WO2021129406A1 - 机器人、图像采集方法、电子设备及计算机可读存储介质 - Google Patents

机器人、图像采集方法、电子设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2021129406A1
WO2021129406A1 PCT/CN2020/135259 CN2020135259W WO2021129406A1 WO 2021129406 A1 WO2021129406 A1 WO 2021129406A1 CN 2020135259 W CN2020135259 W CN 2020135259W WO 2021129406 A1 WO2021129406 A1 WO 2021129406A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
robot
image acquisition
telescopic structure
target object
Prior art date
Application number
PCT/CN2020/135259
Other languages
English (en)
French (fr)
Inventor
许哲涛
Original Assignee
京东数科海益信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东数科海益信息科技有限公司 filed Critical 京东数科海益信息科技有限公司
Priority to EP20907062.2A priority Critical patent/EP4082722A4/en
Priority to US17/784,429 priority patent/US20230001584A1/en
Publication of WO2021129406A1 publication Critical patent/WO2021129406A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • B25J18/025Arms extensible telescopic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/123Linear actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • B25J9/162Mobile manipulator, movable base with manipulator arm mounted on it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40411Robot assists human in non-industrial environment like home or office

Definitions

  • the present disclosure relates to the field of computer technology, and more specifically, to a robot, an image acquisition method, an electronic device, and a computer-readable storage medium.
  • IDC Internet Data Center
  • computer room inspection robots are gradually being applied to IDC computer rooms to perform repetitive inspection tasks of the computer room cabinets.
  • the main task of the machine room inspection robot during inspection is to distinguish whether the computer equipment in the cabinet is working normally.
  • the machine room inspection robot relies on the camera to take pictures of the indicator lights indicating the operating status of the computer equipment, and then performs image recognition on the taken pictures to determine whether the computer settings are operating normally.
  • the inventor found that there is at least the following problem in the related technology: due to the requirements of construction specifications, some computer rooms will install metal doors with meshes on the cabinets in the computer room. For example, because the non-mesh part of the metal door may obscure the operating status indicator, the image of the operating status indicator may be missing from the photos taken by the camera, which makes it impossible to accurately distinguish whether the computer is operating normally based on the photos taken.
  • embodiments of the present disclosure provide a robot, an image acquisition method, an electronic device, and a computer-readable storage medium.
  • a robot including: a robot body; a workbench; a telescopic structure, one end of the telescopic structure is pivotally connected to the robot body, and the other end is connected to the workbench; a driving mechanism , Arranged on the robot body, and used to drive the telescopic structure to expand and/or move relative to the robot body; the image acquisition device is arranged on the workbench.
  • the telescopic structure is configured to enable the image acquisition device to collect images of the target object from different angles as the telescopic structure expands and/or moves.
  • the above-mentioned telescopic structure includes: a gear and a telescopic component provided on the above-mentioned gear.
  • the robot body is provided with a guide groove with serrations used in cooperation with the gear.
  • the driving mechanism drives the gear to move vertically in the guide groove to drive the telescopic component to move vertically relative to the robot body.
  • the above-mentioned telescopic structure includes: a sliding member and a telescopic member provided on the above-mentioned sliding member.
  • the robot body is provided with a sliding groove that cooperates with the sliding member.
  • the driving mechanism drives the sliding member to vertically slide in the sliding groove to drive the telescopic member to move vertically relative to the robot body.
  • the above-mentioned sliding component includes a limiting structure.
  • the telescopic component includes: a nut arranged in the limiting structure; and a screw used in conjunction with the nut.
  • the driving mechanism drives the nut to rotate in the limiting structure to drive the screw to extend from the robot body or retract into the robot body.
  • the robot further includes: a light supplement device, which is arranged on the workbench and is used to supplement light on the surrounding environment where the target object is located when the image acquisition device is used to collect images.
  • a light supplement device which is arranged on the workbench and is used to supplement light on the surrounding environment where the target object is located when the image acquisition device is used to collect images.
  • the robot further includes: an image processing device for processing multiple images collected by the image acquisition device from multiple angles for the target object, so as to obtain an unobstructed image of the target object.
  • the robot includes: a robot body; a workbench; a telescopic structure, one end of the telescopic structure is pivotally connected to the robot body, and the other One end is connected to the above-mentioned worktable; the driving mechanism is arranged on the above-mentioned robot body; and the image acquisition device is arranged on the above-mentioned worktable.
  • the above method includes: using the driving mechanism to drive the telescopic structure to expand and/or move relative to the robot body; when the image acquisition device reaches the first position with the expansion and/or movement of the telescopic structure, using the image acquisition device Image acquisition is performed on the target object to obtain the first image; when the image acquisition device reaches the second position with the expansion and/or movement of the telescopic structure, the image acquisition device is used to perform image acquisition on the target object to obtain the second position. image.
  • the unobstructed image of the target object can be obtained by processing the first image and the second image.
  • the first position and the second position are two positions on the same horizontal plane; or the first position and the second position are two positions on the same vertical plane.
  • the above-mentioned robot further includes: a light supplement device.
  • the above method further includes: before using the image capturing device to perform image capturing of the target object to obtain the first image and/or using the image capturing device to perform image capturing of the target object to obtain the second image, using the supplementary light
  • the device fills in light for the surrounding environment where the above-mentioned target object is located.
  • an electronic device including an electronic device body, a workbench, and a telescopic structure.
  • One end of the telescopic structure is pivotally connected to the electronic device body, and the other end is connected to the workbench.
  • the drive mechanism is set on the above-mentioned electronic equipment body
  • the image acquisition device is set on the above-mentioned workbench
  • one or more processors and a storage device wherein the above-mentioned storage device is used to store executable instructions, and the above-mentioned executable instructions are When executed by the foregoing processor, the method of the embodiment of the present disclosure is implemented.
  • Another aspect of the embodiments of the present disclosure provides a computer-readable storage medium that stores computer-executable instructions, and the foregoing instructions are used to implement the methods of the embodiments of the present disclosure when executed by a processor.
  • the computer program includes computer-executable instructions, which are used to implement the method of the embodiments of the present disclosure when executed.
  • a complete image of the target object can be obtained by, for example, splicing images obtained from multiple angles.
  • Fig. 1 schematically shows an application scenario of a robot according to an embodiment of the present disclosure
  • Fig. 2 schematically shows a structural diagram of a robot according to an embodiment of the present disclosure
  • Fig. 3 schematically shows a structural diagram of a telescopic structure according to an embodiment of the present disclosure
  • Fig. 4 schematically shows a structural diagram of a telescopic structure according to another embodiment of the present disclosure
  • Fig. 5 schematically shows a structural diagram of a telescopic component according to an embodiment of the present disclosure
  • Fig. 6 schematically shows a block diagram of the composition of a robot according to an embodiment of the present disclosure
  • Fig. 7 schematically shows a flowchart of an image acquisition method according to an embodiment of the present disclosure
  • Fig. 8 schematically shows a flowchart of an image acquisition method according to another embodiment of the present disclosure.
  • Fig. 9 schematically shows a block diagram of an electronic device suitable for implementing an image acquisition method according to an embodiment of the present disclosure.
  • At least one of the “systems” shall include, but is not limited to, systems having A alone, B alone, C alone, A and B, A and C, B and C, and/or systems having A, B, C, etc. ).
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more features.
  • An embodiment of the present disclosure provides a robot, which may include, for example, a robot body; a workbench; a telescopic structure, one end of the telescopic structure is pivotally connected to the robot body, and the other end of the telescopic structure is connected to the workbench;
  • the driving mechanism is arranged on the robot body, the driving mechanism is used to drive the telescopic structure to expand and/or move relative to the robot body;
  • the image acquisition device is arranged on the workbench.
  • the telescopic structure is configured to enable the image acquisition device to acquire images of the target object from different angles as the telescopic structure expands and/or moves.
  • FIG. 1 schematically shows an application scenario 100 of a robot according to an embodiment of the present disclosure. It should be noted that FIG. 1 is only an example of an application scenario of a robot to which the embodiments of the present disclosure can be applied, to help those skilled in the art understand the technical content of the present disclosure, but it does not mean that the embodiments of the present disclosure cannot be used. For other equipment, systems, environments or scenarios.
  • the application scenario 100 may include cabinets 101, 102, 103, robot 104, network 105 and server 106.
  • the network 105 is used as a medium for providing a communication link between the robot 104 and the server 106.
  • the network 105 may include various connection types, such as wired, wireless communication links, or fiber optic cables.
  • the cabinets 101, 102, and 103 may be metal cabinets for accommodating electrical or electronic equipment.
  • the cabinets 101, 102, and 103 are generally equipped with doors with holes or/and gaps, detachable or non-detachable side panels and back panels.
  • the cabinets 101, 102, 103 may include computer cabinets, server cabinets, network cabinets, console cabinets, power cabinets, and monitoring cabinets.
  • the cabinets 101, 102, 103 can be used in central computer room, data room, computer room, control center, monitoring room, monitoring center and other places.
  • the robot 104 interacts with the server 106 through the network 105 to receive or send messages and so on.
  • the robot 104 can be equipped with various devices, such as cameras, video cameras, LED lights, hygrometers, lifting mechanisms, mechanical arms, pickups, speakers, and alarms.
  • the robot 104 may be various robots with walking and navigation functions, including but not limited to operating robots, programmed robots, teaching and reproducing robots, intelligent robots, and integrated robots.
  • the robot 104 can walk to a specific position to perform related operations on the cabinets 101, 102, and 103, for example, collect image information of the cabinets 101, 102, and 103.
  • the server 106 may be a server that provides various services, for example, an analysis storage server that analyzes and stores information collected by the robot 104.
  • the analysis and storage server may analyze and process data such as images, temperature, and voice collected by the robot 104, and feed back the processing results to the robot 104, so that the robot 104 can perform subsequent operations.
  • FIG. 1 the numbers of cabinets, robots, networks, and servers in FIG. 1 are merely illustrative. According to implementation needs, there can be any number of cabinets, robots, networks, and servers.
  • Fig. 2 schematically shows a structural diagram of a robot according to an embodiment of the present disclosure.
  • the robot may include: a robot body 201, a workbench 202, a telescopic structure 203, a driving mechanism 204, and an image acquisition device 205.
  • one end of the telescopic structure 203 is connected to the robot body 201 in a pivotable manner, and the other end is connected to the workbench 202.
  • the robot body 201 may be a machine room inspection robot with walking, navigation, and positioning functions.
  • the robot body 201 can be equipped with an image collection system, a voice system, a temperature collection device, a humidity collection device, an information transceiver device, a data processing device, a data storage device, and the like.
  • the fixed end of the telescopic structure 203 is connected to the robot body 201, and the free end of the telescopic structure 203 is connected to the workbench 202.
  • One end of the telescopic structure 203 is pivotally connected to the robot body 201 means that the free end of the telescopic structure 203 can move vertically or/and horizontally with respect to the robot body 201, so that the free end of the telescopic structure 203 can move the worktable.
  • 202 moves to the target location.
  • the vertical movement may be the movement of the telescopic structure 203 in a vertical direction
  • the horizontal movement may be the movement of the telescopic structure 203 in a plane perpendicular to the vertical direction.
  • the workbench 202 can specifically carry image acquisition equipment, lighting equipment, temperature acquisition equipment, humidity acquisition equipment, etc., and the workbench 202 can also move relative to the robot body 201 under the drive of the telescopic structure 203, Thus, the equipment carried by it can be moved to a specific location for related operations.
  • the telescopic structure 203 may include a robot arm, a robot hand, a telescopic rod, a sliding rail, and the like.
  • the free end of the telescopic structure 203 is connected to the workbench 202, and the telescopic structure 203 can move the workbench 202 to a specific position so that the equipment carried on the workbench 202 can perform related operations.
  • the driving mechanism 204 is provided on the robot body 201, and the driving mechanism 204 is used to drive the telescopic structure 203 to telescope and/or move relative to the robot body 201.
  • the driving mechanism 204 may include an electric motor, a hydraulic motor, and the like.
  • the driving mechanism 204 can drive the telescopic structure 203 to move the workbench 202 to a specific position, so that the equipment carried on the workbench 202 can perform related operations at the specific position.
  • the movement of the telescopic structure 203 relative to the robot body 201 includes vertical movement and horizontal movement.
  • the image acquisition device 205 is disposed on the workbench 202, and as the telescopic structure 203 expands and/or moves, the image acquisition device 205 can collect images of the target object from different angles.
  • the image acquisition device 205 may include a camera, a video camera, a two-dimensional camera, a three-dimensional camera, and the like.
  • the image acquisition device 205 has an auto-focus function, and in some scenarios, the camera of the image acquisition device 205 can be rotated so that the optical axis of the camera of the image acquisition device 205 passes through the target object, so as to better capture the image of the target object.
  • the workbench 202 can transport the image capture device 205 to different locations. Therefore, the image capture device 205 can capture images of the target object at different locations. Since part of the area of the target object is blocked by the obstruction (for example, blocked by the metal mesh), in a single image of the target object collected by the image acquisition device 205, a part of the area is always obscured by the obstruction. However, between the images of the target object collected at different positions, the area blocked by the obstruction is not the same. Therefore, the multiple images of the target object collected by the image acquisition device 205 at different positions can more comprehensively reflect the whole picture of the target object. .
  • the obstruction for example, blocked by the metal mesh
  • the telescopic structure 203 moves the image acquisition device 205 to different positions, and the image acquisition device 205 can perform image acquisition on the target object at different positions.
  • the angle of the image capture device 205 relative to the target object changes accordingly, that is, the angle at which the image capture device 205 captures the image of the target object has changed, so as to realize the image of the target object from multiple angles. collection.
  • the robot may further include a processor 206.
  • the processor 206 may be connected to the driving mechanism 204.
  • the processor 206 may include a CPU (Central Processing Unit), a DSP (Digital Signal Processor), a microprocessor, and the like.
  • the driving mechanism 204 may include a single-chip microcomputer, a motor server, and a motor.
  • the single-chip microcomputer is connected to the motor server, the motor server is connected to the motor, and the single-chip microcomputer controls the motor operation through the motor server (for example, see FIG. 6).
  • the processor 206 is connected to the single-chip microcomputer of the driving mechanism 204, and the processor 206 can send instructions to the single-chip so that the single-chip can control the operation of the motor through the motor server.
  • the processor 206 is connected to a bus (for example, a CAN bus), and the single-chip microcomputer is mounted on the bus through a bus transceiver (for example, as shown in FIG. 6).
  • a bus for example, a CAN bus
  • devices such as temperature collection equipment and humidity collection equipment can be mounted on the bus to communicate with the processor 206.
  • the user can mount the required equipment on the bus according to specific needs, which greatly improves the scalability of the robot.
  • the processor 206 may be connected to the image acquisition device 205.
  • the processor 206 may send an instruction to the image acquisition device 205 to control the image acquisition device 205 to acquire an image of the target object. For example, when the workbench 202 moves to one position, the processor 206 controls the image acquisition device 205 to acquire an image of a target object, and when the workbench 202 moves to another position, the processor 206 controls the image acquisition device 205 to acquire another target object. The image of the object.
  • the telescopic structure 203 is used to move the image acquisition device 205 to a different position to perform image acquisition on the target object, that is, images of the target object can be acquired from different angles. If the images collected from different angles are spliced or merged, the spliced or merged image can avoid the occlusion of the target object by the obstruction, and therefore, a more comprehensive image of the target object can be obtained.
  • FIG. 2 The robot shown in FIG. 2 will be further described below with reference to FIGS. 3 to 8 in conjunction with specific embodiments.
  • Fig. 3 schematically shows a structural diagram of a telescopic structure according to an embodiment of the present disclosure.
  • the telescopic structure 203 may include a gear 2031 and a telescopic component 2032 provided on the gear 2031.
  • the robot body 201 is provided with a guide groove 2011 with serrations used in cooperation with the gear 2031.
  • the driving mechanism 204 vertically moves in the guide groove through the driving gear 2031 to drive the telescopic component 2032 to move vertically relative to the robot body.
  • the gear 2031 can be sleeved on the bearing, and the telescopic component 2032 can be provided on the bearing sleeved by the gear 2031, so that the telescopic component 2032 does not rotate with the gear 2031, but the gear 2031 can carry the telescopic component 2032 Move together.
  • the serrations of the guide groove 2011 can mesh with the teeth of the gear 2031, so that the gear 2031 can move stably along the guide groove 2011.
  • Fig. 4 schematically shows a structural diagram of a telescopic structure according to another embodiment of the present disclosure.
  • the telescopic structure 203 may include a sliding component 2033 and a telescopic component 2032 provided on the sliding component 2033.
  • the robot body 201 is provided with a sliding groove 2012 that cooperates with the sliding member 2033.
  • the driving mechanism 203 drives the sliding member 2033 to vertically slide in the sliding groove 2012 to drive the telescopic member 2032 to move vertically relative to the robot body 201.
  • the sliding member 2033 may include a slider, a sliding wheel, a rolling ball, and the like.
  • the sliding groove 2012 may have a notch and a groove cavity, and the cross-sectional area of the notch is slightly smaller than the cross-sectional area of the groove cavity, so that the sliding block, sliding wheel and rolling ball of the sliding part 2033 can move in the groove cavity without moving from The notch came out.
  • Fig. 5 schematically shows a structural diagram of a telescopic component according to an embodiment of the present disclosure.
  • the sliding member 2033 may include a limiting structure 20331; the telescopic member 2032 may include a nut 20321 and a screw 20322.
  • the nut 20321 is arranged in the limiting structure 20331; the screw 20322 is used in conjunction with the nut 20321.
  • the driving mechanism 204 drives the screw 20322 to extend from the robot body 201 or retract into the robot body 201 by driving the nut 20321 to rotate in the limiting structure 20331, that is, the nut 20321 drives the screw 20322 to move horizontally, and the screw 20322 then drives the worktable. 202 moves horizontally.
  • the nut 20321 may have an internal thread
  • the screw 20322 may have an external thread
  • the internal thread of the nut 20321 matches the external thread of the screw 20322.
  • the limiting structure 20331 may be two parallel plates fixed on the robot body 201. The two parallel plates have corresponding holes. The diameter of the holes is larger than the diameter of the screw 20322 but smaller than the outer diameter of the nut 20321. (The outer diameter of the nut 20321 refers to the circumscribed circle of the nut 20321).
  • the nut 20321 is sandwiched between two parallel plates. After the screw 20322 passes through the hole on the parallel plate, it is screwed to the nut 20321. Therefore, the nut 20321 can rotate but cannot be displaced. As the nut 20321 rotates forward Or reversal, the screw 20322 makes a telescopic movement.
  • the screw 20322 may be provided with threads.
  • the cross section perpendicular to the axial direction may be polygonal, such as a triangle, a square, and the like.
  • the sliding part 2033 may also include a square sleeve. The square sleeve can be sleeved outside the end of the square screw 20322, so as to prevent the nut 20321 from rotating. , The screw 20322 rotates together with the nut 20321, and the nut 20321 can drive the screw 20322 to make a stable telescopic movement.
  • Fig. 6 schematically shows a block diagram of the composition of a robot according to an embodiment of the present disclosure.
  • the robot may further include: a light supplement device 207 and an image processing device 208.
  • the light supplement device 207 is provided on the workbench 202, and the light supplement device 207 is used to supplement light in the surrounding environment where the target object is located when the image acquisition device 205 is used to capture an image.
  • the light supplement device 207 may include an LED lamp and an LED control circuit, and the LED lamp is connected to the LED control circuit.
  • the LED control circuit can be connected to the single-chip microcomputer of the driving mechanism 204, and the single-chip can receive instructions from the processor 206, and control the switching of the LED lights through the LED control circuit.
  • the LED control circuit can also be directly connected to the processor 206, and the LED control circuit receives instructions from the processor 206 to control the switch of the LED light. Therefore, for places with insufficient light, the light emitted by the LED lamp can supplement light to the environment in which the target object is located, so that the image acquisition device 205 can acquire a clear image.
  • the image processing device 208 is used to process multiple images collected by the image collection device 205 from multiple angles for the target object, so as to obtain an unobstructed image of the target object.
  • the image processing device 208 may be a GPU (graphics processing unit).
  • the image processing device 208 may be disposed between the image capturing device 205 and the processor 206, and the image processing device 208 may process the image of the target object captured by the image capturing device 205.
  • the image acquisition device 208 splices or merges the images collected by the image acquisition device 205 at different positions to form a complete image of the target object.
  • the image processor 207 may transmit the spliced or fused image to the processor 206, and the processor 206 stores the spliced or fused image in the memory.
  • various image stitching and image fusion methods can be used to perform image stitching or image fusion operations, which are not limited in the embodiment of the present disclosure.
  • the image processing device 208 receives image data from the image acquisition device 205 via USB3.0, and transmits the spliced or fused image to the processor 206 via Ethernet. Due to the large bandwidth of Ethernet data transmission, the spliced or fused image can be quickly transmitted to the processor 206.
  • the robot may further include a transceiver 209.
  • the transceiver 209 may be connected to the processor 206.
  • the transceiver 209 may be a transceiving antenna.
  • the processor 206 may send the spliced and fused image to the server through the transceiver 209, so that the server can store and analyze the spliced or fused image, and then determine the working status of the target object.
  • the images formed by splicing or fusion include photos of indicator lights, display screens, etc., and the server can determine the working status of the target object based on the color of the indicator lights and the content displayed on the display screen.
  • Fig. 7 schematically shows a flowchart of an image acquisition method according to an embodiment of the present disclosure.
  • the method shown in FIG. 7 can use the robot described in the foregoing embodiment to collect images of the target object.
  • the robot to which the image acquisition method is applied may include a robot body, a workbench, a telescopic structure, a driving mechanism, and an image acquisition device.
  • one end of the telescopic structure is pivotally connected to the robot body, and the other end of the telescopic structure is connected to the workbench; the driving mechanism is provided on the robot body; and the image acquisition device is provided on the workbench.
  • the image acquisition method may include the following operations S710 to S730.
  • the driving mechanism is used to drive the telescopic structure to telescope and/or move relative to the robot body.
  • the telescopic structure under the driving of the driving mechanism, can move vertically and/or horizontally with respect to the robot body.
  • operation S720 when the image capture device reaches the first position along with the expansion and/or movement of the telescopic structure, the image capture device is used to perform image capture on the target object to obtain the first image.
  • the image capture device when the image capture device reaches the second position along with the expansion and/or movement of the telescopic structure, the image capture device is used to perform image capture on the target object to obtain a second image.
  • an unobstructed image of the target object can be obtained by processing the first image and the second image.
  • the first position and the second position are two positions on the same horizontal plane; or the first position and the second position are two positions on the same vertical plane.
  • Fig. 8 schematically shows a flowchart of an image acquisition method according to another embodiment of the present disclosure.
  • the robot applied by the image acquisition method may include a light supplement device.
  • the image acquisition method may further include the following operation S810.
  • operation S810 is included.
  • the light supplement device is used to supplement light in the surrounding environment where the target object is located.
  • the surrounding environment where the target object is located by the light supplement device is used to supplement light, so that the image acquisition device is in a better imaging environment Inside.
  • FIG. 9 schematically shows a block diagram of an electronic device suitable for implementing the method described above according to an embodiment of the present disclosure.
  • the electronic device shown in FIG. 9 is only an example, and should not bring any limitation to the function and scope of use of the embodiments of the present disclosure.
  • an electronic device 900 includes a processor 901, which can be loaded into a random access memory (RAM) 903 according to a program stored in a read only memory (ROM) 902 or from a storage part 908 The program executes various appropriate actions and processing.
  • the processor 901 may include, for example, a general-purpose microprocessor (for example, a CPU), an instruction set processor and/or a related chipset and/or a special purpose microprocessor (for example, an application specific integrated circuit (ASIC)), and so on.
  • the processor 901 may also include on-board memory for caching purposes.
  • the processor 901 may include a single processing unit or multiple processing units for executing different actions of a method flow according to an embodiment of the present disclosure.
  • the processor 901, the ROM 902, and the RAM 903 are connected to each other through a bus 904.
  • the processor 901 executes various operations of the method flow according to the embodiments of the present disclosure by executing programs in the ROM 902 and/or RAM 903. It should be noted that the program can also be stored in one or more memories other than ROM 902 and RAM 903.
  • the processor 901 may also execute various operations of the method flow according to the embodiments of the present disclosure by executing programs stored in one or more memories.
  • the electronic device 900 may further include an input/output (I/O) interface 905, and the input/output (I/O) interface 905 is also connected to the bus 904.
  • the electronic device 900 may also include one or more of the following components connected to the I/O interface 905: an input part 906 including a keyboard, a mouse, etc.; including a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and An output section 907 of a speaker and the like; a storage section 908 including a hard disk and the like; and a communication section 909 including a network interface card such as a LAN card, a modem, and the like.
  • the communication section 909 performs communication processing via a network such as the Internet.
  • the drive 910 is also connected to the I/O interface 905 as needed.
  • a removable medium 911 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc., is installed on the drive 910 as needed, so that the computer program read therefrom is installed into the storage section 908 as needed.
  • the electronic device 900 may further include an electronic device body, a workbench, a telescopic structure, a driving mechanism, and an image capture device.
  • one end of the telescopic structure is pivotally connected to the electronic equipment body, the other end of the telescopic structure is connected to the workbench, the driving mechanism is arranged on the electronic equipment body, and the image acquisition device is arranged on the workbench.
  • the function and structure of the main body of the electronic device are the same as or similar to those of the main body of the robot in the above-mentioned embodiment.
  • the functions and structures of the workbench, the telescopic structure, the drive mechanism, and the image capture device are correspondingly the same as those of the workbench, the telescopic structure, the drive mechanism, and the image capture device in the foregoing embodiment.
  • the method flow according to the embodiment of the present disclosure may be implemented as a computer software program.
  • an embodiment of the present disclosure includes a computer program product, which includes a computer program carried on a computer-readable storage medium, and the computer program contains program code for executing the method shown in the flowchart.
  • the computer program may be downloaded and installed from the network through the communication part 909, and/or installed from the removable medium 911.
  • the computer program is executed by the processor 901
  • the above-mentioned functions defined in the electronic device of the embodiment of the present disclosure are executed.
  • the electronic devices, devices, devices, modules, units, etc. described above may be implemented by computer program modules.
  • the present disclosure also provides a computer-readable storage medium.
  • the computer-readable storage medium may be included in the device/device/system described in the above embodiment; or it may exist alone without being assembled into the device/ In the device/system.
  • the aforementioned computer-readable storage medium carries one or more programs, and when the aforementioned one or more programs are executed, the method according to the embodiments of the present disclosure is implemented.
  • the computer-readable storage medium may be a non-volatile computer-readable storage medium, for example, may include but not limited to: portable computer disk, hard disk, random access memory (RAM), read-only memory (ROM) , Erasable programmable read-only memory (EPROM or flash memory), portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable storage medium may include one or more memories other than ROM 902 and/or RAM 903 and/or ROM 902 and RAM 903 described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Manipulator (AREA)

Abstract

一种机器人(104)及应用于其的图像采集方法、实现图像采集方法的电子设备、计算机可读存储介质,机器人(104)包括:机器人本体(201);工作台(202);伸缩结构(203),伸缩结构(203)的一端以可枢转方式连接至机器人本体(201),另一端连接至工作台(202);驱动机构(204),设置在机器人本体(201)上,用于驱动伸缩结构(203)相对于机器人本体(201)伸缩和/或移动;图像采集装置(205),设置在工作台(202)上。伸缩结构(203)被配置为:随着伸缩结构(203)的伸缩和/或移动,使得图像采集装置(205)从不同角度对目标对象进行图像采集,在即使由于存在遮挡物导致遮挡目标对象的部分区域的情况下,也能够通过对从多个角度获取的图像进行例如拼接等方式获得目标对象的完整图像。

Description

机器人、图像采集方法、电子设备及计算机可读存储介质
本公开要求在2019年12月26日提交中国专利局、申请号为201911373770.X、发明名称为“机器人、图像采集方法、电子设备及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及计算机技术领域,更具体地,涉及一种机器人、一种图像采集方法、一种电子设备和一种计算机可读存储介质。
背景技术
互联网的发展促进了IDC(Internet Data Center,互联网数据中心)机房的建设。随着IDC机房的规模化和标准化建设,机房巡检机器人也逐渐应用到IDC机房中,以进行机房机柜的重复性巡检任务。机房巡检机器人巡检时的主要工作是辨别机柜内的计算机设备是否正常工作。相关技术中,机房巡检机器人依靠照相机对指示计算机设备运行状态的指示灯进行拍照,然后对拍摄的照片进行图像识别,以辨别计算机设置运行是否正常。
在实现本公开构思的过程中,发明人发现相关技术中至少存在如下问题:部分机房因建设规范的要求,会在机房内的机柜上安装带网孔的金属门。例如由于金属门的非网孔部分可能会遮挡运行状态指示灯,照相机拍摄的照片中可能会缺失运行状态指示灯的图像,导致不能根据拍摄的照片准确辨别计算机运行是否正常。
发明内容
有鉴于此,本公开实施例提供了一种机器人、一种图像采集方法、一种电子设备和一种计算机可读存储介质。
本公开实施例的一个方面提供了一种机器人,包括:机器人本体;工作台;伸缩结构,上述伸缩结构的一端以可枢转方式连接至上述机器人本体,另一端连接至上述工作台;驱动机构,设置在上述机器人本体上,用于驱动上述伸缩结构相对于上述机器人本体伸缩和/或移动;图像采集装置,设置在上述工作台上。上述伸缩结构被配置为:随着上述伸缩结构的伸缩和/或移动,使得上述图像采集装置从不同角度对目标对象进行图像采集。
根据本公开的实施例,上述伸缩结构包括:齿轮和设置在上述齿轮上的伸缩部件。上述机器人本体上设置有与上述齿轮配合使用的带有锯齿的导槽。其中,上述驱动机构通过驱动上述齿轮在上述导槽内垂直移动以带动上述伸缩部件相对于上述机器人本体垂直移动。
根据本公开的实施例,上述伸缩结构包括:滑动部件和设置在上述滑动部件上的伸缩部件。上述机器人本体上设置有与上述滑动部件配合使用的滑动槽。其中,上述驱动机构通过驱动上述滑动部件在上述滑动槽中垂直滑动以带动上述伸缩部件相对于上述机器人本体垂直移动。
根据本公开的实施例,上述滑动部件包括限位结构。上述伸缩部件包括:螺母,设置在上述限位结构内;与上述螺母配合使用的螺杆。其中,上述驱动机构通过驱动上述螺母在上述限位结构中旋转以带动上述螺杆从上述机器人本体中伸出或者缩回上述机器人本体内。
根据本公开的实施例,机器人还包括:补光设备,设置在上述工作台上,用于在利用上述图像采集装置采集图像时对上述目标对象所处的周围环境进行补光。
根据本公开的实施例,机器人还包括:图像处理装置,用于对上述图像采集装置针对上述目标对象从多个角度采集的多个图像进行处理,以便得到上述目标对象的无遮挡图像。
本公开实施例的另一个方面提供了一种图像采集方法,应用于机器人,上述机器人包括:机器人本体;工作台;伸缩结构,上述伸缩结构的一端以可枢转方式连接至上述机器人本体,另一端连接至上述工作台;驱动机构,设置在上述机器人本体上;图像采集装置,设置在上述工作台上。上述方法包括:利用上述驱动机构驱动上述伸缩结构相对于上述机器人本体伸缩和/或移动;在上述图像采集装置随着上述伸缩结构的伸缩和/或移动到达第一位置时,利用上述图像采集装置对目标对象进行图像采集以得到第一图像;在上述图像采集装置随着上述伸缩结构的伸缩和/或移动到达第二位置时,利用上述图像采集装置对上述目标对象进行图像采集以得到第二图像。其中,通过对上述第一图像和上述第二图像进行处理能够得到上述目标对象的无遮挡图像。
根据本公开的实施例,上述第一位置和上述第二位置为同一水平面上的两个位置;或者上述第一位置和上述第二位置为同一铅直面上的两个位置。
根据本公开的实施例,上述机器人还包括:补光设备。上述方法还包括:在上述利用上述图像采集装置对目标对象进行图像采集以得到第一图像和/或上述利用上述图像采集装置对上述目标对象进行图像采集以得到第二图像之前,利用上述补光设备对上述目标对象所处的周围环境进行补光。
本公开实施例的另一方面提供了一种电子设备,包括电子设备本体,工作台,伸缩结构,上述伸缩结构的一端以可枢转方式连接至上述电子设备本体,另一端连接至上述工作台,驱 动机构,设置在上述电子设备本体上,图像采集装置,设置在上述工作台上,一个或多个处理器以及存储装置,其中,上述存储装置用于存储可执行指令,上述可执行指令在被上述处理器执行时,实现本公开实施例的方法。
本公开实施例的另一方面提供了一种计算机可读存储介质,存储有计算机可执行指令,上述指令在被处理器执行时用于实现本公开实施例的方法。
本公开实施例的另一方面提供了一种计算机程序,上述计算机程序包括计算机可执行指令,上述指令在被执行时用于实现本公开实施例的方法。
根据本公开的实施例,能够从多个角度分别采集目标对象的图像。因此,在即使在由于存在遮挡物导致遮挡目标对象的部分区域的情况下,也能够通过对从多个角度获取的图像进行例如拼接等方式获得目标对象的完整图像。
附图说明
通过以下参照附图对本公开实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:
图1示意性示出了根据本公开实施例的机器人的应用场景;
图2示意性示出了根据本公开实施例的机器人的结构图;
图3示意性示出了根据本公开实施例的伸缩结构的结构图;
图4示意性示出了根据本公开又一实施例的伸缩结构的结构图;
图5示意性示出了根据本公开实施例的伸缩部件的结构图;
图6示意性示出了根据本公开实施例的机器人的组成框图;
图7示意性示出了根据本公开实施例的图像采集方法的流程图;
图8示意性示出了根据本公开又一实施例的图像采集方法的流程图;以及
图9示意性示出了根据本公开实施例的适于实现图像采集方法的电子设备的框图。
具体实施方式
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本公开实施例的全面理解。然而,明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本公开。在此使用的术语 “包括”、“包含”等表明了特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。
在此使用的所有术语(包括技术和科学术语)具有本领域技术人员通常所理解的含义,除非另外定义。应注意,这里使用的术语应解释为具有与本说明书的上下文相一致的含义,而不应以理想化或过于刻板的方式来解释。
在使用类似于“A、B和C等中至少一个”这样的表述的情况下,一般来说应该按照本领域技术人员通常理解该表述的含义来予以解释(例如,“具有A、B和C中至少一个的系统”应包括但不限于单独具有A、单独具有B、单独具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B、C的系统等)。在使用类似于“A、B或C等中至少一个”这样的表述的情况下,一般来说应该按照本领域技术人员通常理解该表述的含义来予以解释(例如,“具有A、B或C中至少一个的系统”应包括但不限于单独具有A、单独具有B、单独具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B、C的系统等)。本领域技术人员还应理解,实质上任意表示两个或更多可选项目的转折连词和/或短语,无论是在说明书、权利要求书还是附图中,都应被理解为给出了包括这些项目之一、这些项目任一方、或两个项目的可能性。例如,短语“A或B”应当被理解为包括“A”或“B”、或“A和B”的可能性。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。
本公开的实施例提供了一种机器人,该机器人例如可以包括:机器人本体;工作台;伸缩结构,伸缩结构的一端以可枢转方式连接至机器人本体,伸缩结构的另一端连接至工作台;驱动机构,设置在机器人本体上,驱动机构用于驱动伸缩结构相对于机器人本体伸缩和/或移动;图像采集装置,设置在工作台上。伸缩结构被配置为:随着伸缩结构的伸缩和/或移动,使得图像采集装置从不同角度对目标对象进行图像采集。
图1示意性示出了根据本公开实施例的机器人的应用场景100。需要注意的是,图1所示仅为可以应用本公开实施例的机器人的应用场景的示例,以帮助本领域技术人员理解本公开的技术内容,但并不意味着本公开实施例不可以用于其他设备、系统、环境或场景。
如图1所示,根据该实施例的应用场景100可以包括机柜101、102、103、机器人104、网络105和服务器106。网络105用以在机器人104和服务器106之间提供通信链路的介质。网络105可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等。
机柜101、102、103可以是用于容纳电气或电子设备的金属柜子,机柜101、102、103 一般配置有带孔或/和缝隙的门、可拆或不可拆的侧板和背板等。从种类上进行划分,机柜101、102、103可以包括计算机机柜、服务器机柜、网络机柜、控制台机柜、电源柜和监控机柜等。机柜101、102、103可以应用在中心机房,数据机房、计算机机房、控制中心、监控室、监控中心等场所。
机器人104通过网络105与服务器106交互,以接收或发送消息等。机器人104上可以搭载各种设备,例如照相机、摄像机、LED灯、湿度计、升降机构、机械臂、拾音器、扬声器和警报器等。
机器人104可以是具有行走、导航功能的各种机器人,包括但不限于操作机器人、程序机器人、示教再现机器人、智能机器人和综合机器人等。机器人104可以行走到特定位置对机柜101、102、103进行相关操作,例如,采集机柜101、102、103的图像信息。
服务器106可以是提供各种服务的服务器,例如对机器人104所采集的信息进行分析存储的分析存储服务器。分析存储服务器可以对机器人104采集的图像、温度、语音等数据进行分析等处理,并将处理结果反馈给机器人104,以便机器人104执行后续操作。
应该理解,图1中的机柜、机器人、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的机柜、机器人、网络和服务器。
图2示意性示出了根据本公开实施例的机器人的结构图。
如图2所示,作为一种可选的实施例,机器人可以包括:机器人本体201、工作台202、伸缩结构203、驱动机构204和图像采集装置205。
可选地,伸缩结构203的一端以可枢转方式连接至机器人本体201,另一端连接至工作台202。
在本公开的实施例中,机器人本体201可以是具有行走、导航和定位功能的机房巡检机器人。机器人本体201可以搭载图像采集系统、语音系统、温度采集设备、湿度采集设备、信息收发设备、数据处理设备、数据存储设备等。
在本公开的实施例中,伸缩结构203的固定端连接在机器人本体201上,伸缩结构203的自由端连接在工作台202上。伸缩结构203的一端以可枢转方式连接至机器人本体201上是指伸缩结构203的自由端可以相对于机器人本体201垂直移动或/和水平移动,从而使得伸缩结构203的自由端可以将工作台202移动到目标位置。其中,垂直移动可以是伸缩结构203沿垂直方向进行移动,水平移动可以是伸缩结构203在与垂直方向垂直的平面内移动。
在本公开的实施例中,工作台202可以具体承载图像采集设备、照明设备、温度采集设备和湿度采集设备等,并且工作台202还可以在伸缩结构203的驱动下相对于机器人本体201移动,从而可以将其承载的设备移动至特定位置进行相关操作。
在本公开的实施例中,伸缩结构203可以包括机械臂、机器手、伸缩杆和滑轨等。伸缩结构203的自由端连接工作台202,伸缩结构203可以将工作台202移动到特定位置,以便工作台202上承载的设备执行相关操作。
可选地,驱动机构204设置在机器人本体201上,驱动机构204用于驱动伸缩结构203相对于机器人本体201伸缩和/或移动。
在本公开的实施例中,驱动机构204可以包括电机和液压马达等。驱动机构204可以驱动伸缩结构203将工作台202移动到特定位置,以便工作台202上承载的设备在特定位置执行相关操作。伸缩结构203相对于机器人本体201的移动包括垂直移动和水平移动。
可选地,图像采集装置205设置在工作台202上,随着伸缩结构203的伸缩和/或移动,图像采集装置205能够从不同角度对目标对象进行图像采集。
在本公开的实施例中,图像采集装置205可以包括照相机、摄像机、二维摄像头和三维摄像头等。图像采集装置205具有自动聚焦功能,并且在某些场景下,图像采集装置205的摄像头可以旋转,使得图像采集装置205的摄像头的光轴穿过目标对象,以便更好地采集目标对象的图像。
在本公开的实施例中,工作台202可以将图像采集装置205运送到不同的位置,因此,图像采集装置205可以在不同位置采集目标对象的图像。由于目标对象的部分区域被遮挡物遮挡(例如,被金属网遮挡),因此,图像采集装置205采集目标对象的单张图像中,总有部分区域被遮挡物遮挡。但是,在不同位置采集的目标对象的图像之间,被遮挡物遮挡的区域并不相同,因此,图像采集装置205在不同位置采集的目标对象的多张图像可以较为全面地反映目标对象的全貌。
在本公开的实施例中,伸缩结构203将图像采集装置205移动至不同的位置,图像采集装置205能够在不同位置对目标对象进行图像采集。由于图像采集装置205的位置发生变化,图像采集装置205相对于目标对象的角度随之发生变化,即图像采集装置205采集目标对象图像的角度发生了变化,从而实现从多角度对目标对象进行图像采集。
在本公开的实施例中,机器人还可以包括处理器206。
具体地,处理器206可以与驱动机构204连接。
在本公开的实施例中,处理器206可以包括CPU(中央处理器)、DSP(数字信号处理器)、微处理器等。驱动机构204可以包括单片机、电机伺服器和电机,单片机与电机伺服器连接,电机伺服器与电机连接,单片机通过电机伺服器控制电机运转(例如参见图6所示)。处理器206与驱动机构204的单片机连接,处理器206可以向单片机发送指令,使得单片机可以通过电机伺服器控制电机运转。
在本公开的实施例中,处理器206与总线(例如CAN总线)连接,单片机通过总线收发器挂载在总线上(例如参见图6所示)。此外,温度采集设备和湿度采集设备等设备均可以挂载在总线上,以便与处理器206通信,用户可以根据具体需求,在总线上挂载需要的设备,极大提高机器人的可扩展性。
具体地,处理器206可以与图像采集装置205连接。
在本公开的实施例中,处理器206可以向图像采集装置205发送指令,控制图像采集装置205采集目标对象的图像。例如,工作台202移动至一个位置时,处理器206控制图像采集装置205采集一张目标对象的图像,工作台202移动至另一个位置时,处理器206控制图像采集装置205再采集一张目标对象的图像。
在本公开的实施例中,利用伸缩结构203将图像采集装置205移动到不同的位置,对目标对象进行图像采集,即可以从不同角度采集目标对象的图像。如果将从不同角度采集的图像进行拼接或融合,拼接或融合后的图像可以避开遮挡物对目标对象的遮挡,因此,可以获得目标对象的较为全面的图像。
下面参考图3~图8,结合具体实施例对图2所示的机器人做进一步说明。
图3示意性示出了根据本公开实施例的伸缩结构的结构图。
具体地,作为一个可选实施例,如图3所示,伸缩结构203可以包括齿轮2031和设置在齿轮2031上的伸缩部件2032。
可选地,机器人本体201上设置有与齿轮2031配合使用的带有锯齿的导槽2011。其中,驱动机构204通过驱动齿轮2031在导槽内垂直移动以带动伸缩部件2032相对于机器人本体垂直移动。
在本公开的实施例中,齿轮2031可以套设在轴承上,伸缩部件2032可以设置在齿轮2031套设的轴承上,从而使得伸缩部件2032不随齿轮2031旋转,但是齿轮2031可以载着伸缩部件2032一起移动。此外,导槽2011的锯齿可以与齿轮2031的轮齿啮合,使得齿轮2031可以沿导槽2011稳定地移动。
图4示意性示出了根据本公开又一实施例的伸缩结构的结构图。
具体地,作为一个可选实施例,如图4所示,伸缩结构203可以包括滑动部件2033和设置在滑动部件2033上的伸缩部件2032。
可选地,机器人本体201上设置有与滑动部件2033配合使用的滑动槽2012。其中,驱动机构203通过驱动滑动部件2033在滑动槽2012中垂直滑动以带动伸缩部件2032相对于机器人本体201垂直移动。
在本公开的实施例中,滑动部件2033可以包括滑块、滑动轮和滚动球等。滑动槽2012 可以具有槽口和槽腔,槽口的横截面积略小于槽腔的横截面积,使得滑动部件2033的滑块、滑动轮和滚动球可以在槽腔内运动,而不会从槽口脱出。
图5示意性示出了根据本公开实施例的伸缩部件的结构图。
具体地,作为一个可选实施例,如图5所示,滑动部件2033可以包括限位结构20331;伸缩部件2032可以包括螺母20321和螺杆20322。
可选地,螺母20321设置在限位结构20331内;螺杆20322与螺母20321配合使用。其中,驱动机构204通过驱动螺母20321在限位结构20331中旋转以带动螺杆20322从机器人本体201中伸出或者缩回机器人本体201内,即螺母20321驱动螺杆20322水平移动,螺杆20322进而带动工作台202水平移动。
在本公开的实施例中,螺母20321可以具有内螺纹,螺杆20322可以具有外螺纹,螺母20321的内螺纹与螺杆20322的外螺纹相匹配。另外,限位结构20331可以是固定在机器人本体201上的两个平行板状物,两个平行板状物上具有对应的孔,孔的直径大于螺杆20322的直径,但小于螺母20321的外径(螺母20321的外径是指螺母20321的外接圆)。螺母20321夹在两个平行板状物之间,螺杆20322穿过平行板状物上的孔之后,与螺母20321螺接,因此,螺母20321可以旋转,但不能发生位移,随着螺母20321正转或反转,螺杆20322做伸缩运动。
在本公开的实施例中,螺杆20322上可以仅有部分区域开设有螺纹,对于不具有螺纹的区域,垂直于轴向的截面可以为多边形,例如三角形、正方形等。假如,螺杆20322与工作台202连接的一端的截面为正方形,滑动部件2033还可以包括正方形套管,正方形套管可以套在呈正方形的螺杆20322的端部的外面,从而可以防止螺母20321旋转时,螺杆20322随着螺母20321一起旋转,螺母20321可以驱动螺杆20322稳定地做伸缩运动。
图6示意性示出了根据本公开实施例的机器人的组成框图。
具体地,作为一个可选实施例,如图6所示,机器人还可以包括:补光设备207和图像处理装置208。
具体地,补光设备207设置在工作台202上,补光设备207用于在利用图像采集装置205采集图像时对目标对象所处的周围环境进行补光。
在本公开的实施例中,补光设备207可以包括LED灯和LED控制电路,LED灯与LED控制电路连接。LED控制电路可以与驱动机构204的单片机连接,单片机可以接收处理器206的指令,通过LED控制电路控制LED灯的开关。LED控制电路还可以直接处理器206连接,LED控制电路从处理器206接收指令,控制LED灯的开关。因此,对于光线不足的场所,LED灯发出的光可以对目标对象所处的环境进行补光,从而使得图像采集装置205能够采集 到清晰的图像。
图像处理装置208用于对图像采集装置205针对目标对象从多个角度采集的多个图像进行处理,以便得到目标对象的无遮挡图像。
在本公开的实施例中,图像处理装置208可以是GPU(图形处理器)。图像处理装置208可以设置在图像采集装置205和处理器206之间,图像处理装置208可以处理图像采集装置205采集的目标对象的图像。例如,图像采集装置208对图像采集装置205在不同位置采集的图像进行拼接或融合,形成目标对象的完整图像。另外,图像处理器207可以将拼接或融合形成的图像传送至处理器206,处理器206将拼接或融合形成的图像存储到存储器中。例如,可以使用各种图像拼接和图像融合方法来执行图像拼接或图像融合操作,本公开实施例不对此进行限制。
在本公开的实施例中,图像处理装置208通过USB3.0从图像采集装置205接收图像数据,并通过以太网将拼接或融合形成的图像传送至处理器206。由于以太网数据传输带宽大,可以快速将拼接或融合形成的图像传送至处理器206。
在本公开的实施例中,机器人还可以包括收发器209。
具体地,收发器209可以与处理器206连接。收发器209可以是收发天线。
在本公开的实施例中,处理器206可以通过收发器209将拼接、融合形成的图像发送到服务器,以便服务器存储分析拼接或融合形成的图像,进而判断目标对象的工作状态。例如,拼接或融合形成的图像中包括有指示灯、显示屏等的照片,服务器根据指示灯呈现的颜色、显示屏呈现的内容,可以判断目标对象的工作状态。
图7示意性示出了根据本公开实施例的图像采集方法的流程图。
可选地,如图7所示的方法能够利用上述实施例中描述机器人对目标对象进行图像采集。
作为一种可选实施例,图像采集方法应用的机器人可以包括机器人本体、工作台、伸缩结构、驱动机构和图像采集装置。
具体地,伸缩结构的一端以可枢转方式连接至机器人本体,伸缩结构的另一端连接至工作台;驱动机构设置在机器人本体上;图像采集装置设置在工作台上。
图像采集方法可以包括以下操作S710~S730。
在操作S710,利用驱动机构驱动伸缩结构相对于机器人本体伸缩和/或移动。
本公开的实施例中,在驱动机构的驱动下,伸缩结构可以相对于机器人本体垂直和/或水平移动。
接下来,在操作S720,在图像采集装置随着伸缩结构的伸缩和/或移动到达第一位置时,利用图像采集装置对目标对象进行图像采集以得到第一图像。
然后,在操作S730,在图像采集装置随着伸缩结构的伸缩和/或移动到达第二位置时,利用图像采集装置对目标对象进行图像采集以得到第二图像。其中,通过对第一图像和第二图像进行处理能够得到目标对象的无遮挡图像。
本公开的实施例中,第一位置和第二位置为同一水平面上的两个位置;或者第一位置和第二位置为同一铅直面上的两个位置。
图8示意性示出了根据本公开又一实施例的图像采集方法的流程图。
作为一种可选实施例,如图8所示,图像采集方法应用的机器人可以包括补光设备。
具体地,在操作S720或S730之前,图像采集方法还可以包括以下操作S810。为了便于说明,例如,在操作S720之前,包括操作S810。
在操作S810,利用补光设备对目标对象所处的周围环境进行补光。
本公开的实施例中,当目标对象所处的环境较为昏暗,图像采集装置不能清晰成像时,利用补光设备目标对象所处的周围环境进行补光,使得图像采集装置处于较佳的成像环境内。
图9示意性示出了根据本公开实施例的适于实现上文描述的方法的电子设备的框图。图9示出的电子设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图9所示,根据本公开实施例的电子设备900包括处理器901,其可以根据存储在只读存储器(ROM)902中的程序或者从存储部分908加载到随机访问存储器(RAM)903中的程序而执行各种适当的动作和处理。处理器901例如可以包括通用微处理器(例如CPU)、指令集处理器和/或相关芯片组和/或专用微处理器(例如,专用集成电路(ASIC)),等等。处理器901还可以包括用于缓存用途的板载存储器。处理器901可以包括用于执行根据本公开实施例的方法流程的不同动作的单一处理单元或者是多个处理单元。
在RAM 903中,存储有电子设备900操作所需的各种程序和数据。处理器901、ROM 902以及RAM 903通过总线904彼此相连。处理器901通过执行ROM 902和/或RAM 903中的程序来执行根据本公开实施例的方法流程的各种操作。需要注意,程序也可以存储在除ROM 902和RAM 903以外的一个或多个存储器中。处理器901也可以通过执行存储在一个或多个存储器中的程序来执行根据本公开实施例的方法流程的各种操作。
根据本公开的实施例,电子设备900还可以包括输入/输出(I/O)接口905,输入/输出(I/O)接口905也连接至总线904。电子设备900还可以包括连接至I/O接口905的以下部件中的一项或多项:包括键盘、鼠标等的输入部分906;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分907;包括硬盘等的存储部分908;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分909。通信部分909经由诸如因特网的网络执行通信处理。驱动器910也根据需要连接至I/O接口905。可拆卸介质911,诸如磁盘、光盘、磁光盘、半 导体存储器等等,根据需要安装在驱动器910上,以便于从其上读出的计算机程序根据需要被安装入存储部分908。
根据本公开的实施例,电子设备900还可以包括电子设备本体、工作台、伸缩结构、驱动机构和图像采集装置。其中,伸缩结构的一端以可枢转方式连接至电子设备本体,伸缩结构的另一端连接至工作台,驱动机构设置在电子设备本体上,图像采集装置设置在工作台上。需要说明的是,电子设备本体与上述实施例中机器人本体的功能及结构相同或类似。此外,工作台、伸缩结构、驱动机构和图像采集装置的功能及结构,与上述实施例中的工作台、伸缩结构、驱动机构和图像采集装置的功能及结构对应相同。
根据本公开的实施例,根据本公开实施例的方法流程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读存储介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分909从网络上被下载和安装,和/或从可拆卸介质911被安装。在该计算机程序被处理器901执行时,执行本公开实施例的电子设备中限定的上述功能。根据本公开的实施例,上文描述的电子设备、设备、装置、模块、单元等可以通过计算机程序模块来实现。
本公开还提供了一种计算机可读存储介质,该计算机可读存储介质可以是上述实施例中描述的设备/装置/系统中所包含的;也可以是单独存在,而未装配入该设备/装置/系统中。上述计算机可读存储介质承载有一个或者多个程序,当上述一个或者多个程序被执行时,实现根据本公开实施例的方法。
根据本公开的实施例,计算机可读存储介质可以是非易失性的计算机可读存储介质,例如可以包括但不限于:便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。例如,根据本公开的实施例,计算机可读存储介质可以包括上文描述的ROM 902和/或RAM 903和/或ROM 902和RAM 903以外的一个或多个存储器。
本领域技术人员可以理解,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合或/或结合,即使这样的组合或结合没有明确记载于本公开中。特别地,在不脱离本公开精神和教导的情况下,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合和/或结合。所有这些组合和/或结合均落入本公开的范围。
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非 为了限制本公开的范围。尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。本公开的范围由所附权利要求及其等同物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。

Claims (11)

  1. 一种机器人,包括:
    机器人本体;
    工作台;
    伸缩结构,所述伸缩结构的一端以可枢转方式连接至所述机器人本体,另一端连接至所述工作台;
    驱动机构,设置在所述机器人本体上,用于驱动所述伸缩结构相对于所述机器人本体伸缩和/或移动;以及
    图像采集装置,设置在所述工作台上;
    所述伸缩结构被配置为:随着所述伸缩结构的伸缩和/或移动,使得所述图像采集装置从不同角度对目标对象进行图像采集。
  2. 根据权利要求1所述的机器人,其中,
    所述伸缩结构包括:齿轮和设置在所述齿轮上的伸缩部件,
    所述机器人本体上设置有与所述齿轮配合使用的带有锯齿的导槽,
    其中,所述驱动机构通过驱动所述齿轮在所述导槽内垂直移动以带动所述伸缩部件相对于所述机器人本体垂直移动。
  3. 根据权利要求1所述的机器人,其中,
    所述伸缩结构包括:滑动部件和设置在所述滑动部件上的伸缩部件,
    所述机器人本体上设置有与所述滑动部件配合使用的滑动槽,
    其中,所述驱动机构通过驱动所述滑动部件在所述滑动槽中垂直滑动以带动所述伸缩部件相对于所述机器人本体垂直移动。
  4. 根据权利要求3所述的机器人,其中,
    所述滑动部件包括限位结构;
    所述伸缩部件包括:
    螺母,设置在所述限位结构内;以及
    与所述螺母配合使用的螺杆,
    其中,所述驱动机构通过驱动所述螺母在所述限位结构中旋转以带动所述螺杆从所述机器人本体中伸出或者缩回所述机器人本体内。
  5. 根据权利要求1所述的机器人,还包括:
    补光设备,设置在所述工作台上,用于在利用所述图像采集装置采集图像时对所述目标对象所处的周围环境进行补光。
  6. 根据权利要求1所述的机器人,还包括:
    图像处理装置,用于对所述图像采集装置针对所述目标对象从多个角度采集的多个图像进行处理,以便得到所述目标对象的无遮挡图像。
  7. 一种图像采集方法,应用于机器人,
    所述机器人包括:
    机器人本体;
    工作台;
    伸缩结构,所述伸缩结构的一端以可枢转方式连接至所述机器人本体,另一端连接至所述工作台;
    驱动机构,设置在所述机器人本体上;以及
    图像采集装置,设置在所述工作台上,
    所述方法包括:
    利用所述驱动机构驱动所述伸缩结构相对于所述机器人本体伸缩和/或移动;
    在所述图像采集装置随着所述伸缩结构的伸缩和/或移动到达第一位置时,利用所述图像采集装置对目标对象进行图像采集以得到第一图像;以及
    在所述图像采集装置随着所述伸缩结构的伸缩和/或移动到达第二位置时,利用所述图像采集装置对所述目标对象进行图像采集以得到第二图像,
    其中,通过对所述第一图像和所述第二图像进行处理能够得到所述目标对象的无遮挡图像。
  8. 根据权利要求7所述的方法,其中,
    所述第一位置和所述第二位置为同一水平面上的两个位置;或者
    所述第一位置和所述第二位置为同一铅直面上的两个位置。
  9. 根据权利要求7所述的方法,其中,
    所述机器人还包括:补光设备;
    所述方法还包括:在所述利用所述图像采集装置对目标对象进行图像采集以得到第一图像和/或所述利用所述图像采集装置对所述目标对象进行图像采集以得到第二图像之前,
    利用所述补光设备对所述目标对象所处的周围环境进行补光。
  10. 一种电子设备,包括:
    电子设备本体;
    工作台;
    伸缩结构,所述伸缩结构的一端以可枢转方式连接至所述电子设备本体,另一端连接至所述工作台;
    驱动机构,设置在所述电子设备本体上;
    图像采集装置,设置在所述工作台上;
    一个或多个处理器;以及
    存储装置,用于存储可执行指令,所述可执行指令在被所述处理器执行时,实现根据权利要求7~9中任一项所述的方法。
  11. 一种计算机可读存储介质,其上存储有可执行指令,该指令被处理器执行时实现根据权利要求7~9中任一项所述的方法。
PCT/CN2020/135259 2019-12-26 2020-12-10 机器人、图像采集方法、电子设备及计算机可读存储介质 WO2021129406A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20907062.2A EP4082722A4 (en) 2019-12-26 2020-12-10 ROBOT, IMAGE ACQUISITION METHOD, ELECTRONIC DEVICE AND COMPUTER READABLE STORAGE MEDIUM
US17/784,429 US20230001584A1 (en) 2019-12-26 2020-12-10 Robot, method of capture image, electronic device, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911373770.XA CN111002287B (zh) 2019-12-26 2019-12-26 机器人、图像采集方法、电子设备及计算机可读存储介质
CN201911373770.X 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021129406A1 true WO2021129406A1 (zh) 2021-07-01

Family

ID=70118246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135259 WO2021129406A1 (zh) 2019-12-26 2020-12-10 机器人、图像采集方法、电子设备及计算机可读存储介质

Country Status (4)

Country Link
US (1) US20230001584A1 (zh)
EP (1) EP4082722A4 (zh)
CN (1) CN111002287B (zh)
WO (1) WO2021129406A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111002287B (zh) * 2019-12-26 2021-11-30 北京海益同展信息科技有限公司 机器人、图像采集方法、电子设备及计算机可读存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442714A (ja) * 1990-06-08 1992-02-13 Bridgestone Corp 反射鏡を具備する検査装置
JPH0730929A (ja) * 1993-07-12 1995-01-31 Nec Corp 電子回路パッケージ収納架および電子回路パッケージ交換用ロボット
US5937699A (en) * 1994-09-07 1999-08-17 Commissariat A L'energie Atomique Telescopic system having a rotation transmission link between a screw and nut of a module
CN104079811A (zh) * 2014-07-24 2014-10-01 广东欧珀移动通信有限公司 一种拍照时滤除障碍物的方法及装置
CN108366229A (zh) * 2018-02-11 2018-08-03 北京鲁能物业服务有限责任公司 一种定点设备智能化巡检方法
CN108778180A (zh) * 2016-03-02 2018-11-09 柯惠Lp公司 用于移除手术图像和/或视频中的遮挡对象的系统和方法
CN109291946A (zh) * 2018-10-23 2019-02-01 深圳市朗驰欣创科技股份有限公司 一种铁路牵引站巡检机器人
CN109531533A (zh) * 2018-11-30 2019-03-29 北京海益同展信息科技有限公司 一种机房巡检系统及其工作方法
CN110421577A (zh) * 2019-08-08 2019-11-08 四川阿泰因机器人智能装备有限公司 同步伸缩臂及其巡视机器人
EP3567340A1 (en) * 2018-05-09 2019-11-13 Siemens Gamesa Renewable Energy A/S Visual inspection arrangement
CN111002287A (zh) * 2019-12-26 2020-04-14 北京海益同展信息科技有限公司 机器人、图像采集方法、电子设备及计算机可读存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3506779B2 (ja) * 1994-10-07 2004-03-15 株式会社クボタ 果菜類の収穫対象部検出装置
FR2822097B1 (fr) * 2001-03-15 2003-07-04 Techni Reseaux Robot d'inspection et d'intervention
JP5382053B2 (ja) * 2011-04-15 2014-01-08 株式会社安川電機 ロボットシステムおよびロボットシステムを用いた検査方法
US10880470B2 (en) * 2015-08-27 2020-12-29 Accel Robotics Corporation Robotic camera system
JP6692078B2 (ja) * 2016-02-19 2020-05-13 パナソニックIpマネジメント株式会社 電動装置
CN107403409B (zh) * 2017-07-21 2021-02-02 苏州科达科技股份有限公司 图像拼接前的图像处理方法、装置及图像拼接方法及装置
CN107770448A (zh) * 2017-10-31 2018-03-06 努比亚技术有限公司 一种图像采集方法、移动终端和计算机存储介质
CN109176456A (zh) * 2018-10-19 2019-01-11 广东电网有限责任公司 一种多功能巡检机器人
CN209142126U (zh) * 2018-10-23 2019-07-23 深圳市朗驰欣创科技股份有限公司 一种铁路牵引站巡检机器人
CN109382833A (zh) * 2018-10-24 2019-02-26 重庆工业职业技术学院 工程用巡检机器人
CN209063080U (zh) * 2018-10-25 2019-07-05 中国南方电网有限责任公司超高压输电公司大理局 一种应用于高处巡视的智能巡检机器人
CN110328649A (zh) * 2019-05-23 2019-10-15 平安开诚智能安全装备有限责任公司 一种多功能无线通讯巡检机器人

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442714A (ja) * 1990-06-08 1992-02-13 Bridgestone Corp 反射鏡を具備する検査装置
JPH0730929A (ja) * 1993-07-12 1995-01-31 Nec Corp 電子回路パッケージ収納架および電子回路パッケージ交換用ロボット
US5937699A (en) * 1994-09-07 1999-08-17 Commissariat A L'energie Atomique Telescopic system having a rotation transmission link between a screw and nut of a module
CN104079811A (zh) * 2014-07-24 2014-10-01 广东欧珀移动通信有限公司 一种拍照时滤除障碍物的方法及装置
CN108778180A (zh) * 2016-03-02 2018-11-09 柯惠Lp公司 用于移除手术图像和/或视频中的遮挡对象的系统和方法
CN108366229A (zh) * 2018-02-11 2018-08-03 北京鲁能物业服务有限责任公司 一种定点设备智能化巡检方法
EP3567340A1 (en) * 2018-05-09 2019-11-13 Siemens Gamesa Renewable Energy A/S Visual inspection arrangement
CN109291946A (zh) * 2018-10-23 2019-02-01 深圳市朗驰欣创科技股份有限公司 一种铁路牵引站巡检机器人
CN109531533A (zh) * 2018-11-30 2019-03-29 北京海益同展信息科技有限公司 一种机房巡检系统及其工作方法
CN110421577A (zh) * 2019-08-08 2019-11-08 四川阿泰因机器人智能装备有限公司 同步伸缩臂及其巡视机器人
CN111002287A (zh) * 2019-12-26 2020-04-14 北京海益同展信息科技有限公司 机器人、图像采集方法、电子设备及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4082722A4

Also Published As

Publication number Publication date
US20230001584A1 (en) 2023-01-05
CN111002287A (zh) 2020-04-14
EP4082722A4 (en) 2024-01-31
CN111002287B (zh) 2021-11-30
EP4082722A1 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
US11632516B2 (en) Capture, analysis and use of building data from mobile devices
CN114072801B (zh) 用于建筑位置的全景图像在移动设备上的自动生成和随后使用
US20140139658A1 (en) Remote visual inspection system and method
WO2021129406A1 (zh) 机器人、图像采集方法、电子设备及计算机可读存储介质
US11637968B2 (en) Image photographing method of electronic device and electronic device
US10194298B2 (en) Systems and methods for a robotic mount
CN104822045A (zh) 采用预置位实现观察画面分布式联动显示的方法及装置
JP2018502313A (ja) 投影される対話型仮想デスクトップ
JP2016506648A (ja) パノラマ画像のための環状ビュー
CN208459748U (zh) 一种摄影棚
CN102707309B (zh) 伸缩便携式成像探测器及便携式x射线检测仪
JP2011176452A (ja) 映像監視システム及び監視映像表示装置
US11210798B2 (en) Mechanical system on computer with rotational projector and RealSense™ camera
CN112399067B (zh) 全景拍摄方法、装置、电子设备及存储介质
CN111105505A (zh) 一种基于三维地理信息的云台动态影像快速拼接方法和系统
CN114581598A (zh) 基于三维实景与现场视频融合管理的服务集成框架
JP2016092456A (ja) 撮像装置
CN204667474U (zh) 一种案件现场三维模拟系统
US10114202B2 (en) Dual purpose microscope
JP5508308B2 (ja) 数値制御機器のテレビカメラモニター画面の関連操作方法
JP2023519335A (ja) コンピュータ支援カメラ及び制御システム
JP2020071477A (ja) 雲台システム
CN114098969B (zh) 一种截骨诊断系统、截骨诊断方法、设备及介质
WO2021234890A1 (ja) 設置支援装置、設置支援方法、およびプログラム
CN106791484A (zh) 实时文物展品抠像合成系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020907062

Country of ref document: EP

Effective date: 20220726