WO2021128959A1 - 一种输电断面热稳定功率极限区间识别方法及系统 - Google Patents

一种输电断面热稳定功率极限区间识别方法及系统 Download PDF

Info

Publication number
WO2021128959A1
WO2021128959A1 PCT/CN2020/114927 CN2020114927W WO2021128959A1 WO 2021128959 A1 WO2021128959 A1 WO 2021128959A1 CN 2020114927 W CN2020114927 W CN 2020114927W WO 2021128959 A1 WO2021128959 A1 WO 2021128959A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
node
thermal stability
fault
upper limit
Prior art date
Application number
PCT/CN2020/114927
Other languages
English (en)
French (fr)
Inventor
鲍颜红
张金龙
徐泰山
薛峰
徐伟
任先成
周海锋
宋东阔
洪姗姗
戴玉臣
袁震
Original Assignee
国电南瑞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国电南瑞科技股份有限公司 filed Critical 国电南瑞科技股份有限公司
Publication of WO2021128959A1 publication Critical patent/WO2021128959A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the invention relates to a method and a system for identifying the thermally stable power limit interval of a power transmission section, and belongs to the technical field of power system automation.
  • the power transmission section is used as the power transmission channel and the electrical connection corridor.
  • Transmission section power is a key indicator for dispatching operators to monitor the safe operation of the power grid, and thermal stability constraints are the main factor limiting the transmission power of transmission sections.
  • the corresponding power flow adjustment methods are different when the section reaches the thermal stability power limit, and the corresponding maximum transmission capacity is inconsistent.
  • the thermal stability power limit of the section is the interval formed by the maximum and minimum values.
  • the existing recognition method for section thermal stability power limit interval (such as patent 201910264792.6) has poor recognition accuracy.
  • the invention provides a method and system for identifying the thermally stable power limit interval of a power transmission section, which solves the problem of poor identification accuracy of the existing method.
  • a method for identifying thermally stable power limit intervals of transmission sections including:
  • the lower limit of the thermal stability power limit interval is obtained; wherein the first optimization model aims at the minimum power of the transmission section under the fault;
  • the total number of faults in response to all key thermal stability modes is 1, and the upper limit of the thermal stability power limit interval is obtained according to the pre-built second optimization model; the second optimization model takes the maximum power of the transmission section under the fault as the goal;
  • the upper limit of the thermal stability power limit interval is obtained according to the pre-built main optimization model and sub-optimization model; the main optimization model takes the maximum ground state transmission section power as the goal and includes the Benders cut constraint , the sub-optimization model takes the minimum difference of active power injected by the node before/after the failure as the goal.
  • the section-related thermal stability mode includes: a thermal stability mode in which the main power flow transfer element is a cross-section component, the thermal stability mode includes a grid failure and a corresponding main power flow transfer element, and the failed main power flow transfer element is a power flow transfer under failure.
  • the thermal stability inspection element whose ratio or load rate change is greater than the threshold value.
  • the section-related thermal stability mode For each section-related thermal stability mode, solve the pre-built third optimization model.
  • the section-related thermal stability mode is the key thermal stability mode; the third optimization model The goal is to maximize the current of the components of the cross-section under the fault.
  • the third optimization model is,
  • I max.ij is the upper limit of the current amplitude of the branch between node i and j
  • N is the number of nodes excluding node i
  • the obtaining the lower limit of the thermal stability power limit interval according to the key thermal stability mode and the pre-built first optimization model includes:
  • the first optimization model is,
  • S L is the set of branches composed of sections
  • I max.ij is the upper limit of the current amplitude of the branch between node i and j
  • N is the number of nodes
  • the total number of faults in response to all key thermal stability modes is 1, and the upper limit of the thermal stability power limit interval is obtained according to the second optimization model constructed in advance, including:
  • the pre-built second optimization model is solved, the power of the transmission section before the fault is calculated based on the optimization results, and the power of the transmission section before the fault is taken as the upper limit of the thermal stability power limit interval.
  • the second optimization model is,
  • S L is the set of branches composed of sections
  • I max.ij is the upper limit of the current amplitude of the branch between node i and j
  • N is the number of nodes
  • the sub-optimization model is,
  • N g is the number of adjustable generators and load nodes
  • I max.ij is the upper limit of the current amplitude of the branch between node i and j
  • N is the number of nodes excluding node
  • the main optimization model is,
  • S L is the branch set of sections
  • I max.ij is the upper limit of the branch current amplitude between node i and j
  • N is the number of nodes except node i
  • key components under fault x which is the main power flow transfer component corresponding to the fault in the key thermal stability mode
  • Estimate power for critical component y under fault x They are the active power of the key component y in the ground state and the sum of the active power of the faulty component corresponding to the fault x
  • N g is the number of adjustable generators and load nodes
  • is the acceleration factor
  • f x.sub is the objective function of the sub-optimization model
  • a system for identifying the thermally stable power limit interval of a transmission section including:
  • Acquisition module used to acquire the thermal stability mode related to the section
  • Screening module used to screen out key thermal stability modes from section-related thermal stability modes
  • Lower limit obtaining module used to obtain the lower limit of the thermal stability power limit interval according to the key thermal stability mode and the pre-built first optimization model; wherein the first optimization model takes the minimum power of the transmission section under fault as the target;
  • Single fault upper limit determination module The total number of faults used to respond to all key thermal stability modes is 1, and the upper limit of the thermal stability power limit interval is obtained according to the second optimization model constructed in advance; the second optimization model takes the maximum power of the transmission section under the fault For the goal
  • Multi-fault upper limit calculation module the total number of faults in response to all key thermal stability modes is greater than 1, and the upper limit of the thermal stability power limit interval is obtained according to the pre-built main optimization model and sub-optimization model; the main optimization model uses the ground state transmission section with the largest power As the goal and including the Benders cut constraint, the sub-optimization model takes the minimum difference of active power injected by the node before/after the failure as the goal.
  • a computer-readable storage medium storing one or more programs, the one or more programs including instructions that, when executed by a computing device, cause the computing device to execute a method for identifying a thermally stable power limit interval of a power transmission section .
  • a computing device includes one or more processors, a memory, and one or more programs, where one or more programs are stored in the memory and configured to be executed by the one or more processors, the One or more programs include instructions for executing a method for identifying a thermally stable power limit interval of a transmission section.
  • the present invention solves the optimization model with the minimum transmission section power under the fault as the objective, and solves the lower limit of the thermal stability power limit interval based on all the optimization results; the construction aims at the minimum difference of active power injected by the node before/after the fault as the objective Build the main optimization model with the maximum ground-state transmission section power as the goal and consider the Benders cut constraints, and iteratively solve the main and sub-optimization models to determine the upper limit of the thermal stability power limit interval; use the traditional thermal stability power limit calculation problem , Transformed into a nonlinear optimization problem based on Benders decomposition, and the identified limit interval is more accurate, which has guiding significance for dispatchers to fully grasp the safety and stability boundary of the power grid, ensure the safe and stable operation of the power grid, and make full use of the power transmission capacity of the transmission section.
  • Figure 1 is a flow chart of the method of the present invention.
  • a method for identifying the thermally stable power limit interval of a transmission section includes the following steps:
  • Step 1 Obtain the section-related thermal stability mode, where the section-related thermal stability mode includes the fault of the power grid and the corresponding main power flow transfer components.
  • the main power flow transfer components are identified based on the base state and the power flow after the failure, specifically, the thermal stability inspection components whose power flow transfer ratio or load rate change is greater than the threshold value under the failure are regarded as the main power flow transfer components of the failure; among them, the thermal stability inspection components under the failure
  • the formula for the power flow transfer ratio is,
  • the thermal stability of the active power of the component y′ and the active power of the faulty component corresponding to the fault x are summed.
  • the active power of component y′ is investigated for thermal stability after failure x occurs in the initial mode.
  • Each thermal stability mode contains only one main power flow transfer element. If the same fault corresponds to multiple main power flow transfer elements, multiple thermal stability modes are formed.
  • Step 2 Screen the key thermal stability modes from the cross-section related thermal stability modes.
  • the pre-built third optimization model is solved based on the interior point method.
  • the section-related thermal stability mode is the key thermal stability mode; If the optimization result is less than the current limit of the cross-section component, the cross-section related thermal stability mode is invalid; the third optimization model takes the maximum current of the cross-section component under the fault as the goal; the number of critical thermal stability modes after screening is 0, then
  • the transmission section itself is not limited.
  • the third optimization model is:
  • I max.ij is the upper limit of the current amplitude of the branch between node i and j
  • N is the number of nodes excluding node i
  • Step 3 Take the union of the faults of each key thermal stability mode to construct the critical failure set, and take the union of the main power flow transfer components corresponding to each critical failure to construct the critical component set of each failure.
  • Step 4 Obtain the lower limit of the thermal stability power limit interval according to the key thermal stability mode and the pre-built first optimization model; wherein the first optimization model targets the minimum power of the transmission section under the fault.
  • the first optimization model is:
  • S L is the set of branches composed of sections
  • is the threshold value
  • Step 5 Responding to the total number of faults in all key thermal stability modes being 1, obtain the upper limit of the thermal stability power limit interval according to the pre-built second optimization model; wherein the second optimization model targets the maximum power of the transmission section under the fault.
  • the second optimization model is:
  • Step 6 In response to the total number of failures of all key thermal stability modes being greater than 1, based on the interior point method to solve. According to the pre-built main optimization model and sub-optimization model, the implicated variables of the main and sub-problems (Bundes cut constraints, before/after failures) are constantly updated.
  • Node injects active power) until the objective function value of the sub-optimization model is less than the threshold value and the main optimization model satisfies the convergence conditions, and the objective function value of the main optimization model is taken as the upper limit of the thermal stability power limit interval; the main optimization model uses the ground state transmission section power
  • the maximum is the goal and includes the Benders cut constraint, and the sub-optimization model takes the minimum difference of active power injected by the node before/after the failure as the goal.
  • the sub-optimization model is:
  • N g is the number of adjustable generators and load nodes
  • the main optimization model is:
  • the Benders cut constraint for the conversion of the sub-problem whose solution result is greater than the specified threshold value:
  • Is the active power of the branch between node i and j in the ground state Is the branch current amplitude between node i and j in the ground state, They are generator active power, load active power, generator reactive power and load reactive power at node i in the ground state, Are the voltage of node i and the voltage of node j in the ground state, Are the lower limit and upper limit of the voltage of node i in the ground state, Is the power factor angle of node i in the ground state, N is the number of nodes except node i, Is the amplitude of admittance between node i and j in the ground state, the parameter Are the phase angles of nodes i and j in the ground state, S X is the set of critical faults, and the critical faults are the faults in the critical thermal stability mode.
  • the above method solves the optimization model with the minimum transmission section power as the goal under the fault, and solves the lower limit of the thermal stability power limit interval based on all the optimization results; constructs the sub-optimization model with the minimum injection active power difference between the nodes before and after the failure as the goal, and builds the ground state
  • the maximum transmission section power is the target, the main optimization model considering the Benders cut constraint, the main and sub-optimization models are iteratively solved to determine the upper limit of the thermal stability power limit interval; the traditional thermal stability power limit calculation problem is transformed into a Benders decomposition
  • the non-linear optimization problem, the more accurate limit interval is identified, which is of guiding significance for dispatchers to fully grasp the safe and stable boundary of the power grid, ensure the safe and stable operation of the power grid, and make full use of the power transmission capacity of the transmission section.
  • a system for identifying the thermally stable power limit interval of a transmission section including:
  • Acquisition module used to acquire the thermal stability mode related to the section
  • Screening module used to screen out key thermal stability modes from section-related thermal stability modes
  • Lower limit obtaining module used to obtain the lower limit of the thermal stability power limit interval according to the key thermal stability mode and the pre-built first optimization model; wherein the first optimization model takes the minimum power of the transmission section under fault as the target;
  • Single fault upper limit determination module The total number of faults used to respond to all key thermal stability modes is 1, and the upper limit of the thermal stability power limit interval is obtained according to the second optimization model constructed in advance; the second optimization model takes the maximum power of the transmission section under the fault For the goal
  • Multi-fault upper limit calculation module the total number of faults in response to all key thermal stability modes is greater than 1, and the upper limit of the thermal stability power limit interval is obtained according to the pre-built main optimization model and sub-optimization model; the main optimization model uses the ground state transmission section with the largest power As the goal and including the Benders cut constraint, the sub-optimization model takes the minimum difference of active power injected by the node before/after the failure as the goal.
  • a computer-readable storage medium storing one or more programs, the one or more programs including instructions that, when executed by a computing device, cause the computing device to execute a method for identifying a thermally stable power limit interval of a power transmission section .
  • a computing device includes one or more processors, a memory, and one or more programs, where one or more programs are stored in the memory and configured to be executed by the one or more processors, the One or more programs include instructions for executing a method for identifying a thermally stable power limit interval of a transmission section.
  • this application can be provided as a method, a system, or a computer program product. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Abstract

一种输电断面热稳定功率极限区间识别方法及系统,求解故障下输电断面功率最小为目标的优化模型,基于所有优化结果求解热稳定功率极限区间下限;构建以故障前/后节点注入有功功率差值最小为目标的子优化模型,构建以基态输电断面功率最大为目标、考虑奔德斯割约束的主优化模型,迭代求解主、子优化模型确定热稳定功率极限区间上限;将传统的热稳定功率极限计算问题,转变为基于奔德斯分解的非线性优化问题,识别出的极限区间更准确,对调度人员充分掌握电网安全稳定边界、保障电网安全稳定运行、充分利用输电断面功率传输能力具有指导意义。

Description

一种输电断面热稳定功率极限区间识别方法及系统 技术领域
本发明涉及一种输电断面热稳定功率极限区间识别方法及系统,属于电力系统自动化技术领域。
背景技术
输电断面作为功率输送的通道和电气联系的走廊,当传送功率过大时,可能存在安全稳定隐患。输电断面功率是调度运行人员监视电网安全运行水平的关键指标,而热稳定约束是限制输电断面传输功率的主要因素。对于输电断面传输能力而言,其断面达到热稳定功率极限时对应的潮流调整方式不同,对应的最大输电能力不一致,断面热稳定功率极限为最大值和最小值构成的区间。现有的断面热稳定功率极限区间识别方法(如专利201910264792.6)识别准确性较差。
发明内容
本发明提供了一种输电断面热稳定功率极限区间识别方法及系统,解决了现有方法识别准确性较差的问题。
为了解决上述技术问题,本发明所采用的技术方案是:
一种输电断面热稳定功率极限区间识别方法,包括,
获取断面相关热稳模式;
从所述断面相关热稳模式中筛选出关键热稳模式;
根据所述关键热稳模式以及预先构建的第一优化模型,得到热稳定功率极限区间下限;其中第一优化模型以故障下输电断面功率最小为目标;
响应于所有关键热稳模式的故障总数为1,根据预先构建的第二优化模型得 到热稳定功率极限区间上限;其中第二优化模型以故障下输电断面功率最大为目标;
响应于所有关键热稳模式的故障总数大于1,根据预先构建的主优化模型和子优化模型得到热稳定功率极限区间上限;其中主优化模型以基态输电断面功率最大为目标并包括奔德斯割约束,子优化模型以故障前/后节点注入有功功率差值最小为目标。
所述断面相关热稳模式包括:主要潮流转移元件为断面组成元件的热稳模式,所述热稳模式包括电网的故障和对应的主要潮流转移元件,故障的主潮流转移元件为故障下潮流转移比或负载率变化量大于门槛值的热稳定考察元件。
从断面相关热稳模式中筛选出关键热稳模式的过程为,
针对每个断面相关热稳模式,求解预先构建的第三优化模型,响应于优化结果不小于断面组成元件的电流限值,则该断面相关热稳模式为关键热稳模式;其中第三优化模型以故障下断面组成元件电流最大为目标。
第三优化模型为,
目标函数f1:
Figure PCTCN2020114927-appb-000001
Figure PCTCN2020114927-appb-000002
约束条件:
Figure PCTCN2020114927-appb-000003
Figure PCTCN2020114927-appb-000004
Figure PCTCN2020114927-appb-000005
Figure PCTCN2020114927-appb-000006
Figure PCTCN2020114927-appb-000007
Figure PCTCN2020114927-appb-000008
Figure PCTCN2020114927-appb-000009
and
Figure PCTCN2020114927-appb-000010
其中,
Figure PCTCN2020114927-appb-000011
为故障x下节点i、j间支路电流幅值,I max.ij为节点i、j间支路电流幅值上限,
Figure PCTCN2020114927-appb-000012
分别为故障x下节点i的发电机有功、负荷有功、发电机无功和负荷无功,
Figure PCTCN2020114927-appb-000013
分别为节点i的发电机有功下限、有功上限、无功下限和无功上限,
Figure PCTCN2020114927-appb-000014
分别为故障x下节点i的电压和节点j的电压,
Figure PCTCN2020114927-appb-000015
分别为故障x下节点i的电压下限和上限,
Figure PCTCN2020114927-appb-000016
分别为节点i的负荷有功下限、负荷有功上限、功率因数角下限和功率因数角上限,
Figure PCTCN2020114927-appb-000017
为故障x下节点i的功率因数角,N为除去节点i外的节点数量,
Figure PCTCN2020114927-appb-000018
分别为故障x下节点i、j间导纳的幅值和相角,参数
Figure PCTCN2020114927-appb-000019
分别为故障x下节点i、j的相角;Z为故障x对应的所有主要潮流转移元件,y为故障下断面组成元件。
所述根据所述关键热稳模式以及预先构建的第一优化模型,得到热稳定功 率极限区间下限,包括:
遍历所有关键热稳模式,求解预先构建的第一优化模型,基于优化结果求解故障前输电断面功率,取故障前输电断面功率最小值作为热稳定功率极限区间下限。
第一优化模型为,
目标函数f2:
Figure PCTCN2020114927-appb-000020
Figure PCTCN2020114927-appb-000021
约束条件:
Figure PCTCN2020114927-appb-000022
Figure PCTCN2020114927-appb-000023
Figure PCTCN2020114927-appb-000024
Figure PCTCN2020114927-appb-000025
Figure PCTCN2020114927-appb-000026
Figure PCTCN2020114927-appb-000027
Figure PCTCN2020114927-appb-000028
and
Figure PCTCN2020114927-appb-000029
Figure PCTCN2020114927-appb-000030
其中,
Figure PCTCN2020114927-appb-000031
为故障x下节点i、j间支路有功功率,S L为断面组成支路集合,
Figure PCTCN2020114927-appb-000032
为故障x下节点i、j间支路电流幅值,I max.ij为节点i、j间支路电流幅值上限,
Figure PCTCN2020114927-appb-000033
分别为故障x下节点i的发电机有功、负荷有功、发电机无功和负荷无功,
Figure PCTCN2020114927-appb-000034
分别为节点i的发电机有功下限、有功上限、无功下限和无功上限,
Figure PCTCN2020114927-appb-000035
分别为故障x下节点i的电压和节点j的电压,
Figure PCTCN2020114927-appb-000036
分别为故障x下节点i的电压下限和上限,
Figure PCTCN2020114927-appb-000037
分别为节点i的负荷有功下限、负荷有功上限、功率因数角下限和功率因数角上限,
Figure PCTCN2020114927-appb-000038
为故障x下节点i的功率因数角,N为除去节点i外的节点数量,
Figure PCTCN2020114927-appb-000039
为故障x下节点i、j间导纳的幅值,参数
Figure PCTCN2020114927-appb-000040
分别为故障x下节点i、j的相角,ε为门槛值;Z为故障x对应的所有主要潮流转移元件。
所述响应于所有关键热稳模式的故障总数为1,根据预先构建的第二优化模型得到热稳定功率极限区间上限,包括:
响应于所有关键热稳模式的故障总数为1,求解预先构建的第二优化模型,基于优化结果求解故障前输电断面功率,取故障前输电断面功率作为热稳定功率极限区间上限。
第二优化模型为,
目标函数f3:
Figure PCTCN2020114927-appb-000041
Figure PCTCN2020114927-appb-000042
约束条件:
Figure PCTCN2020114927-appb-000043
Figure PCTCN2020114927-appb-000044
Figure PCTCN2020114927-appb-000045
Figure PCTCN2020114927-appb-000046
Figure PCTCN2020114927-appb-000047
Figure PCTCN2020114927-appb-000048
Figure PCTCN2020114927-appb-000049
其中,
Figure PCTCN2020114927-appb-000050
为故障x下节点i、j间支路有功功率,S L为断面组成支路集合,
Figure PCTCN2020114927-appb-000051
为故障x下节点i、j间支路电流幅值,I max.ij为节点i、j间支路电流幅值上限,
Figure PCTCN2020114927-appb-000052
分别为故障x下节点i的发电机有功、负荷有功、发电机无功和负荷无功,
Figure PCTCN2020114927-appb-000053
分别为节点i的发电机有功下限、有功上限、无功下限和无功上限,
Figure PCTCN2020114927-appb-000054
分别为故障x下节点i的电压和节点j的电压,
Figure PCTCN2020114927-appb-000055
分别为故障x下节点i的电压下限和上限,
Figure PCTCN2020114927-appb-000056
分别为节点i的负荷有功下限、负荷有功上限、功率因数角下限和功率因数角上限,
Figure PCTCN2020114927-appb-000057
为故障x下节点i的功率因数角,N为除去节点i外的节点数量,
Figure PCTCN2020114927-appb-000058
为故障x下节点i、j间导纳的幅值,参数
Figure PCTCN2020114927-appb-000059
分别为故障x下节点i、j的相角;Z为故障x对应的所有主要潮流转移元件。
子优化模型为,
目标函数f x.sub
Figure PCTCN2020114927-appb-000060
约束条件:
Figure PCTCN2020114927-appb-000061
Figure PCTCN2020114927-appb-000062
Figure PCTCN2020114927-appb-000063
Figure PCTCN2020114927-appb-000064
Figure PCTCN2020114927-appb-000065
Figure PCTCN2020114927-appb-000066
Figure PCTCN2020114927-appb-000067
Figure PCTCN2020114927-appb-000068
其中,N g为可调发电机和负荷节点数目,
Figure PCTCN2020114927-appb-000069
为引入的虚拟变量,
Figure PCTCN2020114927-appb-000070
为牵连变量,
Figure PCTCN2020114927-appb-000071
为故障x下节点i、j间支路电流幅值,I max.ij为节点i、j间支路电流幅值上限,
Figure PCTCN2020114927-appb-000072
分别为故障x下节点i的发电机有功、负荷有功、发电机无功和负荷无功,
Figure PCTCN2020114927-appb-000073
分别为节点i的发电机有功下限、有功上限、无功下限和无功上限,
Figure PCTCN2020114927-appb-000074
分别为故障x下节点i的电压和节点j的电压,
Figure PCTCN2020114927-appb-000075
分别为故障x下节点i的电压下限和上限,
Figure PCTCN2020114927-appb-000076
分别为节点i的负荷有功下限、负荷有功上限、功率因数角下限和功率因数角上限,
Figure PCTCN2020114927-appb-000077
为故障x下节点i的功率因数角,N为除去节点i外的节点数量,
Figure PCTCN2020114927-appb-000078
为故障x下节点i、j间导纳的幅值,参数
Figure PCTCN2020114927-appb-000079
分别为故障x下节点i、j的相角,Z为故障x对应的所有主要潮流转移元件。
主优化模型为,
目标函数f4:
Figure PCTCN2020114927-appb-000080
Figure PCTCN2020114927-appb-000081
约束条件:
Figure PCTCN2020114927-appb-000082
Figure PCTCN2020114927-appb-000083
Figure PCTCN2020114927-appb-000084
Figure PCTCN2020114927-appb-000085
Figure PCTCN2020114927-appb-000086
Figure PCTCN2020114927-appb-000087
Figure PCTCN2020114927-appb-000088
响应于主优化模型为首次计算,
Figure PCTCN2020114927-appb-000089
响应于主优化模型为非首次计算,
Figure PCTCN2020114927-appb-000090
其中,
Figure PCTCN2020114927-appb-000091
为基态下节点i、j间支路有功功率,S L为断面组成支路集合,
Figure PCTCN2020114927-appb-000092
为基态下节点i、j间支路电流幅值,I max.ij为节点i、j间支路电流幅值上限,
Figure PCTCN2020114927-appb-000093
分别为基态下节点i的发电机有功、负荷有功、发电机无功和负荷无功,
Figure PCTCN2020114927-appb-000094
分别为节点i的发电机有功下限、有功上限、无功下限和无功上限,
Figure PCTCN2020114927-appb-000095
分别为基态下节点i的电压和节点j的电压,
Figure PCTCN2020114927-appb-000096
分别为基态下节点i的电压下限和上限,
Figure PCTCN2020114927-appb-000097
分别为节点i的负荷有功下限、负荷有功上限、功率因数角下限和功率因数角上限,
Figure PCTCN2020114927-appb-000098
为基态下节点i的功率因数角,N为除去节点i外的节点数量,
Figure PCTCN2020114927-appb-000099
为基态下节点i、j间导纳的幅值,参数
Figure PCTCN2020114927-appb-000100
分别为基态下节点i、j的相角,S X为关键故障集合,关键故障为关键热稳模式中的故障,
Figure PCTCN2020114927-appb-000101
为故障x下的关键元件集合,关键元件为关键热稳模式中的故障对应的主要潮流转移元件,
Figure PCTCN2020114927-appb-000102
为故障x下关键元件y的潮流转移比,
Figure PCTCN2020114927-appb-000103
为故障x下关键元件y的临界安全估算功率,
Figure PCTCN2020114927-appb-000104
分别为基态下关键元件y的有功功率、故障x对应故障元件的有功功率和,N g为可调发电机和负荷节点数目,μ为加速因子,
Figure PCTCN2020114927-appb-000105
为故障x下子问题的牵连约束所对应的乘子,f x.sub为子优化模型目标函数,
Figure PCTCN2020114927-appb-000106
为上一轮主问题的解。
一种输电断面热稳定功率极限区间识别系统,包括,
获取模块:用于获取断面相关热稳模式;
筛选模块:用于从断面相关热稳模式中筛选出关键热稳模式;
下限求取模块:用于根据所述关键热稳模式以及预先构建的第一优化模型,得到热稳定功率极限区间下限;其中第一优化模型以故障下输电断面功率最小为目标;
单故障上限求取模块:用于响应于所有关键热稳模式的故障总数为1,根据预先构建的第二优化模型得到热稳定功率极限区间上限;其中第二优化模型以故障下输电断面功率最大为目标;
多故障上限求取模块:用于响应于所有关键热稳模式的故障总数大于1,根据预先构建的主优化模型和子优化模型得到热稳定功率极限区间上限;其中主优化模型以基态输电断面功率最大为目标并包括奔德斯割约束,子优化模型以故障前/后节点注入有功功率差值最小为目标。
一种存储一个或多个程序的计算机可读存储介质,所述一个或多个程序包括指令,所述指令当由计算设备执行时,使得所述计算设备执行输电断面热稳定功率极限区间识别方法。
一种计算设备,包括一个或多个处理器、存储器以及一个或多个程序,其中一个或多个程序存储在所述存储器中并被配置为由所述一个或多个处理器执行,所述一个或多个程序包括用于执行一种输电断面热稳定功率极限区间识别方法的指令。
本发明所达到的有益效果:本发明求解故障下输电断面功率最小为目标的优化模型,基于所有优化结果求解热稳定功率极限区间下限;构建以故障前/后节点注入有功功率差值最小为目标的子优化模型,构建以基态输电断面功率最大为目标、考虑奔德斯割约束的主优化模型,迭代求解主、子优化模型确定热 稳定功率极限区间上限;将传统的热稳定功率极限计算问题,转变为基于奔德斯分解的非线性优化问题,识别出的极限区间更准确,对调度人员充分掌握电网安全稳定边界、保障电网安全稳定运行、充分利用输电断面功率传输能力具有指导意义。
附图说明
图1为本发明方法的流程图。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
如图1所示,一种输电断面热稳定功率极限区间识别方法,包括以下步骤:
步骤1,获取断面相关热稳模式,其中,断面相关热稳模式包括电网的故障和对应的主要潮流转移元件。
基于基态和故障后潮流识别主要潮流转移元件,具体为,将故障下潮流转移比或负载率变化量大于门槛值的热稳定考察元件作为故障的主要潮流转移元件;其中,故障下热稳定考察元件的潮流转移比公式为,
Figure PCTCN2020114927-appb-000107
其中,
Figure PCTCN2020114927-appb-000108
别是初始方式下热稳定考察元件y′的有功功率、故障x对应故障元件的有功功率和,
Figure PCTCN2020114927-appb-000109
为初始方式发生故障x后热稳定考察元件y′的有功功率。
每个热稳模式仅包含一个主要潮流转移元件,若同一故障对应多个主要潮流转移元件,则构成多个热稳模式。
步骤2,从断面相关热稳模式中筛选出关键热稳模式。
针对每个断面相关热稳模式,基于内点法求解预先构建的第三优化模型,响应于优化结果不小于断面组成元件的电流限值,则该断面相关热稳模式为关键热稳模式;响应于优化结果小于断面组成元件的电流限值,则该断面相关热稳模式置为无效;其中第三优化模型以故障下断面组成元件电流最大为目标;筛选后关键热稳模式数目为0,则输电断面本身不受限。
第三优化模型为:
目标函数f1:
Figure PCTCN2020114927-appb-000110
Figure PCTCN2020114927-appb-000111
约束条件:
Figure PCTCN2020114927-appb-000112
Figure PCTCN2020114927-appb-000113
Figure PCTCN2020114927-appb-000114
Figure PCTCN2020114927-appb-000115
Figure PCTCN2020114927-appb-000116
Figure PCTCN2020114927-appb-000117
Figure PCTCN2020114927-appb-000118
其中,
Figure PCTCN2020114927-appb-000119
为故障x下节点i、j间支路电流幅值,I max.ij为节点i、j间支路电流幅值上限,
Figure PCTCN2020114927-appb-000120
分别为故障x下节点i的发电机有功、负荷有功、发电机无功和负荷无功,
Figure PCTCN2020114927-appb-000121
分别为节点i的发电机有功下限、有功上限、无功下限和无功上限,
Figure PCTCN2020114927-appb-000122
分别为故障x下节点i的电压和节点j的电压,
Figure PCTCN2020114927-appb-000123
分别为故障x下节点i的电压下限和上限,
Figure PCTCN2020114927-appb-000124
分别为节点i的负荷有功下限、负荷有功上限、功率因数角下限和功率因数角上限,
Figure PCTCN2020114927-appb-000125
为故障x下节点i的功率因数角,N为除去节点i外的节点数量,
Figure PCTCN2020114927-appb-000126
分别为故障x下节点i、j间导纳的幅值和相角,参数
Figure PCTCN2020114927-appb-000127
分别为故障x下节点i、j的相角;Z为故障x对应的所有主要潮流转移元件,y为故障下断面组成元件。
步骤3,取各关键热稳模式的故障并集构建关键故障集合,取各关键故障对应的主要潮流转移元件并集构建各故障的关键元件集合。
步骤4,根据所述关键热稳模式以及预先构建的第一优化模型,得到热稳定功率极限区间下限;其中第一优化模型以故障下输电断面功率最小为目标。
具体为:遍历所有关键热稳模式,基于内点法求解预先构建的第一优化模型,基于优化结果求解故障前输电断面功率,取故障前输电断面功率最小值作为热稳定功率极限区间下限。
第一优化模型为:
目标函数f2:
Figure PCTCN2020114927-appb-000128
Figure PCTCN2020114927-appb-000129
约束条件:
式(a)~式(g);
Figure PCTCN2020114927-appb-000130
其中,
Figure PCTCN2020114927-appb-000131
为故障x下节点i、j间支路有功功率,S L为断面组成支路集合,ε为门槛值。
步骤5,响应于所有关键热稳模式的故障总数为1,根据预先构建的第二优化模型得到热稳定功率极限区间上限;其中第二优化模型以故障下输电断面功率最大为目标。
具体为:响应于所有关键热稳模式的故障总数为1,求解预先构建的第二优化模型,基于优化结果求解故障前输电断面功率,取故障前输电断面功率作为热稳定功率极限区间上限。
第二优化模型为:
目标函数f3:
Figure PCTCN2020114927-appb-000132
Figure PCTCN2020114927-appb-000133
约束条件:式(a)~式(f);
Figure PCTCN2020114927-appb-000134
步骤6,响应于所有关键热稳模式的故障总数大于1,基于内点法求解根据预先构建的主优化模型和子优化模型,不断更新主子问题的牵连变量(奔德斯割约束、故障前/后节点注入有功功率),直至子优化模型的目标函数值小于门槛值、主优化模型满足收敛条件,取主优化模型的目标函数值作为热稳定功率极限区间上限;其中主优化模型以基态输电断面功率最大为目标并包括奔德斯割约束,子优化模型以故障前/后节点注入有功功率差值最小为目标。
子优化模型为:
目标函数f x.sub
Figure PCTCN2020114927-appb-000135
约束条件:
式(a)~式(f);
Figure PCTCN2020114927-appb-000136
Figure PCTCN2020114927-appb-000137
其中,N g为可调发电机和负荷节点数目,
Figure PCTCN2020114927-appb-000138
为引入的虚拟变量,其作用在于当主子问题的牵连约束起作用时,以虚拟变量暂时缓解这一约束,保证子问题有解,同时有与主问题衔接与牵制的关联作用,
Figure PCTCN2020114927-appb-000139
为牵连变量,来自主问题,在子问题处理过程中保持不变。
主优化模型为:
目标函数f4:
Figure PCTCN2020114927-appb-000140
Figure PCTCN2020114927-appb-000141
约束条件:
Figure PCTCN2020114927-appb-000142
Figure PCTCN2020114927-appb-000143
Figure PCTCN2020114927-appb-000144
Figure PCTCN2020114927-appb-000145
Figure PCTCN2020114927-appb-000146
Figure PCTCN2020114927-appb-000147
Figure PCTCN2020114927-appb-000148
响应于主优化模型为首次计算,基于潮流灵敏度估算的静态过载约束:
Figure PCTCN2020114927-appb-000149
响应于主优化模型为非首次计算,求解结果大于指定门槛值的子问题转化的奔德斯割约束:
Figure PCTCN2020114927-appb-000150
其中,
Figure PCTCN2020114927-appb-000151
为基态下节点i、j间支路有功功率,
Figure PCTCN2020114927-appb-000152
为基态下节点i、j间支路电流幅值,
Figure PCTCN2020114927-appb-000153
分别为基态下节点i的发电机有功、负荷有功、发电机无功和负荷无功,
Figure PCTCN2020114927-appb-000154
分别为基态下节点i的电压和节点j的电压,
Figure PCTCN2020114927-appb-000155
分别为基态下节点i的电压下限和上限,
Figure PCTCN2020114927-appb-000156
为基态下 节点i的功率因数角,N为除去节点i外的节点数量,
Figure PCTCN2020114927-appb-000157
为基态下节点i、j间导纳的幅值,参数
Figure PCTCN2020114927-appb-000158
分别为基态下节点i、j的相角,S X为关键故障集合,关键故障为关键热稳模式中的故障,
Figure PCTCN2020114927-appb-000159
为故障x下的关键元件集合,关键元件为关键热稳模式中的故障对应的主要潮流转移元件,
Figure PCTCN2020114927-appb-000160
为故障x下关键元件y的潮流转移比,
Figure PCTCN2020114927-appb-000161
为故障x下关键元件y的临界安全估算功率,
Figure PCTCN2020114927-appb-000162
分别为基态下关键元件y的有功功率、故障x对应故障元件的有功功率和,
Figure PCTCN2020114927-appb-000163
为故障x下子问题的牵连约束所对应的乘子,μ为加速因子,N g为可调发电机和负荷节点数目,,
Figure PCTCN2020114927-appb-000164
为上一轮主问题的解,
Figure PCTCN2020114927-appb-000165
分别为初始方式发生故障x后关键元件y的有功功率和电流幅值,I max.y为关键元件y的电流幅值上限。
f x.sub
Figure PCTCN2020114927-appb-000166
来自故障x下子问题,
Figure PCTCN2020114927-appb-000167
来自上一轮主问题的解,在本轮主问题处理过程中保持不变;
Figure PCTCN2020114927-appb-000168
为故障x下子问题的牵连约束所对应的乘子,对应故障x下子问题中不等式约束条件
Figure PCTCN2020114927-appb-000169
的拉格朗日乘子,表示子问题取得最优解时,目标函数值对应
Figure PCTCN2020114927-appb-000170
变化的灵敏度;所谓奔德斯割约束,就是在
Figure PCTCN2020114927-appb-000171
基础上对电网运行方式进行微调,从而使子问题可行。
上述方法求解故障下输电断面功率最小为目标的优化模型,基于所有优化结果求解热稳定功率极限区间下限;构建以故障前/后节点注入有功功率差值最小为目标的子优化模型,构建以基态输电断面功率最大为目标、考虑奔德斯割约束的主优化模型,迭代求解主、子优化模型确定热稳定功率极限区间上限;将传统的热稳定功率极限计算问题,转变为基于奔德斯分解的非线性优化问题,识别出的极限区间更准确,对调度人员充分掌握电网安全稳定边界、保障电网 安全稳定运行、充分利用输电断面功率传输能力具有指导意义。
一种输电断面热稳定功率极限区间识别系统,包括,
获取模块:用于获取断面相关热稳模式;
筛选模块:用于从断面相关热稳模式中筛选出关键热稳模式;
下限求取模块:用于根据所述关键热稳模式以及预先构建的第一优化模型,得到热稳定功率极限区间下限;其中第一优化模型以故障下输电断面功率最小为目标;
单故障上限求取模块:用于响应于所有关键热稳模式的故障总数为1,根据预先构建的第二优化模型得到热稳定功率极限区间上限;其中第二优化模型以故障下输电断面功率最大为目标;
多故障上限求取模块:用于响应于所有关键热稳模式的故障总数大于1,根据预先构建的主优化模型和子优化模型得到热稳定功率极限区间上限;其中主优化模型以基态输电断面功率最大为目标并包括奔德斯割约束,子优化模型以故障前/后节点注入有功功率差值最小为目标。
一种存储一个或多个程序的计算机可读存储介质,所述一个或多个程序包括指令,所述指令当由计算设备执行时,使得所述计算设备执行输电断面热稳定功率极限区间识别方法。
一种计算设备,包括一个或多个处理器、存储器以及一个或多个程序,其中一个或多个程序存储在所述存储器中并被配置为由所述一个或多个处理器执行,所述一个或多个程序包括用于执行一种输电断面热稳定功率极限区间识别方法的指令。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计 算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上仅为本发明的实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均包含在申请待批的本发明的权利要求范围之内。

Claims (13)

  1. 一种输电断面热稳定功率极限区间识别方法,其特征在于:包括,
    获取断面相关热稳模式;
    从所述断面相关热稳模式中筛选出关键热稳模式;
    根据所述关键热稳模式以及预先构建的第一优化模型,得到热稳定功率极限区间下限;其中第一优化模型以故障下输电断面功率最小为目标;
    响应于所有关键热稳模式的故障总数为1,根据预先构建的第二优化模型得到热稳定功率极限区间上限;其中第二优化模型以故障下输电断面功率最大为目标;
    响应于所有关键热稳模式的故障总数大于1,根据预先构建的主优化模型和子优化模型得到热稳定功率极限区间上限;其中主优化模型以基态输电断面功率最大为目标并包括奔德斯割约束,子优化模型以故障前/后节点注入有功功率差值最小为目标。
  2. 根据权利要求1所述的一种输电断面热稳定功率极限区间识别方法,其特征在于:所述断面相关热稳模式包括:主要潮流转移元件为断面组成元件的热稳模式,所述热稳模式包括电网的故障和对应的主要潮流转移元件,故障的主潮流转移元件为故障下潮流转移比或负载率变化量大于门槛值的热稳定考察元件。
  3. 根据权利要求1或2所述的一种输电断面热稳定功率极限区间识别方法,其特征在于:从断面相关热稳模式中筛选出关键热稳模式的过程为,
    针对每个断面相关热稳模式,求解预先构建的第三优化模型,响应于优化结果不小于断面组成元件的电流限值,则该断面相关热稳模式为关键热稳模式; 其中第三优化模型以故障下断面组成元件电流最大为目标。
  4. 根据权利要求3所述的一种输电断面热稳定功率极限区间识别方法,其特征在于:第三优化模型为,
    目标函数f1:
    Figure PCTCN2020114927-appb-100001
    Figure PCTCN2020114927-appb-100002
    约束条件:
    Figure PCTCN2020114927-appb-100003
    Figure PCTCN2020114927-appb-100004
    Figure PCTCN2020114927-appb-100005
    Figure PCTCN2020114927-appb-100006
    Figure PCTCN2020114927-appb-100007
    Figure PCTCN2020114927-appb-100008
    Figure PCTCN2020114927-appb-100009
    其中,
    Figure PCTCN2020114927-appb-100010
    为故障x下节点i、j间支路电流幅值,I max.ij为节点i、j间支路电流幅值上限,
    Figure PCTCN2020114927-appb-100011
    分别为故障x下节点i的发电机有功、 负荷有功、发电机无功和负荷无功,
    Figure PCTCN2020114927-appb-100012
    分别为节点i的发电机有功下限、有功上限、无功下限和无功上限,
    Figure PCTCN2020114927-appb-100013
    分别为故障x下节点i的电压和节点j的电压,
    Figure PCTCN2020114927-appb-100014
    分别为故障x下节点i的电压下限和上限,
    Figure PCTCN2020114927-appb-100015
    分别为节点i的负荷有功下限、负荷有功上限、功率因数角下限和功率因数角上限,
    Figure PCTCN2020114927-appb-100016
    为故障x下节点i的功率因数角,N为除去节点i外的节点数量,
    Figure PCTCN2020114927-appb-100017
    分别为故障x下节点i、j间导纳的幅值和相角,参数
    Figure PCTCN2020114927-appb-100018
    分别为故障x下节点i、j的相角;Z为故障x对应的所有主要潮流转移元件,y为故障下断面组成元件。
  5. 根据权利要求1所述的一种输电断面热稳定功率极限区间识别方法,其特征在于:所述根据所述关键热稳模式以及预先构建的第一优化模型,得到热稳定功率极限区间下限,包括:
    遍历所有关键热稳模式,求解预先构建的第一优化模型,基于优化结果求解故障前输电断面功率,取故障前输电断面功率最小值作为热稳定功率极限区间下限。
  6. 根据权利要求1或5所述的一种输电断面热稳定功率极限区间识别方法,其特征在于:第一优化模型为,
    目标函数f2:
    Figure PCTCN2020114927-appb-100019
    Figure PCTCN2020114927-appb-100020
    约束条件:
    Figure PCTCN2020114927-appb-100021
    Figure PCTCN2020114927-appb-100022
    Figure PCTCN2020114927-appb-100023
    Figure PCTCN2020114927-appb-100024
    Figure PCTCN2020114927-appb-100025
    Figure PCTCN2020114927-appb-100026
    Figure PCTCN2020114927-appb-100027
    Figure PCTCN2020114927-appb-100028
    其中,
    Figure PCTCN2020114927-appb-100029
    为故障x下节点i、j间支路有功功率,S L为断面组成支路集合,
    Figure PCTCN2020114927-appb-100030
    为故障x下节点i、j间支路电流幅值,I max.ij为节点i、j间支路电流幅值上限,
    Figure PCTCN2020114927-appb-100031
    分别为故障x下节点i的发电机有功、负荷有功、发电机无功和负荷无功,
    Figure PCTCN2020114927-appb-100032
    分别为节点i的发电机有功下限、有功上限、无功下限和无功上限,
    Figure PCTCN2020114927-appb-100033
    分别为故障x下节点i的电压和节点j的电压,
    Figure PCTCN2020114927-appb-100034
    分别为故障x下节点i的电压下限和上限,
    Figure PCTCN2020114927-appb-100035
    分别为节点i的负荷有功下限、负荷有功上限、功率因数角下限和功率因数角上限,
    Figure PCTCN2020114927-appb-100036
    为故障x下节点i的功率因数角,N为除去节点i外的节点数量,
    Figure PCTCN2020114927-appb-100037
    为故障x下节点i、j间导纳的幅值,参数
    Figure PCTCN2020114927-appb-100038
    分别为故障x下节点i、j的相角,ε为门槛值;Z为故障x对应的所有主要潮流转移元件。
  7. 根据权利要求1所述的一种输电断面热稳定功率极限区间识别方法,其特征在于:所述响应于所有关键热稳模式的故障总数为1,根据预先构建的第二优化模型得到热稳定功率极限区间上限,包括:
    响应于所有关键热稳模式的故障总数为1,求解预先构建的第二优化模型,基于优化结果求解故障前输电断面功率,取故障前输电断面功率作为热稳定功率极限区间上限。
  8. 根据权利要求1或7所述的一种输电断面热稳定功率极限区间识别方法,其特征在于:第二优化模型为,
    目标函数f3:
    Figure PCTCN2020114927-appb-100039
    Figure PCTCN2020114927-appb-100040
    约束条件:
    Figure PCTCN2020114927-appb-100041
    Figure PCTCN2020114927-appb-100042
    Figure PCTCN2020114927-appb-100043
    Figure PCTCN2020114927-appb-100044
    Figure PCTCN2020114927-appb-100045
    Figure PCTCN2020114927-appb-100046
    Figure PCTCN2020114927-appb-100047
    其中,
    Figure PCTCN2020114927-appb-100048
    为故障x下节点i、j间支路有功功率,S L为断面组成支路集合,
    Figure PCTCN2020114927-appb-100049
    为故障x下节点i、j间支路电流幅值,I max.ij为节点i、j间支路电流幅值上限,
    Figure PCTCN2020114927-appb-100050
    分别为故障x下节点i的发电机有功、负荷有功、发电机无功和负荷无功,
    Figure PCTCN2020114927-appb-100051
    分别为节点i的发电机有功下限、有功上限、无功下限和无功上限,
    Figure PCTCN2020114927-appb-100052
    分别为故障x下节点i的电压和节点j的电压,
    Figure PCTCN2020114927-appb-100053
    分别为故障x下节点i的电压下限和上限,
    Figure PCTCN2020114927-appb-100054
    分别为节点i的负荷有功下限、负荷有功上限、功率因数角下限和功率因数角上限,
    Figure PCTCN2020114927-appb-100055
    为故障x下节点i的功率因数角,N为除去节点i外的节点数量,
    Figure PCTCN2020114927-appb-100056
    为故障x下节点i、j间导纳的幅值,参数
    Figure PCTCN2020114927-appb-100057
    分别为故障x下节点i、j的相角;Z为故障x对应的所有主要潮流转移元件。
  9. 根据权利要求1所述的一种输电断面热稳定功率极限区间识别方法,其特征在于:子优化模型为,
    目标函数f x.sub
    Figure PCTCN2020114927-appb-100058
    约束条件:
    Figure PCTCN2020114927-appb-100059
    Figure PCTCN2020114927-appb-100060
    Figure PCTCN2020114927-appb-100061
    Figure PCTCN2020114927-appb-100062
    Figure PCTCN2020114927-appb-100063
    Figure PCTCN2020114927-appb-100064
    Figure PCTCN2020114927-appb-100065
    Figure PCTCN2020114927-appb-100066
    其中,N g为可调发电机和负荷节点数目,
    Figure PCTCN2020114927-appb-100067
    为引入的虚拟变量,
    Figure PCTCN2020114927-appb-100068
    为牵连变量,
    Figure PCTCN2020114927-appb-100069
    为故障x下节点i、j间支路电流幅值,I max.ij为节点i、j间支路电流幅值上限,
    Figure PCTCN2020114927-appb-100070
    分别为故障x下节点i的发电机有功、负荷有功、发电机无功和负荷无功,
    Figure PCTCN2020114927-appb-100071
    分别为节点i的发电机有功下限、有功上限、无功下限和无功上限,
    Figure PCTCN2020114927-appb-100072
    分别为故障x下节点i的电压和节点j的电压,
    Figure PCTCN2020114927-appb-100073
    分别为故障x下节点i的电压下限和上限,
    Figure PCTCN2020114927-appb-100074
    分别为节点i的负荷有功下限、负荷有功上限、功率因数角下限和功率因数角上限,
    Figure PCTCN2020114927-appb-100075
    为故障x下节点i的功率因数角,N为除去节点i外的节点数量,
    Figure PCTCN2020114927-appb-100076
    为故障x下节点i、j间导纳的幅值,参数
    Figure PCTCN2020114927-appb-100077
    分别为故障x下节点i、j的相角,Z为故障x对应的所有主要潮流转移元件。
  10. 根据权利要求1所述的一种输电断面热稳定功率极限区间识别方法,其特征在于:主优化模型为,
    目标函数f4:
    Figure PCTCN2020114927-appb-100078
    Figure PCTCN2020114927-appb-100079
    约束条件:
    Figure PCTCN2020114927-appb-100080
    Figure PCTCN2020114927-appb-100081
    Figure PCTCN2020114927-appb-100082
    Figure PCTCN2020114927-appb-100083
    Figure PCTCN2020114927-appb-100084
    Figure PCTCN2020114927-appb-100085
    Figure PCTCN2020114927-appb-100086
    响应于主优化模型为首次计算,
    Figure PCTCN2020114927-appb-100087
    响应于主优化模型为非首次计算,
    Figure PCTCN2020114927-appb-100088
    其中,
    Figure PCTCN2020114927-appb-100089
    为基态下节点i、j间支路有功功率,S L为断面组成支路集合,
    Figure PCTCN2020114927-appb-100090
    为基态下节点i、j间支路电流幅值,I max.ij为节点i、j间支路电流幅值上限,
    Figure PCTCN2020114927-appb-100091
    分别为基态下节点i的发电机有功、负荷有功、发电机无功和负荷无功,
    Figure PCTCN2020114927-appb-100092
    分别为节点i的发电机有功下限、有功上限、无功下限和无功上限,
    Figure PCTCN2020114927-appb-100093
    分别为基态下节点i的电压和节点j的电压,
    Figure PCTCN2020114927-appb-100094
    分别为基态下节点i的电压下限和上限,
    Figure PCTCN2020114927-appb-100095
    分别为节点i的负荷有功下限、负荷有功上限、功率因数角下限和功率因数角上限,
    Figure PCTCN2020114927-appb-100096
    为基态下节点i的功率因数角,N为除去节点i外的节点数量,
    Figure PCTCN2020114927-appb-100097
    为基态下节点i、j间导纳的幅值,参数
    Figure PCTCN2020114927-appb-100098
    分别为基态下节点i、j的相角,S X为关键故障集合,关键故障为关键热稳模式中的故障,
    Figure PCTCN2020114927-appb-100099
    为故障x下的关键元件集合,关键元件为关键热稳模式中的故障对应的主要潮流转移元件,
    Figure PCTCN2020114927-appb-100100
    为故障x下关键元件y的潮流转移比,
    Figure PCTCN2020114927-appb-100101
    为故障x下关键元件y的临界安全估算功率,
    Figure PCTCN2020114927-appb-100102
    分别为基态下关键元件y的有功功率、故障x对应故障元件的有功功率和,N g为可调发电机和负荷节点数目,μ为加速因子,
    Figure PCTCN2020114927-appb-100103
    为故障x下子问题的牵连约束所对应的乘子,f x.sub为子优化模型目标函数,
    Figure PCTCN2020114927-appb-100104
    为上一轮主问题的解。
  11. 一种输电断面热稳定功率极限区间识别系统,其特征在于:包括,
    获取模块:用于获取断面相关热稳模式;
    筛选模块:用于从断面相关热稳模式中筛选出关键热稳模式;
    下限求取模块:用于根据所述关键热稳模式以及预先构建的第一优化模型,得到热稳定功率极限区间下限;其中第一优化模型以故障下输电断面功率最小为目标;
    单故障上限求取模块:用于响应于所有关键热稳模式的故障总数为1,根据预先构建的第二优化模型得到热稳定功率极限区间上限;其中第二优化模型以故障下输电断面功率最大为目标;
    多故障上限求取模块:用于响应于所有关键热稳模式的故障总数大于1,根据预先构建的主优化模型和子优化模型得到热稳定功率极限区间上限;其中主 优化模型以基态输电断面功率最大为目标并包括奔德斯割约束,子优化模型以故障前/后节点注入有功功率差值最小为目标。
  12. 一种存储一个或多个程序的计算机可读存储介质,其特征在于:所述一个或多个程序包括指令,所述指令当由计算设备执行时,使得所述计算设备执行根据权利要求1至10所述的方法中的任一方法。
  13. 一种计算设备,其特征在于:包括,
    一个或多个处理器、存储器以及一个或多个程序,其中一个或多个程序存储在所述存储器中并被配置为由所述一个或多个处理器执行,所述一个或多个程序包括用于执行根据权利要求1至10所述的方法中的任一方法的指令。
PCT/CN2020/114927 2019-12-26 2020-09-12 一种输电断面热稳定功率极限区间识别方法及系统 WO2021128959A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911366425.3 2019-12-26
CN201911366425.3A CN111106603B (zh) 2019-12-26 2019-12-26 一种输电断面热稳定功率极限区间识别方法及系统

Publications (1)

Publication Number Publication Date
WO2021128959A1 true WO2021128959A1 (zh) 2021-07-01

Family

ID=70424851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114927 WO2021128959A1 (zh) 2019-12-26 2020-09-12 一种输电断面热稳定功率极限区间识别方法及系统

Country Status (2)

Country Link
CN (1) CN111106603B (zh)
WO (1) WO2021128959A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113783236A (zh) * 2021-09-03 2021-12-10 南方电网科学研究院有限责任公司 高比例新能源电力系统实时优化调度方法、装置及介质
CN114024312A (zh) * 2021-11-16 2022-02-08 国网江苏省电力有限公司电力科学研究院 一种提升无功支撑能力方法、系统、存储介质及计算设备
CN114243800A (zh) * 2021-11-17 2022-03-25 国网浙江省电力有限公司 事故备用储能电站接入点与接入容量优化协调配置方法
CN114759559A (zh) * 2022-06-16 2022-07-15 中国能源建设集团湖南省电力设计院有限公司 一种电网稳定极限分析方法
CN117094537A (zh) * 2023-10-19 2023-11-21 国网浙江省电力有限公司丽水供电公司 电网规划方法、装置、电子设备和存储介质
CN117353312A (zh) * 2023-09-15 2024-01-05 国家电网有限公司华东分部 电网热稳定限额校核方法、装置、设备及介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106603B (zh) * 2019-12-26 2021-11-30 国电南瑞科技股份有限公司 一种输电断面热稳定功率极限区间识别方法及系统
CN111900730B (zh) * 2020-07-20 2021-09-28 国电南瑞科技股份有限公司 一种输电通道热稳定限额区间在线计算方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969202A (zh) * 2010-11-23 2011-02-09 国网电力科学研究院 电力系统暂态稳定输电断面功率极限区间的识别方法
CN103413043A (zh) * 2013-08-09 2013-11-27 中国南方电网有限责任公司 一种电力系统多维空间断面热稳定极限边界的求解方法
CN107067126A (zh) * 2016-11-25 2017-08-18 中国南方电网有限责任公司 一种基于潮流转移比的热稳定关键输电通道识别方法
US20180034317A1 (en) * 2016-07-26 2018-02-01 Schweitzer Engineering Laboratories, Inc. Microgrid Power Flow Monitoring and Control
CN108964012A (zh) * 2017-05-22 2018-12-07 武汉大学 基于Benders分解的安全约束机组组合双层优化方法
CN109936134A (zh) * 2019-04-03 2019-06-25 国电南瑞科技股份有限公司 一种热稳定输电通道功率极限区间识别方法及设备
CN111106603A (zh) * 2019-12-26 2020-05-05 国电南瑞科技股份有限公司 一种输电断面热稳定功率极限区间识别方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969202A (zh) * 2010-11-23 2011-02-09 国网电力科学研究院 电力系统暂态稳定输电断面功率极限区间的识别方法
CN103413043A (zh) * 2013-08-09 2013-11-27 中国南方电网有限责任公司 一种电力系统多维空间断面热稳定极限边界的求解方法
US20180034317A1 (en) * 2016-07-26 2018-02-01 Schweitzer Engineering Laboratories, Inc. Microgrid Power Flow Monitoring and Control
CN107067126A (zh) * 2016-11-25 2017-08-18 中国南方电网有限责任公司 一种基于潮流转移比的热稳定关键输电通道识别方法
CN108964012A (zh) * 2017-05-22 2018-12-07 武汉大学 基于Benders分解的安全约束机组组合双层优化方法
CN109936134A (zh) * 2019-04-03 2019-06-25 国电南瑞科技股份有限公司 一种热稳定输电通道功率极限区间识别方法及设备
CN111106603A (zh) * 2019-12-26 2020-05-05 国电南瑞科技股份有限公司 一种输电断面热稳定功率极限区间识别方法及系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113783236A (zh) * 2021-09-03 2021-12-10 南方电网科学研究院有限责任公司 高比例新能源电力系统实时优化调度方法、装置及介质
CN113783236B (zh) * 2021-09-03 2023-10-20 南方电网科学研究院有限责任公司 高比例新能源电力系统实时优化调度方法、装置及介质
CN114024312A (zh) * 2021-11-16 2022-02-08 国网江苏省电力有限公司电力科学研究院 一种提升无功支撑能力方法、系统、存储介质及计算设备
CN114243800A (zh) * 2021-11-17 2022-03-25 国网浙江省电力有限公司 事故备用储能电站接入点与接入容量优化协调配置方法
CN114243800B (zh) * 2021-11-17 2024-04-02 国网浙江省电力有限公司 事故备用储能电站接入点与接入容量优化协调配置方法
CN114759559A (zh) * 2022-06-16 2022-07-15 中国能源建设集团湖南省电力设计院有限公司 一种电网稳定极限分析方法
CN117353312A (zh) * 2023-09-15 2024-01-05 国家电网有限公司华东分部 电网热稳定限额校核方法、装置、设备及介质
CN117094537A (zh) * 2023-10-19 2023-11-21 国网浙江省电力有限公司丽水供电公司 电网规划方法、装置、电子设备和存储介质
CN117094537B (zh) * 2023-10-19 2024-01-05 国网浙江省电力有限公司丽水供电公司 电网规划方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
CN111106603B (zh) 2021-11-30
CN111106603A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2021128959A1 (zh) 一种输电断面热稳定功率极限区间识别方法及系统
CN107453357B (zh) 一种基于分层求解的配电网状态估计方法
CN106709651B (zh) 一种基于风险理论的电力系统安全性评估系统
Sun et al. Power system observability and dynamic state estimation for stability monitoring using synchrophasor measurements
CN107807860B (zh) 一种基于矩阵分解的电力故障分析方法及系统
CN103077447A (zh) 一种基于贝叶斯网络的地铁施工安全管理决策方法
CN104578411B (zh) 一种pmu数据接入agc后的多源数据安全校验与故障闭锁方法
Hazarika New method for monitoring voltage stability condition of a bus of an interconnected power system using measurements of the bus variables
CN109378835A (zh) 基于互信息冗余性最优的大规模电力系统暂态稳定评估系统
CN112330488A (zh) 基于迁移学习的电网频率态势预测方法
CN109613372B (zh) 一种基于多元电网数据库的电网故障诊断方法
US10958099B2 (en) Real-time electrical grid restoration
CN106981872B (zh) 一种电力系统运行可靠性的确定方法及装置
Hu et al. Reliability research for PV system using BDD-based fault tree analysis
CN114757548A (zh) 一种采用场景构建的风电储能设备调节性能评估方法
Hayes et al. Viable computation of the largest Lyapunov characteristic exponent for power systems
Chao et al. Line loss calculation in power distribution network based on power measurement data and BP neural network
US20140050290A1 (en) Method of constructing pseudo hot pin power distribution using in-core detector signal-based planar radial peaking factors in core operating limit supervisory system
Khodadadeh Designing a Software Platform for Evaluating Cyber-Attacks on The Electric PowerGrid
Tian et al. Situation Forecasting Method for Distribution Network Based on Phasor Measurement Unit
Wang et al. Microgrid Cyber-physical modeling and Channel Fault Analysis
Alayande et al. Modelling and countermeasures of false data injection attacks against state estimation in power systems
CN112217220B (zh) 新能源送出多端柔性直流电网安全稳定防御方法及装置
Paramo et al. Research Trends and Applications of PMUs. Energies 2022, 15, 5329
Molnár et al. Impact analysis of false data injection attacks on distribution system state estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907636

Country of ref document: EP

Kind code of ref document: A1