WO2021128310A1 - 一种超声成像设备以及快速设置超声自动工作流的方法 - Google Patents

一种超声成像设备以及快速设置超声自动工作流的方法 Download PDF

Info

Publication number
WO2021128310A1
WO2021128310A1 PCT/CN2019/129345 CN2019129345W WO2021128310A1 WO 2021128310 A1 WO2021128310 A1 WO 2021128310A1 CN 2019129345 W CN2019129345 W CN 2019129345W WO 2021128310 A1 WO2021128310 A1 WO 2021128310A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
inspected
scanning
image
user
Prior art date
Application number
PCT/CN2019/129345
Other languages
English (en)
French (fr)
Inventor
温博
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2019/129345 priority Critical patent/WO2021128310A1/zh
Priority to CN201980098247.2A priority patent/CN114072059A/zh
Publication of WO2021128310A1 publication Critical patent/WO2021128310A1/zh
Priority to US17/849,521 priority patent/US20230132927A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/465Displaying means of special interest adapted to display user selection data, e.g. icons or menus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device
    • A61B8/585Automatic set-up of the device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52098Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging related to workflow protocols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image

Definitions

  • the invention relates to the field of medical equipment, in particular to an ultrasonic imaging equipment and a method for quickly setting an ultrasonic automatic workflow.
  • the scanning protocol of the ultrasonic automatic workflow is a template protocol designed based on the basic operation flow of ultrasonic inspection and conforms to a specific application, which includes at least one section to be inspected and its setting parameters.
  • the scanning protocol is used to guide the user to scan each section of biological tissue, and each section is configured with corresponding setting parameters; it provides operational convenience for the ultrasound scanner and ensures the standardization and integrity of the inspection process It can prevent omission of slices and quickly obtain ultrasound images of various slices.
  • doctors want to use the automatic workflow scanning protocol, but they cannot use it satisfactorily.
  • the custom scan protocol provided by the ultrasound equipment manufacturer is cumbersome and complex, and requires high operators. If the doctor only slightly changes the original scanning protocol to meet the needs, the workload is acceptable, but if it is necessary to change multiple points or customize a new scanning protocol, the workload is quite large.
  • to establish a brand-new scanning protocol not only need to set the combination and sequence of all the aspects to be checked, but also need to set corresponding parameters for each aspect in the scanning protocol. Doctors usually have less contact with professional software, and they are not familiar with the control operation and the function support provided by the equipment, which leads to the inefficiency of the scanning protocol customization process. It is difficult for doctors to create a satisfactory scanning protocol from scratch. .
  • the present invention mainly provides an ultrasonic imaging device and a method for quickly creating a scanning protocol, so as to improve the efficiency of doctors in creating a scanning protocol.
  • an embodiment provides a method for quickly creating a scan protocol, where the scan protocol includes at least one section to be inspected and its setting parameters; the method includes:
  • a target scanning protocol including the at least one target section to be inspected and setting parameters of the at least one target section to be inspected is generated.
  • an embodiment provides a method for quickly creating a scanning protocol, where the scanning protocol includes at least one section to be inspected and its setting parameters; the method includes:
  • controlling the ultrasound probe In response to the recording start instruction, controlling the ultrasound probe to transmit ultrasonic waves to the target tissue and receive ultrasonic echoes returned from the target tissue to obtain ultrasonic echo signals;
  • a target scanning protocol including the at least one target section to be inspected and setting parameters of the at least one target section to be inspected is generated.
  • an embodiment provides a method for quickly creating a scan protocol, where the scan protocol includes at least one section to be inspected and its setting parameters; the method includes:
  • the scan interface of the section to be inspected of the scan protocol is displayed; in response to the recording start instruction, the scan operation performed by the user based on the scan interface is recorded to obtain at least one The target section to be inspected and the setting parameters of the at least one target section to be inspected;
  • a target scanning protocol including the at least one target section to be inspected and setting parameters of the at least one target section to be inspected is generated.
  • an embodiment provides a method for quickly creating a scanning protocol, the scanning protocol including at least one section to be inspected and its setting parameters; the method includes:
  • controlling the ultrasonic probe In response to an instruction for selecting a scanning protocol, controlling the ultrasonic probe to transmit ultrasonic waves to the target tissue and receive ultrasonic echoes returned from the target tissue to obtain ultrasonic echo signals;
  • a target scanning protocol including the at least one target section to be inspected and setting parameters of the at least one target section to be inspected is generated.
  • an ultrasonic imaging device in an embodiment, which is characterized in that it includes:
  • An ultrasound probe which is used to transmit ultrasonic waves to a region of interest in biological tissues and receive echoes of the ultrasonic waves;
  • a transmitting/receiving control circuit for controlling the ultrasonic probe to transmit ultrasonic waves to the region of interest and receive echoes of the ultrasonic waves to obtain ultrasonic echo signals
  • Human-computer interaction device for receiving user input and outputting visual information
  • the processor is configured to obtain an ultrasound image according to the ultrasound echo signal; and receive a recording start instruction through a human-computer interaction device; in response to the recording start instruction, display a scanning interface through the human-computer interaction device, and provide a user based on the The scanning operation performed by the scanning interface is recorded to obtain at least one target aspect to be inspected and the setting parameters of the at least one target aspect to be inspected; generating includes the at least one target aspect to be inspected and the at least one target aspect to be inspected The target scan protocol for the setting parameters of the aspect.
  • an ultrasonic imaging device including:
  • An ultrasound probe which is used to transmit ultrasonic waves to a region of interest in biological tissues and receive echoes of the ultrasonic waves;
  • a transmitting/receiving control circuit for controlling the ultrasonic probe to transmit ultrasonic waves to the region of interest and receive echoes of the ultrasonic waves to obtain ultrasonic echo signals
  • Human-computer interaction device for receiving user input and outputting visual information
  • an ultrasonic imaging device including:
  • Memory used to store programs
  • the processor is configured to execute the program stored in the memory to implement the above-mentioned method.
  • an embodiment provides a computer-readable storage medium, including a program, which can be executed by a processor to implement the method as described above.
  • the target section to be inspected and the setting parameters of the target section to be inspected are obtained through the record of the user's scanning operation, and the generation of the target scanning protocol is realized by this .
  • the creation process is simple, fast, and efficient.
  • Figure 1 is a structural block diagram of the ultrasound imaging equipment provided by this application.
  • FIG. 2 is a flowchart of the method for quickly creating a scanning protocol provided by this application
  • Fig. 3 is a flowchart of step 2 in Fig. 2.
  • connection and “connection” mentioned in this application include direct and indirect connection (connection) unless otherwise specified.
  • the ultrasound imaging equipment includes an ultrasound probe 30, a transmission/reception control circuit 40, a beam synthesis module 50, an IQ demodulation module 60, a processor 20, a human-computer interaction device 70, and a memory 80.
  • the ultrasonic probe 30 includes a transducer (not shown in the figure) composed of a plurality of array elements arranged in an array, and the plurality of array elements are arranged in a row to form a linear array, or arranged in a two-dimensional matrix to form a surface array.
  • the array elements can also form a convex array.
  • the array element is used to transmit an ultrasonic beam according to the excitation electrical signal, or to transform the received ultrasonic beam into an electrical signal.
  • each array element can be used to realize the mutual conversion of electric pulse signal and ultrasonic beam, so as to realize the transmission to the target tissue to be detected (for example, the area of interest in the biological tissue such as the organ, tissue, blood vessel, and fetus in the human body or animal)
  • Ultrasound can also be used to receive the echo of the ultrasound reflected by the tissue.
  • the transmission control circuit 410 and the reception control circuit 420 can control which array elements are used to transmit ultrasonic beams and which array elements are used to receive ultrasonic beams, or control the array elements to be used for transmitting ultrasonic beams or receiving ultrasonic beams in time slots. The echo of the ultrasonic beam.
  • the array elements participating in the ultrasonic transmission can be excited by electrical signals at the same time, thereby simultaneously emitting ultrasonic waves; or the array elements participating in the ultrasonic transmission can also be excited by several electrical signals with a certain time interval, so as to continuously emit ultrasonic waves with a certain time interval.
  • the array element uses piezoelectric crystals to convert electrical signals into ultrasonic signals according to the transmission sequence transmitted by the transmission control circuit 410.
  • the ultrasonic signals may include one or more scan pulses, one or more reference pulses, and one or more Push pulse and/or one or more Doppler pulses.
  • the ultrasonic signal includes focused wave and plane wave.
  • the user selects the appropriate position and angle by moving the ultrasound probe 30 to transmit ultrasound to the tested tissue X and receive the echo of the ultrasound returned by the tested tissue X, and output the ultrasound echo signal.
  • the ultrasound echo signal is based on the receiving array element
  • the channel analog electrical signal formed by the channel carries amplitude information, frequency information and time information.
  • the transmission control circuit 410 is used to generate a transmission sequence according to the control of the processor 20.
  • the transmission sequence is used to control part or all of the multiple array elements to transmit ultrasonic waves to the target tissue.
  • the transmission sequence parameters include the position of the array element used for transmission and the number of array elements.
  • ultrasonic beam transmission parameters (such as amplitude, frequency, number of transmissions, transmission interval, transmission angle, wave type, focus position, etc.).
  • the transmission control circuit 410 is also used to phase delay the transmitted beams, so that different transmitting array elements emit ultrasonic waves at different times, so that each transmitted ultrasonic beam can be focused on a predetermined region of interest.
  • B image mode may have different transmission sequence parameters.
  • Doppler mode may have different transmission sequence parameters.
  • the echo signal is received by the receiving control circuit 420 and processed by subsequent modules and corresponding algorithms, It can generate B images that reflect tissue anatomy, C images that reflect tissue anatomy and blood flow information, and D images that reflect Doppler spectrum images.
  • the receiving control circuit 420 is used to receive ultrasonic echo signals from the ultrasonic probe and process the ultrasonic echo signals.
  • the receiving control circuit 420 may include one or more amplifiers, analog-to-digital converters (ADC), and the like.
  • the amplifier is used to amplify the received echo signal after proper gain compensation.
  • the amplifier is used to sample the analog echo signal at a predetermined time interval to convert it into a digitized signal.
  • the digitized echo signal still retains its amplitude Information, frequency information and phase information.
  • the data output by the receiving control circuit 420 may be output to the beam synthesis module 50 for processing, or output to the memory 80 for storage.
  • the beam synthesis module 50 is signal-connected to the receiving control circuit 420, and is used to perform beam synthesis processing such as corresponding delay and weighted summation on the echo signal. Because the distance between the ultrasonic receiving point in the tested tissue and the receiving array element is different, , The channel data of the same receiving point output by different receiving array elements have delay differences, and delay processing is required, the phase is aligned, and the different channel data of the same receiving point are weighted and summed to obtain the ultrasound image data after beam synthesis
  • the ultrasound image data output by the beam synthesis module 50 is also called radio frequency data (RF data).
  • the beam forming module 50 outputs the radio frequency data to the IQ demodulation module 60.
  • the beam combining module 50 may also output the radio frequency data to the memory 80 for buffering or storage, or directly output the radio frequency data to the processor 20 for image processing.
  • the beam synthesis module 50 may use hardware, firmware, or software to perform the above functions.
  • the beam synthesis module 50 may include a central controller circuit (CPU) capable of processing input data according to specific logic instructions, one or more micro-processing chips, or Any other electronic components, when the beam combining module 50 is implemented in software, it can execute instructions stored on a tangible and non-transitory computer-readable medium (for example, a memory) to perform beam combining calculations using any appropriate beam combining method .
  • CPU central controller circuit
  • the IQ demodulation module 60 removes the signal carrier through IQ demodulation, extracts the organizational structure information contained in the signal, and performs filtering to remove noise. At this time, the acquired signal is called a baseband signal (IQ data pair).
  • the IQ demodulation module 60 outputs the IQ data pair to the processor 20 for image processing.
  • the IQ demodulation module 60 also buffers or saves the IQ data output to the memory 80, so that the processor 20 reads the data from the memory 80 for subsequent image processing.
  • the IQ demodulation module 60 may also implement the above functions in a manner of hardware, firmware, or software. In some embodiments, the IQ demodulation module 60 and the beam synthesis module 50 may also be integrated into one chip.
  • the processor 20 is configured to be a central controller circuit (CPU), one or more microprocessors, a graphics controller circuit (GPU) or any other electronic components capable of processing input data according to specific logic instructions, which can be configured according to the input Commands or predetermined commands perform control of peripheral electronic components, or perform data reading and/or saving to the memory 80, and input data can also be processed by executing a program in the memory 80, for example, collecting data according to one or more working modes. Perform one or more processing operations on the ultrasound data.
  • CPU central controller circuit
  • microprocessors e.g., a graphics controller circuit (GPU) or any other electronic components capable of processing input data according to specific logic instructions, which can be configured according to the input Commands or predetermined commands perform control of peripheral electronic components, or perform data reading and/or saving to the memory 80, and input data can also be processed by executing a program in the memory 80, for example, collecting data according to one or more working modes. Perform one or more processing operations on the ultrasound data.
  • GPU graphics controller circuit
  • the processing operations include, but are not limited to, adjusting or limiting the form of ultrasound emitted by the ultrasound probe 30, generating various image frames for subsequent display on the display of the human-computer interaction device 70, or adjusting or Define the content and form displayed on the display, or adjust one or more image display settings displayed on the display (such as ultrasound images, interface components, locating regions of interest).
  • the collected ultrasound data can be processed by the processor 20 in real time during scanning or treatment, or can be temporarily stored in the memory 80, and processed in a quasi real-time manner in online or offline operation.
  • the processor 20 controls the operations of the transmission control circuit 410 and the reception control circuit 420, for example, controls the transmission control circuit 410 and the reception control circuit 420 to work alternately or simultaneously.
  • the processor 20 may also determine a suitable working mode according to the user's selection or the setting of the program, form a transmission sequence corresponding to the current working mode, and send the transmission sequence to the transmission control circuit 410 so that the transmission control circuit 410 adopts a suitable transmission.
  • the sequence controls the ultrasonic probe 30 to emit ultrasonic waves.
  • the processor 20 is also used to process the ultrasound data to generate a grayscale image of signal strength changes within the scanning range, and the grayscale image reflects the internal anatomical structure of the tissue, which is called a B image.
  • the processor 20 may output the B image to the display of the human-computer interaction device 70 for display.
  • the human-computer interaction device 70 is used for human-computer interaction, that is, receiving user input and outputting visual information; it can receive user input by using a keyboard, operating buttons, mouse, trackball, etc., or a touch integrated with a display. Control screen; its output visual information can use a display.
  • the scanning protocol includes at least one section to be inspected and setting parameters for the section to be inspected.
  • a scanning protocol for a fetal brain examination includes a cross-section of the thalamus, a cross-section of the lateral ventricle, and a cross-section of the cerebellum waiting to be examined.
  • the user wants to obtain the ultrasound images of these slices through ultrasound scanning.
  • there is a standard scanning process that is to say, the scanning protocol is based on the basic operation process of ultrasound inspection and is designed in accordance with the template protocol for the specific application.
  • Scanners provide quick and convenient operation, guarantee the standardization and completeness of the inspection process, and prevent the omission of sections and measurements.
  • the ultrasound imaging equipment After the scanning protocol is activated, the ultrasound imaging equipment will guide the user through the display interface to perform the standard scanning process, so as to obtain the section image and measurement data of the section to be inspected, and the setting parameters are used to set the standard scanning process of the section parameter.
  • the method for quickly creating a scanning protocol records the scanning process of the user's normal inspection, extracts the target section to be inspected and the setting parameters of the target section to be inspected, and generates a new scanning protocol based on this.
  • the new scanning protocol is different from the existing scanning protocol in the system and belongs to the user-defined scanning protocol.
  • This method does not require the user to enter the exclusive process setting page for complicated setting work, nor does it need to recall and imagine during the setting. It only needs the user to complete a normal scanning operation, and the user is most familiar with the scanning operation. Therefore, this method of quickly creating a scanning protocol is very easy for users to use, and the operation is simple, convenient and fast. This method will be described in detail in the following examples.
  • Step 1 The processor 20 receives a recording start instruction through the human-computer interaction device 70.
  • the instruction can be triggered by a specific button in the human-computer interaction device 70, or can be triggered by a cursor click on some display interfaces.
  • the user sends an instruction to start the ultrasound automatic workflow through the human-computer interaction device 70.
  • the ultrasound automatic workflow is a workflow that guides the user to perform ultrasound scanning, which is equivalent to a collection of various content to be scanned.
  • the processor 20 After the processor 20 receives the instruction to start the ultrasonic automatic workflow through the human-computer interaction device 70, in response to the instruction to start the ultrasonic automatic workflow, it displays the instruction for triggering the recording start on the display interface of the display of the human-computer interaction device 70
  • the icon and at least one existing scanning protocol are for users to choose, and the existing scanning protocol includes at least one existing aspect to be checked.
  • the existing scanning protocol is the scanning protocol that comes with the ultrasound imaging device when it leaves the factory. The user can select the existing scanning protocol to perform regular scanning operations, or select the icon used to trigger the recording start instruction. Record scanning operations to quickly create new scanning agreements. When this icon is selected, the recording start instruction is issued.
  • a shortcut key can also be set.
  • the shortcut key can be a specific button or it can be displayed normally on some display interfaces. The user clicks the shortcut key to trigger the recording start instruction.
  • Step 2 In response to the recording start instruction, the processor 20 displays the scan interface through the display, records the scan operation performed by the user based on the scan interface, and obtains at least one target aspect to be inspected and the at least one target aspect to be inspected
  • the setting parameters The ultrasound probe can enter the working state before or after the recording is started.
  • the ultrasound probe can be excited to transmit ultrasound to the target tissue and receive the ultrasound echo returned from the target tissue to obtain the ultrasound echo signal, so that the ultrasound probe enters the working state. Thereby, an ultrasound image is obtained according to the ultrasound echo signal, and the corresponding scanning interface is displayed.
  • the scanning operation includes at least one of scanning image operation, freezing image operation, frame selection operation, marking operation, image saving operation and unfreezing image operation; marking operation includes at least one of adding body map, annotation and measurement .
  • this embodiment takes the scanning operation including all the above-mentioned operations as an example for description.
  • step 2 specifically includes:
  • Step 21 The processor 20 obtains the current target section to be inspected.
  • the processor 20 may create a target aspect to be inspected corresponding to the target scanning protocol when receiving the recording start instruction by default, or create a target aspect to be inspected by default as long as the user performs any scanning operation; create a target aspect to be inspected After the slice, the current scanning operation belongs to the scanning operation of the target slice to be checked, until the next target slice to be checked is created.
  • the name of the target aspect to be checked can adopt the default name, such as a blank name for subsequent editing, or it can be obtained after subsequent users perform corresponding operations.
  • the processor 20 controls the ultrasound probe 30 to perform the ultrasound imaging process, and records the scanning image operation during the ultrasound imaging process.
  • the inspection mode, image mode, image parameter gear, etc. are provided on the display interface or based on the user's operation on the display interface for the user to select.
  • a user such as a doctor, uses an ultrasound probe to scan images, with the purpose of obtaining ultrasound images of the tissues and organs to be scanned.
  • the ultrasonic probe can be excited to transmit ultrasonic waves to the target tissue, and receive the ultrasonic echo returned from the target tissue to obtain the ultrasonic echo signal, and obtain the ultrasonic image according to the ultrasonic echo signal.
  • the image modes include but are not limited to B image mode, C image mode and D image mode (Doppler mode), etc.; examination modes include but are not limited to adult abdomen, Children's abdomen, middle pregnancy, fetal heart, carotid artery and thyroid gland, etc.
  • the processor 20 records the target inspection mode and target image mode used in the scanning image operation for the current target section to be inspected, and sets the target inspection mode And the target image mode is used as the setting parameter of the current target section to be inspected.
  • the processor 20 controls the ultrasound probe to automatically switch to the target inspection mode and the target image mode according to the setting parameters (target inspection mode and target image mode) corresponding to the scanned section. Convenient.
  • doctors may adjust various image parameters (depth, gain, frequency, beam direction, contrast, etc.) to obtain image effects that are conducive to diagnosis.
  • Different patients such as different body types, ages, etc.
  • Different patients may need to set different image parameter gears.
  • the target scanning protocol that the doctor needs to generate is a general protocol, there is generally no need to record the image parameter gears, because it varies from patient to patient, and it may still need to be adjusted frequently during the actual examination. Setting the image parameter gears is not convenient.
  • the target scanning protocol that the doctor needs to generate is for a certain type of patient (such as children or obese patients, etc.), the image parameters can reflect some consistent directionality, and the image parameter gears are recorded during recording.
  • the option of whether to record image parameter gears during the recording protocol is provided for the doctor to choose, and the doctor can set it in advance before recording.
  • the processor 20 will record the image parameter gear as the setting parameter.
  • the processor 20 uses the last image parameter gear used in the real-time scan status as the target image parameter gear.
  • the processor 20 uses the real-time scanning target image parameter gear as the setting parameter of the current target section to be inspected.
  • the processor 20 automatically loads the target image parameter gears in the real-time scanning state.
  • Step 22 After the real-time scanning of the ultrasound image is completed, the doctor will freeze the ultrasound image.
  • a doctor inputs an instruction to freeze an image through a human-computer interaction device, and the ultrasound image obtained by real-time scanning is frozen, and then it is in the image frozen state until the image is unfrozen.
  • the doctor may adjust the image parameter level of the frozen ultrasound image. Therefore, the processor 20 uses the image parameter level last used in the image frozen state as the target image parameter level, and sets the target image parameter level of the image frozen state. The bit is used as the setting parameter of the current target section to be checked.
  • the processor 20 automatically loads the target image parameter gear in the image freezing state.
  • This embodiment records both the real-time scan and the target image parameter gear in the image freezing state. Of course, in some embodiments, only the target image parameter gear in the image freezing state may be recorded.
  • Step 23 After the ultrasound image is frozen, there will be a corresponding human-computer interaction interface on the display interface for the doctor to select frames.
  • the doctor can slide the lookback lever to select the most suitable one or more ultrasound images from the frozen multi-frame ultrasound images (frame selection operation) for subsequent labeling operations.
  • the processor 20 records whether the doctor selects one frame or multiple frames as a setting parameter of the current target slice to be examined.
  • the processor 20 prompts the user to select one frame or multiple frames through the corresponding display interface.
  • Step 24 After the doctor selects one or more frames of ultrasound images, he needs to perform a labeling operation.
  • the labeling operation includes adding at least one of a body map, an annotation, and a measurement.
  • This embodiment takes the above three as an example for description.
  • the doctor adds an annotation item at a certain position of the selected ultrasound image, and the processor 20 records the added annotation item and its annotation position, and uses the annotation item and its annotation position as the setting parameters of the current target slice to be examined.
  • the annotation items include the name of the section, the state of the section (such as whether it is pressed, etc.). In conventional ultrasound examinations, there may be one or more annotations for each section, or there may be no annotations.
  • the doctor can complete the necessary or best annotations at one time when recording the protocol, and the processor 20 records all of them.
  • the processor 20 displays the annotation item on the annotation position of the selected ultrasound image through the display interface to prompt the doctor.
  • the processor 20 may only record the annotation item or the annotation position as the setting parameter.
  • the display interface presents various measurement parameters for the doctor to choose and use.
  • the measurement parameters include measurement items and measurement methods, among which the measurement items include but not Limited to carotid artery spectrum measurement, fetal head circumference measurement and gynecological cervical length measurement; measurement methods include but not limited to PS, two-point method, trace method, spline method, automatic method, ellipse method, crosshair method and automatic method, etc. .
  • the processor 20 records the measurement parameters added by the doctor, and uses the added measurement parameters as the setting parameters of the current target slice to be examined.
  • the processor 20 prompts the doctor on the display interface to measure the measurement items in the setting parameters, and the measurement needs to be used in the setting parameters. Measurement methods. Measurements are often forgotten by junior doctors, and it is easy to be inaccurate in a variety of measurement methods.
  • the method of quickly creating a scan protocol provided by the present invention can be operated by senior doctors to obtain target scans.
  • the agreement embodies the workflow of ultrasound examinations performed by senior doctors. The process is more standardized and detailed than that of junior doctors.
  • the follow-up lower-senior doctors can use the target scanning protocol to perform better inspections and practice operations, which is convenient Improve the efficiency and quality of work of junior doctors.
  • a body position map is added to the selected ultrasound image, and the processor 20 records the added body position map, and uses the body position map as a setting parameter of the current target section to be examined.
  • the processor 20 automatically loads the body position map in the setting parameters. It is very convenient for doctors to set up.
  • Step 25 After the doctor performs the above-mentioned adding body map, annotation and measurement operations on the selected ultrasound image, the ultrasound image needs to be saved, that is, the image saving operation.
  • the doctor sends an instruction to save the image through the human-computer interaction device.
  • a variety of storage methods will be displayed on the display interface for the doctor to choose.
  • the storage methods are as follows: save a single-frame ultrasound image from the frozen ultrasound image, forward Store a segment of ultrasound images, store a segment of ultrasound images backward, and store static ultrasound images.
  • a single-frame ultrasound image is stored from the frozen ultrasound image, for example, a previously selected ultrasound image is stored.
  • forward storage refers to the time axis forward storage, and a segment of images stored in the past direction (scanned and stored in the image memory);
  • backward storage “Refers to the backward storage of the time axis and the storage of a segment of images in the future (non-scanned).
  • the first several types of stored ultrasound images are all editable, that is, body maps, annotations and measurements can be added.
  • To store a static ultrasound image is to store the ultrasound image in a non-editable image format. After receiving the instruction for saving the image, the processor 20 records the storage mode selected by the user, and uses the storage mode selected by the user as the setting parameter of the current target section to be inspected.
  • the doctor can also select the storage location, image format, etc.
  • the processor 20 records the storage location of the saved ultrasound image, and uses the storage location as the setting parameter of the current target section to be examined; Image format, using the image format as the setting parameter of the current target section to be inspected.
  • the storage location can be stored locally (in the ultrasound imaging device), or can be stored in the server, which is selected by the doctor.
  • the target scanning protocol is subsequently executed, the user does not need to set the storage location and image format.
  • the processor 20 stores the storage location in the setting parameters by default, and the image format defaults to the image format in the setting parameters, which improves operation efficiency.
  • the saved ultrasound image may need to be printed by the doctor, so after receiving the instruction for printing the image, the processor 20 records the printing setting, and uses the printing setting as the setting parameter of the current target slice to be examined.
  • the doctor may also need to set a guide image.
  • the doctor can call up a display interface with multiple guide images through operations, and the doctor selects a guide image from them.
  • the processor 20 uses the selected guide image as the setting parameter of the current target slice to be inspected.
  • the processor 20 extracts the contours of anatomical structures from the ultrasound images selected in the scanning operation (for example, from one or more ultrasound images selected by the doctor), and extracts the contours of the anatomical structure from the pre-stored ultrasound images.
  • the guide image that is most similar to the contour of the anatomical structure is found from the plurality of guide images, and used as the setting parameter of the current target section to be inspected.
  • the processor 20 displays the guiding image on the display interface to guide the doctor to perform the ultrasound scanning of the target section to be checked.
  • Step 26 Unfreezing the image usually means that the current frozen image is no longer needed or the current scan is over, and a new scan is about to start.
  • the processor 20 determines whether the ultrasound image has been saved in the current target section to be inspected, and if so, unfreezes the image for scanning and recording of the next target section to be inspected. If not, the current image is obtained.
  • the setting parameters are deleted. For example, if the doctor checks the ultrasound image after freezing and finds that none of them meets the requirements, or is not satisfied with the setting parameters obtained in the previous steps, he can directly unfreeze the image and rescan without saving the image.
  • the current target slice to be checked corresponds to The setting parameters can be deleted automatically.
  • each section of conventional clinical ultrasound examination has certain similarities, including scanning, freezing, selecting frames, adding body maps and annotations, measuring, saving images, and thawing steps, that is, steps 21-26.
  • the doctor can end the recording of the current target section to be examined by inputting the corresponding instruction, and perform the recording of the next target section to be examined.
  • the processor 20 can also recognize a certain key operation of the doctor and regard the key operation as ending the current examination. The basis for recording the target section. This embodiment describes the latter.
  • the processor 20 recognizes the scanning operation performed by the doctor. When the scanning operation performed by the doctor is a preset key operation, it obtains the current target section to be examined according to the record of the scanning operation from the scanning image operation to the key operation. Setting parameters.
  • the saved image is often a sign that the cut surface has been inspected, used as a diagnostic basis and reserved for future inspections.
  • the key operation is image saving, after the processor 20 recognizes the doctor’s image saving operation (see step 25), it considers that the doctor has completed the examination and recording of the current target section to be examined, and then determines the setting parameters obtained in steps 21-25 It is the setting parameter of the current target aspect to be inspected, and the setting parameter obtained later belongs to the setting parameter of another target aspect to be inspected.
  • the key operation is an image thawing operation, the setting parameters obtained in steps 21-26 are determined as the setting parameters of the current target slice to be inspected, and then the image is thawed.
  • the ultrasound images frozen by the doctor may obtain ultrasound images of multiple slices of the target to be examined. Therefore, in this embodiment, it is preferable to save the images as a key operation.
  • the doctor After the doctor has performed the operations of selecting frames, marking and saving images, he obtains a target slice to be checked and the setting parameters of the target slice to be checked. Since there are other ultrasound images of the target slice to be checked in the frozen image, the doctor only It is necessary to re-select the frame, mark and save the image to obtain another target slice to be inspected and the setting parameters of the target slice to be inspected. Until there are no other slices of the target to be inspected in the frozen ultrasound image, thawing the scanning and recording of the slice of the next target to be inspected.
  • the processor 20 After the processor 20 receives the recording start instruction, it also prompts the user to set the name of the target scanning protocol on the display interface of the display, and determines the name of the target scanning protocol according to the user's input; of course, a preset number can also be used.
  • One name is used as the name of the target scanning protocol. In other words, if the doctor does not input the name of the target scanning protocol during recording, the first name is used as the name of the target scanning protocol.
  • the first name can be edited, which is convenient for the doctor Make subsequent changes.
  • the processor prompts the user to set the name of the target section to be checked on the display interface, and determines the name of the target section to be checked according to the user's input, and determines the name of the target section to be checked.
  • the preset second name can also be used as the name of the target slice to be checked, and the second name is used as the setting parameter of the current target slice to be checked.
  • the second name is used as the name of the target slice to be checked.
  • the second name can be edited to facilitate subsequent changes by the doctor.
  • the above content describes how to obtain a target section to be inspected and the process of setting parameters for the target section to be inspected. Doctors only need to perform scanning operations according to their own needs, regardless of how many target sections to be inspected and the setting parameters of the target section to be inspected. Recorded by the processor 20. Of course, the target section to be inspected of the target scanning protocol that the doctor needs to generate may not require all the above setting parameters. The doctor can perform the corresponding scanning operation according to his own needs, that is, steps 21-25 can be selectively executed. .
  • the processor 20 also prompts the user to set the startup sequence of each target section to be inspected on the display interface of the display, and determines each to be inspected according to the user's input.
  • the starting sequence of the target aspect, the respective starting sequence of the target aspect to be checked is used as its setting parameter.
  • the processor 20 displays on the display interface of the display each target section to be inspected and each target section to be inspected during the scanning operation.
  • the progress of setting parameters For example, use the following table to prompt the doctor's progress:
  • the above table not only shows the recording sequence of each section, but also displays a guide chart in the section name column.
  • the doctor can know the name of the section through the guide chart without checking the text content, which is convenient and quick.
  • the processor 20 When the doctor records each target section to be examined and its setting parameters, that is, after receiving the recording start instruction, the processor 20 also provides operations such as copy, re-record, delete, pre-insert, post-insert, pause/continue, etc. through the display interface For doctors to choose. For example, provide doctors with corresponding operation portals through the following table:
  • the processor 20 After receiving the recording start instruction, the processor 20 receives the copy instruction input by the user through the human-computer interaction device, and copies the target section to be inspected selected by the user, so as to obtain another set of setting parameters of the target section to be inspected.
  • the copy can be completely copied without modification, or it can be modified automatically after copying; a target section to be checked has two sets of setting parameters, which is convenient for subsequent implementation of the target scanning protocol, sampling multiple sets of parameters to scan the same target. For example, copy the relevant settings of the left limb section to the right limb section, and change the naming and some setting parameters at the same time.
  • the processor 20 After receiving the recording start instruction, the processor 20 also receives the re-recording instruction input by the user through the human-computer interaction device, and deletes the setting parameters of the target section to be checked selected by the user, so as to retrieve the setting parameters.
  • the processor 20 After receiving the recording start instruction, the processor 20 also receives the delete instruction input by the user through the human-computer interaction device, deletes the target section to be checked selected by the user, and updates the sequence of other target sections to be checked.
  • the processor 20 After receiving the recording start instruction, the processor 20 also receives the pre-interpolation instruction input by the user through the human-computer interaction device, and inserts a new target section to be inspected before the target section to be inspected selected by the user;
  • the machine interaction device receives the post-insertion instruction input by the user, and inserts a new target slice to be checked after the target slice to be checked selected by the user; it is convenient for the user to adjust the order of the target slice to be checked.
  • the processor 20 After receiving the recording start instruction, the processor 20 also receives the pause recording instruction input by the user through the human-computer interaction device, and pauses the current recording so that the doctor can perform other operations.
  • the man-machine The interactive device receives the instruction to continue recording input by the user, and continues the current recording.
  • Step 3 Generate a target scanning protocol based on the target aspect to be inspected obtained in step 2 and the setting parameters of the target aspect to be inspected, and the target scanning protocol includes at least one target aspect to be inspected obtained in step 2 and the at least one target aspect to be inspected. Check the setting parameters of the target aspect.
  • the generated target scanning protocol contains how many target aspects to be inspected and their setting parameters.
  • the generation target scan protocol may be generated during recording, or may be generated after the processor 20 receives a recording stop instruction through the human-computer interaction device 70. The latter is described as an example in this embodiment.
  • the doctor After the doctor completes the scanning operation on each target section to be examined, he inputs a recording stop instruction through the human-computer interaction device 70, and the processor 20 stops recording the scanning operation, and then generates a section containing all the sections to be examined obtained in step 2 and all the sections to be examined.
  • the target scanning protocol generated by this application is generated according to the doctor’s personal habits of the doctor’s scanning operations on the cut surface. Not only is the operation familiar and convenient to the doctor, but the generated target scanning protocol conforms to the doctor’s usage habits and fits the doctor’s Mind, if the operation is performed by an experienced doctor, the generated target scanning protocol will be more complete.
  • the processor 20 is also configured to receive the assembly instruction through the human-computer interaction device after generating the target scanning protocol, and scan the two targets selected by the user according to the sequence of the two target scanning protocols selected by the user.
  • the agreements are merged into one target scanning agreement; the two target scanning agreements selected by the user are interrelated target scanning agreements.
  • the doctor selects two protocols and clicks the [Combine] button, the processor 20 will automatically generate a splicing protocol in the order in which the target scanning protocol is selected, and the doctor can rename, or further adjust or modify the protocol.
  • the merging is not limited to the merging of two protocols, it can be multiple protocols, and the merging can be performed in the order of selection.
  • the target scanning protocol is an agreement document.
  • the content of the agreement includes at least one target aspect to be inspected and the setting parameters of the at least one target aspect to be inspected.
  • the target scanning agreement is activated, it is passed
  • the human-computer interaction device guides the doctor to scan which target slices to be checked, and each target slice to be checked is configured with corresponding setting parameters, so that the doctor does not need to set too many parameters during the scanning process, which is convenient for the doctor to quickly get each target slice to be checked
  • the slice image of the target slice is an agreement document.
  • the content of the agreement includes at least one target aspect to be inspected and the setting parameters of the at least one target aspect to be inspected.
  • the target scanning protocol After the target scanning protocol is generated, it can be used in the same way as the existing scanning protocol that comes with the ultrasound imaging device.
  • the process of executing the target scanning protocol is briefly described below:
  • the doctor issues an instruction to start the ultrasound automatic workflow through the human-computer interaction device 70.
  • the processor 20 displays an icon for triggering the recording start instruction and the existing scan on the display interface of the display.
  • the search protocol and target scanning protocol are available for users to choose.
  • the doctor selects a target scanning protocol, and sends an instruction to start the target scanning protocol through the human-computer interaction device 70.
  • the processor 20 responds to the command for starting the target scanning protocol to control the ultrasound probe to emit ultrasound to the target tissue.
  • the user can move the ultrasound probe based on the guidance of the first slice of the target to be inspected to scan and obtain the ultrasound image of the slice of the target to be inspected.
  • the processor 20 can display the name of the target scanning protocol and the name of the current target section to be checked through the display interface, display the body map for the doctor’s reference, and automatically set the check mode to the target check mode in the set parameters (you can also prompt the target first Examination mode, executed after confirmation by the doctor), automatically set the image mode to the target image mode in the setting parameters (you can also prompt the target image mode first, and execute it after the doctor confirms), and it is currently in the real-time scanning state, then the image is automatically set
  • the parameter is set to the target image parameter level corresponding to the real-time scan state in the setting parameters (the target image parameter level can also be prompted first and executed by the doctor after confirmation). The doctor does not need to set it, just hold the ultrasound probe for scanning. Very convenient.
  • the doctor After scanning a segment of the ultrasound image, the doctor freezes the ultrasound image, and the processor 20 automatically sets the image parameters to the target image parameter level corresponding to the image freezing state in the setting parameters (the target image parameter level can also be prompted first, which is executed after the doctor confirms it. ).
  • the processor 20 also prompts the doctor to select one frame or multiple frames of ultrasound images on the display interface according to the set parameters. After the doctor selects the frame, the processor 20 also directly displays annotation items, annotation positions, measurement parameters, and body position maps on the display interface according to the set parameters, so that the doctor can make annotations and measurements, and also provides guidance for the doctor. After the doctor completes the labeling operation to save the image, he only needs to select which images need to be saved.
  • the processor 20 automatically follows the storage mode in the set parameters (the storage mode can also be prompted first, and the doctor confirms the execution), and saves the image selected by the doctor. Store it in the storage location in the setup parameter in the format in the setup parameter (you can also prompt the image format and storage location first, and execute it after confirmation by the doctor).
  • the storage methods of different target slices to be examined may be different.
  • the human-computer interaction device can be set up so that the doctor can use the same image storage button and execute different storage methods according to different target slices. Of course, the human-computer interaction device can also be used Another setting allows doctors to use different image storage buttons to perform different storage methods.
  • the doctor unfreezes the image, and the processor 20 starts the scanning interface corresponding to the next target slice to be checked according to the starting sequence of the target slice to be checked, so that the user can perform the scanning operation until the target scanning protocol is part or all of the targets to be checked.
  • the cut surface obtains the ultrasonic image of the cut surface that the doctor wants. It can be seen that the scanning protocol in the ultrasound automatic workflow can be customized by the method of this application, and the new creation process is quick and efficient.
  • the doctor initiates the recording through the icon used to trigger the recording start instruction, but this application also provides an embodiment whose way of entering the recording is somewhat different from the above-mentioned embodiment.
  • the method for quickly creating a scanning protocol includes the following steps:
  • Step 1' the processor 20 receives the instruction to start the ultrasonic automatic workflow, and in response to the instruction to start the ultrasonic automatic workflow, the processor 20 displays at least one scanning protocol on the display interface of the display for the user to select.
  • the scanning protocol can be an existing scanning protocol or a template scanning protocol.
  • the template scanning protocol can also guide the doctor to perform the steps in FIG. 3.
  • the doctor selects a scanning protocol, and the processor 20, in response to the instruction for selecting the scanning protocol, controls the ultrasonic probe to transmit ultrasonic waves to the target tissue, and receives ultrasonic echoes returned from the target tissue to obtain ultrasonic echo signals ; Obtain an ultrasonic image according to the ultrasonic echo signal, and display the scan interface of the section to be inspected of the scan protocol on the display interface.
  • the doctor performs one or more scanning operations of the slice to be checked from scratch to obtain one or more target slices to be checked and the setting parameters of the target slice to be checked; and in this embodiment, the doctor
  • a scanning protocol can be selected to perform one or more scanning operations of the slices to be inspected, and obtain one or more target slices to be inspected and the setting parameters of the target slices to be inspected.
  • Step 2' in response to the recording start instruction, the processor 20 records the scanning operation performed by the user based on the scanning interface to obtain at least one target aspect to be inspected and setting parameters of the at least one target aspect to be inspected.
  • This step is the same as step 2 in the above-mentioned embodiment, so it will not be repeated.
  • Step 3' After receiving the recording stop instruction, the processor 20 generates a target scanning protocol that includes the at least one target section to be inspected and the setting parameters of the at least one target section to be inspected. This step is the same as step 3 in the above-mentioned embodiment, so it will not be described in detail.
  • this application chooses a suitable time to record the doctor's operation content and the slice collection process in units of slices, automatically generate executable target scanning protocols, reduce the burden of user customization, and make users more convenient and relaxed Use automated workflows to standardize daily ultrasound inspections.
  • the foregoing embodiment provides a method for quickly creating a scanning protocol.
  • This application can also provide a method for quickly modifying a scanning protocol based on the same principle, which includes the following steps:
  • Step 1" the processor 20 receives the instruction to start the ultrasound automatic workflow, and in response to the instruction to start the ultrasound automatic workflow, displays at least one scan protocol for the user to select, and the scan protocol includes at least one section to be inspected. 20 In response to the instruction for selecting the scanning protocol, the scanning interface of the to-be-checked section of the scanning protocol is displayed.
  • Step 2 in response to the recording start instruction, the processor 20 records the scanning operation performed by the user based on the scanning interface to obtain at least one to-be-checked section and setting parameters of the at least one to-be-checked section.
  • Step 3 After receiving the recording stop instruction, the processor 20 updates the original setting parameters of the scanning protocol according to the obtained setting parameters, thereby completing the modification of the scanning protocol.
  • the processor 20 updates the original setting parameters of the scanning protocol according to the obtained setting parameters, thereby completing the modification of the scanning protocol.
  • the new scanning protocol please refer to the new scanning protocol above The embodiments are not described in detail here.
  • the program may be stored in a computer-readable storage medium.
  • the storage medium may include: read-only memory, random access memory, magnetic disk, optical disk, hard disk, etc.
  • the computer executes the program to realize the above-mentioned functions.
  • the program is stored in the memory of the device, and when the program in the memory is executed by the processor, all or part of the above-mentioned functions can be realized.
  • the program can also be stored in a storage medium such as a server, another computer, a magnetic disk, an optical disk, a flash disk, or a mobile hard disk, and saved by downloading or copying.
  • a storage medium such as a server, another computer, a magnetic disk, an optical disk, a flash disk, or a mobile hard disk, and saved by downloading or copying.
  • the principles herein can be reflected in a computer program product on a computer-readable storage medium, which is pre-installed with computer-readable program code.
  • a computer-readable storage medium Any tangible, non-transitory computer-readable storage medium can be used, including magnetic storage devices (hard disks, floppy disks, etc.), optical storage devices (CD-ROM, DVD, Blu Ray disks, etc.), flash memory and/or the like .
  • These computer program instructions can be loaded on a general-purpose computer, a special-purpose computer, or other programmable data processing equipment to form a machine, so that these instructions executed on the computer or other programmable data processing device can generate a device that realizes the specified function.
  • Computer program instructions can also be stored in a computer-readable memory, which can instruct a computer or other programmable data processing equipment to operate in a specific manner, so that the instructions stored in the computer-readable memory can form a piece of Manufactured products, including realizing devices that realize designated functions.
  • Computer program instructions can also be loaded on a computer or other programmable data processing equipment, thereby executing a series of operation steps on the computer or other programmable equipment to produce a computer-implemented process, so that the execution of the computer or other programmable equipment Instructions can provide steps for implementing specified functions.
  • Coupled refers to physical connection, electrical connection, magnetic connection, optical connection, communication connection, functional connection and/or any other connection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Human Computer Interaction (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种快速新建扫查协议的方法及采用该方法的超声成像设备,该方法通过对用户扫查操作的记录,得到待检查目标切面以及待检查目标切面的设置参数,并以此实现目标扫查协议的生成。用户只需要做自己熟悉的扫查操作即可创建目标扫查协议,创建过程简单、快速、高效。

Description

一种超声成像设备以及快速设置超声自动工作流的方法 技术领域
本发明涉及医疗器械领域,具体涉及一种超声成像设备以及快速设置超声自动工作流的方法。
背景技术
超声自动工作流的扫查协议,是基于超声检查的基本操作流程设计的符合特定应用的模板协议,其包括至少一个待检查切面及其设置参数。扫查协议用于引导用户对生物组织的各个切面进行扫查,且每个切面配置有相应的设置参数;其为超声扫查者提供了操作上的便利,保障了检查流程的规范性和完整性,防止遗漏切面和快速得到各个切面的超声图像等。然而目前却出于以下一些原因,造成医生想使用自动工作流的扫查协议,但却无法称心的用起来。
超声设备厂家提供的自定义扫查协议设置繁琐复杂,对操作者要求高。如果医生仅在原有的扫查协议上面稍作更改即能满足需要,工作量尚可,但若需更改多处或自定义全新的扫查协议,工作量相当大。目前建立一个全新的扫查协议,不仅需要设置所有待查切面的组合及顺序,对于扫查协议中每一个切面需要设置相应的参数。医生平时接触专业软件较少,对控件操作及设备提供的功能支持也不熟悉,从而导致扫查协议自定义过程效率低下,医生很难单纯依靠自己从无到有创建出一个满意的扫查协议。
发明内容
本发明主要提供一种超声成像设备以及快速新建扫查协议的方法,以提高医生创建扫查协议的效率。
根据第一方面,一种实施例中提供一种快速新建扫查协议的方法,所述扫查协议包括至少一个待检查切面及其设置参数;所述方法包括:
接收录制启动指令;
响应于所述录制启动指令,显示扫查界面,对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数;
生成包含有所述至少一个待检查目标切面以及所述至少一个待检查目标切面 的设置参数的目标扫查协议。
根据第二方面,一种实施例中提供一种快速新建扫查协议的方法,所述扫查协议包括至少一个待检查切面及其设置参数;所述方法包括:
接收录制启动指令;
响应于所述录制启动指令,控制超声探头向目标组织发射超声波,并接收从所述目标组织返回的超声回波,以获得超声回波信号;
根据所述超声回波信号得到超声图像,并显示扫查界面;
对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数;
生成包含有所述至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数的目标扫查协议。
根据第三方面,一种实施例中提供一种快速新建扫查协议的方法,所述扫查协议包括至少一个待检查切面及其设置参数;所述方法包括:
接收启动超声自动工作流的指令,响应于所述启动超声自动工作流的指令,显示至少一个扫查协议供用户选取,所述扫查协议包括至少一个待检查切面;
响应于用于选定扫查协议的指令,显示扫查协议的待检查切面的扫查界面;响应于录制启动指令,对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数;
生成包含有所述至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数的目标扫查协议。
根据第四方面,一种实施例中提供一种快速新建扫查协议的方法,所述扫查协议包括至少一个待检查切面及其设置参数;所述方法包括:
接收启动超声自动工作流的指令,响应于所述启动超声自动工作流的指令,显示至少一个扫查协议供用户选取,所述扫查协议包括至少一个待检查切面;
响应于用于选定扫查协议的指令,控制超声探头向目标组织发射超声波,并接收从所述目标组织返回的超声回波,以获得超声回波信号;
根据所述超声回波信号得到超声图像,并显示扫查协议的待检查切面的扫查界面;
响应于录制启动指令,对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数;
生成包含有所述至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数的目标扫查协议。
根据第五方面,一种实施例中提供一种超声成像设备,其特征在于,包括:
超声探头,用于向生物组织内的感兴趣区域发射超声波,并接收所述超声波的回波;
发射/接收控制电路,用于控制超声探头向感兴趣区域发射超声波并接收所述超声波的回波,以获得超声回波信号;
人机交互装置,用于接收用户的输入,输出可视化信息;
处理器,用于根据所述超声回波信号得到超声图像;以及通过人机交互装置接收录制启动指令;响应于所述录制启动指令,通过人机交互装置显示扫查界面,对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数;生成包含有所述至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数的目标扫查协议。
根据第六方面,一种实施例中提供一种超声成像设备,包括:
超声探头,用于向生物组织内的感兴趣区域发射超声波,并接收所述超声波的回波;
发射/接收控制电路,用于控制超声探头向感兴趣区域发射超声波并接收所述超声波的回波,以获得超声回波信号;
人机交互装置,用于接收用户的输入,输出可视化信息;
处理器,用于根据所述超声回波信号得到超声图像;以及通过人机交互装置接收启动超声自动工作流的指令,响应于所述启动超声自动工作流的指令,显示至少一个扫查协议供用户选取,所述扫查协议包括至少一个待检查切面;响应于用于选定扫查协议的指令,显示扫查协议的待检查切面的扫查界面;响应于录制启动指令,对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数;生成包含有所述至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数的目标扫查协议。
根据第五方面,一种实施例中提供一种超声成像设备,包括:
存储器,用于存储程序;
处理器,用于执行所述存储器存储的程序以实现如上所述的方法。
根据第六方面,一种实施例中提供一种计算机可读存储介质,包括程序,所述程序能够被处理器执行以实现如上所述的方法。
依据上述实施例的超声成像设备以及快速新建扫查协议的方法,通过对用户扫查操作的记录,得到待检查目标切面以及待检查目标切面的设置参数,并以此实现目标扫查协议的生成。对于用户而言,只需要做自己熟悉的扫查操作即可,创建过 程简单、快速、高效。
附图说明
图1为本申请提供的超声成像设备的结构框图;
图2为本申请提供的快速新建扫查协议的方法的流程图;
图3为图2中步骤2的流程图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
本申请提供的超声成像设备,如图1所示,包括超声探头30、发射/接收控制电路40、波束合成模块50、IQ解调模块60、处理器20、人机交互装置70和存储器80。
超声探头30包括由阵列式排布的多个阵元组成的换能器(图中未示出),多个阵元排列成一排构成线阵,或排布成二维矩阵构成面阵,多个阵元也可以构成凸阵列。阵元用于根据激励电信号发射超声波束,或将接收的超声波束变换为电信号。因此每个阵元可用于实现电脉冲信号和超声波束的相互转换,从而实现向被检测的目标组织(例如人体或动物体内的器官、组织、血管、胎儿等生物组织内的感兴趣 区域)发射超声波、也可用于接收经组织反射回的超声波的回波。在进行超声检测时,可通过发射控制电路410和接收控制电路420控制哪些阵元用于发射超声波束,哪些阵元用于接收超声波束,或者控制阵元分时隙用于发射超声波束或接收超声波束的回波。参与超声波发射的阵元可以同时被电信号激励,从而同时发射超声波;或者参与超声波发射的阵元也可以被具有一定时间间隔的若干电信号激励,从而持续发射具有一定时间间隔的超声波。
阵元例如采用压电晶体,按照发射控制电路410传输的发射序列将电信号转换成超声信号,根据用途,超声信号可以包括一个或多个扫描脉冲、一个或多个参考脉冲、一个或多个推动脉冲和/或一个或多个多普勒脉冲。根据波的形态,超声信号包括聚焦波和平面波。
用户通过移动超声探头30选择合适的位置和角度向被测组织X发射超声波并接收由被测组织X返回的超声波的回波,输出超声回波信号,超声回波信号是按以接收阵元为通道所形成的通道模拟电信号,其携带有幅度信息、频率信息和时间信息。
发射控制电路410用于根据处理器20的控制产生发射序列,发射序列用于控制多个阵元中的部分或者全部向目标组织发射超声波,发射序列参数包括发射用的阵元位置、阵元数量和超声波束发射参数(例如幅度、频率、发射次数、发射间隔、发射角度、波型、聚焦位置等)。某些情况下,发射控制电路410还用于对发射的波束进行相位延迟,使不同的发射阵元按照不同的时间发射超声波,以便各发射超声波束能够在预定的感兴趣区域聚焦。不同的工作模式,例如B图像模式、C图像模式和D图像模式(多普勒模式),发射序列参数可能不同,回波信号经接收控制电路420接收并经后续的模块和相应算法处理后,可生成反映组织解剖结构的B图像、反映组织解剖结构和血流信息的C图像以及反映多普勒频谱图像的D图像。
接收控制电路420用于从超声探头接收超声回波信号,并对超声回波信号进行处理。接收控制电路420可以包括一个或多个放大器、模数转换器(ADC)等。放大器用于在适当增益补偿之后放大所接收到的回波信号,放大器用于对模拟回波信号按预定的时间间隔进行采样,从而转换成数字化的信号,数字化后的回波信号依然保留有幅度信息、频率信息和相位信息。接收控制电路420输出的数据可输出给波束合成模块50进行处理,或输出给存储器80进行存储。
波束合成模块50和接收控制电路420信号相连,用于对回波信号进行相应的延时和加权求和等波束合成处理,由于被测组织中的超声波接收点到接收阵元的距离不同,因此,不同接收阵元输出的同一接收点的通道数据具有延时差异,需要进 行延时处理,将相位对齐,并将同一接收点的不同通道数据进行加权求和,得到波束合成后的超声图像数据,波束合成模块50输出的超声图像数据也称为射频数据(RF数据)。波束合成模块50将射频数据输出至IQ解调模块60。在有的实施例中,波束合成模块50也可以将射频数据输出至存储器80进行缓存或保存,或将射频数据直接输出至处理器20进行图像处理。
波束合成模块50可以采用硬件、固件或软件的方式执行上述功能,例如,波束合成模块50可以包括能够根据特定逻辑指令处理输入数据的中央控制器电路(CPU)、一个或多个微处理芯片或其他任何电子部件,当波束合成模块50采用软件方式实现时,其可以执行存储在有形和非暂态计算机可读介质(例如,存储器)上的指令,以使用任何适当波束合成方法进行波束合成计算。
IQ解调模块60通过IQ解调去除信号载波,提取信号中包含的组织结构信息,并进行滤波去除噪声,此时获取的信号称为基带信号(IQ数据对)。IQ解调模块60将IQ数据对输出至处理器20进行图像处理。
在有的实施例中,IQ解调模块60还将IQ数据对输出至存储器80进行缓存或保存,以便处理器20从存储器80中读出数据进行后续的图像处理。
IQ解调模块60也可以采用硬件、固件或软件的方式执行上述功能,在有的实施例中,IQ解调模块60还可以和波束合成模块50集成在一个芯片中。
处理器20用于配置成能够根据特定逻辑指令处理输入数据的中央控制器电路(CPU)、一个或多个微处理器、图形控制器电路(GPU)或其他任何电子部件,其可以根据输入的指令或预定的指令对外围电子部件执行控制,或对存储器80执行数据读取和/或保存,也可以通过执行存储器80中的程序对输入数据进行处理,例如根据一个或多个工作模式对采集的超声数据执行一个或多个处理操作,处理操作包括但不限于调整或限定超声探头30发出的超声波的形式,生成各种图像帧以供后续人机交互装置70的显示器进行显示,或者调整或限定在显示器上显示的内容和形式,或者调整在显示器上显示的一个或多个图像显示设置(例如超声图像、界面组件、定位感兴趣区域)。
接收到回波信号时,所采集的超声数据可由处理器20在扫描或治疗期间实时地处理,也可以临时存储在存储器80上,并且在联机或离线操作中以准实时的方式进行处理。
本实施例中,处理器20控制发射控制电路410和接收控制电路420的工作,例如控制发射控制电路410和接收控制电路420交替工作或同时工作。处理器20还可根据用户的选择或程序的设定确定合适的工作模式,形成与当前工作模式对应 的发射序列,并将发射序列发送给发射控制电路410,以便发射控制电路410采用合适的发射序列控制超声探头30发射超声波。
处理器20还用于对超声数据进行处理,以生成扫描范围内的信号强弱变化的灰度图像,该灰度图像反映组织内部的解剖结构,称为B图像。处理器20可以将B图像输出至人机交互装置70的显示器进行显示。
人机交互装置70用于进行人机交互,即接收用户的输入和输出可视化信息;其接收用户的输入可采用键盘、操作按钮、鼠标、轨迹球等,也可以采用与显示器集成在一起的触控屏;其输出可视化信息可以采用显示器。
现有的超声成像设备通常预设有多个既有的扫查协议供用户选取、操作。扫查协议包括至少一个待检查切面和待检查切面的设置参数。例如,一个胎儿颅脑检查的扫查协议就包括丘脑横切面、侧脑室切面和小脑横切面等待检查切面。用户要通过超声扫查来得到这些切面的超声图像,实际上是有一个标准扫查流程的,也就是说扫查协议是基于超声检查的基本操作流程设计的符合特定应用的模板协议,为超声扫查者提供了操作上的快捷、便利,保障了检查流程的规范性和完整性,防止遗漏切面和测量等。扫查协议激活后,超声成像设备会通过显示界面引导用户执行标准扫查流程,从而得到待检查切面的切面图像和测量数据等,而设置参数就是用来对切面的标准扫查流程做设置的参数。
现有超声成像设备的功能繁多,使得在系统设置界面进行参数设置很复杂。尤其是用户通常使用既有的扫查协议进行扫查操作,自定义扫查协议并不频繁,使得用户基本不熟悉自定义扫查协议的操作,如果需要自定义扫查协议,对用户而言工作量会非常大。
而本申请提供的快速新建扫查协议的方法,通过记录用户正常做检查的扫查流程,从中提取待检查目标切面以及待检查目标切面的设置参数等,并基于此生成新的扫查协议。新的扫查协议有别于系统既有的扫查协议,属于用户自定义的扫查协议。此方法无需用户进入专属的流程设置页面进行繁杂的设置工作,也无需设置时的回想和想象,只需用户完整的进行一次平时的扫查操作即可,而用户最熟悉的就是扫查操作,故这一快速新建扫查协议的方法用户非常容易上手,操作简单、方便快捷。下面将通过实施例对这一方法进行详细说明。
基于图1所示的超声成像设备,其快速新建扫查协议的流程如图2所示,包括以下步骤:
步骤1、处理器20通过人机交互装置70接收录制启动指令。该指令可以由人机交互装置70中的特定按钮触发,也可以在一些显示界面中由光标点击而触发。 例如,用户通过人机交互装置70发出启动超声自动工作流的指令,超声自动工作流是一个引导用户进行超声扫查的工作流程,其相当于是各种待扫查内容的集合。处理器20通过人机交互装置70接收该启动超声自动工作流的指令后,响应于该启动超声自动工作流的指令,在人机交互装置70的显示器的显示界面上显示用于触发录制启动指令的图标以及至少一个既有的扫查协议供用户选取,既有的扫查协议包括至少一个既有的待检查切面。既有的扫查协议就是超声成像设备出厂时自带的扫查协议,用户可以通过选定既有的扫查协议进行常规的扫查操作,也可以选定用于触发录制启动指令的图标来录制扫查操作以快速新建扫查协议。选定了该图标就发出了录制启动指令。当然,快速新建扫查协议的入口不局限于此,还可以设置快捷键,该快捷键可以是特定按钮,也可以在一些显示界面上常态显示,用户点击该快捷键则触发了录制启动指令。
步骤2、处理器20响应于录制启动指令,通过显示器显示扫查界面,对用户基于该扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数。超声探头可以在启动录制前或者录制后进入工作状态,可通过激励超声探头向目标组织发射超声波,并接收从目标组织返回的超声回波,以获得超声回波信号,使得超声探头进入工作状态,从而根据该超声回波信号得到超声图像,并显示相应的扫查界面。其中,扫查操作包括:扫查图像操作,冻结图像操作,选帧操作,标注操作,保存图像操作和解冻图像操作中的至少一个操作;标注操作包括添加体位图、注释和测量中的至少一个。为了更为详细的阐述本申请的方案,本实施例以扫查操作包括上述所有操作为例进行说明。如图3所示,步骤2具体包括:
步骤21、处理器20获取当前待检查目标切面。处理器20可以默认为收到录制启动指令就对应于目标扫查协议创建一个待检查目标切面,或者只要用户执行了任意一项扫查操作,就默认创建一个待检查目标切面;创建待检查目标切面后,当前的扫查操作都属于该待检查目标切面的扫查操作,直到创建下一个待检查目标切面。这个待检查目标切面的名称可以采用默认的名称,例如空白名称以便后续编辑,也可以待后续用户进行相应操作以后得到名称。
基于用户的操作,处理器20控制超声探头30执行超声成像过程,并记录在超声成像过程中的扫查图像操作。例如,在该显示界面上提供或基于用户的操作在显示界面上提供检查模式、图像模式和图像参数档位等供用户选取。超声成像过程,是用户例如医生使用超声探头进行图像的扫查,目的是获得待扫查组织器官的超声图像。例如,可激励超声探头向目标组织发射超声波,并接收从该目标组织返回的 超声回波,以获得超声回波信号,根据该超声回波信号得到超声图像。实时超声成像过程中,医生会先设置检查模式和图像模式,图像模式包括但不限于B图像模式、C图像模式和D图像模式(多普勒模式)等;检查模式包括但不限于成人腹部、小儿腹部、中孕、胎儿心脏、颈动脉和甲状腺等。将最后使用的检查模式和图像模式作为目标检查模式和目标图像模式,处理器20记录针对当前待检查目标切面的扫查图像操作中采用的目标检查模式和目标图像模式,并将该目标检查模式和目标图像模式作为当前待检查目标切面的设置参数。后续在执行目标扫查协议时,处理器20根据扫查的切面对应的设置参数(目标检查模式和目标图像模式),控制超声探头自动切换至目标检查模式和目标图像模式,无需医生选取,非常便捷。
实时扫查状态和图像冻结状态,医生都可能调节各类图像参数(深度、增益、频率、声束方向、对比度等),以获得有利于诊断的图像效果。不同的病人(比如体型、年龄等不同)可能需要设置不同的图像参数档位。若医生需要生成的目标扫查协议是通用协议,一般不需要记录图像参数档位,因为因病人而异,实际检查时可能还是需要经常调节,设置图像参数档位不能带来方便。若医生需要生成的目标扫查协议是针对某一类病人(比如儿童或肥胖病人等),图像参数能够体现出一些一致的方向性,录制时记录图像参数档位。例如通过设置界面提供录制协议时是否记录图像参数档位的选项供医生选择,医生可以在录制前提前设置。假设医生选择记录图像参数档位,则处理器20将会记录图像参数档位作为设置参数。医生在选定图像参数档位时,存在中间调节过程,比如从2档经过3档调到4档,因此,处理器20将实时扫查状态最后使用的图像参数档位作为目标图像参数档位,并将实时扫查状态的目标图像参数档位作为当前待检查目标切面的设置参数。后续执行目标扫查协议时,在实时扫查状态,处理器20自动加载实时扫查状态的目标图像参数档位。
步骤22、实时扫查超声图像结束后,医生会将超声图像冻结。例如,医生通过人机交互装置输入冻结图像的指令,实时扫查得到的超声图像被冻结,之后直到解冻图像之前都属于图像冻结状态。同样的,医生可能会调节冻结的超声图像的图像参数档位,因此,处理器20将图像冻结状态最后使用的图像参数档位作为目标图像参数档位,并将图像冻结状态的目标图像参数档位作为当前待检查目标切面的设置参数。后续执行目标扫查协议时,在图像冻结状态,处理器20自动加载图像冻结状态的目标图像参数档位。
本实施例对实时扫查和图像冻结状态的目标图像参数档位都进行记录,当然,有的实施例中,还可以只记录图像冻结状态的目标图像参数档位。
步骤23、超声图像冻结后,显示器的显示界面上会有对应的人机交互界面供医生来选帧。例如,医生可以滑动回看拨杆从冻结的多帧超声图像中选取最合适的一帧或多帧超声图像(选帧操作),以便后续进行标注操作。处理器20记录医生选取的是一帧还是多帧这一结果作为当前待检查目标切面的设置参数。后续执行目标扫查协议时,在超声图像冻结后,处理器20通过显示界面对应的提示用户选取一帧还是多帧。
步骤24、医生选定一帧或多帧超声图像后,需要进行标注操作,标注操作包括添加体位图、注释和测量中的至少一个,本实施例以包括上述三者为例进行说明。医生在选定的超声图像的某一位置添加注释项目,处理器20记录添加的注释项目及其注释位置,将注释项目及其注释位置作为当前待检查目标切面的设置参数。注释项目包括切面名称、切面状态(如是否按压等)等。常规超声检查,每个切面的注释可能有一个或多个,也可能不需要任何注释,医生在录制协议时可以根据需要将必须或最好进行注释的内容一次完成,处理器20全部进行记录,后续执行目标扫查协议时,在选定一帧或多帧超声图像后,处理器20通过显示界面在选定超声图像的注释位置上显示该注释项目,以提示医生。当然,在其他实施例中,处理器20也可以只记录注释项目或注释位置作为设置参数,后续执行目标扫查协议时,显示该设置参数中的注释项目,而注释位置由医生选取,或者显示设置参数中的注释位置,注释项目由医生选取。
医生选定一帧或多帧超声图像后,会对选定的超声图像进行测量,显示界面呈现各种测量参数供医生选取使用,测量参数包括测量项目和测量方法等,其中测量项目包括但不限于颈动脉频谱测量、胎儿头围测量和妇科宫颈长度测量等;测量方法包括但不限于PS、两点法、描迹法、样条法、自动法、椭圆法、十字线法和自动法等。处理器20记录医生添加的测量参数,将添加的测量参数作为当前待检查目标切面的设置参数。后续执行目标扫查协议时,医生选定一帧或多帧超声图像后,处理器20在显示界面上提示医生需要对该设置参数中的测量项目进行测量,测量时需要采用该设置参数中的测量方法。测量是低年资医生时常容易遗忘的内容,而且容易对多种测量方法把握不准,本发明提供的快速新建扫查协议的方法,可以由高年资医生进行操作,进而得到的目标扫查协议体现的是高年资医生进行超声检查的工作流程,其流程比低年资医生自己操作要规范、详细,后续低年资医生使用目标扫查协议能更好的进行检查和练习操作,便于提高低年资医生的工作效率和工作质量。
医生选定一帧或多帧超声图像后,会对选定的超声图像添加体位图,处理器20 记录添加的体位图,将该体位图作为当前待检查目标切面的设置参数。作为标准化检查流程中的切面,一般都有固定的病人体位和探头放置位置及方向,所以在录制时设置后,后续执行目标扫查协议时,处理器20自动加载设置参数中的体位图,无需医生设置,非常方便。
步骤25、医生在选定的超声图像上进行了上述添加体位图、注释和测量操作后,需要对该超声图像进行保存,即保存图像操作。医生通过人机交互装置发出用于保存图像的指令,之后,显示界面上会显示多种存储方式供医生选取,存储方式有如下几种:从冻结的超声图像中存储单帧超声图像、向前存储一段超声图像、向后存储一段超声图像以及存储静态超声图像。从冻结的超声图像中存储单帧超声图像,例如存储之前选定的一帧超声图像。向前存储或向后存储一段超声图像,需要说明的是,“向前存储”是指时间轴前向存储,向过去方向存储一段图像(图像存储器中已扫查存储的);“向后存储”是指时间轴后向存储,向未来存储一段图像(非扫查过的)。前面几种存储的超声图像都是可编辑的,也就是可添加体位图、注释和测量。存储静态超声图像就是将超声图像存储成不可编辑的图片格式。处理器20在接收到用于保存图像的指令后,记录用户选定的存储方式,将用户选定的存储方式作为当前待检查目标切面的设置参数。
存储方式选定后,医生还可以选取存储位置、图像格式等,处理器20记录保存的超声图像的存储位置,将所述存储位置作为当前待检查目标切面的设置参数;记录保存的超声图像的图像格式,将所述图像格式作为当前待检查目标切面的设置参数。存储位置可以是存储在本地(超声成像设备内),也可以存储在服务器中,由医生选定。后续执行目标扫查协议时,用户无需再设置存储位置和图像格式,处理器20默认存储到设置参数中的存储位置,图像格式默认为设置参数中的图像格式,提高了操作效率。
保存后的超声图像医生可能需要打印,故处理器20在接收到用于打印图像的指令后,记录打印设置,将该打印设置作为当前待检查目标切面的设置参数。
医生可能还有设置引导图像的需求,医生可以通过操作调出具有多个引导图像的显示界面,医生从中选定一个引导图像。处理器20在接收到用于选定引导图像的指令后,将选定的引导图像作为当前待检查目标切面的设置参数。当然,也可以采用较为自动化的方式,处理器20从扫查操作中选定的超声图像中(例如从医生选定的一帧或多种超声图像中)提取出解剖结构轮廓,从预先存储的多个引导图像中找出与所述解剖结构轮廓最相似的引导图像,作为当前待检查目标切面的设置参数。后续执行目标扫查协议时,处理器20在显示界面上显示该引导图像,以引导 医生进行待检查目标切面的超声扫查。
步骤26、解冻图像,通常是意味着当前冻结图像不再需要或者当前扫查结束,即将开始新的扫查。处理器20在接收到用于解冻图像的指令后,判断当前待检查目标切面是否已保存超声图像,若是则解冻图像,以便进行下一个待检查目标切面的扫查、录制,若否则将当前得到的设置参数删除。例如,医生在超声图像冻结后查看发现没有一张是能符合要求,或者对前面的步骤中得到的设置参数不满意,那么可以不保存图像,直接解冻图像重新扫图,当前待检查目标切面对应的设置参数可自动删除。
常规临床超声检查各切面的操作具有一定相似性,都包括扫查、冻结、选帧、添加体位图和注释、测量、保存图像、解冻等步骤,即步骤21-26。医生可以通过输入对应的指令来结束当前待检查目标切面的录制,进行下一待检查目标切面的录制,也可以由处理器20识别医生的某一关键操作,将该关键操作作为结束当前待检查目标切面录制的依据。本实施例对后者进行说明。处理器20识别医生执行的扫查操作,在医生执行的扫查操作为预设的关键操作时,根据从扫查图像操作到关键操作期间的扫查操作的记录,得到当前待检查目标切面的设置参数。例如,保存图像往往是一个切面完成检查的标识,作为诊断依据和留待日后查验等。若关键操作为保存图像,则处理器20识别到医生的保存图像操作(见步骤25)之后,认为医生完成了当前待检查目标切面的检查和录制,则将步骤21-25得到的设置参数确定为当前待检查目标切面的设置参数,之后得到的设置参数则属于另外一个待检查目标切面的设置参数。若关键操作为解冻图像操作,则将步骤21-26得到的设置参数确定为当前待检查目标切面的设置参数,之后再解冻图像。
医生冻结的超声图像中可能会得到多个待检查目标切面的超声图像,因此,本实施例优选保存图像作为关键操作。医生在进行了选帧、标注和保存图像的操作后,得到了一待检查目标切面以及该待检查目标切面的设置参数,由于冻结的图像中还有其他待检查目标切面的超声图像,医生只需要重新选帧、标注和保存图像,即可得到另一待检查目标切面以及该待检查目标切面的设置参数。直到冻结的超声图像中没有其他待检查目标切面了,解冻进行下一待检查目标切面的扫查和录制。
处理器20在接收录制启动指令之后,还在该显示器的显示界面上提示用户设置目标扫查协议的名称,并根据用户的输入确定目标扫查协议的名称;当然,也可以采用预设的第一名称作为目标扫查协议的名称,换而言之,若医生在录制期间没有输入目标扫查协议的名称,则采用第一名称作为目标扫查协议的名称,第一名称可编辑,便于医生后续进行更改。处理器还在待检查目标切面的录制期间,在显示 器的显示界面上提示用户设置待检查目标切面的名称,并根据用户的输入确定待检查目标切面的名称,将确定的待检查目标切面的名称作为当前待检查目标切面的设置参数;当然,也可以采用预设的第二名称作为待检查目标切面的名称,将第二名称作为当前待检查目标切面的设置参数,换而言之,若医生在录制期间没有输入待检查目标切面的名称,则采用第二名称作为待检查目标切面的名称,第二名称可编辑,便于医生后续进行更改。
上述内容介绍了如何得到一个待检查目标切面以及该待检查目标切面的设置参数的过程,医生只需根据自身需求进行扫查操作,不论多少待检查目标切面以及待检查目标切面的设置参数都能被处理器20记录。当然,医生需要生成的目标扫查协议的待检查目标切面可能并不需要上述所有的设置参数,医生根据自身需要进行对应的扫查操作即可,也就是步骤21-25选择性的执行即可。由于可能存在多个待检查目标切面,故处理器20在接收录制启动指令之后,还在该显示器的显示界面上提示用户设置各个待检查目标切面的启动顺序,并根据用户的输入确定各个待检查目标切面的启动顺序,将待检查目标切面各自的启动顺序作为其设置参数。
为了便于医生了解录制的进度,处理器20在接收录制启动指令之后,一直到接收到录制停止指令,都在显示器的显示界面上显示扫查操作中得到各个待检查目标切面以及各个待检查目标切面的设置参数的进度。例如,通过如下表格来提示医生进度:
Figure PCTCN2019129345-appb-000001
上述表格中不仅显示了各个切面的录制顺序,还在切面名称栏中显示引导图,医生通过引导图即可知道切面名称,无需查看文字内容,方便快捷。
医生在录制各个待检查目标切面及其设置参数时,也就是在接收到录制启动指令之后,处理器20还通过显示界面提供复制、重录、删除、前插、后插、暂停/继续等操作供医生选取。例如,通过下表给医生提供对应的操作入口:
复制 重录 删除 前插 后插 暂停/继续
处理器20在接收到所述录制启动指令之后,通过人机交互装置接收用户输入的复制指令,复制用户选定的待检查目标切面,以便得到该待检查目标切面的另一组设置参数,该复制可以是完全复制不做更改,也可以是复制后自动进行修改;一个待检查目标切面有两组设置参数,便于后续执行目标扫查协议时,采样多组参数扫查同一目标。例如,将左肢切面的相关设置复制为右肢切面,同时更改命名及部分设置参数。
处理器20在接收到所述录制启动指令之后,还通过人机交互装置接收用户输入的重录指令,将用户选定的待检查目标切面的设置参数删除,以便重新得到设置参数。
处理器20在接收到所述录制启动指令之后,还通过人机交互装置接收用户输入的删除指令,删除用户选定的待检查目标切面,并更新其他待检查目标切面的顺序。
处理器20在接收到所述录制启动指令之后,还通过人机交互装置接收用户输入的前插指令,在用户选定的待检查目标切面之前,插入一新的待检查目标切面;还通过人机交互装置接收用户输入的后插指令,在用户选定的待检查目标切面之后,插入一新的待检查目标切面;便于用户调整待检查目标切面的顺序。
处理器20在接收到所述录制启动指令之后,还通过人机交互装置接收用户输入的暂停记录指令,暂停当前的记录,以便于医生进行其他操作,带医生需要继续进行录制时,通过人机交互装置接收用户输入的继续记录指令,继续当前的记录。
步骤3、基于步骤2中得到的待检查目标切面以及待检查目标切面的设置参数生成目标扫查协议,该目标扫查协议包含步骤2中得到的至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数,通常,步骤2得到多少待检查目标切面及其设置参数,生成的目标扫查协议就包含多少待检查目标切面及其设置参数。生成目标扫查协议可以在录制期间生成,也可以在处理器20通过人机交互装置70接收到录制停止指令后生成,本实施例以后者为例进行说明。医生对各个待检查目标切面完成扫查操作后,通过人机交互装置70输入录制停止指令,处理器20停止对扫查操作进行记录,进而生成包含有步骤2得到的所有待检查目标切面以及所有待检查目标切面的设置参数的目标扫查协议。
可见,本申请生成的目标扫查协议是根据医生在切面扫查操作的个人习惯生成的,不仅操作上医生很熟悉、方便,而且生成的目标扫查协议符合医生的使用习惯、贴合医生的心意,由经验丰富的医生进行操作的话,生成的目标扫查协议更完善。
某些超声检查是双侧肢体检查(比如血管、神经、肌骨等)和单侧肢体检查并 存,医生通常分别完成单侧协议录制后,显然并不想要再重复录制一次双侧协议,而是希望能将左侧和右侧的协议拼合在一起成为双侧协议。因此,处理器20还用于在生成目标扫查协议之后,通过人机交互装置接收拼合指令,根据用户选定的两个目标扫查协议的先后顺序,将用户选定的两个目标扫查协议合并成一个目标扫查协议;用户选定的两个目标扫查协议为相互关联的目标扫查协议。也就是说,医生选择两个协议,点击【拼合】按键,处理器20会按照选择目标扫查协议的顺序自动生成一个拼接协议,医生可以重命名,或者进一步调整、修改协议。当然,拼合不限于2个协议拼合,可以是多个协议,按照选择顺序进行拼合即可。
目标扫查协议和既有的扫查协议一样,是一种协议文件,其协议内容包括至少一个待检查目标切面以及该至少一个待检查目标切面的设置参数,在启动目标扫查协议时,通过人机交互装置来指引医生需要扫查哪些待检查目标切面,且每个待检查目标切面配置有相应的设置参数,使得医生在扫查过程中无需过多设置参数,便于医生快速得到各个待检查目标切面的切面图像。
生成目标扫查协议后,其与超声成像设备自带的既有的扫查协议的使用方式是一样的,下面将执行目标扫查协议的过程进行简单描述:
医生通过人机交互装置70发出启动超声自动工作流的指令,响应于该启动超声自动工作流的指令,处理器20在显示器的显示界面上显示用于触发录制启动指令的图标、既有的扫查协议和目标扫查协议供用户选取。医生选定目标扫查协议,通过人机交互装置70发出启动该目标扫查协议的指令,处理器20响应于用于启动所述目标扫查协议的指令,控制超声探头向目标组织发射超声波,并接收从该目标组织返回的超声回波,以获得超声回波信号;根据该超声回波信号得到超声图像,并通过显示器显示目标扫查协议的第一个待检查目标切面对应的扫查界面,以供用户执行扫查操作。用户可以基于第一个待检查目标切面的引导,移动超声探头,以扫查得到该待检查目标切面的超声图像。处理器20可通过显示界面显示目标扫查协议的名称以及当前待检查目标切面的名称,显示体位图供医生参考,并自动将检查模式设置成设置参数中的目标检查模式(也可以先提示目标检查模式,由医生确认后执行),自动将图像模式设置成设置参数中的目标图像模式(也可以先提示目标图像模式,由医生确认后执行),当前处于实时扫查状态,则自动将图像参数设置成设置参数中实时扫查状态对应的目标图像参数档位(也可以先提示目标图像参数档位,由医生确认后执行),医生无需设置,只需手持超声探头进行扫查即可,非常方便。扫查一段超声图像后,医生冻结超声图像,处理器20自动将图像参数设置成设置参数中图像冻结状态对应的目标图像参数档位(也可以先提示目标图像 参数档位,由医生确认后执行)。处理器20还根据设置参数在显示界面上提示医生选一帧还是选多帧超声图像。医生选帧后,处理器20还根据设置参数在显示界面上直接显示注释项目、注释位置、测量参数和体位图,供医生进行注释、测量,也为医生提供了指引。医生完成标注操作后保存图像,只需选择需要保存哪些图像即可,处理器20自动按照设置参数中的存储方式(也可以先提示存储方式,由医生确认后执行),将医生选定的图像以设置参数中的格式存储到设置参数中的存储位置中(也可以先提示图像格式、存储位置,由医生确认后执行)。不同的待检查目标切面的存储方式可能不同,人机交互装置可通过一种设置,使医生使用相同的图像存储按键,根据不同的目标切面执行不同的存储方式,当然人机交互装置也可通过另一种设置,使医生使用不同图像存储按键执行不同的存储方式。之后医生解冻图像,处理器20根据待检查目标切面的启动顺序,启动下一待检查目标切面对应的扫查界面,以供用户执行扫查操作,直到目标扫查协议的部分或者所有待检查目标切面都得到医生想要的切面超声图像。可见,超声自动工作流中的扫查协议通过本申请的方法可以自定义,其新建过程快捷高效。
上述实施例中,医生通过用于触发录制启动指令的图标来启动录制,而本申请还提供一种实施例,其进入录制的方式与上述实施例有些不同。本实施例中,快速新建扫查协议的方法包括如下步骤:
步骤1’、处理器20接收启动超声自动工作流的指令,响应于该启动超声自动工作流的指令,处理器20在显示器的显示界面上显示至少一个扫查协议供用户选取。该扫查协议可以是既有的扫查协议,也可以是一个模板扫查协议,模板扫查协议同样能引导医生执行图3中的步骤。医生选定一个扫查协议,处理器20响应于用于选定扫查协议的指令,控制超声探头向目标组织发射超声波,并接收从该目标组织返回的超声回波,以获得超声回波信号;根据该超声回波信号得到超声图像,并在该显示界面上显示扫查协议的待检查切面的扫查界面。前述实施例中,是医生从无到有的执行一次或多次待检查切面的扫查操作,得到一个或多个待检查目标切面以及待检查目标切面的设置参数;而本实施例中,医生可根据超声成像设备提供的既有的扫查协议中选择一扫查协议来执行一次或多次待检查切面的扫查操作,得到一个或多个待检查目标切面以及待检查目标切面的设置参数,除此之外两者并无太大差异,相关说明可参考前述实施例进行理解,此处不作赘述。
步骤2’、处理器20响应于录制启动指令,对用户基于该扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及该至少一个待检查目标切面的设置参数。本步骤与上述实施例中的步骤2相同,故不作赘述。
步骤3’、处理器20在接收到录制停止指令后,生成包含有该至少一个待检查目标切面以及该至少一个待检查目标切面的设置参数的目标扫查协议。本步骤与上述实施例中的步骤3相同,故不作赘述。
可见,本申请选择一个合适的时机,以切面为单位记录医生的操作内容和切面采集流程,自动生成可执行的目标扫查协议,减轻用户自定义的负担,使得用户能够更便捷、更轻松的使用自动工作流规范日常的超声检查。
上述实施例给出了快速新建扫查协议的方法,本申请还可以基于相同的原理,给出了快速修改扫查协议的方法,其包括如下步骤:
步骤1”、处理器20接收启动超声自动工作流的指令,响应于该启动超声自动工作流的指令,显示至少一个扫查协议供用户选取,该扫查协议包括至少一个待检查切面。处理器20响应于用于选定扫查协议的指令,显示扫查协议的待检查切面的扫查界面。
步骤2”、处理器20响应于录制启动指令,对用户基于该扫查界面执行的扫查操作进行记录,得到至少一个待检查切面以及该至少一个待检查切面的设置参数。
步骤3”、处理器20在接收到录制停止指令后,根据得到的设置参数,更新扫查协议原有的设置参数,从而完成了对扫查协议的修改。具体过程参见上述新建扫查协议的实施例,在此不作赘述。
本领域技术人员可以理解,上述实施方式中各种方法的全部或部分功能可以通过硬件的方式实现,也可以通过计算机程序的方式实现。当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器、随机存储器、磁盘、光盘、硬盘等,通过计算机执行该程序以实现上述功能。例如,将程序存储在设备的存储器中,当通过处理器执行存储器中程序,即可实现上述全部或部分功能。另外,当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序也可以存储在服务器、另一计算机、磁盘、光盘、闪存盘或移动硬盘等存储介质中,通过下载或复制保存到本地设备的存储器中,或对本地设备的系统进行版本更新,当通过处理器执行存储器中的程序时,即可实现上述实施方式中全部或部分功能。
本文参照了各种示范实施例进行说明。然而,本领域的技术人员将认识到,在不脱离本文范围的情况下,可以对示范性实施例做出改变和修正。例如,各种操作步骤以及用于执行操作步骤的组件,可以根据特定的应用或考虑与系统的操作相关联的任何数量的成本函数以不同的方式实现(例如一个或多个步骤可以被删除、修改或结合到其他步骤中)。
另外,如本领域技术人员所理解的,本文的原理可以反映在计算机可读存储介质上的计算机程序产品中,该可读存储介质预装有计算机可读程序代码。任何有形的、非暂时性的计算机可读存储介质皆可被使用,包括磁存储设备(硬盘、软盘等)、光学存储设备(CD-ROM、DVD、Blu Ray盘等)、闪存和/或诸如此类。这些计算机程序指令可被加载到通用计算机、专用计算机或其他可编程数据处理设备上以形成机器,使得这些在计算机上或其他可编程数据处理装置上执行的指令可以生成实现指定的功能的装置。这些计算机程序指令也可以存储在计算机可读存储器中,该计算机可读存储器可以指示计算机或其他可编程数据处理设备以特定的方式运行,这样存储在计算机可读存储器中的指令就可以形成一件制造品,包括实现指定功能的实现装置。计算机程序指令也可以加载到计算机或其他可编程数据处理设备上,从而在计算机或其他可编程设备上执行一系列操作步骤以产生一个计算机实现的进程,使得在计算机或其他可编程设备上执行的指令可以提供用于实现指定功能的步骤。
虽然在各种实施例中已经示出了本文的原理,但是许多特别适用于特定环境和操作要求的结构、布置、比例、元件、材料和部件的修改可以在不脱离本披露的原则和范围内使用。以上修改和其他改变或修正将被包含在本文的范围之内。
前述具体说明已参照各种实施例进行了描述。然而,本领域技术人员将认识到,可以在不脱离本披露的范围的情况下进行各种修正和改变。因此,对于本披露的考虑将是说明性的而非限制性的意义上的,并且所有这些修改都将被包含在其范围内。同样,有关于各种实施例的优点、其他优点和问题的解决方案已如上所述。然而,益处、优点、问题的解决方案以及任何能产生这些的要素,或使其变得更明确的解决方案都不应被解释为关键的、必需的或必要的。本文中所用的术语“包括”和其任何其他变体,皆属于非排他性包含,这样包括要素列表的过程、方法、文章或设备不仅包括这些要素,还包括未明确列出的或不属于该过程、方法、系统、文章或设备的其他要素。此外,本文中所使用的术语“耦合”和其任何其他变体都是指物理连接、电连接、磁连接、光连接、通信连接、功能连接和/或任何其他连接。
具有本领域技术的人将认识到,在不脱离本发明的基本原理的情况下,可以对上述实施例的细节进行许多改变。因此,本发明的范围应根据以下权利要求确定。

Claims (36)

  1. 一种快速新建扫查协议的方法,所述扫查协议包括至少一个待检查切面及其设置参数;其特征在于包括:
    接收录制启动指令;
    响应于所述录制启动指令,显示扫查界面,对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数;
    生成包含有所述至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数的目标扫查协议。
  2. 一种快速新建扫查协议的方法,所述扫查协议包括至少一个待检查切面及其设置参数;其特征在于包括:
    接收录制启动指令;
    响应于所述录制启动指令,控制超声探头向目标组织发射超声波,并接收从所述目标组织返回的超声回波,以获得超声回波信号;
    根据所述超声回波信号得到超声图像,并显示扫查界面;
    对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数;
    生成包含有所述至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数的目标扫查协议。
  3. 如权利要求1或2所述的方法,其特征在于,所述接收录制启动指令之前,还包括:
    接收启动超声自动工作流的指令;
    响应于所述启动超声自动工作流的指令,显示用于触发录制启动指令的图标以及至少一个既有的扫查协议供用户选取,所述既有的扫查协议包括至少一个既有的待检查切面。
  4. 如权利要求1或2所述的方法,其特征在于还包括:
    响应于用于启动所述目标扫查协议的指令,控制超声探头向目标组织发射超声波,并接收从所述目标组织返回的超声回波,以获得超声回波信号;
    根据所述超声回波信号得到超声图像,并显示所述至少一个待检查目标切面对应的扫查界面,以供用户执行扫查操作。
  5. 如权利要求1或2所述的方法,其特征在于,所述扫查操作包括:扫查图像 操作,冻结图像操作,选帧操作,标注操作,保存图像操作和解冻图像操作中的至少一个操作;所述标注操作包括添加体位图、注释和测量中的至少一个。
  6. 如权利要求5所述的方法,其特征在于,所述对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数包括:
    获取当前待检查目标切面;
    识别用户执行的扫查操作,在用户执行的扫查操作为预设的关键操作时,根据从扫查图像操作到关键操作期间的扫查操作的记录,得到当前待检查目标切面的设置参数。
  7. 如权利要求5所述的方法,其特征在于,所述扫查操作至少包括扫查图像操作;所述扫查图像操作包括在超声成像过程中所采用的检查模式、图像模式和图像参数档位中的至少一种;所述超声成像过程包括控制超声探头向目标组织发射超声波,并接收从所述目标组织返回的超声回波,以获得超声回波信号,根据所述超声回波信号得到超声图像;
    所述对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数包括:
    获取当前待检查目标切面;
    记录所述扫查图像操作中采用的目标检查模式、目标图像模式和目标图像参数档位中的至少一种,并将所述目标检查模式、目标图像模式和目标图像参数档位中的至少一种作为当前待检查目标切面的设置参数。
  8. 如权利要求5所述的方法,其特征在于,所述扫查操作至少包括选帧操作和标注操作;所述对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数包括:
    获取当前待检查目标切面;
    在得到选帧操作中用户选定的超声图像后,记录添加的注释项目或注释位置,将所述注释项目或注释位置作为当前待检查目标切面的设置参数;和/或,
    在得到选帧操作中用户选定的超声图像后,记录添加的测量参数,将添加的测量参数作为当前待检查目标切面的设置参数;和/或,
    在得到选帧操作中用户选定的超声图像后,记录添加的体位图,将所述体位图作为当前待检查目标切面的设置参数。
  9. 如权利要求5所述的方法,其特征在于,所述扫查操作至少包括保存图像操作,所述对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查 目标切面以及所述至少一个待检查目标切面的设置参数包括:
    获取当前待检查目标切面;
    在接收到用于保存图像的指令后,记录用户选定的存储方式,所述存储方式包括从冻结的超声图像中存储单帧超声图像、向前存储一段超声图像、向后存储一段超声图像或存储静态超声图像,将用户选定的存储方式作为当前待检查目标切面的设置参数;和/或,
    在接收到用于保存图像的指令后,记录保存的超声图像的存储位置,将所述存储位置作为当前待检查目标切面的设置参数;和/或,
    在接收到用于保存图像的指令后,记录保存的超声图像的图像格式,将所述图像格式作为当前待检查目标切面的设置参数;和/或,
    在接收到用于打印图像的指令后,记录打印设置,将所述打印设置作为当前待检查目标切面的设置参数。
  10. 如权利要求5所述的方法,其特征在于,所述对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数包括:
    获取当前待检查目标切面;
    在接收到用于选定引导图像的指令后,将选定的引导图像作为当前待检查目标切面的设置参数;或者,从扫查操作得到的超声图像中提取出解剖结构轮廓,从预先存储的多个引导图像中找出与所述解剖结构轮廓最相似的引导图像,作为当前待检查目标切面的设置参数。
  11. 如权利要求5所述的方法,其特征在于,所述扫查操作至少包括解冻图像操作;所述方法还包括:
    在接收到用于解冻图像的指令后,判断当前待检查目标切面是否已保存超声图像,若否则将当前得到的设置参数删除。
  12. 如权利要求1或2所述的方法,其特征在于,在接收录制启动指令之后,还包括:
    在显示的扫查界面上显示扫查操作中得到所述至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数的进度。
  13. 如权利要求1或2所述的方法,其特征在于,在接收录制启动指令之后,还包括:
    获取当前待检查目标切面;
    在显示的扫查界面上提示用户设置目标扫查协议的名称,并根据用户的输入确 定目标扫查协议的名称;或者,采用预设的第一名称作为目标扫查协议的名称;以及,
    在显示的扫查界面上提示用户设置待检查目标切面的名称,并根据用户的输入确定待检查目标切面的名称,将确定的待检查目标切面的名称作为当前待检查目标切面的设置参数;或者,采用预设的第二名称作为待检查目标切面的名称,将第二名称作为当前待检查目标切面的设置参数。
  14. 如权利要求1或2所述的方法,其特征在于,对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数包括:
    获取至少一个待检查目标切面;
    在显示的扫查界面上提示用户设置所述至少一个待检查目标切面的启动顺序,并根据用户的输入确定所述至少一个待检查目标切面的启动顺序,将所述启动顺序作为其所属待检查目标切面的设置参数。
  15. 如权利要求1或2所述的方法,其特征在于,在接收到所述录制启动指令之后还包括:
    根据接收的复制指令,复制用户选定的待检查目标切面,以便得到该待检查目标切面的另一组设置参数;和/或,
    根据接收的重录指令,将用户选定的待检查目标切面的设置参数删除,以便重新得到设置参数;和/或,
    根据接收的删除指令,删除用户选定的待检查目标切面,并更新其他待检查目标切面的顺序;和/或,
    根据接收的前插指令,在用户选定的待检查目标切面之前,插入一新的待检查目标切面;和/或,
    根据接收的后插指令,在用户选定的待检查目标切面之后,插入一新的待检查目标切面;和/或,
    根据接收的暂停记录指令,暂停当前的记录;根据接收的继续记录指令,继续当前的记录。
  16. 如权利要求1或2所述的方法,其特征在于,生成目标扫查协议之后,还包括:
    接收拼合指令,根据用户选定的两个目标扫查协议的先后顺序,将用户选定的两个目标扫查协议合并成一个目标扫查协议;用户选定的两个目标扫查协议为相互关联的目标扫查协议。
  17. 一种快速新建扫查协议的方法,所述扫查协议包括至少一个待检查切面及其设置参数;其特征在于包括:
    接收启动超声自动工作流的指令,响应于所述启动超声自动工作流的指令,显示至少一个扫查协议供用户选取,所述扫查协议包括至少一个待检查切面;
    响应于用于选定扫查协议的指令,显示扫查协议的待检查切面的扫查界面;响应于录制启动指令,对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数;
    生成包含有所述至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数的目标扫查协议。
  18. 一种快速新建扫查协议的方法,所述扫查协议包括至少一个待检查切面及其设置参数;其特征在于包括:
    接收启动超声自动工作流的指令,响应于所述启动超声自动工作流的指令,显示至少一个扫查协议供用户选取,所述扫查协议包括至少一个待检查切面;
    响应于用于选定扫查协议的指令,控制超声探头向目标组织发射超声波,并接收从所述目标组织返回的超声回波,以获得超声回波信号;
    根据所述超声回波信号得到超声图像,并显示扫查协议的待检查切面的扫查界面;
    响应于录制启动指令,对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数;
    生成包含有所述至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数的目标扫查协议。
  19. 一种超声成像设备,其特征在于,包括:
    超声探头,用于向生物组织内的感兴趣区域发射超声波,并接收所述超声波的回波;
    发射/接收控制电路,用于控制超声探头向感兴趣区域发射超声波并接收所述超声波的回波,以获得超声回波信号;
    人机交互装置,用于接收用户的输入,输出可视化信息;
    处理器,用于根据所述超声回波信号得到超声图像;以及通过人机交互装置接收录制启动指令;响应于所述录制启动指令,通过人机交互装置显示扫查界面,对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数;生成包含有所述至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数的目标扫查协议。
  20. 如权利要求19所述的超声成像设备,其特征在于,在接收录制启动指令之前,所述处理器还用于通过人机交互装置接收启动超声自动工作流的指令;响应于所述启动超声自动工作流的指令,通过人机交互装置显示用于触发录制启动指令的图标以及至少一个既有的扫查协议供用户选取,所述既有的扫查协议包括至少一个既有的待检查切面。
  21. 如权利要求19所述的超声成像设备,其特征在于,所述处理器还用于:
    响应于用于启动所述目标扫查协议的指令,控制超声探头向目标组织发射超声波,并接收从所述目标组织返回的超声回波,以获得超声回波信号;
    根据所述超声回波信号得到超声图像,并通过人机交互装置显示所述至少一个待检查目标切面对应的扫查界面,以供用户执行扫查操作。
  22. 如权利要求19所述的超声成像设备,其特征在于,所述扫查操作包括:扫查图像操作,冻结图像操作,选帧操作,标注操作,保存图像操作和解冻图像操作中的至少一个操作;所述标注操作包括添加体位图、注释和测量中的至少一个。
  23. 如权利要求22所述的超声成像设备,其特征在于,所述处理器对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数包括:
    获取当前待检查目标切面;
    识别用户执行的扫查操作,在用户执行的扫查操作为预设的关键操作时,根据从扫查图像操作到关键操作期间的扫查操作的记录,得到当前待检查目标切面的设置参数。
  24. 如权利要求22所述的超声成像设备,其特征在于,所述扫查操作至少包括扫查图像操作;所述处理器对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数包括:
    获取当前待检查目标切面;
    控制超声探头执行扫查图像操作;
    记录扫查图像操作中采用的目标检查模式、目标图像模式和目标图像参数档位中的至少一种,并将所述目标检查模式、目标图像模式和目标图像参数档位中的至少一种作为当前待检查目标切面的设置参数。
  25. 如权利要求22所述的超声成像设备,其特征在于,所述扫查操作至少包括选帧操作和标注操作;所述处理器对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参 数包括:
    获取当前待检查目标切面;
    在得到选帧操作中用户选定的超声图像后,记录添加的注释项目或注释位置,将所述注释项目或注释位置作为当前待检查目标切面的设置参数;和/或,
    在得到选帧操作中用户选定的超声图像后,记录添加的测量参数,将添加的测量参数作为当前待检查目标切面的设置参数;和/或,
    在得到选帧操作中用户选定的超声图像后,记录添加的体位图,将所述体位图作为当前待检查目标切面的设置参数。
  26. 如权利要求22所述的超声成像设备,其特征在于,所述扫查操作至少包括保存图像操作,所述处理器对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数包括:
    获取当前待检查目标切面;
    在接收到用于保存图像的指令后,记录用户选定的存储方式,所述存储方式包括从冻结的超声图像中存储单帧超声图像、向前存储一段超声图像、向后存储一段超声图像或存储静态超声图像,将用户选定的存储方式作为当前待检查目标切面的设置参数;和/或,
    在接收到用于保存图像的指令后,记录保存的超声图像的存储位置,将所述存储位置作为当前待检查目标切面的设置参数;和/或,
    在接收到用于保存图像的指令后,记录保存的超声图像的图像格式,将所述图像格式作为当前待检查目标切面的设置参数;和/或,
    在接收到用于打印图像的指令后,记录打印设置,将所述打印设置作为当前待检查目标切面的设置参数。
  27. 如权利要求22所述的超声成像设备,其特征在于,所述处理器对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数包括:
    获取当前待检查目标切面;
    在接收到用于选定引导图像的指令后,将选定的引导图像作为当前待检查目标切面的设置参数;或者,从扫查操作得到的超声图像中提取出解剖结构轮廓,从预先存储的多个引导图像中找出与所述解剖结构轮廓最相似的引导图像,作为当前待检查目标切面的设置参数。
  28. 如权利要求22所述的超声成像设备,其特征在于,所述扫查操作至少 包括解冻图像操作;所述处理器方法还用于:
    在人机交互装置接收到用于解冻图像的指令后,判断当前待检查目标切面是否已保存超声图像,若否则将当前得到的设置参数删除。
  29. 如权利要求19所述的超声成像设备,其特征在于,所述处理器还用于在接收录制启动指令之后,
    在人机交互装置的显示的扫查界面上显示扫查操作中得到所述至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数的进度。
  30. 如权利要求19所述的超声成像设备,其特征在于,所述处理器还用于在接收录制启动指令之后,
    获取当前待检查目标切面;
    在人机交互装置的显示的扫查界面上提示用户设置目标扫查协议的名称,并根据用户的输入确定目标扫查协议的名称;或者,采用预设的第一名称作为目标扫查协议的名称;以及,
    在人机交互装置的显示的扫查界面上提示用户设置待检查目标切面的名称,并根据用户的输入确定待检查目标切面的名称,将确定的待检查目标切面的名称作为当前待检查目标切面的设置参数;或者,采用预设的第二名称作为待检查目标切面的名称,将第二名称作为当前待检查目标切面的设置参数。
  31. 如权利要求19所述的超声成像设备,其特征在于,所述处理器对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数包括:
    获取至少一个待检查目标切面;
    在人机交互装置的显示的扫查界面上提示用户设置所述至少一个待检查目标切面的启动顺序,并根据用户的输入确定所述至少一个待检查目标切面的启动顺序,将所述启动顺序作为其所属待检查目标切面的设置参数。
  32. 如权利要求19所述的超声成像设备,其特征在于,所述处理器还用于在接收到所述录制启动指令之后,
    根据人机交互装置接收的复制指令,复制用户选定的待检查目标切面,以便得到该待检查目标切面的另一组设置参数;和/或,
    根据人机交互装置接收的重录指令,将用户选定的待检查目标切面的设置参数删除,以便重新得到设置参数;和/或,
    根据人机交互装置接收的删除指令,删除用户选定的待检查目标切面,并更新其他待检查目标切面的顺序;和/或,
    根据人机交互装置接收的前插指令,在用户选定的待检查目标切面之前,插入一新的待检查目标切面;和/或,
    根据人机交互装置接收的后插指令,在用户选定的待检查目标切面之后,插入一新的待检查目标切面;和/或,
    根据人机交互装置接收的暂停记录指令,暂停当前的记录;根据接收的继续记录指令,继续当前的记录。
  33. 如权利要求19所述的超声成像设备,其特征在于,所述处理器还用于在生成目标扫查协议之后,
    通过人机交互装置接收拼合指令,根据用户选定的两个目标扫查协议的先后顺序,将用户选定的两个目标扫查协议合并成一个目标扫查协议;用户选定的两个目标扫查协议为相互关联的目标扫查协议。
  34. 一种超声成像设备,其特征在于包括:
    超声探头,用于向生物组织内的感兴趣区域发射超声波,并接收所述超声波的回波;
    发射/接收控制电路,用于控制超声探头向感兴趣区域发射超声波并接收所述超声波的回波,以获得超声回波信号;
    人机交互装置,用于接收用户的输入,输出可视化信息;
    处理器,用于根据所述超声回波信号得到超声图像;以及通过人机交互装置接收启动超声自动工作流的指令,响应于所述启动超声自动工作流的指令,显示至少一个扫查协议供用户选取,所述扫查协议包括至少一个待检查切面;响应于用于选定扫查协议的指令,显示扫查协议的待检查切面的扫查界面;响应于录制启动指令,对用户基于所述扫查界面执行的扫查操作进行记录,得到至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数;生成包含有所述至少一个待检查目标切面以及所述至少一个待检查目标切面的设置参数的目标扫查协议。
  35. 一种超声成像设备,其特征在于包括:
    存储器,用于存储程序;
    处理器,用于执行所述存储器存储的程序以实现如权利要求1-18中任一项所述的方法。
  36. 一种计算机可读存储介质,其特征在于,包括程序,所述程序能够被处理器执行以实现如权利要求1-18中任一项所述的方法。
PCT/CN2019/129345 2019-12-27 2019-12-27 一种超声成像设备以及快速设置超声自动工作流的方法 WO2021128310A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/129345 WO2021128310A1 (zh) 2019-12-27 2019-12-27 一种超声成像设备以及快速设置超声自动工作流的方法
CN201980098247.2A CN114072059A (zh) 2019-12-27 2019-12-27 一种超声成像设备以及快速设置超声自动工作流的方法
US17/849,521 US20230132927A1 (en) 2019-12-27 2022-06-24 Ultrasound imaging device and method for fast setup of automated workflow thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/129345 WO2021128310A1 (zh) 2019-12-27 2019-12-27 一种超声成像设备以及快速设置超声自动工作流的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/849,521 Continuation US20230132927A1 (en) 2019-12-27 2022-06-24 Ultrasound imaging device and method for fast setup of automated workflow thereof

Publications (1)

Publication Number Publication Date
WO2021128310A1 true WO2021128310A1 (zh) 2021-07-01

Family

ID=76573509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129345 WO2021128310A1 (zh) 2019-12-27 2019-12-27 一种超声成像设备以及快速设置超声自动工作流的方法

Country Status (3)

Country Link
US (1) US20230132927A1 (zh)
CN (1) CN114072059A (zh)
WO (1) WO2021128310A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114052785A (zh) * 2021-10-09 2022-02-18 武汉联影医疗科技有限公司 一种超声扫查方法、设备、计算机设备和可读存储介质
CN114176631A (zh) * 2021-12-17 2022-03-15 深圳迈瑞动物医疗科技有限公司 一种超声设备及其显示控制方法
CN115670510A (zh) * 2023-01-05 2023-02-03 深圳迈瑞动物医疗科技股份有限公司 一种超声成像设备和超声c图像的成像方法
CN116327240A (zh) * 2023-03-15 2023-06-27 逸超医疗科技(北京)有限公司 一种简便的超声设备个性化图像参数调节方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115034651A (zh) * 2022-06-27 2022-09-09 上海深至信息科技有限公司 一种自定义流程的超声检查方法
CN116058871B (zh) * 2023-03-24 2023-07-14 深圳鲲为科技有限公司 超声检查的处理方法及超声检查设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150374344A1 (en) * 2014-06-30 2015-12-31 Ge Medical Systems Global Technology Company Llc Ultrasonic diagnostic apparatus and program
CN105555198A (zh) * 2014-03-20 2016-05-04 深圳迈瑞生物医疗电子股份有限公司 自动识别测量项的方法、装置及一种超声成像设备
JP2016096923A (ja) * 2014-11-19 2016-05-30 株式会社東芝 超音波診断装置、医用画像処理装置及び画像診断システム
CN106691504A (zh) * 2016-11-29 2017-05-24 深圳开立生物医疗科技股份有限公司 自定义导航切面的方法、装置及超声设备
CN107569257A (zh) * 2017-09-29 2018-01-12 深圳开立生物医疗科技股份有限公司 超声图像处理方法及系统、超声诊断设备
CN109567860A (zh) * 2018-10-19 2019-04-05 深圳迈瑞生物医疗电子股份有限公司 超声成像方法、设备和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555198A (zh) * 2014-03-20 2016-05-04 深圳迈瑞生物医疗电子股份有限公司 自动识别测量项的方法、装置及一种超声成像设备
US20150374344A1 (en) * 2014-06-30 2015-12-31 Ge Medical Systems Global Technology Company Llc Ultrasonic diagnostic apparatus and program
JP2016096923A (ja) * 2014-11-19 2016-05-30 株式会社東芝 超音波診断装置、医用画像処理装置及び画像診断システム
CN106691504A (zh) * 2016-11-29 2017-05-24 深圳开立生物医疗科技股份有限公司 自定义导航切面的方法、装置及超声设备
CN107569257A (zh) * 2017-09-29 2018-01-12 深圳开立生物医疗科技股份有限公司 超声图像处理方法及系统、超声诊断设备
CN109567860A (zh) * 2018-10-19 2019-04-05 深圳迈瑞生物医疗电子股份有限公司 超声成像方法、设备和存储介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114052785A (zh) * 2021-10-09 2022-02-18 武汉联影医疗科技有限公司 一种超声扫查方法、设备、计算机设备和可读存储介质
CN114176631A (zh) * 2021-12-17 2022-03-15 深圳迈瑞动物医疗科技有限公司 一种超声设备及其显示控制方法
CN115670510A (zh) * 2023-01-05 2023-02-03 深圳迈瑞动物医疗科技股份有限公司 一种超声成像设备和超声c图像的成像方法
CN116327240A (zh) * 2023-03-15 2023-06-27 逸超医疗科技(北京)有限公司 一种简便的超声设备个性化图像参数调节方法

Also Published As

Publication number Publication date
CN114072059A (zh) 2022-02-18
US20230132927A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
WO2021128310A1 (zh) 一种超声成像设备以及快速设置超声自动工作流的方法
CN111374703B (zh) 用于医疗分级系统的方法和系统
KR101654674B1 (ko) 탄성 영상 제공 방법 및 이를 위한 초음파 장치
CN113679425B (zh) 一种超声弹性检测方法及其系统
US10121272B2 (en) Ultrasonic diagnostic apparatus and medical image processing apparatus
JP5364238B2 (ja) 超音波診断装置、医用画像処理装置、及び医用画像処理プログラム
EP3463098B1 (en) Medical ultrasound image processing device
JP2021191429A (ja) 医療画像のアノテーションのための装置、方法、及びシステム
CN111214254B (zh) 超声诊断设备及其切面超声图像获取方法、可读存储介质
JP2019024925A (ja) 医用撮像装置及び画像処理方法
JP2008183063A (ja) 医用画像診断装置、医用画像表示装置及びプログラム
KR102489579B1 (ko) 주석 관련 정보를 제공하는 방법 및 이를 위한 초음파 장치
JP4693433B2 (ja) 超音波診断装置
WO2007135884A1 (ja) 超音波診断装置及び超音波診断方法
CN112702954B (zh) 一种超声诊断设备及其快速分辨切面的方法、存储介质
CN112168210B (zh) 医学图像处理终端、超声诊断设备和胎儿图像的处理方法
CN111481234A (zh) 超声诊断设备及操作该超声诊断设备的方法
CN113951922A (zh) 一种超声成像设备及其扫查提示方法
CN111096765B (zh) 超声诊断设备及其快速查找未完成切面的方法、存储介质
CN112294361A (zh) 一种超声成像设备、盆底的切面图像生成方法
US20170219705A1 (en) Ultrasonic diagnosis apparatus and storage medium
US11944501B2 (en) Systems and methods for automatic measurements of medical images
WO2023050034A1 (zh) 一种超声成像设备及其诊断报告的生成方法
CN113951923A (zh) 兽用超声成像设备、超声成像设备及其扫查方法
JP2005270424A (ja) 超音波診断装置および超音波診断支援プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957149

Country of ref document: EP

Kind code of ref document: A1