WO2021129189A1 - 电机转子平衡检测装置和电机转子平衡检测的方法、设备 - Google Patents

电机转子平衡检测装置和电机转子平衡检测的方法、设备 Download PDF

Info

Publication number
WO2021129189A1
WO2021129189A1 PCT/CN2020/127057 CN2020127057W WO2021129189A1 WO 2021129189 A1 WO2021129189 A1 WO 2021129189A1 CN 2020127057 W CN2020127057 W CN 2020127057W WO 2021129189 A1 WO2021129189 A1 WO 2021129189A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor rotor
notch
unbalance
eccentric
target motor
Prior art date
Application number
PCT/CN2020/127057
Other languages
English (en)
French (fr)
Inventor
吴明涛
张伟
胡祥志
宋军锋
杨志鹤
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2021129189A1 publication Critical patent/WO2021129189A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining imbalance
    • G01M1/16Determining imbalance by oscillating or rotating the body to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/30Compensating imbalance

Definitions

  • This application relates to the field of electrical technology, and in particular to a motor rotor balance detection device and a method and equipment for motor rotor balance detection.
  • the motor rotor If the motor rotor is unbalanced, the motor rotor will produce unbalanced vibration when it is rotating, which will cause the rotor to vibrate, and the quality and service life of the rotor will decrease. Therefore, it is very important to determine the stability and dynamic balance of the motor rotor when it rotates.
  • the balance detection of the motor rotor is usually carried out by manually adding and assembling weights.
  • the manual method of manually adding and assembling weights is prone to vibration and numbness, and the weight is worn under repeated use.
  • the use of worn counterweights for rotor balance detection will make the detection results inaccurate.
  • the counterweight is easy to fly out when rotating at a high speed, which poses a certain safety hazard. Therefore, it is impossible to safely and accurately perform balance detection on the motor rotor using the existing technology.
  • the embodiments of the present application provide a motor rotor balance detection device and a method and equipment for motor rotor balance detection, so as to solve the problem of the inability to safely and accurately perform balance detection on the motor rotor in the prior art.
  • the embodiment of the application provides a motor rotor balance detection device, including: an inductor, a vibration sensor, a processor, and a support frame, wherein: the support frame is used to place a motor rotor, wherein the motor rotor includes: an armature A concentric shaft arranged at one end of the armature and arranged concentrically with the armature, an eccentric shaft arranged at the end of the concentric shaft and arranged eccentrically with the concentric shaft; the outer wall of the concentric shaft is provided with a notch; the sensor is arranged at On the outside of the support frame, when the motor rotor is placed on the support frame, the sensor corresponds to the notch, and is used to measure the position of the notch and the eccentric angle of the concentric shaft provided with the notch; the vibration The sensor is arranged on the outside or inside of the vertical support frame on both sides.
  • the vibration sensor When the motor rotor is placed on the support frame, the vibration sensor corresponds to directly below the armature and is used to measure the failure of the motor rotor.
  • Balance parameters the processor is connected to the sensor and the vibration sensor, and is used to determine the position of the notch, the eccentric angle of the concentric shaft with the notch, and the unbalance parameter of the motor rotor The unbalanced amount of the rotor of the motor.
  • it further includes: a manipulator, configured to pick up the motor rotor placed on the support frame and place it in the balance correction device when it is determined that the unbalanced amount of the motor rotor is greater than a preset threshold;
  • the balance correction device is used for cutting the motor rotor according to the unbalanced amount of the motor rotor.
  • the embodiment of the present application also provides a method for detecting the balance of a motor rotor through the motor rotor balance detection device, including: obtaining the initial unbalance amount and the initial eccentric angle of the target motor rotor, wherein the initial unbalance amount is the gap And the integrated unbalance of the eccentric shaft; input the initial unbalance and the initial eccentric angle as the compensation value of the target motor rotor into the processor; measure the position of the gap in the target motor rotor and the concentric shaft with the gap The eccentric angle and the unbalance parameter of the target motor rotor; the processor is used to determine the target motor according to the position of the gap, the eccentric angle, the unbalance parameter of the target motor rotor, and the compensation value The amount of unbalance of the rotor.
  • the method before acquiring the initial unbalance and the initial eccentric angle of the target motor rotor, the method further includes: randomly extracting a preset number of sample motor rotors, wherein the characteristic parameters of the sample motor rotor and the target motor rotor The characteristic parameters of the motor rotor are the same; the motor rotor balance detection device is used to measure the unbalance parameters, the position of the notch and the eccentric angle of the concentric shaft provided with the notch respectively by the motor rotor balance detection device; according to the unbalance of the respective sample motor rotors Parameters, the position of the notch and the eccentric angle of the concentric shaft provided with the notch, determine the average value of the unbalanced amount of the notch of the preset number of sample motor rotors, the average value of the unbalanced amount of the eccentric shaft, and the average value of the eccentric angle; Determine the average value of the preset number of sample motor rotor notches and the eccentric shaft's comprehensive imbalance value according to the preset number of sample motor rot
  • using the motor rotor balance detection device to measure the unbalance parameters, the position of the notch, and the eccentric angle of the concentric shaft provided with the notch, respectively, of the respective sample motor rotors includes: The rotors of the sample motors are placed on the support frame in turn, the positions of the notches of the rotors of the sample motors and the eccentric angles of the concentric shafts with the notches are measured by sensors, and the unbalance parameters of the rotors of the sample motors are measured by vibration sensors.
  • the method before acquiring the initial unbalance and the initial eccentric angle of the target motor rotor, the method further includes: acquiring characteristic parameters of the target motor rotor, where the characteristic parameters include but are not limited to at least one of the following : The density of the rotating shaft, the radius of the notched concentric shaft, the vertical depth of the notch of the target motor rotor, the distance between the notched centroid of the target motor rotor and the center of the notched concentric shaft, the target motor The radius of the eccentric shaft of the rotor, the length of the eccentric shaft of the target motor rotor, the eccentricity of the eccentric shaft of the target motor rotor, the recess width of the gap of the target motor rotor; according to the characteristic parameters of the target motor rotor Calculate the theoretical value of the unbalanced amount of the target motor rotor notch, the theoretical value of the unbalanced amount of the eccentric shaft and the theoretical value of the eccentric angle; according to the theoretical value of the unbalanced amount of the target motor rotor notch
  • the theoretical value of the unbalanced amount of the notch of the target motor rotor, the unbalanced amount of the eccentric shaft, and the theoretical value of the eccentric angle is calculated according to the following formula:
  • U 1 is the unbalanced amount of the notch of the target motor rotor
  • R 2 is the radius of the concentric shaft with notches
  • D 2 is the vertical depth of the notch of the target motor rotor
  • is the density of the shaft
  • X C is the distance between the center of mass of the notch of the target motor rotor and the axis of the notched concentric shaft
  • U 2 is the unbalance of the eccentric shaft of the target motor rotor
  • R 1 is the radius of the eccentric shaft of the target motor rotor
  • H 1 is the length of the eccentric shaft of the target motor rotor
  • E is the eccentricity of the target motor rotor's eccentric shaft
  • H 2 is the recess width of the notch of the target motor rotor.
  • the method further includes: determining the average value of the integrated unbalance and the average of the integrated unbalance Whether the difference between the theoretical values of is within a first preset range; if it is determined to be within the first preset range, it is determined between the average value of the eccentric angle and the theoretical value of the eccentric angle Whether the difference value of is within the second preset range; in the case of determining that it is within the second preset range, the average value of the comprehensive imbalance is taken as the initial unevenness of the target motor rotor gap and eccentric shaft Measure, and use the average value of the eccentric angle as the initial eccentric angle of the target motor rotor.
  • the method further includes: determining whether the unbalanced amount of the target motor rotor is greater than a preset threshold; When it is determined that the unbalanced amount of the target motor rotor is greater than the preset threshold, the balance correction device is used to cut the target motor rotor until the unbalanced amount of the target motor rotor is less than or equal to the preset threshold .
  • the embodiment of the present application also provides a motor rotor balance detection device, including a processor and a memory for storing executable instructions of the processor, and the steps of the method for detecting the rotor balance of the motor are implemented when the processor executes the instructions .
  • the embodiment of the present application also provides a computer-readable storage medium on which computer instructions are stored, and when the instructions are executed, the steps of the method for detecting the rotor balance of the motor are realized.
  • the embodiment of the present application provides a motor rotor balance detection device, which may include an inductor, a vibration sensor, a processor, and a support frame, wherein: the support frame is used to place a motor rotor, wherein the motor rotor includes: A pivot, a concentric shaft arranged at one end of the armature and arranged concentrically with the armature, an eccentric shaft arranged at the end of the concentric shaft and arranged eccentrically with the concentric shaft; the outer wall of the concentric shaft is provided with a notch; the sensor is arranged On the outside of the support frame, when the motor rotor is placed on the support frame, the sensor corresponds to the notch and is used to measure the position of the notch and the eccentric angle of the concentric shaft provided with the notch; The vibration sensor is located directly below the armature and is used to measure the unbalance parameter of the motor rotor; the processor is connected to the sensor and the vibration sensor and is used to determine the position of the gap according to the position and The eccentric angle of
  • Fig. 1 is a schematic structural diagram of a motor rotor balance detection device according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a side view and a top view of an armature, a notched concentric shaft, and an eccentric shaft in a motor rotor according to an embodiment of the present application;
  • FIG. 3 is a schematic diagram of a method for detecting the balance of a motor rotor according to a specific embodiment of the present application
  • Fig. 4 is a schematic diagram of an eccentric angle provided according to a specific embodiment of the present application.
  • Fig. 5 is a schematic diagram of parameters D 2 and H 2 provided according to a specific embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a motor rotor balance detection device provided according to an embodiment of the present application.
  • a weight is usually added to the corresponding position of the motor rotor to compensate for the imbalance of the motor rotor itself, so that the balance detection can detect the unbalanced motor rotor.
  • the amount of imbalance other than the influence of its own structure and the characteristics of the raw material.
  • the counterweight needs to be manually installed manually, and the phenomenon of vibration and numbness is likely to occur in the process of installing the weight, and the manual installation method is less efficient.
  • the counterweight wears quickly under repeated use, and the use of the worn counterweight to perform the balance detection of the rotor will make the detection result inaccurate.
  • the counterweight is easy to fly out when rotating at a high speed, which poses a certain safety hazard.
  • an embodiment of the present application provides a motor rotor balance detection device, as shown in FIG. 1, which may include: an inductor 1, a vibration sensor 2, a processor 3, and a support frame 4.
  • the aforementioned support frame 4 can be used to place a motor rotor, and the self-mass distribution of the aforementioned electronic rotor can be uneven.
  • the above-mentioned motor rotor may include: an armature, a concentric shaft arranged at one end of the armature and arranged concentrically with the armature, an eccentric shaft arranged at the end of the concentric shaft and arranged eccentrically with the concentric shaft, and the outer wall of the concentric shaft is arranged There are gaps.
  • the above-mentioned notch may be a D-shaped cylindrical notch, one side of the notch is parallel to the axis of the concentric shaft, and the side is the outer wall of the concentric shaft with the notch.
  • a device for fixing the rotor of the motor may be provided to prevent the rotor of the motor from being unstable during high-speed rotation, thereby posing a certain safety hazard.
  • the above-mentioned eccentric shaft is the shaft whose geometric center line does not coincide with the center of the motor rotor.
  • the eccentric shaft will cause a heavier weight on one side of the center line of the motor rotor rotation than the other side, which will cause the motor rotor to rotate.
  • the shaft swings in an irregular trajectory. Further, the gaps on the outer wall of the concentric shaft are not evenly distributed along the shaft center, which will also cause a heavier weight on one side of the center line of the motor rotor rotation than the other side.
  • the side view and the top view of the armature, the notched concentric shaft, and the eccentric shaft in the rotor of the motor can be as shown in FIG. 2.
  • the above-mentioned inductor 1 can be arranged on the outside of the support frame 4.
  • the sensor 1 corresponds to the above-mentioned notch and can be used to measure the position of the above-mentioned notch and the eccentric angle of the eccentric shaft.
  • the specific setting position of the above-mentioned inductor 1 can be determined according to the position of the notch in the rotor of the motor, which is not limited in this application.
  • the vibration sensor 2 can be arranged on the outside or inside of the vertical support frame on both sides. When the motor rotor is placed on the support frame 4, the vibration sensor 2 corresponds to directly below the armature and can be used to measure the rotor of the motor.
  • the unbalance parameter wherein the unbalance parameter of the above-mentioned motor rotor may preferably be an unbalance angle. Since the rotation angle of the motor rotor itself is 360°, and the unbalanced point of the motor rotor corresponds to an angle of the motor rotor when it is rotating, the 0° position of the motor rotor can be preset. According to the above-mentioned unbalanced parameters of the motor rotor, it is possible to determine the position where the motor rotor needs to be cut to distribute the mass evenly.
  • the processor 3 may be connected to the sensor 1 and the vibration sensor 2 for receiving data measured by the sensor 1 and the vibration sensor 2, and based on the position of the notch, the eccentric angle of the eccentric shaft, and the The unbalance parameter of the motor rotor determines the unbalance amount of the motor rotor.
  • the location of the aforementioned processor 3 may be determined according to actual conditions, which is not limited in this application.
  • the above-mentioned processor 3 and the sensor 1 and the vibration sensor 2 may be connected by a cable or wire. Of course, it may also be connected in other possible ways, such as a wireless network connection, which is not limited in this application.
  • the above-mentioned motor rotor balance detection device may further include a manipulator and a balance correction device.
  • the above-mentioned manipulator can be used to pick up the motor rotor placed on the support frame 4 and place it in a balance correction device when it is determined that the unbalance of the motor rotor is greater than a preset threshold.
  • the balance correction device can be used according to the motor rotor The unbalanced amount cuts the motor rotor.
  • the machine arm can be used to continue to place the cut motor rotor on the support frame 4 to detect whether the cut motor rotor is preset to meet the requirements. If required, the balance correction of the motor rotor can be ended; if it does not meet the requirements, it needs to continue to be placed in the balance correction equipment for cutting until the motor rotor meets the preset requirements.
  • the method steps shown in FIG. 3 can be used to perform the balance detection of the motor rotor, as shown in FIG. 3, which may include:
  • the initial unbalance amount and the initial eccentric angle of the target motor rotor can be obtained in advance.
  • the initial unbalanced amount of the target motor rotor may be the unbalanced amount due to its own structure and the characteristics of the raw material.
  • the initial unbalanced amount may be the integrated unbalanced amount of the gap and the eccentric shaft, and the initial eccentricity angle is The eccentric angle of the eccentric shaft of the concentric shaft provided with the notch, the eccentric angle may be as shown in FIG. 4, which is the concentric shaft provided with the notch, and ⁇ is the eccentric angle.
  • the aforementioned initial unbalance and initial eccentricity angle can be measured using multiple sample motor rotors with the same characteristic parameters of the target motor rotor, where the aforementioned characteristic parameters may include but are not limited to at least one of the following: The density of the rotating shaft, the radius of the concentric shaft with the gap, the vertical depth of the gap, the distance between the center of the gap and the axis of the concentric shaft with the gap, the radius of the eccentric shaft, the length of the eccentric shaft, the eccentricity of the eccentric shaft, the gap The width of the depression.
  • a preset number of sample motor rotors can be randomly selected, wherein the characteristic parameters of the sample motor rotors are the same as those of the target motor rotor.
  • the motor rotor balance detection device can be used to measure the unbalance parameters of the rotor of each sample motor, the position of the notch and the eccentric angle of the concentric shaft with the notch, and according to the unbalance parameters of the rotor of each sample motor, the position of the notch and the notch For the eccentric angle of the concentric shaft, determine the average value of the unbalanced amount of the notch of the rotor of the sample motor, the average value of the unbalanced amount of the eccentric shaft, and the average value of the eccentric angle.
  • the foregoing preset number may be a positive integer greater than or equal to 2, for example: 10, 15, 20, etc.
  • the specific number is determined according to actual conditions, and this application does not limit this.
  • the unbalance of the notch and the eccentric shaft is not located at the geometric center of the motor rotor, it is only the unbalance generated at the motor rotor and the eccentric shaft. Therefore, in one embodiment, a preset number of sample motor rotors can be used.
  • the average value of the unbalanced amount of the gap and the average value of the unbalanced value of the eccentric shaft determine the average value of the comprehensive unbalanced value of the gaps and the eccentric shaft of the preset number of sample motor rotors.
  • the initial unbalance is determined according to the average value of the comprehensive unbalance, and the initial eccentric angle is determined according to the average value of the eccentric angle. Therefore, it is possible to determine the unbalance and eccentric angle of the actually produced motor rotor due to its own structural characteristics.
  • the above-mentioned comprehensive unbalance can represent the unbalance produced by the gap and the eccentric shaft in the entire electronic rotor.
  • the motor rotor balance detection device when used to measure the unbalance parameters of each sample motor rotor, the position of the notch, and the eccentric angle of the concentric shaft with the notch, the preset number of sample motor rotors can be sequentially Placed on the support frame, the position of the notch of the rotor of each sample motor and the eccentric angle of the concentric shaft with the notch are measured by the sensor, and the unbalance parameter of the rotor of each sample motor is measured by the vibration sensor.
  • the above-mentioned unbalance parameter of the motor rotor may preferably be an unbalance angle, since one rotation of the motor rotor is 360°, and the position of the unbalance of the motor rotor must correspond to an angle, for example: 30°, 90°-95° , 180°, etc. Therefore, a 0° position can be defined for the electronic rotor in advance, so that the vibration sensor can be used to separately measure the unbalanced angle of the motor rotor, and the unbalanced angle can be used to determine the position of the motor rotor that needs to be cut.
  • the characteristic parameters of the target motor rotor can be obtained in advance, and based on the characteristic parameters of the target motor rotor Calculate the theoretical value of the unbalanced amount of the notch of the target motor rotor, the unbalanced amount of the eccentric shaft, and the eccentric angle. Further, according to the theoretical value of the unbalance of the target motor rotor notch and the theoretical value of the unbalance of the eccentric shaft, the theoretical value of the integrated unbalance of the target motor rotor and the eccentric shaft can be determined.
  • the unbalance amount of the notch of the target motor rotor, the unbalance amount of the eccentric shaft, and the eccentric angle can be calculated according to the following formula:
  • U 1 is the unbalance of the notch of the target motor rotor
  • R 2 is the radius of the concentric shaft with the notch
  • D 2 is the vertical depth of the notch of the target motor rotor
  • is the density of the shaft
  • X C is the target motor The distance between the notched centroid of the rotor and the notched concentric shaft axis
  • U 2 is the unbalanced amount of the eccentric shaft of the target motor rotor
  • R 1 is the radius of the eccentric shaft of the target motor rotor
  • H 1 is the eccentric shaft of the target motor rotor
  • E is the eccentricity of the eccentric shaft of the target motor rotor
  • H 2 is the recess width of the notch of the target motor rotor.
  • the theoretical value of the imbalance of the rotor gap of the sample motor, the imbalance of the eccentric shaft, and the theoretical value of the eccentric angle can also be calculated, which can be specifically determined according to the actual situation, which is not limited in this application.
  • the above-mentioned parameters D 2 and H 2 may be as shown in FIG. 5.
  • the target motor rotor gap and the eccentric shaft After determining the theoretical value of the integrated imbalance of the target motor rotor gap and the eccentric shaft, it can be determined whether the difference between the average value of the sample motor rotor's integrated imbalance and the theoretical value of the target motor rotor's integrated imbalance is within In the first preset range, if it is determined to be within the first preset range, it is further determined whether the difference between the average value of the eccentric angle of the rotor of the sample motor and the theoretical value of the eccentric angle of the target motor is within the second Within the preset range, if it is determined to be within the second preset range, it means that the target motor rotor produced meets the requirements.
  • the average value of the overall imbalance of the sample motor rotor can be used as the gap and eccentric shaft of the target motor rotor
  • the initial imbalance of the target motor rotor is the average value of the eccentric angle of the rotor of the sample motor.
  • the above-mentioned first preset range can be: [0mg-mm, 15mg-mm], [0mg-mm, 6mg-mm], etc.
  • the specific value can be determined according to the actual situation. This application does not limit this.
  • the above mg-mm It is the unit of static balance moment.
  • the above-mentioned second preset range may be [0°, 0.5°], [0°, 0.68°], etc.
  • the specifics can be determined according to actual conditions, and this application does not limit this.
  • the unbalance of the notch and the unbalance of the eccentric shaft are affected by the structure of the motor rotor itself and the characteristics of the raw materials, it is necessary to check the unbalance of the notch and the unevenness of the eccentric shaft when checking the balance of the target motor rotor.
  • the weight is compensated, so that it can detect the amount of unbalance that is caused by the structure of the motor rotor itself and the characteristics of the raw materials.
  • the acquired initial unbalance and initial eccentricity angle can be input into the processor as the compensation value of the target motor rotor, that is, the compensation value can be used to replace the counterweight.
  • the sensor in the motor rotor balance detection device may be used to measure the position of the notch of the target motor rotor and the eccentric angle of the concentric shaft provided with the notch, and a vibration sensor may be used to measure the unbalance parameter of the target motor rotor.
  • the sensor can sense the notch at the concentric shaft during the rotation of the rotor, and the position of the notch can be characterized by parameters such as the vertical depth of the notch, the center of mass of the notch, and the width of the notch.
  • the above-mentioned sensor and vibration sensor measure the corresponding values, they can transmit the measured position of the notch, the eccentric angle of the concentric shaft provided with the notch, and the unbalance parameter of the target motor rotor to the above-mentioned processor.
  • the processor determines the unbalance amount of the target motor rotor according to the position of the notch, the eccentric angle, the unbalance angle of the target motor rotor, and the compensation value.
  • the processor may determine the unbalance of the target motor rotor according to the position of the notch, the eccentricity angle, the unbalance parameter of the target motor rotor, and the above compensation value. After determining the unbalanced amount of the target motor rotor, it can be determined whether the unbalanced amount of the target motor rotor is greater than the preset threshold. If it is determined to be greater than the preset threshold, the manipulator can be used to pick up the target motor rotor placed on the support frame. Placed in a balance correction device, the above balance correction device can be used to cut the motor rotor according to the unbalanced amount of the target motor rotor and the unbalanced angle of the target motor rotor. The unbalanced amount can be used to determine how much to cut, and the unbalanced angle can be Used to determine the cutting position.
  • the manipulator may continue to place the cut target motor rotor on the support frame to detect whether the cut motor rotor meets the preset requirements.
  • the balance correction of the motor rotor can be ended when required; if it does not meet the requirements, the unbalance amount and unbalance angle need to be re-measured, and then re-placed in the balance correction equipment for cutting until the target motor rotor after cutting is less than or equal to the preset Threshold.
  • the above-mentioned preset threshold may be 15 mg-mm, 11 mg-mm, etc., which can be specifically determined according to actual conditions, which is not limited in this application.
  • the embodiments of the present application achieve the following technical effects: the initial imbalance and initial eccentric angle of the target motor rotor can be input to the processor as the compensation value of the target motor rotor, and the processor can According to the position of the gap, the eccentric angle, the unbalance parameter and compensation value of the target motor rotor, determine the unbalance of the target motor rotor, which can replace the counterweight to realize the effective compensation of the gap in the target motor rotor and the unbalance of the eccentric shaft , And make the balance detection process safer and more efficient, and the detection result is more accurate.
  • the embodiment of the present application also provides an electronic device.
  • the electronic device may specifically include an input device 61, processing ⁇ 62, memory 63.
  • the input device 61 may be specifically used to input the initial unbalance and the initial eccentric angle of the target motor rotor, where the initial unbalance is the comprehensive unbalance of the notch and the eccentric shaft.
  • the processor 62 may be specifically used to input the initial unbalance amount and the initial eccentric angle as the compensation value of the target motor rotor into the processor; measure the position of the gap in the target motor rotor, the eccentric angle of the concentric shaft with the gap, and the target motor rotor.
  • Unbalance parameter The processor determines the unbalance amount of the target motor rotor according to the position of the notch, the eccentric angle, the unbalance parameter and the compensation value of the target motor rotor.
  • the memory 63 may be specifically used to store parameters such as the unbalanced amount of the target motor rotor.
  • the input device may specifically be one of the main devices for information exchange between the user and the computer system.
  • the input device may include a keyboard, a mouse, a camera, a scanner, a light pen, a handwriting input board, a voice input device, etc.; the input device is used to input raw data and programs for processing these numbers into the computer.
  • the input device can also obtain and receive data transmitted from other modules, units, and devices.
  • the processor can be implemented in any suitable way.
  • the processor may take the form of a microprocessor or a processor and a computer readable medium, logic gates, switches, application specific integrated circuits ( Application Specific Integrated Circuit, ASIC), programmable logic controller and embedded microcontroller form, etc.
  • the memory may specifically be a memory device used to store information in modern information technology.
  • the memory can include multiple levels. In a digital system, as long as it can store binary data, it can be a memory; in an integrated circuit, a circuit with a storage function without a physical form is also called a memory, such as RAM, FIFO, etc.; In the system, storage devices in physical form are also called memory, such as memory sticks, TF cards, and so on.
  • the embodiment of the present application also provides a computer storage medium based on a method for detecting rotor balance of a motor.
  • the computer storage medium stores computer program instructions.
  • the initial unbalance and the initial eccentricity angle where the initial unbalance is the comprehensive unbalance of the gap and the eccentric shaft; the initial unbalance and the initial eccentricity are input into the processor as the compensation value of the target motor rotor; measurement The position of the gap in the target motor rotor, the eccentric angle of the concentric shaft provided with the gap, and the unbalance angle of the target motor rotor; the processor is based on the position of the gap, the eccentric angle, and the target motor
  • the unbalance angle of the rotor and the compensation value determine the unbalance amount of the target motor rotor.
  • the above-mentioned storage medium includes, but is not limited to, random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), cache (Cache), and hard disk (Hard Disk Drive, HDD). Or memory card (Memory Card).
  • the memory can be used to store computer program instructions.
  • the network communication unit may be an interface set up in accordance with a standard stipulated by the communication protocol and used for network connection communication.
  • modules or steps of the embodiments of the present application described above can be implemented by a general computing device, and they can be concentrated on a single computing device or distributed among multiple computing devices.
  • they can be implemented by the program code executable by the computing device, so that they can be stored in the storage device for execution by the computing device, and in some cases, they can be different from here
  • the steps shown or described are executed in the order of, or they are respectively fabricated into individual integrated circuit modules, or multiple modules or steps of them are fabricated into a single integrated circuit module to achieve. In this way, the embodiments of the present application are not limited to any specific combination of hardware and software.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

一种电机转子平衡检测装置和电机转子平衡检测的方法、设备,装置包括:感应器(1)、振动传感器(2)、处理器(3)、支撑架(4),支撑架(4)用于放置电机转子,电机转子包括:电枢、设在电枢一端并与电枢同心设置的同心轴、设在同心轴端并与同心轴偏心设置的偏心轴;同心轴外壁设有缺口;感应器(1)设在支撑架(4)的外侧,当电机转子放置在支撑架(4)上时,感应器(1)对应缺口,用于测量缺口的位置和设有缺口的同心轴的偏心角度;振动传感器(2)设在电枢的正下方;处理器(3)与感应器(1)和振动传感器(2)相连,用于确定电机转子的不平衡量。通过感应器(1)和振动传感器(2)测量转子的不平衡量无需使用配重块,从而更加便捷、安全。

Description

电机转子平衡检测装置和电机转子平衡检测的方法、设备
本申请要求了申请日为2019年12月24日,申请号为201911347118.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电气技术领域,特别涉及一种电机转子平衡检测装置和电机转子平衡检测的方法、设备。
背景技术
如果电机转子存在不平衡量,那么电机转子在转动时会产生不平衡振动,导致转子振动,从而转子的质量与使用寿命下降,因此,确定电机转子转动时的稳定度与动平衡相当重要。
现有技术中通常采用人工手动加装配重块的方式进行电机转子的平衡检测,而采用人工手动加装配重块的方式容易出现振动麻手的现象,并且配重块在重复使用的情况下磨损较快,采用磨损后的配重块进行转子的平衡检测会使得检测的结果不准确。进一步的,配重块在高速转动时容易飞出,有一定的安全隐患。因此,采用现有的技术无法安全、准确地对电机转子进行平衡检测。
针对上述问题,目前尚未提出有效的解决方案。
发明内容
本申请实施例提供了一种电机转子平衡检测装置和电机转子平衡检测的方法、设备,以解决现有技术中无法安全、准确地对电机转子进行平衡检测的问题。
本申请实施例提供了一种电机转子平衡检测装置,包括:感应器、振动传感器、处理器、支撑架,其中:所述支撑架用于放置电机转子,其中,所述电机转子包括:电枢、设在电枢一端并与所述电枢同心设置的同心轴、设在同心轴端并与所述同心轴偏心设置的偏心轴;所述同心轴外壁设有缺口;所述感应器设在所述支撑架的外侧,当电机转子放置在所述支撑架上时,所述感应器对应所述缺口,用于测量所述缺口的位置和设有缺口的同心轴的偏心角度;所述振动传感器设在两侧竖直方向支撑架的外侧或内侧,当电机转子放置在所述支撑架上时,所述振动传感器对应于所述电枢的正下方,用于测量所述电机转子的不平衡参数;所述处理器与所述感应器和所述振动传 感器相连,用于根据所述缺口的位置、所述设有缺口的同心轴的偏心角度和所述电机转子的不平衡参数,确定所述电机转子的不平衡量。
在一个实施例中,还包括:机械手,用于在确定所述电机转子的不平衡量大于预设阈值的情况下,将所述支撑架上放置的电机转子夹起放置到平衡校正设备中;所述平衡校正设备,用于根据所述电机转子的不平衡量对所述电机转子进行切削。
本申请实施例还提供了一种通过所述的电机转子平衡检测装置进行电机转子平衡检测的方法,包括:获取目标电机转子的初始不平衡量、初始偏心角度,其中,所述初始不平衡量为缺口和偏心轴的综合不平衡量;将所述初始不平衡量和初始偏心角度作为所述目标电机转子的补偿值输入处理器中;测量所述目标电机转子中缺口的位置、设有缺口的同心轴的偏心角度和所述目标电机转子的不平衡参数;利用所述处理器根据所述缺口的位置、所述偏心角度、所述目标电机转子的不平衡参数和所述补偿值,确定所述目标电机转子的不平衡量。
在一个实施例中,在获取所述目标电机转子的初始不平衡量、初始偏心角度之前,还包括:随机抽取预设数量个样本电机转子,其中,所述样本电机转子的特征参数与所述目标电机转子的特征参数相同;利用所述电机转子平衡检测装置分别测量各个样本电机转子的不平衡参数、缺口的位置和设有缺口的同心轴的偏心角度;根据所述各个样本电机转子的不平衡参数、缺口的位置和设有缺口的同心轴的偏心角度,确定所述预设数量个样本电机转子的缺口的不平衡量的平均值、偏心轴的不平衡量的平均值和偏心角度的平均值;根据所述预设数量个样本电机转子的缺口的不平衡量的平均值、偏心轴的不平衡量的平均值,确定所述预设数量个样本电机转子的缺口和偏心轴的综合不平衡量的平均值;根据所述综合不平衡量的平均值确定所述初始不平衡量;根据所述预设数量个样本电机转子的偏心角度的平均值确定所述初始偏心角度。
在一个实施例中,利用所述电机转子平衡检测装置分别测量所述各个样本电机转子的不平衡参数、缺口的位置和设有缺口的同心轴的偏心角度,包括:将所述预设数量个样本电机转子依次放置在支撑架上,利用感应器分别测量各个样本电机转子的缺口的位置和设有缺口的同心轴的偏心角度,利用振动传感器分别测量各个样本电机转子的不平衡参数。
在一个实施例中,在获取所述目标电机转子的初始不平衡量、初始偏心角度之前,还包括:获取所述目标电机转子的特征参数,其中,所述特征参数包括但不限于以下 至少之一:转轴的密度、带有缺口的同心轴的半径、所述目标电机转子的缺口的垂向深度、所述目标电机转子的缺口质心与带有缺口的同心轴轴心的距离、所述目标电机转子的偏心轴的半径、所述目标电机转子的偏心轴的长度、所述目标电机转子的偏心轴的偏心距、所述目标电机转子的缺口的凹陷宽度;根据所述目标电机转子的特征参数计算所述目标电机转子的缺口的不平衡量的理论值、偏心轴的不平衡量的理论值和偏心角度的理论值;根据所述目标电机转子的缺口的不平衡量的理论值和偏心轴的不平衡量的理论值,确定所述目标电机转子的缺口和偏心轴的综合不平衡量的理论值。
在一个实施例中,按照以下公式,计算所述目标电机转子的缺口的不平衡量、偏心轴的不平衡量和偏心角度的理论值:
Figure PCTCN2020127057-appb-000001
Figure PCTCN2020127057-appb-000002
Figure PCTCN2020127057-appb-000003
其中,U 1为所述目标电机转子的缺口的不平衡量;R 2为带有缺口的同心轴的半径;D 2为所述目标电机转子的缺口的垂向深度;ρ为转轴的密度;X C为所述目标电机转子的缺口质心与带有缺口的同心轴轴心的距离;U 2为所述目标电机转子的偏心轴的不平衡量;R 1为所述目标电机转子的偏心轴的半径;H 1为所述目标电机转子的偏心轴的长度;E为所述目标电机转子的偏心轴的偏心距;H 2为所述目标电机转子的缺口的凹陷宽度。
在一个实施例中,在确定了所述预设数量个样本电机转子的缺口和偏心轴的综合不平衡量的平均值之后,还包括:确定所述综合不平衡量的平均值与所述综合不平衡量的理论值之间的差值是否在第一预设范围内;在确定在所述第一预设范围内的情况下,确定所述偏心角度的平均值与所述偏心角度的理论值之间的差值是否在第二预设范围内;在确定在所述第二预设范围内的情况下,将所述综合不平衡量的平均值作为所述目标电机转子的缺口和偏心轴的初始不平衡量,并将所述偏心角度的平均值作为所述目标电机转子的初始偏心角度。
在一个实施例中,电机转子平衡检测装置中包括有平衡校正设备时,在确定所述目标电机转子的不平衡量之后,还包括:确定所述目标电机转子的不平衡量是否大于预设阈值;在确定所述目标电机转子的不平衡量大于所述预设阈值的情况下,利用所 述平衡校正设备对所述目标电机转子进行切削,直至所述目标电机转子的不平衡量小于等于所述预设阈值。
本申请实施例还提供了一种电机转子平衡检测设备,包括处理器以及用于存储处理器可执行指令的存储器,所述处理器执行所述指令时实现所述电机转子平衡检测的方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,所述指令被执行时实现所述电机转子平衡检测的方法的步骤。
本申请实施例提供了一种电机转子平衡检测装置,可以包括:感应器、振动传感器、处理器、支撑架,其中:所述支撑架用于放置电机转子,其中,所述电机转子包括:电枢、设在电枢一端并与所述电枢同心设置的同心轴、设在同心轴端并与所述同心轴偏心设置的偏心轴;所述同心轴外壁设有缺口;所述感应器设在所述支撑架的外侧,当电机转子放置在所述支撑架上时,所述感应器对应所述缺口,用于测量所述缺口的位置和设有缺口的同心轴的偏心角度;所述振动传感器设在所述电枢的正下方,用于测量所述电机转子的不平衡参数;所述处理器与所述感应器和所述振动传感器相连,用于根据所述缺口的位置、所述设有缺口的同心轴的偏心角度和所述电机转子的不平衡参数,确定所述电机转子的不平衡量。从而可以通过感应器和振动传感器测量电机转子的不平衡量,无需使用配重块,使得电机转子的不平衡量检测过程更加便捷、安全。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,并不构成对本申请的限定。在附图中:
图1是根据本申请实施例提供的电机转子平衡检测装置的结构示意图;
图2是根据本申请实施例提供的电机转子中电枢、设有缺口的同心轴、偏心轴的侧视图和俯视图的示意图;
图3是根据本申请具体实施例提供的电机转子平衡检测的方法的示意图;
图4是根据本申请具体实施例提供的偏心角度的示意图;
图5是根据本申请具体实施例提供的参数D 2、H 2的示意图;
图6是根据本申请实施例提供的电机转子平衡检测设备的结构示意图。
具体实施方式
下面将参考若干示例性实施方式来描述本申请的原理和精神。应当理解,给出这些实施方式仅仅是为了使本领域技术人员能够更好地理解进而实现本申请,而并非以任何方式限制本申请的范围。相反,提供这些实施方式是为了使本申请公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本领域的技术人员知道,本申请的实施方式可以实现为一种系统、装置设备、方法或计算机程序产品。因此,本申请公开可以具体实现为以下形式,即:完全的硬件、完全的软件(包括固件、驻留软件、微代码等),或者硬件和软件结合的形式。
由于一些电机转子在制造的过程中,由于其本身的构造以及原材料的特性,使得其自身质量分布是不均匀的,电机转子在围绕其轴线旋转时,由于相对于轴线的质量分布不均匀而产生离心力。这种不平衡离心力作用在转子轴承上会引起振动,产生噪声和加速轴承磨损,以致严重影响产品的性能和寿命。
因此,现有技术中在对电机转子进行平衡检测时,通常会在电机转子的相应位置加装配重块,以补足电机转子的自身的不平衡量,从而在平衡检测时可以检测出除受电机转子本身的构造以及原材料的特性的影响之外的不平衡量。但是配重块需要人工手动进行加装,在加装配重块的过程中容易出现振动麻手的现象,并且手动加装的方法效率较低。而且配重块在重复使用的情况下磨损较快,采用磨损后的配重块进行转子的平衡检测会使得检测的结果不准确。进一步的,配重块在高速转动时容易飞出,有一定的安全隐患。
基于以上问题,本申请实施例提供了一种电机转子平衡检测装置,如图1所示,可以包括:感应器1、振动传感器2、处理器3、支撑架4。
其中,上述支撑架4可以用于放置电机转子,上述电子转子的自身质量分布可以是不均匀的。在一个实施例中,上述电机转子可以包括:电枢、设在电枢一端并与电枢同心设置的同心轴、设在同心轴端并与同心轴偏心设置的偏心轴,上述同心轴外壁设有缺口。上述缺口可以为D字形的柱状缺口,缺口的一个侧面平行于同心轴的轴线,且该侧面为带有缺口的同心轴的外壁。
在一个实施例中,上述支撑架4用于放置电机转子的位置处,可以设置固定电机转子的器件,以防止电机转子在高速转动时不稳定,从而存在一定的安全隐患。
上述偏心轴就是轴的几何中心线与电机转子的中心不重合的轴,偏心轴会导致在电机转子旋转的中心线的一侧比另一侧更大的重量,从而在电机转子转动时会引起轴以不规则的轨迹的摆动。进一步的,同心轴外壁的缺口在不沿轴心均匀分布的情况下,也会导致在电机转子旋转的中心线的一侧比另一侧更大的重量。
具体的,上述电机转子中电枢、设有缺口的同心轴、偏心轴的侧视图和俯视图可以如图2中所示。
上述感应器1可以设在支撑架4的外侧,当电机转子放置在支撑架4上时,感应器1对应上述缺口,可以用于测量上述缺口的位置和偏心轴的偏心角度。上述感应器1的具体设置位置可以根据电机转子中缺口的位置确定,本申请对此不作限定。
上述振动传感器2可以设置在两侧竖直方向支撑架的外侧或内侧,当电机转子放置在支撑架4上时,振动传感器2对应于上述电枢的正下方,可以用于测量上述电机转子的不平衡参数,其中,上述电机转子的不平衡参数可以优选为不平衡角度。由于电机转子自身旋转角度为360°,而电机转子的不平衡点都对应着电机转子在转动时的一个角度,因此,可以预先设置电机转子的0°位置。根据上述电机转子的不平衡参数,可以确定出电机转子需要进行切削以使质量均衡分布的位置。
在一个实施例中,上述处理器3可以与上述感应器1和振动传感器2相连,用于接收上述感应器1和振动传感器2测得的数据,并根据缺口的位置、偏心轴的偏心角度和电机转子的不平衡参数,确定电机转子的不平衡量。上述处理器3的位置具体的可以根据实际情况确定,本申请对此不作限定。在一个实施例中,上述处理器3和感应器1、振动传感器2之间可以通过缆线或者电线相连,当然还可以采用其它可能的方式连接如:无线网络连接,本申请对此不作限定。
为了能够对不平衡的电机转子进行校正,在一个实施例中,上述电机转子平衡检 测装置还可以包括:机械手和平衡校正设备。其中,上述机械手可以用于在确定电机转子的不平衡量大于预设阈值的情况下,将支撑架4上放置的电机转子夹起放置到平衡校正设备中,上述平衡校正设备可以用于根据电机转子的不平衡量对电机转子进行切削。在一个实施例中,可以在上述平衡校正设备对电机转子进行切削之后,利用机械手将切削后的电机转子继续放置到支撑架4上,检测切削后的电机转子是否预设符合要求,在确定符合要求的情况下可以结束对电机转子的平衡校正;如果不符合要求需要继续放置到平衡校正设备中进行切削,直至电机转子符合预设要求。
基于图1所示的电机转子平衡检测装置,可以采用如图3所示的方法步骤进行电机转子的平衡检测,如图3所示,可以包括:
S301:获取目标电机转子的初始不平衡量、初始偏心角度,其中,初始不平衡量为缺口和偏心轴的综合不平衡量。
在进行目标电机转子的平衡检测之前,可以预先获取目标电机转子的初始不平衡量和初始偏心角度。上述目标电机转子的初始不平衡量可以是由于本身的构造以及原材料的特性所产生的不平衡量,在一个实施例中,上述初始不平衡量可以是缺口和偏心轴的综合不平衡量,上述初始偏心角度为设有缺口的同心轴的偏心轴的偏心角度,该偏心角度可以如图4中所示,图4中为设有缺口的同心轴,α为偏心角度。
为了保证数据的准确性,上述初始不平衡量和初始偏心角度可以采用与目标电机转子特征参数均相同的多个样本电机转子测得的,其中,上述特征参数可以包括但不限于以下至少之一:转轴的密度、带有缺口的同心轴的半径、缺口的垂向深度、缺口质心与带有缺口的同心轴轴心的距离、偏心轴的半径、偏心轴的长度、偏心轴的偏心距、缺口的凹陷宽度。
因此,在获取目标电机转子的初始不平衡量和初始偏心角度之前,还可以随机抽取预设数量个样本电机转子,其中,样本电机转子的特征参数与目标电机转子的特征参数相同。可以利用电机转子平衡检测装置分别测量各个样本电机转子的不平衡参数、缺口的位置和设有缺口的同心轴的偏心角度,并根据各个样本电机转子的不平衡参数、缺口的位置和设有缺口的同心轴的偏心角度,确定预设数量个样本电机转子的缺口的不平衡量的平均值、偏心轴的不平衡量的平均值和偏心角度的平均值。
上述预设数量可以为大于等于2的正整数,例如:10、15、20等,具体的数量根据实际情况确定,本申请对此不作限定。
由于缺口和偏心轴的不平衡量并不位于电机转子的几何中心处,仅仅是在电机转子和偏心轴处产生的不平衡量,因此,在一个实施例中,可以根据预设数量个样本电机转子的缺口的不平衡量的平均值、偏心轴的不平衡量的平均值,确定预设数量个样本电机转子的缺口和偏心轴的综合不平衡量的平均值。并根据综合不平衡量的平均值确定初始不平衡量,根据偏心角度的平均值确定初始偏心角度。从而可以转确定的确定实际生产的电机转子由于其本身的构造特性而产生的不平衡量和偏心角度,上述综合不平衡量可以表征缺口和偏心轴在整个电子转子中所产生的不平衡量。
在具体的实施过程中,在利用电机转子平衡检测装置分别测量各个样本电机转子的不平衡参数、缺口的位置和设有缺口的同心轴的偏心角度时,可以将预设数量个样本电机转子依次放置在支撑架上,利用感应器分别测量各个样本电机转子的缺口的位置和设有缺口的同心轴的偏心角度,并利用振动传感器分别测量各个样本电机转子的不平衡参数。其中,上述电机转子的不平衡参数可以优选为不平衡角度,由于电机转子旋转一圈为360°,而电机转子的不平衡量产生的位置必然对应一个角度,例如:30°、90°-95°、180°等。因此,可以预先为电子转子定义一个0°的位置,从而可以利用振动传感器分别测电机转子的不平衡角度,该不平衡角度可以用于确定电机转子需要切削的位置。
由于电机转子在生产时是有生产的规格参数要求的,为了确保生产出来的电机转子符合要求,因此,在一个实施例中可以预先获取目标电机转子的特征参数,并根据目标电机转子的特征参数计算目标电机转子的缺口的不平衡量、偏心轴的不平衡量和偏心角度的理论值。进一步的,可以根据目标电机转子的缺口的不平衡量的理论值和偏心轴的不平衡量的理论值,确定目标电机转子的缺口和偏心轴的综合不平衡量的理论值。
在一个实施例中,可以按照以下公式,计算目标电机转子的缺口的不平衡量、偏心轴的不平衡量和偏心角度:
Figure PCTCN2020127057-appb-000004
Figure PCTCN2020127057-appb-000005
Figure PCTCN2020127057-appb-000006
其中,U 1为目标电机转子的缺口的不平衡量;R 2为带有缺口的同心轴的半径;D 2 为目标电机转子的缺口的垂向深度;ρ为转轴的密度;X C为目标电机转子的缺口质心与带有缺口的同心轴轴心的距离;U 2为目标电机转子的偏心轴的不平衡量;R 1为目标电机转子的偏心轴的半径;H 1为目标电机转子的偏心轴的长度;E为目标电机转子的偏心轴的偏心距;H 2为目标电机转子的缺口的凹陷宽度。当然在一些实施例中,还可以计算上述样本电机转子缺口的不平衡量、偏心轴的不平衡量和偏心角度的理论值,具体的可以根据实际情况确定,本申请对此不作限定。其中,上述参数D 2、H 2可以如图5中所示。
在确定了目标电机转子的缺口和偏心轴的综合不平衡量的理论值之后,可以确定样本电机转子的综合不平衡量的平均值与目标电机转子的综合不平衡量的理论值之间的差值是否在第一预设范围内,在确定在第一预设范围内的情况下,进一步确定样本电机转子的偏心角度的平均值与目标电机转子的偏心角度的理论值之间的差值是否在第二预设范围内,在确定在第二预设范围内的情况下,说明生产得到的目标电机转子符合要求,可以将上述样本电机转子的综合不平衡量的平均值作为目标电机转子的缺口和偏心轴的初始不平衡量,并将上述样本电机转子的偏心角度的平均值作为目标电机转子的初始偏心角度。
上述第一预设范围可以为:【0mg-mm,15mg-mm】、【0mg-mm,6mg-mm】等,具体的数值可以根据实际情况确定,本申请对此不作限定,上述mg-mm为静平衡力矩的单位。上述第二预设范围可以为【0°,0.5°】、【0°,0.68°】等,具体的可以根据实际情况确定,本申请对此不作限定。
S302:将初始不平衡量和初始偏心角度作为目标电机转子的补偿值输入处理器中。
由于缺口的不平衡量和偏心轴的不平衡量是受电机转子本身的构造以及原材料的特性的影响而产生的,因此,在对目标电机转子进行平衡检测时需要对缺口的不平衡量和偏心轴的不平衡量进行补偿,从而可以检测出除受电机转子本身的构造以及原材料的特性的影响而产生的不平衡量。在一个实施例中,可以将获取的初始不平衡量和初始偏心角度作为目标电机转子的补偿值输入处理器中,即可以采用补偿值的方式来替代配重块。
S303:测量目标电机转子中缺口的位置、设有缺口的同心轴的偏心角度和目标电机转子的不平衡参数。
在一个实施例中可以采用电机转子平衡检测装置中的感应器测量目标电机转子的缺口的位置以及设有缺口的同心轴的偏心角度,并利用振动传感器测量上述目标电机转子的不平衡参数。上述感应器可以在转子旋转的过程中感应到同心轴处的缺口,上述缺口的位置可以用缺口的垂向深度、缺口的质心、缺口的凹陷宽度等参数来表征。
上述感应器和振动传感器在测得相应数值后,可以将测得的缺口的位置、设有缺口的同心轴的偏心角度以及目标电机转子的不平衡参数传输给上述处理器。
S304:处理器根据缺口的位置、偏心角度、目标电机转子的不平衡角度和补偿值,确定目标电机转子的不平衡量。
上述处理器可以根据缺口的位置、偏心角度、目标电机转子的不平衡参数以及上述补偿值来确定目标电机转子的不平衡量。在确定了目标电机转子的不平衡量之后,可以确定目标电机转子的不平衡量是否大于预设阈值,在确定大于预设阈值的情况下,可以利用机械手将放置在支撑架上的目标电机转子夹起放置到平衡校正设备中,上述平衡校正设备可以用于根据目标电机转子的不平衡量和目标电机转子的不平衡角度对电机转子进行切削,其中不平衡量可以用于确定需要切削多少,不平衡角度可以用于确定切削的位置。
在一个实施例中,可以在上述平衡校正设备对电机转子进行切削之后,利用机械手将切削后的目标电机转子继续放置到支撑架上,检测切削后的电机转子是否符合预设要求,在确定符合要求的情况下可以结束对电机转子的平衡校正;如果不符合要求需要根据重新测得不平衡量和不平衡角度,重新放置到平衡校正设备中进行切削,直至切削后的目标电机转子小于等于预设阈值。其中,上述预设阈值可以为15mg-mm、11mg-mm等,具体的可以根据实际情况确定,本申请对此不作限定。
从以上的描述中,可以看出,本申请实施例实现了如下技术效果:可以通过将目标电机转子的初始不平衡量、初始偏心角度作为目标电机转子的补偿值输入至处理器中,处理器可以根据缺口的位置、偏心角度、目标电机转子的不平衡参数和补偿值,确定目标电机转子的不平衡量,从而可以替代配重块以实现对目标电机转子中缺口和偏心轴的不平衡量的有效补偿,并且使得平衡检测的过程更加安全、高效,检测的结果更加精确。
本申请实施方式还提供了一种电子设备,具体可以参阅图6所示的基于本申请实施例提供的电机转子平衡检测的方法的电子设备组成结构示意图,电子设备具体可以 包括输入设备61、处理器62、存储器63。其中,输入设备61具体可以用于输入目标电机转子的初始不平衡量、初始偏心角度,其中,初始不平衡量为缺口和偏心轴的综合不平衡量。处理器62具体可以用于将初始不平衡量和初始偏心角度作为目标电机转子的补偿值输入处理器中;测量目标电机转子中缺口的位置、设有缺口的同心轴的偏心角度和目标电机转子的不平衡参数;处理器根据缺口的位置、偏心角度、目标电机转子的不平衡参数和补偿值,确定目标电机转子的不平衡量。存储器63具体可以用于存储目标电机转子的不平衡量等参数。
在本实施方式中,所述输入设备具体可以是用户和计算机系统之间进行信息交换的主要装置之一。所述输入设备可以包括键盘、鼠标、摄像头、扫描仪、光笔、手写输入板、语音输入装置等;输入设备用于把原始数据和处理这些数的程序输入到计算机中。所述输入设备还可以获取接收其他模块、单元、设备传输过来的数据。所述处理器可以按任何适当的方式实现。例如,处理器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式等等。所述存储器具体可以是现代信息技术中用于保存信息的记忆设备。所述存储器可以包括多个层次,在数字系统中,只要能保存二进制数据的都可以是存储器;在集成电路中,一个没有实物形式的具有存储功能的电路也叫存储器,如RAM、FIFO等;在系统中,具有实物形式的存储设备也叫存储器,如内存条、TF卡等。
在本实施方式中,该电子设备具体实现的功能和效果,可以与其它实施方式对照解释,在此不再赘述。
本申请实施方式中还提供了一种基于电机转子平衡检测的方法的计算机存储介质,所述计算机存储介质存储有计算机程序指令,在所述计算机程序指令被执行时可以实现:获取目标电机转子的初始不平衡量、初始偏心角度,其中,所述初始不平衡量为缺口和偏心轴的综合不平衡量;将所述初始不平衡量和初始偏心角度作为所述目标电机转子的补偿值输入处理器中;测量所述目标电机转子中缺口的位置、设有缺口的同心轴的偏心角度和所述目标电机转子的不平衡角度;所述处理器根据所述缺口的位置、所述偏心角度、所述目标电机转子的不平衡角度和所述补偿值,确定所述目标电机转子的不平衡量。
在本实施方式中,上述存储介质包括但不限于随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、缓存(Cache)、硬盘(Hard Disk Drive,HDD)或者存储卡(Memory Card)。所述存储器可以用于存储计算机程序指令。网络通信单元可以是依照通信协议规定的标准设置的,用于进行网络连接通信的接口。
在本实施方式中,该计算机存储介质存储的程序指令具体实现的功能和效果,可以与其它实施方式对照解释,在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请实施例不限制于任何特定的硬件和软件结合。
虽然本申请提供了如上述实施例或流程图所述的方法操作步骤,但基于常规或者无需创造性的劳动在所述方法中可以包括更多或者更少的操作步骤。在逻辑性上不存在必要因果关系的步骤中,这些步骤的执行顺序不限于本申请实施例提供的执行顺序。所述的方法的在实际中的装置或终端产品执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境)。
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施方式和许多应用对本领域技术人员来说都将是显而易见的。因此,本申请的范围不应该参照上述描述来确定,而是应该参照前述权利要求以及这些权利要求所拥有的等价物的全部范围来确定。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请实施例可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (9)

  1. 一种电机转子平衡检测装置,其特征在于,包括:感应器、振动传感器、处理器、支撑架、机械手,其中:
    所述支撑架用于放置电机转子,其中,所述电机转子包括:电枢、设在电枢一端并与所述电枢同心设置的同心轴、设在同心轴端并与所述同心轴偏心设置的偏心轴;所述同心轴外壁设有缺口;
    所述感应器设在所述支撑架的外侧,当电机转子放置在所述支撑架上时,所述感应器对应所述缺口,用于测量所述缺口的位置和设有缺口的同心轴的偏心角度;
    所述振动传感器设在两侧竖直方向支撑架的外侧或内侧,当电机转子放置在所述支撑架上时,所述振动传感器对应于所述电枢的正下方,用于测量所述电机转子的不平衡参数;
    所述处理器与所述感应器和所述振动传感器相连,用于根据所述缺口的位置、所述设有缺口的同心轴的偏心角度和所述电机转子的不平衡参数,确定所述电机转子的不平衡量;
    所述机械手用于在确定所述电机转子的不平衡量大于预设阈值的情况下,将所述支撑架上放置的电机转子夹起放置到平衡校正设备中;
    所述平衡校正设备,用于根据所述电机转子的不平衡量对所述电机转子进行切削。
  2. 一种通过权利要求1所述的电机转子平衡检测装置进行电机转子平衡检测的方法,其特征在于,包括:
    随机抽取预设数量个样本电机转子,其中,所述样本电机转子的特征参数与所述目标电机转子的特征参数相同;
    利用所述电机转子平衡检测装置分别测量各个样本电机转子的不平衡参数、缺口的位置和设有缺口的同心轴的偏心角度;
    根据所述各个样本电机转子的不平衡参数、缺口的位置和设有缺口的同心轴的偏心角度,确定所述预设数量个样本电机转子的缺口的不平衡量的平均值、偏心轴的不平衡量的平均值和偏心角度的平均值;
    根据所述预设数量个样本电机转子的缺口的不平衡量的平均值、偏心轴的不平衡 量的平均值,确定所述预设数量个样本电机转子的缺口和偏心轴的综合不平衡量的平均值;
    根据所述综合不平衡量的平均值确定初始不平衡量;
    根据所述预设数量个样本电机转子的偏心角度的平均值确定初始偏心角度;
    获取目标电机转子的所述初始不平衡量、初始偏心角度,其中,所述初始不平衡量为缺口和偏心轴的综合不平衡量;
    将所述初始不平衡量和初始偏心角度作为所述目标电机转子的补偿值输入处理器中;
    测量所述目标电机转子中缺口的位置、设有缺口的同心轴的偏心角度和所述目标电机转子的不平衡参数;
    利用所述处理器根据所述缺口的位置、所述偏心角度、所述目标电机转子的不平衡参数和所述补偿值,确定所述目标电机转子的不平衡量。
  3. 根据权利要求2所述的方法,其特征在于,利用所述电机转子平衡检测装置分别测量所述各个样本电机转子的不平衡参数、缺口的位置和设有缺口的同心轴的偏心角度,包括:
    将所述预设数量个样本电机转子依次放置在电机转子平衡检测装置的支撑架上,利用感应器分别测量各个样本电机转子的缺口的位置和设有缺口的同心轴的偏心角度,利用振动传感器分别测量各个样本电机转子的不平衡参数。
  4. 根据权利要求2所述的方法,其特征在于,在获取所述目标电机转子的初始不平衡量、初始偏心角度之前,还包括:
    获取所述目标电机转子的特征参数,其中,所述特征参数包括以下至少之一:转轴的密度、带有缺口的同心轴的半径、所述目标电机转子的缺口的垂向深度、所述目标电机转子的缺口质心与带有缺口的同心轴轴心的距离、所述目标电机转子的偏心轴的半径、所述目标电机转子的偏心轴的长度、所述目标电机转子的偏心轴的偏心距、所述目标电机转子的缺口的凹陷宽度;
    根据所述目标电机转子的特征参数计算所述目标电机转子的缺口的不平衡量的理论值、偏心轴的不平衡量的理论值和偏心角度的理论值;
    根据所述目标电机转子的缺口的不平衡量的理论值和偏心轴的不平衡量的理论值,确定所述目标电机转子的缺口和偏心轴的综合不平衡量的理论值。
  5. 根据权利要求4所述的方法,其特征在于,按照以下公式,计算所述目标电机转子的缺口的不平衡量、偏心轴的不平衡量和偏心角度的理论值:
    Figure PCTCN2020127057-appb-100001
    Figure PCTCN2020127057-appb-100002
    Figure PCTCN2020127057-appb-100003
    其中,U 1为所述目标电机转子的缺口的不平衡量;R 2为带有缺口的同心轴的半径;D 2为所述目标电机转子的缺口的垂向深度;ρ为转轴的密度;X C为所述目标电机转子的缺口质心与带有缺口的同心轴轴心的距离;U 2为所述目标电机转子的偏心轴的不平衡量;R 1为所述目标电机转子的偏心轴的半径;H 1为所述目标电机转子的偏心轴的长度;E为所述目标电机转子的偏心轴的偏心距;H 2为所述目标电机转子的缺口的凹陷宽度,α为所述偏心轴旋转时的偏心角度。
  6. 根据权利要求5所述的方法,其特征在于,在确定了所述预设数量个样本电机转子的缺口和偏心轴的综合不平衡量的平均值之后,还包括:
    确定所述综合不平衡量的平均值与所述综合不平衡量的理论值之间的差值是否在第一预设范围内;
    在确定在所述第一预设范围内的情况下,确定所述偏心角度的平均值与所述偏心角度的理论值之间的差值是否在第二预设范围内;
    在确定在所述第二预设范围内的情况下,将所述综合不平衡量的平均值作为所述目标电机转子的缺口和偏心轴的初始不平衡量,并将所述偏心角度的平均值作为所述目标电机转子的初始偏心角度。
  7. 根据权利要求2所述的方法,其特征在于,电机转子平衡检测装置中包括有平衡校正设备时,在确定所述目标电机转子的不平衡量之后,还包括:
    确定所述目标电机转子的不平衡量是否大于预设阈值;
    在确定所述目标电机转子的不平衡量大于所述预设阈值的情况下,利用所述平衡校正设备对所述目标电机转子进行切削,直至所述目标电机转子的不平衡量小于等于所述预设阈值。
  8. 一种电机转子平衡检测设备,其特征在于,包括处理器以及用于存储处理器可执行指令的存储器,所述处理器执行所述指令时实现权利要求3至9中任一项所述 方法的步骤。
  9. 一种计算机可读存储介质,其特征在于,其上存储有计算机指令,所述指令被执行时实现权利要求2至7中任一项所述方法的步骤。
PCT/CN2020/127057 2019-12-24 2020-11-06 电机转子平衡检测装置和电机转子平衡检测的方法、设备 WO2021129189A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911347118.0A CN113029439B (zh) 2019-12-24 2019-12-24 电机转子平衡检测装置和电机转子平衡检测的方法、设备
CN201911347118.0 2019-12-24

Publications (1)

Publication Number Publication Date
WO2021129189A1 true WO2021129189A1 (zh) 2021-07-01

Family

ID=76451622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127057 WO2021129189A1 (zh) 2019-12-24 2020-11-06 电机转子平衡检测装置和电机转子平衡检测的方法、设备

Country Status (2)

Country Link
CN (1) CN113029439B (zh)
WO (1) WO2021129189A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676013A (zh) * 2021-07-23 2021-11-19 苏州朗高电机有限公司 一种永磁变桨电机带制动器的电机转子动平衡校准方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB732438A (en) * 1950-11-16 1955-06-22 Hjalmar Emanuel Sjoestrand Apparatus for balancing a rotatable body
CN101630884A (zh) * 2009-08-06 2010-01-20 杭州集智机电设备制造有限公司 全自动电机转子平衡机密度和角度的自动补偿方法
CN102095555A (zh) * 2010-12-07 2011-06-15 西安交通大学 高速电主轴在线自动平衡实验系统
CN102628725A (zh) * 2011-12-07 2012-08-08 兰州理工大学 涡旋压缩机动平衡专机
CN104931198A (zh) * 2015-05-04 2015-09-23 天津戴卡轮毂制造有限公司 车轮平衡修正系统及修正方法
CN105978266A (zh) * 2016-04-08 2016-09-28 武义益圣设备有限公司 电机转子平衡系统和方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2945631C2 (de) * 1979-11-12 1985-09-12 Vil'njusskij filial eksperimental'nogo Naučno-issledovatel'skogo instituta metallorežuščich stankov, Vil'njus Vorrichtung zum Auswuchten von drehantreibbaren Körpern
DE10100627B4 (de) * 2001-01-09 2010-09-30 Kaltenbach & Voigt Gmbh & Co. Kg Medizinisches oder dentalmedizinisches Handinstrument mit einer Unwuchtausgleichsvorrichtung und Verfahren zum Auswuchten des Handinstruments
CN101949752B (zh) * 2010-08-02 2012-01-25 浙江大学 用于离心机的三轴向自适应式动平衡执行装置
CN101915639B (zh) * 2010-08-02 2012-07-04 浙江大学 用于离心机的三轴向自适应式动平衡执行方法
CN202350984U (zh) * 2011-11-04 2012-07-25 营口黎明科技有限公司 轮胎平衡机平衡轮支架
CN202329940U (zh) * 2011-11-16 2012-07-11 贵州航天计量测试技术研究所 一种用于动平衡机校准的测量装置
CN105021352B (zh) * 2015-07-08 2017-10-20 沈阳建筑大学 一种主轴内置机械式在线动平衡系统
CN105910759B (zh) * 2016-05-19 2018-04-13 北京航空航天大学 双轴柔性静平衡仪
EP3388797B1 (en) * 2017-04-10 2022-11-16 ITT Manufacturing Enterprises LLC Exact constraint three-point vibration sensing module
CA2998258A1 (en) * 2017-05-04 2018-11-04 Rolls-Royce Corporation Turbine assembly with auxiliary wheel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB732438A (en) * 1950-11-16 1955-06-22 Hjalmar Emanuel Sjoestrand Apparatus for balancing a rotatable body
CN101630884A (zh) * 2009-08-06 2010-01-20 杭州集智机电设备制造有限公司 全自动电机转子平衡机密度和角度的自动补偿方法
CN102095555A (zh) * 2010-12-07 2011-06-15 西安交通大学 高速电主轴在线自动平衡实验系统
CN102628725A (zh) * 2011-12-07 2012-08-08 兰州理工大学 涡旋压缩机动平衡专机
CN104931198A (zh) * 2015-05-04 2015-09-23 天津戴卡轮毂制造有限公司 车轮平衡修正系统及修正方法
CN105978266A (zh) * 2016-04-08 2016-09-28 武义益圣设备有限公司 电机转子平衡系统和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676013A (zh) * 2021-07-23 2021-11-19 苏州朗高电机有限公司 一种永磁变桨电机带制动器的电机转子动平衡校准方法
CN113676013B (zh) * 2021-07-23 2024-06-07 苏州朗高电机有限公司 一种永磁变桨电机带制动器的电机转子动平衡校准方法

Also Published As

Publication number Publication date
CN113029439A (zh) 2021-06-25
CN113029439B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
CN104568313B (zh) 一种旋转机械多平面多测点多转速轴系影响系数动平衡法
WO2021129189A1 (zh) 电机转子平衡检测装置和电机转子平衡检测的方法、设备
JP5449889B2 (ja) アンバランス状態を定量的に検出する方法および装置と工作物のクランプ状態を検出する方法
CN105319968B (zh) 确定用于井的泵送单元的参数的方法和装置
JP2010017842A5 (zh)
RU2694142C1 (ru) Способ балансировки ротора в одной плоскости коррекции
US20150288246A1 (en) Motor Rotor Dynamic Balance Compensation Set
CN108348930A (zh) 离心分离机
CN111323190A (zh) 一种旋转叶片五维度振动的测量方法和测量装置
EP2857847B1 (en) Identification of mounting position of speed sensor
CN112577724B (zh) 动设备启停机阈值的确定方法、启停机监测方法及装置
CN113676013B (zh) 一种永磁变桨电机带制动器的电机转子动平衡校准方法
WO2017084604A1 (zh) 轴向位移的检测方法、装置及系统
CN110243541A (zh) 风机在线动平衡计算方法
CN110646139A (zh) 根据弯曲度确定轴弹性的转子的不平衡度的方法
US11958063B2 (en) Centrifuge having control unit that stops rotation of a rotor when a displacement-conversion value satisifies a displacement determination criterion
CN107896019A (zh) 一种斜槽式平衡环转子结构及其平衡制造方法
JP2016031352A5 (zh)
RU2372595C1 (ru) Способ балансировки сборного ротора
JP2015094686A (ja) 回転軸のたわみ量測定方法および測定装置
JP2017156265A (ja) 零点設定方法、評価装置およびプログラム
CN110926699A (zh) 转子动平衡校正方法及使用该方法的自动化设备
CN111043960B (zh) 一种基于激光传感的大型高速回转装备误差测量及分离方法
CN111630772A (zh) 伺服系统机械参数辨识方法、伺服控制系统和存储装置
KR101654740B1 (ko) 편심 보정이 가능한 공작 기계 회전 테이블 및 그 편심 보정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908361

Country of ref document: EP

Kind code of ref document: A1