transverse parallèle à (y, z) jusqu’à une position extrême PE1 . Le berceau B qui est relié au rail R par l’avant, par une liaison à trois degrés de liberté en rotation, subit un balancement qui est une combinaison des mouvements autour des trois axes et notamment autour de l’axe z. Lorsque les projections des suspentes de stabilisation 15, 16 tendues sont inclinées l’une par rapport à l’autre, le centre de gravité de l’ensemble se déplace dans une deuxième gouttière G2, représentée en figure 6 à droite, présentant des pentes plus raides que celles de la première gouttière G1 jusqu’à une position extrême PE2. Ce phénomène s’accentue lorsque le hissage du berceau B se poursuit, les pentes de la gouttière sur lequel le centre de gravité peut se déplacer devenant plus raides. Ainsi, le dispositif de récupération D selon l’invention permet de rendre le balancement de l’ensemble E par rapport au rail R autour de l’axe z de plus en plus contraint à mesure que hissage se poursuit. Les contraintes sur le mouvement de l’ensemble E par rapport au bâtiment hôte H augmentent de façon lente et progressive tout en évitant la mise en place d’une butée qui limiterait son balancement mais que le navire N pourrait venir heurter avec des risques de détérioration du navire N. [0092] Par ailleurs, cette solution ne nécessite pas d’amortisseurs lourds ni volumineux pour amortir le mouvement de balancement de l’ensemble par dissipation d’énergie. Cette solution se base sur des suspentes qui sont légères et peu volumineuses.
[0093] Cette solution permet également de profiter du balancement naturel du berceau B par rapport au bâtiment hôte H, sous l’effet des vagues, pour faciliter le hissage de l’ensemble E et pour hisser l’ensemble E en douceur en profitant des phases alternatives de tension et détention des suspentes. Une configuration particulière de l’ensemble de treuils T et des moyens de commande COM de l’ensemble de treuils peut être mise en œuvre à cet effet.
[0094] En effet, lorsque le berceau B est en liaison à trois degrés de liberté en rotation avec le rail R fixé au bâtiment hôte H, le balancement relatif de l’ensemble E par rapport au bâtiment hôte H est un balancement autour des axes x, y et z. Ce balancement comprend une composante selon l’axe z qui entraîne une détente de certaines suspentes comme visible sur la vue b de la figure 7. Or, ce balancement, sous l’effet des vagues, se fait sans effort de la part des treuils T. Ainsi, en commandant l’ensemble de treuils T de façon à remettre ou maintenir en tension, à chaque balancement de l’ensemble E par rapport au rail R, les suspentes qui se détendent ou tendent à se détendre sous l’effet du balancement de l’ensemble E, comme représenté sur les vues c et e de la figure 7, au lieu de les laisser détendues ou de les laisser se détendre, comme représenté sur les vues b, d et f de la figure 7, on hisse l’ensemble E en limitant l’énergie nécessaire à ce hissage. Le balancement de l’ensemble E par rapport au bâtiment hôte H est représenté en perspective en figure 8.
[0095] La commande particulière décrite précédemment permet, par ailleurs, de juguler le balancement de l’ensemble E. En effet, en remettant ou en maintenant en tension des suspentes qui se détendent ou qui tendent à se détendre sous l’effet du balancement de l’ensemble E dans un premier sens, cela revient à retirer de l’énergie potentielle à l’ensemble E lorsque ce dernier arrive à une position extrême dans laquelle son énergie cinétique est nulle. L’énergie de l’ensemble E en ce point d’extrémité est son énergie potentielle. La réduction de l’énergie potentielle de l’ensemble E entraîne une diminution de son énergie totale. Cette diminution d’énergie a pour effet de réduire son énergie cinétique maximale. Ainsi, la vitesse et l’amplitude du balancement de l’ensemble E diminuent progressivement à chaque balancement.
[0096] Ainsi les moyens de réglage REG des longueurs des suspentes sont avantageusement configurés pour maintenir les suspentes 11 à 16 sensiblement tendues, c’est-à-dire en tension en permanence ou au moins lors d’une phase de hissage du berceau B ou de l’ensemble E débutant lorsque le berceau B est immergé ou au moins lors d’une phase de hissage du berceau B ou de l’ensemble E débutant lorsque le berceau B est émergé.
[0097] De préférence, afin d’éviter tout mou des suspentes susceptible de provoquer des enroulements irréguliers des liens filiformes formant les suspentes 11 à 16 sur les treuils de l’ensemble T, les moyens de réglage REG sont configurés pour maintenir les suspentes 11 à 16 tendues c’est-à-dire, en tension, en permanence ou au moins lors d’une phase de hissage du berceau B débutant lorsque le berceau B est immergé, ou au moins lors d’une phase de hissage du berceau B ou de l’ensemble E débutant lorsque le berceau B est émergé.
[0098] De préférence, les moyens de réglage REG sont configurés pour maintenir chaque suspente en tension constante.
[0099] Il est à noter que si, seul le balancement naturel de l’ensemble E est utilisé pour le hisser, il n’est pas possible de hisser l’ensemble E par état de mer calme car l’ensemble E ne se balance pas par rapport au bâtiment hôte H.
[0100] Avantageusement, les moyens de réglage REG sont configurés pour réduire continûment la longueur de chacune des suspentes 11 à 16 lors d’une phase de hissage stabilisé lors de laquelle les suspentes de stabilisation sont dans la configuration de stabilisation.
[0101] Autrement dit, lors de la phase de hissage stabilisé, les moyens de réglage REG sont configurés pour maintenir les suspentes 11 à 16 sensiblement en tension en augmentant, par exemple, la vitesse de réduction des longueurs des suspentes qui se détendent ou qui tendent à se détendre sous l’effet du balancement du berceau B par rapport au bâtiment hôte H tout en continuant de réduire les longueurs des suspentes qui se tendent sous l’effet du balancement du berceau B par rapport au bâtiment hôte H. [0102] Par exemple, si lors du procédé de hissage, les moyens de réglage REG sont configurés pour réduire la longueur de chaque suspente à une vitesse fixe prédéterminée de hissage de la suspente concernée en l’absence de balancement du berceau B par rapport au rail R, alors les moyens de réglage sont configurés de façon à réduire la longueur de chaque suspente qui tend à se tendre sous l’effet du balancement relatif du berceau B et du rail R à une vitesse plus élevée que la vitesse prédéterminée et de façon à réduire la longueur de chaque suspente qui tend à se détendre sous l’effet du balancement relatif du berceau et du rail R à une vitesse moins élevée que la vitesse prédéterminée.
[0103] A cet effet, les moyens de réglage REG comprennent, comme visible en figure 2, des moyens de surveillance SURV de la tension des suspentes 11 à 16 permettant de mesurer une grandeur physique représentative des tensions des suspentes, c’est-à-dire de l’inclinaison du berceau B par rapport au navire hôte H, par exemple autour de l’axe z. Ces moyens de surveillance SURV comprennent, par exemple, un inclinomètre permettant de mesure une inclinaison des suspentes, un capteur d’accélération, une première centrale inertielle permettant de mesurer une orientation du berceau et/ou une deuxième centrale inertielle permettant de mesurer une orientation du bâtiment hôte H, au moins un capteur de tension, chaque capteur de tension permettant de mesurer la tension d’une suspente. L’orientation du bâtiment hôte et/ou du berceau peut en variante être mesurée à partir d’un ou plusieurs capteurs d’accélération et/ou un ou plusieurs gyromètres permettant chacun de mesurer une composante d’un vecteur vitesse angulaire et/ou à partir d’un capteur de position.
[0104] L’invention se rapporte également à un procédé de stabilisation du berceau B ou de l’ensemble E consistant à maintenir les suspentes 11 à 16 de l’ensemble de suspentes sensiblement en tension, et de préférence en tension, lors d’un balancement relatif du berceau B par rapport au bâtiment hôte H, le dispositif de récupération étant dans la configuration de récupération, le procédé de stabilisation comprenant une étape consistant à amener les suspentes de stabilisation de la configuration de repos à la configuration de stabilisation.
[0105] Avantageusement, le procédé de stabilisation est mis en œuvre lorsque le berceau B s’étend au-dessus du niveau de la mer, c’est-à-dire lorsque sa zone de support ZS s’étend au-dessus du niveau de la mer. [0106] L’invention se rapporte également à un procédé de hissage du berceau B, ou de l’ensemble E, le procédé de récupération comprend une étape de hissage stabilisé du berceau ou de l’ensemble E, par exemple depuis le niveau de la mer, ou depuis un niveau inférieure ou supérieur, jusqu’à une position hissée située au- dessus du niveau de la mer, lors duquel les suspentes 11 à 16 sont maintenues sensiblement en tension, et sont de préférence maintenues en tension, pendant que le berceau B coulisse selon l’axe z vers le châssis supérieur CS, le dispositif de récupération D étant dans la configuration de récupération et les suspente de stabilisation étant dans la configuration de stabilisation.
[0107] Dans le cas où les suspentes sont aptes à passer d’une configuration de repos à la configuration de stabilisation, le procédé comprend une étape de mise en place, préalable à l’étape de stabilisation ou de hissage stabilisé, consistant à mettre les suspentes dans la configuration de stabilisation.
[0108] De préférence, les suspentes sont dans la configuration de stabilisation pendant toute la durée de l’étape de hissage ou jusqu’à la fin de la procédure de hissage, à partir du moment où le berceau B est situé au-dessus du niveau de la mer (c’est-à-dire est émergé) ou à partir du moment où le berceau B est situé au niveau de la surface de la mer ou à partir d’une position dans laquelle le berceau B est totalement immergé.
[0109] De préférence, les suspentes sont maintenues en tension constante pendant toute la durée de l’étape de hissage stabilisé et/ou du procédé de stabilisation.
[0110] Avantageusement, pendant l’étape de hissage stabilisé, on réduit continûment la longueur de chacune des suspentes 11 à 16 de l’ensemble. Autrement dit, la vitesse de réduction de la longueur de chacune des suspentes est non nulle et positive pendant l’étape de hissage.
[0111] Le procédé comprend, avantageusement, une étape lors de laquelle on fait passer le berceau d’une orientation d’accueil à une orientation de repos par un réglage des longueurs des suspentes. Cette étape est préalable à l’étape de hissage stabilisé et de préférence préalable à l’étape lors de laquelle on met les suspentes de stabilisation dans la configuration de stabilisation.
[0112] Il est à noter que l'inclinaison des projections des suspentes de stabilisation 15, 16 sur le plan transverse (y, z), l’une par rapport à l’autre, permet aussi de limiter le balancement du berceau B par rapport au bâtiment hôte H en dehors des phases de hissage en configurant les moyens de réglage de façon appropriée, notamment la composante du balancement autour de l’axe z.
[0113] Dans l’exemple non limitatif des figures, les suspentes de stabilisation 15, 16 sont reliées au berceau B de sorte à exercer, chacune, une traction verticale sur le berceau B, sensiblement au niveau de l’extrémité E2 du berceau B.
[0114] Autrement dit, de façon plus générale, les suspentes de stabilisation 15, 16 sont reliées au berceau B de sorte à exercer, chacune, une traction verticale sur le berceau B à distance du premier point le long de l’axe x perpendiculaire au plan (y, z) par état de mer calme et de préférence sensiblement au niveau d’une extrémité la plus éloignée du premier point d’attache le long de l’axe x perpendiculaire au plan (y, z) par état de mer calme. Cela permet de limiter le balancement du berceau B par rapport au bâtiment hôte de façon efficace.
[0115] En variante, les suspentes de stabilisation 15, 16 exercent chacune une traction verticale sur le berceau B à distance de l’extrémité E2 et de l’extrémité E1 , selon l’axe I.
[0116] Dans l’exemple non limitatif des figures, dans la configuration de stabilisation, les projections orthogonales PROJ15, PROJ16 des suspentes de stabilisation 15, et respectivement 16, sur le plan transverse (y, z) telles que représentées schématiquement en figure 9, se croisent. Elles forment un angle a entre elles. Cet angle est la différence entre l’angle orienté a1 formé par la projection orthogonale PROJ15 de la première suspente de stabilisation 15, dans le plan (y, z), par rapport à l’axe z, et de l’angle orienté a2 formé par la projection orthogonale PROJ16 de la deuxième suspente de stabilisation 16, dans le plan (y, z), par rapport à l’axe z.
[0117] Dans une variante, pour faire passer les suspentes de stabilisation de la configuration de repos à la configuration de stabilisation, la deuxième extrémité de chaque suspente de stabilisation est déplacée, selon l’axe y, vers la position occupée par la deuxième extrémité de l’autre suspente de stabilisation dans la configuration de repos. Cette configuration nécessite un châssis supérieur CS de plus grande dimension selon l’axe y par rapport à la réalisation des figures et nuit à la compacité de la solution. [0118] Dans une variante, les projections des suspentes de stabilisation sur le plan transverse (y, z) sont inclinées l’une par rapport à l’autre dans la position de repos. Lors du passage de la configuration de repos à la configuration de stabilisation, la valeur absolue de l’angle a formé entre les projections PROJ15 et PROJ16 des deux suspentes augmente.
[0119] En variante, dans la configuration de stabilisation, les projections orthogonales des suspentes de stabilisation 15, 16 sur le plan transverse (y, z) ne se croisent pas.
[0120] Avantageusement, lorsque les projections orthogonales des suspentes de stabilisation ne se croisent pas dans la configuration de stabilisation, elles sont inclinées en sens inverse par rapport à l’axe z.
[0121] Dans une autre variante, les suspentes de stabilisation 15, 16 sont uniquement aptes à être dans la configuration de stabilisation. Toutefois, les suspentes de stabilisation peuvent faire obstacle au passage du navire N pour venir en regard du berceau. Par ailleurs, les projections des suspentes de stabilisation ne se croisent pas dans la configuration de stabilisation, la dimension du châssis supérieur CS selon l’axe y doit être plus importante s’il on souhaite obtenir une même inclinaison entre les projections des suspentes sur le plan (y, z) que lorsque ces projections se croisent.
[0122] En figure 10, l’ensemble E se trouve à une altitude intermédiaire entre le niveau de la mer et le niveau du pont P.
[0123] De préférence, comme visible en figure 10, le rail R comprend une partie basse BR située en-dessous du franc-bord du bâtiment hôte et une partie haute HR située au-dessus du franc-bord du navire. La partie haute du rail HR est séparable de sa partie basse BR et est apte à coulisser le long d’un guide G, par exemple, selon l’axe x. Ainsi, lorsque l’ensemble E a été hissé par translation le long du rail R jusqu’à la position hissée et donc jusqu’à la partie haute HR du rail R comme visible en figure 11 , la partie haute du rail HR se désolidarise de la partie base BR et coulisse le long du guide G, comme visible en figure 12, pour déplacer l’ensemble E jusqu’à une position de stockage dans laquelle l’ensemble E est entièrement en regard du pont P et repose sur le pont P. Ainsi, l’ensemble E manipulé reste toujours en prise avec le navire hôte H. [0124] Le châssis supérieur CS est, par exemple, relié au bâtiment hôte H de façon à pouvoir être déplacé d’une position de réception dans laquelle il se situe à côté du pont du navire ou du rail R le long de l’axe x à une position de stockage dans laquelle le châssis supérieur CS se trouve au-dessus du pont du navire P. De préférence, le châssis supérieur CS conserve son orientation autour des trois axes x, y, z par rapport au bâtiment hôte H.
[0125] Comme visible en figure 10, le châssis supérieur CS est, par exemple, relié au bâtiment hôte H par un portique PO à doubles bras espacés symétriques l’un de l’autre par rapport au plan x, z. Chaque double bras comprend un premier bras B1 , B2 monté pivotant par rapport au pont P du bâtiment hôte H autour d’un même premier axe individuel y1 parallèle à l’axe y et un deuxième bras individuel BB1 , BB2 de même longueur que le premier bras B1 , B2 et monté pivotant par rapport au pont P du bâtiment hôte H autour d’un même deuxième axe individuel y2 parallèle au premier axe individuel y1 et espacé du premier axe individuel y1 le long de l’axe x. Le châssis supérieur CS est suspendu aux bras individuels et monté pivotant sur chacun des bras individuels B1 , BB1 ; B2, BB2 autour d’axes y3, y4 sensiblement parallèles aux axes individuels y1 , y2. Le châssis supérieur CS est apte à être déplacé depuis sa position de réception jusqu’à la position de stockage par pivotement de chacun des bras individuels autour de son axe individuel tout en gardant une même orientation par rapport au bâtiment hôte H.
[0126] Chaque suspente 11 à 16 est une portion d’un lien filiforme souple plus long apte à être enroulé autour d’un des treuils de l’ensemble T. Par suspente, on entend la partie du lien filiforme s’étendant depuis un premier point du châssis supérieur CS jusqu’à un deuxième point du berceau B sur lesquels le lien filiforme exerce une traction lorsque la suspente est tendue, c’est-à-dire qu’elle s’étend linéairement depuis ce premier point jusqu’à ce deuxième point. Autrement dit, ces deux points sont les points sur lesquels s’exercent les forces de traction opposées mettant la suspente en tension. Ces deux points sont les deux extrémités de la suspente, c’est- à-dire de la portion considérée du lien filiforme. Les longueurs des suspentes, c’est- à-dire la longueur de la portion du lien filiforme formant la suspente, depuis le premier point jusqu’au deuxième point, est réglée en enroulant le lien filiforme autour d’un tambour d’un treuil ou en le déroulant du tambour. La longueur des suspentes n’est pas destinée à être réglée par une extension du lien filiforme. Autrement dit, le lien filiforme est destiné à présenter une longueur sensiblement fixe et la longueur des suspentes est destinée à varier sensiblement uniquement par une variation de la longueur du lien filiforme depuis le premier point jusqu’au deuxième point.
[0127] Les différentes suspentes 11 à 16 peuvent être formées par des liens filiformes distincts ou des suspentes de l’ensemble peuvent être formées par un même lien filiforme.
[0128] Dans l’exemple des figures, les treuils de l’ensemble T sont montés sur le châssis supérieur CS mais pourraient, en variante, être montés sur le pont du navire ou sur le berceau B.
[0129] Dans l’exemple des figures, l’ensemble de suspentes 11 à 16 comprend quatre suspentes de hissage et deux suspentes de stabilisation. En variante, l’ensemble de suspentes pourrait comprendre un nombre de suspentes de hissage et/ou de stabilisation différent du moment qu’elles permettent faire coulisser le berceau B le long du rail R et maintenir sa gîte nulle et régler son assiette.
[0130] Chaque suspente de hissage présente, lorsque l’ensemble des suspentes de hissage est en tension, une projection orthogonale sur le plan (x, y) étant apte à présenter une unique orientation prédéterminée par état de mer calme.
[0131] Avantageusement, les suspentes de hissage 11 à 14 sont disposées de sorte à être sensiblement parallèles entre elles lorsqu’elles sont en tension. En variante, au moins une suspente de hissage 11 à 14 est inclinée par rapport à une autre suspente de hissage lorsqu’elles sont en tension.
[0132] Dans la réalisation non limitative des figures, l’attache AR comprend un organe reliant le premier point d’attache CT du berceau à une pièce de liaison C en liaison glissière avec le châssis supérieur CS, via le guide R, dans la configuration de réception.
[0133] Le premier point d’attache CT est en liaison à trois degrés de liberté en rotation à la pièce de liaison C. Avantageusement, l’organe de liaison OL établit une liaison à six degrés de liberté (trois translations et trois rotations) entre le berceau B et la pièce de liaison C. En variante, la pièce C est en liaison rotule avec le berceau B ou en liaison à trois degrés de liberté en rotation et à un ou deux degrés de liberté en translation avec le berceau B. Chaque degré de liberté en translation permet un mouvement de translation relatif entre la pièce C et le berceau B avec un débattement prédéterminé.
[0134] Avantageusement, dans le cas où la pièce C de liaison est en liaison à trois degrés de liberté en rotation et à un degré de liberté en translation avec le berceau B, le degré de liberté en translation est selon l’axe x.
[0135] Ce mode de réalisation n’est absolument pas limitatif.
[0136] Dans une variante, le berceau B est amarré par le premier point d’attache CT via une amarre au bâtiment hôte H, c’est-à-dire à un deuxième point d’attache fixe par rapport au châssis supérieur CS dans la configuration de réception, de façon que le premier point d’attache CT soit est en liaison à trois degrés de liberté en rotation et à trois degrés de liberté en translation par rapport au deuxième point d’attache.
[0137] Dans un autre mode de réalisation, le dispositif est dépourvu de l’attache.
[0138] Avantageusement, comme représenté sur les figures et visible en figure 1 , la nacelle NA comprend un flotteur de guidage F apte à présenter une flottabilité positive prédéterminée. Le flotteur F est interposé entre le berceau B et le châssis supérieur CS de façon que le berceau B soit destiné à supporter le flotteur de guidage F lors du hissage du berceau B sous l’effet d’une variation de longueur des suspentes 11 à 16.
[0139] Le berceau B se trouve en-dessous du châssis supérieur CS selon un axe vertical ou selon l’axe z par état de mer calme.
[0140] Autrement dit, le flotteur de guidage F est en regard du berceau B et interposé entre le berceau B et le châssis supérieur CS selon l’axe z.
[0141] Le flotteur F est configuré et relié au berceau B pour guider un navire N se déplaçant à la surface de l’eau vers l’avant avec une vitesse de déplacement comprenant une composante positive selon un axe x vers une partie avant FO du berceau B. La partie avant FO du berceau B est la partie du flotteur FO qui est située à l’avant du flotteur FO selon l’axe x par état de mer calme.
[0142] La partie avant du flotteur FO est, de préférence, située sensiblement en regard de l’extrémité avant E1 du berceau B ou de la zone d’appui ZS du berceau B.
[0143] Le flotteur de guidage F est en liaison à au moins trois degrés de liberté en rotation avec le berceau B. [0144] Cette liberté permet au flotteur de guidage F de se mouvoir par rapport au berceau B. Ainsi, lors de l’étape de réception représentée en figure 3, lors de laquelle le berceau B, à flottabilité négative, se trouve dans l’orientation d’accueil, le flotteur F reste à la surface S de l’eau. Il existe donc une certaine distance entre le flotteur F et le berceau B selon l’axe z, cette distance augmentant de l’avant vers l’arrière du flotteur F. Cette distance permet d’assurer une bonne sécurité lors de la phase de réception du navire. Elle limite les risques de heurts entre le navire N et le berceau B, notamment de la partie basse du navire N.
[0145] Avantageusement, le flotteur de guidage F est mobile en translation par rapport au berceau B selon l’axe z, l’axe z étant vertical par état de mer calme. Cela permet de limiter les risques de chocs entre le navire N et le berceau B, le berceau B pesant pouvant s’éloigner du flotteur F, lorsqu’il est immergé, par une translation selon l’axe z par rapport au flotteur F, en allongeant les suspentes en conséquence ce qui permet de laisser libre un volume de taille plus importante, en particulier de profondeur plus importante pour accueillir le navire N.
[0146] La translation du flotteur F par rapport au berceau B peut être autorisée avec une amplitude maximale prédéterminée le long de l’axe z ou peut être libre.
[0147] Avantageusement, le flotteur F est en liaison à 3 degrés de liberté en translation du flotteur F par rapport au berceau B.
[0148] Chaque mouvement de translation selon un axe perpendiculaire à l’axe z peut être est, autorisé avec une amplitude maximale prédéterminée selon cet axe.
[0149] A cet effet, dans l’exemple non limitatif des figures, le flotteur F est relié au berceau B par l’intermédiaire de la pièce de liaison C. L’avant FO du flotteur F est relié à la pièce de liaison C par un deuxième organe de liaison L. Le deuxième organe de liaison L établit une liaison à six degrés de liberté (trois translations et trois rotations) entre le flotteur F et la pièce de liaison C, et autorise chacun de ces mouvements, de façon libre ou avec une amplitude maximale prédéterminée. En variante, le flotteur F est en liaison rotule avec la pièce de liaison C ou en liaison à trois degrés de liberté en rotation et à 1 ou 2 degrés de liberté en translation. Cette variante est moins avantageuse du point de vue des risques de chocs entre le navire N et le flotteur F. [0150] En variante, le flotteur F est libre en translation selon l’axe z par rapport au berceau B. Autrement dit, il est apte à coulisser par rapport au châssis selon l’axe z indépendamment du berceau B. Cela permet, lors de la phase de réception du navire N, de laisser un plus grand volume sous le flotteur, entre le flotteur et le berceau B en permettant d’immerger le berceau B aussi profondément qu’on le souhaite.
[0151] Par exemple, le flotteur F est relié au rail R via une deuxième pièce de liaison en liaison glissière avec le rail R. La deuxième pièce est dissociée de la première pièce de liaison de façon à pouvoir coulisser le long du rail R, de façon indépendante par rapport berceau B.
[0152] En variante, le flotteur F est en liaison à trois degrés de liberté en rotation avec le berceau B et aucun degré de liberté en translation avec le berceau B.
[0153] Le dispositif de récupération D comprend un troisième organe de liaison LL permettant d’accrocher la proue PR du navire N, aussi appelée nez du navire N dans le cas des sous-marins, au flotteur FO, de préférence à l’avant FO du flotteur F, lorsque le navire N arrive en regard de l’avant FO du flotteur ou en butée sur l’avant FO du flotteur F.
[0154] Ce troisième organe de liaison LL permet ainsi de relier le navire N au bâtiment hôte H qui tracte alors le navire N.
[0155] Le navire N, accroché au flotteur F, se trouve en regard du berceau B, proue P vers l’avant selon l’axe x.
[0156] La proue PR est située sensiblement en regard de la première extrémité longitudinale E1 du berceau B.
[0157] Avantageusement, le troisième organe de liaison LL établit une liaison rotule entre le navire N et la partie avant FO du flotteur F ou une liaison à 6 degrés de liberté permettant des mouvements du navire N selon 6 degrés de liberté avec une amplitude maximale prédéterminée pour chaque degré de liberté. Par conséquent, même une fois que le navire N est accroché par sa proue PR au bâtiment hôte H, le navire N présente une liberté de mouvement en rotation et éventuellement selon les trois axes de translation par rapport au navire ce qui permet d’éviter de le soumettre à des forces efforts trop importants. [0158] Le troisième organe de liaison LL comprend, par exemple, un mousqueton ou un dispositif à crochet venant relier le navire au flotteur sous l’effet d’une traction du navire N sur une zone prédéterminée de la partie avant FO du flotteur. Le troisième organe de liaison LL peut être passif.
[0159] En variante, le dispositif de récupération comporte des moyens de détection d’une traction du navire sur la zone prédéterminée de la partie avant FO du flotteur et les moyens de commande COM sont configurés pour commander l’élément de liaison de façon qu’il vienne relier le navire au flotteur lorsqu’une traction du navire sur la zone de la partie avant du flotteur est détectée par les moyens de détection.
[0160] Le flotteur F présente, par exemple, une forme générale de U comprenant un fond FO disposé sensiblement en regard de l’extrémité avant du berceau B ou de l'avant de la zone d'appui du berceau B, par état de mer calme. Le flotteur F comprend deux ailes A1 et A2 s’étendant chacune longitudinalement depuis le fond FO, comprenant la butée BU, jusqu’à une extrémité libre ou arrière EA1 , EA2 située derrière le fond F selon l’axe x, les ailes A1 et A2 étant séparées par un plan parallèle au axes x et z passant par le fond FO, par état de mer calme. Le navire N pénètre alors dans l’espace délimité par le flotteur F par une ouverture OV délimitée par les extrémités arrière des ailes EA1 et EA2.
[0161] Le flotteur F comprend, par exemple, un boudin continu en forme générale de U, ayant une flottabilité positive ou un ensemble de boudins apte à présenter la flottabilité positive prédéterminée reliés entre eux de sorte à former la forme générale de U. Les boudins adjacents le long d’une courbe de forme générale en U peuvent être contigus ou espacés les uns des autres.
[0162] Avantageusement, le flotteur F, lorsqu’il présente la flottabilité positive prédéterminée, est déformable élastiquement de façon à amortir les impacts, c’est-à- dire à absorber l’énergie des impacts, entre le navire N et le flotteur F, en particulier lorsque le navire N se trouve à l’intérieur du volume délimité par le flotteur de guidage. Ainsi, le navire N ne rencontre pas d’élément rigide avant d’être accroché au flotteur F.
[0163] Le flotteur F comprend, par exemple, une enveloppe souple fermée apte à renfermer de l’air et pour présenter la forme générale en U. Le flotteur F peut être apte à être alternativement gonflé, pour présenter la flottabilité positive prédéterminée, et dégonflé.
[0164] En variante, le flotteur comprend une structure en U revêtue d’une enveloppe externe souple, compressible élastiquement de sorte à absorber l’énergie d’impacts entre le navire N et le flotteur F lorsque le navire N se rapproche du flotteur F et lorsqu’il pénètre dans le volume délimité par les ailes EA1 et EA2 et le fond FO du flotteur F.
[0165] Le flotteur F est avantageusement configuré et relié au berceau B pour limiter les mouvements du navire N par rapport au berceau B selon l’axe y, par état de mer calme. De cette façon, l’axe longitudinal I du navire N est sensiblement compris dans le plan (z, I), par état de mer calme.
[0166] Dans l’exemple non limitatif des figures, le dispositif de levage comprend deux ouvertures G1 , G2, visibles en figure 8, ménagées dans le flotteur F.
[0167] Le dispositif de levage comprend deux suspentes de liaison 13 et 14, prises parmi les suspentes 11 à 16 qui relient le berceau B au châssis supérieur CS. Chaque suspente de liaison 13, 14 relie le berceau B au châssis supérieur CS en traversant une ouverture G1 , G2 ménagée dans le flotteur F et entourant radialement complètement la suspente de liaison 13.
[0168] Autrement dit, deux ouvertures G1 , G2 sont ménagées dans le flotteur F et entièrement délimitées par le flotteur. Chaque suspente de liaison 13, 14 passe à travers d’une de ces ouvertures G1 , G2.
[0169] Chaque ouverture G1 , G2 est avantageusement configurée et agencée de façon que chaque suspente de liaison 13, 14 soit apte à s’étendre sensiblement linéairement, c’est-à-dire selon une unique ligne droite, par état de mer calme, lorsqu’elle est en tension.
[0170] Le passage des suspentes de liaison 13, 14 au travers du flotteur F permet de limiter une amplitude d’une rotation du flotteur F par rapport au berceau B autour d’un axe perpendiculaire à l’axe z du rail.
[0171] Cela permet de faciliter l’approche du navire N. Par ailleurs, une fois que le navire N est engagé entre les ailes du flotteur F et lorsque sa proue PR est liée au flotteur F, la liaison du berceau B au châssis au travers du flotteur F permet de rapprocher l’axe longitudinal 11 du navire N du plan (x, z) par état de mer calme, avec une relative souplesse, avant que le navire N ne vienne reposer sur le berceau B. En effet, la souplesse des suspentes de liaison 13, 14 autorise une certaine oscillation du navire N autour de l’axe z mais la tension des suspentes de liaison 13, 14 rapproche l’axe longitudinal 11 du navire N du plan (x, z) par état de mer calme. Cette configuration permet donc d’orienter le navire N avec souplesse, dans la direction lui permettant de venir coopérer de façon optimale avec le berceau B, lorsque l’on vient amener le berceau B dans l’orientation de hissage, puis lorsqu’on le hisse. Les suspentes de liaison servent de guide au berceau B.
[0172] Avantageusement, les suspentes de liaison 13, 14 exercent des tractions verticales sur le berceau B sensiblement au niveau de l’extrémité arrière E2 du berceau B. Cela permet de favoriser le placement souple permis par les suspentes de liaison.
[0173] Avantageusement, les suspentes de liaison 13, 14 comprennent deux suspentes exerçant des tractions verticales sur le berceau B en des points distants selon l’axe y lorsqu’elles sont tendues. Dans l’exemple non limitatif des figures, la première ouverture G1 est sous traverse la première aile A1 et la deuxième ouverture G2 traverse la deuxième aile A2.
[0174] Avantageusement, le dispositif de levage comprend deux suspentes de liaison 13, 14 aptes à être séparées par un plan (x, z) passant par l’avant FO par état de mer calme. Cela permet d’assurer stabilisation symétrique du flotteur F autour du plan (x, z).
[0175] Le dispositif pourrait en variante comprendre une seule ou plus de deux suspentes de liaison.
[0176] Dans l’exemple des figures 1 à 12, le flotteur F présente une ouverture angulaire autour d’un axe apte à être parallèle à l’axe z par état de mer calme et une longueur selon l’axe x sensiblement fixes lorsqu’il présente la flottabilité positive prédéterminée.
[0177] En variante, le flotteur présente une ouverture angulaire variable autour d’un axe apte à être parallèle à l’axe z par état de mer calme et/ou une longueur variable.
[0178] Dans l’exemple de la figure 13, le flotteur FF diffère de celui des figures précédentes, en ce qu’il présente une ouverture angulaire variable. Par ailleurs, le dispositif diffère de celui des figures précédentes, en ce qu’il ne comprend pas de suspentes de stabilisation. Il pourrait, en variante, comprendre des suspentes de stabilisation.
[0179] Ses deux ailes AA1 et AA2 sont aptes à pivoter l’une par rapport à l’autre autour d’un axe z1 susceptible d’être parallèle à l’axe z par état de mer calme. Les ailes sont reliées par un ressort de torsion RES qui tend à donner au flotteur F une ouverture angulaire d’accueil ya importante comme représenté schématiquement en vue de dessus sur la vue de gauche de la figure 13 et en vue de derrière sur la vue du milieu. L’ouverture angulaire d’accueil ya est obtenue sous l’effet d’un allongement approprié des suspentes des liaisons 13, 14 permettant de détendre les suspentes de liaison 13, 14 qui laissent les ailes AA1 et AA2 s’écarter sous l’effet de l’effort exercé par le ressort. Les suspentes de liaison 13 et 14 s’étendent selon une ligne courbe comprenant deux lignes sensiblement droites. En réduisant la longueur des suspentes de liaison 13, 14, l’ouverture angulaire du flotteur F diminue sous l’effet d’une réduction de la longueur des suspentes 13 et 14 les mettant en tension, jusqu’à ce que le flotteur F présente une ouverture angulaire de hissage yh, visible sur la vue de droite, dans laquelle les suspentes de liaison 13 et 14 sont tendues et s’étendent linéairement, c’est-à-dire s’étendent chacune longitudinalement selon une unique droite.
[0180] Les suspentes de liaison 13 et 14 sont avantageusement mais non nécessairement, sensiblement parallèles l’une à l’autre lorsque le flotteur F présente l’ouverture angulaire de hissage yh.
[0181] Avantageusement, le berceau B comprend au moins un amortisseur AM permettant d’amortir un impact entre le berceau B et la zone de navire N lorsque l’on relève le berceau B pour l’amener en appui contre le navire N.
[0182] La nacelle NA peut prendre différentes forme en fonction du type d’engin qu’elle est destinée à transporter. La nacelle NA est, par exemple, dépourvue de flotteur F, la nacelle NA, alors totalement submersible, est adaptée à la récupération d’engins sous-marins, ou le flotteur F est intégré au berceau B de sorte que le berceau B est flottant, la nacelle est alors flottante et adaptée à la récupération d’engins flottants. [0183] Dans l’exemple des figures, le guide est un rail R. Le guide peut être un tout autre type de guide, par exemple, un pantographe ou un système de guidage hydraulique.
[0184] Dans l’exemple des figures, le flotteur F est relié au même guide R que le berceau B. En variante, le flotteur est relié à un deuxième guide dont la fonction est la même, à savoir, de guider le flotteur F en translation selon l’axe z.
[0185] En variante, le dispositif comprend une amarre reliant la partie avant FO du flotteur F à un point fixe par rapport au châssis supérieur CS.
[0186] En variante, le flotteur F est relié au berceau B uniquement par une ou plusieurs suspentes de liaison.
[0187] En variante, l’ensemble de suspentes est dépourvu de suspentes de stabilisation.
[0188] Les moyens de commande peuvent comprendre au moins une mémoire et au moins processeur. Les moyens de commande sont alors prévus sous la forme d’un ou plusieurs programmes informatiques stockés, chaque programme d’ordinateur est stocké dans une mémoire du calculateur et comprenant des instructions de code exécutables par un processeur.
[0189] En variante, les moyens de commande peuvent être prévus sous la forme d'un ou plusieurs circuits intégrés dédiés ou ASIC (pour « Application Spécifie Integrated Circuit « en anglais) ou d'un ou plusieurs composants logiques programmables, par exemple du type FPGA (pour « Field Programmable Gâte Array » en anglais), configurés ou programmés pour générer la ou les commande(s) qu’il doit générer.
[0190] L’invention se rapporte un ensemble de récupération comprenant une station de surface et un dispositif de récupération selon l’invention monté sur la station de surface. L’invention se rapporte également à un ensemble marin comprenant l’ensemble de récupération et le navire N.

Claims

REVENDICATIONS
1 . Dispositif de récupération d’un navire (N) à la mer depuis une station de surface (H), le dispositif de récupération comprenant :
- un berceau (B) destiné à supporter le navire (N),
- un dispositif de levage (LEV) comprenant un châssis supérieur (CS) et un ensemble de suspentes (11 , 12, 13, 14, 15, 16) reliant le berceau (B) au châssis supérieur (CS), des longueurs des suspentes étant variables de façon à permettre de hisser et d’abaisser le berceau (B), l’ensemble de suspentes comprenant une première suspente de stabilisation (15) et une deuxième suspente de stabilisation (16) aptes à être dans une configuration de stabilisation dans laquelle la première suspente de stabilisation (15) et la deuxième suspente de stabilisation (16) sont en tension et s’étendent linéairement, et dans laquelle une première projection orthogonale de la première suspente de stabilisation (15) sur un plan transverse (y, z) défini par un axe z, lié au châssis supérieur (CS) et s’étendant sensiblement verticalement par état de mer calme, et par un axe y orthogonal à l’axe z, et une deuxième projection orthogonale de la deuxième suspente de stabilisation (16) sur le plan transverse, sont inclinées l’une par rapport à l’autre de façon à permettre de limiter un balancement du berceau (B) par rapport au châssis supérieur (CS).
2. Dispositif de récupération selon la revendication précédente, dans lequel le navire est destiné à reposer sur le berceau sous l’effet de la gravité lors du hissage.
3. Dispositif de récupération selon l’une quelconque des revendications précédentes, comprenant une attache reliant un premier point d’attache du berceau (B) à un deuxième point d’attache fixe, dans la configuration de réception, par rapport au châssis supérieur (CS) en translation selon l’axe y et/ou selon un axe x orthogonal à l’axe y et à l’axe z.
4. Dispositif de récupération selon l’une quelconque des revendications précédentes, comprenant : - une pièce de liaison (C) en liaison à trois degrés de liberté en rotation avec le berceau (B),
- un guide (R) permettant de guider la pièce de liaison (C) en translation selon l’axe z, par rapport au châssis supérieur (CS), lors d’une variation de longueur des suspentes.
5. Dispositif de récupération selon la revendication précédente, dans lequel la pièce de liaison est en liaison rotule ou en liaison à trois degrés de liberté en rotation et un degré de liberté en translation selon un axe parallèle à un axe x lié au châssis supérieur (CS) et perpendiculaire à l’axe y et à l’axe z, avec le berceau.
6. Dispositif de récupération selon l’une quelconque des revendications précédentes, dans lequel le dispositif de récupération (D) est configuré pour récupérer un navire (N) se déplaçant à la surface de l’eau) par état de mer calme, préférentiellement selon un axe d’avancement parallèle à un axe x lié au châssis supérieur (CS) et perpendiculaire à l’axe y et à l’axe z.
7. Dispositif de récupération selon l’une quelconque des revendications précédentes, dans lequel la première projection orthogonale et la deuxième projection orthogonale se croisent.
8. Dispositif de récupération selon l’une quelconque des revendications précédentes, dans lequel la première suspente de stabilisation (15) et la deuxième suspente de stabilisation (16) sont aptes à être dans une configuration de repos dans laquelle la première suspente de stabilisation (15) et la deuxième suspente de stabilisation (16) sont en tension et dans laquelle une troisième projection orthogonale de la première suspente de stabilisation (15) sur le plan transverse et une quatrième projection orthogonale de la deuxième suspente de stabilisation (16) sur le plan transverse, présente une inclinaison plus faible, l’une par rapport à l’autre, que dans la configuration de stabilisation, de sorte qu’un balancement du berceau (B) par rapport au châssis supérieur (CS) est plus limité lorsque les suspentes sont dans la configuration de stabilisation que lorsqu’elles sont dans la configuration de repos.
9. Dispositif de récupération selon l’une quelconque des revendications précédentes, dans lequel l’ensemble de suspentes (11 , 12, 13, 14, 15, 16) comprend en outre des suspentes de hissage disposées de sorte à permettre de hisser le berceau (B) avec une gîte nulle par état de mer calme et de régler une assiette du berceau (B).
10. Dispositif de récupération selon la revendication précédente, dans lequel chaque suspente de hissage présentant une projection orthogonale sur le plan (x, y) apte à présenter une unique orientation prédéterminée par état de mer calme, lorsque la suspente de hissage est en tension et s’étend linéairement.
11. Dispositif de récupération selon l’une quelconque des revendications précédentes, comprenant des moyens de réglage des longueurs des suspentes configurés pour maintenir les suspentes de l’ensemble de suspentes sensiblement en tension lors d’une étape de hissage stabilisée lors de laquelle les moyens de réglage hissent le berceau (B) vers le châssis supérieur (CS), le dispositif de récupération étant dans la configuration de récupération et les suspentes de stabilisation étant dans la configuration de stabilisation.
12. Dispositif de récupération selon la revendication précédente, dans lequel les moyens de réglage sont configurés pour maintenir les suspentes de l’ensemble de suspentes en tension lors de l’étape de hissage stabilisé.
13. Dispositif de récupération selon l’une quelconque des revendications 11 et 12, dans lequel les moyens de réglage sont configurés pour réduire continûment les longueurs des suspentes de l’ensemble de suspentes lors de l’étape hissage stabilisé.
14. Dispositif de récupération selon l’une quelconque des revendications précédentes, comprenant des moyens de liaison permettant de relier une proue (PR) du navire (N) au berceau (B) de sorte à empêcher un mouvement du navire (N) par rapport au berceau (B) selon l’axe x vers l’avant.
15. Procédé de stabilisation d’un berceau (B) d’un dispositif de récupération selon l’une quelconque des revendications précédentes, lors duquel les suspentes de l’ensemble de suspentes sont maintenues sensiblement en tension, les suspentes de stabilisation étant dans la configuration de stabilisation.
16. Procédé de hissage d’un navire à la mer utilisant un dispositif de récupération selon l’une quelconque des revendications 1 à 14, comprenant une étape de hissage stabilisé lors de laquelle on hisse le berceau (B) vers le châssis supérieur (CS) sous l’effet d’une variation de longueur des suspentes, le dispositif de récupération étant dans la configuration de récupération et les suspentes de stabilisation étant dans la configuration de stabilisation.
PCT/EP2020/087758 2019-12-26 2020-12-23 Dispositif de recuperation d'un navire a la mer WO2021130306A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2020411001A AU2020411001A1 (en) 2019-12-26 2020-12-23 Device for recovering a vessel at sea
US17/787,305 US20230016702A1 (en) 2019-12-26 2020-12-23 Device for recovering a vessel at sea

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1915628 2019-12-26
FR1915628A FR3105775A1 (fr) 2019-12-26 2019-12-26 Dispositif de récupération d'un navire à la mer

Publications (1)

Publication Number Publication Date
WO2021130306A1 true WO2021130306A1 (fr) 2021-07-01

Family

ID=69811361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/087758 WO2021130306A1 (fr) 2019-12-26 2020-12-23 Dispositif de recuperation d'un navire a la mer

Country Status (4)

Country Link
US (1) US20230016702A1 (fr)
AU (1) AU2020411001A1 (fr)
FR (1) FR3105775A1 (fr)
WO (1) WO2021130306A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113619733A (zh) * 2021-08-18 2021-11-09 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) 一种模块化小艇收放装置的智能收放方法
FR3131903A1 (fr) * 2022-01-14 2023-07-21 Naval Group Navire comportant des moyens de déploiement d'un dock flottant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3984875B1 (fr) 2020-10-16 2023-10-04 TotalEnergies OneTech Plateforme de lancement et de récupération pour bateau et procédé de mise à flot et de sortie de l eau associé
CN116331418A (zh) * 2023-04-23 2023-06-27 自然资源部第一海洋研究所 一种海用监测平台布放方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756446A (en) * 1972-05-24 1973-09-04 Krupp Gmbh Device for transloading floating containers
DD275219A1 (de) * 1988-08-30 1990-01-17 Neptun Schiffswerft Veb Vorrichtung zum einholen grosser tonnenbojen
US6178914B1 (en) * 1996-02-07 2001-01-30 Sune Georg Axelsson Method and an arrangement for launching and taking aboard a raft
WO2015087074A1 (fr) * 2013-12-13 2015-06-18 Ensco 392 Limited Appareil permettant de manipuler un bateau
WO2018069241A1 (fr) * 2016-10-11 2018-04-19 Stx France S.A. Navire pourvu d'une installation de mise à l'eau et de récupération d'engins
FR3062844A1 (fr) 2017-02-14 2018-08-17 Thales Systeme de mise a l'eau et de recuperation d'un engin propulse depuis le pont d'un navire porteur

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756446A (en) * 1972-05-24 1973-09-04 Krupp Gmbh Device for transloading floating containers
DD275219A1 (de) * 1988-08-30 1990-01-17 Neptun Schiffswerft Veb Vorrichtung zum einholen grosser tonnenbojen
US6178914B1 (en) * 1996-02-07 2001-01-30 Sune Georg Axelsson Method and an arrangement for launching and taking aboard a raft
WO2015087074A1 (fr) * 2013-12-13 2015-06-18 Ensco 392 Limited Appareil permettant de manipuler un bateau
WO2018069241A1 (fr) * 2016-10-11 2018-04-19 Stx France S.A. Navire pourvu d'une installation de mise à l'eau et de récupération d'engins
FR3062844A1 (fr) 2017-02-14 2018-08-17 Thales Systeme de mise a l'eau et de recuperation d'un engin propulse depuis le pont d'un navire porteur

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113619733A (zh) * 2021-08-18 2021-11-09 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) 一种模块化小艇收放装置的智能收放方法
CN113619733B (zh) * 2021-08-18 2023-12-19 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) 一种模块化小艇收放装置的智能收放方法
FR3131903A1 (fr) * 2022-01-14 2023-07-21 Naval Group Navire comportant des moyens de déploiement d'un dock flottant

Also Published As

Publication number Publication date
FR3105775A1 (fr) 2021-07-02
AU2020411001A1 (en) 2022-07-14
US20230016702A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2021130306A1 (fr) Dispositif de recuperation d'un navire a la mer
EP1249390B1 (fr) Dispositif de mise à l'eau et de récupération d'un véhicule sous-marin et procédé de mise en oeuvre
EP2648970B1 (fr) Système de mise à l'eau et de récupération d'engins sous-marins, notamment d'engins sous-marins tractés
EP2964515B1 (fr) Systeme et procede de recuperation d'un engin sous-marin autonome
EP2855252B1 (fr) Systeme de mise a l'eau et de recuperation d'engins sous-marins, notamment d'engins sous-marins tractes
EP2809571B1 (fr) Ensemble de reception d'un engin navigant et systeme de recuperation et de deploiement a la mer d'un tel engin
EP3209546B1 (fr) Système de mise a l'eau et de récuperation d'engin marin et sous-marin assisté par des protections inclinables
WO2021130333A1 (fr) Dispositif de recuperation d'un navire a la mer
EP3707067A1 (fr) Structure flottante pour le deploiement et la recuperation d'au moins un engin aquatique autonome par un navire, procede, systeme et navire correspondants
WO2019091669A1 (fr) Nacelle pour le transport de personnes sur une plateforme petroliere
EP3976461B1 (fr) Dispositif sous-marin et systeme sous-marin
EP3976460B1 (fr) Dispositif sonar, systeme sonar
EP3871000B1 (fr) Système sonar
WO2023117564A1 (fr) Systeme pour la manœuvre d'un engin marin
WO1998049049A1 (fr) Paravane et dispositif pour le controle de l'ecartement de cables sismiques marins comportant un tel paravane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20838089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020411001

Country of ref document: AU

Date of ref document: 20201223

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20838089

Country of ref document: EP

Kind code of ref document: A1