WO2021128668A1 - 气体定量检测设备及方法 - Google Patents

气体定量检测设备及方法 Download PDF

Info

Publication number
WO2021128668A1
WO2021128668A1 PCT/CN2020/086388 CN2020086388W WO2021128668A1 WO 2021128668 A1 WO2021128668 A1 WO 2021128668A1 CN 2020086388 W CN2020086388 W CN 2020086388W WO 2021128668 A1 WO2021128668 A1 WO 2021128668A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
optical cavity
ring
quantitative
switching valve
Prior art date
Application number
PCT/CN2020/086388
Other languages
English (en)
French (fr)
Inventor
黄泽建
方向
戴新华
江游
Original Assignee
中国计量科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国计量科学研究院 filed Critical 中国计量科学研究院
Priority to US17/418,223 priority Critical patent/US11761887B2/en
Publication of WO2021128668A1 publication Critical patent/WO2021128668A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/391Intracavity sample

Definitions

  • the invention relates to the field of gas detection, in particular to a gas quantitative detection equipment and method.
  • Gas chromatography is a chromatographic separation analysis method that uses gas as a mobile phase.
  • a certain volume of gas sample is carried into the chromatographic column by the carrier gas (mobile phase).
  • the stationary phase in the column has different molecular forces from the components in the gas sample, and the time for each component to flow out of the chromatographic column is different. Separate.
  • the standard gas of each single component is tested in advance, and the time it takes to flow out of the chromatographic column is obtained, which is called the retention time.
  • the gas chromatograph uses the retention time to achieve qualitative determination.
  • Gas chromatography quantification usually adopts external standard method and internal standard method. When accurate injection volume is possible, external standard method is usually used for quantification.
  • This method first needs to obtain a standard gas with different concentrations of a gas component, and then sample and test each standard gas separately, so as to calculate a quantitative calibration curve for the gas based on a series of concentrations.
  • the actual sample is injected After analysis, the corresponding component chromatographic peaks are calculated according to the quantitative calibration curves of different substances, so as to realize quantification.
  • the internal standard method is to select a suitable substance as the reference substance of the predicted component, and add it to the sample quantitatively, based on the ratio and the ratio of the response value (peak area or peak height) of the component to be determined and the reference substance on the detector. The amount of reference substance added is quantitatively detected.
  • Gas chromatography/mass spectrometry uses gas chromatography to separate gas samples, and then uses mass spectrometry for qualitative and quantitative analysis. Since the chromatogram separates the substances, the components separated from the chromatographic column are pure substances when they are detected by mass spectrometry, and there is no interference from other substances. Therefore, the standard library of mass spectrometry can be used for this group. Perform qualitative analysis. The quantitative method of gas chromatography/mass spectrometry is the same as that of gas chromatography.
  • Optical cavity ring-down spectroscopy by measuring the optical cavity ring-down time at a specific wavelength, the characteristic absorption spectrum of the gas in the cavity can be obtained, so as to achieve accurate gas concentration measurement. Since it is the measurement of the laser's decay time through the optical cavity instead of the light intensity change after passing through the optical cavity, the measurement result is not affected by the fluctuation of the laser light source.
  • the high-reflectivity optical resonant cavity greatly increases the effective absorption length, which makes the measurement sensitivity significantly higher than that of traditional absorption spectroscopy techniques.
  • the concentration of the detected gas is only related to the ring-down time. Therefore, the optical cavity ring-down spectrum does not need to be compared with an external standard.
  • Gas chromatography/mass spectrometry is qualitative by mass spectrometry, because mass spectrometry is qualitative by standard spectra. Therefore, changes in chromatographic conditions will not affect the qualitativeness of the system.
  • the quantification of gas chromatography/mass spectrometry is usually realized by external standard method and internal standard method.
  • the external standard method like gas chromatography, also requires a series of standard gases.
  • the internal standard method of mass spectrometry is different from that of gas chromatography. It needs to select a substance with the same physical and chemical properties as the measured object.
  • the isotope dilution method is usually used, that is, the isotope standard gas that is the same as the measured gas. Expensive, and not all gases can have corresponding isotope standard gases.
  • the optical cavity ring-down spectroscopy method only measures the ring-down time for the gas concentration detection, and no calibration gas is needed. This is the advantage of the optical cavity ring-down method.
  • a laser source can only be used for the detection of one or a few gases. To achieve more gas detection, it is necessary to switch between different laser light sources, which greatly increases the complexity and cost of the instrument.
  • embodiments of the present invention provide a gas quantitative detection device and method, so as to achieve quantitative detection and analysis of any variety of gases without using a standard gas.
  • a gas quantitative detection equipment including: an optical cavity ring-down spectroscopy device for quantitative detection of any characteristic gas in the gas to be measured; a sample processing device, which is set in the light The downstream of the cavity ring-down spectroscopy device is connected with the optical cavity ring-down spectroscopy device; and the mass spectrometry device is arranged downstream of the sample processing device and detects all the measured gases.
  • the optical cavity ring-down spectroscopy device includes: an optical cavity provided with an air inlet and an air outlet; a lens, the lens being arranged in the optical cavity and located in the optical cavity The opposite end of the optical cavity; a laser source, the laser source is located outside the optical cavity; a light detector, the light detector is located outside the optical cavity; wherein the light beam emitted by the laser source passes through the The lens and the optical cavity are received by the optical detector.
  • the mass spectrometry device includes: a vacuum chamber in which an ion source, a mass analyzer, and a detector are provided, and an air inlet is also provided at the end of the vacuum chamber; a vacuum pump, The vacuum pump is located outside the vacuum chamber and connected to the vacuum chamber.
  • the ion source is used to ionize the gas to be measured
  • the mass analyzer is used to perform mass analysis on the ions generated by the ionization
  • the detector is used to output a mass analysis detection result.
  • the sample processing device includes: a sample processor, a sample tube and a mass spectrometry injection tube are connected to the sample processor, wherein the sample tube is also in communication with the gas outlet of the optical cavity , The mass spectrometer injection tube is also in communication with the air inlet of the vacuum chamber.
  • the sample processor includes: a three-way valve, a first port of the three-way valve is in communication with the sample tube, and a second port is in communication with the mass spectrometer injection tube; a vacuum sampling pump, The vacuum sampling pump is in communication with the third port of the three-way valve.
  • the sample processor includes: a multi-way switching valve having an air inlet communicating with the sample tube and an air outlet communicating with the mass spectrometer injection tube; A vacuum sampling pump, a carrier gas device and a quantitative ring, the vacuum sampling pump, the carrier gas device and the quantitative ring are respectively connected to the multi-way switching valve; wherein, the multi-way switching valve can be in the first state Switching between the second state and the second state, in the first state, the quantitative ring communicates with the air inlet of the multi-way switching valve and the vacuum sampling pump; in the second state, the quantitative ring It is connected with the air outlet of the carrier gas device and the multi-way switching valve.
  • the air inlet of the multi-way switching valve, the quantitative ring, and the vacuum sampling pump are sequentially connected, and the carrier gas device is connected to the multiple-way switch The air outlet of the valve; in the second state, the air inlet of the multi-way switching valve is connected to the vacuum sampling pump, and the carrier gas device, the quantitative ring, and the air outlet of the multi-way switching valve Connected in turn.
  • a gas quantitative detection method including: flowing the measured gas through an optical cavity ring-down spectroscopy device to measure the content of any characteristic gas in the measured gas; The device splits the measured gas into the mass spectrometry device; uses the measured characteristic gas content value as the internal standard of the mass spectrometry device, and detects the measured gas through the mass spectrometry device.
  • the step of using the measured characteristic gas content value as the internal standard of the mass spectrometry device to detect the gas to be measured by the mass spectrometry device specifically includes: according to the mass spectrum of the mass spectrometry device, The signal intensity ratio of other substances relative to the characteristic gas is calculated to calculate the content value of other substances in the measured gas.
  • the optical cavity ring-down spectroscopy device can quantitatively detect any characteristic gas in the measured gas, and the sample processing device can split the measured gas into the mass spectrometer device, and The mass spectrometer device can detect all the gases to be measured. In this way, it is possible to perform quantitative detection and analysis on any variety of gases without using the standard gas.
  • the technical solution proposed by the present invention can realize the quantitative analysis of any variety of gases without using the standard gas. Since there is no need to use calibration gas, the flexibility of this technology has been greatly improved. It can be used not only for routine laboratory testing, but also for industrial field online analysis, as well as environmental protection, national defense, aviation, aerospace, military and other fields. Detection and analysis, etc.
  • Figure 1 is a schematic structural diagram of an embodiment of the gas quantitative detection equipment of the present invention
  • FIG. 2 is a schematic structural diagram of an embodiment of the optical cavity ring-down spectroscopy device in the embodiment shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of an embodiment of a mass spectrometer device in the embodiment shown in FIG. 1;
  • FIG. 4 is a schematic structural diagram of an embodiment of the sample processing device in the embodiment shown in FIG. 1;
  • FIG. 5 is a schematic structural diagram of an embodiment of the sample processor in the embodiment shown in FIG. 4;
  • FIG. 6 and 7 are schematic structural diagrams of another embodiment of the sample processor in the embodiment shown in FIG. 4, wherein the sample processor is in a first state and a second state, respectively.
  • 100 Gas quantitative detection equipment; 102: Optical cavity ring-down spectroscopy device; 104: Sample processing device; 106: Mass spectrometry device; 108: Optical cavity; 110: Lens; 111: Laser source; 112: Optical detector; 114: Inlet Air port; 116: air outlet; 118: vacuum chamber; 120: ion source; 122: mass analyzer; 124: detector; 126: air inlet; 128: vacuum pump; 130: sample processor; 132: sample tube; 134: mass spectrometry injection tube; 136: three-way valve; 138: vacuum sampling pump; 140: multiple switching valve; 142: vacuum sampling pump; 144: carrier gas device; 146: quantitative loop; 148: air inlet; 150 : Out of breath.
  • connection and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection. Or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediate medium.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection. Or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediate medium.
  • the specific meanings of the above terms in the embodiments of the present invention can be understood in specific situations.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may pass through the middle. Indirect media contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • an embodiment of the present invention provides a gas quantitative detection device 100.
  • the gas quantitative detection equipment 100 generally includes an optical cavity ring-down spectroscopy device 102, a sample processing device 104, and a mass spectrometry device 106.
  • the optical cavity ring-down spectroscopy device 102 can quantitatively detect any characteristic gas in the measured gas.
  • the sample processing device 104 is arranged downstream of the optical cavity ring-down spectroscopy device 102 and connected to the optical cavity ring-down spectroscopy device 102.
  • the gas to be measured can be split into the mass spectrometry device 106 through the sample processing device 104.
  • the mass spectrometry device 106 is arranged downstream of the sample processing device 104 and detects all the detected gases.
  • the embodiment of the present invention connects the optical cavity ring-down spectrum and the mass spectrum in series. Because optical cavity ring-down spectroscopy is a non-destructive test, the optical cavity ring-down spectroscopy comes first, and the mass spectrum comes later.
  • the gas passes through the optical cavity, and the accurate content of the characteristic gas is obtained by measuring the ring-down time, and the content value is used as the internal standard of the mass spectrum.
  • the gas splits into the mass spectrometer and is detected by the mass spectrometer. According to the signal intensity ratio of other substances relative to the characteristic gas in the mass spectrum, the accurate content value of other substances can be calculated.
  • the technical solution proposed by the present invention can realize the quantitative analysis of any variety of gases without using the standard gas. Since there is no need to use calibration gas, the flexibility of this technology has been greatly improved. It can be used not only for routine laboratory testing, but also for industrial field online analysis, as well as environmental protection, national defense, aviation, aerospace, military and other fields. Detection and analysis, etc.
  • the optical cavity ring-down spectroscopy device 102 may include an optical cavity 108, a lens 110, a laser source 111 and a light detector 112. Specifically, an air inlet 114 and an air outlet 116 are provided on the optical cavity 108.
  • the lens 110 may be disposed in the optical cavity 108 and located at the opposite end of the optical cavity 108.
  • the laser source 111 and the light detector 112 may be located outside the optical cavity 108. During use, the light beam emitted by the laser source 111 can pass through the lens 110 and the optical cavity 108 and be received by the photodetector 112.
  • lens refers to a highly reflective mirror. A small part of the laser light passes through the lens 110 and enters the optical cavity 108, and then is reflected back and forth between the two lenses 110. A small amount of light passes through the lens 110 for each reflection, and then is detected by the photodetector 112.
  • the mass spectrometer 106 may include a vacuum chamber 118.
  • the vacuum chamber 118 is provided with an ion source 120, a mass analyzer 122, and a detector 124, and the end of the vacuum chamber 118 is also provided with an air inlet 126.
  • the ion source 120 may be used to ionize the gas to be measured
  • the mass analyzer 122 may be used to perform mass analysis on the ions generated by the ionization
  • the detector 124 may be used to output mass analysis detection results.
  • the mass spectrometer 106 further includes a vacuum pump 128, and the vacuum pump 128 may be arranged outside the vacuum chamber 118 and connected to the vacuum chamber 118.
  • the sample processing device 104 may include a sample processor 130. Specifically, a sample tube 132 and a mass spectrometry injection tube 134 are connected to the sample processor 130, wherein the sample tube 132 is also connected to the gas outlet 116 of the optical cavity 108, and the mass spectrometry injection tube 134 is also connected to the gas inlet of the vacuum chamber 118. 126 is connected.
  • FIGS. 5 to 7 the embodiment of the present invention provides two alternative implementations of the sample processor 130.
  • Fig. 5 shows one of the embodiments
  • Figs. 6 and 7 show another embodiment.
  • the following description and the figure shown are only exemplary embodiments of the present invention, and do not constitute any limitation to the present invention.
  • the sample processor 130 may include a three-way valve 136 and a vacuum sampling pump 138. Specifically, the first port of the three-way valve 136 is in communication with the sample tube 132, the second port is in communication with the mass spectrometry injection tube 134, and the vacuum sampling pump 138 is in communication with the third port of the three-way valve 136.
  • the sample processor 130 may include a multi-way switching valve 140, a vacuum sampling pump 142, a carrier gas device 144 and a quantitative ring 146.
  • the multi-way switching valve 140 has an air inlet 148 communicating with the sample tube 132 and an air outlet 150 communicating with the mass spectrometer injection tube 134.
  • the vacuum sampling pump 142, the carrier gas device 144, and the quantitative ring 146 may be connected to the multi-way switching valve 140, respectively.
  • the multi-way switching valve 140 can switch between the first state (FIG. 6) and the second state (FIG. 7 ).
  • the quantitative ring 146 in the first state, is in communication with the air inlet 148 of the multiple switching valve 140 and the vacuum sampling pump 142; and in the second state, the quantitative ring 146 is connected with the carrier gas device 144 and the multiple switching valve 140 The air outlet 150 is connected.
  • the air inlet 148, the quantitative ring 146, and the vacuum sampling pump 142 of the multi-way switching valve 140 are sequentially connected, and the carrier gas device 144 is connected to the air outlet 150 of the multi-way switching valve 140;
  • the air inlet 148 of the multi-way switching valve 140 is connected to the vacuum sampling pump 142, and the carrier gas device 144, the quantitative ring 146, and the air outlet 150 of the multi-way switching valve 140 are connected in sequence.
  • the embodiment of the present invention also provides a gas quantitative detection method. Specifically, the method includes the following steps:
  • the measured content value of the characteristic gas is used as the internal standard of the mass spectrometer, and the measured gas is detected by the mass spectrometer.
  • the step of using the measured characteristic gas content value as the internal standard of the mass spectrometry device to detect the gas to be measured by the mass spectrometry device may specifically include:
  • the signal intensity ratio of other substances relative to the characteristic gas is used to calculate the content of other substances in the measured gas.
  • the detection object of the embodiment of the present invention is gas, and the purpose of detection is to achieve accurate quantification of the gas.
  • the quantification mentioned here refers to the concentration content of the gas, not the absolute mass.
  • the device and method provided by the present invention can be directly applied on site, such as measuring the gas content in an open environment.
  • the sample tube 132 is airtightly connected with the air outlet 116 of the optical cavity 108
  • the mass spectrometry injection tube 134 is airtightly connected with the air inlet 126 of the vacuum chamber 118.
  • the vacuum sampling pump 138 or 142 in the sample processor 130 starts collecting the ambient gas to be measured.
  • the ambient gas to be tested enters the optical cavity 108 from the gas inlet 114, and then flows out from the gas outlet 116; then enters the sample tube 132, and is then discharged by the vacuum sampling pump 138 or 142.
  • the minimum time required to exhaust the original volume of the gas in the optical cavity 108 is calculated, and the actual sampling time should be guaranteed to be longer than this time.
  • the ratio of the peak height of the ion signal of different mass-to-charge ratios to the peak height of the reference ion signal on a single mass spectrum is used for quantification.
  • the first port of the three-way valve 136 is airtightly connected to the sample tube 132
  • the second port is airtightly connected to the air inlet 126 of the vacuum chamber through the mass spectrometry injection tube 134
  • the third port is connected to the vacuum sampling pump 138.
  • the vacuum sampling pump 138 is maintained in an on state to maintain sampling. Due to the action of the vacuum pump 128, the vacuum chamber 118 is in a high vacuum state, and the vacuum degree is better than 1.0E-6 Torr.
  • the gas is ionized by the ion source 120, and the ions generated by the ionization are detected and output by the detector 124 after the mass analysis by the mass analyzer 122.
  • the output of the detector 124 is a mass spectrum. On the mass spectrum, the abscissa is the mass number and the ordinate is the intensity.
  • the analyzed substance M can be ionized by the ion source 120 and only one ion, such as molecular ion M + or (M+ H) + ion. Therefore, the substance can be qualitatively determined by this ion, and its intensity can be quantified.
  • the ratio of the time integrated intensity of ion signals with different mass-to-charge ratios obtained by ionization of a certain volume of gas to the time integrated intensity of the reference ion signal is used for quantification.
  • the sample tube 132 is airtightly connected to the air inlet 148, and the air outlet 150 is airtightly connected to the air inlet 126 via the mass spectrometry injection tube 134. After the original gas in the optical cavity 108 is replaced, the vacuum sampling pump 142 is maintained in an on state to maintain sampling.
  • the gas enters the gas inlet 148 from the sample tube 132, then passes through the quantitative ring 146, and is then discharged by the vacuum sampling pump 142; when the quantitative ring 146 is filled with the gas to be measured, the multi-way switching valve 140 is switched to the sampling state (as shown in Fig. 7).
  • the positive pressure gas in the carrier gas device 144 blows the gas in the quantitative ring 146 into the vacuum chamber 118 through the gas outlet 150 and the gas inlet 126.
  • the gas is then ionized by the ion source 120, and the ions generated by the ionization are detected and output by the detector 124 after the mass analysis by the mass analyzer 122.
  • the ion obtained by ionizing the substance to be measured by the ion source 120 is integrated according to time to obtain the peak area of the ion.
  • the ion source 120 adopts a soft ionization method, and each substance M to be analyzed obtains 1 ion, such as molecular ion M + , or (M+H) + ion.
  • the other substances will all obtain a relative ratio with respect to substance A.
  • the embodiment shown in Fig. 5 is applied as the peak height ratio
  • the embodiment shown in Fig. 6 and Fig. 7 is applied as the peak area ratio. Then the ratio is multiplied by the content of substance A to get the content of the corresponding substance.
  • Substance A is equivalent to an internal standard. Under normal circumstances, Substance A is an artificial additive and has a known content. In the present invention, substance A is not artificially added, and its content is not known in advance, but is directly measured by optical cavity ring-down spectroscopy during operation.
  • the optical cavity ring-down spectrum does not require a reference substance to accurately measure its content. Therefore, only a non-interfering characteristic absorption spectrum of substance A needs to be selected for measurement. For example, if CO 2 is selected as substance A, and the characteristic absorption line 6218.088505 cm -1 is selected , the intensity of the line is 1.500 ⁇ 10 -23 cm -1 /(molec ⁇ cm -2 ). Select the laser wavelength corresponding to the characteristic absorption line, and then measure the laser ring-down time, then the content of substance A can be calculated. Multiplying the content value by the relative ratio value measured by mass spectrometry, the accurate content of the remaining substances can be obtained.
  • the present invention makes full use of the broad-spectrum characteristics of mass spectrometry; and the feature that the optical cavity ring-down method can accurately quantify a specific substance without the need for calibration gas, combining the two, Thus, a method for accurately quantifying any variety of gases is realized without using the standard gas.
  • the technical solution proposed by the present invention can realize the quantitative analysis of any variety of gases without using the standard gas. Since there is no need to use calibration gas, the flexibility of this technology has been greatly improved. It can be used not only for routine laboratory testing, but also for industrial field online analysis, as well as environmental protection, national defense, aviation, aerospace, military and other fields. Detection and analysis, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Optics & Photonics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种气体定量检测设备(100),包括:光腔衰荡光谱装置(102),对被测气体中任一特征气体进行定量检测;样品处理装置(104),设置在光腔衰荡光谱装置(102)下游并与光腔衰荡光谱装置(102)连接;以及质谱装置(106),设置在样品处理装置(104)下游并对所有被测气体进行检测。该设备无须使用标气就可以实现任意多种气体的定量分析。由于无须使用标气,因此该设备的灵活性就得到了大幅的提升,不仅可以用于实验室常规检测,也可以用于工业现场在线分析,以及环保、国防、航空、航天、军事等领域的检测分析等。

Description

气体定量检测设备及方法
相关申请的交叉引用
本申请要求于2020年2月4日提交的申请号为2020100799217,发明名称为“气体定量检测设备及方法”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本发明涉及气体检测领域,特别是涉及一种气体定量检测设备及方法。
背景技术
随着工业的不断发展,越来越多的气体被排放到了环境空气中,而很多气体都会对人类的生产和生活产生影响。典型的如室内装修污染、大气环境污染等等。因此,气体的检测需求越来越广泛。而气体检测的一项重要内容就是定量。
气体定量检测的传统方法包括比色法、电化学法、色谱法,质谱法,色谱-质谱法,光腔衰荡光谱法等等,如《GB/T 8984-2008气体中CO、CO 2和碳氢化合物的测定/气相色谱法》、《HJ759-2015环境空气挥发性有机物的测定罐采样/气相色谱-质谱法》、《GB/T 5832.3-2011气体中微量水分的测定/第3部分:光腔衰荡光谱法》。通常情况下,对于痕微量气体含量的检测,通常采用气相色谱、气相色谱/质谱,光腔衰荡光谱等高准确度的谱学方法。
气相色谱法是利用气体作流动相的色层分离分析方法。一定体积的气体样品,被载气(流动相)带入色谱柱中,柱中的固定相与气体样品中各组份分子作用力不同,各组份从色谱柱中流出时间不同,组份彼此分离。事先对各单一组份的标气进行检测,并得出其流出色谱柱的时间,称为保留时间,气相色谱通过该保留时间实现定性。气相色谱定量通常采用外标法和内标法。当能够精确进样量的时候,通常采用外标法进行定量。这种方法首先需要获得一种气体组分的不同浓度的标准气体,然后对每一个浓度的标准气体单独进样检测,从而根据一系列的浓度计算出该气体的定量 校正曲线,实际样品进样分析后,依据不同物质的定量校正曲线分别对相应的组分色谱峰进行计算,从而实现定量。内标法是选择适宜的物质作为预测组分的参比物,定量加到样品中去,依据欲测定组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入量进行定量检测。
气相色谱/质谱法是利用气相色谱对气体样品进行分离,然后利用质谱进行定性和定量分析。由于色谱对物质进行了分离,因此,从色谱柱分离出的组份,在被质谱检测的时候,就是纯物质,没有其它物质的干扰,因此,利用质谱的标准谱库,就可以对该组分进行定性分析。气相色谱/质谱法的定量方法与气相色谱法相同。
光腔衰荡光谱,通过测量特定波长下光腔衰荡时间,可以获得腔内气体的特征吸收光谱,从而实现气体浓度的精确测量。由于是测量激光透过光腔的衰荡时间而不是透过光腔后的光强变化,因此其测量结果不受激光光源波动的影响。此外,高反射率的光学谐振腔使得有效吸收长度大大增加,从而使得测量灵敏度明显高于传统吸收光谱技术。此外,在确定条件下的光腔衰荡光谱,检测气体的浓度仅与衰荡时间相关,因此,光腔衰荡光谱无须使用外部标准进行对照。
然而,现有技术中同样存在一些缺陷。气相色谱法在检测过程中,其定性是靠色谱峰的保留时间,因此需要事先对每一种物质分别检测,建立定性保留时间表。而一旦色谱条件(温度、压力、色谱柱长度、色谱柱型号等等)改变,则定性保留时间需要重新建立。气相色谱的外标法定量要靠定量曲线,需要配备一系列的标气,费时、耗力、不经济。而内标法需要选择一种与分析物的保留时间不重叠的物质,且两者浓度相差不宜过长大。因此,内标物的选择往往比较困难。
气相色谱/质谱法是通过质谱进行定性,因为质谱是靠标准谱图定性,因此,色谱条件的改变不会影响系统的定性。气相色谱/质谱的定量,通常采用外标法和内标法实现。外标法与气相色谱一样,也需要配备一系列的标气。质谱的内标法与气相色谱不同,它需要选择一种与被测对象具有相同物理化学性质的物质,通常采用同位素稀释法,即选择与被测气体的同位素标气,但是同位素标气通常较贵,而且也不是所有的气体都能有相应的同位素标气。
光腔衰荡光谱法对气体的浓度检测,仅测量衰荡时间,无须标气,这是光腔衰荡法的优点。但是,由于光腔衰荡光谱的激光源多为单波长或覆盖的波段很窄,因此,一种激光源仅能用于一种或很少的几种气体的检测。要实现更多气体的检测,就需要切换不同的激光光源,这使得仪器的复杂性和成本都大幅增加。
发明内容
针对现有技术中存在的缺陷,本发明实施例提供了气体定量检测设备及方法,以实现在无须使用标气的情况下,就能够对任意多种气体进行定量检测分析。
根据本发明实施例的第一方面,提供了一种气体定量检测设备,包括:光腔衰荡光谱装置,对被测气体中任一特征气体进行定量检测;样品处理装置,设置在所述光腔衰荡光谱装置下游并与所述光腔衰荡光谱装置连接;以及质谱装置,设置在所述样品处理装置下游并对所有所述被测气体进行检测。
根据本发明的实施例,所述光腔衰荡光谱装置包括:光腔,所述光腔上设置有进气口和出气口;透镜,所述透镜设置在所述光腔中并位于所述光腔的相对端部;激光源,所述激光源位于所述光腔外部;光检测器,所述光检测器位于所述光腔外部;其中,所述激光源发射的光束穿过所述透镜和所述光腔,并由所述光检测器接收。
根据本发明的实施例,所述质谱装置包括:真空腔,所述真空腔中设置有离子源、质量分析器和检测器,并且所述真空腔的端部还设置有进气口;真空泵,所述真空泵位于所述真空腔外部并与所述真空腔连接。
根据本发明的实施例,所述离子源用于对被测气体进行电离,所述质量分析器用于对电离所产生的离子进行质量分析,并且所述检测器用于输出质量分析检测结果。
根据本发明的实施例,所述样品处理装置包括:样品处理器,所述样品处理器上连接有样品管和质谱进样管,其中,所述样品管还与所述光腔的出气口连通,所述质谱进样管还与所述真空腔的进气口连通。
根据本发明的实施例,所述样品处理器包括:三通阀,所述三通阀的第一接口与所述样品管连通,第二接口与所述质谱进样管连通;真空采样 泵,所述真空采样泵与所述三通阀的第三接口连通。
根据本发明的实施例,所述样品处理器包括:多路切换阀,所述多路切换阀具有与所述样品管连通的进气口、以及与所述质谱进样管连通的出气口;真空采样泵、载气装置和定量环,所述真空采样泵、所述载气装置和所述定量环分别与所述多路切换阀连通;其中,所述多路切换阀能够在第一状态与第二状态之间进行切换,在所述第一状态,所述定量环与所述多路切换阀的进气口和所述真空采样泵连通;在所述第二状态,所述定量环与所述载气装置和所述多路切换阀的出气口连通。
根据本发明的实施例,在所述第一状态,所述多路切换阀的进气口、所述定量环和所述真空采样泵依次连通,并且所述载气装置连通所述多路切换阀的出气口;在所述第二状态,所述多路切换阀的进气口连通所述真空采样泵,并且所述载气装置、所述定量环和所述多路切换阀的出气口依次连通。
根据本发明实施例的第二方面,提供了一种气体定量检测方法,包括:使被测气体流动经过光腔衰荡光谱装置,以测量被测气体中任一特征气体的含量;通过样品处理装置将被测气体分流进入质谱装置中;以测得的特征气体的含量值作为所述质谱装置的内标,通过所述质谱装置对被测气体进行检测。
根据本发明的实施例,所述以测得的特征气体的含量值作为质谱装置的内标,通过质谱装置对被测气体进行检测的步骤,具体包括:根据所述质谱装置的质谱图中,其它各物质相对所述特征气体的信号强度比,计算出被测气体中其它物质的含量值。
在本发明实施例提供的气体定量检测设备及方法中,光腔衰荡光谱装置可以对被测气体中任一特征气体进行定量检测,样品处理装置可以将被测气体分流进入质谱装置中,而质谱装置可以对所有被测气体进行检测。通过这种方式,可以实现在无须使用标气的情况下,就能够对任意多种气体进行定量检测分析。与现有技术相比,本发明提出的技术方案中无须使用标气就可以实现任意多种气体的定量分析。由于无须使用标气,因此该技术的灵活性就得到了大幅的提升,不仅可以用于实验室常规检测,也可以用于工业现场在线分析,以及环保、国防、航空、航天、军事等领域的 检测分析等。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明气体定量检测设备一个实施例的结构示意图;
图2是图1所示实施例中光腔衰荡光谱装置一个实施例的结构示意图;
图3是图1所示实施例中质谱装置一个实施例的结构示意图;
图4是图1所示实施例中样品处理装置一个实施例的结构示意图;
图5是图4所示实施例中样品处理器一个实施例的结构示意图;
图6和图7是图4所示实施例中样品处理器另一实施例的结构示意图,其中样品处理器分别处于第一状态和第二状态。
附图标记:
100:气体定量检测设备;102:光腔衰荡光谱装置;104:样品处理装置;106:质谱装置;108:光腔;110:透镜;111:激光源;112:光检测器;114:进气口;116:出气口;118:真空腔;120:离子源;122:质量分析器;124:检测器;126:进气口;128:真空泵;130:样品处理器;132:样品管;134:质谱进样管;136:三通阀;138:真空采样泵;140:多路切换阀;142:真空采样泵;144:载气装置;146:定量环;148:进气口;150:出气口。
具体实施方式
下面将结合附图和实施例对本发明的实施方式作进一步详细描述。以下实施例用于说明本发明,但不能用来限制本发明的范围。
在本发明实施例的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定 的方位构造和操作,因此不能理解为对本发明实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明实施例中的具体含义。
在本发明实施例中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
现参照图1至图7,对本发明气体定量检测设备及方法的实施例进行描述。应当理解的是,以下所述仅是本发明的示意性实施方式,并不对本发明构成任何特殊限定。
如图1所示,本发明的实施例提供了一种气体定量检测设备100。具体地,该气体定量检测设备100总的来说包括光腔衰荡光谱装置102、样品处理装置104以及质谱装置106。其中,光腔衰荡光谱装置102可以对被测气体中任一特征气体进行定量检测,样品处理装置104设置在光腔衰 荡光谱装置102下游并与光腔衰荡光谱装置102连接。在使用过程中,可以通过样品处理装置104将被测气体分流进入质谱装置106中。进一步地,质谱装置106设置在样品处理装置104下游并对所有被测气体进行检测。
此处应当理解的是,本发明的实施例是将光腔衰荡光谱和质谱进行串联。因为光腔衰荡光谱是一种无损检测,因此,光腔衰荡光谱在前,质谱在后。气体经过光腔,通过测量衰荡时间得到特征气体的准确含量,并将该含量值作为质谱的内标。气体分流进入质谱,被质谱检测。根据质谱图中,其它各物质相对该特征气体的信号强度比,就可以计算出其它物质的准确含量值。
通过这种方式,可以实现在无须使用标气的情况下,就能够对任意多种气体进行定量检测分析。与现有技术相比,本发明提出的技术方案中无须使用标气就可以实现任意多种气体的定量分析。由于无须使用标气,因此该技术的灵活性就得到了大幅的提升,不仅可以用于实验室常规检测,也可以用于工业现场在线分析,以及环保、国防、航空、航天、军事等领域的检测分析等。
进一步地如图2所示,在本发明的一个实施例中,光腔衰荡光谱装置102可以包括光腔108、透镜110、激光源111和光检测器112。具体地,在光腔108上设置有进气口114和出气口116。透镜110可以设置在光腔108中并位于光腔108的相对端部。激光源111和光检测器112可以位于光腔108的外部。在使用过程中,激光源111发射的光束可以穿过透镜110和光腔108,并由光检测器112接收。
在此应当理解的是,在本文所述的实施例中,“透镜”指的是高反射镜,一小部分激光穿过透镜110后进入光腔108,然后在两个透镜110之间来回反射,每次反射都会有少量的光透过透镜110,然后被光检测器112检测。
继续参见图3并结合图1,在本发明的一个实施例中,质谱装置106可以包括真空腔118。其中,真空腔118中设置有离子源120、质量分析器122和检测器124,并且真空腔118的端部还设置有进气口126。具体地,离子源120可以用于对被测气体进行电离,质量分析器122可以用于对电离所产生的离子进行质量分析,并且检测器124可以用于输出质量分 析检测结果。
此外,质谱装置106还包括真空泵128,真空泵128可以设置在真空腔118的外部并与真空腔118连接。
如图4所示并结合图1至图3,在本发明的一个实施例中,样品处理装置104可以包括样品处理器130。具体地,样品处理器130上连接有样品管132和质谱进样管134,其中,样品管132还与光腔108的出气口116连通,质谱进样管134还与真空腔118的进气口126连通。
参照图5至图7,本发明的实施例提供了样品处理器130的两种可选实施方式。其中,图5示出了其中一个实施例;图6和图7示出了另一实施例。但是应当理解的是,以下所述以及如图所示仅是本发明的示意性实施方式,并不对本发明构成任何限定。
首先参照图5,在该实施例中,样品处理器130可以包括三通阀136和真空采样泵138。具体地,三通阀136的第一接口与样品管132连通,第二接口与质谱进样管134连通,真空采样泵138与三通阀136的第三接口连通。
而在如图6和图7所示的实施例中,样品处理器130可以包括多路切换阀140、真空采样泵142、载气装置144和定量环146。
具体来说,多路切换阀140具有与样品管132连通的进气口148、以及与质谱进样管134连通的出气口150。真空采样泵142、载气装置144和定量环146可以分别与多路切换阀140连通。
在实际操作过程中,多路切换阀140能够在第一状态(图6)与第二状态(图7)之间进行切换。其中,在第一状态下,定量环146与多路切换阀140的进气口148和真空采样泵142连通;而在第二状态下,定量环146与载气装置144和多路切换阀140的出气口150连通。换句话说,在第一状态中,多路切换阀140的进气口148、定量环146和真空采样泵142依次连通,并且载气装置144连通多路切换阀140的出气口150;而在第二状态中,多路切换阀140的进气口148连通真空采样泵142,并且载气装置144、定量环146和多路切换阀140的出气口150依次连通。
另一方面,本发明的实施例还提供了一种气体定量检测方法。具体地,该方法包括以下步骤:
使被测气体流动经过光腔衰荡光谱装置,以测量被测气体中任一特征气体的含量;
通过样品处理装置将被测气体分流进入质谱装置中;
以测得的特征气体的含量值作为所述质谱装置的内标,通过质谱装置对被测气体进行检测。
更具体地,以测得的特征气体的含量值作为质谱装置的内标,通过质谱装置对被测气体进行检测的步骤,可以具体包括:
根据质谱装置的质谱图中,其它各物质相对特征气体的信号强度比,计算出被测气体中其它物质的含量值。
以下将以实施例的方式对本发明的操作过程进行更详细地描述。应当理解的是,以下所述进行本发明的示意性实施方式,并不对本发明构成任何限定。
在此需要指出的是,本发明的实施例的检测对象为气体,检测目的是为了实现气体的准确定量,这里所述的定量是指气体的浓度含量,而非绝对质量。
在实际操作过程中,本发明提供的装置和方法可以直接应用在现场,比如测量开放环境中的气体含量。其中,样品管132与光腔108的出气口116气密连接,质谱进样管134和真空腔118的进气口126气密连接。
首先启动样品处理器130中的真空采样泵138或142,以开始采集待测环境气体。待测环境气体从进气口114进入光腔108,然后从出气口116流出;然后进入样品管132,之后被真空采样泵138或142排出。根据光腔108的体积和真空采样泵138或142的抽速,计算出排尽光腔108中原有体积的气体所需要的最少时间,实际的采样时间应保证大于该时间。
在图5所示的实施例中,以单张质谱图上不同质荷比的离子信号的峰高与参考离子信号的峰高的比例进行定量。三通阀136的第一个接口与样品管132气密连接,第二个接口通过质谱进样管134与真空腔的进气口126气密连接,第三个接口连接真空采样泵138。光腔108中的原有气体置换完之后,继续维持真空采样泵138为开启状态,以维持采样。由于真空泵128的作用,真空腔118中为高真空状态,真空度优于1.0E-6Torr。因此,除了被真空采样泵138抽走的大部分气体之外,还有很少一部分气体通过 三通阀136沿着质谱进样管134继续流动,然后从进气口126进入真空腔118中。在真空腔118中,气体被离子源120电离,电离所产生的离子经过质量分析器122的质量分析之后,由检测器124检测输出。检测器124的输出为质谱图。质谱图上,横坐标为质量数,纵坐标为强度,当采用软电离方式,可以使得被分析的物质M被离子源120电离后仅有1个离子,比如分子离子M +,或(M+H) +离子。因此,通过这一个离子就可以对物质进行定性,而其强度就可以进行定量。
在图6和图7所示的实施例中,以一定体积的气体电离得到的不同质荷比的离子信号的时间积分强度与参考离子信号的时间积分强度的比值进行定量。样品管132与进气口148气密连接,出气口150经由质谱进样管134与进气口126气密连接。将光腔108中的原有气体置换完之后,继续维持真空采样泵142为开启状态,以维持采样。因此,气体从样品管132进入进气口148,然后经过定量环146,之后被真空采样泵142排出;当定量环146充满被测气体后,切换多路切换阀140至进样状态(如图7所示)。此时,载气装置144中的正压气体将定量环146中的气体通过出气口150、进气口126吹入真空腔118。然后气体被离子源120电离,电离所产生的离子经过质量分析器122的质量分析之后,由检测器124检测输出。将待测物质被离子源120电离所得到的离子,按照时间积分,得到该离子的峰面积。为了简化定量计量过程,离子源120采用软电离方式,则被分析的每一种物质M均得到1个离子,比如分子离子M +,或(M+H) +离子。
假定被测的气体中含有N种物质,其中以A物质作为参考,则其余物质相对A物质均得到一个相对比值。其中应用图5所示实施例为峰高比值,应用图6和图7所示实施例为峰面积比值。则该比值乘上A物质的含量,就可以得到对应物质的含量。A物质就相当于一个内标物。通常情况下,A物质为人为添加物,并且是已知含量。而在本发明中,A物质非人为添加,且其含量也不是事先已知,而是在工作中由光腔衰荡光谱直接测量得到。
因为光腔衰荡光谱不需要对照物即可准确测量其含量。因此,只需要选择A物质的一条无干扰的特征吸收谱线进行测量。比如,选择CO 2作为 A物质,并选择特征吸收谱线6218.088505cm -1,其谱线强度为1.500×10 -23cm -1/(molec·cm -2)。选择该特征吸收谱线所对应的激光波长,然后测量其激光衰荡时间,就可以计算出A物质的含量。将该含量值乘上由质谱测得的相对比例值,就可以得到其余物质的准确含量。
综上所述,本发明充分利用了质谱法的广谱特点;以及光腔衰荡法可以在无须标气的情况下,对某一种特定物质进行准确定量的特点,将此二者结合,从而实现在无须使用标气的情况下,对任意多种气体进行准确定量的方法。
利用光腔衰荡光谱,对被测气体中的一种特征气体进行定量检测,比如CO 2(空气中通常含有数百ppm的CO 2)。质谱则对所有被测气体进行检测,包括CO 2。CO 2的含量以光腔衰荡光谱测得的含量作为标准,则根据其它物质相对CO 2的峰高或面积大小,就可以得到其余物质的定量结果。
因此,与现有技术相比,本发明提出的技术方案中无须使用标气就可以实现任意多种气体的定量分析。由于无须使用标气,因此该技术的灵活性就得到了大幅的提升,不仅可以用于实验室常规检测,也可以用于工业现场在线分析,以及环保、国防、航空、航天、军事等领域的检测分析等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种气体定量检测设备,其特征在于,包括:
    光腔衰荡光谱装置,对被测气体中任一特征气体进行定量检测;
    样品处理装置,设置在所述光腔衰荡光谱装置下游并与所述光腔衰荡光谱装置连接;以及
    质谱装置,设置在所述样品处理装置下游并对所有所述被测气体进行检测。
  2. 根据权利要求1所述的气体定量检测设备,其特征在于,所述光腔衰荡光谱装置包括:
    光腔,所述光腔上设置有进气口和出气口;
    透镜,所述透镜设置在所述光腔中并位于所述光腔的相对端部;
    激光源,所述激光源位于所述光腔外部;
    光检测器,所述光检测器位于所述光腔外部;
    其中,所述激光源发射的光束穿过所述透镜和所述光腔,并由所述光检测器接收。
  3. 根据权利要求2所述的气体定量检测设备,其特征在于,所述质谱装置包括:
    真空腔,所述真空腔中设置有离子源、质量分析器和检测器,并且所述真空腔的端部还设置有进气口;
    真空泵,所述真空泵位于所述真空腔外部并与所述真空腔连接。
  4. 根据权利要求3所述的气体定量检测设备,其特征在于,所述离子源用于对被测气体进行电离,所述质量分析器用于对电离所产生的离子进行质量分析,并且所述检测器用于输出质量分析检测结果。
  5. 根据权利要求3或4所述的气体定量检测设备,其特征在于,所述样品处理装置包括:
    样品处理器,所述样品处理器上连接有样品管和质谱进样管,其中,所述样品管还与所述光腔的出气口连通,所述质谱进样管还与所述真空腔的进气口连通。
  6. 根据权利要求5所述的气体定量检测设备,其特征在于,所述样品处理器包括:
    三通阀,所述三通阀的第一接口与所述样品管连通,第二接口与所述质谱进样管连通;
    真空采样泵,所述真空采样泵与所述三通阀的第三接口连通。
  7. 根据权利要求5所述的气体定量检测设备,其特征在于,所述样品处理器包括:
    多路切换阀,所述多路切换阀具有与所述样品管连通的进气口、以及与所述质谱进样管连通的出气口;
    真空采样泵、载气装置和定量环,所述真空采样泵、所述载气装置和所述定量环分别与所述多路切换阀连通;
    其中,所述多路切换阀能够在第一状态与第二状态之间进行切换,在所述第一状态,所述定量环与所述多路切换阀的进气口和所述真空采样泵连通;在所述第二状态,所述定量环与所述载气装置和所述多路切换阀的出气口连通。
  8. 根据权利要求7所述的气体定量检测设备,其特征在于,
    在所述第一状态,所述多路切换阀的进气口、所述定量环和所述真空采样泵依次连通,并且所述载气装置连通所述多路切换阀的出气口;
    在所述第二状态,所述多路切换阀的进气口连通所述真空采样泵,并且所述载气装置、所述定量环和所述多路切换阀的出气口依次连通。
  9. 一种气体定量检测方法,其特征在于,包括:
    使被测气体流动经过光腔衰荡光谱装置,以测量被测气体中任一特征气体的含量;
    通过样品处理装置将被测气体分流进入质谱装置中;
    以测得的特征气体的含量值作为所述质谱装置的内标,通过所述质谱装置对被测气体进行检测。
  10. 根据权利要求9所述的气体定量检测方法,其特征在于,所述以测得的特征气体的含量值作为质谱装置的内标,通过质谱装置对被测气体进行检测的步骤,具体包括:
    根据所述质谱装置的质谱图中,其它各物质相对所述特征气体的信号强度比,计算出被测气体中其它物质的含量值。
PCT/CN2020/086388 2020-02-04 2020-04-23 气体定量检测设备及方法 WO2021128668A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/418,223 US11761887B2 (en) 2020-02-04 2020-04-23 Apparatus and method for quantitative detection of gases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010079921.7 2020-02-04
CN202010079921.7A CN111239062B (zh) 2020-02-04 2020-02-04 气体定量检测设备及方法

Publications (1)

Publication Number Publication Date
WO2021128668A1 true WO2021128668A1 (zh) 2021-07-01

Family

ID=70874925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086388 WO2021128668A1 (zh) 2020-02-04 2020-04-23 气体定量检测设备及方法

Country Status (3)

Country Link
US (1) US11761887B2 (zh)
CN (1) CN111239062B (zh)
WO (1) WO2021128668A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235706A (zh) * 2021-12-23 2022-03-25 中国科学院空天信息创新研究院 一种用于衰荡腔的柔性密封调谐装置
CN115966454A (zh) * 2022-12-25 2023-04-14 兰州空间技术物理研究所 一种空间质谱计测量及校准装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462000A (zh) * 2020-11-17 2021-03-09 广东电网有限责任公司电力科学研究院 一种用于内标法的气体混合装置
CN112697733A (zh) * 2020-12-29 2021-04-23 浙江华电器材检测研究所有限公司 光腔衰荡光谱仪微量气体采样装置及方法
CN113702302A (zh) * 2021-08-28 2021-11-26 武汉东泓华芯科技有限公司 一种基于光腔衰荡光谱技术的气体检测装置及方法
CN113933140A (zh) * 2021-10-14 2022-01-14 中国计量科学研究院 一种基于crds和标准气体的动态气体稀释仪评定方法和装置
CN113984869A (zh) * 2021-11-03 2022-01-28 自然资源部第二海洋研究所 一种用于质谱仪分析的反应气供应装置
CN115598266A (zh) * 2022-12-12 2023-01-13 山东非金属材料研究所(Cn) 一种惰性气体分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104458603A (zh) * 2013-09-23 2015-03-25 苏州青山生物科技有限公司 一种新型幽门螺杆菌检测方法、装置及其应用
CN105181851A (zh) * 2015-10-13 2015-12-23 神华集团有限责任公司 环境中氮氧化物的测定方法
US20160011101A1 (en) * 2014-07-14 2016-01-14 Lawrence Livermore National Security, Llc Spectroscopic quantification of extremely rare molecular species in the presence of interfering optical absorption
CN206440663U (zh) * 2016-12-31 2017-08-25 宁波华仪宁创智能科技有限公司 具有定量功能的质谱分析系统
CN107340341A (zh) * 2017-06-27 2017-11-10 长沙都正生物科技有限责任公司 一种氧化三甲胺定量检测试剂盒及方法
CN109001155A (zh) * 2018-07-30 2018-12-14 河南师范大学 一种基于低增益低噪声光纤腔衰荡技术的湿度测量方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517461A (en) * 1982-11-29 1985-05-14 Phillips Petroleum Co Carbon isotope analysis of hydrocarbons
US4601211A (en) * 1984-12-12 1986-07-22 The Perkin-Elmer Corporation Multi-port valve in a gas collection system and method of using same
US5900532A (en) * 1997-02-20 1999-05-04 Nippon Sanso Corporation Method of removing siloxanes from silicon compound gases and apparatus therefor
US20080123712A1 (en) * 2006-06-15 2008-05-29 Spectrasensors, Inc. Measuring water vapor in high purity gases
US20090120212A1 (en) * 2007-11-13 2009-05-14 James Hargrove NOy and Components of NOy by Gas Phase Titration and NO2 Analysis with Background Correction
FR2938916B1 (fr) * 2008-11-24 2012-10-19 Ap2E Dispositif d'echantillonnage de gaz.
DE102009045458B3 (de) * 2009-08-28 2011-06-22 Freie Universität Berlin, 14195 Verfahren zur Bestimmung des 14C-Gehaltes eines Gasgemisches und hierfür geeignete Anordnung
IT1400072B1 (it) * 2010-05-27 2013-05-17 Mondello Metodo e apparecchiatura per cromatografia a separazione multidimensionale completa con micro modulatore a flusso bilanciato.
JP5675442B2 (ja) * 2011-03-04 2015-02-25 株式会社日立ハイテクノロジーズ 質量分析方法及び質量分析装置
WO2012162695A2 (en) * 2011-05-26 2012-11-29 Southwest Sciences Incorporated Laser based, temperature insensitive, carbon dioxide isotope ratio measurement
WO2013070954A1 (en) * 2011-11-09 2013-05-16 The Regents Of The University Of Michigan Devices and methods for adaptive micro-gas chromatography
DE102012101945A1 (de) * 2011-12-28 2013-07-04 G.A.S. Gesellschaft für analytische Sensorsysteme mbH Verfahren zur Bestimmung des Gehaltes an organischen Siliziumverbindungen in anthropogenen und/oder biogenen, methanhaltigen Gasen
US9170241B2 (en) * 2013-03-07 2015-10-27 Thermo Finnigan Llc Evacuable inlet for gas chromatograph injector
WO2015199870A1 (en) * 2014-06-26 2015-12-30 The United States Of America, Represented By The Secretary Of Commerce A measurement of total reactive nitrogen, noy, together with no2, no, and o3 via cavity ring-down spectroscopy
CN105974023B (zh) * 2016-06-06 2019-01-15 复旦大学 便携式气相色谱-质谱联用装置
CN106169411B (zh) * 2016-07-13 2018-03-27 中国计量科学研究院 新型串并联质谱装置系统及其参数调节方法和使用方法
CN106290247B (zh) * 2016-09-21 2019-05-24 华东理工大学 基于电磁诱导透明效应的连续波腔衰荡光谱装置及方法
CN106596439B (zh) * 2017-01-13 2023-08-18 暨南大学 一种同时测量空气中亚硝酸、臭氧、二氧化氮的设备及测量方法
US10475634B2 (en) * 2017-04-12 2019-11-12 Graduate School At Shenzhen, Tsinghua University Vacuum electro-spray ion source and mass spectrometer
CN209542203U (zh) * 2019-01-08 2019-10-25 台山核电合营有限公司 一种放射性气体取样装置
CN110411960B (zh) * 2019-07-16 2024-02-27 深圳先进技术研究院 一种光腔衰荡光谱仪系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104458603A (zh) * 2013-09-23 2015-03-25 苏州青山生物科技有限公司 一种新型幽门螺杆菌检测方法、装置及其应用
US20160011101A1 (en) * 2014-07-14 2016-01-14 Lawrence Livermore National Security, Llc Spectroscopic quantification of extremely rare molecular species in the presence of interfering optical absorption
CN105181851A (zh) * 2015-10-13 2015-12-23 神华集团有限责任公司 环境中氮氧化物的测定方法
CN206440663U (zh) * 2016-12-31 2017-08-25 宁波华仪宁创智能科技有限公司 具有定量功能的质谱分析系统
CN107340341A (zh) * 2017-06-27 2017-11-10 长沙都正生物科技有限责任公司 一种氧化三甲胺定量检测试剂盒及方法
CN109001155A (zh) * 2018-07-30 2018-12-14 河南师范大学 一种基于低增益低噪声光纤腔衰荡技术的湿度测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI LIWU, WANG GUANG, LI ZHONG-PING, DU LI1, CAO CHUN-HUI: "A Method for Combining a Stable Isotope Mass Spectrometer with an Isotopic Spectroscope to Analyze the 17O/16O", ROCK AND MINERAL ANALYSIS, vol. 32, no. 3, 1 June 2013 (2013-06-01), pages 392 - 397, XP055827305, ISSN: 0254-5357, DOI: 10.15898/j.cnki.11-2131/td.2013.03.003 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235706A (zh) * 2021-12-23 2022-03-25 中国科学院空天信息创新研究院 一种用于衰荡腔的柔性密封调谐装置
CN114235706B (zh) * 2021-12-23 2023-06-30 中国科学院空天信息创新研究院 一种用于衰荡腔的柔性密封调谐装置
CN115966454A (zh) * 2022-12-25 2023-04-14 兰州空间技术物理研究所 一种空间质谱计测量及校准装置
CN115966454B (zh) * 2022-12-25 2023-09-29 兰州空间技术物理研究所 一种空间质谱计测量及校准装置

Also Published As

Publication number Publication date
US11761887B2 (en) 2023-09-19
US20220307972A1 (en) 2022-09-29
CN111239062B (zh) 2021-01-01
CN111239062A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
WO2021128668A1 (zh) 气体定量检测设备及方法
KR102291810B1 (ko) 간섭을 일으키는 광학 흡수의 존재 하에서 극히 희귀한 분자 종의 분광학적 정량화
US5661036A (en) Process for the detection of sulfur
WO2021093278A1 (zh) 一种光谱-质谱联用装置及检测方法
DK1380833T3 (da) Apparat til spektrometrisk måling af en isotopholdig gas
CN108169092B (zh) 大气颗粒物重金属及其同位素在线探测装置及其方法
US6512230B1 (en) Method and an arrangement for initiating radiation absorption measurements of gaseous media
CN113324973B (zh) 一种结合光谱内标的多因素校正拉曼光谱定量分析方法
CN105181851A (zh) 环境中氮氧化物的测定方法
CN109752344B (zh) 一种便携式非甲烷总烃浓度检测仪及检测方法
CN104880434A (zh) 复杂环境中弱吸收气体的检测装置及方法
CN1241009C (zh) 超临界流体工艺条件的原位监控方法和装置
CN108444972A (zh) 一种基于毛细管增强的激光气体拉曼光谱探测系统
Li et al. Rapid quantitation of three synthetic cathinones in urine by magnetic dispersive solid-phase extraction combined with DART-HRMS
DK0817957T3 (da) Fremgangsmåde til standardisering af oximetre og til rapportering af resultater
CN112362444B (zh) 微液结点表面萃取剂及其在烟用材料光引发剂样品的表面萃取和质谱测定中应用
RU2367939C1 (ru) Способ проведения количественного масс-спектрометрического анализа состава газовой смеси
US9182325B2 (en) Method and apparatus for changing relative concentrations of gases present within a gaseous sample for mass spectrometry
Scherer et al. MIRA: A New, Ultrasensitive, Middle Infrared Laser-Based “Lab in a Lunchbox”
RU103400U1 (ru) Лабораторный стенд для создания и контроля концентраций газообразных веществ при формировании базы спектральных данных и оценке технических характеристик фурье-спектрорадиометров
TWI796829B (zh) 氣體檢測系統及其檢測方法
Chang et al. Detection of O18 and D Isotopes in Water Vapor using a Fiber-Coupled Tunable Diode Laser Absorption Spectroscopy Multi-Pass Cell
Takatsu et al. Determination of serum cholesterol by stable isotope dilution method using discharge‐assisted thermospray liquid chromatography/mass spectrometry
Russow et al. A new approach to determining the content and 15N abundance of total dissolved nitrogen in aqueous samples: TOC analyser-QMS coupling
Abe et al. Partial pressure dependency of 17O/16O and 18O/16O of molecular oxygen in the mass spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906302

Country of ref document: EP

Kind code of ref document: A1