WO2021128444A1 - 多旋翼飞行器 - Google Patents

多旋翼飞行器 Download PDF

Info

Publication number
WO2021128444A1
WO2021128444A1 PCT/CN2020/000327 CN2020000327W WO2021128444A1 WO 2021128444 A1 WO2021128444 A1 WO 2021128444A1 CN 2020000327 W CN2020000327 W CN 2020000327W WO 2021128444 A1 WO2021128444 A1 WO 2021128444A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
unit
rotor aircraft
bracket
ring frame
Prior art date
Application number
PCT/CN2020/000327
Other languages
English (en)
French (fr)
Inventor
周鹏跃
Original Assignee
周鹏跃
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周鹏跃 filed Critical 周鹏跃
Priority to CN202080089543.9A priority Critical patent/CN114901551A/zh
Priority to JP2022539636A priority patent/JP2023508489A/ja
Publication of WO2021128444A1 publication Critical patent/WO2021128444A1/zh
Priority to US17/849,847 priority patent/US20220324569A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/26Transmitting means without power amplification or where power amplification is irrelevant
    • B64C13/28Transmitting means without power amplification or where power amplification is irrelevant mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D5/00Aircraft transported by aircraft, e.g. for release or reberthing during flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/30Constructional aspects of UAVs for safety, e.g. with frangible components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/50Foldable or collapsible UAVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/296Rotors with variable spatial positions relative to the UAV body
    • B64U30/297Tilting rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/15UAVs specially adapted for particular uses or applications for conventional or electronic warfare
    • B64U2101/16UAVs specially adapted for particular uses or applications for conventional or electronic warfare for controlling, capturing or immobilising other vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/20UAVs specially adapted for particular uses or applications for use as communications relays, e.g. high-altitude platforms
    • B64U2101/24UAVs specially adapted for particular uses or applications for use as communications relays, e.g. high-altitude platforms for use as flying displays, e.g. advertising or billboards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/25UAVs specially adapted for particular uses or applications for manufacturing or servicing
    • B64U2101/26UAVs specially adapted for particular uses or applications for manufacturing or servicing for manufacturing, inspections or repairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/30Launching, take-off or landing arrangements for capturing UAVs in flight by ground or sea-based arresting gear, e.g. by a cable or a net

Definitions

  • the invention belongs to the technical field of aircraft, and more specifically, relates to a multi-rotor aircraft.
  • the present invention provides a multi-rotor aircraft, including but not limited to solving the technical problem that a large-scale multi-rotor aircraft requires a larger area for take-off and landing.
  • a multi-rotor aircraft including:
  • the ring-shaped rack includes at least two brackets and at least two connecting units, and two adjacent brackets are movably connected by the connecting units;
  • At least two first rotor units are respectively arranged on the annular frame and are electrically connected to the controller for providing lift of the multi-rotor aircraft;
  • At least two drive components are respectively arranged on the ring frame and electrically connected with the controller, for driving the two adjacent brackets to move away from or close to each other when the multi-rotor aircraft is flying. Or reduce the enclosed area of the ring frame.
  • Fig. 1 is a three-dimensional schematic diagram of the multi-rotor aircraft provided by the first, second and fifth embodiments of the present invention in a folded state;
  • Fig. 2 is a three-dimensional schematic diagram of the multi-rotor aircraft provided by the first, second and fifth embodiments of the present invention in an unfolded state;
  • Fig. 3 is an enlarged schematic diagram of part A in Fig. 2;
  • FIG. 4 is a perspective schematic view of another multi-rotor aircraft in a folded state according to Embodiment 1 of the present invention, in which the first rotor unit and the second rotor unit are arranged on the connecting unit;
  • Fig. 5 is a three-dimensional schematic diagram of the multi-rotor aircraft in Fig. 4 in an unfolded state
  • FIG. 6 is a perspective schematic view of yet another multi-rotor aircraft in a folded state according to Embodiment 1 of the present invention, in which the ring frame is triangular;
  • Fig. 7 is a three-dimensional schematic diagram of the multi-rotor aircraft in Fig. 6 in an unfolded state
  • FIG. 8 is a three-dimensional schematic diagram of the multi-rotor aircraft provided in the third embodiment of the present invention in a folded state
  • FIG. 9 is a three-dimensional schematic diagram of the multi-rotor aircraft provided in the third embodiment of the present invention in an unfolded state
  • Fig. 10 is an enlarged schematic diagram of part B in Fig. 9;
  • FIG. 11 is a three-dimensional schematic diagram of the multi-rotor aircraft provided in the fourth and fifth embodiments of the present invention in a folded state;
  • FIG. 12 is a three-dimensional schematic diagram of the multi-rotor aircraft provided by the fourth embodiment of the present invention in the unfolded state of capturing the drone;
  • Fig. 13 is a three-dimensional schematic diagram of the multi-rotor aircraft provided in the fourth and fifth embodiments of the present invention after it has captured the drone.
  • the multi-rotor aircraft 1 includes a controller (not shown), a ring frame 11, at least two first rotor units 12, and at least two drive assemblies 13, where the controller is in the art
  • the conventional flight controller is arranged on the ring frame 11;
  • the ring frame 11 includes at least two brackets 111 and at least two connecting units 112, and two adjacent brackets 111 are movably connected by at least one connecting unit 112;
  • the two first rotor units 12 are respectively arranged on the ring frame 11, that is, the first rotor unit 12 can be installed on the bracket 111 or the connection unit 112, and the first rotor unit 12 is electrically connected to the controller for Provides flying lift for the multi-rotor aircraft 1;
  • at least two drive assemblies 13 are respectively arranged on the ring frame 11 and are electrically connected to the controller for driving the two adjacent supports 111 to each other when the multi-rotor aircraft 1 is flying.
  • the multi-rotor aircraft 1 further includes a power supply assembly (not shown).
  • the power supply assembly is arranged on the ring frame 11 and is electrically connected to the controller for supplying power to the controller, the first rotor unit 12, and the drive assembly. 13 Provide power, where the power supply component is a conventional battery module in the field.
  • the pulling force of the first rotor unit 12 is also used to provide the driving force for the multi-rotor aircraft 1 to fly forward.
  • the driving assembly 13 in the present invention can also be referred to as the execution assembly 13.
  • each drive assembly 13 includes a second rotor unit 130 and an elastic member (not shown), wherein the second rotor unit 130 is disposed on the bracket 111 or connected
  • the unit 130 is electrically connected to the controller, and is used to provide driving force for the two adjacent brackets 111 to move away from each other.
  • the pulling force of the second rotor unit 130 is directed to the outside of the ring frame 11 or toward the ring frame
  • the outer side of 11 is relatively inclined; the opposite ends of the elastic member are respectively connected to two adjacent brackets 111, or respectively connected to the bracket 111 and the connecting unit 112 connected to the bracket 111, the elastic force of the elastic member is used for
  • the elastic member is a spring, the number of which is not limited.
  • the spring When the distance between two adjacent brackets 111 is the shortest, the spring is in the shortest length state; when the second rotor unit 130 starts and increases the tension, the adjacent The two brackets 111 are moved away from each other in the opposite direction, so that the distance between the two is gradually increased, thereby significantly expanding the enclosing area of the ring frame 11, and the spring is stretched accordingly until the bracket 111 reaches the maximum relative to the connecting unit 112 Mechanical movement stroke, or until the tension of the second rotor unit 130 and the elastic force of the spring reach balance, at this time the second rotor unit 130 maintains a certain tension output to keep the two adjacent brackets 111 away.
  • the controller can also adjust the pulling force of the second rotor unit 130 to make the two adjacent brackets 111 reach different distances, so that the enclosing area of the ring frame 11 can be adjusted to different extents; After the second rotor unit 130 reduces the tension or stops rotating, the two adjacent brackets 111 are driven by the elastic force of the spring to approach each other, so that the distance between the two is gradually reduced until the ring frame 11 returns to the minimum enclosure. The area, at this time, the elastic force of the spring may not be 0 to keep the two adjacent brackets 111 in the closest state.
  • the second rotor unit 130 and the elastic member can achieve the purpose of driving the two adjacent brackets 111 away from each other or close to each other when the multi-rotor aircraft 1 is flying.
  • the resultant force of the pulling forces of all the second rotor units 130 can be set to always be zero to prevent the resultant force from affecting the motion control of the multi-rotor aircraft 1; it is also possible to set the above-mentioned resultant force to be not zero, and use the resultant force to drive the multi-rotor aircraft 1 Move in the same direction as the resultant force or other designated directions, for example: the direction of the resultant force is parallel to the horizontal plane, and the lift provided by the first rotor unit 12 is balanced with the gravity of the multi-rotor aircraft 1, then the multi-rotor aircraft 1 can be driven along Flying in the horizontal direction helps to improve the maneuverability of the multi-rotor aircraft 1.
  • the side where the enclosed area of the ring frame is located is the inner side of the ring frame, and the side
  • the bracket 111 includes a first bracket body 1111, a second bracket body 1112, and a connecting portion 1113, wherein the first bracket body 1111 and the second bracket body 1112 is transitionally connected by the connecting portion 1113, the first bracket body 1111, the second bracket body 1112 and the connecting portion 1113 can be connected to form a U-shaped, L-shaped or V-shaped bracket 111, and the first bracket bodies of two adjacent brackets 111 1111 and the second bracket body 1112 are connected by a connecting unit 112, that is, in two adjacent brackets 111, the first bracket body 1111 of one bracket 111 and the second bracket body 1112 of the other bracket 111 are connected by one Unit 112 is connected.
  • the connecting unit 112 may be a linear guide structure, that is, the connecting unit 112 may be a linear guide rail, a guide rod, a guide sleeve, etc., at least one end of the connecting unit 112 and the first bracket body 1111 or the second bracket of the adjacent bracket 111
  • the main body 1112 is plugged or sleeved; or the connecting unit 112 may also be a telescopic structure connected to the first bracket body 1111 and the second bracket body 1112 of the two adjacent brackets 111, such as a multi-link hinge telescopic mechanism, and further
  • the connecting unit 112 may be a multi-section guide structure or a multi-section telescopic structure, that is, the connecting unit 112 may be a multi-section linear guide rail, a multi-section telescopic sleeve, etc., so that two adjacent brackets 111 can be separated from each other by a greater distance , Thereby increasing the variation range of the enclosed area of the ring frame 11.
  • the bracket 111 can slide relative to the connecting unit 112 connected to the first bracket body 1111 and the connecting unit 112 connected to the second bracket body 1112 at the same time, or the connecting unit 112 and the second bracket connected to the first bracket body 1111 of the bracket 111
  • the connecting unit 112 connected to the main body 1112 can be extended and contracted at the same time.
  • a first rotor unit 12 is provided on the first bracket body 1111 and the second bracket body 1112, and a second rotor unit 12 is provided on the connecting portion 1113.
  • the rotor unit 130 and the second rotor unit 130 can simultaneously generate a non-zero component of tensile force along the length direction of the first bracket body 1111 and the second bracket body 1112 of the bracket 111 where they are located.
  • the first bracket body 1111 and the second bracket body 1112 can be respectively sleeved on the connecting unit 112, wherein a second rotor unit 130 generates a tensile force along the length direction of the first bracket body 1111 of the bracket 111 where it is located.
  • the second rotor unit 130 on the adjacent bracket 111 generates a non-zero component of tensile force along the length direction of the second bracket body 1112 of the bracket 111 where it is located.
  • the non-zero components of the two tensile forces are opposite in direction It is used to drive the two brackets 111 away from each other.
  • the second rotor unit 130 on each bracket 111 of the ring frame 11 generates or increases the pulling force at the same time, the two adjacent brackets 111 move away from each other, so that the enclosing area of the ring frame 11 can be enlarged.
  • the first bracket body 1111 and the second bracket body 1112 can be inserted into the connecting unit 112.
  • the first rotor unit 12 and the second rotor unit 130 can be arranged on the connecting unit 112.
  • the pulling force of the second rotor unit 130 may also have a non-zero component along the pulling force direction of the first rotor unit 12 at the same time, which is used to increase the lift of the multi-rotor aircraft 1 after the second rotor unit 130 is started.
  • the driving force of the multi-rotor aircraft 1 to fly forward.
  • the ring frame 11 further includes at least two landing gears 14.
  • the at least two landing gears 14 may be respectively arranged on at least two brackets 111 or at least two connected On the unit 112, it is beneficial for the multi-rotor aircraft 1 to achieve a smooth landing.
  • a square ring frame 11 is taken as an example for description.
  • the ring frame 11 includes four L-shaped brackets 111 and four connecting units 112.
  • a second rotor unit 130 is provided at the corner of each L-shaped bracket 111, and the sides of each L-shaped bracket 111 are respectively provided.
  • the controller controls the four second rotor units 130 to start at the same time and increase the pulling force.
  • the four L-shaped brackets 111 will synchronize in the direction away from each other under the pulling force of the four second rotor units 130.
  • the controller controls the four second rotor units 130 to simultaneously gradually reduce the tension or stop, and the four L-shaped brackets 111 are in the elastic member Under the action of the elastic force, they move synchronously in the direction of approaching each other, thereby reducing the enclosed area of the ring frame 11.
  • the ring frame 11 is not limited to a square shape.
  • the ring frame 11 may also have a triangular shape (please refer to FIGS. 6 and 7) or other shapes, which are not limited here.
  • each drive assembly 13 includes two sets of second rotor units 130, each set of second rotor units 130 includes at least one second rotor unit 130, and one set of second rotor units 130 is used to provide adjacent
  • the two brackets 111 provide the driving force away from each other, and the other set of second rotor unit 130 is used to provide the driving force of the two adjacent brackets 111 close to each other, specifically, the pulling force of the other set of second rotor unit 130
  • Pointing to the inner side of the ring frame 11 or relatively inclined toward the inner side of the ring frame 11 provides driving force for two adjacent brackets 111 to approach each other.
  • one group of the second rotor unit 130 starts or increases the tension, while the other group of the second rotor unit 130 stops or reduces the tension, for example, when used for When two adjacent brackets 111 provide driving forces close to each other, a group of second rotor units 130 start or increase the pulling force while the other group of second rotor units 130 stop or reduce the pulling force, the ring frame 11 is enclosed The area is reduced.
  • the second rotor unit 130 is used to provide driving force for two adjacent brackets 111 to move away from each other, and the first rotor unit 12 not only provides the lift for the multi-rotor aircraft 1, but also To provide driving force for the two adjacent brackets 111 to approach each other, specifically, the pulling force of the first rotor unit 12 on the ring frame 11 is relatively inclined toward the inner side of the ring frame 11, so that part of the first rotor unit 12 The pulling force is used to drive the two adjacent brackets 111 close to each other, while the first rotor unit 12 still maintains the non-zero component of the pulling force on the ring frame 11 in the vertical direction as the lift for the multi-rotor aircraft 1 to fly.
  • the multi-rotor aircraft 1 provided by the present invention adopts an annular frame 11 composed of at least two brackets 111 and at least two connecting units 112.
  • the adjacent brackets 111 are driven by the drive assembly 13 to move away from or close to each other to achieve expansion.
  • the multi-rotor aircraft can actively change the size of its overall area during flight: the multi-rotor aircraft reduces the enclosed area of the ring frame 11 during the take-off and landing phase of the flight, which is beneficial to the multi-rotor aircraft.
  • the aircraft will take off and land on a site with a limited area; during the rest of the flight, the multi-rotor aircraft 1 can expand the enclosed area of its ring frame 11 to be suitable for special operations, such as capturing UAVs that break into the no-fly airspace. 2.
  • the multi-rotor aircraft 1 In the air Display large-format advertising fabrics, overhaul the structure of tower-shaped buildings, etc. Specifically, when the multi-rotor aircraft 1 is used to display large-format advertising cloth in the air, the advertisements are arranged on the ring frame 11, and the multi-rotor aircraft 1 expands the enclosing area of the ring frame 11 during flight to achieve deployment in the air.
  • the multi-rotor aircraft 1 when the multi-rotor aircraft 1 is used to repair tower-shaped buildings such as communication towers, factory chimney towers, wind turbine blades, the inner side of the ring frame 11 is surrounded by sensors 17 related to the maintenance (see Figure 7 ) For example, a camera, and the multi-rotor aircraft 1 allows the tower-shaped building to penetrate the enclosed area of the ring frame 11 during maintenance operations, so as to improve the efficiency of maintenance.
  • sensors 17 related to the maintenance see Figure 7
  • a camera For example, a camera, and the multi-rotor aircraft 1 allows the tower-shaped building to penetrate the enclosed area of the ring frame 11 during maintenance operations, so as to improve the efficiency of maintenance.
  • the multi-rotor aircraft provided by this embodiment is basically the same as the first embodiment, the difference is that: the drive assembly 13 is a linear actuator, the opposite ends of the linear actuator are connected to Two adjacent brackets 111, or respectively connected to the bracket 111 and the connecting unit 112 connected to the bracket 111, and when the connecting unit 112 is a telescopic structure, the opposite ends of the linear actuator can be connected to the On the connection unit 112.
  • a linear actuator is a common mechanical device that can realize linear load motion. It can convert the rotary motion of the motor into linear motion through a sliding screw or belt drive, or it can be a pneumatic sliding table or a hydraulic cylinder, etc. .
  • the multi-rotor aircraft provided in this embodiment is basically the same as the first embodiment, the difference is that: the drive assembly 13 is connected to the first rotor unit 12, where the drive assembly 13 is used to drive The first rotor unit 12 changes the direction of its pulling force on the ring frame 11, so as to drive the two adjacent brackets 111 away from or close to each other when the multi-rotor aircraft 1 is flying, so as to expand or reduce the enclosed area of the ring frame 11 purpose.
  • the driving assembly 13 may include a driving part and a transmission part, the driving part is arranged on the bracket 111, one end of the transmission part is connected to the power output shaft of the driving part, and the other end of the transmission part is connected to the first rotor unit 12 to drive
  • the transmission member can drive the first rotor unit 12 to rotate around the power output shaft of the driving member, so as to change the direction of the pulling force of the first rotor unit 12 on the annular frame 11.
  • the driving assembly 13 drives the first rotor unit 12 to tilt the ring frame 11 to a certain angle toward the outer side of the ring frame 11, a part of the first rotor unit 12 is used to drive the two adjacent ones.
  • the brackets 111 are far away from each other, while the first rotor unit 12 still maintains the non-zero component of the pulling force of the ring frame 11 in the vertical direction as the lift for the multi-rotor aircraft 1 to fly; please refer to FIG. 8, when the drive assembly 13 drives When the pulling force of the first rotor unit 12 on the annular frame 11 is inclined to a certain angle toward the inner side of the annular frame 11, part of the pulling force of the first rotor unit 12 is used to drive the two adjacent brackets 111 to approach each other, and the first rotor unit 12 still maintains the non-zero component of the pulling force on the ring frame 11 in the vertical direction as the lift force of the multi-rotor aircraft 1 flying.
  • the first rotor unit 12 can not only provide lift for the multi-rotor aircraft 1, but also provide the driving force for the ring frame 11 to expand or reduce the enclosed area.
  • the controller can control the first rotor unit 12 to dynamically change the generated pulling force, so that the multi-rotor aircraft 1 can fly. Remaining unchanged helps the multi-rotor aircraft 1 maintain a constant altitude flight.
  • the driving member is arranged inside the bracket 111, and a guide groove 1110 may be provided on the bracket 111, and one end of the driving member extends from the guide groove 1110.
  • the guide groove 1110 can guide the transmission member to swing along the cross section of the bracket 111, and prevent the transmission member from shaking along the length direction of the bracket 111.
  • the number of first rotor units provided on each bracket 111 is not limited to the one shown in the figure.
  • a multi-rotor aircraft includes two brackets 111, and two first rotors 12 are provided on both brackets 111 to share the same The layout of the quadcopter is formed, and the drive assembly 13 on each bracket 111 is used to synchronously drive the two first rotors 12 on the bracket 111 to change the direction of pulling force on the ring frame 11.
  • the multi-rotor aircraft provided in this embodiment is basically the same as the multi-rotor aircraft provided in any one of the first to third embodiments.
  • the difference is that the multi-rotor aircraft 1 also includes a mesh bag 15.
  • the net bag 15 can be arranged on the bracket 111 or the connecting unit 112 or the landing gear 14, and the bag mouth of the net bag 15 can be scaled with the enclosing area of the ring frame 11, that is, the ring frame 111 is enclosing or shrinking. In the process of area size, the mouth of the mesh bag 15 is simultaneously expanded or contracted accordingly.
  • the net bag 15 is detachably connected to the bracket 111 or the connecting unit 112 or the landing gear 14, and the net bag 15 can be installed on the ring frame 11 as required.
  • the multi-rotor aircraft 1 can be used to capture the UAV 2 that breaks into the no-fly airspace. Specifically, when the UAV 2 needs to be captured, the multi-rotor aircraft 1 can expand the enclosure of the ring frame 11. The area is used to expand the opening of the mesh bag 15, so as to increase the success rate of the captured drone 2 entering the mesh bag 15 during the capture. At the same time, the mesh bag 15 can be kept in a tensioned state to avoid the multi-rotor aircraft 1. When flying forward at high speed, it is possible that the mesh bag 15 is affected by the airflow and flicks and comes into contact with the first rotor unit 12. Among them, an implementation method for the rotorcraft 1 to capture the drone 2 is as follows: As shown in Fig.
  • the rotorcraft 1 approaches the drone 2 from the rear of the drone 2 and makes the ring frame 11 relatively tilt in the flight direction, so as to finally make the drone 2 fall into the mesh bag 15, which not only makes the first rotor unit 12 and/or Or the second rotor unit 130 can provide the driving force to fly forward to increase the flight speed of the rotorcraft 1, and also make the mouth of the mesh bag 15 align with the drone 2 so that the rotorcraft 1 catches up with the drone 2 at the same time Make the drone 2 fall into the net bag 15; when the captured drone 2 enters the net bag 15, the multi-rotor aircraft 1 can close the opening of the net bag 15 by reducing the enclosed area of the ring frame 11 , In order to reduce the risk of the captured drone 2 escaping from the mouth of the net bag 15, and at the same time, the net bag 15 can be relaxed to trap the captured drone 2.
  • the multi-rotor aircraft provided by this embodiment is basically the same as that of the fourth embodiment, the difference is that: the bracket 111 or the connecting unit 112 is provided with a protection
  • the frame 16 extends to one side of the enclosed area of the ring frame 11 and is used to block the mesh bag 15 from contacting the blades of the first rotor unit 12.
  • the protective frame 16 is composed of a plurality of protective fences 160, and the plurality of protective fences 160 are respectively arranged on the bracket 111 or the connecting unit 112 and located between the blades of the first rotor unit 12 and the mesh bag 15.
  • the multiple guard rails 160 will move away from each other, which can avoid blocking the opening of the mesh bag 15 and allow the captured drone 2 to enter the mesh bag 15 smoothly.
  • multiple protective fences 160 are close to each other, which can partially or completely close the mouth of the mesh bag 15 to prevent the captured drone 2 from escaping from the mouth of the mesh bag 15.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the multi-rotor aircraft provided in this embodiment is basically the same as that of the first embodiment.
  • the elastic member is replaced with a reversing mechanism, which is electrically connected to the controller and is in transmission connection with the second rotor unit 130. It is used to drive the second rotor unit 130 to change the direction of its pulling force on the ring frame 11, so that the second rotor unit 130 is used to drive two adjacent brackets 111 away from each other. The brackets 111 are close to each other.
  • the reversing mechanism drives the second rotor unit 130 to change the direction of its pulling force on the ring frame 11.
  • the principle is basically the same as that of the driving assembly 13 in the third embodiment driving the first rotor unit 130 to change the direction of its pulling force on the ring frame 11.
  • the second rotor unit 130 may only provide the driving force to drive the two adjacent brackets 111 away from and close to each other, and not provide the flying lift for the multi-rotor aircraft 1, that is, when the second rotor unit 130 pairs the circular frame
  • the second rotor unit 130 is only used to drive the two adjacent brackets 111 away from each other.
  • the tensile force of the frame 11 is directed to the inner side of the annular frame 11 and is perpendicular to the tensile direction of the first rotor unit 12
  • the second rotor unit 130 is only used to drive two adjacent brackets 111 close to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Transmission Devices (AREA)
  • Tires In General (AREA)

Abstract

一种多旋翼飞行器(1),包括控制器;环形机架(11),包括至少两个支架(111)和至少两个连接单元(112),相邻的两个支架(111)之间通过连接单元(112)活动连接;至少两个第一旋翼单元(12),分别设于环形机架(11)上,并与控制器电连接,用于提供飞行的升力;以及至少两个驱动组件(13),分别设于环形机架(11)上,并与控制器电连接,用于在多旋翼飞行器飞行时驱使相邻的两个支架(111)相互远离或靠近以扩大或缩小环形机架(11)的围合面积。本装置采用了由至少两个支架(111)和至少两个连接单元组成的环形机架(11),至少两个支架(111)在至少两个驱动组件(13)驱动下,可以朝相互靠近的方向移动,来达到缩小环形机架围合面积的目的,从而有效地解决了大型多旋翼飞行器需要较大面积的起降场地的技术问题。

Description

多旋翼飞行器 技术领域
本发明属于飞行器技术领域,更具体地说,是涉及一种多旋翼飞行器。
背景技术
目前,大型多旋翼飞行器越来越多地被应用于民用领域,但是由于其在起降过程中需要占用较大面积的场地,使得大型多旋翼飞行器的使用范围受限。若采用自动收纳装置配合收纳大型多旋翼飞行器,即大型多旋翼起降于自动收纳装置上并由自动收纳装置自动完成收纳与充电,则需要较大尺寸的自动收纳装置,从而大幅增加自动收纳装置的设计制造成本以及运输安装的难度。
发明内容
基于此,本发明提供了一种多旋翼飞行器,包括但不限于解决大型多旋翼飞行器需要较大面积的起降场地的技术问题。
为实现上述目的,本发明采用的技术方案是:
一种多旋翼飞行器,包括:
控制器;
环形机架,包括至少两个支架和至少两个连接单元,相邻的两个所述支架通过所述连接单元活动连接;
至少两个第一旋翼单元,分别设于所述环形机架上,并与所述控制器电连接,用于提供所述多旋翼飞行器飞行的升力;以及
至少两个驱动组件,分别设于所述环形机架上,并与所述控制器电连接,用于在所述多旋翼飞行器飞行时驱使相邻的两个所述支架相互远离或靠近以扩大或缩小所述环形机架的围合面积。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一、二和五提供的多旋翼飞行器收拢状态下的立体示意图;
图2为本发明实施例一、二和五提供的多旋翼飞行器展开状态下的立体示意图;
图3为图2中A部分的放大示意图;
图4为本发明实施例一提供的另一种多旋翼飞行器收拢状态下的立体示意图,其中第一旋翼单元和第二旋翼单元设置在连接单元上;
图5为图4中的多旋翼飞行器展开状态下的立体示意图;
图6为本发明实施例一提供的又一种多旋翼飞行器收拢状态下的立体示意图,其中环形机架呈三角形;
图7为图6中的多旋翼飞行器展开状态下的立体示意图;
图8为本发明实施例三提供的多旋翼飞行器收拢状态下的立体示意图;
图9为本发明实施例三提供的多旋翼飞行器展开状态下的立体示意图;
图10为图9中B部分的放大示意图;
图11为本发明实施例四和五提供的多旋翼飞行器收拢状态下的立体示意图;
图12为本发明实施例四提供的多旋翼飞行器展开状态下抓捕无人机的立体示意图;
图13为本发明实施例四和五提供的多旋翼飞行器完成抓捕无人机后的立体示意图。
具体实施方式
为了使发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对发明进行进一步详细说明。
实施例一:
请参阅图1至图3,多旋翼飞行器1包括控制器(未图示)、环形机架11、至少两个第一旋翼单元12以及至少两个驱动组件13,其中,该控制器为本领域常规的飞行控制器,其设置在环形机架11上;环形机架11包括至少两个支架111和至少两个连接单元112,相邻的两个支架111通过至少一个连接单元112活动连接;至少两个第一旋翼单元12分别设置在环形机架11上,即第一旋翼单元12可以安装在支架111上或者安装在连接单元112上,并且第一旋翼单元12与控制器电连接,用于为多旋翼飞行器1提供飞行的升力;至少两个驱动组件13分别设置在环形机架11上,并且与控制器电连接,用于在多旋翼飞行器1飞行 时驱使相邻的两个支架111相互远离或者相互靠近,以扩大或者缩小环形机架11的围合面积。可以理解的是,多旋翼飞行器1还包括电源组件(未图示),电源组件设置在环形机架11上,并且与控制器电连接,用于给控制器、第一旋翼单元12和驱动组件13提供电量,此处电源组件为本领域常规的电池模组。可选地,在多旋翼飞行器1向前飞行时,第一旋翼单元12的拉力还用于为多旋翼飞行器1提供向前飞行的驱动力。另需说明的是,根据实际起到的作用,本发明中的驱动组件13也可以称作为执行组件13。
进一步地,请参阅图3,在图示的实施方式中,每个驱动组件13包括有第二旋翼单元130和弹性件(未图示),其中,第二旋翼单元130设置在支架111或连接单元130上,并且与控制器电连接,用于为相邻的两个支架111提供相互远离的驱动力,具体地,第二旋翼单元130的拉力指向环形机架11的外侧或朝环形机架11的外侧相对倾斜;该弹性件的相对两端分别相接在相邻的两个支架111,或者分别相接在支架111和与该支架111连接的连接单元112上,弹性件的弹性力用于驱使相邻的两个支架111相互靠近,另外当连接单元112本身可伸缩时,弹性件的相对两端可以分别安装在连接单元112上,以使连接单元112具有收缩的趋势。优选地,弹性件为弹簧,其设置的数量不限,在相邻的两个支架111距离最近的情况下,弹簧处于最短长度状态;当第二旋翼单元130启动并增大拉力时,相邻的两个支架111反向远离,使得两者之间的距离逐渐增大,从而显著扩大环形机架11的围合面积,并且弹簧被相应地拉伸,直至支架111相对连接单元112达到最大的机械运动行程,或者直至第二旋翼单元130的拉力与弹簧的弹性力达到平衡,此时第二旋翼单元130维持一定的拉力输出以保持相邻的两个支架111远离的状态,容易理解地,此时控制器还可以通过调整第二旋翼单元130的拉力大小来使得相邻的两个支架111达到不同的远离距离,从而对环形机架11的围合面积能够调整不同的扩大幅度;当第二旋翼单元130减小拉力或停转后,相邻的两个支架111在弹簧的弹性力驱动下相向靠近,使得两者之间的间距逐渐缩小,直至环形机架11恢复到最小的围合面积,此时弹簧的弹性力可以不为0以用于保持相邻的两个支架111距离最近的状态。这样通过第二旋翼单元130与弹性件,即可实现在多旋翼飞行器1飞行时驱使相邻的两个支架111相互远离或者相互靠近的目的。另外,可以设置所有第二旋翼单元130的拉力的合力始终为零,以避免该合力影响多旋翼飞行器1的运动控制;也可以设置上述合力大小不为零,并利用该合力驱动多旋翼飞行器1沿与该合力相同的方向或其它指定的方向运动,例如:该合力的方向与水平面平行,同时第一旋翼单元12提供的升力与多旋翼飞行器1的重力平衡,则可以驱动多旋翼飞行器1沿水平方向飞行,有助于提高多旋翼飞行器1的机动性。另外需要说明的是,环形机架的围合区域所在的一侧为环形机架的内侧,环形机架的与围合区域相反的一侧为环形机架的外侧。
进一步地,请参阅图2和图3,在图示的实施方式中,支架111包括第一支架本体1111、第二支架本体1112和连接部1113,其中,第一支架本体1111与第二支架本体1112通过连接部1113过渡连接,第一支架本体1111、第二支架本体1112与连接部1113可以相接形成U形或者L形或者V形的支架111,相邻两个支架111的第一支架本体1111和第二支架本体1112之间通过连接单元112连接,即在相邻的两个支架111中,其中一个支架111的第一支架本体1111与另一个支架111的第二支架本体1112通过一个连接单元112连接。可选地,连接单元112可以为直线导向结构,即连接单元112可以为直线导轨、导向杆、导向套等,连接单元112的至少一端与相邻支架111的第一支架本体1111或第二支架本体1112插接或者套接;或者连接单元112也可以为连接于相邻两个支架111的第一支架本体1111和第二支架本体1112的可伸缩结构,例如多连杆铰接伸缩机构,进一步地,连接单元112可以为多节导向结构或多节可伸缩结构,即连接单元112可以为多节直线导轨、多节伸缩套管等,使得相邻的两个支架111能够相互分离的距离更大,从而增大了环形机架11围合面积的变化幅度。可选地,支架111可以同时相对第一支架本体1111连接的连接单元112和第二支架本体1112连接的连接单元112滑动,或者支架111的第一支架本体1111连接的连接单元112和第二支架本体1112连接的连接单元112可以同时伸缩长度。
进一步地,请参阅图2和图3,在图示的实施方式中,在第一支架本体1111和第二支架本体1112上分别设置有第一旋翼单元12,在连接部1113上设置有第二旋翼单元130,第二旋翼单元130可以同时沿其所在的支架111的第一支架本体1111和第二支架本体1112的长度方向产生拉力的非零分量。可选地,第一支架本体1111和第二支架本体1112可以分别套接在连接单元112上,其中一第二旋翼单元130沿其所在的支架111的第一支架本体1111的长度方向产生拉力的非零分量,同时相邻支架111上的第二旋翼单元130沿其所在的支架111的第二支架本体1112的长度方向产生拉力的非零分量,上述两个拉力的非零分量方向相背以用于带动这两个支架111相互远离。当环形机架11的各个支架111上的第二旋翼单元130同时产生或增大拉力时,相邻的两个支架111相互远离,这样可以使环形机架11的围合面积扩大。当然,根据具体情况和需求,在本实施例的其它实施方式中,请参阅图4和图5,第一支架本体1111和第二支架本体1112中至少一个可以插接在连接单元112上,此结构下第一旋翼单元12和第二旋翼单元130可以设置在连接单元112上。另外,请参阅图3,第二旋翼单元130的拉力还可以同时沿第一旋翼单元12的拉力方向存在非零分量,用于在第二旋翼单元130启动后增加多旋翼飞行器1的升力或者增加多旋翼飞行器1向前飞行的驱动力。
进一步地,请参阅图1至图3,在本实施例中,环形机架11还包括至少两个起落架14,至少两个起落架14可以分别设置在至少两个支架111或者至少两个连接单元112上,从而 有利于多旋翼飞行器1实现平稳着陆。
为了便于说明多旋翼飞行器1的工作原理,以呈方形的环形机架11为例进行说明。此处,环形机架11包括四个L形支架111和四个连接单元112,每个L形支架111的角部设置有一个第二旋翼单元130,每个L形支架111的侧边分别设置有一个或多个第一旋翼单元12,相邻的两个L形支架111之间连接有一个弹性件。当多旋翼飞行器1起飞后,控制器控制四个第二旋翼单元130同时启动并增大拉力,四个L形支架111在四个第二旋翼单元130的拉力作用下会朝相互远离的方向同步移动,进而扩大环形机架11的围合面积;当多旋翼飞行器1降落前,控制器控制四个第二旋翼单元130同时逐步减小拉力或停转,四个L形支架111在弹性件的弹性力的作用下会朝相互靠近的方向同步移动,进而缩小环形机架11的围合面积。当然,环形机架11也不限于呈方形,例如环形机架11还可以呈三角形(请参阅图6和图7)或者其它形状,在此不作唯一限定。
需要说明的是,弹性件也可以省略。在一种实施方式中,每个驱动组件13包括两组第二旋翼单元130,每组第二旋翼单元130包括至少一个第二旋翼单元130,其中一组第二旋翼单元130用于为相邻的两个支架111提供相互远离的驱动力以及另一组第二旋翼单元130用于为相邻的两个支架111提供相互靠近的驱动力,具体地,另一组第二旋翼单元130的拉力指向环形机架11的内侧或朝环形机架11的内侧相对倾斜以为相邻的两个支架111提供相互靠近的驱动力。当需要扩大或缩小环形机架11的围合面积时,其中一组第二旋翼单元130启动或增大拉力,同时另一组第二旋翼单元130停转或减小拉力,例如当用于为相邻的两个支架111提供相互靠近的驱动力的一组第二旋翼单元130启动或增大拉力而另一组第二旋翼单元130停转或减小拉力时,环形机架11的围合面积缩小。而在另一种实施方式中,第二旋翼单元130用于为相邻的两个支架111提供相互远离的驱动力,而第一旋翼单元12除了为多旋翼飞行器1提供飞行的升力,还用于为相邻的两个支架111提供相互靠近的驱动力,具体地,第一旋翼单元12对环形机架11的拉力朝环形机架11的内侧相对倾斜,以使第一旋翼单元12的部分拉力用于驱动相邻的两个支架111相互靠近,同时第一旋翼单元12仍保持其对环形机架11的拉力在竖直方向上的非零分量以作为多旋翼飞行器1飞行的升力。
本发明提供的多旋翼飞行器1,采用了由至少两个支架111和至少两个连接单元112组成的环形机架11,相邻的支架111在驱动组件13驱动下相互远离或靠近,来达到扩大或缩小环形机架11围合面积的目的,使得多旋翼飞行器能够在飞行时主动改变其整体面积的大小:在飞行的起降阶段多旋翼飞行器缩小环形机架11围合面积,有利于多旋翼飞行器在面积有限的场地起降;而在飞行的其余阶段多旋翼飞行器1可以扩大其环形机架11围合面积以适用于特殊作业,例如抓捕闯入禁飞空域的无人机2、空中展示大幅面的广告布、检修塔 形建筑物的结构等。具体地,当多旋翼飞行器1用于空中展示大幅面的广告布时,广告布设于环形机架11上,多旋翼飞行器1在飞行时通过扩大其环形机架11的围合面积实现在空中展开广告布;当多旋翼飞行器1用于检修塔形建筑物例如通信塔、工厂烟囱塔、风力发电机叶片时,环形机架11的内侧面环布有与检修相关的传感器17(请参阅图7)例如摄像头,并且多旋翼飞行器1在开展检修作业时使塔形建筑物贯穿环形机架11的围合区域,以提升检修的效率。
实施例二:
请参阅图1至图3,本实施例提供的多旋翼飞行器与实施例一的基本一致,其不同之处在于:驱动组件13为直线执行器,该直线执行器的相对两端分别相接在相邻的两个支架111上,或者分别相接在支架111和与支架111连接的连接单元112上,另外当连接单元112为可伸缩结构时,直线执行器的相对两端可以分别相接在连接单元112上。具体地,直线执行器是一种可以实现直线负载运动的常用机械装置,其可以通过滑动丝杠或者皮带传动来实现将电机的旋转运动转换为直线运动,也可以是气动滑台或者液压缸等。即只需将直线执行器的固定端连接在相邻的两个支架111二者之一上,将直线执行器的活动端连接在相邻的两个支架111二者之另一上,或者将直线执行器的固定端连接在支架111和与之连接的连接单元112二者之一上,将直线执行器的活动端连接在支架111和与之连接的连接单元112二者之另一上,或者直线执行器的固定端和活动端均连接在连接单元112上,即可实现驱使相邻的两个支架111相互远离或者相互靠近。
实施例三:
请参阅图8至图10,本实施例提供的多旋翼飞行器与实施例一的基本一致,其不同之处在于:驱动组件13与第一旋翼单元12传动连接,此处驱动组件13用于驱使第一旋翼单元12改变其对环形机架11的拉力方向,以实现在多旋翼飞行器1飞行时驱使相邻的两个支架111相互远离或者相互靠近以扩大或者缩小环形机架11围合面积的目的。可选地,驱动组件13可以包括驱动件和传动件,驱动件设置在支架111上,传动件的一端与驱动件的动力输出轴连接,传动件的另一端与第一旋翼单元12连接,驱动件可以通过传动件驱使第一旋翼单元12绕驱动件的动力输出轴转动,以改变第一旋翼单元12对环形机架11的拉力方向。请参阅图9,当驱动组件13驱使第一旋翼单元12对环形机架11的拉力朝环形机架11的外侧倾斜一定角度时,第一旋翼单元12的部分拉力用于驱动相邻的两个支架111相互远离,同时第一旋翼单元12仍保持其对环形机架11的拉力在竖直方向上的非零分量以作为多旋翼飞行器1飞行的升力;请参阅图8,当驱动组件13驱使第一旋翼单元12对环形机架11的拉力朝环形机架11的内侧倾斜一定角度时,第一旋翼单元12的部分拉力用于驱动相邻的两个支 架111相互靠近,同时第一旋翼单元12仍保持其对环形机架11的拉力在竖直方向上的非零分量以作为多旋翼飞行器1飞行的升力。这样第一旋翼单元12既可以为多旋翼飞行器1提供飞行的升力,又能够为环形机架11提供扩大或者缩小围合面积的驱动力。需要说明的时,在驱动件驱使第一旋翼单元12绕驱动件的动力输出轴转动时,控制器能够控制第一旋翼单元12动态改变产生的拉力大小,以使得多旋翼飞行器1飞行的升力大小保持不变,有助于多旋翼飞行器1维持在恒定高度飞行。当然,根据具体情况和需求,在本实施例的一种实施方式中,驱动件设置在支架111的内部,在支架111上可以开设有导向槽1110,传动件的一端从导向槽1110处伸出并与第一旋翼单元12连接,导向槽1110可以引导传动件沿支架111的横截面摆动,并且避免传动件沿支架111的长度方向发生晃动。另外地,设于每个支架111上的第一旋翼单元数量不限于图示的一个,例如多旋翼飞行器包括两个支架111,并且两个支架111上均设有两个第一旋翼12以共同构成四旋翼的布局,每个支架111上的驱动组件13用于同步驱使所在支架111上的两个第一旋翼12改变其对环形机架11的拉力方向。
实施例四:
请参阅图11至图13,本实施例提供的多旋翼飞行器与实施例一至三任一项所提供的多旋翼飞行器的基本一致,其不同之处在于:多旋翼飞行器1还包括网袋15,网袋15可以设置在支架111或者连接单元112或者起落架14上,并且网袋15的袋口可以随环形机架11的围合面积缩放而缩放,即环形机架111在扩大或缩小围合面积的过程中同时带动网袋15的袋口相应地扩大或缩小。可选地,网袋15可拆卸连接在支架111或者连接单元112或者起落架14上,可根据需要将网袋15安装到环形机架11上。
进一步地,多旋翼飞行器1可以用于抓捕闯入禁飞空域的无人机2,具体地,当需要抓捕无人机2时,多旋翼飞行器1可以通过扩大环形机架11的围合面积来扩撑网袋15的袋口,以提高抓捕时被抓捕的无人机2进入网袋15的成功率,同时也可以使网袋15保持张紧状态,避免在多旋翼飞行器1向前高速飞行时网袋15受到气流影响甩动而与第一旋翼单元12发生接触的可能性,其中,旋翼飞行器1抓捕无人机2的一种实现方式为:如图12所示,旋翼飞行器1从无人机2的后方接近无人机2并使环形机架11沿飞行方向相对倾斜,以最终使无人机2落入网袋15中,不仅使得第一旋翼单元12和/或第二旋翼单元130能够提供向前飞行的驱动力以提升旋翼飞行器1的飞行速度,还使得网袋15的袋口对准无人机2以在旋翼飞行器1追上无人机2的同时令无人机2落入网袋15中;当被抓捕的无人机2进入网袋15后,多旋翼飞行器1可以通过缩小环形机架11的围合面积来收拢网袋15的袋口,以降低被抓捕的无人机2从网袋15的袋口逃逸的风险,同时也能够使网袋15松弛以困住被抓捕的无人机2。
实施例五:
请参阅图1、图2、图3、图11至图13,本实施例提供的多旋翼飞行器与实施例四的基本一致,其不同之处在于:在支架111或者连接单元112上设置有防护架16,防护架16向环形机架11的围合区域的一侧延伸,用于阻隔网袋15与第一旋翼单元12的桨叶接触。具体地,防护架16由多个防护栏160组成,多个防护栏160分别设置在支架111或者连接单元112上,并且位于第一旋翼单元12的桨叶与网袋15之间。当环形机架11的围合面积扩大时,多个防护栏160相互远离,可以避免堵塞网袋15的袋口,让被抓捕的无人机2顺利进入网袋15内,当环形机架11的围合面积缩小时,多个防护栏160相互靠近,可以部分或完全封闭网袋15的袋口,防止被抓捕的无人机2从网袋15的袋口逃逸。
实施例六:
本实施例提供的多旋翼飞行器与实施例一的基本一致,其不同之处在于:将弹性件替换为换向机构,该换向机构与控制器电连接并与第二旋翼单元130传动连接,用于驱使第二旋翼单元130改变其对环形机架11的拉力方向,使得第二旋翼单元130除了用于驱使相邻的两个支架111相互远离之外,还用于驱使相邻的两个支架111相互靠近。换向机构驱使第二旋翼单元130改变其对环形机架11的拉力方向与实施例三中驱动组件13驱使第一旋翼单元130改变其对环形机架11的拉力方向原理基本一致,但在本实施中第二旋翼单元130可以仅提供驱使相邻的两个支架111相互远离和相互靠近的驱动力,而不为多旋翼飞行器1提供飞行的升力,即当第二旋翼单元130对环形机架11的拉力指向环形机架11的外侧且与第一旋翼单元12的拉力方向垂直时,第二旋翼单元130仅用于驱使相邻的两个支架111相互远离,当第二旋翼单元130对环形机架11的拉力指向环形机架11的内侧且与第一旋翼单元12的拉力方向垂直时,第二旋翼单元130仅用于驱使相邻的两个支架111相互靠近。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 多旋翼飞行器,包括控制器,其特征在于,还包括:
    环形机架,包括至少两个支架和至少两个连接单元,相邻的两个所述支架通过所述连接单元活动连接;
    至少两个第一旋翼单元,分别设于所述环形机架上,并与所述控制器电连接,用于提供所述多旋翼飞行器飞行的升力;以及
    至少两个驱动组件,分别设于所述环形机架上,并与所述控制器电连接,用于在所述多旋翼飞行器飞行时驱使相邻的两个所述支架相互远离或靠近以扩大或缩小所述环形机架的围合面积。
  2. 如权利要求1所述的多旋翼飞行器,其特征在于,
    所述驱动组件包括第二旋翼单元,所述第二旋翼单元设于所述支架或所述连接单元上,并与所述控制器电连接;
    所述第二旋翼单元用于为相邻的两个所述支架提供相互远离的驱动力,所述驱动组件还包括弹性件,所述弹性件的相对两端分别相接于相邻的两个所述支架、或分别相接于所述支架和与所述支架连接的所述连接单元、或分别相接于所述连接单元上,所述弹性件的弹性力用于驱使相邻的两个所述支架相互靠近;或者,所述第二旋翼单元分为两组,每组所述第二旋翼单元包括至少一个所述第二旋翼单元,其中一组所述第二旋翼单元用于为相邻的两个所述支架提供相互远离的驱动力以及另一组所述第二旋翼单元用于为相邻的两个所述支架提供相互靠近的驱动力;或者,所述第二旋翼单元用于为相邻的两个所述支架提供相互远离的驱动力,所述第一旋翼单元还用于为相邻的两个所述支架提供相互靠近的驱动力。
  3. 如权利要求2所述的多旋翼飞行器,其特征在于,所述支架包括第一支架本体、第二支架本体和连接部,所述第一支架本体与所述第二支架本体通过所述连接部过渡连接,相邻两个所述支架的所述第一支架本体和所述第二支架本体之间通过所述连接单元连接;
    所述第一支架本体和所述第二支架本体上分别设有所述第一旋翼单元,所述连接部上设有所述第二旋翼单元,所述第二旋翼单元用于同时沿所述第一支架本体和所述第二支架本体的长度方向产生拉力的非零分量;或者,所述连接单元上设有所述第一旋翼单元和所述第二旋翼单元。
  4. 如权利要求2所述的多旋翼飞行器,其特征在于,所有所述第二旋翼单元的拉力的合力始终为零,以避免该合力影响所述多旋翼飞行器的运动控制;或者,所有所述第二旋翼单元的拉力的合力不为零,并且用于驱动所述多旋翼飞行器沿与该合力相同的方向或其它指定 的方向运动。
  5. 如权利要求1所述的多旋翼飞行器,其特征在于,所述驱动组件为直线执行器,所述直线执行器的相对两端分别相接于相邻的两个所述支架、或分别相接于所述支架和与所述支架连接的所述连接单元、或分别相接于所述连接单元上。
  6. 如权利要求1所述的多旋翼飞行器,其特征在于,所述驱动组件与所述第一旋翼单元传动连接,所述驱动组件用于驱使所述第一旋翼单元改变其对所述环形机架的拉力方向,以实现在所述多旋翼飞行器飞行时驱使相邻的两个所述支架相互远离或靠近以扩大或缩小所述环形机架围合面积的目的。
  7. 如权利要求6所述的多旋翼飞行器,其特征在于,当所述驱动组件驱使所述第一旋翼单元对所述环形机架的拉力朝所述环形机架的外侧倾斜时,所述第一旋翼单元的部分拉力用于驱动相邻的两个所述支架相互远离,同时所述第一旋翼单元仍保持其对所述环形机架的拉力在竖直方向上的非零分量以作为所述多旋翼飞行器飞行的升力;当所述驱动组件驱使所述第一旋翼单元对所述环形机架的拉力朝所述环形机架的内侧倾斜时,所述第一旋翼单元的部分拉力用于驱动相邻的两个所述支架相互靠近,同时所述第一旋翼单元仍保持其对所述环形机架的拉力在竖直方向上的非零分量以作为所述多旋翼飞行器飞行的升力。
  8. 如权利要求1所述的多旋翼飞行器,其特征在于,所述驱动组件包括:
    第二旋翼单元,设于所述支架或所述连接单元上;以及
    换向机构,与所述控制器电连接并与所述第二旋翼单元传动连接,用于驱使所述第二旋翼单元改变其对所述环形机架的拉力方向,以实现在所述多旋翼飞行器飞行时驱使相邻的两个所述支架相互远离或靠近以扩大或缩小所述环形机架围合面积的目的。
  9. 如权利要求8所述的多旋翼飞行器,其特征在于,当所述第二旋翼单元对所述环形机架的拉力指向所述环形机架的外侧时,所述第二旋翼单元用于驱使相邻的两个所述支架相互远离;当所述第二旋翼单元对所述环形机架的拉力指向所述环形机架的内侧时,所述第二旋翼单元用于驱使相邻的两个所述支架相互靠近。
  10. 如权利要求8所述的多旋翼飞行器,其特征在于,所有所述第二旋翼单元的拉力的合力始终为零,以避免该合力影响所述多旋翼飞行器的运动控制;或者,所有所述第二旋翼单元的拉力的合力不为零,并且用于驱动所述多旋翼飞行器沿与该合力相同的方向或其它指定的方向运动。
  11. 如权利要求1所述的多旋翼飞行器,其特征在于,所述支架包括第一支架本体、第二支架本体和连接部,所述第一支架本体与所述第二支架本体通过所述连接部过渡连接,相邻两个所述支架的所述第一支架本体和所述第二支架本体之间通过所述连接单元连接。
  12. 如权利要求11所述的多旋翼飞行器,其特征在于,所述第一支架本体、所述第二支架本体与所述连接部相接形成U形或者L形或者V形的所述支架。
  13. 如权利要求11所述的多旋翼飞行器,其特征在于,所述连接单元的至少一端与相邻所述支架的所述第一支架本体或所述第二支架本体插接或者套接;或者,所述连接单元为连接于相邻两个所述支架的所述第一支架本和所述第二支架本体的可伸缩结构。
  14. 如权利要求1至13任一项所述的多旋翼飞行器,其特征在于,
    多旋翼飞行器还包括网袋;
    所述网袋设于所述支架或所述连接单元上;或者,所述环形机架还包括至少两个起落架,所述起落架分别设于至少两个所述支架或至少两个所述连接单元上,所述网袋设于所述起落架上;
    所述网袋的袋口可随所述环形机架的围合面积缩放而缩放。
  15. 如权利要求14所述的多旋翼飞行器,其特征在于,所述支架或所述连接单元上设有防护架,所述防护架向所述环形机架的围合区域的一侧延伸,用于阻隔所述网袋与所述第一旋翼单元的桨叶接触;所述防护架由多个防护栏组成,当所述环形机架的围合面积缩小时,所述多个防护栏相互靠近,用于部分或完全封闭所述网袋的袋口。
  16. 如权利要求14所述的多旋翼飞行器,其特征在于,所述多旋翼飞行器用于抓捕无人机;当需要抓捕所述无人机时,所述多旋翼飞行器扩大所述环形机架的围合面积以扩撑所述网袋的袋口;当所述无人机进入所述网袋后,所述多旋翼飞行器缩小所述环形机架的围合面积以收拢所述网袋的袋口。
  17. 如权利要求16所述的多旋翼飞行器,其特征在于,所述旋翼飞行器从所述无人机的后方接近所述无人机并使所述环形机架沿飞行方向相对倾斜,以最终使所述无人机落入所述网袋中。
  18. 如权利要求1至13任一项所述的多旋翼飞行器,其特征在于,所述多旋翼飞行器用于空中展示大幅面的广告布,其中所述广告布设于所述环形机架上,所述多旋翼飞行器在飞行时通过扩大所述环形机架的围合面积实现在空中展开所述广告布。
  19. 如权利要求1至13任一项所述的多旋翼飞行器,其特征在于,所述多旋翼飞行器用于检修塔形建筑物的结构,其中所述环形机架的内侧面环布有与检修相关的传感器,并且所述多旋翼飞行器在开展检修作业时使所述塔形建筑物贯穿所述环形机架的围合区域。
  20. 如权利要求1至13任一项所述的多旋翼飞行器,其特征在于,在飞行的起降阶段,所述多旋翼飞行器缩小所述环形机架的围合面积,以利于在面积有限的场地起降。
PCT/CN2020/000327 2019-12-27 2020-12-28 多旋翼飞行器 WO2021128444A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080089543.9A CN114901551A (zh) 2019-12-27 2020-12-28 多旋翼飞行器
JP2022539636A JP2023508489A (ja) 2019-12-27 2020-12-28 マルチロータ航空機
US17/849,847 US20220324569A1 (en) 2019-12-27 2022-06-27 Multi-rotor aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201922427413.9 2019-12-27
CN201922427413 2019-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/849,847 Continuation US20220324569A1 (en) 2019-12-27 2022-06-27 Multi-rotor aircraft

Publications (1)

Publication Number Publication Date
WO2021128444A1 true WO2021128444A1 (zh) 2021-07-01

Family

ID=76575490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/000327 WO2021128444A1 (zh) 2019-12-27 2020-12-28 多旋翼飞行器

Country Status (4)

Country Link
US (1) US20220324569A1 (zh)
JP (1) JP2023508489A (zh)
CN (1) CN114901551A (zh)
WO (1) WO2021128444A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11453513B2 (en) * 2018-04-26 2022-09-27 Skydio, Inc. Autonomous aerial vehicle hardware configuration

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104648667A (zh) * 2015-02-17 2015-05-27 何春旺 飞行器
CN105035318A (zh) * 2015-09-01 2015-11-11 湖南云顶智能科技有限公司 一种多旋翼无人机
CN106741881A (zh) * 2016-12-27 2017-05-31 天津寰宇地理信息有限公司 一种农业机械用无人机起落架
CN206358359U (zh) * 2017-01-03 2017-07-28 山东鹰翼航空科技有限公司 一种可折叠长航时多旋翼无人机
RU183717U1 (ru) * 2018-06-26 2018-10-01 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Беспилотный летательный аппарат мультироторного типа
CN109070998A (zh) * 2017-12-18 2018-12-21 深圳市大疆创新科技有限公司 农业无人机
CN109050898A (zh) * 2018-08-16 2018-12-21 南京壹诺为航空科技有限公司 非均匀动力布局式十旋翼无人机
CN109221060A (zh) * 2018-09-14 2019-01-18 广州市华科尔科技股份有限公司 一种植保无人机喷淋组件及喷淋方法
CN109455298A (zh) * 2018-12-25 2019-03-12 拓攻(南京)机器人有限公司 一种植保无人机
CN109476368A (zh) * 2016-07-13 2019-03-15 深圳市大疆创新科技有限公司 载运工具底盘以及与其相关的载运工具、方法和套件
KR102046106B1 (ko) * 2018-10-12 2019-11-18 울산과학기술원 접이식 다중 회전익형 무인항공기

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104648667A (zh) * 2015-02-17 2015-05-27 何春旺 飞行器
CN105035318A (zh) * 2015-09-01 2015-11-11 湖南云顶智能科技有限公司 一种多旋翼无人机
CN109476368A (zh) * 2016-07-13 2019-03-15 深圳市大疆创新科技有限公司 载运工具底盘以及与其相关的载运工具、方法和套件
CN106741881A (zh) * 2016-12-27 2017-05-31 天津寰宇地理信息有限公司 一种农业机械用无人机起落架
CN206358359U (zh) * 2017-01-03 2017-07-28 山东鹰翼航空科技有限公司 一种可折叠长航时多旋翼无人机
CN109070998A (zh) * 2017-12-18 2018-12-21 深圳市大疆创新科技有限公司 农业无人机
RU183717U1 (ru) * 2018-06-26 2018-10-01 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Беспилотный летательный аппарат мультироторного типа
CN109050898A (zh) * 2018-08-16 2018-12-21 南京壹诺为航空科技有限公司 非均匀动力布局式十旋翼无人机
CN109221060A (zh) * 2018-09-14 2019-01-18 广州市华科尔科技股份有限公司 一种植保无人机喷淋组件及喷淋方法
KR102046106B1 (ko) * 2018-10-12 2019-11-18 울산과학기술원 접이식 다중 회전익형 무인항공기
CN109455298A (zh) * 2018-12-25 2019-03-12 拓攻(南京)机器人有限公司 一种植保无人机

Also Published As

Publication number Publication date
US20220324569A1 (en) 2022-10-13
JP2023508489A (ja) 2023-03-02
CN114901551A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
CN103770955B (zh) 太空漂浮物捕获装置
KR101461059B1 (ko) 폴딩형 수직 이착륙 비행체
CN106029502A (zh) 云台及使用该云台的无人飞行器
CN206634203U (zh) 一种侦查型警用无人机
CN107115687A (zh) 一种基于无人机航母的多维声光舞台系统
WO2021128444A1 (zh) 多旋翼飞行器
CN106143889A (zh) 一种起落架作为抓手的四旋翼飞行器
CN110723284A (zh) 一种可倾转涵道风扇的垂直升降固定翼飞行器
CN106927042A (zh) 一种可切换形态的无人机
CN110844039A (zh) 一种电动飞艇
CN218229412U (zh) 一种摆线桨涵道动力装置及应用其的飞行器
CN206910815U (zh) 一种基于无人机航母的多维声光舞台系统
CN208134620U (zh) 一种战场用侦察和防御无人机
US20220153409A9 (en) Low energy consumption high-speed flight method and wing-ring aircraft using same
RU2459746C1 (ru) Аппарат вертикального взлета и посадки
JPWO2021128444A5 (zh)
RU2272748C2 (ru) Подъемно-транспортная система
CN208325627U (zh) 一种防撞击航拍遥感无人机
CN108248853B (zh) 载人飞行器
CN202961882U (zh) 一种可载摄像装置的航模飞行器航拍三轴云台
CN205906229U (zh) 一种多旋翼无人机
CN221251766U (zh) 一种电力设计用勘察设备
CN113911347A (zh) 平行四边形传动卷帘式高效飞行扑翼装置
CN114248904B (zh) 一种非完全齿轮控制旋转可折叠翼飞行装置
CN113895616A (zh) 双同步直动带传动卷帘式扑翼无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539636

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908352

Country of ref document: EP

Kind code of ref document: A1