WO2021128775A1 - 一种卫星控制方法及装置 - Google Patents

一种卫星控制方法及装置 Download PDF

Info

Publication number
WO2021128775A1
WO2021128775A1 PCT/CN2020/098109 CN2020098109W WO2021128775A1 WO 2021128775 A1 WO2021128775 A1 WO 2021128775A1 CN 2020098109 W CN2020098109 W CN 2020098109W WO 2021128775 A1 WO2021128775 A1 WO 2021128775A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
target location
information
satellites
time
Prior art date
Application number
PCT/CN2020/098109
Other languages
English (en)
French (fr)
Inventor
李强
王磊
陆川
Original Assignee
成都星时代宇航科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都星时代宇航科技有限公司 filed Critical 成都星时代宇航科技有限公司
Priority to US17/419,701 priority Critical patent/US11316584B2/en
Publication of WO2021128775A1 publication Critical patent/WO2021128775A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1021Earth observation satellites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1085Swarms and constellations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18532Arrangements for managing transmission, i.e. for transporting data or a signalling message

Definitions

  • This application relates to the technical field of satellite communication, and specifically provides a satellite control method and device.
  • Satellites are built by humans and launched into space with space flight vehicles such as rockets and space shuttles, so as to take pictures or videos of the earth or a specific location on the earth.
  • an experienced technician is generally required to make mission planning for the satellite. Because when planning a mission for a satellite, it is generally necessary for the configuration personnel to know all the knowledge of the satellite, for example, the energy and attitude of the satellite, the power-on time of the camera, the number of times the camera is turned on and off, and other conditions. Only through the control commands sent to the satellite, the images that meet the needs of the satellite can be obtained.
  • the purpose of this application is to provide a satellite control method and device, which can reduce the operational difficulty of satellite control, thereby reducing the technical threshold of satellite control.
  • the embodiment of the present application provides a satellite control method, which is applied to an operation control center connected to a satellite, and the method includes:
  • the orbit information of each satellite in the plurality of satellites, and the position information of each satellite at the current moment calculate the first corresponding to each satellite entering the target location.
  • At least one satellite to be executed is determined from the plurality of satellites to photograph the target location.
  • the user can obtain an image of the target location only by inputting the target location to be photographed.
  • the above method can reduce the operational difficulty of satellite control, thereby lowering the technical threshold of satellite control.
  • At least one satellite to be executed is determined from the plurality of satellites to photograph the target location according to the first time information corresponding to each satellite entering the target location.
  • Target location including:
  • the satellite corresponding to the first entering the target location is determined as the satellite to be executed, and the first time information includes the first time ;
  • the satellite that first arrives at the target location may be used as the satellite to be executed to capture the target location, so that the image data of the target location is captured at the earliest time.
  • At least one satellite to be executed is determined from the plurality of satellites to photograph the target location according to the first time information corresponding to each satellite entering the target location.
  • Target location including:
  • At least one satellite to be executed is determined from the plurality of satellites to photograph the target location, wherein the available storage resources of each satellite to be executed can be Meet the storage resources required for shooting the target location.
  • the available storage resources of each satellite when entering the target location can be calculated, and the satellites to be executed that can photograph the target location can be determined according to the amount of available storage resources, so as to ensure The shooting task can be performed normally.
  • At least one satellite to be executed is determined from the plurality of satellites to photograph the target location according to the first time information corresponding to each satellite entering the target location.
  • Target location including:
  • all candidate satellites are selected from the plurality of satellites, wherein each candidate satellite has the storage resources required to photograph the target location ;
  • the selected candidate satellites and the first time information corresponding to the selected candidate satellites respectively entering the target location it is determined from the selected candidate satellites to enter the first
  • the satellite of the target location is used as the satellite to be executed;
  • the available storage resources of each satellite when entering the target location can be calculated, and the shooting target can be determined according to the amount of available storage resources and the first time information of entering the target location.
  • the satellites to be executed at the location can not only ensure the normal execution of the shooting task, but also ensure that the time of the image data of the target location captured is the earliest.
  • the calculation of the available storage resources of each satellite when each satellite of the plurality of satellites respectively enters the first moment corresponding to the target location includes:
  • the available storage resources of each satellite are determined when each satellite enters the first time corresponding to the target location.
  • the second time information corresponding to each satellite entering the corresponding ground station if you want to calculate the available storage resources of each satellite at the first time, you can first calculate the second time information corresponding to each satellite entering the corresponding ground station, and then determine the second time information corresponding to the second time information. Whether the second time is before or after the first time, if the second time is before the first time, it indicates that the available storage resource space of the corresponding satellite when entering the target location increases, thereby indicating the options to be executed in this case The number of satellites increases after the first moment compared to the second moment.
  • the determining, according to the second time information and the first time information of each satellite, when each satellite enters the first time corresponding to the target location respectively includes:
  • the available storage resources of each satellite at the current time are used as the available storage resources of each satellite when each satellite enters the first time corresponding to the target location.
  • the calculating the second time information corresponding to each satellite in the plurality of satellites respectively entering the corresponding ground station includes:
  • each satellite in the plurality of satellites calculates the Information at the second time when each satellite enters the corresponding ground station.
  • the calculation is performed based on the position information of each satellite in the plurality of satellites at the current moment and the position information of the ground station corresponding to each satellite in the plurality of satellites
  • the angle information of each satellite in the plurality of satellites relative to the corresponding ground station at the current moment includes:
  • the angle information of each satellite relative to the ground station at the current moment is calculated.
  • calculating the available storage resources of each satellite when each satellite of the plurality of satellites respectively enters the first moment corresponding to the target location includes:
  • the method further includes:
  • the shooting task of shooting the target location is arranged in the task list of the target satellite, and the storage resources required for shooting the target location in the target satellite are deducted.
  • At least one satellite to be executed capable of photographing the target location can be fed back to the user terminal held by the user, and then the user is reminded to select a target satellite from among them, and the target satellite is determined to perform the photographing of the target location.
  • the task, then deducting the storage resources occupied by the target satellite for shooting the target location can avoid repeated selection of storage resources to affect the screening results, thereby bringing more accurate constraints for the next satellite screening.
  • the calculation is performed based on the position information of the target location, the orbit information of each satellite in the plurality of satellites, and the position information of each satellite at the current moment.
  • the first time information corresponding to each satellite entering the target location respectively includes:
  • the first moment information of each satellite entering the target location is calculated.
  • the calculation of the relative position of each satellite at the current moment includes:
  • the angle information of each satellite relative to the target location at the current moment is calculated.
  • the embodiment of the present application also provides a satellite control method, the method includes:
  • second prompt information is displayed on the display interface of the terminal device, the second prompt information is configured to guide the user to input the target location to be photographed, and/or the second prompt information Is configured to guide the user to select a target location to be photographed from a plurality of locations to be selected displayed on the display interface of the terminal device;
  • the target location is the target location to be photographed input by the user and/or the user selects the target location to be photographed from the multiple candidate locations;
  • mission planning request In response to the user’s mission planning request, perform the following steps: Calculate each satellite based on the location information of the target location, the orbit information of each satellite in the plurality of satellites, and the location information of each satellite at the current moment Enter the information at the first moment corresponding to the target location respectively.
  • the method before the second prompt information is displayed on the display interface of the terminal device in response to the user's selection target button operation request, the method further includes:
  • the satellite information of multiple satellites is displayed on the display interface of the terminal device;
  • a target satellite is selected, where the target satellite is a satellite corresponding to the satellite selection request of the user among the plurality of satellites.
  • An embodiment of the present application also provides a satellite control device, which includes:
  • the coordinate receiving module is configured to receive the target location to be photographed input by the user
  • the time calculation module is configured to calculate the position information of each satellite at the current time according to the position information of the target location, the orbit information of each satellite in the plurality of satellites, and the position information of each satellite at the current time.
  • the task determination module is configured to determine at least one satellite to be executed from the plurality of satellites to photograph the target location according to the first time information corresponding to each satellite entering the target location.
  • An embodiment of the present application also provides a satellite control device, which includes:
  • the location operation module is configured to display second prompt information on the display interface of the terminal device in response to the user's selection target button operation request, and the second prompt information is configured to guide the user to input the target location to be photographed, and/ Or the second prompt information is configured to guide the user to select a target location to be photographed from a plurality of locations to be selected displayed on the display interface of the terminal device;
  • It is also configured to respond to a user's target location operation request, where the target location is the target location to be photographed input by the user and/or the user selects the target location to be photographed from the multiple candidate locations;
  • the mission planning module is configured to respond to a user’s mission planning request and execute the steps: according to the location information of the target location, the orbit information of each satellite in the plurality of satellites, and the location information of each satellite at the current moment Calculate the first time information corresponding to each satellite entering the target location.
  • An embodiment of the present application further provides an electronic device, including: a processor, a memory, and a bus, where the memory stores machine-readable instructions executable by the processor;
  • the processor and the memory communicate through a bus, and the machine-readable instructions are executed by the processor to execute the above-mentioned satellite control method.
  • the embodiment of the present application also provides a readable storage medium, and the readable storage medium stores a computer program, and the computer program executes the above-mentioned satellite control method when the computer program is run by a processor.
  • the embodiments of the present application also provide a computer program product, which when running on a computer, causes the computer to execute the above-mentioned satellite control method.
  • FIG. 1 is a schematic flowchart of a satellite control method provided by an embodiment of the application
  • FIG. 2 shows a schematic flowchart of an implementation manner of step 130
  • FIG. 3 shows a schematic flowchart of the sub-steps of step 131 in FIG. 2;
  • FIG. 4 shows a schematic flowchart of the sub-steps of step 131a in FIG. 3;
  • FIG. 5 is a schematic flowchart of the sub-steps of step 120 in FIG. 1;
  • FIG. 6 shows another schematic flow block diagram of a satellite control method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural block diagram of a satellite control device applied to an operation control center according to an embodiment of the application.
  • FIG. 8 is a schematic structural block diagram of a satellite control apparatus applied to terminal equipment according to an embodiment of the application.
  • FIG. 9a is a schematic diagram of the application of the satellite control method provided by an embodiment of the application.
  • FIG. 9b is a schematic diagram of the application of the satellite control method provided by an embodiment of the application.
  • FIG. 9c is a schematic diagram of the application of the satellite control method provided by an embodiment of the application.
  • FIG. 9d is a schematic diagram of the application of the satellite control method provided by an embodiment of the application.
  • FIG. 9e is a schematic diagram of the application of the satellite control method provided by an embodiment of the application.
  • FIG. 9f is a schematic diagram of the application of the satellite control method provided by an embodiment of the application.
  • FIG. 10 is a schematic structural block diagram of an electronic device provided by this embodiment.
  • Figure 1 is a satellite control method provided by an embodiment of the application.
  • the satellite control method can be applied to an electronic device.
  • the electronic device can be a device that can perform big data calculation and mass data storage.
  • the electronic device can be a server. , It can also be a computer with strong computing power.
  • the electronic device can be used as an operation control center connected to the satellite, and the satellite control method provided in the embodiment of the present application can include the following steps 110 to 130:
  • Step 110 Receive a target location to be photographed input by the user.
  • the target location may be a location that the user wants to photograph.
  • the user can enter the target location in multiple ways. For example, the user can enter the longitude and latitude values of the target location, the user can also enter the city name, and the user can also display a two-dimensional map or a three-dimensional map on the display interface. Click on the point corresponding to the target location.
  • the user when the user enters the target location, the user can input through text or voice input; of course, it is understandable that the way in which the user enters the target location in the foregoing example should not be understood In order to limit this application, for example, in some other possible implementation manners of the embodiments of this application, the user may also use other terminal devices to send the target location to the electronic device.
  • Step 120 According to the location information of the target location, the orbit information of each satellite in the plurality of satellites, and the location information of each satellite at the current moment, the first moment information corresponding to each satellite entering the target location is calculated.
  • each of the multiple satellites may operate in its own satellite orbit.
  • the first moment when each satellite of the plurality of satellites enters the target location may be the moment when the corresponding satellite can photograph the target location.
  • the following takes the first satellite as any one of the plurality of satellites as an example for description.
  • the electronic device can obtain the satellite orbit of each satellite.
  • the electronic device can combine the aspheric gravitational perturbation of the earth, the third body perturbation, and the tide according to the initial number of orbits and epoch time of J2000. Perturbation and light pressure perturb the atmospheric perturbation, carry out numerical integration calculation, obtain the satellite's orbit, position coordinate and speed at any time, and then obtain the satellite orbit of each satellite.
  • the implementation manner adopted may be the following steps 121 to 122:
  • Step 121 Calculate the angle information of each satellite relative to the target location at the current moment according to the coordinates related to the location information of each satellite at the current moment and the location information related to the target location.
  • the implementation manner adopted in step 121 may include the following steps 1211 to 1214:
  • Step 1211 Convert the coordinates of the target location from the spherical coordinate system to the ground-fixed coordinate system.
  • the coordinate system established with the center of the earth as the origin can be used as the spherical coordinate system
  • h can be the height of the earth
  • can be the longitude of the earth
  • the latitude of the earth It can be the angle between the normal of the reference ellipsoid at the target location and the equatorial plane, which is positive when measured from the equator to the north and negative when measured from the equator to the south.
  • the electronic device can convert the coordinates of the target location to the ground-fixed coordinate system according to the following formula:
  • (X e, Y e, Z e) may represent the target location coordinates in the fixed coordinate system, a e can represent the equatorial radius of the reference ellipsoid, and f can represent the geometric flatness of the reference ellipsoid.
  • the geocentric distance ⁇ and the geocentric latitude of the target location can be used Respectively replace h and Therefore, the calculation formula for the electronic device to convert the coordinates of the target location to the ground-fixed coordinate system can be updated as follows:
  • Step 1212 Convert the coordinates of the target location from the ground-fixed coordinate system to the J2000 coordinate system.
  • the electronic device can calculate the vector r station of the target location in the J2000 coordinate system according to the following formula
  • EP can be a preset earth movement matrix
  • ER can be a sidereal time conversion matrix
  • NR can be a nutation matrix
  • PR can be a precession matrix, where ER, NR, and PR are all temporal
  • the function can be obtained according to the time corresponding to the satellite, for example, according to a preset calculation function, the time corresponding to the satellite is substituted into the preset calculation function, so as to obtain the aforementioned ER, NR, and PR.
  • Step 1213 Convert the coordinates of the target location from the J2000 coordinate system to the track coordinate system.
  • the origin of the orbital coordinate system can coincide with the center of mass of each satellite
  • the z 0 axis of the orbital coordinate system can point to the center of the earth
  • the x 0 axis can be perpendicular to the z 0 axis and point to the flight direction of the satellite.
  • the y 0 axis can be perpendicular to the x 0 z 0 plane
  • the x 0 , y 0 , and z 0 axes constitute a right-handed coordinate system.
  • the electronic device can calculate the vector r orbit of the coordinates of the target location in the orbital coordinate system according to the following formula:
  • Step 1214 using the coordinates of the target location in the orbital coordinate system and the coordinates related to the position information of each satellite at the current moment, calculate the angle information of each satellite relative to the target location at the current moment.
  • the angle information of the satellite may include the azimuth angle and the altitude angle.
  • the electronic device may calculate the azimuth angle Az′ according to the following formula:
  • Az′ a tan((r orbit .y)/(r orbit .x))
  • the electronic device can calculate the height angle El′ according to the following formula:
  • r orbit .z can be the z 0 direction component of the target location in the orbit coordinate system
  • r orbit .y can be the effective target location y 0 direction component in the orbit coordinate system
  • r orbit .x can be the effective target location in the orbit In the x 0 direction component of the coordinate system, atan represents the arc tangent function.
  • the electronic device can also calculate the distance ⁇ sat from the satellite's coordinates to the target location at the current time according to the following formula:
  • Step 122 According to the angle information of each satellite relative to the target location at the current moment, and the orbit information of each satellite, calculate the first moment information of each satellite when it enters the target location.
  • the angle information on the satellite orbit and the time information generally have a one-to-one correspondence. Therefore, the electronic device can use the angle information of each satellite relative to the target location at the current time and the satellite orbit of each satellite. , Calculate the information at the first moment when each satellite enters the target location.
  • Step 130 According to the first time information corresponding to each satellite entering the target location, at least one satellite to be executed is determined from a plurality of satellites to photograph the target location.
  • the satellites to be executed may refer to satellites that are conditionally performing shooting tasks at the target location; after determining at least one satellite to be executed, the electronic device may send at least one satellite to be executed to the user, and The user selects the satellite of the target location.
  • At least one satellite to be executed to photograph the target location is determined from a plurality of satellites, including:
  • the satellite corresponding to the first entering the target location is determined as the satellite to be executed, and the first time information includes the first time;
  • the satellite that first arrives at the target location can be used as the satellite to be executed to photograph the target location, so that the image data of the target location is captured at the earliest time.
  • FIG. 2 shows a schematic flowchart of an implementation manner of step 130.
  • an implementation manner when the electronic device executes step 130 It may include the following steps 131 to 132:
  • Step 131 Calculate the available storage resources of each satellite when each satellite of the plurality of satellites respectively enter the first time corresponding to the target location, where the first time information includes the first time.
  • the available storage resource may refer to the storage space of the satellite that can store the captured video or image.
  • the storage resource may be used to determine whether a satellite among multiple satellites can perform the shooting task. One of the conditions.
  • Step 132 According to the available storage resources of each satellite in the plurality of satellites, at least one satellite to be executed is determined from the plurality of satellites to shoot the target location, wherein the available storage resources of each satellite to be executed can meet the requirements of the shooting target location. Required storage resources.
  • the electronic device may determine the first moment information corresponding to each satellite in the plurality of satellites entering the target location, the available storage resources of each satellite at the first moment, and the performance parameters of each satellite At least one satellite to be executed.
  • the satellite that is determined to be executed may meet the following conditions: the available storage resources of the satellite at the first moment can meet the storage resources required by the shooting target location.
  • the electronic device can calculate the available storage resources of each satellite at the first moment, and calculate the storage resources required for the shooting target location, and then according to the available storage resources of each satellite at the first moment and the shooting target location Compare the required storage resources to determine whether the difference between the two is greater than zero or a preset threshold; if the difference between the available storage resources of the satellite at the first moment and the storage resources required by the shooting target location is greater than zero or With a preset threshold, the electronic device can determine the satellite as a satellite to be executed, otherwise the satellite can be determined as an unexecutable satellite.
  • the electronic device compares the available storage resources of the satellite at the first moment with the storage resources required by the shooting target location, the available storage resources of the satellite at the first moment may be greater than the shooting target location.
  • the required storage resources it can also be that the difference between the available storage resources and the storage resources required by the target location is greater than a preset threshold.
  • the available storage resources are a
  • the storage resources required to shoot the target location are b
  • the performance parameter of the satellite may be a preset constraint condition
  • the preset constraint condition may be a preset constraint condition that does not change; of course, in other embodiments of this application,
  • the above constraint conditions can also be adjusted. For example, when the constraint conditions need to be changed, the configuration personnel can send a modification instruction to the electronic device to modify the constraint conditions so that the electronic device can be combined. Step 132 is executed for the modified constraint condition.
  • the preset constraint conditions include satellite resource conditions, satellite constraints, load constraints, and ground constraints.
  • the satellite resource condition can be the satellite's space storage, power, data transmission rate, etc.
  • the satellite constraint condition can be the satellite attitude control constraint;
  • the load constraint condition can be the load field of view angle or resolution, etc.;
  • the ground constraint condition can be The receiving angle of the ground station on the ground, the antenna data transmission rate, etc.; in addition, some other comprehensive constraints can also be considered, such as the amount of data that can be transmitted during the time period when the satellite passes through the ground station.
  • the electronic device can determine whether there is a target satellite that can perform the shooting task corresponding to the target location among the plurality of satellites in combination with the preset constraint conditions and the first moment information calculated through the foregoing steps. For example, the electronic device can determine whether the remaining power of each satellite when flying to the target location can support each satellite to complete the shooting task, or determine whether the attitude angle of each satellite when flying to the target location can be maneuvered to the angle of the shooting target location , Or judge whether the remaining storage space of each satellite when it flies to the target location is sufficient to complete the shooting task of the target location, etc.; if any one of the multiple satellites does not meet any of the above judgment conditions, electronic The device can determine that the shooting task corresponding to the target location cannot be scheduled to the corresponding satellite for execution; if there is a target satellite in the plurality of satellites that meets any of the above judgment conditions, the electronic device can determine that the shooting task corresponding to the target location can be the target satellite To execute.
  • At least one to-be-executed satellite is determined from the plurality of satellites to photograph the target location according to the first time information corresponding to each satellite entering the target location.
  • Target location including:
  • all candidate satellites are selected from the plurality of satellites, wherein each candidate satellite has the storage resources required to photograph the target location ;
  • the selected candidate satellites and the first time information corresponding to the selected candidate satellites respectively entering the target location it is determined from the selected candidate satellites to enter the first
  • the satellite of the target location is used as the satellite to be executed;
  • the available storage resources of each satellite when entering the target location can be calculated, and the shooting target can be determined according to the amount of available storage resources and the first time information of entering the target location.
  • the satellites to be executed at the location can not only ensure the normal execution of the shooting task, but also ensure that the time of the image data of the target location captured is the earliest.
  • the satellite control method may further include: feeding back satellite information of at least one satellite to be executed to the user terminal, and outputting prompt information, where the The prompt information can be configured to prompt the user to select a target satellite from at least one satellite to be executed to execute the shooting target location; arrange the shooting task of the shooting target location to the task list of the target satellite, and deduct the shooting target location in the target satellite.
  • the electronic device After the electronic device assigns the shooting task corresponding to the target location to the target satellite that can perform the shooting task, it can return the relevant parameters of the shooting task to the user.
  • the aforementioned relevant parameters may include the imaging time, imaging angle, and Resolution, data reception time, etc.
  • the execution of a shooting task generally requires storage resources.
  • the corresponding shooting time has already occupied storage resources, and the pictures taken during the execution of the shooting task need to occupy satellites.
  • the satellite may need to transmit the picture to the ground station. At this time, it may also need to occupy the storage space of the ground station.
  • the storage resources occupied by the shooting task are deducted from the corresponding margin, so as to better evaluate whether each satellite can undertake the next shooting task.
  • the electronic device may determine multiple shooting tasks including the shooting task corresponding to the target location according to the foregoing implementation manner, that is, by recording the multiple shooting tasks In a task list, it is determined whether there is a satellite task list among multiple satellites that can perform the shooting tasks in the task list.
  • the electronic device can first sort the shooting tasks in the task list according to the priority of the task from large to small, and then determine in sequence according to the order that each shooting task corresponds to each satellite, and each satellite is entering The first moment information corresponding to the target location, the available storage resources of each satellite at the first moment, and whether the performance parameters of each satellite can be arranged in the task list of a certain satellite of multiple satellites.
  • the priority of shooting tasks in the task list can be divided according to the parameters of the target location. For example, a target location with a larger number of people has a higher priority, and a target location with a smaller number of people has priority. Low level.
  • the priority of the shooting task can also be divided according to some other dimensions.
  • the priority of the shooting task can also be based on the initiator of the shooting task. According to the user level of the initiator, the higher the user level of the initiator, the higher the priority of the corresponding shooting task, and the lower the user level of the initiator, the lower the priority of the corresponding shooting task.
  • the electronic device performs step 131 to calculate the available storage resources of each satellite when each satellite of the plurality of satellites respectively enters the first time corresponding to the target location.
  • step 131 calculates the available storage resources of each satellite when each satellite of the plurality of satellites respectively enters the first time corresponding to the target location.
  • the storage resources occupied by the photographing tasks to be performed that have been deducted from each satellite may refer to each satellite before being arranged to perform photographing of the target location input by the user. Satellites have been scheduled for other unexecuted shooting tasks; it is understandable that although the aforementioned unexecuted shooting tasks have not yet been executed, some of the storage resources will be occupied in the subsequent execution process.
  • the storage resources occupied by the shooting tasks can be deducted from the corresponding satellites, so that by calculating the storage resources occupied by the shooting tasks to be executed that have been deducted from each satellite, the calculation can be obtained.
  • the available storage resources of each satellite at the first time corresponding to the target location are more accurate, which brings more accurate constraints to the screening of satellites for this time.
  • step 131 may include the following Step 131a to step 131b:
  • Step 131a Calculate the second time information corresponding to each satellite in the plurality of satellites entering the corresponding ground station respectively, where the ground station can be configured to receive the information returned by the corresponding satellite, and the second time information includes the second time .
  • the ground station may be configured to receive the information returned by the corresponding satellite when each satellite enters the ground station.
  • the returned information may include the mission result of the shooting mission.
  • Each satellite enters the ground.
  • the second time of the station may be the earliest time when each satellite can interact with the ground station.
  • each satellite since each satellite generally runs along its own satellite orbit, each satellite can send the captured information to the ground station when it enters the signal radiation range of the ground station along the orbit.
  • step 131a may include the following Step 131a1 to step 131a2:
  • step 131a1 according to the position information of each satellite at the current moment, the angle information of each satellite relative to the corresponding ground station at the current moment is calculated.
  • step 131a1 may include the following steps 131a1-1 to 131a1-3:
  • step 131a1-1 the coordinates related to the position information of each satellite at the current moment are converted from the J2000 coordinate system to the ground-fixed coordinate system.
  • the origin of the J2000 coordinate system may be the center of the earth
  • the xy coordinate plane may be the flat equator at the time of epoch J2000.0
  • the x-axis direction may be the equinox of the epoch.
  • the origin of the earth-fixed coordinate system can be the center of the earth
  • the z-axis direction can be the average pole direction of the earth
  • the xy coordinate plane can be the earth's equatorial plane that crosses the center of the earth and perpendicular to the average pole direction
  • the x-axis can point to the Greenwich meridian direction.
  • the electronic device may calculate the vector R sat of each satellite's ground-fixed coordinate system according to the following formula:
  • R sat (HG) r sat
  • r sat can be the vector of each satellite in the J2000 coordinate system.
  • Step 131a1-2 Calculate the position coordinates of each satellite in the station coordinate system according to the coordinates of each satellite in the ground-fixed coordinate system.
  • the coordinate origin of the station coordinate system can be set at the center of the ground station
  • the x-axis can be the coordinate origin of the over-station coordinate system.
  • the horizontal plane points to the east
  • the y-axis can be the over-station coordinate system.
  • the origin of the coordinates points to the north
  • the z-axis can be perpendicular to the xy plane and form a right-handed coordinate system with the x-axis and the y-axis.
  • the electronic device can calculate the position vector R'of each satellite in the station coordinate system according to the following formula:
  • R sat is the vector of the satellite's position in the earth-fixed coordinate system, and the earth coordinate of the earth station is expressed as ⁇ is the corresponding angle parameter, and R station is the ground station ground vector.
  • step 131a1-3 the angle information of each satellite relative to the ground station at the current moment is calculated according to the position coordinates of each satellite in the station coordinate system.
  • the angle information may include the azimuth angle and the altitude angle. It is assumed that the position vector of each satellite in the station coordinate system calculated by the electronic device in step 1212 is expressed as R'(X, Y, Z ), the electronic device can calculate the direction angle Az and the altitude angle El according to the following formula:
  • Atan is the arc tangent function, and asin is the arc sine function.
  • Step 131a2 Calculate the second time information of each satellite when it enters the ground station according to the angle information of each satellite relative to the ground station at the current moment, the antenna constraint conditions, and the orbit information of each satellite.
  • the aforementioned antenna constraint condition is preset, for example, the angle radiated by the ground station may be preset, and in some possible scenarios, the angle radiated by the ground station may be fixed.
  • Step 131b Determine the available storage resources of each satellite when each satellite enters the first time corresponding to the target location according to the second time information and the first time information of each satellite.
  • the electronic device when it wants to calculate the available storage resources of each satellite at the first moment, it can first calculate the second moment information corresponding to each satellite entering the corresponding ground station, and then determine the second moment.
  • the second time corresponding to the time information is before or after the first time; if the second time is before the first time, it means that the corresponding satellite can also transmit part of the information to the ground station before entering the target location, thereby freeing up more information.
  • More available storage resources if the second moment is after the first moment, it means that the available storage resources of the corresponding satellite entering the target location are less than or equal to the remaining storage resources in the current state of the satellite. Therefore, in this case, if When the remaining storage resources of the satellite in the current state are less than the preset value, it can be determined that the satellite is not suitable for shooting the target location.
  • the electronic device can determine the available storage resources of each satellite when each satellite enters the first time corresponding to the target location according to the second time information and the first time information of each satellite, including:
  • Electronic equipment can calculate the available storage resources of each satellite at the current moment
  • the electronic device can compare the second moment with the first moment, and if the second moment is before the first moment, calculate the available storage resources vacated by each satellite after passing through the corresponding ground station;
  • the electronic device uses the available storage resources of each satellite at the current moment plus the available storage resources vacated by each satellite after passing through the corresponding ground station, as each satellite at the first moment when each satellite enters the target location.
  • the electronic device uses the available storage resources of each satellite at the current time as the available storage resources of each satellite when each satellite enters the first time corresponding to the target location.
  • the electronic device calculates the available storage resources vacated by each satellite after passing through the corresponding ground station, it can combine the signal radiation range of the ground station corresponding to each satellite, and according to the signal radiation of each satellite in the corresponding ground station The length of the distance traveled within the range, and the speed at which each satellite transmits data to the corresponding ground station, calculates the available storage resources that each satellite vacates after passing the corresponding ground station.
  • the electronic device can use the distance traveled by each satellite in the radiation range of the corresponding ground station, and divide it by the flight speed of each satellite, so as to obtain the time for each satellite to fly within the radiation range of the corresponding ground station. Multiply the speed at which each satellite downloads data to the corresponding ground station to obtain the available storage resources that each satellite vacates after passing through the corresponding ground station.
  • the second time is compared with the first time. If the second time is before the first time, the electronic device can calculate the available storage resources vacated by each satellite after passing through the corresponding ground station;
  • the electronic device can calculate the available storage resources of each satellite at the current moment, plus calculate the available storage resources vacated by each satellite after passing through the corresponding ground station, and subtract the deducted pending execution of each satellite
  • the storage resources occupied by the shooting task, and the result obtained is the available storage resources of each satellite at the first moment when each satellite enters the target location respectively.
  • FIG. 6 shows another schematic flowchart of a satellite control method provided by an embodiment of the present application, which may include the following steps 210 to 230:
  • Step 210 In response to the user's request for selecting the target button, second prompt information is displayed on the display interface of the terminal device, the second prompt information is configured to guide the user to input the target location to be photographed, and/or the second prompt information is It is configured to guide the user to select a target location to be photographed from a plurality of locations to be selected displayed on the display interface of the terminal device.
  • the lower right corner of Figure 9a can be the select target button.
  • the user can click the select target button to send the target operation selection request, and then the display interface of the terminal device can display as shown in Figure 9c Multiple candidate locations, such as Chengdu, Nanjing, Dongguan, etc.
  • the above-mentioned second prompt information may be displayed as shown in FIG. 9c.
  • the user can enter the target location to be photographed in the search box at the top of the interface shown in FIG. Select one target location among the multiple candidate locations shown in 9c.
  • Step 220 In response to the user's target location operation request, the target location is the target location to be photographed input by the user and/or the user selects the target location to be photographed from a plurality of locations to be selected.
  • the user can input the target location to be photographed in the search box at the top of the interface shown in Figure 9c, or the user can click on one of the multiple candidate locations shown in Figure 9c.
  • Trigger for example, it may be assumed that the user is operating in Chengdu, and Chengdu is the target location to be photographed input by the user.
  • Step 230 in response to the user’s mission planning request, perform the following steps: According to the location information of the target location, the orbit information of each satellite in the plurality of satellites, and the location information of each satellite at the current moment, calculate each satellite's entry The first moment information corresponding to the target location.
  • the button for planning is directly below FIG. 9a.
  • the user can execute step 120 by clicking the button for planning, so as to continue execution until it is determined whether the shooting task corresponding to the target location can be scheduled to each satellite.
  • Figure 9d and Figure 9e show that Star Times 1 cannot arrange the shooting task corresponding to the target location (ie, Chengdu) Tips for shooting tasks;
  • FIG. 9f shows a reminder that Star Times 2 can arrange shooting tasks corresponding to the target location (ie, Chengdu).
  • the user can select the aforementioned button by clicking on the touch screen of the terminal device, or can select the aforementioned button by voice input.
  • the embodiment of the present application does not deal with the form of the user inputting information. Make restrictions.
  • the satellite control method may further include the following steps 201 to 202:
  • Step 201 In response to the user's satellite selection request, the satellite information of multiple satellites is displayed on the display interface of the terminal device.
  • Figure 9a shows a schematic diagram of the satellite control method on the display interface of the user's terminal device.
  • the lower left corner of Figure 9a is the button for selecting a satellite.
  • the user can click the button for selecting a satellite to send a satellite selection request, and then
  • the display interface of the terminal device can display the satellite information of multiple satellites as shown in Figure 9b, for example, Star Times 1, type: remote sensing satellite, payload: CCD, resolution: 5m; Star Times 2, type: remote sensing Satellite, payload: CCD, resolution: 5m, etc.
  • Step 202 In response to the satellite selection request of the user, a target satellite is selected, where the target satellite is a satellite corresponding to the satellite selection request of the user among the plurality of satellites.
  • the user’s satellite selection request can be triggered by the user clicking on one of the satellite information of the multiple satellites shown in Figure 9b. For example, if the user is operating the Star Times 1, the Star Times 1 is the user selected Target satellite.
  • FIG. 7 shows a schematic structural block diagram of a satellite control device 300 applied to an operation control center according to an embodiment of the present application.
  • the satellite control device 300 may include:
  • the coordinate receiving module 310 is configured to receive the target location to be photographed input by the user.
  • the time calculation module 320 is configured to calculate the first time corresponding to each satellite entering the target location according to the location information of the target location, the orbit information of each satellite in the plurality of satellites, and the location information of each satellite at the current moment. Time information.
  • the task determination module 330 is configured to determine at least one satellite to be executed from the plurality of satellites to photograph the target location according to the first time information corresponding to each satellite entering the target location.
  • the functions implemented by the satellite control device 300 shown in FIG. 7 are the same as those of the satellite control method applied to the operation control center shown in FIG. 1.
  • the functions implemented by the satellite control device 300 shown in FIG. 7 are the same as those of the satellite control method applied to the operation control center shown in FIG. 1.
  • please refer to the specific execution functions of the satellite control device 300 The above-mentioned satellite control method applied in the operation control center provided by the embodiment of the application will not be repeated here.
  • FIG. 8 shows a schematic structural block diagram of a satellite control apparatus 400 applied to terminal equipment according to an embodiment of the present application.
  • the satellite control apparatus 400 may include:
  • the location operation module 410 is configured to display second prompt information on the display interface of the terminal device in response to the user's selection target button operation request, and the second prompt information is configured to guide the user to input the target location to be photographed, and/or The second prompt information is configured to guide the user to select a target location to be photographed from a plurality of locations to be selected displayed on the display interface of the terminal device;
  • the target location is the target location to be photographed input by the user and/or the user selects the target location to be photographed from a plurality of locations to be selected;
  • the mission planning module 420 is configured to respond to the user’s mission planning request and execute the steps: calculate each satellite based on the location information of the target location, the orbit information of each satellite in the plurality of satellites, and the location information of each satellite at the current moment. The first moment information corresponding to each satellite entering the target location.
  • the functions implemented by the satellite control device 400 shown in FIG. 8 correspond to the same as those of the satellite control method applied to terminal equipment shown in FIG. 6.
  • the functions implemented by the satellite control device 400 shown in FIG. 8 correspond to the same as those of the satellite control method applied to terminal equipment shown in FIG. 6.
  • please refer to this document for the specific execution functions of the satellite control device 400 The above-mentioned satellite control method applied to terminal equipment provided in the application embodiment will not be repeated here.
  • an embodiment of the present application further provides an electronic device 500, which may be used as an operation control center or a terminal device in the foregoing embodiment.
  • the electronic device 500 may include a memory 501, a processor 502, and a communication interface 503.
  • the memory 501, the processor 502, and the communication interface 503 are directly or indirectly electrically connected to each other to realize Transmission or interaction of data.
  • these components can be electrically connected to each other through one or more communication buses or signal lines.
  • the memory 501 can be configured to store software programs and modules, such as program instructions/modules corresponding to the satellite control device provided in this application, and the processor 502 can execute various functional applications by executing the software programs and modules stored in the memory 501 And data processing, and then execute the steps of the satellite control method provided in this application.
  • the communication interface 503 may be configured to perform signaling or data communication with other node devices.
  • the memory 501 may be, but is not limited to, random access memory (Random Access Memory, RAM), read only memory (Read Only Memory, ROM), programmable read-only memory (Programmable Read-Only Memory, PROM), which can be Erasable Programmable Read-Only Memory (EPROM), Electric Erasable Programmable Read-Only Memory (EEPROM), etc.
  • RAM Random Access Memory
  • ROM read only memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electric Erasable Programmable Read-Only Memory
  • the processor 502 may be an integrated circuit chip with signal processing capabilities.
  • the processor 502 may be a general-purpose processor, such as a central processing unit (CPU), a network processor (Network Processor, NP), etc.; it may also be a digital signal processor (Digital Signal Processing, DSP), a dedicated integrated Circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • CPU central processing unit
  • NP Network Processor
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the embodiment of the present application also provides a computer-readable storage medium on which some computer programs are stored. When these computer programs are invoked and run by a processor, the above method embodiments can be completed.
  • the computer-readable storage medium is not limited. For example, it may be RAM (random-access memory, random access memory), ROM (read-only memory, read-only memory), and so on.
  • this application also provides a computer program product, which can complete the method embodiment and any possible design involved in the above method embodiment when the computer program product runs on a computer. Methods.
  • the electronic devices, computer storage media, and computer program products provided in the embodiments of the present application can all be configured to execute the corresponding methods provided in the above-mentioned embodiments. Therefore, the beneficial effects that can be achieved can refer to the above-provided beneficial effects. The beneficial effects of the corresponding method will not be repeated here.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of units is only a logical function division, and there may be other divisions in actual implementation.
  • multiple units or components can be combined or integrated.
  • To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be through some communication interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional modules in the various embodiments of the present application may be integrated together to form an independent part, or each module may exist alone, or two or more modules may be integrated to form an independent part.
  • the user only needs to input the target location to be photographed to obtain the remote sensing image of the target location without knowing the performance of all the satellites in orbit.
  • the user only needs to input the target location to be photographed to obtain at least one satellite that realizes the shooting of the target location to be photographed, so as to select the satellites to be executed according to their own needs, and plan shooting tasks for the satellites to be executed, and finally obtain the target.
  • Image of the location can reduce the operational difficulty of satellite control, thereby lowering the technical threshold of satellite control.

Abstract

本申请实施例提供了一种卫星控制方法及装置,包括:接收用户输入的待拍摄的目标地点;根据所述目标地点的位置信息以及多个卫星中每个卫星的运行轨道信息,计算所述每个卫星分别进入所述目标地点对应的第一时刻信息;根据所述每个卫星分别进入所述目标地点对应的第一时刻信息,从所述多个卫星中确定出至少一个待执行卫星去拍摄所述目标地点。用户可以只输入待拍摄的目标地点便能够得到可以实现拍摄待拍摄的目标地点的至少一个卫星,从而实现对上述的可以实现拍摄的卫星的控制,获取到目标地点的图像。通过上述方法能够降低卫星控制的操作难度,从而降低卫星控制的技术门槛。

Description

一种卫星控制方法及装置
相关申请的交叉引用
本申请要求于2019年12月24日提交中国专利局的申请号为2019113636164、名称为“卫星控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及卫星通讯技术领域,具体而言,提供一种卫星控制方法及装置。
背景技术
卫星是由人类建造,以太空飞行载具例如火箭、航天飞机等发射到太空中,从而对地球或者地球上的某个具体的地点进行拍摄或录像。
为了能够让卫星去某个具体的地点进行拍摄或者录像,一般需要经验丰富的技术人员给卫星做任务规划。由于在给卫星做任务规划时,一般需要配置人员知道该卫星全部的知识,例如,该卫星能源、姿态,相机的开机时间、相机开关机次数以及其他情况,配置人员往往需要根据上述全部的知识才能通过向卫星发送的控制指令,获取到卫星拍摄的符合需要的图像。
然而,由经验丰富的配置人员操控卫星拍照,技术门槛较高,不利于卫星拍摄技术的普及。
发明内容
本申请的目的在于提供一种卫星控制方法及装置,能够降低卫星控制的操作难度,从而降低卫星控制的技术门槛。
为实现上述目的中的至少一个目的,本申请采用的技术方案如下:
本申请实施例提供了一种卫星控制方法,应用于与卫星连接的运控中心,所述方法包括:
接收用户输入的待拍摄的目标地点;
根据所述目标地点的位置信息、多个卫星中每个卫星的运行轨道信息以及所述每个卫星在当前时刻的位置信息,计算所述每个卫星在分别进入所述目标地点对应的第一时刻信息;
根据所述每个卫星在分别进入所述目标地点对应的第一时刻信息,从所述多个卫星中确定出至少一个待执行卫星去拍摄所述目标地点。
在上述的实施方式中,用户可以只需输入待拍摄的目标地点便能够获取到目标地点的图像。通过上述方法能够降低卫星控制的操作难度,从而降低卫星控制的技术门槛。
可选地,作为一种可能的实现方式,根据所述每个卫星在分别进入所述目标地点对应的第一时刻信息,从所述多个卫星中确定出至少一个待执行卫星去拍摄所述目标地点,包括:
根据所述每个卫星在分别进入所述目标地点对应的第一时刻信息,将最先进入所述目标地点所对应的卫星确定为待执行卫星,所述第一时刻信息包括所述第一时刻;
安排所述待执行卫星去拍摄所述目标地点。
在上述的实施方式中,可以将最先到达目标地点的卫星作为待执行卫星去拍摄目标地点,从而拍摄到的目标地点的影像数据的时间是最早的。
可选地,作为一种可能的实现方式,根据所述每个卫星在分别进入所述目标地点对应的第一时刻信息,从所述多个卫星中确定出至少一个待执行卫星去拍摄所述目标地点,包括:
计算多个卫星中的每个卫星在分别进入所述目标地点对应的第一时刻时每个卫星的可用存储资源,其中,所述第一时刻信息包括所述第一时刻;
根据所述多个卫星中的每个卫星可用存储资源,从所述多个卫星中确定出至少一个待执行卫星去拍摄所述目标地点,其中,每个所述待执行卫星的可用存储资源能够满足拍摄所述目标地点所需的存储资源。
在上述的实施方式中,可以计算多个卫星中每个卫星在进入目标地点时,卫星的可用存储资源,并且可以根据可用存储资源的多少来确定出能够拍摄目标地点的待执行卫星,从而保证拍摄任务能够正常执行。
可选地,作为一种可能的实现方式,根据所述每个卫星在分别进入所述目标地点对应的第一时刻信息,从所述多个卫星中确定出至少一个待执行卫星去拍摄所述目标地点,包括:
计算多个卫星中的每个卫星在分别进入所述目标地点对应的第一时刻时每个卫星的可用存储资源,其中,所述第一时刻信息包括所述第一时刻;
根据所述多个卫星中的每个卫星可用存储资源,从所述多个卫星中选择出所有备选卫星,其中,每个所述备选卫星具有满足拍摄所述目标地点所需的存储资源;
根据所述选择出的备选卫星,和所述选择出的备选卫星在分别进入所述目标地点对应的第一时刻信息,从所述选择出的备选卫星中确定出最先进入所述目标地点的卫星作为待执行卫星;
安排所述待执行卫星去拍摄所述目标地点。
在上述的实施方式中,可以计算多个卫星中每个卫星在进入目标地点时,卫星的可用存储资源,并且可以根据可用存储资源的多少和进入目标地点的第一时间信息来确定出拍摄目标地点的待执行卫星,不但能够保证拍摄任务能够正常执行,还能保证拍摄到的目标地点的影像数据的时间是最早的。
可选地,作为一种可能的实现方式,所述计算多个卫星中的每个卫星在分别进入所述目标地点对应的第一时刻时每个卫星的可用存储资源,包括:
计算多个卫星中每个卫星在分别进入相应的地面站对应的第二时刻信息,其中,所述地面站被配置成接收相应的卫星传回的信息,所述第二时刻信息包括所述第二时刻;
根据所述每个卫星的第二时刻信息以及第一时刻信息,确定所述每个卫星在分别进入所述目标地点对应的第一时刻时每个卫星的可用存储资源。
在上述的实施方式中,欲计算每个卫星在第一时刻时的可用存储资源,可以先计算每个卫星分别进入对应的地面站对应的第二时刻信息,然后在判断第二时刻信息对应的第二时刻是在第一时刻之前还是之后,若第二时刻在第一时刻之前,则表征对应的卫星在进入目标地点时的可用存储资源空间增加,从而表征此种情况下可选择的待执行卫星数量相比于第二时刻在第一时刻之后的增加。
可选地,作为一种可能的实现方式,所述根据所述每个卫星的第二时刻信息以及第一时刻信息,确定所述每个卫星在分别进入所述目标地点对应的第一时刻时每个卫星的可用存储资源,包括:
计算所述每个卫星在当前时刻可用存储资源;
将所述第二时刻与所述第一时刻进行对比,若所述第二时刻在所述第一时刻之前,计算所述每个卫星在经过对应地面站后空出的可用存储资源;
利用所述每个卫星在当前时刻可用存储资源加上所述每个卫星在经过对应地面站后空出的可用存储资源,作为所述每个卫星在分别进入所述目标地点对应的第一时刻时每个卫星的可用存储资源;
若所述第二时刻在所述第一时刻之后,则将所述每个卫星在当前时刻的可用存储资源作为每个卫星在分别进入目标地点对应的第一时刻时每个卫星的可用存储资源。
可选地,作为一种可能的实现方式,所述计算多个卫星中每个卫星在分别进入相应的地面站对应的第二时刻信息,包括:
根据所述多个卫星中每个卫星在当前时刻的位置信息以及与所述多个卫星中每个卫星对应的地面站的位置信息,计算所述多个卫星中每个卫星在当前时刻相对于所述对应的地面站的角度信息;
根据所述多个卫星中每个卫星在当前时刻相对于所述对应的地面站的角度信息、天线 约束条件以及所述多个卫星中每个卫星的运行轨道信息,计算所述多个卫星中每个卫星在进入所述对应的地面站的第二时刻信息。
在上述的实施方式中,可以先计算每个卫星相对于地面站的角度信息,然后再依据该角度信息、天线约束条件以及每个卫星的卫星轨道,计算每个卫星进入地面站的第二时刻信息。
可选地,作为一种可能的实现方式,所述根据所述多个卫星中每个卫星在当前时刻的位置信息以及与所述多个卫星中每个卫星对应的地面站的位置信息,计算所述多个卫星中每个卫星在当前时刻相对于所述对应的地面站的角度信息,包括:
将所述每个卫星在当前时刻的位置信息相关的坐标由J2000坐标系转换到地固坐标系;
根据所述每个卫星在所述地固坐标系的坐标,计算所述每个卫星在测站坐标系中的位置坐标;
根据所述每个卫星在所述测站坐标系中的位置坐标,计算所述每个卫星在当前时刻相对于所述地面站的角度信息。
可选地,作为一种可能的实现方式,计算多个卫星中的每个卫星在分别进入所述目标地点对应的第一时刻时每个卫星的可用存储资源,包括:
计算所述多个卫星中的每个卫星在当前时刻的可用存储资源;
计算所述每个卫星中已被扣除的待执行的拍摄任务所占用的存储资源;
计算所述多个卫星中的每个卫星在当前时刻的可用存储资源与对应的卫星中已被扣除的存储资源的差值,所述差值为对应的卫星在所述第一时刻的可用存储资源。
可选地,作为一种可能的实现方式,在所述根据所述多个卫星中的每个卫星可用存储资源,从所述多个卫星中确定出至少一个待执行卫星去拍摄所述目标地点之后,所述方法还包括:
将至少一个待执行卫星的卫星信息反馈至用户终端,并输出提示信息,所述提示信息被配置成提示用户从所述至少一个待执行卫星中选择一个目标卫星去执行拍摄所述目标地点;
将拍摄所述目标地点的拍摄任务安排至所述目标卫星的任务列表中,并扣除所述目标卫星中拍摄所述目标地点所需占用的存储资源。
在上述的实施方式中,可以把能够拍摄目标地点的至少一个待执行卫星均反馈至用户持有的用户终端,然后提醒用户从中选择一个目标卫星,该目标卫星被确定为执行拍摄目标地点的拍摄任务,随后扣除所述目标卫星中拍摄所述目标地点所需占用的存储资源,可以避免存储资源被重复选择影响筛选结果,从而为下一次筛选卫星带来更加准确的约束条件。
可选地,作为一种可能的实现方式,所述根据所述目标地点的位置信息、所述多个卫星中每个卫星的运行轨道信息以及所述每个卫星在当前时刻的位置信息,计算所述每个卫星在分别进入所述目标地点对应的第一时刻信息,包括:
根据所述多个卫星中每个卫星在当前时刻的位置信息以及所述目标地点的位置信息,计算所述每个卫星在当前时刻相对于所述目标地点的角度信息;
根据所述每个卫星在当前时刻相对于所述目标地点的角度信息,以及所述每个卫星的运行轨道信息,计算所述每个卫星在进入目标地点的第一时刻信息。
可选地,作为一种可能的实现方式,所述根据所述多个卫星中每个卫星在当前时刻的位置信息以及所述目标地点的位置信息,计算所述每个卫星在当前时刻相对于所述目标地点的角度信息,包括:
将所述目标地点的坐标由球坐标系转换到地固坐标系;
将所述目标地点的坐标由所述地固坐标系转换到J2000坐标系;
将所述目标地点的坐标由所述J2000坐标系转换到轨道坐标系;
利用所述目标地点在所述轨道坐标系的坐标,以及所述每个卫星当前时刻的位置信息 相关的坐标,计算所述每个卫星在当前时刻相对于目标地点的角度信息。
本申请实施例还提供一种卫星控制方法,所述方法包括:
响应于用户的选择目标按钮操作请求,在终端设备的显示界面显示出第二提示信息,所述第二提示信息被配置成引导用户输入待拍摄的目标地点,和/或所述第二提示信息被配置成引导用户从在所述终端设备的显示界面显示出的多个待选地点中选择一个待拍摄的目标地点;
响应于用户的目标地点操作请求,所述目标地点为用户输入的待拍摄的目标地点和/或用户从所述多个待选地点中选择待拍摄的目标地点;
响应于用户的任务规划请求,执行步骤:根据所述目标地点的位置信息、多个卫星中每个卫星的运行轨道信息以及所述每个卫星在当前时刻的位置信息,计算所述每个卫星在分别进入所述目标地点对应的第一时刻信息。
可选地,作为一种可能的实施方式,在响应于用户的选择目标按钮操作请求,在终端设备的显示界面显示出第二提示信息之前,所述方法还包括:
响应于用户的卫星选择请求,在终端设备的显示界面显示出多个卫星的卫星信息;
响应于用户的卫星选中请求,选中目标卫星,其中,所述目标卫星为所述多个卫星中与用户的卫星选中请求对应的卫星。
本申请实施例还提供一种卫星控制装置,所述装置包括:
坐标接收模块,被配置成接收用户输入的待拍摄的目标地点;
时刻计算模块,被配置成根据所述目标地点的位置信息、多个卫星中每个卫星的运行轨道信息以及所述每个卫星在当前时刻的位置信息,计算所述每个卫星在分别进入所述目标地点对应的第一时刻信息;
任务确定模块,被配置成根据所述每个卫星在分别进入所述目标地点对应的第一时刻信息,从所述多个卫星中确定出至少一个待执行卫星去拍摄所述目标地点。
本申请实施例还提供一种卫星控制装置,所述装置包括:
地点操作模块,被配置成响应于用户的选择目标按钮操作请求,在终端设备的显示界面显示出第二提示信息,所述第二提示信息被配置成引导用户输入待拍摄的目标地点,和/或所述第二提示信息被配置成引导用户从在所述终端设备的显示界面显示出的多个待选地点中选择一个待拍摄的目标地点;
还被配置成响应于用户的目标地点操作请求,所述目标地点为用户输入的待拍摄的目标地点和/或用户从所述多个待选地点中选择待拍摄的目标地点;
任务规划模块,被配置成响应于用户的任务规划请求,执行步骤:根据所述目标地点的位置信息、多个卫星中每个卫星的运行轨道信息以及所述每个卫星在当前时刻的位置信息,计算所述每个卫星在分别进入所述目标地点对应的第一时刻信息。
本申请实施例还提供一种电子设备,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令;
当所述电子设备运行,所述处理器与所述存储器之间通过总线通信,所述机器可读指令被所述处理器执行时执行上述的卫星控制方法。
本申请实施例还提供一种可读存储介质,该可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述的卫星控制方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品在计算机上运行时,使得计算机执行上述的卫星控制方法。
附图说明
图1为本申请实施例提供的卫星控制方法的流程示意图;
图2示出了步骤130的实施方式的一种流程示意图;
图3示出图2中步骤131的子步骤的一种示意性流程图;
图4示出图3中步骤131a的子步骤的一种示意性流程图;
图5为图1中步骤120的子步骤的一种流程示意图;
图6示出了本申请实施例提供的卫星控制方法的另一种示意性流程框图;
图7为本申请实施例提供的应用于运控中心的卫星控制装置的一种示意性结构框图;
图8为本申请实施例提供的应用于终端设备的卫星控制装置的一种示意性结构框图;
图9a为本申请实施例提供的卫星控制方法的应用示意图;
图9b为本申请实施例提供的卫星控制方法的应用示意图;
图9c为本申请实施例提供的卫星控制方法的应用示意图;
图9d为本申请实施例提供的卫星控制方法的应用示意图;
图9e为本申请实施例提供的卫星控制方法的应用示意图;
图9f为本申请实施例提供的卫星控制方法的应用示意图;
图10为本谁请实施例提供的电子设备的一种示意性结构框图。
具体实施方式
下面结合附图对本申请的一些实施例进行说明,应当理解,此处所描述的一些实施例仅用于说明和解释本申请,并不用于限定本申请。
图1为本申请实施例提供的卫星控制方法,该卫星控制方法可以应用在电子设备中,该电子设备可以是一种能进行大数据计算、海量数据存储的设备,比如该电子设备可以是服务器,也可以是运算能力强的计算机。其中,该电子设备可以作为与卫星连接的运控中心,本申请实施例提供的卫星控制方法可以包括如下步骤110至步骤130:
步骤110,接收用户输入的待拍摄的目标地点。
在一些可能的实施方式中,目标地点可以为用户欲拍摄的地点。可选地,用户输入目标地点的方式可以有多种,例如,用户可以输入目标地点的经度数值和纬度数值,用户也可以输入城市名称,用户还可以在显示界面显示的二维地图或三维地图中点击目标地点所对应的点。
需要说明的是,在一些可能的实施方式中,用户在输入目标地点时,可以通过文字输入,也可以通过语音输入;当然,可以理解的是,前述示例的用户输入目标地点的方式不应该理解为是对本申请的限制,比如在本申请实施例其他一些可能的实施方式中,用户还可以采用其他的终端设备,将目标地点发送给电子设备。
步骤120,根据目标地点的位置信息、多个卫星中每个卫星的运行轨道信息以及每个卫星在当前时刻的位置信息,计算每个卫星在分别进入目标地点对应的第一时刻信息。
在一些可能的应用场景中,多个卫星中的每个卫星可以均运行在各自的卫星轨道中。多个卫星中的每个卫星在进入目标地点的第一时刻可以为对应的卫星能够对目标地点进行拍摄的时刻。
为了便于描述,下面以第一卫星为多个卫星中的任一卫星为例进行说明。
在一些可能的实现方式中,电子设备可以获得每个卫星的卫星轨道,比如电子设备可以根据J2000初始轨道根数和历元时刻,结合地球非球型引力摄动、第三体摄动、潮汐摄动、光压摄动大气摄动,进行数值积分计算,得到任意时刻卫星的轨道、位置坐标和速度等信息,从而获得每个卫星的卫星轨道。
可选地,作为一种可能的实施方式,请参见图5,电子设备在计算每个卫星在分别进入目标地点对应的第一时刻信息时,采用的实施方式可以如下步骤121至步骤122:
步骤121,根据每个卫星在当前时刻的位置信息相关的坐标以及目标地点的位置信息相关的坐标,计算每个卫星在当前时刻相对于目标地点的角度信息。
可选地,作为一种可能的实施方式,步骤121采用的实施方式可以包括如下步骤1211至步骤1214:
步骤1211,将目标地点的坐标由球坐标系转换到地固坐标系。
在一些可能的实现方式中,可以将以地球中心为原点建立的坐标系作为球坐标系
Figure PCTCN2020098109-appb-000001
其中h可以为大地高度,λ可以为大地经度,
Figure PCTCN2020098109-appb-000002
可以为大地纬度,大地纬度
Figure PCTCN2020098109-appb-000003
可以是目标地 点的参考椭球体的法线与赤道面的夹角,从赤道面向北计量为正,从赤道面向南计量为负。
其中,电子设备可以根据以下公式将目标地点的坐标转换到地固坐标系下:
Figure PCTCN2020098109-appb-000004
式中,(X e,Y e,Z e)可以表示目标地点在地固坐标系下的坐标,
Figure PCTCN2020098109-appb-000005
a e可以表示参考椭球体的赤道半径,f可以表示参考椭球体的几何扁率。
可选地,在一种可能的实施方式中,可以用该目标地点的地心距ρ和地心纬度
Figure PCTCN2020098109-appb-000006
分别代替上述公式中的h和
Figure PCTCN2020098109-appb-000007
因此,电子设备将目标地点的坐标转换到地固坐标系下的计算公式可以公式更新如下:
Figure PCTCN2020098109-appb-000008
步骤1212,将目标地点的坐标由地固坐标系转换到J2000坐标系。
在一些可能的实施方式中,电子设备可以根据以下公式计算目标地点在J2000坐标系的矢量r station
r station=(HG) -1R station
其中,R station可以表示为目标地点的坐标在地固坐标系的矢量;HG可以为J2000坐标系到地固坐标系的转换矩阵,HG可以根据公式(HG)=(EP)(ER)(NR)(PR)计算获得,EP可以为预先设置的地极移动矩阵,ER可以为恒星时转换矩阵,NR可以为章动矩阵,PR可以为岁差矩阵,其中,ER、NR、PR均是时间的函数,可以根据卫星对应的时刻得到,比如根据预先设置的计算函数,将卫星对应的时刻代入该预先设置的计算函数中,从而求得前述的ER、NR、PR。
步骤1213,将目标地点的坐标由J2000坐标系转换到轨道坐标系。
在一些可能的实施方式中,轨道坐标系的原点可以与每个卫星的质心重合,轨道坐标系的z 0轴可以指向地心,x 0轴可以与z 0轴垂直,并指向卫星的飞行方向,y 0轴可以垂直于x 0z 0平面,x 0、y 0、z 0轴构成右手坐标系。
如此,电子设备可以根据以下公式计算目标地点的坐标在轨道坐标系的矢量r orbit
r orbit=T·(r station-r sat)
其中,r sat可以为卫星在J2000坐标系中的矢量, T=R x(-π/2)·R z(ω+f′+π/2)·R x(i)·R z(Ω),ω可以为轨道近地点俯角,f′可以为轨道真近点角,i可以为轨道倾角,Ω可以为升交点赤经,
Figure PCTCN2020098109-appb-000009
Figure PCTCN2020098109-appb-000010
θ表示对应的角度参数。
步骤1214,利用目标地点在轨道坐标系的坐标,以及每个卫星当前时刻的位置信息相关的坐标,计算每个卫星在当前时刻相对于目标地点的角度信息。
在一些可能的实现方式中,卫星的角度信息可以包括方位角和高度角,电子设备在计算卫星的角度信息时,可以根据以下公式计算方位角Az′:
Az′=a tan((r orbit.y)/(r orbit.x))
另外,电子设备可以根据以下公式计算高度角El′:
Figure PCTCN2020098109-appb-000011
其中,r orbit.z可以为目标地点在轨道坐标系中z 0方向分量,r orbit.y可以为有效目标地点在轨道坐标系中y 0方向分量,r orbit.x可以为有效目标地点在轨道坐标系中x 0方向分量,atan表示反正切函数。
并且,电子设备还可以根据以下公式计算卫星在当前时刻坐标到目标地点的距离ρ sat
ρ sat=|r orbit|
步骤122,根据每个卫星在当前时刻相对于目标地点的角度信息,以及每个卫星的运行轨道信息,计算每个卫星在进入目标地点的第一时刻信息。
在一些可能的实施方式中,卫星轨道上的角度信息与时刻信息一般具有一一对应关系,因此,电子设备可以根据每个卫星在当前时刻相对于目标地点的角度信息以及每个卫星的卫星轨道,计算每个卫星在进入目标地点的第一时刻信息。
步骤130,根据每个卫星在分别进入目标地点对应的第一时刻信息,从多个卫星中确定出至少一个待执行卫星去拍摄目标地点。
在一些可能的实施方式中,待执行卫星可以是指有条件执行拍摄目标地点的拍摄任务的卫星;电子设备在确定出至少一个待执行卫星之后,可以把至少一个待执行卫星发送给用户,并由用户选择拍摄目标地点的卫星。
可选地,在一些可能的实现方式,根据每个卫星在分别进入目标地点对应的第一时刻信息,从多个卫星中确定出至少一个待执行卫星去拍摄目标地点,包括:
根据每个卫星在分别进入目标地点对应的第一时刻信息,将最先进入目标地点所对应的卫星确定为待执行卫星,第一时刻信息包括第一时刻;
安排待执行卫星去拍摄目标地点。
在上述的实现方式中,可以将最先到达目标地点的卫星作为待执行卫星去拍摄目标地点,从而拍摄到的目标地点的影像数据的时间是最早的。
可选地,作为一种可能的实现方式,请参见图2,图2示出了步骤130的实施方式的一种流程示意图,在一些可能的实施方式中,电子设备执行步骤130时的实施方式可以包括如下步骤131至步骤132:
步骤131,计算多个卫星中的每个卫星在分别进入目标地点对应的第一时刻时每个卫星的可用存储资源,其中,第一时刻信息包括第一时刻。
在一些可能的实施方式中,可用存储资源可以是指卫星的能够存储拍摄的视频或图像的存储空间,本申请实施例可以利用存储资源作为判定多个卫星中的某一卫星能否执行拍摄任务的条件之一。
步骤132,根据多个卫星中的每个卫星可用存储资源,从多个卫星中确定出至少一个待执行卫星去拍摄目标地点,其中,每个待执行卫星的可用存储资源能够满足拍摄目标地点所需的存储资源。
可选地,电子设备可以根据该多个卫星中的每个卫星在进入目标地点对应的第一时刻信息、每个卫星在第一时刻时的可用存储资源以及每个卫星的性能参数,确定出至少一个待执行卫星。
需要说明的是,在一些可能的实施方式中,被确定为待执行的卫星可以满足如下条件:该卫星在第一时刻时的可用存储资源能够满足拍摄目标地点所需的存储资源。
示例性地,电子设备可以计算每个卫星在第一时刻时的可用存储资源,并计算拍摄目标地点所需的存储资源,然后根据每个卫星在第一时刻时的可用存储资源与拍摄目标地点所需的存储资源进行比对,判断两者的差值是否大于零或者预先设置的阈值;若卫星在第一时刻时的可用存储资源与拍摄目标地点所需的存储资源的差值大于零或者预先设置的阈值,则电子设备可以将该卫星确定为待执行卫星,否则将该卫星则确定为不可执行的卫星。
其中,需要说明的是,电子设备在将卫星在第一时刻时的可用存储资源与拍摄目标地点所需的存储资源进行比对时,卫星在第一时刻时的可用存储资源可以大于拍摄目标地点所需的存储资源;也可以是可用存储资源与目标地点所需的存储资源相减的差大于预先设置的阈值,例如可用存储资源为a,拍摄目标地点所需的存储资源为b,(a-b)大于预先设置的阈值c。
另外,在一些可能的实施方式中,卫星的性能参数可以是预先设置的约束条件,该预先设置的约束条件可以是预先设定好的不发生变化的约束条件;当然,在本申请实施例其他一些可能的实现方式中,也可以对上述的约束条件进行调整,比如,当约束条件需要发生变化时,可以由配置人员向电子设备发送修改指令,从而对约束条件进行修改,以使电子设备结合修改后的约束条件执行步骤132。
并且,在一些可能的实施方式中,预先设置的约束条件包括卫星资源条件、卫星约束条件、载荷约束条件、地面约束条件。其中,卫星资源条件可以为卫星的空间存储、电量、数传速率等,卫星约束条件可以为卫星的姿态控制约束;载荷约束条件可以为载荷视场角度或者是分辨率等;地面约束条件可以为地面的地面站的接收角度、天线数传速率等;另外,还可以考虑其他一些综合约束条件,比如卫星途径地面站的时间段内可传输的数据量等。
如此,电子设备可以结合预先设置的约束条件以及通过上述步骤计算获得的第一时刻信息,来判断多个卫星中,是否存在能够执行目标地点对应的拍摄任务的目标卫星。例如,电子设备可以判断每个卫星飞到目标地点时的剩余电量是否能够支撑每个卫星完成该拍摄任务,或判断每个卫星飞到目标地点时的姿态角度能否机动到拍摄目标地点的角度,或判断每个卫星飞到目标地点时的剩余的存储空间是否足够完成目标地点的拍摄任务等;若该多个卫星中,任意一个卫星,均不满足上述判断条件中的任一项,电子设备便可以确定目标地点对应的拍摄任务无法被安排至对应的卫星去执行;若该多个卫星中存在目标卫星满足上述任意一个判断条件,则电子设备可以确定目标地点对应的拍摄任务可以目标卫星去执行。
可选地,在一些可能的实现方式中,根据所述每个卫星在分别进入所述目标地点对应的第一时刻信息,从所述多个卫星中确定出至少一个待执行卫星去拍摄所述目标地点,包括:
计算多个卫星中的每个卫星在分别进入所述目标地点对应的第一时刻时每个卫星的可用存储资源,其中,所述第一时刻信息包括所述第一时刻;
根据所述多个卫星中的每个卫星可用存储资源,从所述多个卫星中选择出所有备选卫星,其中,每个所述备选卫星具有满足拍摄所述目标地点所需的存储资源;
根据所述选择出的备选卫星,和所述选择出的备选卫星在分别进入所述目标地点对应的第一时刻信息,从所述选择出的备选卫星中确定出最先进入所述目标地点的卫星作为待执行卫星;
安排所述待执行卫星去拍摄所述目标地点。
在上述的实施方式中,可以计算多个卫星中每个卫星在进入目标地点时,卫星的可用存储资源,并且可以根据可用存储资源的多少和进入目标地点的第一时间信息来确定出拍摄目标地点的待执行卫星,不但能够保证拍摄任务能够正常执行,还能保证拍摄到的目标地点的影像数据的时间是最早的。
可选地,在一些可能的实施方式中,电子设备在执行步骤132后,该卫星控制方法还可以包括:将至少一个待执行卫星的卫星信息反馈至用户终端,并输出提示信息,其中,该提示信息可以被配置成提示用户从至少一个待执行卫星中选择一个目标卫星去执行拍摄目标地点;将拍摄目标地点的拍摄任务安排至目标卫星的任务列表中,并扣除目标卫星中拍摄目标地点所需占用的存储资源。
电子设备将目标地点对应的拍摄任务分配给可以执行该拍摄任务的目标卫星后,可以将该拍摄任务的相关参数返回给用户,比如前述的相关参数可以包括上述目标卫星的成像时间、成像角度、分辨率、数据接收时间等。
在一些可能的实施方式中,拍摄任务的执行一般需要占用存储资源,例如对于在先配置的拍摄任务,其对应的拍摄时刻已占用有存储资源,执行拍摄任务时所拍摄获得的图片需要占用卫星的存储空间;另外,卫星在途径地面的地面站时,可能需要将图片传送到地面站,此时则也有可能需要占用地面站的存储空间。
因此,本申请实施例通过将该拍摄任务占用的存储资源从相应的余量中扣除,以便可以更好地评估每个卫星能否承接下一拍摄任务。
可选地,在本申请实施例一些可能的实施方式中,电子设备可以按照上述实施方式对包含目标地点所对应的拍摄任务在内的多个拍摄任务进行判定,即通过将多个拍摄任务记录于一任务列表,并判断多个卫星中是否存在某一卫星任务列表能够执行任务列表中的拍摄任务。
比如,电子设备可以先按照任务优先级从大到小的顺序对任务列表中的拍摄任务进行排序,然后按照排列的顺序依次判断每一拍摄任务在对应于每个卫星时,每个卫星在进入目标地点对应的第一时刻信息、每个卫星在第一时刻时的可用存储资源以及每个卫星的性能参数能否排到多个卫星的某一卫星的任务列表。
可选地,作为一种可能的实施方式,任务列表中拍摄任务的优先级可以根据目标地点的参数来划分,例如,对应人数较多的目标地点优先级高,对应人数较少的目标地点优先级低。当然,可以理解的是,在本申请实施例其他一些可能的实施方式中,拍摄任务的优先级也可以根据其他的一些维度进行划分,比如,拍摄任务的优先级也可以根据拍摄任务的发起人的用户等级来划分,发起人的用户等级越高,对应的拍摄任务优先级则越高,发起人的用户等级越低,对应的拍摄任务优先级越低。
可选地,电子设备在执行步骤131计算多个卫星中的每个卫星在分别进入目标地点对应的第一时刻时每个卫星的可用存储资源,可以采用以下两种可能的实现方式,第一种可能的实现方式中包括:
计算多个卫星中的每个卫星在当前时刻的可用存储资源;
计算每个卫星中已被扣除的待执行的拍摄任务所占用的存储资源;
计算多个卫星中的每个卫星在当前时刻的可用存储资源与对应的卫星中已被扣除的存储资源的差值,差值为对应的卫星在第一时刻的可用存储资源。
在例如上述的实施方式中,每个卫星中已被扣除掉的待执行的拍摄任务所占用的存储资源,可以是指每个卫星在被可能安排去执行拍摄用户输入的目标地点之前,其每个卫星已经被安排了其他的还未执行的拍摄任务;可以理解的是,虽然前述的未执行的拍摄任务还未执行,但由于在后续的执行过程即将占用一部分存储资源,因此在给每个卫星规划拍摄任务的时候,即可在相应的卫星中扣除该拍摄任务占用的存储资源,从而通过计算每个卫星中已被扣除掉的待执行的拍摄任务所占用的存储资源,可以使计算得出的每个卫星在分别进入目标地点对应的第一时刻时的可用存储资源更加准确,从而为本次筛选卫星带来更加准确的约束条件。
第二种可能的实现方式,请参见图3,图3示出图2中步骤131的子步骤的一种示意性流程图,在本申请实施例一些可能的实施方式中,步骤131可以包括如下步骤131a至步骤131b:
步骤131a,计算多个卫星中每个卫星在分别进入相应的地面站对应的第二时刻信息,其中,地面站可以被配置成接收相应的卫星传回的信息,第二时刻信息包括第二时刻。
在一些可能的实施方式中,地面站可以被配置成在每个卫星进入地面站时,接收相应的卫星回传的信息,该回传的信息可以包括拍摄任务的任务结果,每个卫星进入地面站的第二时刻可以为每个卫星能够与地面站进行数据交互时的最早时刻。
其中,由于每个卫星一般沿其各自的卫星轨道运行,因此每个卫星可以在沿轨道进入地面站的信号辐射范围内时,将拍摄到的信息发送给该地面站。
可选地,作为一种可能的实施方式,请参见图4,图4示出图3中步骤131a的子步骤的一种示意性流程图,作为一种可能的实施方式,步骤131a可以包括以下步骤131a1至步骤131a2:
步骤131a1,根据每个卫星在当前时刻的位置信息,计算每个卫星在当前时刻相对于相应的地面站的角度信息。
可选地,作为一种可能的实施方式,步骤131a1可以包括如下步骤131a1-1至步骤131a1-3:
步骤131a1-1,将每个卫星在当前时刻的位置信息相关的坐标由J2000坐标系转换到地固坐标系。
在一些可能的实施方式中,J2000坐标系的原点可以为地心,xy坐标面可以是历元J2000.0时刻的平赤道面,x轴方向可以是该历元的平春分点。
地固坐标系的原点可以为地心,z轴方向可以是地球的平均极方向,xy坐标面可以是过地心并与平均极方向垂直的地球赤道面,x轴可以指向格林尼治子午线方向。
可选地,在一些可能的实施方式中,电子设备可以根据以下公式计算每个卫星在地固坐标系的矢量R sat
R sat=(HG)r sat其中,r sat可以为每个卫星在J2000坐标系的矢量。
步骤131a1-2,根据每个卫星在地固坐标系的坐标,计算每个卫星在测站坐标系中的位置坐标。
在一些可能的实施方式中,测站坐标系的坐标原点可以设置在地面站中心,x轴可以为过测站坐标系的坐标原点的水平面上指向东方,y轴可以为过测站坐标系的坐标原点指向北方,z轴可以垂直于xy平面,并与x轴、y轴构成右手坐标系。
电子设备可以根据以下公式计算每个卫星在测站坐标系中的位置矢量R':
Figure PCTCN2020098109-appb-000012
其中,R sat为地固坐标系中卫星的位置的矢量,地面站在大地坐标表示为
Figure PCTCN2020098109-appb-000013
Figure PCTCN2020098109-appb-000014
θ为对应的角度参数,R station为地面站地固系矢量。
步骤131a1-3,根据每个卫星在测站坐标系中的位置坐标,计算每个卫星在当前时刻相对于地面站的角度信息。
在一些可能的实施方式中,角度信息可以包括方位角和高度角,假设设电子设备通过步骤1212计算出的每个卫星在测站坐标系中的位置矢量表示为R'(X,Y,Z),则电子设备可以根据以下公式计算得到方向角Az和高度角El:
Figure PCTCN2020098109-appb-000015
Figure PCTCN2020098109-appb-000016
其中,atan是反正切函数,asin是反正弦函数。
步骤131a2,根据每个卫星在当前时刻相对于地面站的角度信息、天线约束条件以及每个卫星的运行轨道信息,计算每个卫星在进入地面站的第二时刻信息。
在一些可能的实现方式中,上述的天线约束条件是预先设置的,比如可以为预先设置的地面站所辐射的角度,在一些可能的场景中,地面站所辐射的角度可以是固定的。
由于在卫星轨道上角度信息与时刻信息是一一对应的,因此根据每个卫星在当前时刻相对于地面站的角度信息结合天线约束条件以及每个卫星的卫星轨道,可以计算出每个卫星在进入地面站的第二时刻信息。
步骤131b,根据每个卫星的第二时刻信息以及第一时刻信息,确定每个卫星在分别进入目标地点对应的第一时刻时每个卫星的可用存储资源。
在一些可能的实施方式中,当电子设备欲计算每个卫星在第一时刻时的可用存储资源,可以先计算每个卫星分别进入相应的地面站对应的第二时刻信息,然后在判断第二时刻信息对应的第二时刻是在第一时刻之前或是之后;若第二时刻在第一时刻之前,则表征对应的卫星在进入目标地点之前还可以向地面站传输部分信息,从而腾出更多的可用存储资源;若第二时刻在第一时刻之后,则表征对应的卫星在进入目标地点的可用存储资源小于或者等于该卫星当前状态下剩余的存储资源,因此在这种情况下,若该卫星当前状态下剩余的存储资源小于预设值时,则可确定该卫星不适合去执行拍摄目标地点。
示例性地,电子设备可以根据每个卫星的第二时刻信息以及第一时刻信息,确定每个卫星在分别进入目标地点对应的第一时刻时每个卫星的可用存储资源,包括:
电子设备可以计算每个卫星在当前时刻可用存储资源;
接下来,电子设备可以将第二时刻与第一时刻进行对比,若第二时刻在第一时刻之前,计算每个卫星在经过对应地面站后空出的可用存储资源;
如此,电子设备利用每个卫星在当前时刻可用存储资源加上每个卫星在经过对应地面站后空出的可用存储资源,作为为每个卫星在分别进入目标地点对应的第一时刻时每个卫星的可用存储资源;
若第二时刻在第一时刻之后,则电子设备将每个卫星在当前时刻的可用存储资源作为每个卫星在分别进入目标地点对应的第一时刻时每个卫星的可用存储资源。
需要说明的是,电子设备在计算每个卫星在经过对应地面站后空出的可用存储资源时,可以结合每个卫星对应的地面站信号辐射的范围,根据每个卫星在对应地面站信号辐射范 围内所飞过的路程长度,以及每个卫星下传数据至对应地面站时的速度,计算得出每个卫星在经过对应地面站后空出的可用存储资源。
比如,电子设备可以利用每个卫星对应地面站辐射范围内所飞过的路程长度,除以每个卫星的飞行速度,从而得到每个卫星在飞过对应地面站辐射范围内的时间,然后再乘以每个卫星下传数据至对应地面站的速度,即可得到每个卫星经过对应地面站后空出的可用存储资源。
另外,需要说明的是,上述两种计算每个卫星在进入目标地点的存储资源不仅可以单独实施,也可以相互结合;比如电子设备可以先计算多个卫星中的每个卫星在当前时刻的可用存储资源;
然后计算每个卫星中已被扣除的待执行的拍摄任务所占用的存储资源;
接下来将第二时刻与第一时刻进行比对,若第二时刻在第一时刻之前,则电子设备可以计算每个卫星在经过对应地面站后空出的可用存储资源;
如此,电子设备可以根据计算每个卫星在当前时刻可用存储资源,加上计算每个卫星在经过对应地面站后空出的可用存储资源,并减去每个卫星中已被扣除的待执行的拍摄任务所占用的存储资源,得到的结果则为每个卫星在分别进入目标地点对应的第一时刻时每个卫星的可用存储资源。
请参见图6,图6示出了本申请实施例提供的卫星控制方法的另一种示意性流程框图,可以包括如下步骤210至步骤230:
步骤210,响应于用户的选择目标按钮操作请求,在终端设备的显示界面显示出第二提示信息,第二提示信息被配置成引导用户输入待拍摄的目标地点,和/或第二提示信息被配置成引导用户从在终端设备的显示界面显示出的多个待选地点中选择一个待拍摄的目标地点。
结合图9a至图9f所示,图9a的右下角可以为选择目标按钮,用户可以通过点击选择目标的按钮来发送目标地操作择请求,然后在终端设备的显示界面可以显示出如图9c示出的多个待选地点,例如成都、南京、东莞等。
在一些可能的实施方式中,上述的第二提示信息可以为如图9c示出的显示内容,用户可以在图9c示出的界面上方的搜索框中输入待拍摄的目标地点,也可以从图9c示出的多个待选地点中选择一个目标地点。
步骤220,响应于用户的目标地点操作请求,目标地点为用户输入的待拍摄的目标地点和/或用户从多个待选地点中选择待拍摄的目标地点。
用户的目标地操作中请求可以由用户在图9c示出的界面上方的搜索框中输入待拍摄的目标地点,也可以由用户点击图9c示出的多个待选地点中的一个目标地点来触发,例如,不妨设用户操作的是成都,则成都即为用户输入的待拍摄的目标地点。
步骤230,响应于用户的任务规划请求,执行步骤:根据目标地点的位置信息、多个卫星中每个卫星的运行轨道信息以及每个卫星在当前时刻的位置信息,计算每个卫星在分别进入目标地点对应的第一时刻信息。
结合图9a所示,图9a的正下方为规划的按钮,用户可以通过点击规划的按钮来执行步骤120,从而继续执行,直到确定目标地点对应的拍摄任务是否能被安排至每个卫星。
假设星时代1号不能安排目标地点对应的拍摄任务,星时代2号能够安排目标地点对应的拍摄任务,则图9d和图9e示出了星时代1号不能安排目标地点(即成都)对应的拍摄任务的提示;图9f示出了星时代2号能够安排目标地点(即成都)对应的拍摄任务的提示。
其中,在一些可能的实施方式中,用户可以通过点击终端设备的触控屏的方式来选择上述按钮,也可以通过语音输入的方式选择上述的按钮,本申请实施例对于用户输入信息的形式不进行限制。
可选地,在执行步骤210之前,该卫星控制方法还可以包括如下步骤201至步骤202:
步骤201,响应于用户的卫星选择请求,在终端设备的显示界面显示出多个卫星的卫星信息。
请参见图9a,图9a示出了卫星控制方法在用户的终端设备的显示界面的示意图,图9a的左下角为选择卫星的按钮,用户可以通过点击选择卫星的按钮来发送卫星选择请求,然后在终端设备的显示界面可以显示出如图9b示出的多个卫星的卫星信息,例如星时代1号,类型:遥感卫星,载荷:CCD,分辨率:5m;星时代2号,类型:遥感卫星,载荷:CCD,分辨率:5m等。
步骤202,响应于用户的卫星选中请求,选中目标卫星,其中,目标卫星为多个卫星中与用户的卫星选中请求对应的卫星。
用户的卫星选中请求可以由用户点击图9b示出的多个卫星的卫星信息中的一个卫星信息来触发,例如,假设用户操作的是星时代1号,则星时代1号即为用户选中的目标卫星。
请参见图7,图7示出了本申请实施例提供应用于运控中心的卫星控制装置300的一种示意性结构框图,该卫星控制装置300可以包括:
坐标接收模块310,被配置成接收用户输入的待拍摄的目标地点。
时刻计算模块320,被配置成根据目标地点的位置信息、多个卫星中每个卫星的运行轨道信息以及每个卫星在当前时刻的位置信息,计算每个卫星在分别进入目标地点对应的第一时刻信息。
任务确定模块330,被配置成根据每个卫星在分别进入目标地点对应的第一时刻信息,从多个卫星中确定出至少一个待执行卫星去拍摄目标地点。
需要说明的是,图7示出的卫星控制装置300实现的功能,与图1示出的应用于运控中心的卫星控制方法对应相同,为简要描述,卫星控制装置300具体的执行功能请参阅本申请实施例提供的上述应用在运控中心的卫星控制方法,在此便不做赘述。
请参见图8,图8示出了本申请实施例提供的应用于终端设备的卫星控制装置400的一种示意性结构框图,该卫星控制装置400可以包括:
地点操作模块410,被配置成响应于用户的选择目标按钮操作请求,在终端设备的显示界面显示出第二提示信息,第二提示信息被配置成引导用户输入待拍摄的目标地点,和/或第二提示信息被配置成引导用户从在终端设备的显示界面显示出的多个待选地点中选择一个待拍摄的目标地点;
还被配置成响应于用户的目标地点操作请求,目标地点为用户输入的待拍摄的目标地点和/或用户从多个待选地点中选择待拍摄的目标地点;
任务规划模块420,被配置成响应于用户的任务规划请求,执行步骤:根据目标地点的位置信息、多个卫星中每个卫星的运行轨道信息以及每个卫星在当前时刻的位置信息,计算每个卫星在分别进入目标地点对应的第一时刻信息。
需要说明的是,图8示出的卫星控制装置400实现的功能,与图6示出的应用于终端设备的卫星控制方法对应相同,为简要描述,卫星控制装置400具体的执行功能请参阅本申请实施例提供的上述应用在终端设备的卫星控制方法,在此便不做赘述。
另外,结合图10所示,本申请实施例还提供一种电子设备500,该电子设备500可以作为上述实施例中的运控中心或者是终端设备。
其中,作为一种可能的实现方式,电子设备500可以包括存储器501、处理器502和通信接口503,该存储器501、处理器502和通信接口503相互之间直接或间接地电性连接,以实现数据的传输或交互。例如,这些元件相互之间可通过一条或多条通讯总线或信号线实现电性连接。
存储器501可以被配置成存储软件程序及模块,如本申请提供的卫星控制装置对应的程序指令/模块,处理器502可以通过执行存储在存储器501内的软件程序及模块,从而执行各种功能应用以及数据处理,进而执行本申请提供的卫星控制方法的步骤。该通信接口503可以被配置成与其他节点设备进行信令或数据的通信。
其中,存储器501可以是,但不限于,随机存取存储器(Random Access Memory,RAM),只读存储器(Read Only Memory,ROM),可编程只读存储器(Programmable Read-Only Memory,PROM),可擦除只读存储器(Erasable Programmable Read-Only Memory,EPROM),电可擦除可编程只读存储器(Electric Erasable Programmable Read-Only Memory,EEPROM)等。
处理器502可以是一种集成电路芯片,具有信号处理能力。该处理器502可以是通用处理器,比如中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
基于与上述方法实施例相同的发明构思,本申请实施例还提供了一种计算机可读存储介质,其上存储有一些计算机程序,这些计算机程序被处理器调用运行时,可以完成上述方法实施例、方法实施例的任意一种可能的设计中所涉及的方法。本申请实施例中,对计算机可读存储介质不做限定,例如,可以是RAM(random-access memory,随机存取存储器)、ROM(read-only memory,只读存储器)等。
并且,基于与上述方法实施例相同的发明构思,本申请还提供一种计算机程序产品,该计算机程序产品在计算机上运行时,可以完成方法实施例以及上述方法实施例任意可能的设计中所涉及的方法。
其中,本申请实施例提供的电子设备、计算机存储介质、计算机程序产品均可以被配置成执行上述实施例所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
再者,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
以上所述仅为本申请的部分实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
用户仅需输入待拍摄的目标地点便能够获取到该目标地点的遥感图像,而不需要了解所有的在轨卫星的性能等信息。例如,用户仅需输入待拍摄的目标地点就可以获得实现拍摄待拍摄的目标地点的至少一个卫星,从而根据自身需要选择待执行卫星,就能够给待待执行卫星规划拍摄任务,最终获取到目标地点的图像。通过上述方法能够降低卫星控制的操作难度,从而降低卫星控制的技术门槛。

Claims (19)

  1. 一种卫星控制方法,应用于与卫星连接的运控中心,其特征在于,所述方法包括:
    接收用户输入的待拍摄的目标地点;
    根据所述目标地点的位置信息、多个卫星中每个卫星的运行轨道信息以及所述每个卫星在当前时刻的位置信息,计算所述每个卫星在分别进入所述目标地点对应的第一时刻信息;
    根据所述每个卫星在分别进入所述目标地点对应的第一时刻信息,从所述多个卫星中确定出至少一个待执行卫星去拍摄所述目标地点。
  2. 根据权利要求1所述的卫星控制方法,其特征在于,根据所述每个卫星在分别进入所述目标地点对应的第一时刻信息,从所述多个卫星中确定出至少一个待执行卫星去拍摄所述目标地点,包括:
    计算多个卫星中的每个卫星在分别进入所述目标地点对应的第一时刻时每个卫星的可用存储资源,其中,所述第一时刻信息包括所述第一时刻;
    根据所述多个卫星中的每个卫星可用存储资源,从所述多个卫星中确定出至少一个待执行卫星去拍摄所述目标地点,其中,每个所述待执行卫星的可用存储资源能够满足拍摄所述目标地点所需的存储资源。
  3. 根据权利要求1所述的卫星控制方法,其特征在于,根据所述每个卫星在分别进入所述目标地点对应的第一时刻信息,从所述多个卫星中确定出至少一个待执行卫星去拍摄所述目标地点,包括:
    根据所述每个卫星在分别进入所述目标地点对应的第一时刻信息,将最先进入所述目标地点所对应的卫星确定为待执行卫星,所述第一时刻信息包括所述第一时刻;
    安排所述待执行卫星去拍摄所述目标地点。
  4. 根据权利要求1所述的卫星控制方法,其特征在于,根据所述每个卫星在分别进入所述目标地点对应的第一时刻信息,从所述多个卫星中确定出至少一个待执行卫星去拍摄所述目标地点,包括:
    计算多个卫星中的每个卫星在分别进入所述目标地点对应的第一时刻时每个卫星的可用存储资源,其中,所述第一时刻信息包括所述第一时刻;
    根据所述多个卫星中的每个卫星可用存储资源,从所述多个卫星中选择出所有备选卫星,其中,每个所述备选卫星具有满足拍摄所述目标地点所需的存储资源;
    根据所述选择出的备选卫星,和所述选择出的备选卫星在分别进入所述目标地点对应的第一时刻信息,从所述选择出的备选卫星中确定出最先进入所述目标地点的卫星作为待执行卫星;
    安排所述待执行卫星去拍摄所述目标地点。
  5. 根据权利要求2或4所述的卫星控制方法,其特征在于,所述计算多个卫星中的每个卫星在分别进入所述目标地点对应的第一时刻时每个卫星的可用存储资源,包括:
    计算多个卫星中每个卫星在分别进入相应的地面站对应的第二时刻信息,其中,所述地面站被配置成接收相应的卫星传回的信息,所述第二时刻信息包括所述第二时刻;
    根据所述每个卫星的第二时刻信息以及第一时刻信息,确定所述每个卫星在分别进入所述目标地点对应的第一时刻时每个卫星的可用存储资源。
  6. 根据权利要求5所述的卫星控制方法,其特征在于,根据所述每个卫星的第二时刻信息以及第一时刻信息,确定所述每个卫星在分别进入所述目标地点对应的第一时刻时每个卫星的可用存储资源,包括:
    计算所述每个卫星在当前时刻可用存储资源;
    将所述第二时刻与所述第一时刻进行对比,若所述第二时刻在所述第一时刻之前,计算所述每个卫星在经过对应地面站后空出的可用存储资源;
    利用所述每个卫星在当前时刻可用存储资源加上所述每个卫星在经过对应地面站后空出的可用存储资源,作为所述每个卫星在分别进入所述目标地点对应的第一时刻时每个卫星的可用存储资源;
    若所述第二时刻在所述第一时刻之后,则将所述每个卫星在当前时刻的可用存储资源作为每个卫星在分别进入目标地点对应的第一时刻时每个卫星的可用存储资源。
  7. 根据权利要求5或6所述的卫星控制方法,其特征在于,所述计算多个卫星中每个卫星在分别进入相应的地面站对应的第二时刻信息,包括:
    根据所述多个卫星中每个卫星在当前时刻的位置信息以及与所述多个卫星中每个卫星对应的地面站的位置信息,计算所述多个卫星中每个卫星在当前时刻相对于所述对应的地面站的角度信息;
    根据所述多个卫星中每个卫星在当前时刻相对于所述对应的地面站的角度信息、天线约束条件以及所述多个卫星中每个卫星的运行轨道信息,计算所述多个卫星中每个卫星在进入所述对应的地面站的第二时刻信息。
  8. 根据权利要求5或6所述的卫星控制方法,其特征自在于,所述根据所述多个卫星中每个卫星在当前时刻的位置信息以及与所述多个卫星中每个卫星对应的地面站的位置信息,计算所述多个卫星中每个卫星在当前时刻相对于所述对应的地面站的角度信息,包括:
    将所述每个卫星在当前时刻的位置信息相关的坐标由J2000坐标系转换到地固坐标系;
    根据所述每个卫星在所述地固坐标系的坐标,计算所述每个卫星在测站坐标系中的位置坐标;
    根据所述每个卫星在所述测站坐标系中的位置坐标,计算所述每个卫星在当前时刻相对于所述地面站的角度信息。
  9. 根据权利要求2或4所述的卫星控制方法,其特征在于,计算多个卫星中的每个卫星在分别进入所述目标地点对应的第一时刻时每个卫星的可用存储资源,包括:
    计算所述多个卫星中的每个卫星在当前时刻的可用存储资源;
    计算所述每个卫星中已被扣除的待执行的拍摄任务所占用的存储资源;
    计算所述多个卫星中的每个卫星在当前时刻的可用存储资源与对应的卫星中已被扣除的存储资源的差值,所述差值为对应的卫星在所述第一时刻的可用存储资源。
  10. 根据权利要求2所述的卫星控制方法,其特征在于,在所述根据所述多个卫星中的每个卫星可用存储资源,从所述多个卫星中确定出至少一个待执行卫星去拍摄所述目标地点之后,所述方法还包括:
    将至少一个待执行卫星的卫星信息反馈至用户终端,并输出提示信息,所述提示信息被配置成提示用户从所述至少一个待执行卫星中选择一个目标卫星去执行拍摄所述目标地点;
    将拍摄所述目标地点的拍摄任务安排至所述目标卫星的任务列表中,并扣除所述目标卫星中拍摄所述目标地点所需占用的存储资源。
  11. 根据权利要求1所述的卫星控制方法,其特征在于,所述根据所述目标地点的位置信息、所述多个卫星中每个卫星的运行轨道信息以及所述每个卫星在当前时刻的位置信息,计算所述每个卫星在分别进入所述目标地点对应的第一时刻信息,包括:
    根据所述多个卫星中每个卫星在当前时刻的位置信息以及所述目标地点的位置信息,计算所述每个卫星在当前时刻相对于所述目标地点的角度信息;
    根据所述每个卫星在当前时刻相对于所述目标地点的角度信息,以及所述每个卫星的运行轨道信息,计算所述每个卫星在进入目标地点的第一时刻信息。
  12. 根据权利要求11所述的卫星控制方法,其特征在于,所述根据所述多个卫星中每个卫星在当前时刻的位置信息以及所述目标地点的位置信息,计算所述每个卫星在当前时刻相对于所述目标地点的角度信息,包括:
    将所述目标地点的坐标由球坐标系转换到地固坐标系;
    将所述目标地点的坐标由所述地固坐标系转换到J2000坐标系;
    将所述目标地点的坐标由所述J2000坐标系转换到轨道坐标系;
    利用所述目标地点在所述轨道坐标系的坐标,以及所述每个卫星当前时刻的位置信息相关的坐标,计算所述每个卫星在当前时刻相对于目标地点的角度信息。
  13. 一种卫星控制方法,其特征在于,所述方法包括:
    响应于用户的选择目标按钮操作请求,在终端设备的显示界面显示出第二提示信息,所述第二提示信息被配置成引导用户输入待拍摄的目标地点,和/或所述第二提示信息被配置成引导用户从在所述终端设备的显示界面显示出的多个待选地点中选择一个待拍摄的目标地点;
    响应于用户的目标地点操作请求,所述目标地点为用户输入的待拍摄的目标地点和/或用户从所述多个待选地点中选择待拍摄的目标地点;
    响应于用户的任务规划请求,执行步骤:根据所述目标地点的位置信息、多个卫星中每个卫星的运行轨道信息以及所述每个卫星在当前时刻的位置信息,计算所述每个卫星在分别进入所述目标地点对应的第一时刻信息。
  14. 根据权利要求12所述的方法,其特征在于,在响应于用户的选择目标按钮操作请求,在终端设备的显示界面显示出第二提示信息之前,所述方法还包括:
    响应于用户的卫星选择请求,在终端设备的显示界面显示出多个卫星的卫星信息;
    响应于用户的卫星选中请求,选中目标卫星,其中,所述目标卫星为所述多个卫星中与用户的卫星选中请求对应的卫星。
  15. 一种卫星控制装置,应用于与卫星连接的运控中心,其特征在于,所述装置包括:
    坐标接收模块,被配置成接收用户输入的待拍摄的目标地点;
    时刻计算模块,被配置成根据所述目标地点的位置信息、多个卫星中每个卫星的运行轨道信息以及所述每个卫星在当前时刻的位置信息,计算所述每个卫星在分别进入所述目标地点对应的第一时刻信息;
    任务确定模块,被配置成根据所述每个卫星在分别进入所述目标地点对应的第一时刻信息,从所述多个卫星中确定出至少一个待执行卫星去拍摄所述目标地点。
  16. 一种卫星控制装置,其特征在于,所述装置包括:
    地点操作模块,被配置成响应于用户的选择目标按钮操作请求,在终端设备的显示界面显示出第二提示信息,所述第二提示信息被配置成引导用户输入待拍摄的目标地点,和/或所述第二提示信息被配置成引导用户从在所述终端设备的显示界面显示出的多个待选地点中选择一个待拍摄的目标地点;
    还被配置成响应于用户的目标地点操作请求,所述目标地点为用户输入的待拍摄的目标地点和/或用户从所述多个待选地点中选择待拍摄的目标地点;
    任务规划模块,被配置成响应于用户的任务规划请求,执行步骤:根据所述目标地点的位置信息、多个卫星中每个卫星的运行轨道信息以及所述每个卫星在当前时刻的位置信息,计算所述每个卫星在分别进入所述目标地点对应的第一时刻信息。
  17. 一种电子设备,其特征在于,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令;
    当所述电子设备运行,所述处理器与所述存储器之间通过总线通信,所述机器可读指令被所述处理器执行时执行如权利要求1-14任一项所述的方法。
  18. 一种可读存储介质,其特征在于,该可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行如权利要求1-14任一项所述的方法。
  19. 一种计算机程序产品,其特征在于,所述计算机程序产品在计算机上运行时,使得计算机执行如权利要求1-14任一项所述的方法。
PCT/CN2020/098109 2019-12-24 2020-06-24 一种卫星控制方法及装置 WO2021128775A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/419,701 US11316584B2 (en) 2019-12-24 2020-06-24 Satellite control method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911363616.4 2019-12-24
CN201911363616.4A CN111144742B (zh) 2019-12-24 2019-12-24 卫星控制方法及装置

Publications (1)

Publication Number Publication Date
WO2021128775A1 true WO2021128775A1 (zh) 2021-07-01

Family

ID=70520306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098109 WO2021128775A1 (zh) 2019-12-24 2020-06-24 一种卫星控制方法及装置

Country Status (3)

Country Link
US (1) US11316584B2 (zh)
CN (1) CN111144742B (zh)
WO (1) WO2021128775A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114879228A (zh) * 2021-12-31 2022-08-09 北京航天驭星科技有限公司 一种无人机模拟卫星过境的方法及系统
CN117009606A (zh) * 2023-09-22 2023-11-07 中科星图测控技术股份有限公司 一种考虑约束的观测星轨道机动进入点选择方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111144742B (zh) * 2019-12-24 2021-06-08 成都星时代宇航科技有限公司 卫星控制方法及装置
CN115168788B (zh) * 2022-09-07 2022-11-22 中国科学院空天信息创新研究院 卫星遥感大数据的确定方法、装置、设备及介质
CN116011891B (zh) * 2023-03-24 2023-06-06 中国西安卫星测控中心 一种基于时间分类的航天测控资源利用效果确定方法
CN116975501B (zh) * 2023-09-20 2023-12-15 中科星图测控技术股份有限公司 一种优化卫星载荷对地面目标覆盖计算的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080087769A1 (en) * 2006-06-20 2008-04-17 Kara Johnson Method of determining and controlling the inertial attitude of a spinning, artificial satellite and systems therefor
CN105223595A (zh) * 2014-05-26 2016-01-06 联想(北京)有限公司 卫星定位方法和卫星定位装置
CN109684055A (zh) * 2018-11-07 2019-04-26 长沙天仪空间科技研究院有限公司 一种基于主动观测任务的卫星调度方法
CN111144742A (zh) * 2019-12-24 2020-05-12 成都星时代宇航科技有限公司 卫星控制方法及装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8386098B2 (en) * 2009-08-03 2013-02-26 David A. Bailey Method for a deeper search in a time-limited image satellite planning environment
CN101881969B (zh) * 2009-09-03 2012-03-14 中国航空无线电电子研究所 基于多任务并行处理的飞行管理系统及其方法
KR101197103B1 (ko) * 2012-03-09 2012-11-07 (주) 지솔루션 위성압축영상 분할처리 장치 및 그 방법
EP3284037A1 (en) * 2015-04-16 2018-02-21 United Parcel Service Of America, Inc. Enhanced multi-layer cargo screening system, computer program product, and method of using the same
CN105184038B (zh) * 2015-06-15 2018-09-21 中国人民解放军国防科学技术大学 面向资源利用率的成像卫星任务规划绩效评估方法
FR3045990B1 (fr) * 2015-12-18 2018-02-02 Airbus Defence And Space Sas Procede et systeme d'acquisition d'images par une constellation de satellites d'observation
US10783532B2 (en) 2016-04-06 2020-09-22 Chicago Mercantile Exchange Inc. Detection and mitigation of effects of high velocity value changes based upon match event outcomes
CN108023636A (zh) * 2016-11-01 2018-05-11 中电科海洋信息技术研究院有限公司 限定区域遥感数据获取方法和系统及服务端及智能终端
CN109211245B (zh) * 2018-07-30 2021-12-31 上海卫星工程研究所 多目标任务规划方法
CN109163704A (zh) * 2018-08-03 2019-01-08 首都师范大学 图像采集方法及装置
CN109447394A (zh) * 2018-09-14 2019-03-08 中国科学院空间应用工程与技术中心 一种对地观测卫星任务效能评价指标体系及分析方法
CN109377075B (zh) * 2018-11-07 2020-09-15 长沙天仪空间科技研究院有限公司 一种基于前瞻预测的任务调度方法
CN110210453B (zh) * 2019-06-14 2021-06-29 中国资源卫星应用中心 一种基于遥感图像特征的油罐存储量确定方法及系统
US10979137B2 (en) * 2019-08-01 2021-04-13 Planet Labs, Inc. Multi-pathway satellite communication systems and methods
CN112737660B (zh) * 2020-12-09 2022-06-10 合肥工业大学 多星多站数据下传调度方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080087769A1 (en) * 2006-06-20 2008-04-17 Kara Johnson Method of determining and controlling the inertial attitude of a spinning, artificial satellite and systems therefor
CN105223595A (zh) * 2014-05-26 2016-01-06 联想(北京)有限公司 卫星定位方法和卫星定位装置
CN109684055A (zh) * 2018-11-07 2019-04-26 长沙天仪空间科技研究院有限公司 一种基于主动观测任务的卫星调度方法
CN111144742A (zh) * 2019-12-24 2020-05-12 成都星时代宇航科技有限公司 卫星控制方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114879228A (zh) * 2021-12-31 2022-08-09 北京航天驭星科技有限公司 一种无人机模拟卫星过境的方法及系统
CN117009606A (zh) * 2023-09-22 2023-11-07 中科星图测控技术股份有限公司 一种考虑约束的观测星轨道机动进入点选择方法
CN117009606B (zh) * 2023-09-22 2023-12-29 中科星图测控技术股份有限公司 一种考虑约束的观测星轨道机动进入点选择方法

Also Published As

Publication number Publication date
CN111144742B (zh) 2021-06-08
CN111144742A (zh) 2020-05-12
US11316584B2 (en) 2022-04-26
US20210376918A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2021128774A1 (zh) 一种多终端遥感卫星控制方法、装置及可读存储介质
WO2021128775A1 (zh) 一种卫星控制方法及装置
US10809711B2 (en) Electronic device and method for controlling the same
WO2018090308A1 (en) Enhanced localization method and apparatus
KR20210036317A (ko) 모바일 에지 컴퓨팅 기반의 시각적 위치 확정 방법 및 장치
KR102037504B1 (ko) 위경 고도 좌표계를 기반으로 하는 비행 모델의 입체영상 생성 장치 및 그 방법
CN112815923B (zh) 视觉定位方法和装置
CN111680596B (zh) 基于深度学习的定位真值校验方法、装置、设备及介质
KR20210007825A (ko) 인공위성과 이동장치 간의 실시간 통신 방법 및 시스템
CN112101209A (zh) 用于路侧计算设备的确定世界坐标点云的方法和装置
CN116009596A (zh) 一种姿态角的计算方法、装置、介质、以及电子设备
CN105890577B (zh) 一种适用于深空探测器在轨多个天体合影成像方法
CN115439528A (zh) 一种获取目标对象的图像位置信息的方法与设备
CN105424007A (zh) 一种移动测绘平台
CN110906922A (zh) 无人机位姿信息的确定方法及装置、存储介质、终端
CN205356525U (zh) 无人飞行器
Chapman et al. STARS: a software application for the EBEX autonomous daytime star cameras
KR102072550B1 (ko) 우주 사진관
CN111664860A (zh) 定位方法、装置、智能设备及存储介质
CN113525720B (zh) 一种航天器目标姿态的确定方法、装置、设备及存储介质
CN114440885B (zh) 一种静止轨道遥感卫星定位方法及装置
US10157473B2 (en) Method for providing range estimations
CN112748746B (zh) 获取飞行器的飞行信息的方法、装置、设备及存储介质
JP6765738B1 (ja) 無人飛行体のフライト管理サーバ及びフライト管理システム
US11543265B2 (en) Third-party accessible application programming interface for generating 3D symbology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904413

Country of ref document: EP

Kind code of ref document: A1